WO2004092434A1 - 転動疲労寿命に優れた鋼材及びその製造方法 - Google Patents

転動疲労寿命に優れた鋼材及びその製造方法 Download PDF

Info

Publication number
WO2004092434A1
WO2004092434A1 PCT/JP2004/005341 JP2004005341W WO2004092434A1 WO 2004092434 A1 WO2004092434 A1 WO 2004092434A1 JP 2004005341 W JP2004005341 W JP 2004005341W WO 2004092434 A1 WO2004092434 A1 WO 2004092434A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatigue life
rolling fatigue
steel
steel material
quenching
Prior art date
Application number
PCT/JP2004/005341
Other languages
English (en)
French (fr)
Inventor
Takashi Iwamoto
Akihiro Matsuzaki
Kazuhiko Ohno
Masao Goto
Hisashi Harada
Hisato Nishisaka
Original Assignee
Jfe Steel Corporation
Koyo Seiko Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33295999&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004092434(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jfe Steel Corporation, Koyo Seiko Co., Ltd. filed Critical Jfe Steel Corporation
Priority to US10/547,252 priority Critical patent/US7763124B2/en
Priority to CA2517594A priority patent/CA2517594C/en
Priority to EP04727389.1A priority patent/EP1614761B1/en
Publication of WO2004092434A1 publication Critical patent/WO2004092434A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/902Metal treatment having portions of differing metallurgical properties or characteristics
    • Y10S148/906Roller bearing element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S384/00Bearings
    • Y10S384/90Cooling or heating
    • Y10S384/912Metallic

