CN100400467C - 具有高导热性的受热器、其制造方法和用途 - Google Patents

具有高导热性的受热器、其制造方法和用途 Download PDF

Info

Publication number
CN100400467C
CN100400467C CNB200480006559XA CN200480006559A CN100400467C CN 100400467 C CN100400467 C CN 100400467C CN B200480006559X A CNB200480006559X A CN B200480006559XA CN 200480006559 A CN200480006559 A CN 200480006559A CN 100400467 C CN100400467 C CN 100400467C
Authority
CN
China
Prior art keywords
parts
volume
diamond
alloy
matrix material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB200480006559XA
Other languages
English (en)
Other versions
CN1759078A (zh
Inventor
阿恩特·吕特克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plansee SE
Original Assignee
Plansee SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plansee SE filed Critical Plansee SE
Publication of CN1759078A publication Critical patent/CN1759078A/zh
Application granted granted Critical
Publication of CN100400467C publication Critical patent/CN100400467C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种由含有金刚石复合材料制成的受热器。除了40~90体积%的金刚石含量以外,该复合材料还包含0.005~12体积%的硅-碳化合物,7~49体积%的Ag-,Au-或Al-富集相和低于5体积%的其它相,Ag-,Au-或Al-富集相对碳化硅的体积比大于4,至少60%的金刚石表面被硅-碳化合物所覆盖。优选的制造工艺包括大气压和压力帮助的渗透技术。该部件特别适合作为半导体元件的受热器。

