WO2004080914A1 - Wärmesenke mit hoher wärmeleitfähigkeit - Google Patents

Wärmesenke mit hoher wärmeleitfähigkeit Download PDF

Info

Publication number
WO2004080914A1
WO2004080914A1 PCT/AT2004/000018 AT2004000018W WO2004080914A1 WO 2004080914 A1 WO2004080914 A1 WO 2004080914A1 AT 2004000018 W AT2004000018 W AT 2004000018W WO 2004080914 A1 WO2004080914 A1 WO 2004080914A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
component according
volume
diamond
composite material
Prior art date
Application number
PCT/AT2004/000018
Other languages
English (en)
French (fr)
Inventor
Arndt LÜDTKE
Original Assignee
Plansee Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plansee Aktiengesellschaft filed Critical Plansee Aktiengesellschaft
Priority to EP04703308.9A priority Critical patent/EP1601630B1/de
Priority to US10/548,725 priority patent/US8575051B2/en
Priority to JP2006503938A priority patent/JP4880447B2/ja
Publication of WO2004080914A1 publication Critical patent/WO2004080914A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to a component as a heat sink made of a composite material with a diamond content of 40-90% by volume, with an average size of the diamond grains of 5 to 300 ⁇ m, and a method for its production.
  • Heat sinks are widely used in the manufacture of electronic components.
  • the semiconductor components and a mechanically stable casing are the essential components of an electronic package.
  • the terms substrate, heat spreader or carrier plate are often used for the heat sink.
  • the semiconductor component consists, for example, of single-crystal silicon or gallium arsenide. This is connected to the heat sink, and soldering methods are usually used as the joining technique.
  • the heat sink has the function of dissipating the heat generated during the operation of the semiconductor component.
  • Semiconductor components with particularly high heat development are, for example, LDMOS (laterally diffused metal oxide semi-conductor), laser diodes, CPU (central processing unit), MPU (microprocessor unit) or HFAD (high frequency amplify device).
  • LDMOS laterally diffused metal oxide semi-conductor
  • laser diodes laser diodes
  • CPU central processing unit
  • MPU microprocessor unit
  • HFAD high frequency amplify device
  • the geometric designs of the heat sink
  • Semiconductor materials are low compared to other materials and are used in the literature for silicon with 2.1 x 10 "6 K “ 1 to 4.1 x 10 "6 K “ 1 and for gallium arsenide with 5, 6 x 10 "6 K “ 1 to 5.8 x 10 "6 K “ 1 specified.
  • Ceramic materials, composite materials or plastics are usually used for the encapsulation. Examples of ceramic materials are Al 2 0 3 with a Expansion coefficient of 6.5 x 10 "6 K “ 1 or aluminum nitride with an expansion coefficient of 4.5 x 10 "6 K “ 1 .
  • Tensions can arise during the manufacture of the package, namely during the cooling phase from the soldering temperature to the room temperature. However, temperature fluctuations also occur during operation of the package, which range, for example, from -50 ° C to 200 ° C and can lead to thermomechanical stresses in the package.
  • Single-phase metallic materials do not sufficiently meet the required property profile, since the materials with high thermal conductivity also have a high coefficient of thermal expansion. Therefore, in order to meet the requirement profile, composite materials or material composites are used for the production of the substrate.
  • Usual tungsten-copper and Mo-copper composite materials or composite materials such as are described for example in EP 0 100 232, US 4 950 554 and US 5 493 153 have a thermal conductivity at room temperature of 170 to 250 W / (mK) a coefficient of thermal expansion of 6.5 x 10 "6 to 9.0 x 10 " 6 K "1 , which is no longer sufficient for many applications.
  • Heat sinks were also of interest to diamond or composite materials or composite materials containing diamond. This is the thermal conductivity of diamond at 1,000 to 2,000 W / (mK), whereby the content of nitrogen and boron atoms on lattice sites is particularly important for quality.
  • EP 0521 405 describes a heat sink which has a polycrystalline diamond layer on the side facing the semiconductor chip.
  • the lack of plastic deformability of the diamond layer can lead to cracks in the diamond layer as soon as it cools down from the coating temperature.
  • US Pat. No. 5,273,790 describes a diamond composite material with a thermal conductivity> 1,700 W / (m.K), in which loose, shaped diamond particles are converted from the gas phase into a stable shaped body by means of subsequent diamond deposition.
  • the diamond composite produced in this way is too expensive for commercial use in mass parts.
  • WO 99/12866 describes a method for producing a
  • Diamond-silicon carbide composite material described It is manufactured by infiltrating a diamond skeleton with silicon or a silicon alloy. Due to the high melting point of silicon and the resulting high infiltration temperature, diamond is partly converted into carbon or subsequently into silicon carbide. Due to the high brittleness, the mechanical workability of this material is extremely problematic and complex, so that this composite material has not yet been used for heat sinks.
  • US 4902652 describes a method for producing a sintered diamond material.
  • An element from the group of transition metals from groups 4a, 5a and 6a, boron and silicon is deposited on diamond powder by means of physical exposure processes.
  • the coated diamond grains are then connected to one another by means of a solid phase sintering process. It is disadvantageous that the resulting product has a high porosity and a coefficient of thermal expansion that is too low for many applications.
  • No. 5,045,972 describes a composite material in which, in addition to diamond grains with a size of 1 to 50 ⁇ m, there is a metallic matrix which consists of aluminum, magnesium, copper, silver or their alloys. The disadvantage here is that the metallic matrix is only poorly bonded to the diamond grains, so that the thermal conductivity and mechanical integrity are insufficient to this extent.
  • the metal carbides are the carbides of the metals of the 4a to 6a groups of the periodic table. Particular emphasis is given to EP 0 859 408 TiC, ZrC and HfC. Ag, Cu, Au and Al are mentioned as particularly advantageous filler metals. It is disadvantageous that the metal carbides have a low thermal conductivity, which for TiC, ZrC, HfC, VC, NbC and TaC is in the range from 10 to 65 W / (m.K). Another disadvantage is that the metals of the 4a to 6a groups of the periodic table have a solubility in the filler metal, such as silver, whereby the thermal conductivity of the metal phase is greatly reduced.
  • EP 0 898 310 describes a heat sink which consists of diamond grains, a metal or a metal alloy of high thermal conductivity from the group Cu, Ag, Au, Al, Mg and Zn and a metal carbide of the metals of groups 4a, 5a and Cr, the Metal carbides cover at least 25% of the surface of the diamond grains.
  • the process speed and the degree of integration of the semiconductor components have increased significantly, which has also led to an increase in heat development in the package.
  • Optimal heat management is therefore an increasingly important criterion.
  • the thermal conductivity of the materials described above is no longer sufficient for a large number of applications, or their production is too expensive for widespread use.
