WO2004079037A1 - スパッタリングターゲット及びその製造方法並びに光情報記録媒体用薄膜及びその製造方法 - Google Patents

スパッタリングターゲット及びその製造方法並びに光情報記録媒体用薄膜及びその製造方法 Download PDF

Info

Publication number
WO2004079037A1
WO2004079037A1 PCT/JP2004/001050 JP2004001050W WO2004079037A1 WO 2004079037 A1 WO2004079037 A1 WO 2004079037A1 JP 2004001050 W JP2004001050 W JP 2004001050W WO 2004079037 A1 WO2004079037 A1 WO 2004079037A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering
sputtering target
target
powder
thin film
Prior art date
Application number
PCT/JP2004/001050
Other languages
English (en)
French (fr)
Inventor
Hideo Hosono
Kazushige Ueda
Masataka Yahagi
Hideo Takami
Original Assignee
Nikko Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co., Ltd. filed Critical Nikko Materials Co., Ltd.
Priority to JP2005502989A priority Critical patent/JP3768230B2/ja
Priority to EP04707631A priority patent/EP1602746B1/en
Publication of WO2004079037A1 publication Critical patent/WO2004079037A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/082Oxides of alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B2007/2581Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on aluminium
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/266Sputtering or spin-coating layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a sputtering target and a method for producing the same, a thin film for an optical information recording medium, and a method for producing the same.
  • the present invention has an amorphous stability in a thin film for an optical information recording medium protective layer, enables direct current (DC) sputtering when forming a film by sputtering, and reduces arcing during spattering.
  • Sputtering target, method for manufacturing the same, and optical information recording medium which can reduce nodules, and have high density, small variation in quality, and high mass productivity.
  • the present invention relates to a thin film (particularly, use as a protective film) and a method for producing the same. Background art
  • CD-RW which appeared in 1977 as a rewritable CD
  • the number of rewrites of this CD-RW is about 1000 times.
  • DVD-RW has been developed and commercialized for DVD, but the layer structure of this disc is basically the same as CD-RW. The number of times of rewriting is about 100 to 1000 times.
  • phase-change optical disk heats and raises the temperature of a recording thin film on a substrate by irradiating a laser beam, causing a crystallographic phase change (amorphous crystal) in the structure of the recording thin film to record and reproduce information. More specifically, information is reproduced by detecting a change in reflectance caused by a change in an optical constant between phases.
  • the above-mentioned phase change is performed by irradiating a laser beam having a diameter of several hundred nm to several am.
  • the time at which a point on the optical disk is irradiated with light is 100 ns, and the phase change within this time is performed. And the reflectance must be detected.
  • phase-change optical disk used for CD-RW or DVD-RW, etc. should be recorded as Ag-I 11-33-C6 or 06-313-C6.
  • both sides of the thin film layer zinc sulfide - Kei oxide viewed sandwiched and (Z n S ⁇ S i 0 2) based protective layer of a refractory dielectric, further a four-layer structure in which an aluminum alloy reflective film I have.
  • an interface layer is added between the memory layer and the protective layer as necessary.
  • the reflective layer and the protective layer are required to have an optical function to increase the difference in reflectance between the amorphous part and the crystalline part of the recording layer.
  • the moisture resistance of the recording thin film and the function of preventing deformation due to heat, and Requires the function of thermal condition control during recording see “Optics”, Vol. 26, No. 1, pp. 9 to 15).
  • the protective layer of the high melting point dielectric is resistant to repeated thermal stresses caused by temperature rise and cooling, and furthermore, it is necessary to prevent such thermal effects from affecting the reflective film and other parts, and It needs to be thin, itself with low reflectivity and toughness that does not deteriorate. In this sense, the dielectric protective layer plays an important role.
  • the dielectric protection layer is usually formed by a sputtering method.
  • a substrate comprising a positive electrode and a negative electrode is opposed to a target, and a high voltage is applied between the substrate and the target in an inert gas atmosphere to generate an electric field.
  • the ionized electrons collide with the inert gas to form plasma
  • the cations in the plasma collide with the surface of the target (negative electrode) and strike the constituent atoms in the evening. It uses the principle that the ejected atoms adhere to the opposing substrate surface to form a film.
  • radio frequency sputtering (RF) apparatus has many disadvantages in that not only is the apparatus itself expensive, but also the sputtering efficiency is low, the power consumption is large, the control is complicated, and the film forming speed is low.
  • One of the causes of the deterioration of the number of times of rewriting of the optical information recording medium is that the recording layer material placed between ZnS-Si 2 repeatedly heats and cools while protecting the recording layer. Gaps occur between the layers. For this reason, it has been a factor that causes deterioration of characteristics such as reflectance.
  • an intermediate layer consisting mainly of nitride and carbide is provided between the recording layer and the protective layer, but the increase in the number of layers causes a decrease in throughput and an increase in cost. It was.
  • a method of forming a zinc-indium oxide target by laser ablation for example, a method of forming a zinc-indium oxide target by laser ablation (see Japanese Patent Application Laid-Open No. 2000-26119)
  • a transparent conductive film containing an amorphous oxide which has good conductivity and particularly good blue light transmittance see JP-A-2000-44236
  • In, Zn and main components
  • In 2 ⁇ 3 (ZnO 2 ) m (m 2 to 20)
  • the atomic ratio of In to Zn (In / (In + Zn)) is 0.2 to 0.85
  • a target for forming a moisture-resistant film see Japanese Patent No. 2695605).
  • the material for forming the above-mentioned transparent conductive film was not necessarily sufficient for a thin film for an optical information recording medium (in particular, use as a protective film).
  • the composite target with ZnS to which a homo-port gas compound based on Zn is added has a problem that the bulk density is hard to increase and only a low-density sintered target can be obtained.
