WO2004096787A1 - 多環式ラクトン化合物及び多環式ラクトン構造を有する(メタ)アクリレート化合物、並びにその製造方法 - Google Patents

多環式ラクトン化合物及び多環式ラクトン構造を有する(メタ)アクリレート化合物、並びにその製造方法 Download PDF

Info

Publication number
WO2004096787A1
WO2004096787A1 PCT/JP2004/006069 JP2004006069W WO2004096787A1 WO 2004096787 A1 WO2004096787 A1 WO 2004096787A1 JP 2004006069 W JP2004006069 W JP 2004006069W WO 2004096787 A1 WO2004096787 A1 WO 2004096787A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycyclic
anhydride
producing
compound
exo
Prior art date
Application number
PCT/JP2004/006069
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Suzuki
Hiroko Takahashi
Shigenori Kawamura
Kaoru Hamashima
Kohshi Honda
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Publication of WO2004096787A1 publication Critical patent/WO2004096787A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/93Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems condensed with a ring other than six-membered

Definitions

  • the present invention relates to a rataton compound having a polycyclic structure, a (meth) acrylic acid ester obtained by adding acrylonic acid or methacrylic acid to the lactone compound, and a method for producing the same.
  • Non-Patent Documents 1 to 3 sodium borohydride Z-dimethylformamide-based lithium aluminum hydride is used as a reducing agent, and the reaction solution after reacting a nonmetal hydride having a metal or semiconducting property is determined by a standard method. As a result, the product is obtained by hydrolyzing the complex with an acidic aqueous solution.
  • Patent Document 1 It is also known that an addition reaction of a polycyclic lactone compound with a phyllogenic acid in the presence of an acid catalyst can yield a (meth) acrylate compound having a polycyclic lactone structure (Patent Document 1). And 2, and Non-Patent Documents 4 and 5).
  • Non-Patent Document 1 Japanese Patent Application Laid-Open No. 63-83355
  • An object of the present invention is to provide a polycyclic lactone compound and a (meth) acrylate having a polycyclic lactone structure, which do not contain impurities due to a reducing agent, thereby enabling stable industrial production.
  • An object of the present invention is to provide compounds and methods for producing them.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, by reducing the amount of a specific element derived from a reducing agent used in the reduction reaction of the polycyclic anhydride to a specific amount or less, In the step of adding and reacting the polycyclic lactone compound with (meth) acrylic acid in the presence of an acid catalyst, and in the subsequent purification step, stable industrial production becomes possible, and polycyclic anhydrides.
  • the lactone part of the polycyclic lactone compound obtained by the reduction of the lactone compound is once opened and closed again to obtain a polycyclic rataton compound and a polycyclic rataton compound obtained by adding this compound to (meth) acrylic acid.
  • the present inventors have found that the amount of a specific element caused by a reducing agent contained in a (meth) acrylate compound having a ton structure can be reduced, and have completed the present invention.
  • a first gist of the present invention is that the content of the elements of the periodic table 13 to 14 is 500 ppm or less, and the following general formula (1)
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, and n represents 0 or 1.
  • the second gist of the present invention is represented by the following general formula (2)
  • R 1 R 2 and n have the same meanings as those in the general formula (1).
  • the unsaturated polycyclic acid anhydride represented by the general formula (13) to (14) The polycyclic lactone described above, wherein the polycyclic lactone is reduced using a reducing agent containing the element of formula (I), and the concentration of the elements of the periodic table 13 to 14 derived from the reducing agent mixed into the system is 500 ppm or less.
  • a third gist of the present invention resides in the following general formulas (3) and (4) in which the content of an element selected from Groups 13 to 14 of the periodic table is 500 p or less.
  • a fourth gist of the present invention is to produce a compound represented by the above general formula (3) and Z or (4) by an addition reaction between the above polycyclic rataton compound and (meth) acrylic acid.
  • a fifth gist of the present invention is that an unsaturated polycyclic acid anhydride (hereinafter referred to as an exo-acid anhydride) in which both R 1 and R 2 are endo-configurations, and R 1 and R 2 configuration is in both exo- body unsaturated polycyclic acid anhydride (hereinafter, endo- anhydride, referred to as.) and preferentially e X o_ acid from the mixture by using a solvent EXo—a method for producing an acid anhydride, which comprises depositing crystals of an anhydride.
  • an exo-acid anhydride in which both R 1 and R 2 are endo-configurations, and R 1 and R 2 configuration is in both exo- body unsaturated polycyclic acid anhydride (hereinafter, endo- anhydride, referred to as.) and preferentially e X o_ acid from the mixture by using a solvent EXo—a method for producing an acid anhydride, which comprises depositing crystals of
  • the polycyclic ratatone compound and the (meth) acrylate compound having a polycyclic ratatone structure of the present invention do not contain impurities due to a reducing agent, and as a result, stable industrial production is possible. .
  • the polycyclic rataton compound of the present invention is a compound represented by the following general formula (1).
  • R 1 and R 2 are each independently a hydrogen atom; or an alkyl group having 1 to 12 carbon atoms.
  • alkyl group examples include straight-chain, branched-chain, and cyclic groups such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. It is a straight-chain alkyl group having 4 or more and particularly preferably a hydrogen atom.
  • the polycyclic ratatone compound of the present invention is an element selected from the group 13 to 14 of the periodic table derived from the reducing agent used in the reduction reaction of the carbonyl group, for example, a boron atom or an aluminum atom, particularly a boron atom.
  • a boron atom or an aluminum atom particularly a boron atom.
  • the polycyclic ratatone compound represented by the general formula (1) includes a compound in which the lactone portion has an eXo-stereostructure (hereinafter, referred to as an eXo-lactone compound).
  • Formula (5)) and a compound that is an endo-form (hereinafter referred to as an endo-ratatone compound .: General formula (6)) exist.
  • the content of the eXo-lactone compound in the total amount of both is preferably at least 70 mol% in the total amount of both.
  • the amount of eXo-lactone compound is preferably 90 moles. /. Or more, more preferably 9 5 mole 0/0 or more, and most preferably 9 9 mol% or more.
  • the polycyclic lactone compound can be obtained by reducing one carboxy group of the unsaturated polycyclic acid anhydride represented by the following general formula (2) according to a known method or a method analogous thereto. it can.
  • a compound represented by the following general formula (2) is known in the art, for example, by a Die 1 s -A 1 der reaction between a corresponding parent dimeric compound such as maleic anhydride and a diene such as cyclopentene. It can be manufactured according to the method described above.
  • RR 2 and n have the same meaning as in the general formula (1).
  • the reducing agent used in the above reduction reaction is not particularly limited as long as it is used for reducing the carbonyl group. Preferred specific examples include sodium borohydride, lithium aluminum hydride, and the like. Active hydrogen in hydrides of elements of Groups 13 to 14 of the Periodic Table above, such as hydrides of elements of Groups 14 to 14 or hydrogenated sodium bis (2-methoxhetoxy) aluminum (Red-A1) And a compound in which a part of the above is substituted with an alkoxide.
  • the alkoxide-based reducing agent may be prepared by mixing the corresponding metal hydride and alcohol stoichiometrically prior to the reduction reaction.
  • the reducing agent is usually 1 or more, preferably 1.5 or more, more preferably 2 or more, and still more preferably the ratio of the number of moles of hydride to the compound represented by the general formula (1).
  • the amount is more than 2, more preferably 3 or more.
  • the ratio of the number of moles in hydride is 40 or less, preferably 30 or less, more preferably 30 or less. It is used in the range of 20 or less, more preferably 10 or less.
  • the reaction of the reducing agent with the acid anhydride is generally carried out by adding the other solution or suspension in small portions to either solution or suspension. After complete addition, stirring is performed for a predetermined time under the same or different temperature conditions as the temperature at the time of addition to complete the reaction.
  • the addition temperature and the subsequent stirring temperature are generally in the range of 150 to 100 ° C, but in the case of using lithium aluminum hydride or a partially substituted alkoxide thereof, the stirring temperature is in the range of 150 to 50 ° C. It is preferably carried out at 0 to 80 ° C. when sodium borohydride or a partial alkoxide-substituted product is used.
  • the reaction time and the stirring time after the addition reaction vary depending on conditions such as the reaction temperature, generally, the lower limit of the addition time and the stirring time is usually 0.1 hour or more, preferably 0.2 hour or more, and the upper limit is usually 1 hour. It is within a range of not more than 100 hours, preferably not more than 80 hours.
  • the reaction is carried out in an atmosphere of an inert gas such as a well-dried helium, nitrogen, or argon.
  • reaction solvent for example, dimethylformamide is recommended in the method disclosed in MM Kayser et al., Canadian Journal of hemistry, vol. 56, p. 1524 (1978). If consideration is given to the overall convenience, such as acetyl ether, dipropyl ether, dibutinol ether, 1,2-dimethoxetane, and other aliphatic chain ethers; tetrahydrofuran, pyran, 1,3 dioxolane It is preferably carried out in a cyclic ether solvent such as 1,4-dioxane.
  • a cyclic ether solvent such as 1,4-dioxane.
  • the amount of use can not be specified unconditionally and is arbitrary, but in general, the lower limit of the raw material concentration is usually 0.1% by weight or more, preferably 0.5% by weight or more, and the upper limit is usually 80% by weight or less, preferably Is in the range of 70% by weight or less.
  • the unreacted reducing agent and the complex compound intermediate of the substrate and the reducing agent are decomposed by mixing the reaction solution with an inorganic acid such as sulfuric acid or hydrochloric acid, and the mixture is inactivated. It is preferable to go through a step of extracting the target product using an immiscible organic solvent.
  • aliphatic hydrocarbons such as hexane, heptane and octane
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • esters such as methyl acetate, ethyl
  • the concentration of the inorganic acid is not particularly limited, an aqueous solution of 0.1 to 5N is generally used.
  • the solution obtained after hydrolysis using these acid aqueous solutions is preferably made acidic at pH 2 or lower.
  • the reaction temperature and reaction time required for this decomposition reaction differ depending on the type of raw material, and the treatment time with an inorganic acid affects the yield and the amount of by-products that are difficult to separate.