  • the availability of improved, inexpensive heat sinks is a prerequisite for further optimization of semiconductor components.
  • the component according to the invention has excellent adhesive strength between the diamond grains and the phase rich in Ag, Au or Al due to the silicon-carbon compound formed in between. A thickness of this is sufficient to achieve this connection
  • Silicon-carbon compound in the nanometer range or a degree of coverage of> 60 percent.
  • the degree of coverage is to be understood as the proportion of the diamond grain surface which is covered with the silicon-carbon compound. According to these premises, this corresponds to a volume content of the silicon-carbon compound of> 0.005 percent.
  • silicon carbide In contrast to metal carbides, silicon carbide has a very high thermal conductivity of around 250 W / (mK). Since the solubility of Si in Ag, Au and Al is very low at room temperature, the very high thermal conductivity of these metals in the pure state is only slightly deteriorated. Alloys of Ag, Au or Al with Cu or Ni also have a sufficiently high thermal conductivity, which is deteriorated to a not unacceptably high degree by low, dissolved Si components. Furthermore, the machinability is sufficient due to the very ductile Ag, Au or Al structural components. For a cost-effective representation, it is also advantageous that the diamond content can be reduced due to the high thermal conductivity of the Ag, Au or Al-rich structural components.
  • Particularly advantageous contents of silicon carbide and phase rich in Ag, Au or Al are 0.1 to 7% by volume or 7 to 30% by volume.
  • Tests have shown that diamond powders can be processed in a wide range of grain sizes. In addition to natural diamonds, cheaper synthetic diamonds can also be processed. Excellent processing results have also been achieved with the common coated diamond grades. This means that the cheapest variety can be used. For non-cost-critical applications with extremely high demands on thermal conductivity, it is favorable to use a diamond fraction with an average grain size in the range from 50 to 150 ⁇ m. Furthermore, the highest thermal conductivity values can be achieved by using Ag at a content of 20 to 30 vol.%.
  • the components are advantageously coated with Ni, Cu, Au or Ag or an alloy of these metals and subsequently soldered to a ceramic frame, for example Al 2 O 3 or AIN.
  • a ceramic frame for example Al 2 O 3 or AIN.
  • a wide variety of processes can be used for the production. It is possible to compact silicon powder coated with silicon carbide with Ag, Au or Al under temperature and pressure. This can be done, for example, in hot presses or hot isostatic presses. Infiltration has proven to be particularly advantageous.
  • a precursor or intermediate is produced which can contain a binder in addition to diamond powder. Binders which pyrolyze to a high degree under the influence of temperature are particularly advantageous. Advantageous binder contents are 1 to 20% by weight. Diamond powder and binder are mixed in conventional mixers or mills.
  • shaping which can be carried out by pouring into a mold or with pressure support, for example by pressing or metal powder injection molding.
  • the intermediate substance is subsequently heated to a temperature at which the binder at least partially pyrolyzes.
  • the pyrolysis of the binder can also take place during the heating up in the infiltration process.
  • the infiltration process can be pressure-free or pressure-supported. The latter is commonly referred to as squezze casting.
  • a foil made of an Ag-Si, Au-Si or Al-Si alloy with an Si content of ⁇ 50% by weight is advantageously used as the infiltration material.
  • the liquidus temperature of the respective alloy is not higher than 1200 ° C, advantageously not higher than 1000 ° C, since otherwise excessive diamond components will decompose.
  • Films with a eutectic composition are particularly suitable for infiltration.
  • the composite material according to the invention can also be used as a heat sink in other areas of application, for example in the field of aerospace or engine construction. The invention is explained in more detail below by means of production examples.
  • Natural diamond powder of quality IIA (Micron + SND from Element Six GmbH) with an average grain size of 40 - 80 ⁇ m was mixed with 7% by volume of a binder based on epoxy resin.
  • the precursor or intermediate thus produced was pressed by means of die presses at a pressure of 200 MPa to a plate measuring 35 mm x 35 mm x 5 mm.
  • the pore content of the plate was approximately 15% by volume.
  • this plate was covered with a foil made of an eutectic Ag-Si alloy, the Si content being 11 atomic% and heated to a temperature of 860 ° C. in a vacuum oven for infiltration, the holding time being 15 minutes scam.
  • the volume contents of the phases present were determined by means of quantitative metallography.
  • the value for silicon carbide was about 2% by volume, the silicon carbide largely enveloping the diamond grains evenly. Due to the thin layer thickness of this silicon carbide coating, the modification of the silicon carbide phase could not be determined.
  • the structure consists of an Ag-rich phase with embedded Si precipitates, which have formed through the eutectic conversion.
  • the volume fraction of the Ag-rich phase was approximately 12%, that of Si approximately 1%.
  • no other constituents could be detected by means of EDX, so that, based on the detection limit, it can be assumed that the Ag content is greater than 99 atom%.
  • Thermal expansion coefficients were processed by laser and EDM. An average value of 450 W / (mK) was measured for the thermal conductivity at room temperature. The determination of the coefficient of thermal expansion gave an average value of 8.5 10 "6 K " 1 .
  • Example 3 synthetic diamond powder of Micron + MDA quality from Element Six GmbH and an average grain size of 40 - 80 ⁇ m was processed. Processing was carried out as described in Example 1. The average thermal conductivity at room temperature of the composite material produced in this way was 410 W / (mK), the average coefficient of thermal expansion 9.0 10 "6 K " 1 .
  • Example 3 The average thermal conductivity at room temperature of the composite material produced in this way was 410 W / (mK), the average coefficient of thermal expansion 9.0 10 "6 K " 1 .
  • Example 4 Synthetic diamond powder of the Micron + MDA quality from Element Six GmbH with an average grain fraction of 40-80 ⁇ m was processed in accordance with Example 3, but without a holding phase being carried out at about 400 ° C. for 15 minutes while cooling from the infiltration temperature.
  • the average thermal conductivity at room temperature of the composite material produced in this way was 440 W / (mK), the average coefficient of thermal expansion 8.5 10 "6 K " 1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die erfindung betrifft eine Wärmesenke aus einem diamanthaltigen Verbundwerkstoff. Neben einem Diamantanteil von 40-90 Vol.% enthält der Verbundwerkstoff 0,005 bis 12 Vol.% einer Silizium Kohlenstoffverbindung, 7 bis 49 Vol.% einer Ag-, Au- oder Al-reichen Phase und kleiner 5 Vol.% einer weiteren Phase, wobei das Volumenverhältnis der Ag-, Au- oder Al-reichen Phase zu Siliziumkarbid grösser 4 ist und zumindest 60 % der Diamantoberfläche von der Silizium Kohlenstoffverbindung bedeckt ist. Bevorzugte Herstellverfahren umfassen drucklose und druckunterstützte Infiltrationstechniken. Der Bauteil eignet sich insbesondere als Wärmesenke für Halbleiterkomponenten.