  • the influence of heating or the like on a substrate is reduced, high-speed film formation can be performed, the film thickness can be adjusted to be small, and particles (dust) generated during sputtering can be obtained. Nodules can be reduced, quality variation can be reduced, mass productivity can be improved, and the crystal grains are fine and high-density sputtering is obtained.
  • An object of the present invention is to obtain a thin film for an optical information recording medium and a method for manufacturing the same.
  • the present inventors have conducted intensive studies. As a result, the adoption of zinc chalcogenide such as ZnS and a compound containing Zn 0 as a main component enables the optical properties, thermal properties, and recording layer to be improved. In addition to taking advantage of its excellent properties such as adhesion to the surface, DC sputtering is enabled by maintaining conductivity, and the characteristics as a protective film are not impaired by increasing the density.Particles generated during sputtering And found that the film thickness uniformity can be improved.
  • the present invention is based on this finding,
  • the sputtering target according to 1 or 2 above comprising a compound mainly composed of zinc oxide satisfying 2 ⁇ m.
  • the compound containing zinc oxide as the main component is 2 in volume ratio to zinc chalcogenide.
  • spattering element according to any one of the above items 1 to 5, wherein the range of variation of elements other than zinc in the target is within 0.5 wt%.
  • the present invention also provides
  • a method for producing a thin film for an optical information recording medium comprising forming a thin film by direct current sputtering using the sputtering target according to any one of 1 to 9 above.
  • a and B use at least one element selected from aluminum, gallium, indium, scandium, yttrium, lanthanum, vanadium, chromium, manganese, iron, niobium, tantalum, germanium, tin, antimony, etc. .
  • the above-mentioned compound containing zinc oxide as a main component be used in a proportion of at least 25% by volume with respect to zinc chalcogenide.
  • the conductivity of the target can be maintained, thereby forming a thin film by direct current sputtering (DC sputtering). can do.
  • DC sputtering direct current sputtering
  • DC sputtering is superior to RF sputtering in that the deposition rate is higher and the sputtering efficiency is higher.
  • DC sputtering equipment has the advantages of low cost, easy control, and low power consumption. Since the thickness of the protective film itself can be reduced, the productivity can be improved and the substrate can be prevented from being heated.
  • the target of the present invention has an element variation range other than zinc within the target of 0.5 wt% or less, more preferably 0.3% or less, and a range of density variation within the target. Is within 3%, even within 1.5%, and the variation of bulk resistance within one evening is within 40% of the average value, and even within 20% Further, it is desirable that the target has an average crystal grain size of 1 O ⁇ m or less and a structure in which an oxide mainly composed of zinc oxide and a chalcogenide are uniformly dispersed. As a result, a uniform film can be formed, and a thin film (protective film) for an optical information recording medium having excellent characteristics can be formed.
  • the target of the present invention can be used to form a thin film (protective film) for an optical information recording medium, and this protective film is used at least adjacent to the recording layer.
  • the sintered body is a high-density sputtering target obtained by sintering oxide powder and chalcogenide powder of each constituent element having an average particle size of 5 m or less under normal pressure or high-temperature pressure. Can be manufactured.
  • an oxide powder containing zinc oxide as a main component was uniformly mixed, and then 800 to 1300. It is desirable to calcine with C, and after calcining, it is desirable to grind it further to 1 m or less. Sintering is preferably performed in a vacuum or in an inert atmosphere such as argon or nitrogen. As a result, it is possible to obtain a sparkling target having a relative density of 90% or more. It is desirable that the oxide powder before sintering forms a compound mainly composed of zinc oxide. This is because the homogeneity of the homo-gas compound can be improved more effectively, and the amorphous property can be stabilized. By using the sputtering target of the present invention, a remarkable effect that productivity can be improved, a high quality material can be obtained, and an optical recording medium having an optical disk protective film can be stably manufactured at low cost. is there.
  • the improvement in the density of the sputtering target of the present invention can reduce the number of vacancies, reduce the size of crystal grains, and make the sputtering surface of the evening gate uniform and smooth. It has a remarkable effect that it can reduce the cost and prolong the evening get-life, so that there is little variation in quality and mass productivity can be improved. Examples and comparative examples
  • the sputtering conditions were as follows: DC sputtering, sputtering power 1000 W Ar, gas pressure 0.5 Pa, and a film thickness of 150 OA on a glass substrate.
  • the transmittance of the deposited sample was 95% (wavelength 650 nm), and the refractive index was 2.2 (wavelength 633 nm).
  • the relative density was 90% or more in all cases, DC sputtering was possible, the refractive index was 2.1.2.2, and no specific crystal peak was observed in any case. The quality was maintained.
  • 4 N corresponds at providing a mean particle size of 5 m or less of Z Itashita powder at 5 m below I n 2 0 3 powder and 4N equivalent in 1, m the following A 1 2 0 3 powder and 4 N corresponds, I n 0. 5 a 1 5 0 3 (Z n O) o. formulated so that 8, were wet-mixed, dried, and calcined at 1 100 ° C.
  • This mixed powder was filled in a carbon mold, and hot pressed at a temperature of 1000 ° C. to obtain a target.
  • the relative density of this evening get was 92%.
  • Sputtering was performed using a target processed into a 6-inch ⁇ size.
  • the sputtering conditions were as follows: DC sputtering, sputtering power 1000 W, Ar gas pressure 0.5 Pa, and a film thickness of 1500 A on a glass substrate.
  • the transmittance of the deposited sample was 90% (wavelength 650 nm), and the refractive index was 2.2 (wavelength 633 nm).