Definitions

  • the present invention relates to a steel material used for a rolling bearing such as a roller bearing or a ball bearing, and particularly to a steel material having an excellent rolling fatigue life even in a severe use environment. And a method of manufacturing the same.
  • BACKGROUND ART High-carbon chromium bearing steel SUJ2 specified in JIS G 4805 has been most often used as a material for rolling bearings used in automobiles and industrial machines.
  • bearing steel is required to have a long rolling fatigue life as one of the important properties.
  • nonmetallic inclusions in steel were considered to be the most important factors affecting the rolling fatigue life of bearing steel. Therefore, for example, Japanese Unexamined Patent Publication No. Hei 1-306542 and Japanese Unexamined Patent Publication No. Hei 3-126839 disclose reducing the amount of oxygen in steel and controlling the amount, shape and size of nonmetallic inclusions to reduce rolling fatigue life. A method for improving the quality is disclosed.
  • C 0.7-1.1%
  • Si 0.2-2.0
  • Mn 0.4-2.5%
  • Cr 1.6-4.0%
  • Mo 0.1 or more and less than 0.5%
  • A1 0.010-0.050%
  • the remainder consists of Fe and inevitable impurities, undergoes quenching and tempering, and Tight particle size of 0.05-1.5 m and old austenite particle size of 30 // m or less. Excellent rolling fatigue life.
  • the steel material having excellent rolling fatigue life is obtained by heating the steel material having the above components to 750-850: and then performing spheroidizing annealing in which the steel is cooled to 700 ⁇ or less at a cooling rate of 0.015 / s or less at 0.015 / s. And quenching and tempering the steel material after the spheroidizing annealing.
  • BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have studied the change in the microstructure of bearing steel due to repeated stress loading in a severe use environment, and have obtained the following findings.
  • the main cause of the change of the micro yarn 1 ⁇ is the stress concentration on the hard part of the steel material and the diffusion of carbon (C) around it, and if the stress concentration is relaxed or the diffusion of C is suppressed , Micro-change can be suppressed.
  • austenite (hereinafter referred to as ⁇ ) grains are refined in the heating stage during quenching, and the particle size of cementite remaining after quenching and tempering is reduced to 0%. , 05-1.5 ⁇ .
  • Coarse carbide called “crystalline carbide” may remain, which acts as a source of stress concentration and promotes the change of micro-yarn! ⁇ .
  • Spheroidal carbides formed during spheroidizing annealing also act as stress concentration sources as the size increases, promoting the change in microstructure.
  • C forms a solid solution in the steel matrix, strengthens martensite, secures hardness after quenching and tempering, and improves rolling fatigue life. To do that, C
  • C is 0.7-l.lma SS %.
  • Si not only acts as a deoxidizing agent for steel, but also forms a solid solution in the matrix and suppresses a decrease in strength during tempering after quenching. It also suppresses microstructural changes in rolling load environments.
  • the content of Si needs to be 0.2 mass% or more, but if it exceeds 2.0 ma SS %, the forgeability, machinability, etc., are greatly degraded. Therefore, Si is set to 0.2-2.0 mass%.
  • M Mn acts as a deoxidizer for steel and is an effective element for reducing oxygen. In addition, it improves the hardenability, improves the toughness and strength of martensite as a base, and improves the rolling fatigue life. Further, it has an effect of stabilizing cementite and suppressing a change in microstructure. For that purpose, Mn needs to be 0.4 mass or more, but if it exceeds 2.5 mass S , forgeability and machinability are greatly deteriorated. Therefore, ⁇ ⁇ is set to 0.4-2.5mass.
  • Cr stabilizes cementite and suppresses the diffusion of C in steel, and also suppresses coarsening of cementite to prevent stress concentration and improve rolling fatigue life.
  • Cr must be 1.6 mass% or more.However, if it exceeds 4.0 mass%, the amount of C dissolved in martensite is reduced, and the hardness after quenching and tempering is reduced. Reduce life. Therefore, Cr is set to 1.6-4.0 mass%.
  • Mo: o forms a solid solution in the matrix and has a function of suppressing strength reduction during tempering after quenching. Further, the hardness and rolling fatigue life after quenching and tempering are improved. Further, it also has the effect of suppressing the change in microstructure by the carbide stabilization. For this purpose, it is necessary to make Mo more than 0.1 lmass%. However, even if 0.5 mass% or more is added, the effect is saturated and the cost is increased. Therefore, Mo should be O.lmass or more and less than 0.5 mass%.
  • A1 is necessary as a deoxidizing agent for steel, and combines with N in steel to refine old "y" grains after quenching and tempering, thereby improving rolling fatigue life.
  • Ni is added as necessary to form a solid solution in the matrix and to suppress a decrease in strength after tempering. Sufficient effect to obtain, it is necessary to set the Ni above 0.5 mass%, a large amount of residual ⁇ is generated exceeds 2.0 mA SS%, lowers the strength after quenching and tempering treatment. Therefore, Ni should be 0.5-2.0mass.
  • V is added as necessary, because it forms stable carbides, increases hardness, and suppresses the change of the micro yarn 1 ⁇ to improve rolling fatigue life. In order to obtain a sufficient effect, V must be 0.05 mass% or more, but if it exceeds l.OOmass, solid solution C decreases, and hardness after quenching and tempering decreases. Therefore, V should be 0.05-1.00 mass%.
  • Nb forms stable carbides like V, increases hardness, suppresses changes in the microstructure, and improves rolling fatigue life. Nb is added as necessary. In order to obtain a sufficient effect, Nb needs to be 0.005 mass or more, but even if it exceeds 0.50 mass, the effect saturates. Therefore, Nb is 0.005-0.50 mass.
  • Sb is added as necessary because it suppresses decarburization during heat treatment and improves rolling fatigue life by refining old ⁇ grains after quenching and tempering. In order to obtain a sufficient effect, Sb must be less than 0.0010ma SS %,
  • the residual cementite suppresses the diffusion of C in the steel and suppresses the change of the microfiber of the bearing steel due to the repeated stress load in a severe use environment.
  • Strength and residual cementite If the average particle size of C is less than 0.05 / zm, the ratio of surface area to the volume of cementite increases, and the effect of suppressing the diffusion of C cannot be obtained to promote the elution of C into the matrix. Increased stress concentration at the interface between cementite and matrix promotes changes in micro a ⁇ . Therefore, the particle size of the residual cementite after quenching and tempering needs to be 0.05-1.5; / m.
  • suppressing the propagation of cracks generated by rolling fatigue is also effective in improving the rolling fatigue life. In order to improve it in a severe use environment, it is necessary to reduce the old ⁇ particle size after quenching and tempering.
  • steel having a chemical composition within the above-described range of the present invention is melted, and for example, steel is formed into a piece by continuous casting, and then a steel bar formed by hot rolling is used as a starting material.
  • the steel is heated to 750-850 ⁇ and then subjected to spheroidizing annealing at a rate of O.OlS Vs or less to 700 or less. After that, quenching and tempering are performed.
  • the particle diameter of the residual cementite after the quenching and tempering treatment can be adjusted to 0.05 to 1.5 / zm.
  • the heating temperature of the spheroidizing annealing exceeds 850 ⁇ , the spheroidized cementite becomes coarse, the residual cementite after quenching and tempering becomes coarse, and a new layered cementite is formed during cooling after heating. You. On the other hand, if the heating temperature is less than 750 ⁇ , pearlite existing before spheroidizing annealing remains, and the desired residual cementite cannot be obtained.
  • the quenching and tempering treatment is performed under the conditions usually used in this field.
  • the heating temperature at the time of quenching is less than 800 ° C, solid solution of spheroidized cementite in the matrix austenite does not sufficiently proceed, and sufficient hardness cannot be obtained after the quenching and tempering treatment. Invite coarse eh.
  • the heating temperature exceeds 950, the solid solution of cementite proceeds excessively and the austenite grains become coarse. Therefore, the desired residual cementite is obtained after quenching and tempering, and the old ⁇ particle size is reduced to 30%.
  • Sample No. 1 is conventional steel equivalent to SUJ2 of JIS G 4805
  • Sample No. 2 is C
  • Sample No. 3 is Sample No. 4 is Mn
  • Sample No. 5 is Cr force S
  • Sample No. 6 is Mo
  • Sample No. 7 is A1 outside the scope of the present invention.
  • the obtained piece was annealed at 1240 ⁇ for 30 hours, and then hot-rolled into a bar of 65 ⁇ .
  • a cylindrical test specimen of 15 ⁇ X 20 mm and a test specimen for measuring rolling fatigue (hereinafter referred to as rolling fatigue test specimen) were sampled by cutting, and then calcined. Then, heat treatment was performed after the spheroidizing annealing and the M tempering. The spheroidizing annealing was performed by cooling from the heating temperature shown in Table 1 to 650 ⁇ at a cooling rate of 0.004-0.020: / s, and then allowing to cool. Rolling fatigue test specimens were polished by lmm or more from the surface and lapping finished in order to completely remove the decarburized layer, so that the test specimen dimensions were 12 gangs X 22 thighs.
  • rolling fatigue tests were performed using a rolling contact fatigue life tester of a radial type under the conditions of a hertz maximum contact stress of 5880 MPa and a repetitive stress number of about 46500 cpm using the rolling fatigue test specimens of each sample.
  • the ratio of the time the test results are summarized in probability paper as also according to the so-called "Weibull distribution", and the average life span of the samples No.1 using a conventional steel (above B 5. High load rolling contact fatigue life) and 1 was evaluated. Note that this ratio must be 10 or more so that a longer rolling fatigue life can be obtained even in a harsh operating environment.
  • Table 1 shows the results. Sample Nos. 9-18 and 20-25, which have a chemical composition within the scope of the present invention and the particle size and old particle size of the residual cementite are within the scope of the present invention, are all samples of conventional steel
  • sample No.10 was heated temperature at the time of quenching the normal range Nanba10b, in 10c, the particle size of the desired residual cementite, not old y grain size is obtained, B 5. Is significantly lower.
  • B 5 of Sample No. 2-7 having a chemical composition outside the scope of the present invention are lower than or equal to those of the conventional steel sample No. 1. In particular, it exceeds 1.5 / zm particle size of residual cementite in low Cr content sample No.5, also beyond the lower Sample No.7 old ⁇ grain size 30 ⁇ the amount A1, beta 5. Is significantly lower.
  • Sample No. 8 in which the particle diameter of the residual cementite exceeds 1.5 / xm
  • Sample No. 19 in which the particle diameter of the residual cementite is less than 0.05 / xm high B 5 than sample No.1 steel.
  • the ratio is about 3.8 at most, which is not enough.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