Description

WÄRMESENKE MIT HOHER WÄRMELEITFÄHIGKEIT
Die Erfindung betrifft ein Bauteil als Wärmesenke aus einem Verbundwerkstoff mit einem Diamantanteil von 40 - 90 Vol.%, bei einer mittleren Größe der Diamantkörner von 5 bis 300 μm und ein Verfahren zu dessen Herstellung.
Eine breite Anwendung finden Wärmesenken bei der Herstellung von elektronischen Komponenten. Neben der Wärmesenke sind die Halbleiterkomponente und eine mechanisch stabile Umhüllung die wesentlichen Bestandteile eines elektronischen Package. Für die Wärmesenke werden auch des öfteren die Bezeichnungen Substrat, Wärmespreizer oder Trägerplatte verwendet. Die Halbleiterkomponente besteht beispielsweise aus einkristallinem Silizium oder Galliumarsenid. Diese ist mit der Wärmesenke verbunden, wobei als Fügetechnik üblicherweise Lötverfahren zum Einsatz kommen. Die Wärmesenke hat die Funktion, die beim Betrieb der Halbleiterkomponente entstehende Wärme abzuleiten. Halbleiterkomponenten mit besonders hoher Wärmeentwicklung sind beispielsweise LDMOS (laterally diffused metal oxide semi-conductor), Laserdioden, CPU (central processing unit), MPU (microprocessor unit) oder HFAD (high frequency amplify device). Die geometrischen Ausführungen der Wärmesenke sind anwendungsspezifisch und vielfältig. Einfache Formen sind flache Plättchen. Es werden jedoch auch komplex gestaltete Substrate mit Ausnehmungen und Stufen eingesetzt. Die Wärmesenke selbst wiederum ist mit einer mechanisch stabilen Umhüllung verbunden. Die Wärmeausdehnungskoeffizienten der zum Einsatz kommenden
Halbleiterwerkstoffe sind im Vergleich zu anderen Werkstoffen niedrig und werden in der Literatur für Silizium mit 2,1 x 10"6 K"1 bis 4,1 x 10"6 K"1 und für Galliumarsenid mit 5, 6 x 10"6 K"1 bis 5,8 x 10"6 K"1 angegeben. Auch andere Halbleiterwerkstoffe, die großtechnisch noch nicht breit eingesetzt werden, wie z.B. Ge, In, Ga, As, P oder Siliziumkarbid weisen ähnlich niedere Ausdehnungskoeffizienten auf. Für die Umhüllung werden üblicherweise keramische Werkstoffe, Werkstoffverbunde oder auch Kunststoffe eingesetzt. Beispiele für keramische Werkstoffe sind Al203 mit einem Ausdehnungskoeffizienten von 6,5 x 10"6 K"1 oder Aluminiumnitrid mit einem Ausdehnungskoeffizienten von 4,5 x 10"6 K"1.
Ist das Ausdehnungsverhalten der beteiligten Komponenten unterschiedlich, werden Spannungen im Verbund eingebaut, die zu Verwerfungen, zu Ablösungen oder zum Bruch der Komponenten führen können. Spannungen können dabei bereits bei der Herstellung des Package entstehen und zwar während der Abkühlphase von der Löttemperatur auf Räumtemperatur. Jedoch auch beim Betrieb des Package treten Temperaturschwankungen auf, die beispielsweise von -50°C bis 200°C reichen und zu thermomechanischen Spannungen im Package führen können.
Daraus ergeben sich die Anforderungen an den Werkstoff für die Wärmesenke. Zum einen soll er eine möglichst hohe Wärmeleitfähigkeit aufweisen, um den Temperaturanstieg der Halbleiterkomponente während des Betriebes möglichst gering zu halten. Zum anderen ist es erforderlich, dass der Wärmeausdehnungskoeffizient möglichst gut sowohl an den der
Halbleiterkomponente, als auch an den der Hülle angepasst ist. Einphasige metallische Werkstoffe erfüllen das geforderte Eigenschaftsprofil nicht ausreichend, da die Werkstoffe mit hoher Wärmeleitfähigkeit auch einen hohen Wärmeausdehnungskoeffizienten besitzen. Daher werden, um dem Anforderungsprofil gerecht ∑u werden, für die Herstellung des Substrates Verbundwerkstoffe oder Werkstoffverbunde eingesetzt.
Übliche Wolfram-Kupfer und Mo-Kupfer Verbundwerkstoffe oder Werkstoffverbunde wie diese beispielsweise in der EP 0 100 232, US 4 950 554 und der US 5 493 153 beschrieben sind, weisen eine thermische Leitfähigkeit bei Raumtemperatur von 170 bis 250 W/(m.K) bei einem Wärmeausdehnungskoeffizienten von 6,5 x 10"6 bis 9,0 x 10"6 K"1 auf, was für viele Anwendungen nicht mehr ausreichend ist.
Mit den steigenden Anforderungen an die thermische Leitfähigkeit von
Wärmesenken fanden auch Diamant bzw. diamanthaltige Verbundwerkstoffe oder Werkstoffverbunde Interesse. So liegt die Wärmeleitfähigkeit von Diamant bei 1.000 bis 2.000 W/(m.K), wobei speziell der Gehalt an Stickstoff- und Boratomen auf Gitterplätzen qualitätsbestimmend ist.
In der EP 0521 405 ist eine Wärmesenke beschrieben, die auf der dem Halbleiterchip zugewandten Seite eine polykristalline Diamantschicht aufweist. Durch das Fehlen einer plastischen Verformbarkeit der Diamantschicht kann es bereits beim Abkühlen von der Beschichtungstemperatur zu Rissen in der Diamantschicht kommen.
Die US 5 273790 beschreibt einen Diamantverbundwerkstoff mit einer thermischen Leitfähigkeit > 1.700 W/(m.K), bei dem lose, in Form gebrachte Diamantteilchen mittels nachfolgender Diamantabscheidung aus der Gasphase in einen stabilen Formkörper übergeführt werden. Der so gefertigte Diamantverbund ist für die kommerzielle Anwendung in Massenteilen zu teuer.
In der WO 99/12866 ist ein Verfahren zur Herstellung eines
Diamant-Siliziumkarbid-Verbundwerkstoffes beschrieben. Die Herstellung erfolgt durch Infiltration eines Diamantskelettes mit Silizium oder einer Siliziumlegierung. Aufgrund des hohen Schmelzpunktes von Silizium und der dadurch bedingten hohen Infiltrationstemperatur wird Diamant teilweise in Kohlenstoff bzw. in weiterer Folge in Siliziumkarbid umgewandelt. Auf Grund der hohen Sprödigkeit ist die mechanische Bearbeitbarkeit dieses Werkstoffes höchst problematisch und aufwendig, so dass dieser Verbundwerkstoff bisher noch nicht für Wärmesenken zum Einsatz kommt.
Die US 4902652 beschreibt ein Verfahren zur Herstellung eines gesinterten Diamantwerkstoffes. Auf Diamantpulver wird dabei mittels physikalischer Besen ichtungsverf ah ren ein Element aus der Gruppe Übergangsmetalle der Gruppen 4a, 5a und 6a, Bor und Silizium abgeschieden. Anschließend werden die beschichteten Diamantkörner mittels eines Festphasensinterprozesses miteinander verbunden. Nachteilig ist, dass das entstehende Produkt eine hohe Porosität und einen für viele Anwendungen zu niedrigen Wärmeausdehnungskoeffizienten aufweist. Die US 5 045 972 beschreibt einen Verbundwerkstoff, in dem neben Diamantkörnern mit einer Größe von 1 bis 50 μm eine metallische Matrix vorliegt, die aus Aluminium, Magnesium, Kupfer, Silber oder deren Legierungen besteht. Nachteilig dabei ist, dass die metallische Matrix nur mangelhaft an den Diamantkörnern angebunden ist, so dass dadurch die Wärmeleitfähigkeit und mechanische Integrität in nicht ausreichendem Maße gegeben ist.