  • Comparative Examples 3 and 4 both have a refractive index in the range of 2.1 to 2.5, but a crystal peak was observed due to the low ratio of ZnO, and amorphous stability was not obtained. .
  • Examples 1 to 7 indium, aluminum, iron, tin, and gallium were used as the trivalent or higher valent elements (A, B), scandium, which is another trivalent or higher valent element, was used.
  • scandium which is another trivalent or higher valent element.
  • the same results as in Examples 1 to 7 were obtained when using at least one element selected from yttrium, lanthanum, vanadium, chromium, manganese, niobium, tantalum, germanium, antimony, etc. I omitted it because the result would be duplicated and complicated.) Similar results were obtained when the above elements were combined.
  • Providing a 4N corresponds with 5 m below I n 2 0 3 powder and 4N corresponds to the following 1 m
  • a 1 2 ⁇ 3 powder and 4N corresponds with an average particle diameter of 5 m or less of Z Itashita powder, ⁇ ⁇ ⁇ .. Eight . . 0 3 (Zn ⁇ ) 3 , wet-mixing, drying and calcining at 1100 ° C.
  • the mixed powder was filled in a carbon mold, and hot pressed at a temperature of 900 ° C. to obtain a target.
  • the relative density of this target was 92%.
  • the average crystal grain size in the evening target was 4 m.
  • Table 2 shows the measurement results. As shown in Table 2, the results showed that the variations in composition, density, and bulk resistance were extremely small.
  • Sputtering was performed using a target that was processed into a 6-inch ⁇ size.
  • the sputtering conditions were as follows: DC sputtering, sputtering power 1000 W, Ar gas pressure 0.5 Pa, and target film thickness 1500 A.
  • the transmittance of the deposited sample was 95% (wavelength 650 nm), and the refractive index was 2.2 (wavelength 633 nm).
  • Example Composition (wt%) Density (%) Balta resistance ( ⁇ ) Implementation In: 8.2, 8.2, 8.3 92.0, 92.4, 92.5 0.021, 0.022, 0.025, 0.019, Example 8 Al: 2.9, 2.9, 2.8 0.023
  • this mixed powder was filled in a carbon mold, and hot pressed at a temperature of 950 ° C to obtain a target.
  • the relative density of this target was 94%.
  • the average grain size in the evening target was 3.5 zm.
  • Table 2 shows the measurement results. As shown in Table 2, the results showed that the dispersion of the composition, density, and park resistance was extremely small.
  • Sputtering was performed using a target that was processed into a 6-inch ⁇ size.
  • the sputtering conditions were as follows: DC sputtering, sputtering power 1000 W, Ar gas pressure 0.5 Pa, and target film thickness 1500 A.
  • the transmittance of the deposited sample was 98% (wavelength 650 nm), and the refractive index was 2.2 (wavelength 633 nm).
  • 4 N corresponds at providing a mean particle size of 5 m or less of Z Itashita powder at 5 m below I n 2 0 3 powder and 4N corresponds at 3 m below the S Itashita powder and 4N equivalent, I n. S n. 0 3. 5 (Z N_ ⁇ ) were blended so that the 4, were wet-mixed, dried, and calcined at 1 100 ° C.
  • this mixed powder was filled into a carbon mold, and hot pressed at a temperature of 950 ° C. to obtain a target.
  • the relative density of this target was 91%.
  • the average grain size in the evening get was 3.5 m.
  • Table 2 shows the measurement results. As shown in Table 2, the results showed that the variations in composition, density, and bulk resistance were extremely small.
  • Sputtering was performed using a target that was processed into a 6-inch ⁇ size.
  • the sputtering conditions were as follows: DC sputtering, sputtering power: 1000 W, Ar gas pressure: 0.5 Pa, and a target film thickness of 1500 A.
  • the transmittance of the deposited sample was 95% (wavelength 650 nm), and the refractive index was 2.3 (wavelength 633 nm).
  • 4 N corresponds with 5 xm prepared following I n 2 0 3 powder and 4N corresponds at 3 m below the C r 2 0 3 powder and an average particle size of 5 am or less of Z N_ ⁇ powder in 4 N corresponds, I n x. 3 C r 0. 2 0 3 (Z ⁇ ) 3 become as formulated, wet-mixed, dried, and calcined at 1 1 00 ° C.
  • this mixed powder was filled into a carbon mold, and hot pressed at a temperature of 950 ° C. to obtain a target.
  • the relative density of this target was 94%.
  • the average crystal grain size in the evening get was 4.0 im.
  • Table 2 shows the measurement results. As shown in Table 2, the results showed that the variations in composition, density, and bulk resistance were extremely small.
  • Sputtering was performed using a target that was processed into a 6-inch ⁇ size.
  • the sputtering conditions were DC sputtering, sputtering power 1000 W, Ar gas pressure 0.5 Pa, and a target film thickness of 1500 A.
  • the transmittance of the deposited sample was 92% (wavelength 650 nm), and the refractive index was 2.3 (wavelength 633 nm).
  • the mixed powder was filled in a carbon mold, and hot pressed at a temperature of 900 ° C. to obtain a target.
  • the relative density of this target was 82%. evening
  • Sputtering was performed using a 6-inch ⁇ size target.
  • the sputter conditions were DC sputter, sputter power 1000 W, and Ar gas pressure 0.5 Pa.
  • this target had many abnormal discharges and was not able to perform DC spatter.
  • the mixed powder was filled in a carbon mold, and hot pressed at a temperature of 900 ° C. to obtain a target.
  • the relative density of this target was 78%.
  • the average grain size in the evening target was 11, m. 9
  • Table 2 shows the measured results. As shown in Table 2, the results showed that the composition, density, and bulk resistance varied widely.
  • Sputtering was performed using a target that was processed into a 6-inch ⁇ size.
