WO2004099069A1 - 金属酸化物の還元方法及び水素製造方法 - Google Patents

金属酸化物の還元方法及び水素製造方法 Download PDF

Info

Publication number
WO2004099069A1
WO2004099069A1 PCT/JP2004/002128 JP2004002128W WO2004099069A1 WO 2004099069 A1 WO2004099069 A1 WO 2004099069A1 JP 2004002128 W JP2004002128 W JP 2004002128W WO 2004099069 A1 WO2004099069 A1 WO 2004099069A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
water
reducing
reduction
metal
Prior art date
Application number
PCT/JP2004/002128
Other languages
English (en)
French (fr)
Inventor
Kiyoshi Otsuka
Sakae Takenaka
Kiyozumi Nakamura
Kazuyuki Iizuka
Original Assignee
Uchiya Thermostat Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchiya Thermostat Co., Ltd. filed Critical Uchiya Thermostat Co., Ltd.
Priority to US10/556,171 priority Critical patent/US20060213331A1/en
Priority to DE112004000758T priority patent/DE112004000758T5/de
Publication of WO2004099069A1 publication Critical patent/WO2004099069A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/061Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of metal oxides with water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method for reducing a metal oxide and a method for producing hydrogen:
  • the present invention provides a method for reducing a metal oxide which can easily reduce an oxide of a metal that generates hydrogen by decomposing water with a gas containing hydrocarbons such as city gas. And a method for producing hydrogen.
  • a method for reducing a metal oxide according to the present invention includes an oxide of a metal that generates hydrogen by decomposing water (hydrogen generating metal), a platinum group element, copper, nickel oxide and At least one metal selected from the group consisting of cobalt (first additive metal) And a step of reducing a medium containing the above with a reducing gas containing hydrocarbons.
  • a medium a medium to which at least one metal selected from the group consisting of a platinum group element, copper, nickel and cobalt is added in addition to a metal oxide such as iron oxide.
  • the element, copper, nickel or cobalt serves as a catalyst and can be easily reduced with a reducing gas containing hydrocarbons such as methane.
  • a reducing gas containing hydrocarbons such as methane.
  • the platinum group elements refer to six elements of rhodium, palladium, iridium, noletenium, platinum and osmium.
  • the metal that decomposes water to generate hydrogen is preferably at least one metal selected from the group consisting of iron, indium, tin, magnesium, gallium, germanium, and cerium. These metals have higher hydrogen generation efficiency and higher durability against repeated oxidation and reduction than other metals that generate hydrogen by reacting with water. Among them, iron which generates a large amount of hydrogen per unit weight of metal is more preferable.
  • the medium further includes at least one metal selected from the group consisting of neodymium, aluminum, chromium, gallium, yttrium, zirconium, molybdenum, titanium, vanadium, magnesium, and stainless steel (second metal, Appendix 1). Can be included.
  • second metal Appendix 1
  • the sintering of the medium due to repeated oxidation-reduction can be prevented, so that the reduction efficiency of the metal oxide can be further increased, and the hydrogen generation efficiency can be further increased. it can.
  • the exhaust gas generated in the above reduction step can be used again as a reduction gas.
  • Exhaust gas generated in the reduction process contains excess reducing gas not used for reduction.
  • the metal oxide By reducing the metal oxide again with this excess reducing gas, the reducing gas can be reused effectively.
  • it generated by reduction H 2 0, CO, a co 2 was collected and reused only pure reducing gas.
  • the exhaust gas generated in the above reduction step can be used as a fuel for heating the medium.
  • Exhaust gas generated in the reduction process contains excess hydrocarbons such as methane that were not used for reduction. Therefore, by using this exhaust gas as a fuel for a means for heating a medium such as a gas parner or a heater by catalytic combustion, hydrocarbons contained in the exhaust gas can be effectively reused.
  • a method for producing hydrogen comprising: the above-described reduction step; and a water decomposition step of reacting water with the medium reduced in the reduction step to generate hydrogen. And Since the metal oxide has been reduced by the above reduction step, water can be decomposed again to generate hydrogen.
  • the hydrogen production method according to the present invention further include a medium purification step of supplying oxygen to the medium and burning carbon deposited on the medium.
  • a medium purification step of supplying oxygen to the medium and burning carbon deposited on the medium By repeating the reduction step and the water splitting step, carbon may be deposited on the medium.
  • the carbon By supplying oxygen to the medium and burning the deposited carbon, the carbon can be removed and the medium can be cleaned. By removing carbon in this way, it is possible to suppress the generation of carbon monoxide and carbon dioxide in the water splitting process.
  • a metal oxide reduction method and a hydrogen production method that can easily reduce a metal oxide that generates hydrogen by decomposing water with a gas containing hydrocarbons such as city gas Can be provided.
  • FIG. 1 is a schematic diagram showing a hydrogen production apparatus suitable for carrying out the metal oxide reduction method and the hydrogen production method according to the present invention.
  • FIG. 2 is a schematic diagram showing a reaction apparatus for iron oxide, in which (a) shows a case where a reduction reaction is performed, and (b) shows a case where a water decomposition reaction is performed.
  • FIG. 3 is a graph showing the change in the oxygen removal rate with the elapse of the reaction time.
  • FIG. 4 is a graph showing a change in the oxygen removal rate with the elapse of the reaction time.
  • FIG. 5 is a graph showing the change in the oxygen removal rate with the elapse of the reaction time.
  • FIG. 6 is a graph showing the change in the oxygen removal rate with the passage of the reaction time.
  • FIG. 7 is a graph showing the amount of hydrogen generated by each iron oxide.
  • FIG. 8 is a graph showing the amount of generated CO and CO 2 of each iron oxide.
  • FIG. 9 is a schematic view showing another reaction apparatus of iron oxide.
  • Figure 1 0 is a graph showing the CO when obtained by reducing iron oxide by methane, each occurrence rate of C 0 2, H 2.
  • Figure 1 1 is a graph showing the respective iron oxide after reduction of H 2 when obtained by water-splitting, CO, each occurrence speed of C 0 2.
  • Figure 1 2 is a graph showing a reduction reaction with CO at reducing the time of repeated water-splitting reaction, each occurrence rate of C 0 2, H 2 for 7 times.
  • FIG. 13 is a graph showing the generation rates of H 2 , CO, and co 2 during water splitting when the reduction reaction and water splitting reaction are repeated seven times.
  • FIG. 1 is a schematic diagram showing a hydrogen production apparatus suitable for carrying out a metal oxide reduction method and a hydrogen production method according to the present invention.
  • the hydrogen production apparatus is provided with a reaction tube 10.
  • the reaction tube 10 has a reducing gas introduction line 11 for introducing a reducing gas containing hydrocarbons into the reaction tube 10 and an exhaust gas generated by a reduction reaction in the reaction tube 10.
  • Exhaust line 12 for water supply, water introduction line 21 for introducing water into the reaction tube 10, and hydrogen discharge for discharging hydrogen generated by the early reaction of moisture angle in the reaction tube 10 Line 22 is provided.
  • the reducing gas introduction line 11 is connected to a reducing gas supply source (not shown) such as a city gas supply source.
  • the reducing gas introduction line 11 is provided with a three-way valve 51.
  • the first reducing gas introduction line 11a for introducing the reducing gas into the first reaction tube 10a and the second reaction tube It branches into a second reducing gas introduction line 11b for introducing reducing gas into 10b.
  • the water introduction line 21, the hydrogen discharge line 22, and the exhaust gas discharge line 12 are also provided with three-way valves 52, 53, and 54, respectively. 2Branch into water introduction line 21a, first hydrogen discharge line 22a, second hydrogen discharge line 22b, first exhaust gas discharge line 12a and second exhaust gas discharge line 12b are doing.
  • air (oxygen) An air introduction line 31 for supplying the gas to the reaction tube 10 is provided.
  • the air introduction line 31 is provided to a first reducing gas introduction line 11 a via a three-way valve 55.
  • the reaction tube 10 has a group consisting of an oxide of a metal that generates hydrogen by decomposing water (hydrogen generating metal), a platinum group element, copper (Cu), nickel (Ni), and cobalt (Co).
  • the medium is filled with at least one selected metal (first additive metal).
  • hydrogen generating metals iron (Fe), indium (In), tin (Sn), magnesium (Mg), and gallium are considered from the viewpoint of high hydrogen generation efficiency and excellent durability against repeated oxidation and reduction. It is preferable to use any one of (Ga), germanium (Ge), and cerium (Ce), and among them, Fe is more preferable.
  • the oxides of these metals for example, even in a low-valence metal oxides such as F eO, may be F e 2 0 3 or F e 3 ⁇ high-valence metal oxides such as 4.
  • the first additive metals include rhodium (Rh), palladium (Pd), iridium (Ir), ruthenium (Ru), platinum (Pt;), and osmium (Os), which are platinum group elements.
  • Rh, Pd, Ir, Ru, and Pt are preferable, and Rh and Pd are more preferable.
  • Cu, Ni, and Co which are cheaper and have a lower atomic weight than platinum group elements, can be used, and have the same oxidation-reduction efficiency as platinum group elements.