Auch die Verwendung von feinerem Diamantpulver, beispielsweise mit einer Korngröße < 3 μm, wie dies aus der US 5 008 737 hervorgeht, verbessert die Diamant / Metall Haftung nicht. Die US 5 783316 beschreibt ein Verfahren, bei dem Diamantkörner mit W, Zr, Re, Cr oder Titan beschichtet, die beschichteten Körner in weiter Folge kompaktiert werden und der poröse Körper z.B. mit Cu, Ag oder Cu-Ag Schmelzen infiltriert wird. Die hohen Beschichtungskosten begrenzen das Einsatzgebiet derartig hergestellter Verbundwerkstoffe. Die EP 0 859 408 beschreibt einen Werkstoff für Wärmesenken, dessen Matrix aus Diamantkörnern und Metallkarbiden gebildet ist, wobei die Zwischenräume der Matrix durch ein Metall gefüllt sind. Als Metallkarbide werden die Karbide der Metalle der 4a bis 6a Gruppen des Periodensystems bezeichnet. Besonders hervorgehoben werden dabei in der EP 0 859 408 TiC, ZrC und HfC. Als besonders vorteilhafte Füllmetalle sind Ag, Cu, Au und AI angeführt. Nachteilig ist, dass die Metallkarbide eine niedrige Wärmeleitfähigkeit aufweisen, die für TiC, ZrC, HfC, VC, NbC und TaC im Bereich von 10 bis 65 W/(m.K) liegt. Weiters ist nachteilig, dass die Metalle der 4a bis 6a Gruppen des Periodensystems eine Löslichkeit im Füllmetall, wie beispielsweise Silber aufweisen, wodurch die Wärmeleitfähigkeit der Metallphase stark reduziert wird.
Die EP 0 898 310 beschreibt eine Wärmesenke, die aus Diamantkömem, einem Metall oder einer Metalllegierung hoher Wärmeleitfähigkeit aus der Gruppe Cu, Ag, Au, AI, Mg und Zn und einem Metallkarbid der Metalle der Gruppen 4a, 5a und Cr besteht, wobei die Metallkarbide zu zumindest 25 % die Oberfläche der Diamantkörner bedecken. Auch hier wirken sich die schlechte Wärmeleitfähigkeit der Karbide der 4a, 5a Gruppen des Periodensystems und Cr und die hohe Löslichkeit dieser Elemente in Cu, Ag, Au, AI, Mg und Zn und die damit verbundene Reduzierung der Wärmeleitfähigkeit nachteilig aus. In den letzten Jahren sind die Prozessgeschwindigkeit und der Integrationsgrad der Halbleiterkomponenten stark angestiegen, was auch zu einer Zunahme der Wärmeentwicklung im Package geführt hat. Ein optimales Wärmemanagement stellt daher ein immer wesentlicheres Kriterium dar. Die Wärmeleitfähigkeit der oben beschriebenen Werkstoffe reicht für eine Vielzahl von Anwendungen nicht mehr aus, bzw. ist deren Herstellung für eine breite Verwendung zu aufwendig. Die Verfügbarkeit von verbesserten, kostengünstigen Wärmesenken stellt eine Voraussetzung für eine weitere Optimierung von Halbleiterbauelementen dar.
Aufgabe der vorliegenden Erfindung ist somit, für ein als Wärmesenke vorgesehenes Bauteil einen Verbundwerkstoff bereitzustellen, der eine hohe Wärmeleitfähigkeit und einen niedrigen Ausdehnungskoeffizienten aufweist, bei Verarbeitungseigenschaften, die eine kostengünstige Herstellung ermöglichen. Gelöst wird diese Aufgabe durch ein Bauteil gemäß Anspruch 1.
Der erfindungsgemäße Bauteil weist eine ausgezeichnete Haftfestigkeit zwischen den Diamantkörnern und der Ag-, Au- oder AI-reichen Phase durch die sich dazwischen bildende Silizium-Kohlenstoffverbindung auf. Um diese Anbindung zu erzielen, reicht bereits eine Dicke dieser
Silizium-Kohlenstoffverbindung im Nanometerbereich, bzw. eine Bedeckungsgrad von > 60 Prozent aus. Unter Bedeckungsgrad ist dabei der Anteil der Diamantkörneroberfläche zu verstehen, die mit der Silizium- Kohlenstoffverbindung bedeckt ist. Entsprechend dieser Prämissen entspricht dies einem Volumengehalt der Silizium-Kohlenstoffverbindung von > 0,005 Prozent.
Im Gegensatz zu den Metallkarbiden besitzt Siliziumkarbid eine sehr hohe Wärmeleitfähigkeit von etwa 250 W/(m.K). Da bei Raumtemperatur die Löslichkeit von Si in Ag, Au und AI sehr gering ist, wird die im reinen Zustand sehr hohe Wärmeleitfähigkeit dieser Metalle nur geringfügig verschlechtert. Legierungen von Ag, Au oder AI mit Cu oder Ni weisen ebenfalls eine ausreichend hohe Wärmeleitfähigkeit auf, die durch geringe, gelöste Si-Anteile in einem nicht unzulässig hohen Maße verschlechtert werden. Weiters ist die mechanische Bearbeitbarkeit auf Grund der sehr duktilen Ag-, Au- oder AI-Gefügebestandteile in einem ausreichenden Maße gegeben. Für eine kostengünstige Darstellung ist es weiters vorteilhaft, dass durch die hohe Wärmeleitfähigkeit der Ag-, Au- oder AI-reichen Gefügebestandteile der Diamantgehalt reduziert werden kann. Durch Variation des Diamant-, Siliziumkarbid- und Metallphasengehaltes ist es möglich, in Hinblick auf Wärmeleitfähigkeit und Wärmedehnung maßgeschneiderte Wärmesenken für unterschiedlichste Anforderungen herzustellen. Weitere Gefügebestanteile verschlechtern die Eigenschaften nicht in einem unzulässigen Ausmaß, solange deren Gehalt 5 Vol.% nicht übersteigt. Dabei zu nennen sind nichtgebundenes Silizium und nichtgebundener Kohlenstoff. Diese Gefügebestandteile verschlechtern zwar geringfügig die Wärmeleitfähigkeit, wirken sich jedoch günstig auf den Wärmeausdehnungskoeffizienten aus, indem sie diesen verringern. Zudem können sie teilweise herstelltechnisch nur mit relativ großem Aufwand vollständig vermieden werden.