Description

具有高导热性的受热器、其制造方法和用途
技术领域
本发明涉及作为受热器的部件,该部件由金刚石含量为40~90体积%并且金刚石颗粒平均粒度为5~300μm的复合材料制成,还涉及制造该受热器部件的方法。
背景技术
受热器
Figure C20048000655900041
广泛用于电子元件的生产中。除了受热器外,半导体元件和机械稳定的包封是电子组合件的必要组成。基材、散热器或支承板等项也常用于受热器。半导体元件包含,例如,单晶硅或砷化镓。它通常用焊接方法作为结合技术与受热器连接。受热器具有将半导体元件在工作时产生的热传导出去的功能。产生特别大量热的半导体元件有,例如,横向扩散的金属氧化物半导体(LDMOS)、激光二极管、中央处理单元(CPU)、微处理器单元(MPU)或高频放大装置(HFAD)。
受热器的几何结构根据应用而定,并且可有很大的变化。简单的形式是平板。但是,也使用具有凹穴和阶梯的复杂构造。受热器本身然后与机械稳定的包装或封装连接。
和其它材料相比,所使用的半导体材料的热膨胀系数是低的,根据文献的报道,硅的热膨胀系数为2.1×10-6K-1~4.1×10-6K-1.砷化镓为5.6×10-6K-1~5.8×10-6K-1。在工业上没有得到广泛应用的其它半导体材料如Ge,In,Ga,As,P或碳化硅,也具有类似低的膨胀系数。陶瓷材料复合物材料或塑料通常用作封装。陶瓷材料的例子有膨胀系数为6.5×10-6K-1的Al2O3或膨胀系数为4.5×10-6K-1的氮化铝。
如果参与元件的膨胀特性不同,则在组合物体中就会产生应力,这会导致变形,导致材料的解体或导致元件的断裂。应力可在封装(包装)物制造的过程中产生,也可在从焊接温度冷却到室温的阶段中产生。但是,温度波动也会在包装的工作期间产生,波动的范围可例如为-50℃~200℃,这会导致包装中的热机械应力。这些因素决定了对用于受热器的材料的要求。首先,它应该具有极高的导热性,以便保持半导体元件在工作时的升温尽可能地低。其次,其热膨胀系数必须尽可能地与半导体元件和封装的热膨胀系数匹配。单相金属材料不能充分符合所要求的性能,因为具有高导热性的材料也具有高热膨胀系数。
因此,为了符合所需的性能,使用复合材料或材料复合体来制造基材。
例如,在欧洲专利0100232、美国专利4950554和美国专利5493153中所叙述的常规的钨-铜和钼-铜复合材料或材料复合物在室温的导热性为170~250W/(m.K),其热膨胀系数为6.5×10-6K-1~9.0×10-6K-1,这对于许多应用来说是不充分的。
随着日益增加的对受热器导热性的要求,金刚石的和含金刚石的复合材料进入人们的视线。因此,金刚石的导热性是1000~2000W/(m.K),在晶格点中氮和硼原子的含量对于决定其品质具有特别重要的意义。
欧洲专利0521405叙述了一种受热器,它在面对半导体芯片的一侧有多晶形的金刚石层。该金刚石层缺少塑性可变形性,即使在从涂覆温度冷却的过程也可导致金刚石层的碎裂。
美国专利5273790叙述了导热性为>1700W/(m.K)的金刚石复合材料,在这种情况下用来成形的松散的金刚石颗粒通过气相金刚石沉积被转变成稳定的成形体。这样产生的金刚石复合材料用于大批生产的部件从商业角度看是太贵了。
WO 99/12866叙述了生产金刚石-碳化硅复合材料的方法。它通过用硅或硅合金渗入金刚石骨架来制造。由于硅的高熔点和由此而来的高渗透温度,金刚石被部分转化为碳,或者随即被转化为碳化硅。由于高脆裂性,该材料的机械成形是大成问题的并且是昂贵的,因此这种复合材料迄今没有用在受热器中。
美国专利4902652叙述了制造烧结的金刚石材料的方法。在该方法中,用物理涂覆方法将元素周期表4a,5a和6a族的过渡金属元素、硼和硅沉积在金刚石粉末上。所涂覆的金刚石颗粒随即通过固态烧结方法彼此结合。该方法的缺点在于,所形成的产品具有高的孔隙度,而且对于许多应用来说其热膨胀系数太低。
美国专利5045972叙述了一种复合材料,其中金刚石颗粒的粒度为1~50μm,还具有包含铝、镁、铜、银或它们的合金的金属基质。其缺点是,这种金属基质与金刚石颗粒的连接是不能令人满意的,因此,结果是,其导热性和机械整体性不够充分。