  • the mixing ratio of the first additive metal is preferably 0.1 to 30 mo 1%, and 0.1 to 15 mo 1. /. Is more preferred.
  • the mixing ratio is less than 0.1 mo 1%, the effect of reducing the metal oxide by the reducing gas containing hydrocarbons cannot be sufficiently exerted.
  • it exceeds 30 mol% the efficiency of the oxidation-reduction reaction of a metal that decomposes water to generate hydrogen decreases, which is not preferable.
  • the media include neodymium (Nd), anorenium (Al), chromium (Cr), gallium (Ga), and yttrium (Y). , Zirconium (Zr), molybdenum (Mo), titanium (Ti), vanadium (V), magnesium (Mg) and scandium (Sc) at least one metal selected from the group consisting of ) Is preferably added.
  • Nd, A1sCr, Ga, Y, Zr, and Mo are more preferable, and Nd, Al, Ga, Zr, and Mo are particularly preferable.
  • the mixing ratio of the second additive metal is preferably 0.1 to 3 Omo 1%, and more preferably 0.1 to 15 Mo 1%. If the mixing ratio is less than 0.1 mo 1%, the effect of improving the reduction efficiency of the metal oxide or the generation efficiency of hydrogen is not recognized, which is not preferable. On the other hand, if it exceeds 3 Omo 1%, the efficiency of the oxidation-reduction reaction of a metal that decomposes water to generate hydrogen decreases, which is not preferable.
  • a method for preparing a medium in which a first additive metal and an optional second additive metal are added to an oxide of a hydrogen generating metal a physical mixing method, an impregnation method, a coprecipitation method, or the like can be used. It is preferably prepared by a coprecipitation method. In addition, it is preferable to select a medium having a large surface area suitable for the reaction, such as a powder, a pellet, a cylinder, a honeycomb structure, or a nonwoven fabric, in order to efficiently promote the reduction reaction and the moisture decomposition reaction. .
  • the reaction tube 10 is provided with a heating means (not shown) for heating the reaction tube 10.
  • heating means examples include a heater using resistance heating, a positive temperature coefficient thermistor (PTC heater), a heater using acid heat of chemical reaction, a heater using catalytic combustion, a heater using induction heating, and hydrocarbons. It is better to use a gas parner as fuel.
  • PTC heater positive temperature coefficient thermistor
  • the three-way valves 51 and 54 of the reducing gas introduction line 11 and the exhaust gas discharge line 12 are connected to the second line side llb. , 12b are closed and the rest is opened, and the three-way valves 52, 53 of the water introduction line 21 and the hydrogen discharge line 22 are closed in all directions.
  • the three-way valve 55 of the air introduction line 31 closes the air introduction line 31 side and opens the rest. Then, a reducing gas containing hydrocarbons is supplied into the first reaction tube 10a via the first reducing gas introduction line 11a.
  • the temperature in the reaction tube 10 is preferably heated to about 300 ° C to about 700 ° C by a heating means, and is preferably about 350 ° C to about 600 ° C. Heating to C is more preferred.
  • hydrocarbons include Ci Ci such as methane, ethane, ethylene, and propane. Alicyclic hydrocarbons such as cyclohexane and cyclopentane, and aromatic hydrocarbons such as benzene, toluene and xylene be able to. Also, hydrocarbons that are solid at room temperature, such as paraffin wax, can be used. When a solid or liquid hydrocarbon is used at room temperature, it is used as a gas. These hydrocarbons may be used alone or in combination of two or more.
  • the introduced reducing gas reduces the hydrogen-generating metal oxide in the medium to a pure metal or a low-valent metal oxide.
  • the reaction formula when the hydrogen generating metal is Fe and the reducing gas is CH 4 is shown below.
  • the exhaust gas generated by the reduction reaction is discharged from the first reaction tube 10a via the first exhaust gas discharge line 12a. Since the discharged exhaust gas contains excess hydrocarbons not involved in the reduction reaction in addition to water, carbon monoxide and carbon dioxide, a heating means for heating the reaction tube 10 is used. (Not shown), or can be supplied to the reducing gas supply line 11 to be used as recycled gas. It is preferable to remove impurities such as water, carbon monoxide, and carbon dioxide before reusing the exhaust gas.
  • the water decomposition step is performed in the first reaction tube 10a, and the reduction gas is used in the second reaction tube 10b to perform the reduction step.
  • the three-way valves 51 and 54 of the introduction line 11 and the exhaust gas discharge line 12 close the first line side 11a and 12a and open the rest, and the water introduction line 21 and the hydrogen discharge line 22
  • Each of the three-way valves 52, 53 closes the second line side 21b, 22b and opens the rest.
  • water is supplied into the first reaction tube 10a via the first water introduction line 21a, and carbonized into the second reaction tube 10b via the second reducing gas introduction line 11b.
  • Supply reducing gas containing hydrogens Note that water can be supplied as steam or a gas containing steam.
  • the temperature in the reaction tube 10 is preferably heated to about 200 ° C. to about 600 ° C. by a heating means, and is preferably about 300 ° C. More preferably, heating to from about C to about 500C.
  • the introduced water is heated and becomes steam,
  • the 7k vapor is decomposed by the hydrogen-generating metal (pure metal) or its low-valent metal oxide in the medium reduced in the reduction step to generate hydrogen.
  • the hydrogen-generating metal (pure metal) or its low-valent metal oxide becomes a low-valent metal oxide or a high-valent metal oxide by a water splitting reaction.
  • the reaction formula when Fe is used as the hydrogen generating metal is shown below.
  • the hydrogen generated in the first reaction tube 10a is discharged from the hydrogen production device via the first hydrogen discharge line 22a and supplied to, for example, a hydrogen-using device (not shown) such as a fuel cell. .
  • a hydrogen-using device such as a fuel cell.
  • the above-described reduction reaction proceeds, and the oxide of the hydrogen-producing metal in the medium is reduced to a pure metal or a low-valent metal oxide.
  • the exhaust gas generated in the second reaction tube 10b is discharged from the second exhaust gas discharge line 12b, and can be reused as a fuel or a reducing gas for the heating means as described above.
  • the reduction step and the second reaction tube 10b are further performed in the first reaction tube 10a.
  • the three-way valves 51 and 54 of the reducing gas introduction line 11 and the exhaust gas discharge line 12 close the second line side 1 1b and 1 2b, open the rest, and introduce water.
  • the three-way valves 52, 53 of the line 21 and the hydrogen discharge line 22 close the first line side 21a, 22a and open the rest.
  • the reducing gas is supplied again into the first reaction tube 10a via the first reducing gas introduction line 11a, and the second reaction tube 1Ob is supplied via the second water introduction line 21b.
  • the water (steam) introduced into the second reaction tube 10b is separated by the water splitting reaction described above, and hydrogen is generated.
  • the generated hydrogen is discharged from the second hydrogen discharge line 22b and supplied to a fuel cell or the like as described above.
  • the hydrogen-generating metal in the medium oxidized to the low-valent metal oxide or the high-valent metal oxide in the water splitting step is regenerated by the above-mentioned reduction reaction. Alternatively, it is reduced to a low-valent metal oxide. Therefore, hydrogen can be generated by performing the water decomposition step again. As described above, by repeatedly performing the reduction step and the water splitting step alternately using the two reaction tubes 10, hydrogen can be continuously produced.
  • the three-way valve 55 of the air introduction line 31 opens in all directions to supply oxygen into the reaction tube 10 and perform the medium purification step of burning and removing carbon.
  • the three-way valve 51 of 1 opens the first and second lines 1 1a and b and closes the rest, and the three-way valves 5 2 and 5 3 of the water introduction line 21 and the hydrogen discharge line 22 are in all directions.
  • the three-way valve 54 of the exhaust gas discharge line 12 opens in all directions. Then, air (oxygen) is supplied into the reaction tube 10 via the air introduction line 31 and the reducing gas introduction line 11.
  • the temperature inside the reaction tube 10 is sufficiently high due to the reduction step or the water splitting step.
  • air oxygen
  • carbon deposited on the medium is reduced. Can be easily burned.
  • Exhaust gas generated by the combustion is exhausted from the inside of the reaction tube 10 through an exhaust gas discharge line 12.
  • the medium purification step can be performed on one of the first reaction tube 10a and the second reaction tube 10b.
  • the medium purification step is preferably performed one by one before the reduction step so as not to stop the generation of hydrogen (or to continuously generate hydrogen).
  • the number of the reaction tubes 10 can be one, or three or more can be used to continuously produce hydrogen by repeating the reduction process and the water splitting process with a predetermined time difference in each reaction tube.
  • the two reaction tubes may not be independent, and one reaction tube may be divided into two sections, and the reduction step and the water splitting step may be alternately repeated in each section.
  • Iron oxide to which Rh was added was prepared by the following coprecipitation method (urea method).
  • iron (III) nitrate nonahydrate (F e (NO 3 ) was added to 1 L of water degassed by ultrasonic wave for 5 minutes so that Rh ion was 5 mo 1% of all metal ions.
  • 3. 9 ⁇ 2 ⁇ ) (Wako Pure Chemical Industries, Ltd., Ltd.) 0. O 1 9 mol and rhodium chloride (R h C 1 3 ⁇ 3 H 2 0) ( Wako 0.00 lino 1 and 1.