  • the lower limit of the temperature is usually 15 ° C or higher, preferably 0 ° C or higher, and the upper limit is usually 80 ° C or lower, preferably 50 ° C or lower, and the time is usually lower than 0 ° C.
  • the time is at least 1 hour, preferably at least 0.2 hour, and the upper limit is usually at most 100 hours, preferably at most 80 hours.
  • the pH of the basic aqueous solution is higher than 7, preferably 8 or more.
  • the upper limit is less than 12, preferably 11.5 or less.
  • an alkali metal bicarbonate such as sodium hydrogen carbonate or an alkali metal carbonate such as sodium carbonate is preferable.
  • the basic aqueous solution is used in an amount of at least 2 times, preferably at least 3 times, more preferably at least 5 times, more preferably at least 10 times the weight of the lactone compound.
  • the upper limit is usually 200 times by weight or less, preferably 100 times by weight or less, more preferably 50% by weight. Less than twice.
  • the concentration of the basic substance in the basic aqueous solution is not particularly limited. However, if the concentration is too low, the washing efficiency deteriorates. Therefore, the concentration is usually set in the range of 1% to the saturation concentration. Here, if the saturation concentration is barely reached, there is a possibility that a basic substance may be precipitated during the washing operation. Therefore, the saturation concentration is not more than 99%, preferably not more than 95%, more preferably not more than the saturation concentration. Preferably, the concentration is set within a range of 90% or less.
  • the basic aqueous solution may act on the lactone compound all at once, or may be subjected to the washing treatment in a plurality of times.
  • the number of washings at this time depends on the total amount of the aqueous alkali solution used, whether or not it is combined with the distillation treatment of the polycyclic ratatone compound described later, or the operation of opening and reconstructing the lactone ring. It is preferable to take a form in which the treatment is performed, and usually, it is performed 2 or more times, preferably 3 or more times, and more preferably 5 or more times.
  • the washing operation is usually performed at 0 ° C or higher, preferably at 10 ° C or higher.
  • the temperature is usually 50 ° C or lower, preferably 40 ° C or lower, more preferably 30 ° C or lower. Is good.
  • the washing time is 5 minutes or more, preferably 10 minutes or more, more preferably 30 minutes or more, and 5 hours or less, preferably about 2 to 3 hours or less.
  • the washing treatment with the basic aqueous solution may be performed before the extraction with the organic solvent after the above-described acid treatment, or may be performed after the extraction with the organic solvent, but it is better to perform the extraction after the extraction. preferable.
  • an element selected from Groups 13 to 14 of the periodic table can be reduced by distillation.
  • the distillation method may be a known distillation method, and is not limited. The procedure is performed by selecting the degree of pressure reduction and temperature according to the physical properties of the lactone compound.
  • the polycyclic ratatone compound of the present invention is obtained by subjecting the liquid containing the polycyclic ratatone compound obtained by the above method to a contact treatment with water or a basic aqueous solution of H12 or more in water or an organic solvent immiscible with water. Opening the lactone ring of the polycyclic ratatone compound once, extracting the opened compound into the aqueous layer, separating the aqueous layer from the organic layer, and removing the organic layer out of the system. A step of re-closing the opened compound into a lactone ring, and a step of adding an organic solvent and extracting the compound closed into a lactone ring into the organic solvent.
  • the polycyclic ratatone compound of the present invention has many compounds having a high boiling point and a high melting point, so that industrial distillation purification may not be easily carried out in some cases. This method is particularly effective.
  • Examples of the type of the basic compound used in the basic aqueous solution include hydroxides, carbonates, and hydrogen carbonates of alkali metals such as lithium, sodium, and potassium; and alkaline earth metals such as calcium and magnesium. Hydroxides, carbonates, bicarbonates and the like are mentioned, among which sodium hydroxide or potassium hydroxide is particularly preferred.
  • H of the basic aqueous solution used here is preferably 12 or more, more preferably 13 or more.
  • the amount of the basic compound to be used is at least 0.1 equivalent, preferably at least 0.5 equivalent, more preferably at least 1 equivalent, more preferably at least 1.05 mol, per mol of the rataton ring to be treated. That is all.
  • the amount of the basic compound is too large, there are difficulties in terms of cost and labor in post-treatment, etc., so that it is used in an amount of 100 equivalents or less, preferably 20 equivalents or less, more preferably 10 equivalents or less. .
  • the processing temperature has a lower limit of usually 15 ° C or higher, preferably 0 ° C or higher, more preferably 10 ° C or higher, and an upper limit of usually 200 ° C or lower, preferably 150 ° C or lower, more preferably. Is in the range of 100 ° C. or less, but the preferred processing temperature tends to increase as the number of n increases. There is no particular limitation on the processing time, and the optimum processing time depends on the amount of alkali and the processing time. Although depending on the processing temperature, the lower limit is usually at least 0.1 hour, preferably at least 0.02 hours, more preferably at least 0.1 hour, and the lower limit is usually at most 50 hours, preferably at most 20 hours, It is more preferably in the range of 10 hours or less.
  • the aqueous layer and the organic layer are separated, the resulting aqueous layer is diluted with water as necessary, and washed with an organic solvent immiscible with water described in (b) above. It is preferable to extract the ring-opened compound into an aqueous layer, extract impurities into an organic layer, and remove the organic layer out of the system.
  • the opened lactone ring is closed to form a ratatone ring again.
  • the type of acid used is not particularly limited as long as it is a protonic acid, but for example, inorganic acids such as hydrochloric acid and sulfuric acid are generally used.
  • the concentration is arbitrary, but in order to avoid the vigorous heat generated by the neutralization, the usual operation of this step is to add either the basic aqueous solution or the aqueous acid solution after the ring-opening reaction to the other little by little. It is preferable to carry out the above.
  • the amount of the acid to be used is determined depending on the pH of the reaction system.
  • the pH of the reaction system after the completion of the addition is preferably less than 7, more preferably less than 2.
  • stirring may be maintained for 0.1 to 50 hours.
  • the addition temperature and the stirring time after the addition need not be carried out at an elevated temperature, and are optional.
  • the organic matter is separated. This is separated, and the remaining aqueous layer is extracted with an appropriate organic solvent, combined with the previously collected organic matter, and separated from the aqueous layer. After the separation, it is preferable to perform washing with pure water.
  • pure water having a volume ratio of 0.1 to 10 with respect to the oil layer is used, and the number of washing is preferably two or more.
  • the polycyclic ratatone compound produced by the above operation has a purity that can be used as it is or as a raw material for the addition reaction of (meth) acrylic acid. However, if necessary, conventional methods such as crystallization and chromatographic separation can be used. Can be applied for further purification.
  • Unsaturated polycyclic acid anhydrides are unsaturated polycyclic acid anhydrides (hereinafter referred to as eXo-acid anhydrides) in which both R 1 and R 2 are endo-configurations.
  • Heat treatment of the endo monoanhydride causes isomerization to produce eXo-anhydride and a mixture of endo-anhydride and eXo-anhydride.
  • the degree of heating the lower limit is usually 140 ° C or higher, preferably 160 ° C or higher, more preferably 170 ° C or higher, and the upper limit is usually 300 ° C or lower, preferably 270 ° C or lower, more preferably. Is below 250 ° C.
  • the time for the isomerization reaction is preferably 1 minute or more, and more preferably 5 minutes to 10 hours.
  • the reaction is preferably performed in a suitable solvent.
  • the type of solvent that can be used is not limited as long as it is inert to the raw materials, intermediates and products.
  • aliphatic hydrocarbons such as hexane, heptane, and octane; benzene, toluene, and xylene Esters / esters such as ethyl acetate and butyl acetate; ratatones such as petit mouth ratatone and valero-ratone; dibutinooleatenole; diethyleneglycosoresimetinoleatenoate; tetrahydrofuran And linear or cyclic ethers.
  • Heating to the coexistence of the acid anhydride and the gen produces a mixture of eXo-anhydride and endo monoanhydride.
  • the acid anhydride, maleic acid and an end one 3 anhydrous, 5 Jiokiso 4 Oki Satorishikuro include [5.2.2 1.0 2 '6] Deka 8 E down.
  • Examples of the gen include dicyclopentadiene and cyclopentadiene.
  • the amount of the acid anhydride to be charged can be usually selected from the range of 0.1 to 10 mol ratio with respect to the pentagon skeleton of the mouth, but is preferably from 0.5 to 5 mol ratio.
  • the molar ratio is not more than 0.7, more preferably not less than 0.7 but not more than 2 and more preferably not less than 0.8 and not more than 1.5.
  • the amount of acid anhydride to be used when maleic anhydride is used as the acid anhydride and dicyclopentapentane is used as the gen Is usually selected from the range of 0.05 to 1 mole ratio, preferably 0.1 to 0.8 mole ratio, more preferably 0.2 mole ratio, with respect to the cyclopentadiene skeleton. It is not less than 0.75 mol ratio, more preferably not less than 0.3 mol ratio and not more than 0.7 mol ratio.
  • the amount of acid anhydride to be added is usually 0.1 mol ratio or more and 10 mol ratio or less with respect to the cyclopentadiene skeleton.
  • the molar ratio is from 0.5 to 5 mol ratio, more preferably, from 0.7 to 2 mol%, and further preferably, from 0.8 to 1.5 mol ratio. It is.
  • the reaction temperature has a lower limit of usually 140 ° C or higher, preferably 160 ° C or higher, more preferably 170 ° C or higher, and an upper limit of usually 300 ° C or lower, preferably 270 ° C or lower, more preferably It is below 250 ° C.
  • the reaction time is preferably 1 minute or more, and more preferably 5 minutes to 10 hours.
  • a solvent as exemplified in the above (f1-1-1) may be allowed to coexist.
  • the reaction temperature has a lower limit of usually 140 ° C or higher, and an upper limit of usually 300 ° C or lower, preferably 160 ° C or higher, preferably 270 ° C or lower, more preferably 170 ° C or lower.
  • the temperature is more preferably 250 ° C or less.
  • the reaction time is preferably 1 minute or more, and more preferably 5 minutes to 10 hours. At the time of the reaction, a solvent as exemplified in the above (f-111) may be allowed to coexist.
  • the eXo-anhydride can be preferentially crystallized by treating the mixture of eXo-anhydride and endo-anhydride with a solvent.