在美国专利5008737中叙述了使用更细的金刚石粉末,例如粒度<3μm的金刚石粉末,也不能改善金刚石/金属的粘合。
美国专利5783316叙述了一个方法,其中金刚石颗粒用W,Zr,Re,Cr或钛涂覆,所涂覆的颗粒随后被压实,产生的多孔体用例如Cu,Ag或Cu-Ag熔体渗透。用这种方法制造的复合材料的使用由于其高涂覆成本而受到限制。
欧洲专利0859408叙述了一种用于受热器的材料,它的基质是用金刚石颗粒和金属碳化物制造的,基质的间隙用金属填满。作为金属碳化物,可提及周期表4a-6a族的金属的碳化物。在欧洲专利0859408中特别强调了TiC,ZrC和HfC。据说Ag,Cu,Au和Al是特别好的填充剂金属。其缺点是,金属碳化物的导热性低,在TiC,ZrC,HfC,VC,NbC和TaC的情况下,其范围在10~65W/(m.K)。还有的缺点是,周期表4a-6a族的金属在填充剂金属(例如银)中有一定的溶解性,结果,金属相的导热性大为降低。
欧洲专利0893310叙述了一种受热器,其包含金刚石颗粒和具有高导热性的金属或金属合金(金属为Cu,Ag,Au,Al,Mg,An)以及周期表4a,5a族的金属和Cr的金属碳化物,该金属碳化物覆盖至少25%的金刚石颗粒的表面。同样,周期表4a,5a族和Cr的碳化物的导热性差,以及这些元素在Cu,Ag,Au,Al,Mg,Zn中的高溶解性,和与此有关的导热性降低都是缺点。
近年来,半导体元件的加工速度和集成化程度都有很大提高,这也导致包装中热释放的增加。因此,最佳的热控制是一个更加重要的判断标准。上述材料的导热性对于许多应用不再是充分的,或者它们的生产对于广泛的使用来说太昂贵。对于进一步优化半导体元件,改进的、便宜的受热器的获得是一个前提条件。
发明内容
因此,本发明的目的是为了提供可用作受热器元件的复合材料,该材料具有高导热性、低膨胀系数,并结合能够廉价制造的加工性能。该目的通过以下方式达到。作为受热器的部件,由含40~90体积%的金刚石、金刚石颗粒的平均粒度为5~300μm的复合材料制成,该复合材料包含0.005~12体积%的硅-碳化合物和低于5体积%的其它相,其中至少60%的金刚石颗粒表面被硅-碳化合物覆盖,其特征在于,所述复合材料包含7~49体积%的Ag,Au或Al富集相,Ag,Au或Al富集相对于硅-碳化合物的体积比大于4。
本发明的元件在金刚石颗粒和银(Ag),金(Au),或铝(Al)富集相之间表现优良的粘合,这是由于在它们之间形成的硅-碳化合物的缘故。为了达到这样的结合,该硅-碳化合物的厚度在纳米范围,或覆盖度>60%已经足够。为了本发明的目的,覆盖度是被硅-碳化合物覆盖的金刚石颗粒的表面的比例。在这样的前提下,这相应于硅-碳化合物的体积含量>0.005%。
与金属碳化物相比,碳化硅具有约250W/(m.K)的极高的导热性。因为在室温下,硅(Si)在Ag,Au和Al中的溶解性极低,这些金属在纯态下的极高导热性只有轻微的降低。Ag,Au或Al与铜(Cu)或镍(Ni)的合金同样具有足够高的导热性,不会被少量溶解的Si降低到不可接受的高程度。
而且,由于极具延性的Ag,Au或Al微结构组分,可以确保充分程度的机械可成形性。廉价制造的另一个优点是,高导热性的Ag,Au,或Al富集微结构组分可以减少金刚石含量。金刚石、碳化硅和金属相含量的变化有可能通过调节导热性和热膨胀,制造出符合各种要求的受热器。
而且,微结构组分只要含量不超过5体积%,就不会使性能降低到不可接受的程度。可以提及的这种类型的组分是游离硅或游离碳。虽然这些微结构组分轻微地提高了导热性,但它们通过降低热膨胀系数而对于后者具有有利的作用。此外,就生产过程而言,有时要完全避免它们却会产生相当的困难。
所述的复合材料包含0.01~12体积%的碳化硅和7~49体积%的Ag,Au或Al富集相。
所述的复合材料包含0.01~7体积%的碳化硅和7~49体积%的Ag富集相。