  • Omol as urea as a precipitant were added and dissolved.
  • the mixed solution was heated to 90 ° C while stirring, and kept at the same temperature for 3 hours.
  • Rh added iron oxide thus obtained, 54. and 2mg weighed, i.e., Rh ions are added 5 mo 1% of the total metal ion, compound becomes F e 2 ⁇ 3 and Rh 2 ⁇ 3 If that data is being, F e 2 0 3 (ferric oxide) were weighed so that it contains 50 mg, which was used as a sample for the test to be described later.
  • FIG. 2 is a schematic diagram showing the outline of the reactor used in this experiment.
  • (A) shows the case of performing a reduction reaction with methane
  • (b) shows the case of performing a hydrogen generation reaction (water splitting reaction).
  • a sample 90 of the obtained Rh-added iron oxide was placed in a reactor 70 made of Pyrex (registered trademark) glass, and a valve 61 provided in a glass tube 72 was provided. 62, closed 65 S 66, by opening the valve 63, 64, the reactor was a solid Teiyuka flow type. Then, Ar, which is an inert gas, was allowed to flow through the system through the valve 63 at room temperature for 10 minutes. Then open the valve 62, 65, 66 to close the valve 63, 64, the degree of vacuum was 1. 3 X 10- 5 k P a reaches 30 minutes or more vacuum evacuated to less by the vacuum pump 88. Incidentally, before carrying out the reduction reaction ⁇ Pi hydrolysis reaction, Some vacuum deviation was 1. 3 X 10- 5 k P a reaches 30 minutes or more evacuation below.
  • valves 62, 65 and 66 were closed again and the valves 63 and 64 were opened to carry out the reduction reaction.
  • the trap device 82 was filled with dry ice 84 and ethanol 85, and the temperature was maintained at 176 ° C. Further, methane was introduced through a valve 63 so that the initial pressure became 101.3 kPa, and the sample was brought into contact with the sample at room temperature. Then, in the electric furnace 80, the temperature of the reactor 70 was raised to 600 ° C at a rate of 30 ° C / min, and kept at 600 ° C for 100 minutes. Rh added iron oxide is reduced by the methane, water, CO and C_ ⁇ 2 was produced.
  • Water 92 is removed agglomerated in the trap apparatus 80, CO, C0 2 and instead methane has not contributed to the original reaction was discharged through the valve 64.
  • Emitted gas In addition to measuring the flow rate of the entire gas with a stone film flowmeter, the gas was sampled with a gas syringe and the components were analyzed by gas chromatography. Based on the results of these measurements, the number of moles of oxygen atoms removed from the Rh-added iron oxide per minute (oxygen removal rate, unit: ⁇ n) was calculated from the following formula, and this was used to estimate the amount of reduction. It was fixed.
  • Oxygen removal rate (CO + 2 C0 2 ) ⁇ 1 / in
  • the water 92 trapped by the trap device 82 was evaporated and removed by purging with argon.
  • the valves 63 and 64 were closed and the valves 62 and 65 were opened, so that the reactor was a closed circulation type.
  • 9.39 X 1 CT 4 mo 1 water was introduced into the system.
  • the trap device 82 ⁇ was filled with cold water 86, and the temperature was kept at 14 ° C.
  • the water 94 generated during the reduction evaporates, and the water vapor pressure in the system at this time was about 1.5 kPa.
  • Ar was introduced as a carrier gas through the valve 63 so that the initial pressure of Ar became 12.5 kPa, and circulated for 10 minutes.
  • the temperature was raised to ° C, and steam was brought into contact with the sample. After holding at 400 ° C for 120 minutes, the temperature of the reactor 70 was further raised to 500 ° C, and the reaction was continued until the generation of hydrogen stopped. Water was decomposed by the Rh-added iron oxide, and the gas containing hydrogen generated thereby was circulated in the system by the gas circulation pump 74. Then, the pressure in the system was measured by a pressure gauge 76 to measure the amount of gas generation-absorption, and the valve 61 was opened and closed to perform gas component analysis by a gas chromatograph 78. Based on these measurements, calculated hydrogen, CO, the generation amount of co 2.
  • Rh ions ⁇ Pi Nd ions is 5 mo 1% of the total metal ions, respectively, 0.1 the amount of iron (III) nitrate nonahydrate (F e (N0 3) 3 '9H 2 0) 01 it was 0. 018mo 1 instead 9mo 1, nitrate ⁇ Pi neodymium (Nd (N0 3) 3 - 6H 2 0) except further that the addition of (Tenkawa manufactured Rikagaku Corporation) 0. 00 lmo 1 In the same manner as in Example 1, Rh_Nd-added iron oxide was prepared, and a reduction reaction and a hydrolytic reaction were tested.
  • the reduction amount of the Rh_A1-added iron oxide and the Rh_Ga-added iron oxide was significantly improved as compared with the Rh-added iron oxide.
  • Fig. 6 it can be seen that the reduction of the Rh-Y-added iron oxide, Rh-Zr-added iron oxide, and Rh-Mo-added iron oxide progressed more in the second time than in the first time. .
  • the comparative examples ie, the non-added iron oxide and the Nd-added iron oxide, generated very little hydrogen. Even when the temperature was increased to 500 ° C., almost no hydrogen was generated.
  • the iron oxide to which the platinum group element was added in the example generates 0.02 mo 1ZF e ⁇ mo 1 or more hydrogen at 400 ° C., and the temperature is increased to 500 ° C. 1 / F e -mo 1 or more hydrogen could be generated.
  • the amount of hydrogen generated by the Rh-Ga-added iron oxide and the Pd-Nd-added iron oxide was as high as 0.10 mol / Fe-mo1 or more. .
  • the 11-1 added iron oxide, the 111-1 added 1 "-added iron oxide, the Rh-Mo added iron oxide, and the Pd-Nd added iron oxide , CO and C_ ⁇ 2 occurs together with hydrogen.
  • Rei_0 ⁇ Pi Rei_0 second generation is summer little. that is, the iron oxide was added platinum-based element According to the figure, it is understood that hydrogen containing almost no CO and CO 2 can be obtained.
  • Iron oxide to which copper was added was prepared by the following coprecipitation method (urea method).
  • urea method First, super sound Water 1 L in degassed 5 minutes waves, iron (III) nitrate nine Eiwa product (F e (NO 3) 3 . 9 H 2 O) ( Wako Pure Chemical Industries, Ltd.) and 0. 018Mo 1, Copper chloride (Cu (NO 3) 2 ⁇ 3H 2 O) (manufactured by Wako Pure Chemical Industries, Ltd.) 0.00 lmo 1 and chromium nitrate (Cr (NO 3 ) 3-9H 2 O) ( 0.00 lmo 1 and urea 1.0 mo 1 as a precipitant were added and dissolved.
  • the mixed solution was heated to 90 ° C with stirring, and kept at the same temperature for 3 hours. After the completion of the reaction, the mixture was allowed to stand for 48 hours to precipitate, followed by suction filtration. The obtained precipitate was dried at 80 ° C. for 24 hours, and then calcined in air at 3 ° C. for 3 hours and at 500 for 10 hours. 0.222 g of the thus obtained Cu—Cr-added iron oxide was weighed. That is, copper ions and chromium ions were each added at 5 mo 1% of the total metal ions, and the compound was Fe 2 0 3, when a has a CuO and C r 2 0 3, were weighed so as F e 2 ⁇ 3 (ferric oxide) is contained 0. 2 g, used as a sample for the test to be described later did.
  • FIG. 9 is a schematic diagram showing an outline of a normal-pressure fixed-bed flow type reaction apparatus used in this experiment.
  • a sample of the obtained Cu—Cr-added iron oxide is placed in a reaction vessel 100, valves 112 and 116 are closed, valve 114 is opened, and inert gas is supplied from pipe 104.
  • a gas / gon was circulated and the air in the system was purged.
  • the valve 112 was opened, the valve 114 was closed, and methane was introduced into the reaction vessel 100 from the pipe 102.
  • the reduction reaction was performed by raising the temperature of the reaction vessel 100 from 200 ° C. to 750 ° C. by 3 ° C. per minute by the electric furnace 110 provided in the reaction vessel 100.
  • the gas generated by the reduction reaction was discharged from the pipe 108, and a part thereof was sampled and measured by a gas chromatograph 130. Based on this measurement result, CO, C_ ⁇ 2, H 2 generation moles per minute for (generation rate, unit: zmo lZm in) was calculated.
  • Figure 10 shows the results.
  • the valve 112 was closed, the valve 114 was opened, argon was introduced into the system from the pipe 104, and methane, carbon monoxide, carbon dioxide, and water vapor in the system were discarded. Thereafter, the valve 116 is opened, water is introduced into the vaporizer 120 from the pipe 106 to vaporize the water, and argon is used as a carrier gas in the reaction vessel. Water was introduced into 100 to perform a water splitting reaction. At this time, the temperature of the reaction vessel 100 was raised from 200 ° C to 550 ° C by 4 ° C per minute by the electric furnace 110. Like the reduction reaction, the produced gas was measured by gas chromatograph 130, CO, was calculated occurrence rate of C_ ⁇ 2, H 2. The results are shown in FIG.
  • Nitrates of copper (C u (N0 3) 2 - 3H 2 O) in place of the nitrate of nickel (N i (N0 3) 2 - 6 ⁇ 2 ⁇ ) ( manufactured by Wako Pure Chemical Industries, Ltd.), cobalt nitrate ( Co (N 0 3) made 2 ⁇ 6 ⁇ 2 ⁇ ) (Wako Pure Chemical Industries, Ltd.), chloride rhodium (RhC l 3 - 3 ⁇ 2 ⁇ ) ( manufactured by Wako Pure Chemical Industries, Ltd.), iridium chloride ( I r C l 3. Ltd.
  • nitrates of copper Cu (N 0 3) 2 - 3H 2 0
  • chromium C r ( ⁇ 0 3) 3 ⁇ 9 ⁇ 2 0
  • chlorides para Jiumu P dC l 2
  • nickel nitrate N i (N0 3) 2 - 6 ⁇ 2 ⁇
  • the iron oxides of Cu—Cr addition, Ni—Cr addition, and Co—Cr addition were prepared by adding Rh—C
  • the hydrogen generation rates were almost the same as those of the iron oxides to which r, Pd—Ni, Ir—Cr, and Pt—Cr were added. Therefore, it was confirmed that hydrogen was generated even when Cu, Ni, and Co were added instead of the platinum group elements.
  • the metal oxide reduction method and the hydrogen production method according to the present invention can easily reduce a metal oxide that generates hydrogen by decomposing water with a gas containing hydrocarbons such as city gas. It can be used for hydrogen production equipment and fuel cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