  • the spatter conditions were DC spatter, sputter power 100 W, and Ar gas pressure 0.5 Pa.
  • this target had a large amount of abnormal discharge and was not spcable.
  • indium, tin, chromium, and gallium were used as trivalent or higher valent elements (A, B), but other trivalent or higher valent elements such as aluminum, iron, and scandium were used.
  • Yttrium, lanthanum, vanadium, manganese, niobium, tantalum, germanium, tin, antimony, and the like the same results as in Examples 8 to 11 can be obtained by using at least one element selected from the group. (It was omitted because the results would be duplicated and complicated). Similar results were obtained when the above elements were combined.
  • a compound (homogeneous gas compound) containing Z ⁇ ⁇ as a main component is added to zinc chalcogenide such as ZnS to adjust the components to stabilize the amorphous property and to obtain a target.
  • DC conductivity is improved by imparting conductivity to the optical information recording medium and improving its adhesion to the recording layer material, and by increasing the relative density to 90% or more. Is possible.
  • the range of elemental variation other than zinc in the target is smaller than the average value
  • the target The average crystal grain size in the cell is 10 ⁇ m or less, and a uniform film can be formed by having a structure in which the oxide and the chalcogenide containing zinc oxide as a main component are uniformly dispersed. There is also an effect that a thin film (protective film) for an optical information recording medium having excellent characteristics can be formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

本発明は、A、Bは其々異なる3価以上の陽性元素であり、その価数を其々Ka、Kbとしたとき、AXBYO(KaX+KbY) /2(ZnO)m、0<X<2、Y=2-X、1≦mを満たす酸化亜鉛を主成分とする化合物を含有し、さらにカルコゲン化亜鉛を含む、相対密度90%以上、バルク抵抗値0.1Ωcm以下であることを特徴とするスパッタリングターゲットに関する。スパッタリングによって膜を形成する際に、基板への加熱等の影響を少なくし、高速成膜ができ、また膜厚を薄く調整でき、さらにスパッタ時に発生するパーティクル(発塵)やノジュールを低減させ、品質のばらつきが少なく量産性を向上させることができ、かつ結晶粒が微細であり高密度のスパッタリンダターゲット及びその製造方法並びに、特に保護膜としての使用に最適である光情報記録媒体用薄膜及びその製造方法を得る。

Description

04 001050
明 細 スパッタリング夕一ゲット及びその製造方法並びに光情報記録媒体用薄膜 及びその製造方法 技術分野
本発明は、 光情報記録媒体保護層用薄膜における非晶質安定性を有し、 ス パッタリングによって膜を形成する際に、 直流 (D C) スパッタリングが可能であ り、 スパッ夕時のアーキングが少なく、 これに起因して発生するパーティクル (発塵) ゃノジュールを低減でき、 且つ高密度で品質のばらつきが少なく量産性 を向上させることのできる、 スパッタリングターゲット及びその製造方法並びに 光情報記録媒体用薄膜 (特に保護膜としての使用) 及びその製造方法に関する。 背景技術
近年、 磁気へッドを必要とせずに書き換え可能な高密度光情報記録媒体で ある高密度記録光ディスク技術が開発され、 急速に商品化されている。 特に、 C D —RWは、 書き換え可能な C Dとして 1 9 7 7年に登場し現在、 最も普及している 相変化光ディスクである。 この C D— RWの書き換え回数は 1 0 0 0回程度である。 また、 D VD用として D V D— RWが開発され商品化されているが、 このディスク の層構造は基本的に C D— RWと同じものである。 この書き換え回数は 1 0 0 0〜 1 0 0 0 0回程度である。