碳化硅和Ag,Au或Al富集相的特别有利的含量分别是0.1~7体积%和7~30体积%。实验表明,金刚石粉可在很广的粒度谱(spectrum)内加工。除天然金刚石外,也可以加工更廉价的合成金刚石。使用常规涂覆的金刚石类型,已经达到优良的加工结果。这样,在各种情况下都可使用最便宜的类型。在对导热性要求极高而费用不是关键的应用情况下,最好使用平均粒度范围在50~150μm的金刚石碎屑。而且,通过使用含量在20~30体积%的Ag可以达到最高的导热性值。
对用于电子元件的作为受热器的部件的使用,它们最好用Ni,Cu,Au或Ag或者这些金属的合金涂覆,随后用陶瓷构架焊接,例如Al2O3或AlN。
为了制造复合材料,可以使用多种方法。因此,可以用Ag,Au或Al在高温和压力下使SiC涂覆的金刚石粉末密集化。这在,例如,热压机或热均衡压机中是有效的。已经发现渗透是特别有利的。在此,可制造出除金刚石粉末以外还含有黏合剂的前体或中间体。在热的作用下大部分热裂解的黏合剂是特别优选的。优选的黏合剂含量为1~20重量%。金刚石粉末和黏合剂在常规的混合器或研磨机中混合。然后使混合物成形,这可通过在压力的帮助下注入模型,例如推压或金属粉末注射成型。随后加热中间体到高温,此时黏合剂已部分热裂解。然而,黏合剂的热裂解也可在渗透过程的加热中发生。渗透过程可在大气压或压力的帮助下进行。后者通常称为挤压铸造。作为渗透材料,优选使用Si含量<50重量%的Ag-Si,Au-Si或Al-Si合金的膜。在选择组成时,要确保各个合金的液相线温度不超过1200℃,优选不超过1000℃,否则分解的金刚石的比例太高。具有低共熔组成的膜是特别适合于渗透的。除了特别优选用于在半导体元件中将热传导出去的元件的用途外,本发明的复合材料也可用作其它应用的受热器,例如在航天领域或发动机制造领域。
具体实施方式
本发明通过以下的制造实施例加以说明:
实施例1
平均粒度为40~80μm的IIA级天然金刚石粉末(Micron+SND从Element Six GmbH)与7体积%的环氧树脂基的黏合剂混合。如此制备的前体或中间体用模压在200MPa的压力压成尺寸为35mm×35mm×5mm的板。板的孔隙度约为15体积%。
该板随后用由Si含量为11原子%的易熔Ag-Si合金构成的膜覆盖,以便进行渗透,然后在炉子中在减压下加热到860℃的温度,保温时间为15分钟。在冷却到室温(期间在400℃停留约10分钟)后,用定量金相学方法测定所存在的各相的体积含量。
碳化硅的值约为2体积%,大部分碳化硅均匀包封金刚石颗粒。由于该碳化硅壳的厚度低,碳化硅相的修正或变型不能测定。除了金刚石和碳化硅以外,微结构包含包埋了Si沉淀物的Ag-富集相,这是由共晶反应形成的。Ag富集相的体积比例约为12%,Si的体积比例约为1%。在Ag富集相用EDX没有检测到除了Ag以外的构成物,因此在可实行的检测极限的基础上可以假定,Ag的比例大于99原子%。
为了测定导热性和热膨胀系数,用激光和侵蚀的手段来加工该板。测得在室温的导热性平均值为450W/(m·K)。测得热膨胀系数的平均值为8.5×10-6K-1
实施例2
在进一步的实验中,加工平均粒度为40~80μm的Micron+MDA级合成金刚石粉末(从Element Six GmbH)。按照实施例1所述的方法进行加工。如此产生的复合材料的平均导热性为410W/(m·K),平均热膨胀系数为9.0×10-6K-1
实施例3
在进一步的实验中,加工平均粒度为40~80μm的Micron+MDA级合成金刚石粉末(从Element Six GmbH)。按照实施例1所述的方法制造前体。压制的前体用易熔的Ag-Si熔体渗透是在约40MPa的气体压力在常规的挤压铸造装置中进行的,该装置的热成形钢模已经预热到150℃。Ag-Si熔体的温度约为880℃。接着进行缓慢冷却到室温,期间在400℃停留约15分钟。如此产生的复合材料的平均导热性为480W/(m·K),平均热膨胀系数为8.5×10-6K-1
实施例4
平均粒度为40~80μm的Micron+MDA级合成金刚石粉末(从Element Six GmbH)按照实施例3所述的方法进行加工,但从渗透温度冷却到室温的过程中没有在约400℃相停留15分钟。如此产生的复合材料的平均导热性为440W/(m·K),平均热膨胀系数为8.5×10-6K-1