  • the solvent used here is one in which the solubility of eXo-monoanhydride is lower than the solubility of endo-anhydride at any temperature from 120 ° C to 100 ° C. .
  • a solvent in which the amount of eXo-anhydride dissolved in 100 parts by weight of the solvent at 25 ° C is 30 parts by weight or less can be used. More preferably, the solvent is 20 parts by weight or less, and particularly preferably, the solvent is 10 parts by weight or less.
  • solvents examples include aromatic hydrocarbons such as benzene, toluene and xylene; aliphatic hydrocarbons such as hexane, heptane and octane; chains such as dibutyl ether, diethylene glycol dimethyl ether; and tetrahydrofuran. Or cyclic ethers; esters such as ethyl acetate and butyl acetate; lactones such as butyrolactone and valerolactone. Above all, aromatic hydrocarbons and aliphatic hydrocarbons are preferred, and more preferred are monocyclic aromatic hydrocarbons such as benzene, toluene and xylene.
  • temperature corresponding to the solvent Degree setting is important. If the temperature at which the crystals and mother liquor are separated by filtration is too high, the purity is high, but the yield is reduced. Conversely, if the temperature is too low, the yield is high but the purity is reduced.
  • optimum conditions are selected according to the type and amount of the solvent.
  • the lower limit of the temperature is usually at least 20 ° C, preferably at least 0 ° C, more preferably at least 10 ° C, and the upper limit is usually at most 100 ° C, preferably at most 50 ° C, more preferably at most 50 ° C. Preferably it is 40 ° C. or lower.
  • the yield is reduced if the amount of the solvent is extremely large.
  • the preferred range is that the lower limit is usually 0.1 times by weight or more, preferably 0.5 times by weight or more, and the upper limit is usually 20 times, based on the total weight of endo-anhydride and eXo-anhydride. It is not more than 10 times by weight, preferably not more than 10 times by weight. If necessary, the purity can be further improved by recrystallization. At the time of the crystallization treatment and the recrystallization treatment, seed crystals are preferably added.
  • the solution after removing the crystals of the acid anhydride by filtration contains the removed endO-anhydride and the dissolved eXo-anhydride. If necessary, the solution can be subjected to a treatment such as an isomerization reaction again to increase the amount of the exo-acid anhydride, and a crystallization treatment or a recrystallization treatment as necessary As a result, an exo-acid anhydride can be obtained.
  • the corresponding eXo-lactone compound can be obtained by reducing the thus obtained eXo-acid anhydride as a raw material by the method described above.
  • the polycyclic ratatone compound obtained by the above method is subjected to a known method such as performing an addition reaction with (meth) acrylic acid in the presence of an acid catalyst.
  • the compound can be derivatized into a compound represented by the following general formula (3) and / or (4) according to a method analogous thereto.
  • R is a hydrogen atom, a methyl group, or a trifluoromethyl group, and is preferably a hydrogen atom or a methyl group.
  • the acid catalyst preferably used is not particularly limited, but examples thereof include, for example, 1) inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid; benzenesulfonic acid, toluenesnolefonic acid, and crezomonosulfone. Acid, organic sulfonic acid such as methanesulfonic acid, etc .; presnetic acid catalyst such as sulfonic acid type ion exchange resin, etc.
  • Lewis acids such as anhydrous zinc halide, anhydrous halogenated anhydride, iron halide anhydrous, tin halide, metal salt of trifluoromethanesulfonic acid such as ytterbium triflate, etc .; titanium , Zirconium, hafnium and the like, and a group 4 metal anhydrous halide or alkoxide.
  • Hexane or p K a of the aqueous solution is preferably 6 or less.
  • These acid catalysts may be used alone or in combination.
  • sulfuric acid is preferred.
  • boron trifluoride is preferred.
  • the amount of the acid catalyst used varies depending on the type of the catalyst, but generally the lower limit is usually at least 0.01 mol%, preferably at least 0.1 mol%, based on the starting polycyclic lactone compound. 1 mole 0 /. As described above, the upper limit is usually at most 100 mol%, preferably at most 50 mol%.
  • the reaction temperature varies depending on the type of the catalyst, but the lower limit is usually at least 150 ° C, preferably at least 0 ° C, and the upper limit is usually at most 200 ° C, preferably at most 150 ° C. .
  • the amount of (meth) acrylic acid used depends on the yield of polycyclic lactone compounds In this case, the lower limit is usually 0.1 mol times or more, preferably 1 mol times or more, and the upper limit is usually 20 mol times or less, preferably 10 mol times or less with respect to the equivalent or more.
  • a solvent may be allowed to coexist if necessary.
  • the (meth) acrylate ester can be isolated by a usual method.
  • a method is exemplified in which the acid catalyst is neutralized and then isolated by an operation such as extraction or distillation.
  • the rataton ring-containing polycyclic (meth) atalylate obtained by the above production method is a reducing agent used for producing the polycyclic rataton compound represented by the above general formula (2) and Z or (3).
  • the amount of elements of the periodic table 13 to 14 derived from the group 13 to 14 is 500 ppm or less, preferably 200 ppm or less, more preferably 100 ppm or less, further preferably 50 ppm or less, more preferably 2 ppm or less. It is 0 ppm or less, particularly preferably 5 ppm or less. The smaller the amount, the better the stability.
  • a material having a high content of eXo-lactone compound obtained by the above-described method is used as a polycyclic ratatatone compound as a raw material, a compound having a three-dimensional structure of rataton unit eXo-integral ( Hereinafter, it will be referred to as eXo- (meth) acrylate compound.) And end. Having a polycyclic ratatone structure in which the exo- (meth) acrylate compound accounts for at least 70 mol% of the total amount of the integral compound (hereinafter referred to as “endo- (meth) acrylate compound”) ( (Meth) Atharylate compounds can be produced.
  • the exo- (meth) atalylate compound accounts for at least 70 mol% of the total amount of both.
  • e X o - amount of Rataton compound preferably 9 0 mole 0/0 or more, more preferably 9 5 mol% or more, and most preferred properly 9 9 mol% or more.
  • Example 1 the present invention will be described more specifically with reference to Examples. However, the present invention is not limited to the following Examples unless it exceeds the gist.
  • Example 1 the present invention is not limited to the following Examples unless it exceeds the gist.
  • the oil layer was charged into a reactor, and 72.6 g of a 10% aqueous solution of NaOH was added dropwise at room temperature under stirring over 30 minutes, followed by keeping at room temperature for 30 minutes. Then, it left still, the oil layer was removed, and the water layer was taken out. 65.7 g of toluene was added to the total amount of the aqueous layer, and after stirring and standing, the aqueous layer was taken out and the oil layer was removed. In the aqueous layer, a compound in the form of a ring-opened ratatone compound is present.
  • the concentration of boron contained in this purified ratatone was 9 ppm.
  • Example 2 When an esterification reaction was carried out using this in the same manner as in Example 1, the contents of the reactor became lumpy, and it was recognized that polymerization occurred instead of a solution state.
  • Example 2 When an esterification reaction was carried out using this in the same manner as in Example 1, the contents of the reactor became lumpy, and it was recognized that polymerization occurred instead of a solution state.
  • Example 2
  • Example 4 Using the purified ratatone described in Example 1 and the crude rataton solution_2 described in Example 2, an esterification reaction was similarly performed to obtain a methacrylate ester. At this time, the reactor was kept at 110 ° C. for 6 hours, cooled, and then kept at room temperature for 14 hours. When the purified rataton described in Example 1 was used, no change was observed in the contents of the reactor, but when the crude rataton solution 12 described in Example 2 was used, the contents of the reactor were not changed. The viscosity of the product slightly increased, and it is considered that some polymerization proceeded. I got it. Therefore, it was found that the storage stability of the reaction solution was higher when the purified lactone described in Example 1 in which the boron concentration was reduced to 9 ppm was used. Example 4
  • endo-1,5-dioxo-4-oxatricyclo [5.2.1.10 2 ' 6 ] deca-8-ene endo_5-nonoleponolenene-1,2,3-dicanolevonic anhydride
  • 150 g of toluene and 150 g of toluene were charged.
  • the system was heated to 190 ° C. with stirring in the system and kept for 2 hours. Thereafter, when the reactor was cooled to 25 ° C, crystals were precipitated in the reaction solution. After the crystals were separated by filtration, the crystals were dried and weighed 61 g.
  • a reactor was charged with 100 g of commercially available endo-1,5-dioxo-4-oxatricyclo [5.2.1.0 2 ' 6 ] deca-8-ene and 50 g of toluene. Under stirring, the reactor was heated and toluene was distilled off. The temperature was kept elevated and kept at 190 ° C for 1 hour. After cooling the reactor to 100 ° C, 300 g of toluene was charged. The temperature inside the reactor was set to 50 ° C, and a small amount of seed crystals was added. Thereafter, the reactor was cooled to 25 ° C. Crystals had precipitated in the reactor. After filtering off the crystals, the crystals were dried and weighed 28 g.
  • the ratatone compound was charged into a flask. Distillation was performed using a simple distillation apparatus under a reduced pressure of 15 mmHg. When the temperature inside the flask was around 148 ° C, the rataton compound was distilled off. In the distillate tube cooled to 25 ° C, the rataton compound flowed without being fixed, and a distilled lactone compound was obtained.
  • Example 6
  • Example 5 According to the method described in Example 5, a similar exomonoanhydride was obtained, and a similar reduction reaction was performed. Washing with 5% aqueous sodium bicarbonate was performed once, and washing with water was performed once. The solvent was distilled off from the obtained toluene layer using an evaporator, and the concentration of boron contained in the obtained liquid compound was measured. The result was 94 Op.
  • the liquid compound was purified by distillation according to the method described in Example 5 to obtain a ratatone compound mainly composed of an exo form. The boron concentration in the ratatone compound was 3.5 ppm. Using the lactone compound thus obtained, ring-opening of ratatone and re-formation of the lactone ring described in Example 1 were performed.
  • Japanese Patent Application Japanese Patent Application No. 2003-124,292
  • Japanese Patent Application Japanese Patent Application No. 2003-313771
  • Japanese Patent Application Japanese Patent Application No. 2003-313771
  • the polycyclic rataton compound and the (meth) ac having a polycyclic lactone structure of the present invention According to the relevant compound, it does not contain impurities caused by the reducing agent, and as a result, stable industrial production is possible.
  • impurities derived from a reducing agent in a compound can be reduced by a simple operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Description