この相変化型光ディスクを用いた記録原理を以下に簡単に説明する。 相変化 型光ディスクは、 基板上の記録薄膜をレーザー光の照射によって加熱昇温させ、 そ の記録薄膜の構造に結晶学的な相変化 (アモルファス 結晶) を起こさせて情報の 記録 ·再生を行うものであり、 より具体的にはその相間の光学定数の変化に起因す る反射率の変化を検出して情報の再生を行うものである。 上記の相変化は、 数百 n m〜数 a m程度の径に絞ったレーザー光の照射によつて行なわれる。 この場合、 例えば 1 z mのレーザービームが 1 O mZ sの線速度で通過す るとき、 光ディスクのある点に光が照射される時間は 1 0 0 n sであり、 この時 間内で上記相変化と反射率の検出を行う必要がある。
また、 上記結晶学的な相変化すなわちアモルファスと結晶との相変化を実 現する上で、 記録層だけでなく周辺の誘電体保護層やアルミニウム合金の反射膜 にも加熱と急冷が繰返されることになる。
このようなことから C D— RW又は D VD— RW等に使用される相変化光デ イスクは、 A g— I 11—3 3—丁6系又は0 6— 3 13—丁6系等の記録薄膜層の両 側を、 硫化亜鉛—ケィ酸化物 (Z n S · S i 02) 系の高融点誘電体の保護層で挟 み、 さらにアルミニウム合金反射膜を設けた四層構造となっている。 また、 繰返し 回数を高めるために、 必要に応じてメモリ層と保護層の間に界面層を加えることな どが行われている。
このなかで反射層と保護層は、 記録層のアモルファス部と結晶部との反射率 の差を増大させる光学的機能が要求されるほ力 記録薄膜の耐湿性や熱による変形 の防止機能、 さらには記録の際の熱的条件制御という機能が要求される (雑誌 「光 学」 2 6巻 1号頁 9〜1 5参照) 。
このように、 高融点誘電体の保護層は昇温と冷却による熱の繰返しストレス に対して耐性をもち、 さらにこれらの熱影響が反射膜や他の箇所に影響を及ぼさな いようにし、 かつそれ自体も薄く、 低反射率でかつ変質しない強靭さが必要である。 この意味において誘電体保護層は重要な役割を有する。
上記誘電体保護層は、 通常スパッタリング法によって形成されている。 この スパッタリング法は正の電極と負の電極とからなる基板と夕ーゲットを対向させ、 不活性ガス雰囲気下でこれらの基板とターゲッ卜の間に高電圧を印加して電場を発 生させるものであり、 この時電離した電子と不活性ガスが衝突してプラズマが形成 され、 このプラズマ中の陽イオンがターゲット (負の電極) 表面に衝突して夕一ゲ ット構成原子を叩きだし、 この飛び出した原子が対向する基板表面に付着して膜が 形成されるという原理を用いたものである。 従来、 主として書き換え型の光情報記録媒体の保護層に一般的に使用されて いる ZnS— S i 02は、 光学特性、 熱特性、 記録層との密着性等において、 優れ た特性を有するということから広く使用されている。 そして、 このような ZnS— S i〇2等のセラミックスターゲットを使用して、 従来は数百〜数千 A程度の薄膜 が形成されている。
しかし、 これらの材料は、 ターゲットのバルク抵抗値が高いため、 直流ス パッ夕リング装置により成膜することができず、 通常高周波スパッタリング (R F) 装置が使用されている。 ところが、 この高周波スパッタリング (RF) 装置 は、 装置自体が高価であるばかりでなく、 スパッタリング効率が悪く、 電力消費 量が大きく、 制御が複雑であり、 成膜速度も遅いという多くの欠点がある。
また、 成膜速度を上げるため、 高電力を加えた場合、 基板温度が上昇し、 ポリ力一ポネート製基板の変形を生ずるという問題がある。 また、 ZnS— S i o2は膜厚が厚いためスループット低下ゃコスト増も問題となっていた。
書き換え型の DVDは、 レーザー波長の短波長化に加え書き換え回数の増加、 大容量化、 高速記録化が強く求められているが、 上記 ZnS— S i〇2材料には、 他にも問題がある。
それは、 光情報記録媒体の書き換え回数等が劣化する原因の一つとして、 Z nS-S i〇2に挟まれるように配置された記録層材が加熱、 冷却を繰返すうちに、 記録層と保護層の間に隙間が生ずる。 そのため反射率等への特性劣化を引き起こす 要因となっていた。
これらの密着性向上のため、 記録層と保護層の間に、 窒化物や炭化物を主成 分とした中間層を設けた構成にしているが、 積層数増加によるスループット低下及 ぴコスト増加が問題となっていた。
上記の問題を解決するために、 保護層材 ZnS— S i 02よりも、 さらに安 定した非晶質性を確保することで記録層との密着性を向上さることが考えられた。 ZnOベースのホモ口ガス化合物 (技術誌 「固体物理」 李春飛他 3名著、 V o l. 35、 No. 1、 2000、 23〜32頁 「ホモ口ガス化合物 RM03 (Z n〇) m (R= I n, F e ; M= I n, F e, Ga, A 1 ; m=自然数) の変調構 造の電子顕微鏡観察」 参照) は複雑な層状構造をとるため、 成膜時の非晶質性を安 定に保つという特徴があり、 また使用波長領域において透明であり、 屈折率も Zn S-S i〇2に近いという特性を持つ。
この Z n〇ベースのホモ口ガス化合物を Z n Sへ添加することで、 非晶質性 を向上させ、 さらに絶縁材の S i 02を除外することで、 スパッタリング特性が安 定化し、 光情報記録媒体の特性改善及び生産性向上が期待された。