Besonders vorteilhafte Gehalte an Siliziumkarbid und Ag-, Au- oder AI-reicher Phase liegen bei 0,1 bis 7 Vol.% bzw. bei 7 bis 30 Vol.%. Versuche haben gezeigt, dass Diamantpulver in einem breiten Korngrößenspektrum verarbeitet werden können. Neben Naturdiamanten lassen sich auch preisgünstigere synthetische Diamanten verarbeiten. Auch mit den gängigen beschichteten Diamantsorten wurden ausgezeichnete Verarbeitungsergebnisse erzielt. Daraus ergibt sich, dass auf die jeweils kostengünstigste Sorte zurückgegriffen werden kann. Für kostenunkritische Anwendungen mit extrem hohen Anforderungen an die Wärmeleitfähigkeit ist es günstig, eine Diamantfraktion mit einer mittleren Korngröße im Bereich von 50 bis 150 μm zu verwenden. Weiteres lassen sich die höchsten Wärmeleitfähigkeitswerte durch die Verwendung von Ag bei Gehalten von 20 bis 30 Vol.% erzielen. Für den Einsatz der Bauteile als Wärmesenken für elektronische Komponenten werden diese vorteilhafterweise mit Ni, Cu, Au oder Ag oder einer Legierung dieser Metalle beschichtet und in weiterer Folge mit einem keramischen Rahmen, beispielsweise ais Al203 oder AIN verlötet. Für die Herstellung können unterschiedlichste Verfahren eingesetzt werden. So ist es möglich mit Siliziumkarbid beschichte Diamantpulver mit Ag, Au oder AI unter Temperatur und Druck zu verdichten. Dies kann beispielsweise in Heißpressen oder heißisostatischen Pressen erfolgen. Als besonders vorteilhaft hat sich das Infiltrieren gezeigt. Dabei wird ein Precursor oder Zwischenstoff hergestellt, der neben Diamantpulver auch einen Binder enthalten kann. Besonders vorteilhaft sind dabei Binder, die unter Temperatureinwirkung zu einem hohen Anteil pyrolisieren. Vorteilhafte Bindergehalte liegen bei 1 bis 20 Gew.%. Diamantpulver und Binder werden in üblichen Mischern oder Mühlen vermengt. Danach erfolgt die Formgebung, wobei diese durch Schüttung in eine Form oder druckunterstützt, beispielsweise durch Pressen oder Metallpulverspritzguss, erfolgen kann. In weiterer Folge wird der Zwischenstoff auf eine Temperatur erhitzt, bei der der Binder zumindest teilweise pyrolisiert. Die Pyrolyse des Binders kann jedoch auch während des Aufheizens beim Infiltrationsprozess erfolgen. Der Infiltrationsprozess kann drucklos oder druckunterstützt erfolgen. Letzteres wird üblicherweise als Squezze-Casting bezeichnet. Als Infiltrationsmaterial wird vorteilhafterweise eine Folie aus einer Ag-Si-, Au-Si- oder Al-Si-Legierung mit einem Si-Gehalt < 50 Gew.% verwendet. Für die Wahl der Zusammensetzung ist zu berücksichtigen, dass die Liquidustemperatur der jeweiligen Legierung nicht höher als 1200°C, vorteilhafterweise nicht höher als 1000°C liegt, da sich ansonsten zu hohe Diamantanteile zersetzen. Besonders gut für das Infiltrieren eigenen sich Folien mit einer eutektischen Zusammensetzung. Neben der besonders vorteilhaften Verwendung der Bauteile für die Wärmeableitung bei Halbleiterkomponenten kann der erfindungsgemäße Verbundwerkstoff auch als Wärmesenke in anderen Anwendungsbereichen wie beispielsweise im Bereich der Luft- und Raumfahrt oder Motorenbau eingesetzt werden. Im Folgenden wird die Erfindung durch Herstellbeispiele näher erläutert.
Beispiel 1
Naturdiamantpulver der Qualität IIA (Micron+ SND der Element Six GmbH) mit einer mittleren Kornfraktion von 40 - 80 μm wurde mit 7 Vol.% eines Binders auf Epoxydharz-Basis vermengt. Der so hergestellte Precursor oder Zwischenstoff wurde mittels Matrizenpressen bei einem Druck von 200 MPa zu einer Platte der Dimension 35 mm x 35 mm x 5 mm gepresst. Der Porenanteil der Platte betrug ca. 15 Vol.%.
In weiterer Folge wurde diese Platte mit einer Folie aus einer eutektischen Ag-Si-Legierung bedeckt, wobei der Si-Gehalt 11 Atom% betrug und zur Infiltration in einem Ofen unter Vakuum auf eine Temperatur von 860°C erhitzt, wobei die Haltezeit 15 Minuten betrug. Nach Abkühlen auf Raumtemperatur mit einem Haltepunkt bei 400°C für ca. 10 Minuten, wurde mittels quantitativer Metallografie die Volumengehalte der vorhandenen Phasen ermittelt. Der Wert für Siliziumkarbid lag dabei bei ca. 2 Vol.%, wobei das Siliziumkarbid großteils die Diamantkörner gleichmäßig umhüllt. Auf Grund der geringen Schichtstärke dieser Siliziumkarbidumhüllung konnte die Modifikation der Siliziumkarbidphase nicht ermittelt werden. Neben Diamant und Siliziumkarbid besteht das Gefüge aus einer Ag-reichen Phase mit eingelagerten Si-Ausscheidungen, die sich durch die eutektische Umsetzung gebildet haben. Der Volumenanteil der Ag-reichen Phase betrug ca. 12 %, der von Si ca. 1 %. Mittels EDX konnten in der Ag-reichen Phase neben Ag keine weiteren Bestandteile nachgewiesen werden, sodass auf Grund der gegebenen Detektionsgrenze davon ausgegangen werden kann, dass der Ag-Anteil bei größer 99 Atom% liegt. Zur Bestimmung der Wärmeleitfähigkeit und des
Wärmeausdehnungskoeffizienten wurde die Platte mittels Laser und Erodieren bearbeitet. Für die Wärmeleitfähigkeit bei Raumtemperatur wurde ein mittlerer Wert von 450 W/(m.K) gemessen. Die Bestimmung des Wärmeausdehnungskoeffizienten erbrachte einen mittleren Wert von 8,5 10"6 K"1.
Beispiel 2
In einem weiteren Versuch wurde synthetisches Diamantpulver der Qualität Micron+ MDA der Element Six GmbH und einer mittleren Kornfraktion von 40 - 80 μm verarbeit. Die Verarbeitung erfolgte wie in Beispiel 1 beschrieben. Die mittlere Wärmeleitfähigkeit bei Raumtemperatur des so hergestellten Verbundwerkstoffes betrug 410 W/(m.K), der mittlere Wärmeausdehnungskoeffizient 9,0 10"6 K"1. Beispiel 3
In einem weiteren Versuch wurde synthetisches Diamantpulver der Qualität Micron+ MDA der Element Six GmbH mit einer mittleren Kornfraktion von 40 - 80 μm verarbeit. Die Precursor-Herstellung erfolgte wie in Beispiel 1 beschrieben. Die Infiltration des gepressten Precursors mit einer eutektischen Ag-Si-Schmelze wurde in einer üblichen Squeeze-Casting Vorrichtung, deren Form aus Warmarbeitsstahl auf 150°C vorgeheizt wurde, bei einem Gasdruck von ca. 40 MPa durchgeführt. Die Temperatur der Ag-Si-Schmelze betrug ca. 880°C. Die folgende, langsame Abkühlung bis Raumtemperatur wurde mit einem Haltepunkt bei 400°C für ca. 15 Minuten durchgeführt. Die mittlere Wärmeleitfähigkeit bei Raumtemperatur des so hergestellten Verbundwerkstoffes betrug 480 W/(m.K), der mittlere Wärmeausdehnungskoeffizient 8,5 10"6 K"1.
Beispiel 4 Synthetisches Diamantpulver der Qualität Micron+ MDA der Element Six GmbH mit einer mittleren Kornfraktion von 40 - 80 μm wurde gemäß Beispiel 3 verarbeitet, jedoch ohne dass bei der Abkühlung von der Infiltrationstemperatur eine Haltephase bei ca. 400°C für 15 Minuten durchgeführt wurde. Die mittlere Wärmeleitfähigkeit bei Raumtemperatur des so hergestellten Verbundwerkstoffes betrug 440 W/(m.K), der mittlere Wärmeausdehnungskoeffizient 8,5 10"6 K"1.