明 細 書 多環式ラタ トン化合物及び多環式ラクトン構造を有する (メタ) アタリレート化 合物、 並びにその製造方法
<技術分野 >
本発明は、 多環構造を有するラタトン化合物及び該ラク トン化合物にァクリノレ 酸またはメタクリル酸を付加することにより得られる (メタ) アクリル酸エステ ル、 並びにその製造方法に関する。
これらの化合物は、 医薬、 農薬などの機能性化学品の中間体として利用される のみならず、 特に (メタ) アクリル酸エステルは電子材料や光関連材料としての ァクリル樹脂の原料モノマーとして好適である。 く背景技術〉
同一分子内に炭素一炭素二重結合を有する多環式酸無水物の還元によって、 そ の二重結合を残したままで酸無水物のみを選択的に還元し、 多環式ラタトン化合 物に導く方法は各種知られている (非特許文献 1〜3参照)。 これらの方法では、 還元剤として水素化ホウ素ナトリゥム Zジメチルホルムアミド系ゃ水素化リチウ ムアルミニウムなど用いられており、 金属や半導体的性質を有する非金属の水素 化物を反応させた後の反応液は定法によつて酸性の水溶液で錯体を加水分解する ことによって生成物を得ている。
また、多環式ラク トン化合物と力ルポン酸とを酸触媒存在下の付加反応により、 多環式ラク トン構造を有する (メタ) アタリレート化合物が得られることも知ら れている (特許文献 1及び 2、 並びに、 非特許文献 4及び 5参照)。
[特許文献 1 ]
特開平 3— 1 4 8 2 3 9号公報
[特許文献 2 ]
特開昭 6 3 - 8 3 5 5号公報 [非特許文献 1 ]
M.M.Kayserら、 Canadian Journal of Chemistry、 1978年、 vol.56 p.1524
[非特許文献 2 ]
E.¾a.Mangnusら、 Synthetic Communieations、 1992年、 vol.22 p.783-786
[非特許文献 3 ]
J.Haslouinら、 Tetrahedron Letters、 1976年、 .4651-4654
[非特許文献 4 ]
A.Heidekum et.al.s Juornal of Catalysis, 1999年、 vol. l81、 p.217-222
[非特許文献 5 ]
J-M.N.Me ah et.al.、 New Journal of Chemistry^ 1993年、 vol.17、 p.835-841
<発明の開示 >
しかしながら、 電子材料や光関連材料の原料などとして使用される化合物は金 属ゃ半導体性を有する非金属などの不純物の含有率を極力抑えることが求められ ているが、 上述のような多環式酸無水物を還元剤を用いて還元する方法では、 得 られた多環式ラタトン化合物に還元剤に起因する不純物が多く含有され、 簡易な 操作では除去できないことが判明した。
加えて、 還元剤に起因する不純物が多く含有された結果、 得られた多環式ラタ トン化合物と (メタ) アクリル酸とを酸触媒存在下で付加反応させた場合、 該反 応中、 及び、 反応後の単離操作の過程において、 目的生成物である多環式ラタ ト ン化合物の (メタ) アタリレート化合物おょぴ原料である (メタ) アクリル酸が 非常に不安定な系を形成し、 容易に重合反応が進行するために、 安定した工業生 産が困難であることが判明した。
本発明の目的は、 還元剤に起因する不純物を含有せず、 その結果、 安定したェ 業生産が可能となる多環式ラク トン化合物及ぴ多環式ラク トン構造を有する (メ タ) ァクリレート化合物、 並びにそれらの製造方法を提供することにある。 本発明者らは上記課題を解決するために鋭意検討を行った結果、 上記多環式酸 無水物の還元反応に用いられる還元剤由来の特定の元素の量を特定量以下とする ことにより、 多環式ラク トン化合物と (メタ) アクリル酸とを酸触媒存在下で付 加反応させる工程及ぴその後の精製工程において、 安定した工業生産が可能とな ること、 及び多環式酸無水物の還元により得られる多環式ラクトン化合物のラク トン部分を一度開環させ再度閉環させることにより、 多環式ラタトン化合物及ぴ これと (メタ) アクリル酸とを付加させて得られる多環式ラタ トン構造を有する (メタ) ァクリレート化合物に含有される還元剤に起因する特定の元素の量を低 減することができることを見出し、 本発明を完成するに至った。
即ち本発明の第 1の要旨は、 周期表 1 3〜 1 4の元素の含有率が 5 0 0 p p m 以下である下記一般式 (1 )
Figure imgf000005_0001
(一般式 (1 ) 中、 R 1及び R 2は、 それぞれ独立して、 水素原子又は炭素数 1以 上 1 2以下のアルキル基を示し、 nは 0又は 1を示す。)で表される多環式ラタト ン化合物、 に存する。
本発明の第 2の要旨は、 下記一般式 (2 )
Figure imgf000005_0002
(—般式 (2 ) 中、 R 1 R 2及び nは一般式 (1 ) におけるのと同義である。) で 表される不飽和多環式酸無水物を、 周期表 1 3〜 1 4の元素を含有する還元剤を 用いて還元し、 且つ系内に混入する該還元剤由来の周期表 1 3〜 1 4の元素の濃 度が 5 0 0 p p m以下とする、上記多環式ラクトン化合物の製造方法、に存する。 本発明の第 3の要旨は、 周期表 1 3〜14族から選ばれる元素の含有率が 50 0 p 以下である下記一般式 (3) 及ぴノまたは (4)
Figure imgf000006_0001
(一般式 (3) 及び (4) 中、 R R2及ぴ nは一般式 (1) と同義であり、 R は、水素原子、 メチル基またはトリフルォロメチル基である。) で表される多環式 ラタトン構造を有する (メタ) アタリレート化合物、 に存する。
本発明の第 4の要旨は、 上記多環式ラタ トン化合物と (メタ) アクリル酸との 付加反応により、 上記一般式 (3) 及び Z又は (4) で表される化合物を製造す る、 多環式ラクトン構造を有する (メタ) アタリレート化合物の製造方法、 に存 する。
本発明の第 5の要旨は、 R1と R2の立体配置が共に e n d o—体である不飽和 多環式酸無水物 (以下、 e x o—酸無水物、 と称する。 ) と R1と R2の立体配置 が共に e x o—体である不飽和多環式酸無水物 (以下、 e n d o—酸無水物、 と 称する。 ) との混合物から、 溶媒を用いることによって優先的に e X o_酸無水 物の結晶を析出させることを特徴とする、 e X o—酸無水物の製造方法、 に存す る。
本発明の多環式ラタ トン化合物及び多環式ラタ トン構造を有する (メタ) ァク リレート化合物は、 還元剤に起因する不純物を含有せず、 その結果、 安定したェ 業生産が可能となる。
また、本発明の多環式ラタ トン化合物及び多環式ラタ トン構造を有する (メタ) ァクリレート化合物の製造方法によれば、 簡便な操作で、 化合物中の還元剤由来 の不純物を低減させることができる。 く発明を実施するための最良の形態 >
以下、 本発明につき、 詳細に説明する。
<多環式ラク トン化合物 >
本発明の多環式ラタ トン化合物は、 下記一般式 ( 1 ) で表される化合物であ る。
Figure imgf000007_0001
一般式 (1 ) 中、 R1及び R2はそれぞれ独立して、 水素原子;又は、 炭素数 1 以上 1 2以下のアルキル基である。
アルキル基としては、メチル基、ェチル基、 n—プロピル基、ィソプロピル基、 n—プチル基等の直鎖、 分岐鎖若しくは環状のものが挙げられ、 このうち好まし くは水素原子又は炭素数 1以上 4以下の直鎮アルキル基であり、 特に好ましくは 水素原子である。
また、 本発明の多環式ラタトン化合物は、 カルボニル基の還元反応に用いた還 元剤由来の周期表 1 3〜 1 4族から選ばれる元素、 例えば、 ホウ素原子又はアル ミニゥム原子、 特にホウ素原子が 5 0 0 p p xn以下、 好ましくは 2 0 0 p p m以 下、 より好ましくは 1◦ 0 p p m以下、 更に好ましくは 5 0 i> 以下、 更に好 ましくは 2 0 p p m以下、 特に好ましくは 5 p p m以下のものである。
また、 上記一般式 (1 ) で表される多環式ラタトン化合物には、 ラクトン部の 立体構造が e X o —体である化合物(以下、 e X o —ラクトン化合物、と称する。: —般式 (5 ) ) と e n d o—体である化合物 (以下、 e n d o—ラタ トン化合物、 と称する。 :一般式 (6 ) ) とが存在する。 本願においては、 両者の合計量中、 e X o —ラク トン化合物が両者の合計中 7 0モル%以上であるのがよい。 e X o— ラク トン化合物の量は、 好ましくは 9 0モル。/。以上、 より好ましくは 9 5モル0 /0 以上、 最も好ましくは 9 9モル%以上である。
Figure imgf000008_0001
(5) (6) 一般式 (5) 及び (6) 中、 R\ R 2及び nは一般式 (1) におけるのと同義 である。
本発明者らの検討によれば、 n = 0の e n d o—ラク トン化合物が 35 °C程度 で固体であり、 n = 0の e x o—ラク トン化合物は、 35 °C程度で溶液形態であ ることが判明した。 従って、 e X o—ラク トン化合物が常温で液体であることか ら、 この e X o—体の量を多くすることによって、 多環式ラタ トン化合物を蒸留 精製する際に冷却凝縮の際に固化せず、 ハンドリングが容易であるという、 工業 的なメリットがある。
また、 e X o—体の量を多くすることにより、 後述する (メタ) アクリル酸で エステル化を行い、 架橋ラタトン構造を有する (メタ) アタリレート化合物を製 造する際に、 副反応の進行を抑制することができ、 製品の純度及び収率を向上さ せることができる。 ぐ多環式ラタトン化合物の製造方法 >
(a) 不飽和多環式酸無水物の還元反応
多環式ラクトン化合物は下記一般式 (2) で表される不飽和多環式酸無水物の 1つのカルボ二ル基を公知の方法又はそれに準じた方法に従い還元することによ り得ることができる。 ここで、 下記一般式 (2) で表される化合物は、 対応する 無水マレイン酸のような親ジェン体とシク口ペンタジェン類のようなジェンとを D i e 1 s -A 1 d e r反応させるなど公知の方法に従って製造することができ る。
Figure imgf000009_0001
一般式 (2 ) 中、 R R2及び nは一般式 (1 ) におけるのと同義である。 上記還元反応に用いられる還元剤としては、 カルボニル基の還元に用いられる ものであれば特に限定されないが、 好ましい具体例としては、 水素化ホウ素ナト リウム、 水素化リチウムアルミニウム、 等の周期表 1 3〜1 4族の元素の水素化 物、 又は、 水素化ナトリゥムビス ( 2—メ トキシェトキシ) アルミニウム (R e d— A 1 )、等の上記周期表 1 3〜 1 4族の元素の水素化物における活性水素の一 部をアルコキシドで置換した化合物等が挙げられる。 なお、 アルコキシド系還元 剤は、 対応する金属水素化物とアルコールとを還元反応に先立って量論量混ぜ合 わせることによって調製してもよい。
還元剤は、 上記一般式 (1 ) で表される化合物に対し、 通常、 ヒドリ ド換算モ ル数の比で 1以上、 好ましくは 1 . 5以上、 より好ましくは 2以上、 更に好まし くは 2より多い量、 更に好ましくは 3以上である。 一方、 還元剤があまり多すぎ ると後処理等の問題等、 工業上不利な面があるため、 通常、 ヒ ドリ ド換算モル数 の比で 4 0以下、 好ましくは 3 0以下、 より好ましくは 2 0以下、 更に好ましく は 1 0以下の範囲で用いられる。
還元剤と酸無水物との反応は一般にそのいずれかの溶液または懸濁液に他方の 溶液または懸濁液を少量ずつ添加することによって進められる。 完全に添加した 後、 反応を完結させるために添加時の温度と同様、 あるいは異なる温度条件で所 定時間の撹拌が加えられる。 添加温度おょぴその後の撹拌温度は一般に一 5 0〜 1 0 0 °Cで行なわれるが、 水素化リチウムアルミニウムやその一部アルコキシド 置換体を用いる場合には一 2 0〜5 0 °Cで行うのが好ましく、 また水素化ホウ素 ナトリゥムやその一部アルコキシド置換体を用いる場合には 0〜8 0 °Cで行うの が好ましい。 反応時間および添加反応後の撹拌時間は反応温度などの条件によって変化する が、 一般には添加時間および撹拌時間は、 下限が通常 0 . 1時間以上、 好ましく は 0 . 2時間以上、 上限が通常 1 0 0時間以下、 好ましくは 8 0時間以下の範囲 である。 反応は十分に乾燥されたヘリゥム、 窒素、 アルゴンなどの不活性ガス雰 囲気下で行われる。