一般に、 ホモ口ガス化合物を主成分とする材料を透明導電性材料として使用 する例として、 例えば亜鉛—インジウム系酸化物ターゲットをレーザーアブレーシ ョンにより形成する方法 (特開 2000 - 26119号公報参照) 、 導電性と特に 青色光透過性が良好であるとする非晶質性酸化物を含む透明導電体膜の例 (特開 2 000 -44236号公報参照) 、 I nと Z nと主成分とし、 I n 23 (ZnO 2) m (m=2〜20) であり、 I nと Zn ( I n/ (I n + Zn) ) の原子比が 0. 2〜0. 85である耐湿性膜形成用ターゲットの例がある (特許第 26956 05号公報参照) 。
しかし、 上記の透明導電膜を形成する材料は、 必ずしも光情報記録媒体用 薄膜 (特に保護膜としての使用) には十分とは言えなかった。
一方、 Z n〇をベースとするホモ口ガス化合物を添加した Z n Sとの複合 ターゲットは、 バルク密度が上がり難く低密度の焼結体ターゲットしか得られない という問題があった。
このような低密度のターゲッ卜は、 スパッタリングによって膜を形成する際 に、 ァ一キングを発生し易く、 それが起因となってスパッタ時に発生するパーテ ィクル (発塵) ゃノジュールが発生し、 成膜の均一性及び品質が低下するだけで なく、 生産性も劣るという問題があった。 発明の開示
本発明は、 スパッタリングによって膜を形成する際に、 基板への加熱等の影 響を少なくし、 高速成膜ができ、 また膜厚を薄く調整でき、 さらにスパッタ時に 発生するパーティクル (発塵) ゃノジュールを低減させ、 品質のばらつきが少な く量産性を向上させることができ、 かつ結晶粒が微細であり高密度のスパッタリ ング夕一ゲット及びその製造方法並びに、 特に保護膜としての使用に最適である 光情報記録媒体用薄膜及びその製造方法を得ることを目的とする。
上記の課題を解決するために、 本発明者らは鋭意研究を行った結果、 ZnS 等のカルコゲン化亜鉛と Z n 0を主成分とする化合物を採用することにより光学 特性、 熱特性、 記録層との密着性等における優れた特性を活かすと共に、 導電性 を保有させることで DCスパッタを可能とし、 かつ密度を高めることにより保護 膜としての特性も損なわず、 さらにスパッタ時に発生するパーティクルゃノジユー ルを低減でき、 膜厚均一性も向上できるとの知見を得た。
本発明はこの知見に基づき、
1. A、 Bは其々異なる 3価以上の陽性元素であり、 その価数を其々 Ka、 Kb としたとき、 ΑχΒγΟ (KaX+KbY) /2(ZnO)m、 0<Xく 2、 Y=2— X、 1≤ mを満たす酸化亜鉛を主成分とする化合物とカルコゲン化亜鉛を含有することを 特徴とするスパッタリング夕一ゲット
2. A、 Bは其々異なる 3価以上の陽性元素であり、 その価数を其々 Ka、 Kb としたとき、 AxBY0 (KaX+KbY) /2(ZnO)m、 0く Xく 2、 Y=2— X、 1≤ mを満たす酸化亜鉛を主成分とする化合物を含有し、 カルコゲン化亜鉛を含む、 相対密度 90%以上、 バルク抵抗値 0. 1 Ω cm以下であることを特徴とするス パッタリングタ一ゲッ卜
3. 2≤mを満たす酸化亜鉛を主成分とする化合物を含有することを特徴とする 上記 1又は 2記載のスパッタリングターゲッ卜
4. Aがィンジゥムであることを特徴とする上記 1〜 3のいずれかに記載のスパ ッタリング夕ーゲット 5 . 酸化亜鉛を主成分とした化合物がカルコゲン化亜鉛に対して体積比率で 2
5 %以上含むことを特徴とする上記 1〜4のいずれかに記載のスパッ夕リング夕 ーケット
6 . ターゲット内における亜鉛以外の、 元素のばらつきの範囲が 0 . 5 w t %以内 であることを特徴とする上記 1〜 5のいずれかに記載のスパッ夕リング夕ーゲッ h
7 . 夕ーゲット内における密度のばらつきの範囲が 3 %以内であることを特徴とす る上記 1〜 6のいずれかに記載のスパッ夕リングターゲット
8 . 夕一ゲット内におけるバルク抵抗のばらつきが平均値に対して 4 0 %以内であ ることを特徴とする上記 1〜 7のいずれかに記載のスパッ夕リング夕一ゲット
9 . ターゲット内における平均結晶粒径が 1 0 m以下であり、 酸化亜鉛を主成分 とした酸化物とカルコゲン化物が均一に分散している組織を備えていることを特徴 とする上記 1〜 8のいずれかに記載のスパッタリングターゲット
を提供する。
本発明はまた、
1 0 . 上記 1〜9のいずれかに記載のスパッタリング用ターゲットを使用して形 成された光情報記録媒体用薄膜
1 1 . 記録層と隣接して使用されることを特徴とする上記 1 0記載の光情報記録 媒体用薄膜
1 2 . 上記 1〜9のいずれかに記載のスパッタリング用ターゲットを使用して直 流スパッ夕で薄膜を形成することを特徴とする光情報記録媒体用薄膜の製造方法
1 3 . 平均粒径が 5 a m以下である各構成元素の酸化物粉末及び力ルコゲン化物粉 末を常圧焼結又は高温加圧焼結することを特徴とする上記 1〜 9のいずれかに記載 のスパッタリング用ターゲッ卜の製造方法
1 4. 焼結前に、 酸化亜鉛を主成分とした酸化物粉を均一に混合した後、 8 0 0 - 1 3 0 0 ° Cで仮焼することを特徴とする上記 1 3記載のスパッタリング用ター ゲッ卜の製造方法 15. 仮焼した後、 1 m以下に粉碎することを特徴とする上記 14記載のスパ ッ夕リング用夕ーゲットの製造方法
16. 真空中又はアルゴン、 窒素等の不活性雰囲気中で焼結することを特徵とする 上記 12〜 15のいずれかに記載のスパッタリング用夕ーゲッ卜の製造方法
17. 焼結前の酸化物粉末が、 予め酸化亜鉛を主成分とした化合物を形成している ことを特徴とする上記 12〜16のいずれかに記載のスパッタリング用ターゲッ トの製造方法、 を提供する。 発明の実施の形態
本発明のスパッタリングターゲットは、 カルコゲン化亜鉛を含み、 これに さらに A、 Bは其々異なる 3価以上の陽性元素であり、 その価数を其々 Ka、 K bとしたとき、 AxBY0 (KaX+KbY) /2(ZnO)m、 0く Xく 2、 Y=2— X、 1 ≤m、 さらには 2≤mを満たす酸化亜鉛を主成分とする化合物を添加した夕ーゲ ッ卜である。