水を分解して水素を発生する金属の酸化物を、都市ガスなどの炭化水素類を含むガスで容易に還元することができる金属酸化物の還元方法及び水素製造方法を提供する。金属酸化物の還元方法は、水を分解して水素を発生する金属の酸化物と、白金族元素、銅、ニッケル及びコバルトからなる群から選ばれた少なくとも1つの金属とを含んでなる媒体を、炭化水素類を含む還元ガスで還元する工程を含むことを特徴とする。また、水素製造方法は、上記還元工程と、この還元工程で還元された媒体に、水を反応させて水素を発生させる水分解工程とを含むことを特徴とする。

Description

金属酸化物の還元方法及び水素製造方法
技術分野
本発明は、 金属酸化物の還元方法及び水素製造方法に関する:
景技術
燃料電池に水素を供給するために、 水素を製造する技術が盛んに研究されてい る。 その一つとして、 純鉄に水蒸気を接触させて水素を製造する技術が知られて いる。 純鉄は水素を発生することで酸化されて酸化鉄となる。 この酸化鉄は、 従 来、 水素を用いて還元されていた (例えば、 特開 2 0 0 2— 1 7 3 3 0 1号公報 を参照)。 しかしながら、 実用上、 水素で酸化鉄の還元を行う場合、 現在、 水素 のインフラが整備されておらず、 このようなシステムを市場に普及させることは 困難である。
発明の開示
そこで、 インフラが整備されている還元剤を用 ヽて酸化鉄の還元を行う技術の 開発が望まれている。 インフラが整備されている還元剤としては、 例えば、 メタ ンを主成分とする都市ガスが考えられる。 また、 ボンべ入りのプロパン、 ブタン 等の軽質炭化水素は比較的にインフラが整備されている還元剤である。 もちろん、 ガソリン、 灯油、 軽油等の炭化水素を還元剤として用いることも考えられる。 し かし、 酸ィヒ鉄をこれらの炭化水素で還元するためには、 通常 8 0 0 °C以上の高温 と 5 0気圧以上の高圧を必要とするが、 燃料電池用水素の製造には、 より低温で 還元することが求められている。 また、 炭化水素で還元された鉄を水蒸気と接触 させて水素を発生させる際、 還元時に析出した炭素が原因となって、 一酸化炭素 と二酸化炭素を大量に発生してしまうという問題もある。
本発明は、 上記の問題点を鑑み、 水を分解して水素を発生する金属の酸化物を、 都市ガスなどの炭化水素類を含むガスで容易に還元することができる金属酸化物 の還元方法及び水素製造方法を提供することを目的とする。
上記目的を達成するために、 本宪明に係る金属酸化物の還元方法は、 水を分解 して水素を発生する金属 (水素発生金属) の酸化物と、 白金族元素、 銅、 ニッケ ノレ及びコバルトからなる群から選ばれた少なくとも 1つの金属 (第 1添加金属) とを含んでなる媒体を、 炭化水素類を含む還元ガスで還元する工程を含むことを 特徴とする。 このように、 媒体として、 酸化鉄などの金属酸ィ匕物に加え、 白金族 元素、 銅、 ニッケル及びコバルトからなる群から選ばれた少なくとも 1つの金属 を添加したものを用いることにより、 白金族元素、 銅、 ニッケル又はコバルトが 触媒となり、 メタンなどの炭化水素類を含む還元ガスで容易に還元することがで きる。 なお、 白金族元素とは、 ロジウム、 パラジウム、 イリジウム、 ノレテニゥム、 白金及ぴォスミゥムの 6元素をいう。
上記水を分解して水素を発生する金属としては、 鉄、 インジウム、 スズ、 マグ ネシゥム、 ガリウム、 ゲルマニウム及ぴセリウムからなる群から選ばれた少なく とも 1つの金属であることが好ましい。 これらの金属は、 水と反応して水素を発 生する他の金属に比べ、 水素の発生効率が高いとともに、 酸化還元の繰り返しに 対する耐久性に優れている。 この中でも、 金属単位重量当たりの水素発生量が多 い鉄がより好ましい。
上記媒体にはさらに、 ネオジム、 アルミニウム、 クロム、 ガリウム、 イツトリ ゥム、 ジルコニウム、 モリブデン、 チタン、 バナジウム、 マグネシゥム及びス力 ンジゥムからなる群から選ばれた少なくとも 1つの金属 (第 2添 ¾1金属) を含む ことができる。 このような金属をさらに添加することで、 酸化還元の繰り返しに よる媒体のシンタリングを防止できることにより、 金属酸化物の還元効率をより 高めることができ、 また、 水素の発生効率をより高めることができる。
上記還元工程で発生した排ガスは、 再び還元ガスとして使用することができる。 還元工程で発生した排ガス中には、 還元に使用されなかった余剰の還元ガスが含 まれている。 この余剰の還元ガスで再び金属酸化物を還元することで、 還元ガス を有効に再利用することができる。 ただし、 還元により発生した H20、 C O、 co2を捕集し、 純粋な還元ガスのみを再利用する。
また、 上記還元工程で発生した排ガスは、 媒体を加熱する燃料として使用する こともできる。 還元工程で発生した排ガス中には、 還元に使用されなかったメタ ンなどの炭化水素類が余剰に含まれている。 そこで、 ガスパーナや触媒燃焼によ る加熱器などの媒体を加熱する手段にこの排ガスを燃料として使用することで、 排ガス中に含まれる炭化水素類を有効に再利用することができる。 本発明は、 別の態様として、 水素製造方法であって、 前記した還元工程と、 該 還元工程で還元された媒体に、 水を反応させて水素を発生させる水分解工程とを 含むことを特徴とする。 前記の還元工程により金属酸化物は還元されているので、 再び水を分解して水素を発生することができる。
上記媒体は、 少なくとも 2つを用いることが好ましく、 一方の媒体を上記還元 工程で還元する間に、 他方の媒体を上記水分解工程で水素を発生させることによ り、 連続的に水素を製造することができる。 このように、 連続的に水素を製造す ることができるので、 燃料電池などの水素を燃料として使用する装置などに安定 して水素を供給することができる。
本発明に係る水素製造方法は、 上記媒体に酸素を供給して、 媒体上に析出した 炭素を燃焼する媒体浄化工程をさらに含むことが好ましい。 還元工程及び水分解 工程を繰り返すことで、 媒体上に炭素が析出する場合がある。 この場合、 媒体に 酸素を供給して析出した炭素を燃焼させることで、 炭素を除去して媒体をクリ一 ニングすることができる。 このように炭素を除去することで、 水分解工程におけ る一酸化炭素や二酸化炭素の発生を抑えることができる。
このように、 本発明によれば、 水を分解して水素を発生する金属の酸化物を、 都市ガスなどの炭化水素類を含むガスで容易に還元できる金属酸化物の還元方法 及び水素製造方法を提供することができる。
図面の簡単な説明
図 1は、 本発明に係る金属酸化物の還元方法及び水素製造方法を実施するに好 適な水素製造装置を示す模式図である。
図 2は、 酸化鉄の反応装置を示す模式図であって、 (a ) は還元反応を、 (b ) は水分解反応を行う場合を示す。
図 3は、 反応時間の経過に対する酸素除去速度の変化を示すグラフである。 図 4は、 反応時間の経過に対する酸素除去速度の変化を示すグラフである。 図 5は、 反応時間の経過に対する酸素除去速度の変化を示すグラフである。 図 6は、 反応時間の経過に対する酸素除去速度の変化を示すグラフである。 図 7は、 各酸化鉄の水素発生量を示すグラフである。
図 8は、 各酸化鉄の C O及ぴ C O2の各発生量を示すグラフである。 図 9は、 酸化鉄の他の反応装置を示す模式図である。
図 1 0は、 各酸化鉄をメタンにより還元させた際の C O、 C 02、 H2の各発生 速度を示すグラフである。
図 1 1は、 各酸化鉄を還元後に水分解させた際の H2、 C O、 C 02の各発生速 度を示すグラフである。
図 1 2は、 7回にわたり還元反応と水分解反応を繰り返した際の還元時の C O、 C 02、 H2の各発生速度を示すグラフである。
図 1 3は、 7回にわたり還元反応と水分解反応を繰り返した際の水分解時の H 2、 C O、 c o2の各発生速度を示すグラフである。
発明を実施するための最良の形態
以下に、 添付図面を参照して、 本発明の実施の形態を説明する。
図 1は、 本発明に係る金属酸化物の還元方法及び水素製造方法を実施するのに 好適な水素製造装置を示す模式図である。 図 1に示すように、 水素製造装置には、 反応管 1 0が設けられている。 この反応管 1 0には、 反応管 1 0に炭化水素類を 含む還元ガスを導入するための還元ガス導入ライン 1 1と、 反応管 1 0内での還 元反応により生成する排ガスを排出するための排ガス排出ライン 1 2と、 反応管 1 0に水を導入するための水導入ライン 2 1と、 反応管 1 0内での水分角早反応に より生成する水素を排出するための水素排出ライン 2 2とが設けられている。 な お、 還元ガス導入ライン 1 1は都市ガス供給源などの還元ガス供給源 (図示省 略) につながっている。
反応管 1 0としては、 第 1反応管 1 0 aと第 2反応管 1 0 bの 2つの反応管が 並列に設けられている。 そして、 還元ガス導入ライン 1 1には三方弁 5 1が設け られており、 第 1反応管 1 0 aに還元ガスを導入するための第 1還元ガス導入ラ イン 1 1 aと第 2反応管 1 0 bに還元ガスを導入するための第 2還元ガス導入ラ イン 1 1 bとに分岐している。 同様に、 水導入ライン 2 1、 水素排出ライン 2 2、 排ガス排出ライン 1 2にも、 それぞれ三方弁 5 2、 5 3、 5 4が設けられており、 第 1水導入ライン 2 1 aと第 2水導入ライン 2 1 a、 第 1水素^ ^出ライン 2 2 a と第 2水素排出ライン 2 2 b、 第 1排ガス排出ライン 1 2 aと第 2排ガス排出ラ イン 1 2 bとにそれぞれ分岐している。 また、 水素製造装置には、 空気 (酸素) を反応管 10に供給するための空気導入ライン 3 1が設けられており、 この空気 導入ライン 31は、 三方弁 55を介して第 1還元ガス導入ライン 1 1 aに設けら れている。