反応溶媒については、 例えば M.M.Kayser ら、 Canadian Journal of hemistry,vol.56,p .1524(1978)などに開示されている方法ではジメチルホルムァ ミド等が推奨されているが、 生成物の単離などの総合的な利便性を考慮するなら ばジェチルエーテノレ、 ジプロピルエーテル、 ジブチノレエ一テル、 1, 2—ジメ ト キシェタンなどの脂肪族鎖状エーテル類;テトラヒ ドロフラン、 ピラン、 1 , 3 ージォキソラン、 1 , 4一ジォキサンなどの環状エーテル類溶媒中で行うのが好 ましい。 その使用量は一概に規定できず任意であるが、 一般には原料濃度として 下限が通常 0 . 1重量%以上、 好ましくは 0 . 5重量%以上であり、 上限が通常 8 0重量%以下、 好ましくは 7 0重量%以下の範囲である。
( b ) 還元剤の不活性化処理
上記還元反応終了後は、 反応液を硫酸、 塩酸などの無機酸と混ぜ合わせること によって未反応の還元剤及び基質と還元剤の錯化合物中間体を分解し、 不活性化 してから、 水と混和しない有機溶媒を用いて目的生成物を抽出する工程を経るの が好ましい。
水と混和しない有機溶媒としては、 例えばへキサン、 ヘプタン、 オクタンなど の脂肪族炭化水素類;ベンゼン、 トルエン、 キシレンなどの芳香族炭化水素類; 酢酸メチル、 酢酸ェチル、 酢酸ブチルなどのエステル類;ジェチルエーテル、 ジ プロピルエーテル、 ジブチルエーテルなどのエーテル類を反応溶媒としてテトラ ヒドロフランなどの水と任意の比率で混和するものを使用した場合は抽出効率が 低下するので、 必要に応じ、 抽出に先立って反応溶媒の一部または全部を減圧蒸 留などの一般的な方法で除去するのがよい。 上記無機酸の濃度は、 特に限定されないが、 一般的に 0 . 1〜 5規定の水溶液 が使用される。 これらの酸水溶液を用いた加水分解後に得られる溶液は p H 2以 下の酸性とすることが好ましい。 この分解反応に必要とする反応温度と反応時間 は原料の種類によって異なり、 無機酸での処理時間が収率や分離困難な副生成物 の量に影響する。 一般に温度は、 下限が通常一 5 °C以上、 好ましくは 0 °C以上、 上限が通常 8 0 °C以下、 好ましくは 5 0 °C以下の範囲であり、 時間は、 下限が通 常 0 . 1時間以上、 好ましくは 0 . 2時間以上、 上限が通常 1 0 0時間以下、 好 ましくは 8 0時間以下の範囲である。
( c ) 還元剤の不活性化処理後の p H 1 2未満の塩基性水溶液による洗浄処理 本発明の製造方法においては、 上述の無機酸により還元剤を不活性化する処理 の後、 p H 1 2未満の塩基性水溶液により洗浄する工程を設けることにより、 上 記還元反応の生成物である一般式 (2 ) 及び Z又は (3 ) で表される多環式ラタ トン化合物に混入する還元剤由来の周期表 1 3〜1 4族から選ばれる元素の量を 低減させることができる。
上記塩基性水溶液の p Hは 7より大きいものであり、好ましくは 8以上である。 上限としては 1 2未満、 好ましくは 1 1 . 5以下である。 該水溶液に用いられる 塩基性物質としては、 炭酸水素ナトリゥム等のアルカリ金属重炭酸塩又は炭酸ナ トリゥム等のアル力リ金属炭酸塩が好ましい。
上記塩基性水溶液の使用量としては、 ラクトン化合物に対し、 2重量倍以上、 好ましくは 3重量倍以上、 より好ましくは 5重量倍以上、 更に好ましくは 1 0重 量倍以上用いられる。 一方で、 あまり多すぎても使用量の増加に見合う効果が得 られなくなってくるので、 上限は通常、 2 0 0重量倍以下、 好ましくは 1 0 0重 量倍以下、 より好ましくは 5 0重量倍以下である。
塩基性水溶液中の塩基性物質の濃度は、 特に限定されないが、 あまり低すぎる と、 洗浄効率が悪くなるため、 通常、 1 %〜飽和濃度までの範囲で設定される。 ここで、 飽和濃度ギリギリであると洗浄操作中に塩基性物質が析出してくる可能 性もあるので、 飽和濃度に対して 9 9 %以下、 好ましくは 9 5 %以下、 より好ま しくは 9 0 %以下の濃度の範囲で濃度を設定するのが好ましい。
また、 上記塩基性水溶液は、 一度にまとめてラク トン化合物に作用させても良 いし、複数回に分割して洗浄処理を行っても良い。このときの洗浄回数としては、 用いる全アルカリ水溶液量や後述の多環式ラタトン化合物の蒸留処理や、 ラク ト ン環の開環及び再構築操作と組み合わせるか否かにもよるが、 複数回洗浄処理を 行う形態をとるのが好ましく、 通常、 2回以上、 好ましくは 3回以上、 より好ま しくは 5回以上である。
洗浄操作は、 通常、 0 °C以上、 好ましくは 1 0 °C以上で行われる。 一方で、 あ まり温度が高すぎるとラタトン化合物の分解等が起こる可能性もあるので、通常、 5 0 °C以下、好ましくは 4 0 °C以下、より好ましくは 3 0 °C以下で行うのがよい。 洗浄時間は、 5分以上、 好ましくは 1 0分以上であり、 より好ましくは 3 0分 以上であり、 5時間以下、 好ましくは 2〜 3時間程度以下であれば十分である。 塩基性水溶液による洗浄処理は、 上述の酸処理後の有機溶媒による抽出を行う 前に行っても良いし、 有機溶媒による抽出をしてから行っても良いが、 抽出を行 つてから行う方が好ましい。
また、 塩基性物質の残留を防ぐためには、 塩基性水溶液による洗浄処理に続い て水による洗浄処理を行うことが好ましい。
( d ) ラタ トン化合物の蒸留
本発明の多環式ラク トン化合物は、 蒸留処理によっても、 周期表 1 3〜1 4族 から選ばれる元素を低減させることができる。蒸留方法は公知の蒸留方法でよく、 限定されない。 ラク トン化合物の物性に応じて減圧度、 温度を選択して実施され る。
特に、 ェキソ一 3—ォキソ一 4—ォキサトリシクロ [ 5 . 2 . 1 . 02'6]デカー 8—ェンは、 エンド体に比べて融点が室温に近く、 工業的に容易な蒸留処理によ つて上記元素を容易に低減できるため好ましい。 ( e ) ラクトン環の開環
本発明の多環式ラタトン化合物は、 上記方法により得られる多環式ラタトン化 合物含有液を水およぴ水と混和しない有機溶媒中で H 1 2以上の塩基性水溶液 で接触処理することにより、 多環式ラタトン化合物のラク トン環を一度開環させ る工程、 この開環させた化合物を水層に抽出する工程、 水層と有機層を分離して 有機層を系外へ除去する工程、 開館させた化合物を、 再度、 ラクトン環に閉環さ せる工程、 及び有機溶媒を添加しラク トン環に閉館させた化合物を該有機溶媒中 に抽出する工程を設けることにより、 上記一般式 ( 2 ) 及びノ又は ( 3 ) で表さ れる多環式ラクトン化合物に混入する還元剤由来の周期表 1 3〜1 4族から選ば れる元素の量を低減させることができる。 本発明における多環式ラタトン化合物 には、 沸点が高く、 更に融点が高い化合物が多いため、 工業的な蒸留精製が容易 に実施できない場合があり、 本手法は特に有効である。
上記塩基性水溶液に用いる塩基性化合物の種類としては、 例えばリチウム、 ナ トリゥム、力リゥムなどのアルカリ金属の水酸化物、炭酸塩、炭酸水素塩;又は、 カルシウム、 マグネシウムなどのアルカリ土類金属の水酸化物、 炭酸塩、 重炭酸 塩などが挙げられるが、 この中でも水酸化ナトリゥム又は水酸化カリゥムが特に 好ましい。
ここで用いられる塩基性水溶液の; Hは 1 2以上であることが好ましく、 1 3 以上であることがより好ましい。
使用する塩基性化合物の量は処理するラタトン環のモル数に対して 0 . 1当量 以上、 好ましくは 0 . 5当量以上、 より好ましくは 1当量以上であり、 更に好ま しくは 1 . 0 5モル以上である。 一方で、 塩基性化合物が多すぎるとコス ト及び 後処理等の手間の点で難点があるため、 1 0 0当量以下、 好ましくは 2 0当量以 下、 より好ましくは 1 0当量以下で用いられる。
処理温度は、 下限が通常一 5 °C以上、 好ましくは 0 °C以上、 より好ましくは 1 0 °C以上、 上限が通常 2 0 0 °C以下、 好ましくは 1 5 0 °C以下、 より好ましくは 1 0 0 °C以下の範囲であるが、 nの数が増えるに伴い好ましい処理温度が高くな る傾向がある。 処理時間は特に制限はなく、 最適な処理時間はアルカリの量と処 理温度にもよるが、下限が通常 0 . 0 1時間以上、好ましくは 0 . 0 2時間以上、 より好ましくは 0 . 1時間以上、 下限が通常 5 0時間以下、 好ましくは 2 0時間 以下、 より好ましくは 1 0時間以下の範囲である。
上記処理後、 水層と有機層とを分離し、 得られる水層を必要に応じて水で希釈 した上で上記 (b ) に記載される水と混和しない有機溶媒を用いて洗浄し、 上記 の開環させた化合物を水層に、 不純物を有機層に抽出し、 該有機層を系外にへ除 去するのが好ましい。
( f ) ラクトン環の再形成
上記で得られるラクトン環の開環反応後の水溶液を酸性化することによって、 開環したラクトン環を閉環させて再度ラタ トン環を形成させる。 使用される酸の 種類は、 プロトン酸であれば特に限定されないが、 例えば塩酸、 硫酸などの無機 酸が一般的である。 その濃度は任意であるが、 中和に伴う激しい発熱を避けるた めに、 この工程の通常の操作は、 開環反応後の塩基性水溶液または酸の水溶液の いずれかを他方に少量ずつ添加することによって実施することが好ましい。
酸の使用量は反応系の p H見合いで決まり、 添加終了後の反応系の p Hが 7未 満とすることが好ましく、 p Hを 2未満とすることがより好ましい。
中和反応及び環化反応を完結するために、 必要に応じて添加後、 さらに 0 . 1 〜5 0時間の範囲で撹拌を保持してもよい。 添加温度および添加後の撹拌時間は 特に高められた温度で行う必要はなく任意である。
反応が完結すると有機物が分離するので、 これを分液し、 さらに残った水層を 適当な有機溶媒で抽出し、 先に回収された有機物と合わせ、 水層から分離する。 分離後は、 純水での洗浄を行うのが好ましく、 通常、 油層に対して 0 . 1〜 1 0容量比の純水が使用され、 洗浄回数は 2回以上とするのが好ましい。
上記( c )還元剤の不活性化処理後の塩基性水溶液による洗浄処理、及び、 ( d ) ラクトン化合物の蒸留、及び、 (e ) ( f )ラクトン環の開環と再形成の各処理は、 適宜組み合わせる事で、 周期律表 1 3〜1 4族から選ばれる元素の量を低減させ ることができる。 以上の操作によって製造された多環式ラタトン化合物は、 そのまま製品とした り、 (メタ)ァクリル酸の付加反応原料として使用できる純度を有するが、必要に 応じて晶析、 クロマト分離などの常法を適用してさらに精製することもできる。
(g) e x o—体が全体の 70モル%以上である多環式ラタ トン化合物の製造 方法
(g- 1) 多環式ラタ トン化合物の原料
e X o一体と e n d o—体との合計量中の e o—体の量力 S 70モノレ%^ ^上で、 ある多環式ラタトン化合物を製造するためには、 原料である不飽和多環式酸無水 物の立体構造を制御する必要がある。 不飽和多環式酸無水物は、 R1と R2の立体 配置が共に e n d o—体である不飽和多環式酸無水物 (以下、 e X o —酸無水物 と称する。 :下記式 (7)) と R1と R2の立体配置が共に e X ο—体である不飽和 多環式酸無水物 (以下、 e n d o —酸無水物と称する。 :下記式 (8)) とが存在 するが、 通常市販されているものは、 e n d o —体である。 従って、 これを上記 の方法で還元し多環式ラク トン化合物を製造すると、 e n d o—体が主成分とな る。 従って、 e X o—ラクトン化合物を得るためには、 原料として用いる不飽和 多環式酸無水物の e X o—体の量を増加させる必要がある。
Figure imgf000015_0001
一般式 (7) 及び (8) 中、 R R2及び nは一般式 (1) におけるのと同義 である。
e X o —酸無水物と e n d o —酸無水物との混合物を得るためには以下の方法 が例示される。 (g— 1— 1) e n d o—酸無水物の異性化反応
e n d o一酸無水物を加熱処理する事で、 異性化し、 e X o—酸無水物が生成 し、 e n d o—酸無水物と e X o—酸無水物の混合物が生成する。 加熱の程度と しては、 下限が通常 140°C以上、 好ましくは 1 60°C以上、 更に好ましくは 1 70°C以上、 上限が通常 300°C以下、 好ましくは 270°C以下、 更に好ましく は 250°C以下である。
異性化反応の時間は 1分以上が好ましく、好ましくは 5分から 10時間である。 反応は適当な溶媒中で行うことが好ましい。
使用できる溶媒の種類としては、 原料、 中間体および生成物に対して不活性で あれば制限はないが、 例えばへキサン、 ヘプタン、 オクタンなどの脂肪族炭化水 素類;ベンゼン、 トルエン、 キシレンなどの芳香族炭化水素類;酢酸ェチル、 酢 酸プチルなどのエステ/レ類;プチ口ラタ トン、バレロラタ トンなどのラタ トン類; ジブチノレエーテノレ、 ジエチレングリコーゾレジメチノレエーテノレ;テトラヒ ドロフラ ンなどの鎖状または環状エーテル類などが例示できる。
(g - 1 - 2) 酸無水物とジェンとの D i e 1 s -A 1 d e r反応
酸無水物とジェンの共存化に加熱することにより、 e X o—酸無水物と e n d o一酸無水物との混合物が生成する。