特に、 A、 Bは、 アルミニウム、 ガリウム、 インジウム、 スカンジウム、 イットリウム、 ランタン、 バナジウム、 クロム、 マンガン、 鉄、 ニオブ、 タンタ ル、 ゲルマニウム、 錫、 アンチモン等から選択した少なくとも 1種類以上の元素 を使用する。 また、 特に Aはインジウムを使用するのが望ましい。
また、 上記酸化亜鉛を主成分とした化合物は、 カルコゲン化亜鉛に対して体積 比率で 25%以上含有させて使用することが望ましい。
本発明は、 このように酸化亜鉛を主成分とする化合物を添加することによ り、 ターゲットの導電性を保有させることができ、 これによつて直流スパッ夕 (DCスパッ夕) によって薄膜を形成することができる。
DCスパッタリングは RFスパッタリングに比べ、 成膜速度が速く、 スパッ夕 リング効率が良いという点で優れている。 また、 D Cスパッタリング装置は価格が安く、 制御が容易であり、 電力の 消費量も少なくて済むという利点がある。 保護膜自体の膜厚を薄くすることも可 能となるため、 生産性向上、 基板加熱防止効果を発揮できる。
したがって、 本発明のスパッタリングターゲットを使用することにより、 生 産性が向上し、 品質の優れた材料を得ることができ、 光ディスク保護膜をもつ光 記録媒体を低コストで安定して製造できるという著しい効果がある。
さらに本発明のターゲットは、 ターゲット内における亜鉛以外の、 元素のば らつきの範囲が 0 . 5 w t %以内であること、 さらには 0 . 3 %以内であること、 ターゲット内における密度のばらつきの範囲が 3 %以内であること、 さらには 1 . 5 %以内であること、 夕一ゲット内におけるバルク抵抗のばらつきが平均値に対し て 4 0 %以内であること、 さらには 2 0 %以内であること、 さらにターゲット内に おける平均結晶粒径が 1 O ^ m以下であり、 酸化亜鉛を主成分とした酸化物とカル コゲン化物が均一に分散している組織を備えていることが望ましい。 これによつて、 均一な成膜が可能であり、 また特性に優れた光情報記録媒体用薄膜 (保護膜) を 形成することができる。
上記本発明のターゲットを使用して光情報記録媒体用薄膜 (保護膜) を形 成することができ、 この保護膜は少なくとも記録層と隣接して使用される。
夕ーゲット焼結体は平均粒径が 5 m以下である各構成元素の酸化物粉末及 びカルコゲン化物粉末を常圧焼結又は高温加圧焼結することによって高密度のスパ ッ夕リング用ターゲットを製造することができる。
さらに、 焼結前に酸化亜鉛を主成分とした酸化物粉を均一に混合した後、 8 0 0〜1 3 0 0。 Cで仮焼することが望ましく、 また仮焼した後、 さらに 1 m 以下に粉砕することが望ましい。 焼結は真空中又はアルゴン、 窒素等の不活性雰囲 気中で焼結するのが良い。 これによつて、 相対密度が 9 0 %以上を有するスパッ 夕リング夕ーゲットを得ることができる。 焼結前の酸化物粉末は酸化亜鉛を主成 分とした化合物を形成していることが望ましい。 それは、 均一性を高め、 より効果 的にホモ口ガス化合物の利点を発揮でき非晶質性が安定するという理由による。 本発明のスパッタリングターゲットを使用することにより、 生産性が向上し、 品質の優れた材料を得ることができ、 光ディスク保護膜をもつ光記録媒体を低コ ストで安定して製造できるという著しい効果がある。
本発明のスパッタリングターゲットの密度向上は、 空孔を減少させ結晶粒を微 細化し、 夕一ゲッ卜のスパッ夕面を均一かつ平滑にすることができるので、 スパ ッタリング時のパーティクルゃノジュ一ルを低減させ、 さらに夕ーゲットライフ も長くすることができるという著しい効果を有し、 品質のばらつきが少なく量産 性を向上させることができる。 実施例および比較例
以下、 実施例および比較例に基づいて説明する。 なお、 本実施例はあくまで 一例であり、 この例によって何ら制限されるものではない。 すなわち、 本発明は特 許請求の範囲によってのみ制限されるものであり、 本発明に含まれる実施例以外の 種々の変形を包含するものである。
(実施例 1 )
4N相当で 5
Figure imgf000010_0001
I ]1203粉と4?^相当で1 tm以下の A 123粉 と 4N相当で平均粒径 5 m以下の Z n〇粉を用意し、 Ι ι^. 。A 1 L 。03 (Ζ ηθ) 3となるように調合して、 湿式混合し、 乾燥後、 1 100° Cで仮焼した。
仮焼後、 平均粒径 1 相当まで湿式微粉砕して乾燥した。 この ΐ η ι. 。 A 1 0O3 (Z ηθ) 3粉と 4 N相当で平均粒径 5 m以下の Z n S粉を Z n S : I nuA l L oOg (Zn〇) 3= 70 : 30 v o 1 %となるように混合す る。 この混合粉をカーボン製の型に充填し、 温度 1000° Cでホットプレスを 行い夕ーゲットとした。 この夕ーゲッ卜の相対密度は 92 %であった。 0 これを 6インチ φサイズに加工したターゲットを使用して、 スパッタリン グを行った。 スパッタ条件は、 DCスパッ夕、 スパッ夕パワー 1000W A r ガス圧 0. 5 P aとし、 ガラス基板に目標膜厚 150 OAで成膜した。 成膜サン プルの透過率は 95 % (波長 650 nm) 、 屈折率は 2. 2 (波長 633 nm) であった。
また、 成膜サンプルのァニール処理 (600° CX 30m i n、 Arフロ 一) 前後の XRD (C U-KCK, 40 kV、 30mA, 以下同様) 測定を行った。 これによると、 特定の結晶ピークは見られず、 安定した非晶質性を保っていた。