反応管 10には、 水を分解して水素を発生する金属 (水素発生金属) の酸化物 と白金族元素、 銅 (Cu)、 ニッケル (N i) 及ぴコバルト (Co) からなる群 力 ^選ばれた少なくとも 1つの金属 (第 1添加金属) とを含んでなる媒体が充填 されている。 水素発生金属としては、 水素の高い発生効率と酸化還元の繰り返し に対する優れた耐久性の観点から、 鉄 (F e:)、 インジウム (I n)、 スズ (S n)、 マグネシウム (Mg)、 ガリウム (Ga)、 ゲルマニウム (Ge)、 セリウム (Ce) のいずれか 1つを用いることが好ましく、 この中でも F eがより好まし い。 これら金属の酸化物としては、 例えば、 F eO等の低原子価金属酸化物でも、 F e203や F e34等の高原子価金属酸化物でもよい。
また、 第 1添加金属としては、 白金族元素であるロジウム (Rh)、 パラジゥ ム (P d)、 イリジウム (I r)、 ルテニウム (Ru)、 白金 (P t;)、 オスミウム (O s) の中でも、 酸化還元効率の観点から、 Rh、 P d、 I r、 Ru、 P tが 好ましく、 特に、 Rh、 P dがより好ましい。 また、 白金族元素より安価であり、 かつ原子量が軽い Cu、 N i、 C oを使用することもでき、 これらは白金族元素 と同等の酸化還元効率を有する。 第 1添加金属の配合割合としては、 媒体の全金 属を 10 Omo 1 °/0とした場合、 0. 1〜 30 m o 1 %が好ましく、 0. 1〜1 5 m o 1。/。がより好ましい。 0. 1 m o 1 %未満の配合割合では、 炭化水素類を 含む還元ガスにより金属酸化物を還元する効果を十分に発揮することができない。 一方、 30mo 1 %を超えると、 水を分解して水素を発生する金属の酸化還元反 応の効率が低下するので好ましくない。
媒体には、 さらに、 金属酸化物の還元効率や水素の発生効率を向上させる観点 から、 ネオジム (Nd)、 ァノレミニゥム (A l)、 クロム (C r)、 ガリウム (G a)、 イットリウム (Y)、 ジルコニウム (Z r)、 モリブデン (Mo)、 チタン (T i)、 バナジウム (V)、 マグネシウム (Mg) 及びスカンジウム (S c) か らなる群から選ばれた少なくとも 1つの金属 (第 2添加金属) を添加することが 好ましい。 この中でも、 酸化還元の繰り返しによるシンタリング防止の観点から、 Nd、 A 1 s C r、 Ga、 Y、 Z r、 Moがより好ましく、 特に、 Nd、 A l、 Ga、 Z r、 Moがさらに好ましい。 第 2添加金属の配合割合は、 媒体の全金属 を 10 Omo 1 °/0とした場合、 0. 1〜3 Omo 1 %が好ましく、 0. 1〜15 m o 1 %がより好ましい。 0. 1 m o 1 %未満の配合割合では、 金属酸化物の還 元効率又は水素の発生効率を向上する効果が認められず好ましくない。 一方、 3 Omo 1 %を超えると、 水を分解して水素を発生する金属の酸化還元反応の効率 が低下するので好ましくない。
水素発生金属の酸化物に、 第 1添加金属及ぴ任意である第 2添加金属を添加し た媒体の調製方法としては、 物理混合法、 含浸法、 共沈法などを用いることがで き、 好ましくは共沈法により調製する。 また、 媒体の形状は、 還元反応及び水分 解反応を効率良く進行させるため、 粉末状、 ペレット状、 円筒状、 ハニカム構造、 不織布形状などの反応に適した表面積の大きい形状を選択することが好ましい。 反応管 10には、 反応管 10を加熱するための加熱手段 (図示省略) が設けら れている。 加熱手段としては、 抵抗加熱によるヒータや、 正特性サーミスタ (P TCヒータ)、 化学反応の酸ィヒ熱を利用する加熱器、 触媒燃焼による加熱器、 誘 導加熱による加熱器、 炭化水素類を燃料とするガスパーナなどを用いることがで さる。
このような構成によれば、 先ず、 第 1反応管 10 aで還元工程を行うため、 還 元ガス導入ライン 1 1及ぴ排ガス排出ライン 12の各三方弁 51、 54は第 2ラ イン側 l l b、 12 bを閉じて残りを開け、 水導入ライン 21及ぴ水素排出ライ ン 22の各三方弁 52、 53は全方向を閉じる。 また、 空気導入ライン 31の三 方弁 55は空気導入ライン 31側を閉じて残りを開ける。 そして、 第 1還元ガス 導入ライン 1 1 aを介して第 1反応管 10 a内に炭化水素類を含む還元ガスを供 給する。 なお、 還元工程では、 金属酸化物の還元効率の観点から、 反応管 10内 の温度を加熱手段により約 300 °C〜約 700 °Cに加熱することが好ましく、 約 350 °C〜約 600 °Cに加熱することがより好ましい。
ここで、 炭化水素類の好適な例としては、 メタン、 ェタン、 エチレン、 プロパ ンなどの Ci Ci。の脂肪族炭化水素、 シクロへキサン、 シクロペンタンなどの 脂環式炭化水素、 ベンゼン、 トルエン、 キシレンなどの芳香族炭化水素を挙げる ことができる。 また、 パラフィンワックスなどの常温で固体状の炭化水素を使用 することもできる。 常温で固体状又は液体状の炭化水素を使用する場合には、 ガ ス化して用いる。 これらの炭化水素類は単独で用いてもよいし、 2種類以上を組 み合わせてもよい。
第 1反応管 1◦ a内では、 導入された還元ガスによって、 媒体中の水素発生金 属の酸化物が純金属又は低原子価金属酸化物に還元される。 例えば、 水素発生金 属が F eで還元ガスが C H4の場合の反応式を以下に示す。
F e Ox+ C H4→F e Oxy+ y 20 + y 2C O + y 3C 02
ここで、 上記式中、 F e Oxは酸化鉄 (化学式 F e nOmを F e Ora/nと表記し た) を表し、 y = y 1+ y 2+ 2 y 3、 x yである。
また、 前記の還元反応により生成した排ガスは、 第 1排ガス排出ライン 1 2 a を介して第 1反応管 1 0 aから排出される。 なお、 排出された排ガスは、 水、 一 酸化炭素及び二酸化炭素の他に、 還元反応に関与しなかった余剰の炭化水素類を 含んでいることから、 反応管 1 0を加熱するための加熱手段 (図示省略) の燃料 として使用することもできるし、 還元ガス供給ライン 1 1に供給して再ぴ還元ガ スとして使用することもできる。 排ガスを再利用する前に、 水や一酸化炭素、 二 酸化炭素などの不純物を除去することが好ましい。
第 1反応管 1 0 aで還元工程を終えた後、 次に、 第 1反応管 1 0 aで水分解ェ 程を行うとともに、 第 2反応管 1 0 bで還元工程を行うため、 還元ガス導入ライ ン 1 1及び排ガス排出ライン 1 2の各三方弁 5 1、 5 4は第 1ライン側 1 1 a、 1 2 aを閉じて残りを開け、 水導入ライン 2 1及び水素排出ライン 2 2の各三方 弁 5 2、 5 3は第 2ライン側 2 1 b、 2 2 bを閉じて残りを開ける。 そして、 第 1水導入ライン 2 1 aを介して第 1反応管 1 0 a内に水を供給するとともに、 第 2還元ガス導入ライン 1 1 bを介して第 2反応管 1 0 b内に炭化水素類を含む還 元ガスを供給する。 なお、 水は、 水蒸気又は水蒸気を含むガスとして供給するこ ともできる。 また、 水分解工程では、 水素発生効率の観点から、 反応管 1 0内の 温度を加熱手段により約 2 0 0 °C〜約 6 0 0 °Cに加熱することが好ましく、 約 3 0 0 °C〜約 5 0 0 °Cに加熱することがより好ましい。
第 1反応管 1 0 a内において、 導入された水は加熱されて水蒸気となり、 この 7k蒸気は、 還元工程により還元された媒体中の水素発生金属 (純金属) 又はその 低原子価金属酸化物によって分解されて、 水素が発生する。 水素発生金属 (純金 属) 又はその低原子価金属酸化物は、 水分解反応により低原子価金属酸化物又は 高原子価金属酸化物となる。 水素発生金属として、 F eを用いた場合の反応式を 以下に示す。
F e Ox.1+ H20→F e Ox+ H2
第 1反応管 1 0 a内で生成した水素は、 第 1水素排出ライン 2 2 aを介して水 素製造装置から排出され、 例えば、 燃料電池などの水素使用機器 (図示省略) に 供給される。 一方、 第 2反応管 1 0 b内では、 前記した還元反応が進行し、 媒体 中の水素発生金属の酸化物が純金属又は低原子価金属酸化物に還元される。 第 2 反応管 1 0 b内で生成した排ガスは第 2排ガス排出ライン 1 2 bから排出され、 前記したように、 加熱手段の燃料や還元ガスとして再利用することもできる。 第 1反応管 1 0 aでの水分解工程及び第 2反応管 1 0 bでの還元工程を終えた 後、 さらに、 第 1反応管 1 0 aで還元工程及ぴ第 2反応管 1 0 bで水分解工程を 行うため、 還元ガス導入ライン 1 1及び排ガス排出ライン 1 2の各三方弁 5 1、 5 4は第 2ライン側 1 1 b、 1 2 bを閉じて残りを開け、 水導入ライン 2 1及び 水素排出ライン 2 2の各三方弁 5 2、 5 3は第 1ライン側 2 1 a、 2 2 aを閉じ て残りを開ける。 そして、 第 1還元ガス導入ライン 1 1 aを介して第 1反応管 1 0 a内に再び還元ガスを供給するとともに、 第 2水導入ライン 2 1 bを介して第 2反応管 1 O b内に水を供給する。