酸無水物としては、 無水マレイン酸及びエンド一 3, 5—ジォキソー 4ーォキ サトリシクロ [5. 2. 1. 02'6]デカー 8—ェンが挙げられる。 ジェンとして は、 ジシクロペンタジェン、 シクロペンタジェン等が挙げられる。
n = 0のe x o—酸無水物と e n d o—酸無水物との混合物を得る場合には、 酸無水物として無水マレイン酸、 ジェンとしてジシクロペンタジェンを使用する 事で、 ェキソ一 3, 5—ジォキソー 4—ォキサトリシクロ [5. 2. 1. 02'6]デ カー 8—ェンと、ェンドー 3, 5—ジォキソー 4—ォキサトリシクロ [5. 2. 1. 02'6]デカー 8—ェン混合物となる。
この場合、酸無水物の仕込み量は、シク口ペンタジェン骨格に対して、通常 0. 1モル比以上 10モル比以下から選択できるが、 好ましくは 0. 5モル比以上 5 モル比以下、 更に好ましくは 0. 7モル比以上 2モル比以下、 更に好ましくは、 0. 8モル比以上 1. 5モル比以下である。
n= 1の e X o—酸無水物と e n d o—酸無水物との混合物を得る際、 酸無水 物として無水マレイン酸、 ジェンとしてジシク口ペンタジェンを使用する場合に は、 酸無水物の仕込み量は、 シクロペンタジェン骨格に対して、 通常、 0. 05 モル比以上 1モル比以下から選択できるが、 好ましくは 0. 1モル比以上 0. 8 モル比以下、 更に好ましくは 0. 2モル比以上 0. 75モル比以下、 更に好まし くは、 0. 3モル比以上 0. 7モル比以下である。
n = lの e X o—酸無水物と e n d o一酸無水物との混合物を得る際、 酸無水 物として、 ェンドー 3, 5—ジォキソー 4ーォキサトリシクロ [5. 2. 1. 02·6] デカー 8—ェン、 ジェンとしてジシク口ペンタジェンを使用する場合には、 酸無 水物の仕込み量は、 シクロペンタジェン骨格に対して、 通常 0. 1モル比以上 1 0モル比以下から選択できるが、 好ましくは 0. 5モル比以上 5モル比以下、 更 に好ましくは 0. 7モル比以上 2モル ¾以下、 更に好ましくは、 0. 8モル比以 上 1. 5モル比以下である。
n = 1の e X o—酸無水物と e n d o—酸無水物との混合物を得る際、 酸無水 物として、 本発明で得られるェキソ一 3, 5—ジォキソー 4ーォキサトリシクロ [5. 2. 1. 02'6]デカー 8—ェンを用いる事もできるが、 市販されているェン ドー 3, 5—ジォキソー 4ーォキサトリシクロ [5. 2. 1. 02'6]デカー 8—ェ ンを用いることが好ましい。
反応温度は、 下限が通常 140 °C以上、 好ましくは 160 °C以上、 更に好まし くは 1 70°C以上、 上限が通常 300°C以下、 好ましくは 270°C以下、 更に好 ましくは 250°C以下である。
反応時間 1分以上が好ましく、 好ましくは 5分から 1 0時間である。 反応時に 先に上記 (f 一 1— 1) に例示したような溶媒を共存させてもかまわない。
また、酸無水物とシクロペンタジェンとの反応を行う際に、別の装置を用いて、 ジシク口ペンタジェンのクラッキング反応 (逆 D i e 1 s一 A 1 d e r反応) に よってシク口ペンタジェンを生成せしめ、 上記条件にて酸無水物と接触させる事 も可能である。
反応温度は、 下限が通常 1 4 0 °C以上、 上限が通常 3 0 0 °C以下、 好ましくは 1 6 0 °C以上、 好ましくは 2 7 0 °C以下、 更に好ましくは 1 7 0 °C以上、 更に好 ましくは 2 5 0 °C以下である。 反応時間 1分以上が好ましく、 好ましくは 5分か ら 1 0時間である。 反応時に上記 ( f 一 1一 1 ) に例示したような溶媒を共存さ せてもよい。
( f 一 2 ) e X o一酸無水物の結晶を優先的に析出させる方法
e X o—酸無水物と e n d o—酸無水物の混合物から、 溶媒を用いて処理する ことにより、 e X o—酸無水物を優先的に結晶化させることができる。
ここで用いられる溶媒は、 一 2 0 °Cから 1 0 0 °Cのいずれかの温度において、 e X o一酸無水物の溶解度が、 e n d o—酸無水物の溶解度よりも小さいもので あ。。
又、 好ましくは、 2 5 °Cにおいて、 溶媒 1 0 0重量部中に溶解する e X o—酸 無水物の量が、 3 0重量部以下である溶媒を使用することができる。 更に好まし くは、 2 0重量部以下の溶媒であり、 特に好ましくは、 1 0重量部以下の溶媒で あ o。
この要件を満たす溶媒の例としては、 ベンゼン、 トルエン、 キシレンなどの芳 香族炭化水素類;へキサン、 ヘプタン、 オクタンなどの脂肪族炭化水素類;ジブ チルエーテル、 ジエチレングリコールジメチルエーテル; テ トラヒ ドロフランな どの鎖状または環状エーテル類;酢酸ェチル、 酢酸プチルなどのエステル類;ブ チロラク トン、 バレロラク トンなどのラク トン類が例示される。 とりわけ芳香族 炭化水素類、 脂肪族炭化水素類が好ましく、 更に好ましくは、 ベンゼン、 トルェ ン、 キシレンなどの単環芳香族炭化水素類である。
反応液を調製する際に溶媒を存在させる場合には、 極端に低沸点の溶媒を用い ると、 蒸気圧が高くなり、 耐圧性能の高い装置が必要となる為、 溶媒の沸点も勘 案して選定する事が好ましい。
この処理により、 純度の高い e X o—酸無水物を得る為には、 溶媒に応じた温 度設定が重要である。 結晶と母液を濾別する際の温度が高すぎると、 純度は高い が、 収量が減り、 逆に冷却しすぎると収量は高いが純度が低下する。 結晶化温度 は、 溶媒の種類、 量によって最適な条件を選択することになる。 温度の下限は通 常一 2 0 °C以上、 好ましくは 0 °C以上、 更に好ましくは 1 0 °C以上であり、 上限 は通常 1 0 0 °C以下、好ましくは 5 0 °C以下、更に好ましくは 4 0 °C以下である。 また、 溶媒を用いる場合には、 溶媒量が極端に多いと収量が減る。 好ましい範 囲は、 e n d o—酸無水物と e X o—酸無水物の合計重量に対して、 下限が通常 0 . 1重量倍以上、好ましくは、 0 . 5重量倍以上、上限が通常 2 0重量倍以下、 好ましくは 1 0重量倍以下である。 必要に応じて、 再結晶を行えば更に純度を向 上させることができる。 結晶化処理や再結晶化処理に際しては、 種晶を添加する ことも好適に行われる。
( ί 一 3 ) 結晶化後の母液の再使用
酸無水物の結晶を濾別した後の溶液には、 除去された e n d ο—酸無水物や、 溶解している e X o—酸無水物が存在している。 必要に応じて、 この溶液を再度 異性化反応等の処理に処することにより e x o—酸無水物の存在量を上げること ができ、 また、 再度の結晶化処理や必要に応じて再結晶処理を行うことにより、 e x o—酸無水物を得ることができる。
このようにして得られた e X o—酸無水物を原料として用いて上述した方法で 還元することにより、 対応する e X o—ラクトン化合物を得ることができる。
<多環式ラタ トン構造を有する (メタ) アタリレート化合物の製造方法 > 上記方法で得られる多環式ラタトン化合物は、 (メタ)アクリル酸と酸触媒存在 下で付加反応を行うといった公知の方法又はそれらに準じた方法に従い、 下記一 般式 ( 3 ) 及び/又は ( 4 ) で表される化合物へと誘導化することができる。
Figure imgf000020_0001
一般式 (3 ) 及び (4 ) 中、 R R2及び nは一般式 (1 ) におけるのと同義 である。
Rは、 水素原子, メチル基, またはトリフルォロメチル基が挙げられ、 水素原 子, メチル基が好ましい。
ここで、 好適に用いられる酸触媒については、 特に限定はされないが、 その具 体例としては、 例えば 1 ) 塩酸、 硫酸、 リン酸等の無機酸類;ベンゼンスルホン 酸、 トルエンスノレホン酸、 クレゾ一ノレスルホン酸、 メタンスルホン酸等の有機ス ルホン酸;スルホン酸型のイオン交換樹脂等のプレンステツト酸触媒、 2 ) 三フ ッ化ホウ素及びその錯体(以下、三フッ化ホゥ素(錯体)と略記することがある)、 無水ハロゲン化亜鉛、 無水ハロゲン化ァノレミニゥム、 無水ハロゲン化鉄、 ハロゲ ン化錫、 ィッテルビウムトリフラート等のトリフルォロメタンスルホン酸の金属 塩、 等の一般的に用いられるルイス酸類;チタン、 ジルコニウム、 ハフニウム等 の第 4族金属無水ハロゲン化物又はアルコキシド等が挙げられ、 この中、 上記酸 又はその水溶液の p K aが 6以下のものが好ましい。 これらの酸触媒は、 単一で 用いても、 また、 これらを組み合わせて用いてもよい。 無機酸類のなかでは、 硫 酸が好ましい。 ルイス酸の中では、 三フッ化ホウ素が好ましい。
また、 これらの酸触媒の使用量については、 触媒の種類により異なるが、 一般 的には原料の多環式ラク トン化合物に対して、 下限が通常 0 . 0 1モル%以上、 好ましくは 0 . 1モル0/。以上、 上限が通常 1 0 0モル%以下、 好ましくは 5 0モ ル%以下である。
反応温度は、 触媒の種類により異なるが、 下限が通常一 5 0 °C以上、 好ましく は 0 °C以上であり、 上限が通常 2 0 0 °C以下、 好ましくは 1 5 0 °C以下である。
(メタ) アクリル酸の使用量は、 多環式ラク トン化合物の歩留まりを考慮する 場合には当量以上のに対して下限が通常 0 . 1モル倍以上、 好ましくは 1モル倍 以上、 上限が通常 2 0モル倍以下、 好ましくは 1 0モル倍以下である。
また、 反応時、 必要に応じて溶媒を共存させてもよい。
反応後は、 通常の方法で (メタ) アタリレートエステルを単離することができ る。例えば、酸触媒を中和後、抽出、蒸留等の操作で単離する方法が例示される。 く多環式ラタトン構造を有する (メタ) アタリレート化合物 >
上記製造方法で得られるラタトン環含有多環式(メタ)アタリル酸エステルは、 上述した一般式 (2 ) 及び Z又は (3 ) で表される多環式ラタトン化合物を製造 する時に用いた還元剤由来の周期表 1 3〜 1 4族の元素の量が 5 0 0 p p m以下、 好ましくは 2 0 0 p p m以下、 より好ましくは 1 0 0 p p m以下、 更に好ましく は 5 0 p p m以下、 更に好ましくは 2 0 p p m以下であり、 特に好ましくは、 5 p p m以下であり、 この量が少ないほど安定性に優れたものである。
また、 原料である多環式ラタトン化合物として、 上述の方法で得た e X o—ラ クトン化合物の含有量の多いものを使用すれば、 ラタトン部の立体構造が e X o 一体である化合物 (以下、 e X o - (メタ) アタリレート化合物、 と称する。) と e n d。一体である化合物 (以下、 e n d o — (メタ) アタリレート化合物、 と 称する) との合計量中、 e x o— (メタ) ァクリレート化合物が 7 0モル%以上 である、 多環式ラタ トン構造を有する (メタ) アタリレート化合物を製造するこ とができる。 本願においては、 両者の合計量中、 e x o — (メタ) アタリレート 化合物が両者の合計中 7 0モル%以上であるのがよい。 e X o —ラタトン化合物 の量は、 好ましくは 9 0モル0 /0以上、 より好ましくは 9 5モル%以上、 最も好ま しくは 9 9モル%以上である。 ぐ実施例 >
以下に実施例により本発明を更に具体的に説明するが、 本発明はその要旨を超 えない限り、 以下の実施例によって限定されるものではない。 実施例 1
く多環式ラタトン化合物の製造 >
反応器にテトラヒドロフラン (THF) 1083 g、 N a BH4 84 gを仕込 み、 攪拌を開始した。
一方、 市販のエンド一 3, 5—ジォキソ一 4ーォキサトリシクロ [5. 2 · 1 · 02'6]デカー 8—ェン (e n d o— 5—ノノレボノレネンー 2, 3—ジカノレボン酸無 水物) 328 gを、 メタノール 64 g、 THF 1313 gをあらかじめ混合さ せた溶液を、 2時間かけて上記反応器に滴下した。その間、反応器の内温を 25°C に制御した。 滴下終了後、 攪拌下、 25 °Cで 2時間保持した。
続いて、 攪拌下、 2規定の硫酸水溶液 1 200 gを 2時間かけて滴下した。 反 応器の内温は 25 °Cに制御した。 さらに水 657 gを加えた。 その後、 攪拌下、 25 °Cで 3時間保持した。
反応器にトルエン 164 gを加え、 攪拌後に静置した。 反応器の内容物は、 2 層に層分離した。 水層を除去し、 油層のみを取り出した。 油層中のラタトン濃度 は 6. 4%であった。
取り出した油層のうち、 543 gをフラスコに仕込み、 エバポレーターにて、 溶媒留去を行った。 温度と減圧度を徐々に強めていき、 最終的には 50°C、 30 t o r rの条件で留去される成分を留去した。
<塩基性水溶液による洗浄 >