本発明は、mass%で、C:0.7-1.1%、Si:0.2-2.0%、Mn:0.4-2.5%、Cr:1.6-4.0%、Mo:0.1%以上0.5%未満、Al:0.010-0.050%を含有し、残部がFe及び不可避不純物からなり、焼入れ焼戻し処理を受け、かつ残留セメンタイトの粒子径が0.05-1.5μm、旧オーステナイト粒径が30μm以下である転動疲労寿命に優れた鋼材およびその製造方法を提供する。本発明の鋼材を軸受鋼に用いると、過酷な使用環境でも軸受の寿命をより長くできる。

Description

明 細 書 転動疲労寿命に優れた鋼材及びその製造方法 技術分野 本発明は、 ころ軸受あるいは玉軸受といった転がり軸受などに用いられる鋼 材、 特に、 苛酷な使用環境においても転動疲労寿命に優れた鋼材及びその製造 方法に関する。 背景技術 自動車並びに産業機械等に用いられる転がり軸受の素材には、 従来より、 JIS G 4805に規定されている高炭素クロム軸受鋼 SUJ2が最も多く使用され ている。
一般に、 軸受鋼には、 その転動疲労寿命の長いことが重要な性質の 1つとし て要求される。 これまで、 軸受鋼の転動疲労寿命に影響を与える因子としては、 鋼中非金属介在物が最も主要な因子と考えられていた。 そのため、 例えば特開 平 1-306542号公報ゃ特開平 3-126839号公報には、 鋼中の酸素量を低減し、 非金属介在物の量、 形状及び大きさを制御して転動疲労寿命を向上させる方法 が開示されている。
しかしながら、 本発明者等は、 軸受鋼の転動疲労寿命について種々の研究を 行ったところ、 高負荷あるいは高温といった過酷な使用環境においては、 以下 に述べるような現象が生じるため、 上述の方法のように単に非金属介在物の量、 形状及び大きさを制御するだけでは転動疲労寿命を十分に向上させることがで きないことを見出した。
すなわち、 軸受の使用環境が苛酷化するに伴って、 軸受の内外輪と転動体と の接触時に発生するせん断応力により軸受鋼の接触面の下層部分 (表層部) に 白色のミクロ m 変化層が生成し、 この変ィ匕層が転動回数を増すに連れて次第 に成長して最終的には疲労剥離を引き起こし、 転動疲労寿命を低下させる。 特 に、 より過酷な使用環境である高面圧下 (小型化) での温度上昇は、 このミク 口組織変化層が発生するまでの転動回数を短縮し、 著しく転動疲労寿命を低下 させる。
したがって、 こうした使用環境の過酷ィヒに伴う転動疲労寿命の低下を抑制す るには、 従来技術における非金属介在物の量、 形状及び大きさを制御するだけ では不十分であり、 ミク口糸!^の経時的な変化を抑制することが必要である。 高負荷転動疲労時の繰り返し応力負荷によるミク口組織の変化を抑制できる 軸受鋼として、 本発明者等は、 特開平 6-287691号公報において、 C:0.5 - 1.5wt%、 Cr:2.5wt%超え 8.0wt 以下、 Sb: 0.001 - 0.015wt 、
O:0.002wtも以下を含有し、 残部が Fe及び不可避不純物からなる軸受鋼、 お よびこの軸受鋼にさらに Si:0.5wt%超え 2.5wt 以下、 Mn:0.05— 2.0wt%、 Mo:0.05-0.5wt%、 A1:0.005-0.07wt 等を含有させた軸受鋼を提案した。 これらの軸受鋼では、 B5。高負荷転動疲労寿命 (転動疲労寿命試験での累積破損 確率 50もにおけるミク口組織変化層が剥離するまでの総負荷回数) が向上する。 し力 しながら、 現在では、 軸受の使用環境が特開平 6-287691号公報の出願 時よりさらに厳しくなつており、 単に化学組成の規定のみでは十分な転動疲労 寿命が得られない。 そのため、 より転動疲労寿命に優れた軸受用の鋼材が熱望 されている。 発明の開示 本発明者らは、 種々の検討を行い、 鋼材の使用時のミクロ組織を狭義に規定 することで、 従来よりも過酷な使用環境においても、 軸受の寿命をより長くで きる以下の転動疲労寿命に優れた鋼材を見出した。
すなわち、 mass%で、 C:0.7 - 1.1%、 Si:0.2 - 2.0 、 Mn:0.4-2.5% Cr:l.6-4.0%、 Mo :0.1 以上 0.5%未満、 A1: 0.010-0.050%を含有し、 残部 が Fe及ぴ不可避不純物からなり、 焼入れ焼戻し処理を受け、 かつ残留セメン タイトの粒子径が 0.05- 1.5 m、 旧オーステナイト粒径が 30// m以下である 転動疲労寿命に優れた鋼材である。
また、 この転動疲労寿命に優れた鋼材は、 上記成分を有する鋼材に 750- 850 :に加熱後 0.015で /s以下の冷却速度で 700^以下まで冷却する球状化焼 なましを行う工程と、 球状化焼なまし後の鋼材に焼入れ焼戻し処理を行う工程 とを有する方法によって製造できる。 発明の実施の形態 本発明者等は、 過酷な使用環境における繰り返し応力負荷による軸受鋼のミ クロ組織の変化について検討し、 以下の知見を得た。
1>ミクロ糸 1^の変化の主因は、 鋼材の硬質な部分への応力集中とその周辺にお ける炭素 (C) の拡散であり、 応力集中を緩和するか、 Cの拡散を抑制すれば、 ミクロ«の変化を抑制できる。
2)鋼中の Cの拡散を抑制するには、 焼入れ時の加熱段階において、 オーステナ イト (以下、 γで表す) 粒を微細化すると共に、 焼入れ焼戻し処理後に残留す るセメンタイトの粒子径を 0,05-1.5 μπιにすれば良い。
3)上記した JIS G 4805の高炭素軸受鋼 SUJ2においては、 溶鋼を铸造する 際に晶出する粗大な炭化物の影響で、 焼入れ焼戻し処理を施した後に粒径が 5 //m以上の 「共晶炭化物」 と呼ばれる粗大炭化物が残留することがあるが、 こ れは応力集中源として作用し、 ミクロ糸!^の変化を促進する。 また、 球状化焼 なまし時に生成する球状炭化物もそのサイズの粗大化に伴つて応力集中源とし て作用し、 ミクロ組織の変化を促進する。