第 2反応管 1 0 b内に導入された水 (水蒸気) は、 前記した水分解反応により 分角爭され、 水素が発生する。 発生した水素は、 第 2水素排出ライン 2 2 bから排 出され、 前記と同様に燃料電池などに供給される。 この間、 第 1反応管 1 0 a内 では、 水分解工程により低原子価金属酸化物又は高原子価金属酸化物に酸化され た媒体中の水素発生金属が、 前記した還元反応により再ぴ純金属又は低原子価金 属酸化物に還元される。 したがって、 再度、 水分解工程を行うことで水素を発生 することができる。 このように、 2つの反応管 1 0を用いて交互に還元工程と水 分解工程を繰り返し行うことで、 連続的に水素を製造することができる。
還元工程と水分解工程を繰り返し行うことで、 反応管 1 0内の媒体上に炭素が 析出する場合がある。 この場合、 反応管 1 0内に酸素を供給し、 炭素を燃焼させ て除去する媒体浄化工程を行うため、 空気導入ライン 3 1の三方弁 5 5は全ての 方向を開き、 還元ガス導入ライン 1 1の三方弁 5 1は第 1及び第 2ライン側 1 1 a、 bを開いて残りを閉じ、 水導入ライン 2 1及び水素排出ライン 2 2の各三方 弁 5 2、 5 3は全ての方向を閉じ、 排ガス排出ライン 1 2の三方弁 5 4は全ての 方向を開ける。 そして、 空気導入ライン 3 1及び還元ガス導入ライン 1 1を介し て反応管 1 0内に空気 (酸素) を供給する。
反応管 1 0内の温度は、 還元工程又は水分解工程により十分に高温となってい るので、 反応管 1 0内に空気 (酸素) を供給することで、 媒体上に析出している 炭素を容易に燃焼することができる。 燃焼により生成した排ガスは、 排ガス排出 ライン 1 2により反応管 1 0内から排気する。 このように媒体上から炭素を除去 し、 媒体をクリーニングすることで、 水分解工程で水素を発生する際に、 一酸化 炭素及び二酸化炭素の生成を抑えることができる。 なお、 媒体浄化工程は、 第 1 反応管 1 0 a又は第 2反応管 1 0 bの一方について行うこともできる。 また、 媒 体浄化工程は、 水素の発生を停止させないために (または連続的に水素を発生さ せるために)、 一方ずつ還元工程の前に行うことが好ましい。
本発明に係る還元方法及び水素製造方法を、 図 1に示す実施の形態を用いて説 明したが、 本発明はこの実施の形態に限られるものではなく、 本発明の技術的思 想の範囲内における修飾 '変更 ·付カ卩は全て本発明に含まれる。 例えば、 反応管 1 0は 1つでも可能であるし、 3つ以上にして各反応管に所定の時差を設けて還 元工程と水分解工程を繰り返し、 連続的に水素を製造することもできる。 また、 2つの反応管はそれぞれ独立していなくともよく、 1つの反応管内を 2区分にし て、 各区分で交互に還元工程と水分解工程を繰り返すこともできる。
以下、 本宪明の実施例及び比較例について説明する。
(実施例 1 )
R hを添加した酸化鉄を以下に示す共沈法 (尿素法) にて調製した。 先ず、 超 音波で 5分間脱気した水 1 L中に、 R hィオンが全金属ィオンの 5 m o 1 %とな るように、 硝酸鉄 (III) 九水和物 (F e (N O3) 3 . 9 Η2θ) (和光純薬工業株式 会社製) 0 . O 1 9 m o lと、 ロジウムの塩化物 (R h C 1 3 · 3 H20) (和光 純薬工業株式会社製) 0. 00 lino 1と、 沈殿剤として尿素 1. Omo lを加 えて溶解させた。 混合溶液を攪拌しながら 90°Cに加熱し、 3時間同温度に保持 した。 反応終了後、 48時間放置し、 沈殿させ、 吸引ろ過を行った。 得られた沈 殿物を 80でで 24時間乾燥して、 その後 300 °Cで 3時間、 500 °Cで 10時 間空気焼成を行った。 このようにして得られた Rh添加酸化鉄を、 54. 2mg 秤量し、 すなわち、 Rhイオンが全金属イオンの 5 mo 1 %添加されて、 化合物 が F e23と Rh23となっているとした場合、 F e203 (酸化第二鉄) が 50 m g含まれるように秤量し、 これを後述する試験の試料として使用した。
次に、 以下に示す装置を用いて、 得られた Rh添加酸化鉄をメタンにより還元 させた後、 水蒸気を接触させて水素を発生させる実験を行った。 図 2は、 この実 験に用いた反応装置の概要を示す模式図であり、 (a) はメタンによる還元反応 を、 (b) は水素発生反応 (水分解反応) を行う場合を示す。
先ず、 図 2 (a) に示すように、 パイレックス (登録商標) ガラス製の反応器 70内に、 得られた R h添加酸化鉄の試料 90を入れ、 ガラス管 72に設けられ た弁 61、 62、 65S 66を閉じ、 弁 63、 64を開くことで、 反応装置を固 定床流通式とした。 そして、 弁 63を介して、 室温にて 10分間不活性ガスであ る A rを系内に流通させた。 その後、 弁 63、 64を閉じて弁 62、 65、 66 を開き、 真空ポンプ 88により真空度が 1. 3 X 10— 5k P a以下に達するまで 30分以上の真空排気を行った。 なお、 還元反応及ぴ水分解反応を行う前は、 い ずれも真空度が 1. 3 X 10— 5k P a以下に達するまで 30分以上の真空排気を 行った。
次に、 還元反応を行うため、 再び弁 62、 65、 66を閉じて弁 63、 64を 開いた。 トラップ装置 82内には、 ドライアイス 84とエタノール 85を充填し、 温度を一 76°Cに保持した。 また、 弁 63を介して初期圧が 101. 3 kP aと なるようにメタンを導入し、 室温にて試料に接触させた。 そして、 電気炉 80に て反応器 70を 30°C/m i nで 600°Cまで昇温し、 600°Cで 100分間保 持した。 Rh添加酸化鉄はメタンにより還元され、 水、 CO及び C〇2が生成し た。 水 92はトラップ装置 80にて凝集されて取り除かれ、 CO、 C02及び還 元反応に寄与しなかったメタンは、 弁 64を介して排出された。 排出されたガス は、 石鹼膜流量計によりガス全体の流量を測定するとともに、 ガスシリンジによ りガスを採取してガスクロマトグラフにより成分分析を行った。 これらの測定結 果に基づいて、 以下の式より、 毎分 Rh添加酸化鉄から取り去られた酸素原子の モル数 (酸素除去速度、 単位: μπιο n) を計算し、 これを還元量の推 定とした。
酸素除去速度 = (CO+ 2 C02) μΐΐίο 1 / i n
なお、 還元の際に CO及び C〇2以外に水が発生する。 水として酸化鉄から取 り去った酸素は計算していないが、 どの反応においても、 CO及ぴ C02として 取り去られる酸素と水として取り去られる酸素の比はほぼ同じであることから、 定性的に分析することができる。
メタンによる還元反応が終了した後、 トラップ装置 8 2でトラップした水 9 2 を蒸発させ、 アルゴンパージして除去した。 次に、 水分解反応を行うため、 弁 6 3、 64を閉じて弁 6 2、 6 5を開き、 反応装置を閉鎖型循環式とした。 系内に 水を 9. 39 X 1 CT4mo 1導入した。 また、 トラップ装置 8 2內に冷水 86を 充填し、 温度を 14°Cに保持した。 還元時に生じた水 94は蒸発し、 このときの 系内の水蒸気圧は約 1. 5 k P aであった。 A rの初期圧が 1 2. 5 k P aとな るように弁 6 3を介してキャリアガスとして A rを導入し、 1 0分間循環させた 後、 電気炉 80により反応器 70を 400°Cまで昇温し、 試料に水蒸気を接触さ せた。 400°Cで 1 20分間保持した後、 さらに反応器 70を 500°Cに昇温し、 引き続き反応を水素の発生が停止するまで行った。 Rh添加酸化鉄により水は分 解され、 これにより発生した水素を含むガスは、 ガス循環ポンプ 74により系内 を循環させた。 そして、 圧力計 76により系内の圧力を測定し、 ガスの発生量 - 吸収量を測定するとともに、 弁 6 1を開閉してガスクロマトグラフ 78によりガ スの成分分析を行った。 これらの測定結果に基づき、 水素、 CO、 co2の発生 量を求めた。
水分解反応が終了した後、 再度、 還元反応と水分解反応を上記と同様の手順に て行い、 合計で還元反応と水分解反応を各 2回行った。 2回の還元反応の結果を 図 3に、 また、 2回の水分解反応の結果の内、 水素の発生量を図 7に、 CO、 C 02の各努生量を図 8に示す。 (比較例 1 )
ロジウムの塩化物 (RhC l3. 3 H2O) を一切添加しなかったことを除き、 実施例 1と同様の手順にて、 無添加の酸化鉄を調製し、 還元反応及び水分解反応 の試験を行った。
(比較例 2)
ロジウムの塩化物 (RhC 13 · 3H20) 0. 00 lmo 1に代えてネオジム の硝酸塩 (Nd (N03)3, 6H20) (添川理化学株式会社製) 0. 00 lmo 1 を添加したことを除き、 実施例 1と同様にして、 Nd添加酸化鉄を調製し、 還元 反応及ぴ水分解反応の試験を行った。 比較例 1及び 2の各結果を、 実施例 1の結 果と併せて図 3、 図 7、 図 8に示す。
(実施例 2)
Rhイオン及ぴ Ndイオンがそれぞれ全金属イオンの 5 mo 1 %となるように、 硝酸鉄 (III) 九水和物 (F e (N03)3 ' 9H20) の添加量を 0. 01 9mo 1 に代えて 0. 018mo 1にしたこと、 及ぴネオジムの硝酸塩 (Nd (N03)3 - 6H20) (添川理化学株式会社製) 0. 00 lmo 1をさらに添加したことを除 き、 実施例 1と同様にして、 Rh_Nd添加酸化鉄を調製し、 還元反応及ぴ水分 解反応の試験を行った。
(実施例 3)
ロジウムの塩化物 (RhC.l3. 3 H2O) に代えて、 パラジウムの塩化物 (P dC 12) (和光純薬株式会社製) を添加したことを除き、 実施例 2と同様にして、 P d— Nd添加酸化鉄を調製し、 還元反応及び水分解反応の試験を行った。 実施 例 2及び 3の各結果を、 図 4、 図 7、 図 8に示す。
(実施例 4〜9)