上記で得られた濃縮物全量、 トルエン 1 51 g、 及ぴ塩基性水溶液として 5% Na HC〇3溶液 65. 7 gを反応器に仕込んだ。室温で攪拌した後に静置してか ら、 水層を除去し、 油層を得るという操作を合計 6回行い、 エンド一 3—ォキソ 一 4—ォキサトリシクロ [5. 2. 1. 02'6]デカー 8—ェンが 21 g含有されてい る油層を得た。 <ラクトン環の開環 >
かかる油層を反応器に仕込み、 攪拌下、 室温で 10%Na OH水溶液 72. 6 gを 30分掛けて滴下し、 続いて室温で 30分保持した。 その後、 静置し、 油層 を除去し、 水層を取り出した。 かかる水層全量に対し、 65. 7 gのトルエンを 加え、 攪拌、 静置の後、 水層を取りだし、 油層を除去した。 水層には、 ラタ トン 化合物が開環した形態の化合物が存在している。
くラタトン環の再形成 >
反応器に上記水層及び 65. 7 gのトルエンを加え、 攪拌下、 50°Cに昇温し た。 2規定の硫酸 109 gを 30分かけて滴下し、 30分保持した。 その後静置 し、水層を除去し、油層を得た。 続いて、 65. 7 g水を加え、攪拌、静置の後、 水層を除去し、 油層を得た。 同様の水洗浄を合計 3回繰り返した。 この様にして 得た油層を濃縮して溶媒を除去し、 精製ラクトンを得た (18. 9 g)0
この精製ラタトンに含有されるホウ素濃度は 9 p pmであった。
くエステル化反応 >
トルエン 6. 6 g及ぴメタクリル酸 6. 9 gに 95%硫酸を 0. 83 g滴下し た後、攪拌下、 1 10°Cに昇温した。ここに上記精製ラタトン 3 gとトルエン 4. 2 gの混合液を、 30分で滴下した。 滴下終了後、 攪拌下、 1 10°Cで 6時間保 持した後、反応器を冷却した。このとき反応器内には重合物が認められなかった。 引き続き、 水 20 g中に上記反応液を注下し、 さらにトルエンを 10. 8 gを 加え、 攪拌後に静置してから水層を除去し油層を得た。 かかる油層に 5%NaH CO 3水溶液 18 gを加え、 攪拌■静置後、 水層を除去するという工程を 3回行 つた後に得られる油層にさらに水 18 gを加え、 攪拌■静置後に水層を除去する という工程を 3回行ってから、 溶媒を留去した。 このとき温度と減圧度を徐々に 強めていき、 最終的には 50°C、 30 t o r rの条件で留去される成分を留去し た。 この間、 濃縮物に重合は発生せず、 メタクリ レートエステルを主成分とする 濃縮物が 3. 5 g得られた。 このエステル化物中のホウ素濃度は、 0. 14 p p mであつた。 比較例 1
実施例 1と同様に多環式ラタトン化合物を製造した後に、 塩基性水溶液による 洗浄を 1回だけ行った。 このときに得られた油層を粗ラタトン溶液一 1とした。 かかる粗ラタトン一 1中のホウ素濃度は、 1 3 7 0 p P mであった。
これを用いて実施例 1と同様にエステル化反応を行ったところ、 反応器の内容 物が塊状になり、 溶液状態ではなく、 重合が発生したと認められた。 実施例 2
実施例 1と同様に多環式ラタトン化合物を製造した後に、 塩基性水溶液による 洗浄を 3回だけ行った。 このときに得られた油層を粗ラクトン溶液 _ 2とした。 かかる粗ラタトン一 2中のホウ素濃度は、 1 7 0 p p mであった。
これを用いて実施例 1と同様にエステル化反応を行ったところ、 目的とするメ タクリ レートエステルを主成分とする濃縮物が得られた。 実施例 3
実施例 2と同様の方法により粗ラクトン溶液— 2を得た後、 これについて実施 例 1と同様の方法で開環処理及ぴラクトン構造の再構築を行った。 このときの精 製ラタトンに含有されるホウ素濃度は 1 5 p p mであった。 これを用いて実施例 1に記載したのと同様方法でエステル化反応を行った。 反応器を冷却後、 反応器 には重合物は認められなかった。 参考例 1
上記実施例 1記載の精製ラタ トン、 及び実施例 2記載の粗ラタトン溶液 _ 2を 用レ、、同様にメタクリレートエステルを得るエステル化反応を行った。このとき、 1 1 0 °Cで 6時間保持してから反応器を冷却した後、 さらに室温で 1 4時間の保 持を行った。 実施例 1記載の精製ラタトンを用いた場合には、 反応器の内容物に 変化は認められなかつたが、 実施例 2記載の粗ラタ トン溶液一 2を用いた場合に は、 反応器の内容物の粘度が若干上昇しており、 一部の重合が進行したものと考 えられた。 従って、 ホウ素濃度が 9 p pmまで低減された実施例 1記載の精製ラ クトンを用いた方が、 反応液の保存安定性が高い事が判った。 実施例 4
<酸無水物の異性化反応 >
反応器に、 市販のエンド一 3, 5—ジォキソー 4ーォキサトリシクロ [5. 2. 1. 02'6]デカ _ 8—ェン ( e n d o _ 5—ノノレポノレネン一 2, 3ージカノレボン 酸無水物) 150 g、 トルエン 1 50 gを仕込んだ。 系内の攪拌下、 190°Cに 昇温し、 2時間保持した。 その後、 反応器を 25 °Cまで冷却した所、 反応液には 結晶が析出していた。 結晶を濾別した後、 結晶を乾燥させた所、 重量は 61 gで あった。 かかる結晶を THFに溶解し、 ガスクロマトグラフで分析した結果、 ェ キソー3, 5—ジォキソー 4ーォキサトリシクロ [5. 2. 1. 02'6]デカ一 8— ェン (e X o— 5—ノルポルネンー 2, 3ージカルボン酸無水物) が 82. 3 w t %の純度で存在していることがわかった。
<ェキソ一酸無水物の析出 >
かかる結晶 51 g、 トルエン 51 gをガラス容器に仕込んだ。 95°Cに昇温し、 結晶を完全に溶解させた。 その後、 溶液を 25°Cまで冷却させた。 反応器内には 結晶が析出しており、 結晶を濾別した後、 結晶を乾燥させた所、 重量は 39 gで あった。 かかる結晶を THFに溶解し、 ガスクロマトグラフで分析した結果、 ェ キソ一 3, 5—ジォキソ一 4ーォキサトリシクロ [5. 2. 1. 02' 6]デカー 8— ェンが 94. 2 w t %の純度で存在していることがわかった。 実施例 5
ぐ異性化反応 >
反応器に、 市販のエンド一 3, 5—ジォキソー 4一ォキサトリシクロ [5. 2. 1. 02'6]デカ _8—ェン 100 g、 トルエン 50 gを仕込んだ。 攪拌下、 反応器 を加熱し、 トルエンを留去させた。 そのまま昇温を続け、 190°C、 1時間保持 させた。 反応器を 100°Cに冷却後、トルエンを 300 g仕込んだ。反応器内温を 50°C とし、 少量の種晶を添加した。 その後、 反応器を 25 °Cまで冷却した。 反応器内 には結晶が析出していた。 結晶を濾別した後、 結晶を乾燥させた所、 重量は 28 gであつた。かかる結晶を T H Fに溶解し、ガスクロマトグラフで分析した結果、 ェキソ一 3, 5一ジォキソー 4一ォキサトリシクロ [ 5. 2. 1. 02'6]デカ一 8 —ェンが 87. 9 w t %の純度で存在していることがわかった。
<ェキソ一酸無水物の析出 >
上記 23 g、 トルエン 34. 5 gをガラス容器に仕込んだ。 100°Cに昇温し、 結晶を完全に溶解させた。 95 °Cの温度で少量の種晶を添加した。 その後、 溶液 を 25 °Cまで冷却させた。反応器内には結晶が析出しており、結晶を濾別した後、 結晶を乾燥させた所、重量は 18. 4 gであった。かかる結晶を THFに溶解し、 ガスクロマトグラフで分析した結果ェキソ一 3, 5—ジォキソー 4—ォキサトリ シクロ [5. 2. 1. 02'6]デカー 8 _ ンが 97. 5 w t %の純度で存在してい ることがわかった。
<多環式ラタトン化合物の製造 >
反応器に THFを 33 g、Na BH4を 2. 3 g仕込み、攪拌を開始した。一方、 上記結晶 10 g、メタノール 2 g、THF 60 gをあらかじめ混合させた溶液を、 1時間かけて上記反応器に滴下した。その間、反応器の内温を 25 °Cに制御した。 滴下終了後、 攪拌下、 25 °Cで 2時間保持した。
続いて、 攪拌下、 2規定の硫酸水溶液 36. 5 gを 1時間かけて滴下した。 反 応器の内温は 25 °Cに制御した。 さらに水 20 gを加えた。
続いて、反応器にトルエン 5 gを加え、攪拌後に静置した。反応器の内容物は、 2層に層分離した。水層を除去し、油層のみを取り出した。エバポレーターにて、 溶媒留去を行った。
溶媒留去後の残査にトルエン 45 gと、 5 %重曹水 20 gを加え、攪拌した後、 静置し、水層を除去した。更に 5%重曹水 20 gを加え、同様に水層を除去した。 かかる重曹水による洗浄を 6回繰り返した。 得たトルエン層をエバポレーターに て、 溶媒留去を行った所、 5. 6 gの液状化合物が得られた。 ガスクロマトダラ フで分析した結果、 ェキソ一 3—ォキソ一 4ーォキサトリシクロ [5. 2. 1. 0 2'6]デカー 8—ェンノエンドー 3 _ォキソ一 4ーォキサトリシクロ [5. 2. 1. 02'6]デカー 8—ェン = 97. 9/2. 1の割合でのラクトン化合物の混合物を得 た。
上記ラタトン化合物をフラスコに仕込んだ。 15 mm Hgの減圧下、 単蒸留装 置を用いて蒸留を行った。 フラスコ内温が 148 °C付近でラタ トン化合物が留去 された。 25°Cに冷却された留出管において、 ラタトン化合物は固着する事なく 流動し、 蒸留されたラクトン化合物を得た。 実施例 6
実施例 5記載の方法で、 同様のェキソ一酸無水物を得て、 更に同様の還元反応 を行った。 5%重曹水による洗浄を 1回、 水による洗浄を 1回行った。 得たトル ェン層をエバポレーターにて、 溶媒留去を行った後に得た液状化合物中に含まれ るホウ素濃度を測定した所、 94 O p であった。 かかる、 液状化合物中を実 施例 5記載の方法で蒸留精製し、ェキソ体を主成分とするラタトン化合物を得た。 ラタトン化合物中のホウ素濃度は 3. 5 p pmであった。 この様にして得たラク トン化合物を用い、 実施例 1記載のくラタ トンの開環 >と、 <ラクトン環の再形 成 >を行った。 最終的に得られたラタトン化合物中のホウ素濃度は検出限界未満 (0. l p pm未満) であった。 比較例 2 (エンド一 3, 5—ジォキソー 4—ォキサトリシクロ [5. 2. 1. 0 2'6]デカ一 8—ェンを用いた多環式ラクトン化合物の製造)
市販のエンド一 3, 5—ジォキソ _4—ォキサトリシクロ [5. 2. 1. 02'6] デカー 8—ェンを用い、 実施例 2記載の方法で還元反応を行った。 重曹水洗浄の 後のトルエン層を濃縮した後、 白色の結晶が得られた。 得られた白色結晶をガス クロマトグラフで分析した結果、 99. 3 %の純度のエンド _ 3—ォキソ _ 4一 才キサトリシクロ [ 5. 2. 1. 02'6]デカ― 8—ェンであった。 実施例 7 (ラタ トン化合物のメタタリレート化反応)
ェキソ一 3—ォキソ一 4ーォキサトリシクロ [5. 2. 1. 02'6]デカー 8—ェ ンを 4当量のメタクリル酸に溶解し、 ここに 9 5%硫酸をラタトンに対するモル 比で 0. 2加え、 8 5°Cで 1時間撹拌した。 内容物を常法によってガスクロマト グラフ分析したところ、 原料の転化率は 5 0 %であり、 ェキソ _ 3—ォキソ一 4 一ォキサトリシクロ [5. 2. 1. 02'6]デカン一 8—ィル メタクリレートとェ キソ _ 3—ォキソ一 4一ォキサトリシクロ [ 5. 2. 1. 02'6]デカン一 9ーィル メタタリレートが生成していることが認められた。
一方、 エンド一 3—ォキソ一 4ーォキサトリシクロ [5. 2. 1. 02'6]デカー 8—ェンを 4当量のメタクリル酸に溶解し、 ここに 9 5%硫酸をラク トンに対す るモル比で 0. 2加え、 8 5°Cで 4時間撹拌した。 内容物を常法によってガスク 口マトグラフ分析したところ、 原料の転化率は 5 %以下であった。
以上のように e x o—ラタトンのメタクリル化反応は、 e n d o—ラタトンの それよりも十分に速く進行することが明らかとなった。
従って、 e X o—酸無水物を還元して得られる e X o—ラク トンを原料として 用いることにより、 脂肪族多環構造を有するラタ トン化合物の誘導体を効率よく 製造することができる。 本発明を特定の態様を用いて詳細に説明したが、 本発明の意図と範囲を離れる ことなく様々な変更および変形が可能であることは、 当業者にとって明らかであ る。
なお、 本出願は、 2 0 0 3年 4月 2 8日付けで出願された日本特許出願 (特願 200 3 - 1 24 2 9 2)、 20 0 3年 5月 1 5日付けで出願された日本特許出願 (特願 200 3 - 1 3 7 3 7 1) に基づいており、 その全体が引用により援用さ れる。
<産業上の利用可能性 >
本発明の多環式ラタ トン化合物及び多環式ラク トン構造を有する (メタ) ァク リレート化合物によれば、 還元剤に起因する不純物を含有せず、 その結果、 安定 した工業生産が可能となる。
また、本発明の多環式ラタトン化合物及び多環式ラタトン構造を有する (メタ) ァクリレート化合物の製造方法によれば、 簡便な操作で、 化合物中の還元剤由来 の不純物を低減させることができる。