Claims (17)

1.作为受热器的部件,由含40~90体积%的金刚石、金刚石颗粒的平均粒度为5~300μm的复合材料制成,该复合材料包含0.005~12体积%的硅-碳化合物和低于5体积%的其它相,其中至少60%的金刚石颗粒表面被硅-碳化合物覆盖,其特征在于,所述复合材料包含7~49体积%的Ag,Au或Al富集相,Ag,Au或Al富集相对于硅-碳化合物的体积比大于4。
2.如权利要求1所述的部件,其特征在于,所述的硅-碳化合物是SiC。
3.如权利要求1或2所述的部件,其特征在于,所述的Ag,Au或Al富集相包含至少95原子%的所述各元素。
4.如权利要求1或2所述的部件,其特征在于,所述的Ag,Au或Al富集相还包含Cu和/或Ni。
5.如权利要求4所述的部件,其特征在于,所述的含Cu和/或Ni的Ag,Au或Al富集相还包含Si。
6.如权利要求1所述的部件,其特征在于,所述的复合材料含有0.1~4.5体积%的游离硅。
7.如权利要求1所述的部件,其特征在于,所述的复合材料含有0.1~4.5体积%的游离碳。
8.如权利要求1所述的部件,其特征在于,所述的硅-碳化合物主要或完全由硅与金刚石的碳的反应形成。
9.如权利要求1所述的部件,其特征在于,金刚石粒度为50~150μm。
10.如权利要求1所述的部件,其特征在于,所述的复合材料包含0.01~12体积%的碳化硅和7~49体积%的Ag,Au或Al富集相。
11.如权利要求1所述的部件,其特征在于,所述的复合材料包含0.01~7体积%的碳化硅和7~49体积%的Ag富集相。
12.如权利要求1所述的部件,其特征在于,其上涂覆了包含Ni,Cu,Au,Ag或这些金属的合金的金属涂料的涂层。
13.如权利要求1所述的部件,其特征在于,在它的上面焊接了陶瓷框架。
14.制造如权利要求1所述的部件的方法,其特征在于,该方法至少包含如下工艺步骤:
a)制造一个中间体,其包含粒度为5~300μm的金刚石颗粒和基于聚合物或蜡的黏合剂,黏合剂的比例为1~20重量%,
b)将所述中间体放入模型中,在大气压下或在压力的帮助下使该中间体成形,
c)通过在保护性气氛下加热所述的中间体到300~1200℃,至少部分热裂解所述的黏合剂,制造多孔金刚石体,使这个步骤能够被整合到渗透工艺中,
d)多孔金刚石体的渗透,其方法是将它和含硅的Ag,Au或Al合金,其中,该合金的硅含量为<40重量%,一起加热到温度T,含硅的Ag,Au或Al合金的液相线温度<T≤1200℃,在减压下加热,使至少一部分硅与热裂解的黏合剂的碳以及与金刚石反应,形成碳化硅。
15.制造如权利要求1所述的部件的方法,其特征在于,该方法至少包含如下工艺步骤:
a)制造一个中间体,其包含粒度为5~300μm的金刚石颗粒和基于聚合物或蜡的黏合剂,黏合剂的比例为1~20重量%;
b)将所述中间体放入模型中在大气压下或在压力的帮助下使该中间体成形;
c)通过在保护性气氛下加热所述的中间体到300~1200℃,至少部分热裂解所述的黏合剂,制造多孔金刚石体,使这个步骤能够被整合到加压渗透工艺中;
d)将含硅的Ag,Au或Al合金,其中,该合金的硅含量为<40重量%,加热到温度T,其中,含硅的Ag,Au或Al合金的液相线温度<T≤1200℃,并加压渗入所述的多孔金刚石体。
16.如权利要求14或15所述的方法,其特征在于,将低共熔Ag-Si合金用于所述渗透步骤。
17.如权利要求1所述的部件作为半导体元件的受热器的用途。
CNB200480006559XA 2003-03-11 2004-01-20 具有高导热性的受热器、其制造方法和用途 Expired - Lifetime CN100400467C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0016403U AT7382U1 (de) 2003-03-11 2003-03-11 Wärmesenke mit hoher wärmeleitfähigkeit
ATGM164/2003 2003-03-11

Publications (2)

Publication Number Publication Date
CN1759078A CN1759078A (zh) 2006-04-12
CN100400467C true CN100400467C (zh) 2008-07-09

Family

ID=32967982

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200480006559XA Expired - Lifetime CN100400467C (zh) 2003-03-11 2004-01-20 具有高导热性的受热器、其制造方法和用途

Country Status (6)