Claims

Patentansprüche
1. Bauteil als Wärmesenke, bestehend aus einem Verbundwerkstoff mit einem Diamantanteil von 40 bis 90 Vol.% mit einer mittleren Größe der Diamantkörner von 5 bis 300 μm; d a d u r c h g e k e n n z e i c h n e t, dass der Verbundwerkstoff 0,005 bis 12 Vol.% einer Silizium-Kohlenstoff-Verbindung, 7 bis 49 Vol.% einer Ag-, Au- oder AI- reichen Phase und kleiner 5 Vol.% einer weiteren Phase enthält, wobei das Volumenverhältnis der Ag-, Au- oder AI-reichen Phase zu der Silizium-Kohlenstoff-Verbindung größer 4 ist und die Oberfläche der
Diamantkörner zu zumindest 60 % mit der Silizium-Kohlenstoff-Verbindung bedeckt ist.
2. Bauteil nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei der Silizium-Kohlenstoff-Verbindung um SiC handelt.
3. Bauteil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Ag-, Au- oder AI-reiche Phase zumindest 95 Atomprozent des jeweiligen Elementes enthält.
4. Bauteil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Ag-, Au- oder AI-reiche Phase Cu und/oder Ni enthält.
5. Bauteil nach Anspruch 4, dadurch gekennzeichnet, dass die Cu und/oder Ni enthaltende Ag-, Au- oder AI-reiche Phase auch Si enthält.
6. Bauteil nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Verbundwerkstoff 0,1 bis 4,5 Vol.% nicht gebundenes Silizium enthält.
7. Bauteil nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Verbundwerkstoff 0,1 bis 4,5 Vol.% nicht gebundenen Kohlenstoff enthält.
8. Bauteil nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Silizium-Kohlenstoff-Verbindung überwiegend oder ausschließlich durch Umsetzung von Silizium mit dem Kohlenstoff des Diamants gebildet ist.
9. Bauteil nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Diamantkorngröße 50 bis 150 μm beträgt.
10. Bauteil nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Verbundwerkstoff 0,01 bis 12 Vol.% Siliziumkarbid und 7 bis 49 Vol.% einer Ag-, Au- oder AI-reichen Phase enthält.
11. Bauteil nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Verbundwerkstoff 0,01 bis 7 Vol.% Siliziumkarbid und 7 bis 49 Vol.% Ag enthält
12. Bauteil nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass auf diesem ein metallischer Überzug aufgebracht ist, der aus Ni, Cu, Au, Ag oder einer Legierung dieser Metalle besteht.
13. Bauteil nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass auf diesem ein keramischer Rahmen aufgelötet ist.
14. Verfahren zur Herstellung eines Bauteils nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das Verfahren zumindest folgende Prozessschritte umfasst: - Herstellen eines Zwischenstoffes, der Diamantkörner mit einer Korngröße von 5 bis 300 μm und einen Binder auf Polymer- oder Wachsbasis enthält, wobei der Binderanteil bei 1 bis 20 Gew.% liegt - Formgebung des Zwischenstoffes durch druckloses oder druckunterstütztes Füllen einer Form - Herstellen eines porösen Diamantkörpers durch Erhitzen des
Zwischenstoffes auf 300°C bis 1.200°C unter Schutzgasatmosphäre zur zumindest teilweisen Pyrolyse des Binders, wobei dieser Prozessschritt in den Infiltrationsprozess integriert sein kann - Infiltration des porösen Diamantkörpers durch Erhitzen desselben und einer siliziumhaltigen Ag-, Au- oder AI-Legierung, deren Si-Anteil bei < 40 Gew.% liegt, auf eine Temperatur über der Liquidustemperatur der jeweiligen siliziumhaltigen Ag-, Au- oder AI-Legierung, bevorzugt in Vakuum, wobei sich Silizium sowohl mit dem Kohlenstoff des pyrolisierten Binders, als auch mit Diamant zumindest teilweise zu
Siliziumkarbid umsetzt.
15. Verfahren zur Herstellung eines Bauteils nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das Verfahren zumindest folgende Prozessschritte umfasst:
- Herstellen eines Zwischenstoffes, der Diamantkörner mit einer Korngröße von 5 bis 300 μm und einen Binder auf Polymer- oder Wachsbasis enthält, wobei der Binderanteil bei 1 bis 20 Gew.% liegt
- Formgebung des Zwischenstoffes durch druckloses oder druck- unterstütztes Füllen einer Form
- Herstellen eines porösen Diamantkörpers durch Erhitzen des Zwischenstoffes auf 300°C bis 1.200°C unter Schutzgasatmosphäre zur zumindest teilweisen Pyrolyse des Binders, wobei dieser Prozessschritt in den Druckinfiltrationsprozess integriert sein kann - Erhitzen einer siliziumhaltigen Ag-, Au- oder AI-Legierung, deren
Si-Anteil bei < 40 Gew.% liegt, auf eine Temperatur über der Liquidustemperatur der jeweiligen siliziumhaltigen Ag-, Au- oder AI-Legierung und Druckinfiltration des porösen Diamantkörpers.
16. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass zur Infiltration eine eutektische Ag-Si-Legierung zur Verwendung kommt.
17. Verwendung eines Bauteils nach einem der Ansprüche 1 bis 13 als Wärmesenke für Halbleiterkomponenten.
PCT/AT2004/000018 2003-03-11 2004-01-20 Wärmesenke mit hoher wärmeleitfähigkeit WO2004080914A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04703308.9A EP1601630B1 (de) 2003-03-11 2004-01-20 Wärmesenke mit hoher wärmeleitfähigkeit
US10/548,725 US8575051B2 (en) 2003-03-11 2004-01-20 Heat sink having a high thermal conductivity
JP2006503938A JP4880447B2 (ja) 2003-03-11 2004-01-20 高熱伝導率のヒートシンク

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0016403U AT7382U1 (de) 2003-03-11 2003-03-11 Wärmesenke mit hoher wärmeleitfähigkeit
ATGM164/2003 2003-03-11

Publications (1)

Publication Number Publication Date
WO2004080914A1 true WO2004080914A1 (de) 2004-09-23

Family

ID=32967982

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/AT2004/000017 WO2004080913A1 (de) 2003-03-11 2004-01-20 Verfahren zur herstellung eines verbundwerkstoffes
PCT/AT2004/000018 WO2004080914A1 (de) 2003-03-11 2004-01-20 Wärmesenke mit hoher wärmeleitfähigkeit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/AT2004/000017 WO2004080913A1 (de) 2003-03-11 2004-01-20 Verfahren zur herstellung eines verbundwerkstoffes