Claims

請 求 の 範 囲
1. 周期表 1 3〜14族から選ばれる元素の含有率が 5 O O pm以下で ある下記一般式 (1)
Figure imgf000030_0001
(一般式 (1) 中、 R1及び R2は、 それぞれ独立して、 水素原子又は炭素数 1以 上 1 2以下のアルキル基を示し、 nは 0又は 1を示す。)で表される多環式ラタト ン化合物。
2. 周期表 1 3~14族から選ばれる元素がホウ素原子である、 請求の範 囲第 1項に記載の多環式ラタトン化合物。
3. ラタ トン環の立体構造が e X ο—体である請求の範囲第 1項または第 2項に記載の多環式ラタトン化合物。
4. 下記一般式 (1)
Figure imgf000030_0002
(2)
(一般式 (2) 中、 R R2及び nは一般式 (1) におけるのと前記と同義であ る。)で表される不飽和多環式酸無水物を、周期表 1 3〜14族から選ばれる元素 を含有する還元剤を用いて還元し、 且つ系内に混入する該還元剤由来の周期表 1 3〜 1 4族から選ばれる元素の濃度が 5 0 0 p p m以下とする、 請求の範囲第 1 項〜第 3項のいずれかに記載の多環式ラク トン化合物の製造方法。
5 . 不飽和多環式酸無水物の還元反応終了後、 無機酸を添加することによ り還元剤を不活性化した後、 その処理液を P H 1 2未満の塩基性水溶液で洗浄す る工程を経る、 請求の範囲第 4項に記載の多環式ラタトン化合物の製造方法。
6 . 無機酸が、 硫酸または塩酸である、 請求の範囲第 5項に記載の多環式 ラク トン化合物の製造方法。
7 . p H 1 2未満の塩基性水溶液が、 アル力リ金属重炭酸塩又はアル力リ 金属炭酸塩を含有するものである、 請求の範囲第 5項または第 6項に記載の多環 式ラタトン化合物の製造方法。
8 . 不飽和多環式酸無水物の還元反応終了後、 一般式 (1 ) で表される多 環式ラク トン化合物を蒸留処理する工程を経る、 請求の範囲第 4項〜第 7項のい ずれかに記載の多環式ラタトン化合物の製造方法。
9 . 不飽和多環式酸無水物の還元反応終了後、 水および水と混和しない有 機溶媒中で一般式 (1 ) で表される多環式ラタトン化合物のラク トン環を開環さ せる工程、 この開環させた化合物を水層に抽出する工程、 水層と有機層を分離し て有機層を系外へ除去する工程、 開環させた化合物を再度ラタ トン環に閉環させ る工程、 及び有機溶媒を添加しラタトン環に閉環させた化合物を該有機溶媒中に 抽出する工程を経る、 請求の範囲第 4項〜第 8項のいずれかに記載の多澴式ラタ トン化合物の製造方法。
1 0 . ラタ トン環の開環を、 p H l 2以上の塩基性水溶液と接触させるこ とにより行う、 請求の範囲第 9項に記載の多環式ラタ トン化合物の製造方法。
1 1. ラタトン環の閉環を、 無機酸と接触させることにより行う、 請求の 範囲第 9項または第 1 0項に記載の多環式ラタ トン化合物の製造方法。
1 2. 不飽和多環式酸無水物が、 R 1と R 2の立体配置が共に e n d o—体 である不飽和多環式酸無水物 (以下、 e X o一酸無水物、 と称する。) と R1と R 2の立体配置が共に e X o—体である不飽和多環式酸無水物 (以下、 e n d o— 酸無水物、 と称する。) との混合物から溶媒を用いることによって優先的に e X o 一酸無水物の結晶を析出させる工程を経て得られたものである請求の範囲第 4項 〜第 1 1項のいずれかに記載の多環式ラタ トン化合物の製造方法。
1 3. 溶媒が、 一 20°C以上 1 0 0°C以下のいずれかの温度において、 e X o一酸無水物の溶解度が、 e n d o—酸無水物の溶解度よりも小さいものであ る、 請求の範囲第 1 2項に記載の多環式ラタトン化合物の製造方法。
1 4. 溶媒が、 2 5°Cにおいて、 溶媒 1 0 0重量部中に溶解する e X o— 酸無水物の量が、 3 0重量部以下であるものである、 請求の範囲第 1 2項または 第 1 3項に記載の多環式ラタトン化合物の製造方法。
1 5. 溶媒が、 芳香族炭化水素又は脂肪族炭化水素である、 請求の範囲第 1 2項〜第 1 4項のいずれかに記載の多環式ラタ トン化合物の製造方法。
1 6. 不飽和多環式酸無水物が、 結晶を析出させる工程の前に、 e n d o 一酸無水物を加熱し、 その少なくとも一部を異性化して e X o一酸無水物に変換 する行程を経て得られたものである、 請求の範囲第 1 2項〜第 1 5項のいずれか に記載の多環式ラタ トン化合物の製造方法。
1 7. 異性化時の加熱温度が、 1 4 0°C以上 3 00°C以下である、 請求の 範囲第 1 6項に記載の多環式ラク トン化合物の製造方法。
1 8. 不飽和多環式酸無水物が、 ジシクロ.
ペンタジェンと無水マレイン酸及び/又はェンド一 3, 5ージォキソー 4—ォキ サトリシクロ [5. 2. 1. 02'6]デカ一 8—ェンとの D i e 1 s— A 1 d e r反 応を行う工程を経て得られたものである、 請求の範囲第 4項〜第 1 7項のいずれ かに記載の多環式ラタトン化合物の製造方法。
1 9. 周期表 1 3〜1 4族から選ばれる元素の含有率が 5 00 p pm以下 である下記一般式 (3) 及び (4)
Figure imgf000033_0001
(一般式 (3) 及び (4) 中、 R R2及び nは一般式 (1) におけるのと同義 であり、 Rは、水素原子、 メチル基またはトリフルォロメチル基である。) で表さ れる多環式ラタトン構造を有する (メタ) アタリレート化合物。
2 0. 請求の範囲第 1項〜第 3項のいずれかに記載の多環式ラク トン化合 物と (メタ) ァクリル酸との付加反応により、 上記一般式 (4) 及び Z又は (5) で表される化合物を製造する、 多環式ラタ トン構造を有する (メタ) ァクリレー ト化合物の製造方法。
2 1. R1と R2の立体配置が共に e n d o—体である不飽和多環式酸無水 物 (以下、 e x o—酸無水物、 と称する。) と R 1と R2の立体配置が共に e X o 一体である不飽和多環式酸無水物 (以下、 e 11 d o—酸無水物、 と称する。) との 混合物から、 溶媒を用いることによって優先的に e X o—酸無水物の結晶を析出 させることを特徴とする、 e X o—酸無水物の製造方法。
2 2 . 溶媒が、 一 2 0 °C以上 1 0 0 °C以下のいずれかの温度において、 e o一酸無水物の溶解度が、 e n d o—酸無水物の溶解度よりも小さいものであ る、 請求の範囲第 2 1項に記載の e X o—酸無水物の製造方法。
2 3 . 溶媒が、 2 5 °Cにおいて、 溶媒 1 0 0重量部中に溶解する e X o— 酸無水物の量が、 3 0重量部以下であるものである、 請求の範囲第 2 1項または 第 2 2項に記載の e X o—酸無水物の製造方法。
2 4 . 溶媒が、 芳香族炭化水素又は脂肪族炭化水素である、 請求の範囲第 2 1項〜第 2 3項のいずれかに記載の e X o—酸無水物の製造方法。
2 5 . 不飽和多環式酸無水物が、 結晶を析出させる工程の前に、 e n d o 一酸無水物を加熱し、 その少なくとも一部を異性化して e X o—酸無水物に変換 する行程を経て得られたものである、 請求の範囲第 2 1項〜第 2 4項のいずれか に記載の e X o—酸無水物の製造方法。
2 6 . 異性化時の加熱温度が、 1 4 0 °C以上 3 0 0 °C以下である、 請求項 2 5に記載の e X o—酸無水物の製造方法。
PCT/JP2004/006069 2003-04-28 2004-04-27 多環式ラクトン化合物及び多環式ラクトン構造を有する(メタ)アクリレート化合物、並びにその製造方法 WO2004096787A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003124292 2003-04-28
JP2003-124292 2003-04-28
JP2003137371 2003-05-15
JP2003-137371 2003-05-15

Publications (1)

Publication Number Publication Date
WO2004096787A1 true WO2004096787A1 (ja) 2004-11-11

Family

ID=33422070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006069 WO2004096787A1 (ja) 2003-04-28 2004-04-27 多環式ラクトン化合物及び多環式ラクトン構造を有する(メタ)アクリレート化合物、並びにその製造方法

Country Status (1)

Country Link
WO (1) WO2004096787A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162946A (ja) * 2006-12-28 2008-07-17 Mitsubishi Rayon Co Ltd (メタ)アクリル酸エステルの製造方法
CN111116606A (zh) * 2020-01-14 2020-05-08 大连九信精细化工有限公司 一种制备4,10-二氧杂三环[5.2.1.0(2,6)]癸-8-烯-3-酮的方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159599A (ja) * 1974-05-16 1975-12-24
US4906760A (en) * 1988-08-04 1990-03-06 Hoechst Celanese Corp. Purification of anhydrides
JPH0413663A (ja) * 1990-04-27 1992-01-17 Sumitomo Pharmaceut Co Ltd ジカルボン酸イミド誘導体の製造法
JPH06287161A (ja) * 1991-10-25 1994-10-11 Occidental Chem Corp 粗オキシジ無水フタル酸からオキシジフタル酸及び精製オキシジ無水フタル酸の調製方法
JPH08143480A (ja) * 1994-11-16 1996-06-04 Mitsubishi Chem Corp 高融点有機化合物の精製方法
JP2001302656A (ja) * 2000-04-28 2001-10-31 Hitachi Chem Co Ltd ビシクロ[2.2.1]ヘプト−2−エン−5−カルボン酸1,4−ラクトンの製造法
JP2002006502A (ja) * 2000-04-20 2002-01-09 Mitsubishi Rayon Co Ltd レジスト用(共)重合体およびレジスト組成物
JP2002226436A (ja) * 2001-02-01 2002-08-14 Daicel Chem Ind Ltd 環式骨格を有する(メタ)アクリル酸エステル
JP2002308866A (ja) * 2001-04-09 2002-10-23 Mitsubishi Chemicals Corp ラクトン構造を有する多環式化合物
JP2003146979A (ja) * 2001-11-14 2003-05-21 Mitsubishi Chemicals Corp ラクトン類の製造方法
JP2003233187A (ja) * 2002-02-08 2003-08-22 Fuji Photo Film Co Ltd ポジ型レジスト組成物
JP2003233188A (ja) * 2002-02-08 2003-08-22 Fuji Photo Film Co Ltd ポジ型レジスト組成物
JP2004083536A (ja) * 2002-08-29 2004-03-18 Nissan Chem Ind Ltd (メタ)アクリロイルオキシラクトン化合物及びその製造法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159599A (ja) * 1974-05-16 1975-12-24
US4906760A (en) * 1988-08-04 1990-03-06 Hoechst Celanese Corp. Purification of anhydrides
JPH0413663A (ja) * 1990-04-27 1992-01-17 Sumitomo Pharmaceut Co Ltd ジカルボン酸イミド誘導体の製造法
JPH06287161A (ja) * 1991-10-25 1994-10-11 Occidental Chem Corp 粗オキシジ無水フタル酸からオキシジフタル酸及び精製オキシジ無水フタル酸の調製方法
JPH08143480A (ja) * 1994-11-16 1996-06-04 Mitsubishi Chem Corp 高融点有機化合物の精製方法
JP2002006502A (ja) * 2000-04-20 2002-01-09 Mitsubishi Rayon Co Ltd レジスト用(共)重合体およびレジスト組成物
JP2001302656A (ja) * 2000-04-28 2001-10-31 Hitachi Chem Co Ltd ビシクロ[2.2.1]ヘプト−2−エン−5−カルボン酸1,4−ラクトンの製造法
JP2002226436A (ja) * 2001-02-01 2002-08-14 Daicel Chem Ind Ltd 環式骨格を有する(メタ)アクリル酸エステル
JP2002308866A (ja) * 2001-04-09 2002-10-23 Mitsubishi Chemicals Corp ラクトン構造を有する多環式化合物
JP2003146979A (ja) * 2001-11-14 2003-05-21 Mitsubishi Chemicals Corp ラクトン類の製造方法
JP2003233187A (ja) * 2002-02-08 2003-08-22 Fuji Photo Film Co Ltd ポジ型レジスト組成物
JP2003233188A (ja) * 2002-02-08 2003-08-22 Fuji Photo Film Co Ltd ポジ型レジスト組成物
JP2004083536A (ja) * 2002-08-29 2004-03-18 Nissan Chem Ind Ltd (メタ)アクリロイルオキシラクトン化合物及びその製造法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162946A (ja) * 2006-12-28 2008-07-17 Mitsubishi Rayon Co Ltd (メタ)アクリル酸エステルの製造方法
CN111116606A (zh) * 2020-01-14 2020-05-08 大连九信精细化工有限公司 一种制备4,10-二氧杂三环[5.2.1.0(2,6)]癸-8-烯-3-酮的方法

Similar Documents

Publication Publication Date Title
KR101292329B1 (ko) 알킬락테이트의 제조방법 및 이를 이용한 락타미드의 제조방법
WO2004096787A1 (ja) 多環式ラクトン化合物及び多環式ラクトン構造を有する(メタ)アクリレート化合物、並びにその製造方法
JP2004359669A (ja) 多環式ラクトン化合物及び多環式ラクトン構造を有する(メタ)アクリレート化合物、並びにその製造方法
US6384241B2 (en) Purified salt of β-hydroxyethoxy acetic acid, purified 2-p-dioxanone, and manufacturing method therefor
JP3885497B2 (ja) 1,2,4−ブタントリオールの製造方法
JP2008133223A (ja) エキソ型ヒドロキシテトラシクロドデカンカルボン酸類及びその製造方法
JP6503227B2 (ja) 4−ヒドロキシ安息香酸長鎖エステルの精製方法
EP0794182B1 (en) Process for producing 2-omega-alkoxycarbonylalkanoyl)-4-butanolide and long-chain omega-hydroxy carboxylic acid
JP2009215173A (ja) 新規脂環式化合物およびその製造方法
JP4286745B2 (ja) エキソ−多環式ラクトン(メタ)アクリレートの製造方法
ES2389261T3 (es) Compuestos intermedios útiles para preparar dolasetrón
JP3828154B2 (ja) トリシクロカルボン酸エステル、その製造法およびそれからなる香料
JP7439604B2 (ja) ラクトン化合物の精製方法
EP0652213B1 (en) Method for producing alkyl 3-phthalidylideneacetate
JP7117968B2 (ja) ヒドロキシ酸の製造方法。
JP2512958B2 (ja) 1−ビフェニリルエタノ―ル誘導体およびその製法
US20150291497A1 (en) Method for extracting asymmetric b-diketone compound from b-diketone compound
JP4745655B2 (ja) 5−ノルボルネン−2−カルボン酸およびそのエステルの製造方法
JP6503228B2 (ja) 4−ヒドロキシ安息香酸長鎖エステルの精製方法
JPH09157220A (ja) アジピン酸モノメチルエステルの製造法
JP3102282B2 (ja) 脂環式ジオール化合物及びその製造方法
JP2022007362A (ja) (メタ)アクリル酸エステルの製造方法
JP2004244340A (ja) α−ハロゲノカルボン酸エステルの製造方法
JP4222114B2 (ja) 多環構造を有するトランス型ヒドロキシメチルカルボン酸
JPS60158186A (ja) 13‐オキサビシクロ〔10.3.0〕ペンタデカンの製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048174760

Country of ref document: CN

122 Ep: pct application non-entry in european phase