ネオジムの硝酸塩 (Nd (N03)3 - 6H20) に代えて、 ァノレミニゥムの硝酸塩 (A 1 (N03) 3 - 9H20) (和光純薬工業株式会社製)、 クロムの硝酸塩 (C r (Ν03) 3 · 9H2O) (和光純薬工業株式会社製)、 ガリウムの硝酸塩 (Ga (N O3) 3 - nH20 (n = 7〜9)) (和光純薬工業株式会社製)、 イットリウムの硝 酸塩 (Y (NO3) 3 - 6H20) (添川理化学株式会社製)、 ジルコニウムの塩ィ匕物 (Z r C l2O . 8Η2θ) (関東化学株式会社製)、 モリブデンのアンモニゥム塩 ((NH4) 6Μο7024 · 4H2〇) (和光純薬株式会社製) を添加したことを除き、 実施例 2と同様にして、 Rh— A 1添加、 R h - C r ^ΛΠ, Rh— G a添加、 R h一 Y添加、 Rh-Z r添加、 Rh-Mo添加の各酸化鉄を調製し、 還元反応及 ぴ水分解反応の試験を行った。 実施例 4〜 9の各結果を、 図 5〜図 8に示す。 図 3に示すように、 無添加酸化鉄は、 1 00分間の還元反応を通じて CO及ぴ C02がほとんど発生せず、 還元が進んでいないことがわかる。 一方、 Rh添加 酸化鉄は、 2回目がやや落ちるものの還元が進んでいることがわかる。 また、 N d添加酸化鉄も無添加酸化鉄と同様に還元は進まなかった。 し力 し、 図 4に示す ように、 R h— N d添加酸化鉄及び P d— N d添加酸化鉄のように、 白金族元素 である Rh及び P dを添加することで、 還元が進むことがわかる。 特に、 Rh_ A 1添加酸化鉄、 R h _ G a添加酸化鉄は、 図 5に示すように、 R h添加酸化鉄 より還元量が大幅に向上した。 R h _ Y添加酸化鉄、 R h— Z r添加酸化鉄、 R h— Mo添加酸化鉄は、 図 6に示すように、 1回目よりも 2回目の方が還元が進 んでいることがわかる。
また、 図 7に示すように、 比較例である無添加酸化鉄及び Nd添加酸化鉄は、 水素の発生量が非常に少なく、 500 °Cに昇温しても水素の発生はほとんどなか つた。 一方、 実施例である白金族元素を添加した酸化鉄は、 400°〇で0. 02 mo 1ZF e— mo 1以上の水素を発生し、 500°Cに昇温することで、 0. 0 7mo 1/F e -mo 1以上の水素を発生することができた。 特に、 Rh— G a 添加酸化鉄、 P d— N d添加酸化鉄の水素発生量は、 0. 1 0mo l/F e—m o 1以上と非常に高かった。.
なお、 図 8に示すように、 1 11ー 1添加酸化鉄、 1 11ーじ 1"添加酸化鉄、 R h-Mo添加酸化鉄、 P d— N d添加酸化鉄は、 1回目の反応で、 水素とともに CO及び C〇2を発生した。 しかしながら、 2回目の反応では、 〇0及ぴ〇02の 発生がほとんど無くなつていることがわかる。 すなわち、 白金系元素を添加した 酸化鉄によれば、 C O及び C O 2をほとんど含まない水素を得ることができるこ とがわかる。
(実施例 1 0)
銅を添加した酸化鉄を以下に示す共沈法 (尿素法) にて調製した。 先ず、 超音 波で 5分間脱気した水 1 L中に、 硝酸鉄 (III) 九永和物 (F e (NO3)3. 9 H2 O) (和光純薬工業株式会社製) 0. 018mo 1と、 銅の塩化物 (Cu (NO 3) 2 · 3H2O) (和光純薬工業株式会社製) 0. 00 lmo 1と、 クロムの硝酸 塩 (C r (NO3) 3 - 9H2O) (和光純薬工業株式会社製) 0. 00 lmo 1と、 沈殿剤として尿素 1. 0 m o 1とを加えて溶解させた。 混合溶液を攪拌しながら 90°Cに加熱し、 3時間同温度に保持した。 反応終了後、 48時間放置し、 沈殿 させ、 吸引ろ過を行った。 得られた沈殿物を 80°Cで 24時間乾燥して、 その後 3◦ 0 °Cで 3時間、 500でで 10時間空気焼成を行つた。 このようにして得ら れた Cu— C r添加酸化鉄を、 0. 222 g秤量し、 すなわち、 銅イオン及びク ロムイオンがそれぞれ全金属イオンの 5 mo 1 %添加されて、 化合物が F e203、 CuO及び C r203となっているとした場合、 F e23 (酸化第二鉄) が 0. 2 g含まれるように秤量し、 これを後述する試験の試料として使用した。
次に、 以下に示す装置を用いて、 得られた Cu— C r添加酸化鉄をメタンによ り還元させた後、 水蒸気を接触させて水素を発生させる実験を行った。 図 9は、 この実験に用いた常圧固定床流通式の反応装置の概要を示す模式図である。 図 9 に示すように、 先ず、 反応容器 100内に、 得られた Cu— C r添加酸化鉄の試 料を入れ、 弁 112、 116を閉じ、 弁 114を開き、 そして管 104から不活 性ガスであるア^/ゴンを流通させ、 系内の空気をパージした。 その後、 弁 112 を開き、 弁 114を閉じ、 管 102からメタンを反応容器 100内に導入した。 そして、 反応容器 100に備えられた電気炉 110により、 反応容器 100を 2 00°Cから 750°Cまで 1分間に 3 °C上昇させて還元反応を行った。 還元反応で 生成したガスは、 管 108から排出され、 その一部を採取してガスクロマトグラ フ 130により測定した。 この測定結果に基づいて、 CO、 C〇2、 H2について 毎分の発生モル数 (発生速度、 単位: zmo lZm i n) を算出した。 その結果 を図 10に示す。
メタンによる還元反応が終了した後、 弁 112を閉じ、 弁 114を開き、 管 1 04からアルゴンを系内に導入し、 系内のメタン、 一酸化炭素、 二酸化炭素、 水 蒸気を廃棄した。 その後、 弁 116を開き、 管 106から水を気化器 120に導 入して気化させるとともに、 キャリアガスとしてアルゴンを使用して、 反応容器 100内に水を導入し、 水分解反応を行った。 この際、 電気炉 1 10により、 反 応容器 100を 200°Cから 550°Cまで 1分間に 4°C上昇させた。 還元反応と 同様に、 生成したガスをガスクロマトグラフ 130で測定し、 CO、 C〇2、 H2 の発生速度を算出した。 その結果を図 1 1に示す。
さらに、 水分解反応が終了した後、 再度、 還元反応と水分解反応を上記と同様 の手順にて行い、 合計で還元反応と水分解反応を各 7回繰り返した。 7回の還元 反応の結果を図 12に、 また、 7回の水分解反応の結果を図 13に示す。
(実施例 1 1〜 16 )
銅の硝酸塩 (C u (N03) 2 - 3H2O) に代えて、 ニッケルの硝酸塩 (N i (N03) 2 - 6Η2θ) (和光純薬工業株式会社製)、 コバルトの硝酸塩 (Co (N 03) 2 · 6Η2Ο) (和光純薬工業株式会社製)、 ロジウムの塩化物 (RhC l3 - 3Η2θ) (和光純薬工業株式会社製)、 イリジウムの塩化物 (I r C l3. nH2 O) (添川理化学株式会社製)、 塩化白金酸 (H2P t C l6) (和光純薬工業株式 会社製) を添加したことを除き、 実施例 10と同様にして、 N i— C r添加、 C o— C r添加、 Rh— C r添加、 I r一 C r添加、 P t _ C r添加の各酸化鉄を 調製し、 還元反応及び水分解反応の試験を行った。 また、 銅の硝酸塩 (Cu (N 03) 2 - 3H20) とクロムの硝酸塩 (C r (Ν03) 3 · 9 Η20) に代えて、 パラ ジゥムの塩化物 (P dC l2) (和光純薬株式会社製) とニッケルの硝酸塩 (N i (N03) 2 - 6Η2θ) を添加したことを除き、 実施例 10と同様にして、 P d— N i添加酸化鉄を調製し、 還元反応及び水分解反応の試験を行った。 実施例 1 1 〜 16の結果を図 10、 図 1 1に示す。
図 10 ( a ) 及び (b ) に示すように、 C u— C r添加、 N i— C r添加、 C o-C r添カロの各酸化鉄は、 Rh— C r添加、 P d-N i添加、 I r— C r添加、 P t一 C r添加の各酸化鉄と同程度の CO及び C02発生速度を示した。 よって、 白金族元素に代えて Cu、 N i、 Coを添加した場合でも、 還元が進行すること が確認できた。 なお、 図 10 (c) に示すように、 還元反応において水素も発生 したが、 この水素の発生は、 還元する際にメタンが直接水素に分解する副反応が 起こった結果である。 また、 還元時に発生する水は観測していないが、 どの反応 においても、 一酸化炭素及び二酸化炭素の発生量に比例した水が発生すると、 定 性的に分析することができる。
また、 図 1 1 ( a ) に示すように、 C u— C r添加、 N i— C r添加、 Co— C r添力卩の各酸化鉄は、 白金族元素を添加した R h— C r添加、 P d— N i添加、 I r— C r添加、 P t—C r添加の各酸化鉄と同程度の水素発生速度を示した。 よって、 白金族元素に代えて Cu、 N i、 Coを添加した場合でも、 水素を発生 することが確認できた。
さらに、 図 12 (a) 及ぴ (b) 並びに図 13 (a) に示すように、 C u— C r添加酸化鉄は、 還元反応及び水分解反応を 7回繰り返しても、 還元が進行し、 水素を発生した。 また、 図 13 (b) 及び (c) に示すように、 2回目の水分解 反応までは副生物として CO及ぴ C〇2が発生したが、 3回目以降の水分解反応 では C O及び C 02の副生はほとんどなく、 純粋な水素だけを発生した。
産業上の利用の可能性
本発明に係る金属酸化物の還元方法及ぴ水素製造方法は、 水を分解して水素を 発生する金属の酸化物を、 都市ガスなどの炭化水素類を含むガスで容易に還元す ることができるので、 水素製造装置や燃料電池に利用することができる。