Country Link
US (2) US20060157884A1 (zh)
EP (2) EP1601630B1 (zh)
JP (2) JP4880447B2 (zh)
CN (1) CN100400467C (zh)
AT (1) AT7382U1 (zh)
WO (2) WO2004080913A1 (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004056734A1 (de) * 2004-11-24 2006-06-01 Vatcharachai Buanatra Diamantenformkörper
TW200631144A (en) 2005-02-18 2006-09-01 Mitac Technology Corp Chip heat dissipation structure and manufacturing method thereof
TWI283052B (en) * 2005-03-02 2007-06-21 Mitac Technology Corp Chip heat dissipation system and manufacturing method and structure of heat dissipation device thereof
TWI290012B (en) 2005-03-03 2007-11-11 Mitac Technology Corp Printed circuit board structure and manufacturing method thereof
TWI268755B (en) * 2005-03-21 2006-12-11 Mitac Tech Corporation Chip heat dissipation system and manufacturing method and structure of heat exchange device thereof
US8637127B2 (en) 2005-06-27 2014-01-28 Kennametal Inc. Composite article with coolant channels and tool fabrication method
US8236074B1 (en) 2006-10-10 2012-08-07 Us Synthetic Corporation Superabrasive elements, methods of manufacturing, and drill bits including same
US9017438B1 (en) 2006-10-10 2015-04-28 Us Synthetic Corporation Polycrystalline diamond compact including a polycrystalline diamond table with a thermally-stable region having at least one low-carbon-solubility material and applications therefor
CN101522930B (zh) 2006-10-25 2012-07-18 Tdy工业公司 具有改进的抗热开裂性的制品
US8080074B2 (en) 2006-11-20 2011-12-20 Us Synthetic Corporation Polycrystalline diamond compacts, and related methods and applications
US8034136B2 (en) 2006-11-20 2011-10-11 Us Synthetic Corporation Methods of fabricating superabrasive articles
WO2009006163A2 (en) * 2007-06-29 2009-01-08 Itt Manufacturing Enterprises, Inc. Thermally conductive structural composite material and method
SE532992C2 (sv) * 2007-11-08 2010-06-08 Alfa Laval Corp Ab Förfarande för framställning av en diamantkomposit, grönkropp, diamantkomposit samt användning av diamantkompositen
EP2065734A1 (de) * 2007-11-30 2009-06-03 Plansee Se Spiegel zur Laserbearbeitung
US8999025B1 (en) 2008-03-03 2015-04-07 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
US20090236087A1 (en) * 2008-03-19 2009-09-24 Yamaha Corporation Heat exchange device
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US8297382B2 (en) 2008-10-03 2012-10-30 Us Synthetic Corporation Polycrystalline diamond compacts, method of fabricating same, and various applications
JP2010109081A (ja) * 2008-10-29 2010-05-13 Denki Kagaku Kogyo Kk Led発光素子用金属基複合材料基板及びそれを用いたled発光素子
JP5484111B2 (ja) * 2010-02-08 2014-05-07 株式会社アライドマテリアル 半導体素子搭載部材とその製造方法ならびに半導体装置
CN102030556B (zh) * 2010-11-11 2012-10-31 北京科技大学 一种金刚石/碳化硅陶瓷基复合材料的制备方法
US10309158B2 (en) 2010-12-07 2019-06-04 Us Synthetic Corporation Method of partially infiltrating an at least partially leached polycrystalline diamond table and resultant polycrystalline diamond compacts
US9027675B1 (en) 2011-02-15 2015-05-12 Us Synthetic Corporation Polycrystalline diamond compact including a polycrystalline diamond table containing aluminum carbide therein and applications therefor
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
US20130291445A1 (en) * 2012-05-01 2013-11-07 Sigma Innovation Technology Inc. Diamond abrasive grain and electroplated tool having the same
JP5350553B1 (ja) 2013-04-26 2013-11-27 冨士ダイス株式会社 耐熱性の優れたCu−ダイヤモンド基固相焼結体を用いた放熱板、その放熱板を用いたエレクトロニクス用デバイス、および耐熱性の優れたCu−ダイヤモンド基固相焼結体を用いた放熱板の製造方法
CN103496215B (zh) * 2013-09-25 2015-07-29 华南理工大学 一种嵌入式组合热沉及其制备方法
US9992917B2 (en) 2014-03-10 2018-06-05 Vulcan GMS 3-D printing method for producing tungsten-based shielding parts
JP5807935B1 (ja) * 2014-10-09 2015-11-10 株式会社半導体熱研究所 放熱基板と、それを使用した半導体用モジュール
CN104370546B (zh) * 2014-10-28 2016-02-17 倪娟形 一种散热器连接件用高导热性陶瓷及其制备方法
US10074589B2 (en) 2016-04-14 2018-09-11 Hamilton Sundstrand Corporation Embedding diamond and other ceramic media into metal substrates to form thermal interface materials
JP6645586B2 (ja) * 2016-09-06 2020-02-14 株式会社Ihi セラミックス基複合材の製造方法
CN107034377A (zh) * 2017-03-14 2017-08-11 刘金财 一种镍金包覆的镶嵌金刚石铜的高密度密度板及其制备方法
DE102018205893B3 (de) * 2018-04-18 2019-10-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Werkstoff bestehend aus einem dreidimensionalen Gerüst, das mit SiC oder SiC und Si3N4 gebildet ist und einer Edelmetalllegierung, in der Silicium enthalten ist, sowie ein Verfahren zu seiner Herstellung
CN111170317B (zh) * 2018-11-12 2022-02-22 有研工程技术研究院有限公司 一种石墨烯改性金刚石/铜复合材料的制备方法
JP7233991B2 (ja) * 2019-03-18 2023-03-07 Dowaメタルテック株式会社 複合めっき材およびその製造方法
US20220186347A1 (en) * 2019-03-29 2022-06-16 Sumitomo Electric Industries, Ltd. Composite material
CN111304481A (zh) * 2020-02-11 2020-06-19 中南大学 一种金刚石-金属复合材料的熔渗制备工艺及金刚石-金属复合材料
US20230167528A1 (en) * 2020-04-09 2023-06-01 Sumitomo Electric Industries, Ltd. Composite material, heat sink and semiconductor device
CN112195384A (zh) * 2020-10-26 2021-01-08 河南飞孟金刚石工业有限公司 一种低成本金刚石高导热材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171691B1 (en) * 1997-02-06 2001-01-09 Sumitomo Electric Industries, Ltd. Heat sink material for use with semiconductor component and method for fabricating the same, and semiconductor package using the same
US6179886B1 (en) * 1997-09-05 2001-01-30 Ambler Technologies, Inc. Method for producing abrasive grains and the composite abrasive grains produced by same
WO2002042240A2 (en) * 2000-11-21 2002-05-30 Skeleton Technologies Ag A heat conductive material