本発明は、 このような知見に基づき行われたもので、 以下にその詳細を説明 する。
(I)化学組成
C:Cは、 鋼の基地に固溶し、 マルテンサイトを強化して、 焼入れ焼戻し処理 後の硬さを確保し、 転動疲労寿命を向上させる。 そのためには、 Cを
0.7mass%以上にする必要があるが、 1. lmassもを超えると共晶炭化物のような 粗大炭化物の形成を促すと同時に、 鋼中の Cの拡散によるミク口組織の変化を 助長し、 転動疲労寿命を低下させる。 したがって、 Cは 0.7- l.lmaSS%とする。
Si:Siは、 鋼の脱酸剤としての作用する他、 基地に固溶して焼入れ後の焼戻 し時に強度が低下するのを抑制する。 また、 転動負荷環境におけるミクロ組織 の変化を抑制する。 そのためには、 Siを 0.2mass%以上にする必要があるが、 2.0maSS%を超えると鍛造性、 被削性等を大幅に劣ィ匕させる。 したがって、 Si は 0.2— 2.0mass%とする。
. M Mnは、 鋼の脱酸剤として作用し、 低酸素化に有効な元素である。 また、 焼入れ性を向上させて、 基地であるマルテンサイトの靭性及ぴ強度を向上させ、 転動疲労寿命を向上させる。 さらに、 セメンタイトを安定ィ匕させ、 ミクロ組織 の変化を抑制する効果も有する。 そのためには、 Mnを 0.4massも以上にする必 要があるが、 2.5masS を超えると鍛造性、 被削性等を大幅に劣化させる。 し たがって、 Μη ίま 0.4— 2.5mass とする。
Cr:Crは、 セメンタイトを安定化させて鋼中の Cの拡散を抑制すると共に、 セメンタイトの粗大化を抑制して応力集中を防ぎ、 転動疲労寿命を向上させる。 そのためには、 Crを 1.6mass%以上にする必要があるが、 4.0mass¾を超える とマルテンサイトへの Cの固溶量を低下させて焼入れ焼戻し処理後の硬さを低 下させ、 転動疲労寿命を低下させる。 したがって、 Crは 1.6 - 4.0mass%とす る。
Mo: oは、 基地に固溶し、 焼入れ後の焼戻し時における強度低下を抑制する 働きを有する。 また、 焼入れ焼戻し処理後の硬さ及び転動疲労寿命を向上させ る。 さらに、 炭化物の安定ィ匕によりミクロ∞の変化を抑制する作用も有する。 そのためには、 Moを 0. lmass%以上にする必要があるが、 0.5mass%以上添加 してもその効果は飽和し、 コスト上昇を招く。 したがって、 Moは O.lmass 以 上 0.5mass%未満とする。
A1:A1は、 鋼の脱酸剤として必要であると共に、 鋼中の Nと結合して焼入れ 焼戻し処理後の旧" y粒を微細化し、 転動疲労寿命を向上させる。 そのためには、 A1を 0.010mass%以上にする必要があるが、 0.050massもを超えると多量に 析出する A1Nにより転動疲労寿命が低下する。 したがって、 A1は 0.010- 0.050mass%とする。
こうした元素にカ卩え、 さらに、 mass で、 Ni: 0.5— 2.0 、 V: 0.05— 1.00も、 Nb:0.005-0.50%、 Sb: 0.0010— 0.0050%のグノレ一プカ ら選 fまれた少なくとも 1種の元素を含有させることが、 以下に述べる理由で好ましい。
Ni:Niは、 基地に固溶し、 焼戻し後の強度低下を抑制するため、 必要に応じ て添加される。 十分な効果を得るには、 Niを 0.5mass%以上にする必要がある 、 2.0maSS%を超えると多量の残留 γが生成し、 焼入れ焼戻し処理後の強度 を低下させる。 したがって、 Niは 0.5— 2.0mass とする。
V:Vは、 安定な炭化物を形成し、 硬さを上昇させると共に、 ミクロ糸1^の変 化を抑制して転動疲労寿命を向上させるので、 必要に応じて添加される。 十分 な効果を得るには、 Vを 0.05mass%以上にする必要があるが、 l.OOmass を 超えると固溶 Cが低下し、 焼入れ焼戻し処理後の硬さが低下する。 したがって、 Vは 0.05— 1.00mass%とする。
Nb: Nbは、 Vと同様に安定な炭化物を形成し、 硬さを上昇させると共に、 ミ ク口組織の変化を抑制して転動疲労寿命を向上させるので、 必要に応じて添加 される。 十分な効果を得るには、 Nbを 0.005massも以上にする必要があるが、 0.50mass を超えてもその効果は飽和する。 したがって、 Nbは 0.005- 0.50mass と る。
Sb:Sbは、 熱処理時の脱炭を抑制すると共に、 焼入れ焼戻し処理後の旧 γ粒 を微細化することで転動疲労寿命を向上させるので、 必要に応じて添加される。 十分な効果を得るには、 Sbを 0.0010maSS%以下にする必要があるが、
0.0050mass を超えるとその効果が飽和するばかり力 熟間加工性及ひ靭性が 劣ィ匕する。 した力って、 Sbは 0.0010-0.0050mass%とする。
(II)残留セメンタイトの粒子径
軸受用の C量の高い鋼材は焼入れ焼戻し処理を受けるが、 処理後の鋼材には 焼入れ前に存在するセメンタイトが残留する。 上述したように、 この残留セメ ンタイトは、 鋼中の Cの拡散を抑制し、 過酷な使用環境における繰り返し応力 負荷による軸受鋼のミクロ糸纖の変化を抑制する。 し力 し、 残留セメンタイト の平均粒子径が 0.05/zm未満だとセメンタイトの体積に対する表面積の割合 が大きくなり、 基地への Cの溶出を促進するため Cの拡散抑制効果が十分に得 られず、 1.5 zmを超えると残留セメンタイトと基地の界面への応力集中が増 大するので、 ミクロ a ^の変化が促進される。 したがって、 焼入れ焼戻し処理 後の残留セメンタイトの粒子径は 0.05-1.5;/mである必要がある。