Claims

請求の範囲
1 . 水を分解して水素を発生する金属の酸化物と、 白金族元素、 銅、 ニッケル 及ぴコバルトからなる群から選ばれた少なくとも 1つの金属とを含んでなる媒体 を、 炭化水素類を含む還元ガスで還元する工程を含む金属酸化物の還元方法。
2 . 上記水を分解して水素を発生する金属が、 鉄、 インジウム、 スズ、 マグネ シゥム、 ガリウム、 ゲ マニウム及ぴセリウムからなる群から選ばれた少なくと も 1つの金属である請求項 1に記載の金属酸化物の還元方法。
3 . 上記媒体が、 ネオジム、 アルミニウム、 クロム、 ガリウム、 イットリウム、 ジルコニウム、 モリブデン、 チタン、 バナジウム、 マグネシウム及びスカンジゥ ムからなる群から選ばれた少なくとも 1つの金属をさらに含んでなる請求項 1又 は 2に記載の金属酸化物の還元方法。
4 . 上記還元工程で発生した排ガスを、 再ぴ還元ガスとして使用する請求項 1 〜 3のいずれかに記載の金属酸化物の還元方法。
5 . 上記還元工程で発生した排ガスを、 媒体を加熱する燃料として使用する請 求項 1〜 4のいずれかに記載の金属酸化物の還元方法。
6 . 請求項 1〜 5のいずれかに記載の還元工程と、 該還元工程で還元された媒 体に、 水を反応させて水素を発生させる水分解工程とを含む水素製造方法。
7 . 上記媒体を少なくとも 2つ用い、 一方の媒体を上記還元工程で還元する間 に、 他方の媒体を上記水分解工程で水素を発生させることにより、 連続的に水素 を製造する請求項 6に記載の水素製造方法。
8 . 上記媒体に酸素を供給して、 媒体上に析出した炭素を燃焼する媒体诤化工 程をさらに含む請求項 6又は 7に記載の水素製造方法。
PCT/JP2004/002128 2003-05-09 2004-02-24 金属酸化物の還元方法及び水素製造方法 WO2004099069A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/556,171 US20060213331A1 (en) 2003-05-09 2004-02-24 Method for reducing metal oxide and method for producing hydrogen
DE112004000758T DE112004000758T5 (de) 2003-05-09 2004-02-24 Verfahren zum Reduzieren von Metalloxid und Verfahren zum Herstellen von Wasserstoff

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003131180 2003-05-09
JP2003-131180 2003-05-09
JP2003-324168 2003-09-17
JP2003324168A JP4829471B2 (ja) 2003-05-09 2003-09-17 水素製造方法

Publications (1)

Publication Number Publication Date
WO2004099069A1 true WO2004099069A1 (ja) 2004-11-18

Family

ID=33436424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002128 WO2004099069A1 (ja) 2003-05-09 2004-02-24 金属酸化物の還元方法及び水素製造方法

Country Status (4)

Country Link
US (1) US20060213331A1 (ja)
JP (1) JP4829471B2 (ja)
DE (1) DE112004000758T5 (ja)
WO (1) WO2004099069A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4859701B2 (ja) * 2007-02-22 2012-01-25 関西電力株式会社 水素含有ガスの製造装置
WO2010016641A1 (en) * 2008-08-06 2010-02-11 Korea Institute Of Energy Research Hydrogen production method from water by thermochemical cycles using germanium oxide
KR101001873B1 (ko) * 2008-08-06 2010-12-17 한국에너지기술연구원 게르마늄 산화물을 이용한 열화학적 물분해 수소 제조방법
JP2010163316A (ja) * 2009-01-15 2010-07-29 Toho Gas Co Ltd 水素貯蔵装置および水素貯蔵方法
US8951497B2 (en) * 2010-08-12 2015-02-10 Toyota Jidosha Kabushiki Kaisha Method and apparatus for producing hydrogen
AT510955B1 (de) * 2011-05-30 2012-08-15 Siemens Vai Metals Tech Gmbh Reduktion von metalloxiden unter verwendung eines sowohl kohlenwasserstoff als auch wasserstoff enthaltenden gasstromes
KR101840819B1 (ko) 2012-01-17 2018-03-21 삼성전자 주식회사 물분해 산소 발생 촉매와 그의 제조방법, 전극, 및 물분해 산소 발생 장치
WO2018155767A1 (ko) * 2017-02-22 2018-08-30 울산과학기술원 촉매 복합체 및 이의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237595A (en) * 1975-09-22 1977-03-23 Shuji Umano Production of hydrogen
JPS5836901A (ja) * 1981-08-24 1983-03-04 Jgc Corp 水素、一酸化炭素の製造法
JPH0218282B2 (ja) * 1981-08-20 1990-04-25 Babcock Hitachi Kk
JPH11322301A (ja) * 1998-03-12 1999-11-24 Nikon Corp 水素及び/または酸素の製造方法、水素及び/または酸素の生成用触媒
WO2001096233A1 (fr) * 2000-06-16 2001-12-20 Uchiya Thermostat Co., Ltd. Procede et appareil d'approvisionnement en hydrogene et cassette portable d'approvisionnement en hydrogene
WO2002081368A1 (fr) * 2001-04-02 2002-10-17 Uchiya Thermostat Co., Ltd. Procede de production d'hydrogene et appareil destine a fournir de l'hydrogene
JP2004067422A (ja) * 2002-08-05 2004-03-04 Uchiya Thermostat Kk 水素発生装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3442620A (en) * 1968-04-18 1969-05-06 Consolidation Coal Co Production of hydrogen via the steam-iron process
US4216199A (en) * 1975-03-21 1980-08-05 Erickson Donald C Hydrogen production from carbonaceous fuels using intermediate oxidation-reduction
CA2340822C (en) * 2000-03-17 2010-08-03 Snamprogetti S.P.A. Process for the production of hydrogen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237595A (en) * 1975-09-22 1977-03-23 Shuji Umano Production of hydrogen
JPH0218282B2 (ja) * 1981-08-20 1990-04-25 Babcock Hitachi Kk
JPS5836901A (ja) * 1981-08-24 1983-03-04 Jgc Corp 水素、一酸化炭素の製造法
JPH11322301A (ja) * 1998-03-12 1999-11-24 Nikon Corp 水素及び/または酸素の製造方法、水素及び/または酸素の生成用触媒
WO2001096233A1 (fr) * 2000-06-16 2001-12-20 Uchiya Thermostat Co., Ltd. Procede et appareil d'approvisionnement en hydrogene et cassette portable d'approvisionnement en hydrogene
WO2002081368A1 (fr) * 2001-04-02 2002-10-17 Uchiya Thermostat Co., Ltd. Procede de production d'hydrogene et appareil destine a fournir de l'hydrogene
JP2004067422A (ja) * 2002-08-05 2004-03-04 Uchiya Thermostat Kk 水素発生装置

Also Published As

Publication number Publication date
JP4829471B2 (ja) 2011-12-07
JP2004359536A (ja) 2004-12-24
DE112004000758T5 (de) 2006-03-30
US20060213331A1 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
Wang et al. Variation in the In2O3 crystal phase alters catalytic performance toward the reverse water gas shift reaction
Kattel et al. CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support
JP4858890B2 (ja) 水素製造方法および水素供給装置
Ma et al. Heterogeneous catalysis by metals
Pu et al. An improved Cu/ZnO catalyst promoted by Sc2O3 for hydrogen production from methanol reforming
JP4565191B2 (ja) 微粒子触媒の製造方法、微粒子触媒、及び改質装置
JP3766063B2 (ja) 水素供給方法、装置および可搬型水素供給用カセット
Tominaga et al. Density functional theory of water− gas shift reaction on molybdenum carbide
JP2009254929A (ja) 低温での水素製造に適した水素製造用改質触媒、及び該触媒を用いた水素製造方法
WO2008001632A1 (fr) Catalyseur pour reformage à la vapeur, appareil de production d'hydrogène, et système de pile à combustible
Gallegos-Suárez et al. Efficient hydrogen production from glycerol by steam reforming with carbon supported ruthenium catalysts
JP2021095300A (ja) アンモニア改質型水素供給装置、及び、それを用いたアンモニア改質型水素供給方法
JP2013095618A (ja) 水素の製造方法及び製造装置
WO2004099069A1 (ja) 金属酸化物の還元方法及び水素製造方法
JP6725994B2 (ja) 水蒸気改質触媒、それを用いた水蒸気改質方法、及び水蒸気改質反応装置
Baharudin et al. CO temperature-programmed desorption of a hexameric copper hydride nanocluster catalyst supported on functionalized MWCNTs for active site characterization in a low-temperature water–gas shift reaction
Li et al. Selective oxidation of carbon using iron-modified cerium oxide
Wang et al. High-performance Rh/CeO2 catalysts prepared by L-lysine-assisted deposition precipitation method for steam reforming of toluene
JP4991175B2 (ja) 水素製造方法および水素製造装置
JP4795741B2 (ja) 窒素ガス発生装置及びそれを用いた燃料電池発電システム
CN114945535B (zh) 用于石油基液态烃的热中和重整的催化剂和方法
JP6701778B2 (ja) 炭化水素の改質による水素の製造方法、水素の製造装置、燃料電池の運転方法、及び燃料電池の運転装置
JPH09173842A (ja) 高分散型水蒸気改質触媒および水素製造方法
JP2005255505A (ja) 水素供給方法
De Zanet et al. A Review of Preparation Strategies for α-MoC1‐x Catalysts: Transition metal carbides attract growing attention

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006213331

Country of ref document: US

Ref document number: 10556171

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112004000758

Country of ref document: DE

Date of ref document: 20060330

Kind code of ref document: P

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10556171

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607