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2543820C2 (de) * 1975-10-01 1984-10-31 Hoechst Ag, 6230 Frankfurt Verfahren zur Herstellung von Flachdruckformen mittels Laserstrahlen
IE47393B1 (en) * 1977-09-12 1984-03-07 De Beers Ind Diamond Abrasive materials
JPS5946050A (ja) * 1982-09-09 1984-03-15 Narumi China Corp 半導体用セラミツクパツケ−ジ
DE3535659C1 (de) * 1985-10-04 1987-04-02 Swarovski & Co Verwendung einer Bronzelegierung fuer Sinterschleifkoerper
ZA894689B (en) * 1988-11-30 1990-09-26 Gen Electric Silicon infiltrated porous polycrystalline diamond compacts and their fabrications
US5045972A (en) * 1990-08-27 1991-09-03 The Standard Oil Company High thermal conductivity metal matrix composite
US6003221A (en) * 1991-04-08 1999-12-21 Aluminum Company Of America Metal matrix composites containing electrical insulators
EP0619378B1 (en) 1993-04-06 1997-07-23 Sumitomo Electric Industries, Limited Method of preparing a diamond reinforced composite material
US5505750A (en) * 1994-06-22 1996-04-09 Norton Company Infiltrant for metal bonded abrasive articles
US5706999A (en) * 1995-11-28 1998-01-13 Hughes Electronics Preparation of a coated metal-matrix composite material
US6039641A (en) 1997-04-04 2000-03-21 Sung; Chien-Min Brazed diamond tools by infiltration
JP3893681B2 (ja) 1997-08-19 2007-03-14 住友電気工業株式会社 半導体用ヒートシンクおよびその製造方法
DE19843309A1 (de) * 1998-09-22 2000-03-23 Asea Brown Boveri Kurzschlussfestes IGBT Modul
ATE218520T1 (de) 1998-09-28 2002-06-15 Frenton Ltd Verfahren zur herstellung eines diamantkomposits und ein durch dasselbe hergestelltes komposit
US6933531B1 (en) * 1999-12-24 2005-08-23 Ngk Insulators, Ltd. Heat sink material and method of manufacturing the heat sink material
JP2001339022A (ja) * 1999-12-24 2001-12-07 Ngk Insulators Ltd ヒートシンク材及びその製造方法
US7173334B2 (en) * 2002-10-11 2007-02-06 Chien-Min Sung Diamond composite heat spreader and associated methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171691B1 (en) * 1997-02-06 2001-01-09 Sumitomo Electric Industries, Ltd. Heat sink material for use with semiconductor component and method for fabricating the same, and semiconductor package using the same
US6179886B1 (en) * 1997-09-05 2001-01-30 Ambler Technologies, Inc. Method for producing abrasive grains and the composite abrasive grains produced by same
WO2002042240A2 (en) * 2000-11-21 2002-05-30 Skeleton Technologies Ag A heat conductive material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
微系统技术-微系统采用的新材料. 张光照.传感器技术,第5期. 1995
微系统技术-微系统采用的新材料. 张光照.传感器技术,第5期. 1995 *