(III)旧 γ粒径
上述したミク口組織変化の抑制に加え、 転動疲労によって発生した亀裂の伝 播を抑制することも、 転動疲労寿命の向上には効果的である。 過酷な使用環境 におけるその向上には、 焼入れ焼戻し処理後の旧 γ粒径を 以下にする必 要がある。
(IV)製造方法
本発明では、 上述した本発明範囲の化学組成を有する鋼を溶製し、 例えば連 続錶造で铸片とした後、 熱間圧延により棒鋼とした鋼材を出発材料とする。 そ して、 この鋼材に、 通常の条件で焼ならしを行った後、 750 - 850^に加熱して から O.OlS Vs以下の速度で 700 以下まで冷却する球状化焼なましを行つ た後、 焼入れ焼戻し処理を行う。 こうした球状化焼なましにより、 焼入れ焼戻 し処理後の残留セメンタイトの粒子径を 0.05-1.5 /zmとすることができる。 球状化焼なましの加熱温度が 850^を超えると、 球状化セメンタイトが粗大と なり、 焼入れ焼戻し処理後の残留セメンタイトも粗大となったり、 加熱後の冷 却時に新たに層状のセメンタイトが形成される。 また、 加熱温度が 750^未満 では、 球状化焼なまし前に存在するパーライトが残り、 所望の残留セメンタイ トが得られない。
焼入れ焼戻し処理は、 通常この分野で行われている条件で行う。 特に、 焼入 れ時の加熱温度が 800¾未満だと球状化セメンタイトの母相オーステナイトへ の固溶が十分に進まず、 焼入れ焼戻し処理後に十分な硬さが得られないととも に、 残留セメンタイトの粗大ィヒを招く。 逆に加熱温度が 950 を超えるとセメ ンタイトの固溶が過剰に進むとともに、 オーステナイト粒の粗大化を招く。 し たがって、 焼入れ焼戻し処理後に所望の残留セメンタイトを得、 旧 γ粒径を 30
/zm以下にするには、 焼入れ時の加熱温度を 800- とすることが重要であ
S る。 なお、 焼; Mi焼戻し処理後のセメンタイトの体積率は、 主に c量に応じて 変化するが、 本発明の組成範囲では 3-25 となる。 実施例
表 1に示す試料 No.1-25の化学組成を有する鋼を転炉にて溶製後、 連続铸 造して铸片とした。 表 1の試料 No.1-7の化学組成は本発明範囲外であり、 試 料 No.lは JIS G 4805の SUJ2に相当する従来鋼、 試料 No.2は Cが、 試料 No.3は Si ί 試料 No.4は Mnが、 試料 Νο·5は Cr力 S、 試料 No .6は Moが、 試料 No.7は A1がそれぞれ本発明範囲外である。 得られた铸片は、 1240^で 30時間焼鈍した後、 65ιητηφの棒鋼に熱間圧延した。
得られた の直径の 1/4に相当する位置から切削加工により 15ιηιηψ X 20mmの円柱状試験片及び転動疲労を測定する試験片 (以下、 転動疲労試験片 という) を採取し、 焼ならし、 球状化焼なまし、 焼; M焼戻しの啊に熱処理を 行った。 球状化焼なましは、 表 1に示す加熱温度から 0.004- 0.020 :/sの冷 却速度で 650^まで冷却し、 その後放冷して行った。 転動疲労試験片について は、 脱炭層を完全に除去する目的で、 さらに表面から lmm以上研磨後、 ラッピ ング仕上げを行い、 試験片寸法が 12匪 ψ X22腿となるようにした。
各試料の円柱状試験片を用い、 円柱の軸方向に切断し、 その切断面をピクリ ン酸アルコール溶液、 硝酸アルコール にて順次腐食して、 ミクロ組織を観 察し、 画像解析により残留セメンタイトの平均粒子径及び平均旧 γ粒径を測定 した。
また、 各試料の転動疲労試験片を用い、 ラジアルタイプの転動疲労寿命試験 機により、 ヘルツ最大接触応力 5880MPa、 繰り返し応力数約 46500cpmの条 件で転動疲労試験を行った。 試験結果は、 いわゆる 「ワイブル分布」 に従うも のとして確率紙上にまとめ、 従来鋼を用いた試料 No.1の平均寿命 (上述の B5。 高負荷転動疲労寿命) を 1としたときの比で評価した。 なお、 従来より過酷な 使用環境でもより長い転動疲労寿命が得られるのは、 この比が 10以上である ことが必要である。
結果を表 1に示す。 本発明範囲内の化学組成を有し、 残留セメンタイトの粒子径及ぴ旧 粒径も 本発明範囲内にある試料 No.9-18及び 20- 25は、 いずれも従来鋼の試料
No.lより 10倍以上の高い B5。を示しており、 従来より過酷な使用環境におい ても優れた転動疲労寿命を有することがわかる。
なお、 試料 No.10で焼入れ時の加熱温度を通常の 範囲外とした試料 No.10b, 10cでは、 所望の残留セメンタイトの粒子径、 旧 y粒径が得られず、 B5。が著しく低い。
一方、 本発明範囲外の化学組成を有する試料 No .2-7の B5。は、 いずれも従 来鋼の試料 No.1に比較して同等以下である。 特に、 Cr量の低い試料 No.5で は残留セメンタイトの粒子径が 1.5 /zmを超え、 また A1量の低い試料 No.7 では旧 γ粒径が 30μΐηを超え、 Β5。が著しく低い。
また、 化学組成が本発明範囲内であっても、 残留セメンタイトの粒子径が 1.5 /xmを超えた試料 No.8及び残留セメンタイトの粒子径が 0.05/xm未満で ある試料 No.19は、 従来鋼の試料 No.1よりは高い B5。を示すが、 その比は 高々 3.8程度で十分でない。
Figure imgf000010_0001