Country Status (6)

Country Link
US (2) US20060157884A1 (de)
EP (2) EP1601630B1 (de)
JP (2) JP4880447B2 (de)
CN (1) CN100400467C (de)
AT (1) AT7382U1 (de)
WO (2) WO2004080913A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245568A (ja) * 2005-03-02 2006-09-14 Mitac Technology Corp 半導体チップ冷却システム及び冷却装置構造と製造方法
US7427807B2 (en) 2005-02-18 2008-09-23 Mitac Technology Corp. Chip heat dissipation structure and manufacturing method
US7504148B2 (en) 2005-03-03 2009-03-17 Mitac Technology Corp Printed circuit board structure and manufacturing method thereof
US8575625B2 (en) 2010-02-08 2013-11-05 A.L.M.T. Corp. Semiconductor element mounting member, method of producing the same, and semiconductor device
WO2019201588A1 (de) * 2018-04-18 2019-10-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. WERKSTOFF BESTEHEND AUS EINEM DREIDIMENSIONALEN GERÜST, DAS MIT SiC ODER SiC UND Si3N4 GEBILDET IST UND EINER EDELMETALLLEGIERUNG, IN DER SILICIUM ENTHALTEN IST, GEBILDET, SOWIE EIN VERFAHREN ZU SEINER HERSTELLUNG
CN111304481A (zh) * 2020-02-11 2020-06-19 中南大学 一种金刚石-金属复合材料的熔渗制备工艺及金刚石-金属复合材料

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004056734A1 (de) * 2004-11-24 2006-06-01 Vatcharachai Buanatra Diamantenformkörper
TWI268755B (en) * 2005-03-21 2006-12-11 Mitac Tech Corporation Chip heat dissipation system and manufacturing method and structure of heat exchange device thereof
US8637127B2 (en) 2005-06-27 2014-01-28 Kennametal Inc. Composite article with coolant channels and tool fabrication method
US8236074B1 (en) 2006-10-10 2012-08-07 Us Synthetic Corporation Superabrasive elements, methods of manufacturing, and drill bits including same
US9017438B1 (en) 2006-10-10 2015-04-28 Us Synthetic Corporation Polycrystalline diamond compact including a polycrystalline diamond table with a thermally-stable region having at least one low-carbon-solubility material and applications therefor
CN101522930B (zh) 2006-10-25 2012-07-18 Tdy工业公司 具有改进的抗热开裂性的制品
US8080074B2 (en) 2006-11-20 2011-12-20 Us Synthetic Corporation Polycrystalline diamond compacts, and related methods and applications
US8034136B2 (en) 2006-11-20 2011-10-11 Us Synthetic Corporation Methods of fabricating superabrasive articles
WO2009006163A2 (en) * 2007-06-29 2009-01-08 Itt Manufacturing Enterprises, Inc. Thermally conductive structural composite material and method
SE532992C2 (sv) * 2007-11-08 2010-06-08 Alfa Laval Corp Ab Förfarande för framställning av en diamantkomposit, grönkropp, diamantkomposit samt användning av diamantkompositen
EP2065734A1 (de) * 2007-11-30 2009-06-03 Plansee Se Spiegel zur Laserbearbeitung
US8999025B1 (en) 2008-03-03 2015-04-07 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
US20090236087A1 (en) * 2008-03-19 2009-09-24 Yamaha Corporation Heat exchange device
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US8297382B2 (en) 2008-10-03 2012-10-30 Us Synthetic Corporation Polycrystalline diamond compacts, method of fabricating same, and various applications
JP2010109081A (ja) * 2008-10-29 2010-05-13 Denki Kagaku Kogyo Kk Led発光素子用金属基複合材料基板及びそれを用いたled発光素子
CN102030556B (zh) * 2010-11-11 2012-10-31 北京科技大学 一种金刚石/碳化硅陶瓷基复合材料的制备方法
US10309158B2 (en) 2010-12-07 2019-06-04 Us Synthetic Corporation Method of partially infiltrating an at least partially leached polycrystalline diamond table and resultant polycrystalline diamond compacts
US9027675B1 (en) 2011-02-15 2015-05-12 Us Synthetic Corporation Polycrystalline diamond compact including a polycrystalline diamond table containing aluminum carbide therein and applications therefor
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
US20130291445A1 (en) * 2012-05-01 2013-11-07 Sigma Innovation Technology Inc. Diamond abrasive grain and electroplated tool having the same
JP5350553B1 (ja) 2013-04-26 2013-11-27 冨士ダイス株式会社 耐熱性の優れたCu−ダイヤモンド基固相焼結体を用いた放熱板、その放熱板を用いたエレクトロニクス用デバイス、および耐熱性の優れたCu−ダイヤモンド基固相焼結体を用いた放熱板の製造方法
CN103496215B (zh) * 2013-09-25 2015-07-29 华南理工大学 一种嵌入式组合热沉及其制备方法
US9992917B2 (en) 2014-03-10 2018-06-05 Vulcan GMS 3-D printing method for producing tungsten-based shielding parts
JP5807935B1 (ja) * 2014-10-09 2015-11-10 株式会社半導体熱研究所 放熱基板と、それを使用した半導体用モジュール
CN104370546B (zh) * 2014-10-28 2016-02-17 倪娟形 一种散热器连接件用高导热性陶瓷及其制备方法
US10074589B2 (en) 2016-04-14 2018-09-11 Hamilton Sundstrand Corporation Embedding diamond and other ceramic media into metal substrates to form thermal interface materials
JP6645586B2 (ja) * 2016-09-06 2020-02-14 株式会社Ihi セラミックス基複合材の製造方法
CN107034377A (zh) * 2017-03-14 2017-08-11 刘金财 一种镍金包覆的镶嵌金刚石铜的高密度密度板及其制备方法
CN111170317B (zh) * 2018-11-12 2022-02-22 有研工程技术研究院有限公司 一种石墨烯改性金刚石/铜复合材料的制备方法
JP7233991B2 (ja) * 2019-03-18 2023-03-07 Dowaメタルテック株式会社 複合めっき材およびその製造方法
US20220186347A1 (en) * 2019-03-29 2022-06-16 Sumitomo Electric Industries, Ltd. Composite material
US20230167528A1 (en) * 2020-04-09 2023-06-01 Sumitomo Electric Industries, Ltd. Composite material, heat sink and semiconductor device
CN112195384A (zh) * 2020-10-26 2021-01-08 河南飞孟金刚石工业有限公司 一种低成本金刚石高导热材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735655A (en) * 1985-10-04 1988-04-05 D. Swarovski & Co. Sintered abrasive material
EP0475575A1 (de) * 1990-08-27 1992-03-18 The Standard Oil Company Metall-Matrix-Verbundkörper mit hoher Wärmeleitfähigkeit
EP0691413A2 (de) * 1993-04-06 1996-01-10 Sumitomo Electric Industries, Ltd. Diamantversärktes Verbundmaterial und Verfahren zu dessen Herstellung
US6039641A (en) * 1997-04-04 2000-03-21 Sung; Chien-Min Brazed diamond tools by infiltration
US6179886B1 (en) * 1997-09-05 2001-01-30 Ambler Technologies, Inc. Method for producing abrasive grains and the composite abrasive grains produced by same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2543820C2 (de) * 1975-10-01 1984-10-31 Hoechst Ag, 6230 Frankfurt Verfahren zur Herstellung von Flachdruckformen mittels Laserstrahlen
IE47393B1 (en) * 1977-09-12 1984-03-07 De Beers Ind Diamond Abrasive materials
JPS5946050A (ja) * 1982-09-09 1984-03-15 Narumi China Corp 半導体用セラミツクパツケ−ジ
ZA894689B (en) * 1988-11-30 1990-09-26 Gen Electric Silicon infiltrated porous polycrystalline diamond compacts and their fabrications
US6003221A (en) * 1991-04-08 1999-12-21 Aluminum Company Of America Metal matrix composites containing electrical insulators
US5505750A (en) * 1994-06-22 1996-04-09 Norton Company Infiltrant for metal bonded abrasive articles
US5706999A (en) * 1995-11-28 1998-01-13 Hughes Electronics Preparation of a coated metal-matrix composite material
JP3617232B2 (ja) * 1997-02-06 2005-02-02 住友電気工業株式会社 半導体用ヒートシンクおよびその製造方法ならびにそれを用いた半導体パッケージ
JP3893681B2 (ja) 1997-08-19 2007-03-14 住友電気工業株式会社 半導体用ヒートシンクおよびその製造方法
DE19843309A1 (de) * 1998-09-22 2000-03-23 Asea Brown Boveri Kurzschlussfestes IGBT Modul
ATE218520T1 (de) 1998-09-28 2002-06-15 Frenton Ltd Verfahren zur herstellung eines diamantkomposits und ein durch dasselbe hergestelltes komposit
US6933531B1 (en) * 1999-12-24 2005-08-23 Ngk Insulators, Ltd. Heat sink material and method of manufacturing the heat sink material
JP2001339022A (ja) * 1999-12-24 2001-12-07 Ngk Insulators Ltd ヒートシンク材及びその製造方法
RU2206502C2 (ru) * 2000-11-21 2003-06-20 Акционерное общество закрытого типа "Карбид" Композиционный материал
US7173334B2 (en) * 2002-10-11 2007-02-06 Chien-Min Sung Diamond composite heat spreader and associated methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735655A (en) * 1985-10-04 1988-04-05 D. Swarovski & Co. Sintered abrasive material
EP0475575A1 (de) * 1990-08-27 1992-03-18 The Standard Oil Company Metall-Matrix-Verbundkörper mit hoher Wärmeleitfähigkeit
EP0691413A2 (de) * 1993-04-06 1996-01-10 Sumitomo Electric Industries, Ltd. Diamantversärktes Verbundmaterial und Verfahren zu dessen Herstellung
US6039641A (en) * 1997-04-04 2000-03-21 Sung; Chien-Min Brazed diamond tools by infiltration
US6179886B1 (en) * 1997-09-05 2001-01-30 Ambler Technologies, Inc. Method for producing abrasive grains and the composite abrasive grains produced by same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7427807B2 (en) 2005-02-18 2008-09-23 Mitac Technology Corp. Chip heat dissipation structure and manufacturing method
JP2006245568A (ja) * 2005-03-02 2006-09-14 Mitac Technology Corp 半導体チップ冷却システム及び冷却装置構造と製造方法
US7504148B2 (en) 2005-03-03 2009-03-17 Mitac Technology Corp Printed circuit board structure and manufacturing method thereof
US8575625B2 (en) 2010-02-08 2013-11-05 A.L.M.T. Corp. Semiconductor element mounting member, method of producing the same, and semiconductor device
WO2019201588A1 (de) * 2018-04-18 2019-10-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. WERKSTOFF BESTEHEND AUS EINEM DREIDIMENSIONALEN GERÜST, DAS MIT SiC ODER SiC UND Si3N4 GEBILDET IST UND EINER EDELMETALLLEGIERUNG, IN DER SILICIUM ENTHALTEN IST, GEBILDET, SOWIE EIN VERFAHREN ZU SEINER HERSTELLUNG
CN111304481A (zh) * 2020-02-11 2020-06-19 中南大学 一种金刚石-金属复合材料的熔渗制备工艺及金刚石-金属复合材料