Also Published As

Publication number Publication date
US20060130998A1 (en) 2006-06-22
EP1601631A1 (de) 2005-12-07
EP1601630B1 (de) 2017-12-27
AT7382U1 (de) 2005-02-25
CN1759078A (zh) 2006-04-12
US20060157884A1 (en) 2006-07-20
WO2004080914A1 (de) 2004-09-23
JP4880447B2 (ja) 2012-02-22
JP2006524173A (ja) 2006-10-26
WO2004080913A1 (de) 2004-09-23
US8575051B2 (en) 2013-11-05
EP1601630A1 (de) 2005-12-07
JP2006519928A (ja) 2006-08-31
JP4995565B2 (ja) 2012-08-08

Similar Documents

Publication Publication Date Title
CN100400467C (zh) 具有高导热性的受热器、其制造方法和用途
JP5275625B2 (ja) ホウ素を含むダイヤモンドと銅複合材料から成るヒートシンク
EP1477467B1 (en) Composite material having high thermal conductivity and low thermal expansion coefficient, and heat-dissipating substrate
KR101237578B1 (ko) 열전도율이 높은 금속기질 복합체
CN102149655B (zh) 铝-金刚石类复合体的制备方法
US7879129B2 (en) Wear part formed of a diamond-containing composite material, and production method
JP4862169B2 (ja) 熱伝導性材料
JP2006524173A5 (zh)
JP2011524466A (ja) 金属浸潤炭化ケイ素チタンおよび炭化アルミニウムチタン体
JP2001180919A (ja) 炭化珪素−炭素系複合粉末とそれを用いた複合材料
JP4228444B2 (ja) 炭化珪素系複合材料およびその製造方法
Atarashiya Aluminum nitride/metal composites using ultra-fine aluminum particles and their application for joining
CN116987924B (zh) 一种SiC/Al复合材料的制备方法
JPH11157964A (ja) 板状複合体とそれを用いた放熱部品
JP2820566B2 (ja) 半導体パッケージ用放熱部材の製造方法
CN118357465A (zh) 聚晶立方氮化硼复合材料及其制备方法
JPH1117066A (ja) 半導体チップ搭載用基板
JP2002294357A (ja) 金属基複合材料の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20061103

Address after: Austria Music City

Applicant after: PLANSEE SE

Address before: Austria Music City

Applicant before: PLANSEE SE

C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20080709