Claims

請 求 の 範 囲
1. mass で、 C:0.7 - 1.1%、 Si:0.2- 2.0%、 Mn:0.4 - 2.5%、 Cr: 1.6- 4.0も、 Mo: 0.1%以上 0.5 未満、 A1:0.010— 0.050%を含有し、 残部力 Fe及 ぴ不可避不純物からなり、 焼入れ焼戻し処理を受け、 かつ残留セメンタイトの 粒子径が 0.05- 1.5/im、 旧オーステナイト粒径が 30 m以下である転動疲労 寿命に優れた鋼材。
2.さらに、 massもで、 Ni:0.5 - 2.0も、 V: 0.05-1.00%、 Nb: 0.005-0.50%, Sb: 0.0010-0.0050%のグループから選ばれた少なくとも 1種の元素を含有す る請求の範囲 1の転動疲労寿命に優れた鋼材。
3. mass%で、 C:0.7- 1.1 、 Si:0.2- 2.0%、 Mn:0.4-2.5% Cr: 1.6- 4.0%、 Mo :0.1%以上 0.5%未満、 A1:0.010- 0.050 を含有し、 残部力 S Fe及 び不可避不純物からなる鋼材に、 750-
Figure imgf000011_0001
以下の冷 却速度で 700 :以下まで冷却する球状化焼なましを行う工程と、
前記球状化焼なまし後の鋼材に、 焼入れ焼戻し処理を行う工程と、 を有する転動疲労寿命に優れた鋼材の製造方法。
4.さらに、 mass¾で、 Ni:0.5-2.0%、 V: 0.05-1.00 、 b: 0.005-0.50%, Sb: 0.0010-0.0050%のグループから選ばれた少なくとも 1種の元素を含有す る鋼材を用いる請求の範囲 3の転動疲労寿命に優れた鋼材の製造方法。
PCT/JP2004/005341 2003-04-16 2004-04-14 転動疲労寿命に優れた鋼材及びその製造方法 WO2004092434A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/547,252 US7763124B2 (en) 2003-04-16 2004-04-14 Steel material with excellent rolling fatigue life and method of producing the same
CA2517594A CA2517594C (en) 2003-04-16 2004-04-14 Steel having excellent rolling fatigue life and method for manufacturing the same
EP04727389.1A EP1614761B1 (en) 2003-04-16 2004-04-14 Steel material with excellent rolling fatigue life and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-111560 2003-04-16
JP2003111560A JP4252837B2 (ja) 2003-04-16 2003-04-16 転動疲労寿命の優れた鋼材及びその製造方法

Publications (1)

Publication Number Publication Date
WO2004092434A1 true WO2004092434A1 (ja) 2004-10-28

Family

ID=33295999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005341 WO2004092434A1 (ja) 2003-04-16 2004-04-14 転動疲労寿命に優れた鋼材及びその製造方法

Country Status (8)