Also Published As

Publication number Publication date
US20060130998A1 (en) 2006-06-22
EP1601631A1 (de) 2005-12-07
EP1601630B1 (de) 2017-12-27
AT7382U1 (de) 2005-02-25
CN1759078A (zh) 2006-04-12
US20060157884A1 (en) 2006-07-20
JP4880447B2 (ja) 2012-02-22
JP2006524173A (ja) 2006-10-26
WO2004080913A1 (de) 2004-09-23
US8575051B2 (en) 2013-11-05
EP1601630A1 (de) 2005-12-07
JP2006519928A (ja) 2006-08-31
JP4995565B2 (ja) 2012-08-08
CN100400467C (zh) 2008-07-09

Similar Documents

Publication Publication Date Title
EP1601630B1 (de) Wärmesenke mit hoher wärmeleitfähigkeit
EP1741137B1 (de) Wärmesenke aus borhaltigem diamant-kupfer-verbundwerkstoff
EP1751320B1 (de) Verschleissteil aus einem diamanthaltigen verbundwerkstoff
DE69912564T2 (de) Siliziumkarbid-Verbundwerkstoff, Verfahren zu seiner Herstellung und Wärmeableitungsanordnung, die diesen verwendet
AT408153B (de) Metall-matrix-composite- (mmc-) bauteil
AT503270B1 (de) Verbundwerkstoff und verfahren zu seiner herstellung
DE60021514T2 (de) Einen verbundwerkstoff verwendendes halbleiterbauteil oder wärmeableitendes substrat dafür
JP2006524173A5 (de)
EP1743047A1 (de) Trägerplatte für sputtertargets
US5605558A (en) Nitrogenous aluminum-silicon powder metallurgical alloy
JP4228444B2 (ja) 炭化珪素系複合材料およびその製造方法
JP2000141022A (ja) 炭化珪素質複合体及びその製造方法
JPS59143347A (ja) 半導体基板材料の製造方法
AT12389U1 (de) Verbundwerkstoff und verfahren zu dessen herstellung
KR20100091348A (ko) WC-Fe계 초경합금 및 그 제조방법
WO2019201588A1 (de) WERKSTOFF BESTEHEND AUS EINEM DREIDIMENSIONALEN GERÜST, DAS MIT SiC ODER SiC UND Si3N4 GEBILDET IST UND EINER EDELMETALLLEGIERUNG, IN DER SILICIUM ENTHALTEN IST, GEBILDET, SOWIE EIN VERFAHREN ZU SEINER HERSTELLUNG
JPH08176694A (ja) 半導体装置のヒートシンク用薄肉焼結板材の製造法
JPH04349650A (ja) 半導体放熱基板材料の製造方法
JPH07179906A (ja) 窒素化合アルミニウム−シリコン粉末合金およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004703308

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006503938

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 90452004

Country of ref document: AT

Ref document number: 2004806559X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006130998

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10548725

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004703308

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10548725

Country of ref document: US