Country Link
US (1) US7763124B2 (ja)
EP (1) EP1614761B1 (ja)
JP (1) JP4252837B2 (ja)
KR (2) KR20070074664A (ja)
CN (1) CN100439540C (ja)
CA (1) CA2517594C (ja)
TW (1) TWI267556B (ja)
WO (1) WO2004092434A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020563A (zh) * 2019-12-11 2020-04-17 安徽泰尔表面工程技术有限公司 失效渗碳淬火件直接激光熔覆的再制造方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631617B2 (ja) * 2005-08-31 2011-02-16 Jfeスチール株式会社 疲労特性に優れた軸受用鋼部品の製造方法
JP4631618B2 (ja) * 2005-08-31 2011-02-16 Jfeスチール株式会社 疲労特性に優れた軸受用鋼部品の製造方法
JP4781847B2 (ja) * 2006-02-28 2011-09-28 Jfeスチール株式会社 転動疲労性の優れた鋼部材の製造方法
JP4923776B2 (ja) * 2006-06-22 2012-04-25 株式会社ジェイテクト 転がり、摺動部品およびその製造方法
US20120018063A1 (en) * 2009-04-06 2012-01-26 Masayuki Hashimura Case-hardened steel superiorin cold workability, machinability, and fatigue characteristics after carburized quenching and method of production of same
JP4775506B1 (ja) * 2009-11-30 2011-09-21 Jfeスチール株式会社 軸受鋼
JP5400089B2 (ja) 2010-08-31 2014-01-29 Jfeスチール株式会社 転動疲労寿命特性に優れた軸受鋼、軸受用造塊材並びにそれらの製造方法
KR101262458B1 (ko) 2010-10-20 2013-05-08 주식회사 포스코 열변형 저항성이 우수한 베어링용 강선재 및 그 제조방법
KR20140047742A (ko) * 2010-11-29 2014-04-22 제이에프이 스틸 가부시키가이샤 구상화 어닐링 후의 가공성이 우수하고, 그리고 켄칭·템퍼링 후의 내수소 피로 특성이 우수한 베어링강
WO2012073488A1 (ja) * 2010-11-29 2012-06-07 Jfeスチール株式会社 球状化焼鈍後の加工性に優れ、かつ焼入れ・焼戻し後の耐水素疲労特性に優れる軸受鋼
JP5820326B2 (ja) * 2012-03-30 2015-11-24 株式会社神戸製鋼所 転動疲労特性に優れた軸受用鋼材およびその製造方法
JP5991254B2 (ja) * 2012-04-25 2016-09-14 Jfeスチール株式会社 軸受鋼の製造方法
US9963766B2 (en) 2012-09-26 2018-05-08 Aktiebolaget Skf Hypoeutectoid bearing steel
WO2014056726A1 (en) * 2012-10-10 2014-04-17 Aktiebolaget Skf Bearing steel alloy with resistance to hydrogen-embrittlement
CN104451452B (zh) * 2013-09-13 2016-09-28 宝钢特钢有限公司 一种用于风电设备的轴承钢及其制备方法
CN103667980B (zh) * 2013-11-07 2016-06-15 安徽省智汇电气技术有限公司 一种高速轴承用合金钢材料及其制备方法
US10246757B2 (en) 2014-01-10 2019-04-02 Nippon Steel & Sumitomo Metal Corporation Bearing part
CN107075625B (zh) * 2014-10-16 2019-07-09 日本制铁株式会社 高碳钢板及其制造方法
DE102015220299A1 (de) 2014-11-21 2016-05-25 Hyundai Motor Company Lagerstahl mit verbesserter Dauerhaltbarkeit und Verfahren zur Herstellung desselbigen
GB2535782A (en) * 2015-02-27 2016-08-31 Skf Ab Bearing Steel
JP6703385B2 (ja) * 2015-09-18 2020-06-03 国立大学法人大阪大学 高硬度かつ靭性に優れた鋼
JP6481652B2 (ja) * 2016-03-31 2019-03-13 Jfeスチール株式会社 軸受鋼
CN106521310B (zh) * 2016-10-27 2017-12-12 马钢(集团)控股有限公司 一种破碎锤活塞杆用钢及其热处理工艺
CN106756609A (zh) * 2016-11-09 2017-05-31 芜湖市永帆精密模具科技有限公司 一种轴承钢球及其制备方法
CN108559922B (zh) * 2018-05-28 2019-06-07 山东易斯特工程工具有限公司 一种隧道掘进机滚刀刀圈合金材料及其制备方法
CN110551880A (zh) * 2019-10-24 2019-12-10 成都先进金属材料产业技术研究院有限公司 小规格22Si2MnCrNi2MoA钢轧材软化热处理工艺
CN112111696A (zh) * 2020-09-29 2020-12-22 钢铁研究总院 高等向性和长接触疲劳寿命的高碳轴承钢及制造方法
CN114086076B (zh) * 2022-01-10 2022-04-15 北京科技大学 一种高碳铬轴承钢及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293939A (ja) * 1993-04-07 1994-10-21 Kobe Steel Ltd 高温転動疲労性に優れた軸受部品
JP2000204445A (ja) * 1998-11-11 2000-07-25 Ntn Corp 高温用転がり軸受部品
JP2001294972A (ja) * 2000-04-18 2001-10-26 Sumitomo Metal Ind Ltd 軸受用鋼材
JP2002294337A (ja) * 2001-03-28 2002-10-09 Kawasaki Steel Corp 熱間加工ままでの冷間加工性に優れる含b高炭素鋼の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663314A (en) * 1970-10-14 1972-05-16 Kaizo Monma Bearing steel composition
JPS5236270Y2 (ja) * 1971-06-07 1977-08-18
JPH01306542A (ja) 1988-05-31 1989-12-11 Sanyo Special Steel Co Ltd 介在物組成を制御した軸受用鋼
JP3018355B2 (ja) 1989-10-11 2000-03-13 日本精工株式会社 軸受用鋼及び転がり軸受
EP0458646B1 (en) 1990-05-23 1997-09-10 Aichi Steel Works, Ltd. Bearing steel
JP3383347B2 (ja) 1993-03-30 2003-03-04 川崎製鉄株式会社 熱処理生産性ならびに繰り返し応力負荷によるミクロ組織変化の遅延特性に優れた軸受鋼
JP3411388B2 (ja) 1994-05-27 2003-05-26 川崎製鉄株式会社 熱処理生産性ならびに繰り返し応力負荷によるミクロ組織変化の遅延特性に優れた軸受部材
US5733388A (en) * 1994-08-11 1998-03-31 Daido Tokiushuko Kabushiki Kaisha Steel composition for bearings and method of producing the same
JPH0987805A (ja) * 1995-09-26 1997-03-31 Sumitomo Metal Ind Ltd 高炭素薄鋼板およびその製造方法
JP3565960B2 (ja) * 1995-11-01 2004-09-15 山陽特殊製鋼株式会社 軸受用鋼、軸受および転がり軸受
FR2761699B1 (fr) * 1997-04-04 1999-05-14 Ascometal Sa Acier et procede pour la fabrication d'une piece pour roulement
FR2781813B1 (fr) 1998-07-30 2000-09-15 Ascometal Sa Acier pour la fabrication d'une piece pour roulement
JP3779078B2 (ja) 1998-11-10 2006-05-24 Jfeスチール株式会社 転動疲労寿命に優れる軸受用鋼
JP4273609B2 (ja) * 2000-02-10 2009-06-03 日本精工株式会社 転がり軸受

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293939A (ja) * 1993-04-07 1994-10-21 Kobe Steel Ltd 高温転動疲労性に優れた軸受部品
JP2000204445A (ja) * 1998-11-11 2000-07-25 Ntn Corp 高温用転がり軸受部品
JP2001294972A (ja) * 2000-04-18 2001-10-26 Sumitomo Metal Ind Ltd 軸受用鋼材
JP2002294337A (ja) * 2001-03-28 2002-10-09 Kawasaki Steel Corp 熱間加工ままでの冷間加工性に優れる含b高炭素鋼の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1614761A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020563A (zh) * 2019-12-11 2020-04-17 安徽泰尔表面工程技术有限公司 失效渗碳淬火件直接激光熔覆的再制造方法

Also Published As

Publication number Publication date
KR20070074664A (ko) 2007-07-12
CN100439540C (zh) 2008-12-03
EP1614761A4 (en) 2007-02-28
JP2004315890A (ja) 2004-11-11
EP1614761B1 (en) 2015-01-28
EP1614761A1 (en) 2006-01-11
CN1774521A (zh) 2006-05-17
KR20050122222A (ko) 2005-12-28
TWI267556B (en) 2006-12-01
US7763124B2 (en) 2010-07-27
CA2517594A1 (en) 2004-10-28
CA2517594C (en) 2012-09-18
TW200424324A (en) 2004-11-16
US20060081314A1 (en) 2006-04-20
JP4252837B2 (ja) 2009-04-08

Similar Documents

Publication Publication Date Title
WO2004092434A1 (ja) 転動疲労寿命に優れた鋼材及びその製造方法
JP5432105B2 (ja) 肌焼鋼およびその製造方法
JP6794012B2 (ja) 耐結晶粒粗大化特性、耐曲げ疲労強度および耐衝撃強度に優れた機械構造用鋼
WO2013024876A1 (ja) ばね鋼およびばね
JP5783056B2 (ja) 浸炭軸受鋼鋼材
JP2015166495A (ja) 冷間鍛造性および結晶粒粗大化抑制能に優れた肌焼鋼
JP2012172247A (ja) 耐水素脆化特性に優れた高強度ばね用鋼
EP3020841B1 (en) Coil spring, and method for manufacturing same
JP2008088484A (ja) 疲労特性に優れた軸受用鋼部品およびその製造方法
JP5990428B2 (ja) 転動疲労特性に優れた軸受用鋼材およびその製造方法
JP4133515B2 (ja) 耐へたり性及び耐割れ性に優れたばね用鋼線
WO2018212196A1 (ja) 鋼及び部品
JP3233674B2 (ja) 軸受用鋼
CN111334708B (zh) 一种抗拉强度≥2250MPa且疲劳性能优异的高强度弹簧钢及其生产方法
JP2015127435A (ja) 浸炭後の曲げ疲労特性に優れた鋼材およびその製造方法並びに浸炭部品
JP7552959B1 (ja) 熱間鍛造用非調質鋼並びに熱間鍛造材及びその製造方法
JP2753998B2 (ja) 浸炭異常層の少ない浸炭用鋼
JP2003193199A (ja) 熱間加工ままで冷間加工性に優れる軸受け用鋼材およびその製造方法
JP2024101924A (ja) 軸受用鋼
JPH0873991A (ja) 浸炭用鋼
KR101536405B1 (ko) 내피로특성이 우수한 고탄소 크롬 베어링용 강 및 그 제조방법
KR20220087978A (ko) 절삭성 및 연자성이 우수한 흑연화 열처리용 선재 및 흑연강
JP2007113034A (ja) 軸受鋼
JPH0881743A (ja) 浸炭用鋼
JP2014015632A (ja) 軸受鋼

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2517594

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2006081314

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10547252

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004727389

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057018274

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048102508

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057018274

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004727389

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10547252

Country of ref document: US