実施例 1のターゲットの化学組成、 混合比率、 相対密度、 DCスパッ夕可 能性、 屈折率、 非晶質性 (20 = 20〜 60° における未成膜ガラス基板に対す る最大ピ一ク強度比) を表 1に示す。
表 1
Figure imgf000012_0001
非晶質性は、 20 = 20 60° における未成膜ガラス基板に対する最大ピーク 強度比で示す。
(実施例 2— 7)
ΑχΒγΟ (KaX+KbY) /2(Z n〇)„^合物の組成を変え、 かつ Z n Sとの比率を 変えた場合について、 他は実施例 1と同一の条件で夕ーゲットを製造し、 実施例 と同様にターゲットの化学組成、 混合比率、 相対密度、 DCスパッタ可能性、 屈 折率、 非晶質性を調べた。 この結果を表 1に示す。
これによると、 相対密度はいずれも 90 %以上であり、 また DCスパッ夕 が可能、 屈折率は 2. 1 2. 2であり、 またいずれも特定の結晶ピークは見ら れず、 安定した非晶質性を保っていた。 2
(比較例 1 )
4 N相当で 5 m以下の I n 203粉と 4N相当で 1 , m以下の A 1203粉と 4 N相当で平均粒径 5 m以下の Z ηθ粉を用意し、 I n 0. 5 A 1 503 (Z n O) o. 8となるように調合して、 湿式混合し、 乾燥後、 1 100° Cで仮焼した。
仮焼後、 平均粒径 1 zm相当まで湿式微粉砕して乾燥した。 この乾燥 I n 0. 5A 1し 53 (Z ηθ) o. 8粉と 4N相当で平均粒径 5 m以下の Z n S粉を Z n S : I n 5A 1し 5〇 3 (Zn〇) 0. 8= 70 : 30 v o 1 %となるように 混合する。
この混合粉をカーボン製の型に充填し、 温度 1000° Cでホットプレス を行いターゲットとした。 この夕ーゲットの相対密度は 92%であった。
これを 6インチ φサイズに加工したターゲットを使用して、 スパッタリングを 行った。 スパッ夕条件は、 DCスパッ夕、 スパッ夕パヮ一 1000W、 Arガス 圧 0. 5 P aとし、 ガラス基板に目標膜厚 1 500Aで成膜した。 成膜サンプル の透過率は 90% (波長 650 nm) 、 屈折率は 2. 2 (波長 633 nm) であ つた。
また、 成膜サンプルのァニール処理 (600° CX 30m i n、 Arフロ 一) 前後の XRD測定を行った。 これによると、 本比較例では Zn〇の比率が低 いために結晶ピークが見られた。
この比較例 1のターゲットの化学組成、 混合比率、 相対密度、 DCスパッ夕可 能性、 屈折率、 非晶質性 (20 = 20〜 60° における未成膜ガラス基板に対す る最大ピーク強度比) を表 1に示す。
(比較例 2— 4)
し Y」 (K a X + K Υ) ΓΙ (Z n〇)m化合物の組成を変え、 かつ Z n Sとの比率を 変え、 本発明の条件外の場合について、 他は比較例 1と同一の条件で夕ーゲット を製造し、 比較例 1と同様にターゲットの化学組成、 混合比率、 相対密度、 DC スパッ夕可能性、 屈折率、 非晶質性を調べた。 この結果を表 1に示す。 3 これによると、 比較例 2は屈折率が 2. 1〜2. 2の範囲にあるが、 AX t γ ( aX + KbY) /2 (Z n〇)m化合物の混合比率が少ないために D Cスパッ夕が不 能であり、 また相対密度は 83 %と低かった。
比較例 3及び比較例 4はいずれも、 屈折率が 2. 1〜2. 5の範囲にある が、 ZnOの比率が低いために結晶ピークが見られ、 非晶質の安定が得られなか つた。
上記実施例 1〜7においては、 3価以上の陽性元素 (A、 B) として、 ィ ンジゥム、 アルミニウム、 鉄、 錫、 ガリウムを用いたが、 他の 3価以上の陽性元 素であるスカンジウム、 イットリウム、 ランタン、 バナジウム、 クロム、 マンガ ン、 ニオブ、 タンタル、 ゲルマニウム、 アンチモン等から選択した少なくとも 1 種類以上の元素を用いて実施した場合も、 実施例 1〜7と同様の結果が得られた (結果が重複し、 煩雑になるので割愛した) 。 また、 以上の元素を複合させた場 合も同様の結果であった。
(実施例 8 )
4N相当で 5 m以下の I n203粉と 4N相当で 1 m以下の A 123粉 と 4N相当で平均粒径 5 m以下の Z ηθ粉を用意し、 Ι ι^.。八 . 。03 (Z n〇) 3となるように調合して、 湿式混合し、 乾燥後、 1100° Cで仮焼した。
仮焼後の XRD測定にて I η ι.。A 1 。03 (ZnO) 3の結晶ピークが 観察された。 さらにこの仮焼粉を平均粒径 1 m相当まで湿式微粉砕して乾燥し た。 この I n 。 A 1 。〇3 (ZnO) 3粉と 4 N相当で平均粒径 5 m以下の Z n S粉を Z n S : I n x.0A 1 x.0O3 (ZnO) 3=70 : 30vo l %とな るように混合する。 混合は湿式ポールミル混合又は高速攪拌混合機を用いて各粉 を均一に分散させる。
次に、 この混合粉をカーボン製の型に充填し、 温度 900 ° Cでホットプ レスを行いターゲットとした。 このターゲットの相対密度は 92 %であった。 夕 ーゲット内の平均結晶粒径は 4 mであった。 ターゲット内より任意に 3ケ所からサンプリングして組成 (I CP法) と 密度 (アルキメデス法) を測定した結果及ぴ平滑加工したターゲットのスパッタ リング面における任意の 5ケ所におけるバルク抵抗 (4端子法) を測定した結果 は、 表 2に示すようになった。 表 2に示すように、 組成、 密度、 バルク抵抗値の ばらつきが極めて小さいという結果が得られた。
また、 これを 6インチ Φサイズに加工したターゲットを使用して、 スパッ 夕リングを行った。 スパッ夕条件は、 DCスパッ夕、 スパッ夕パワー 1000W、 Arガス圧 0. 5Paとし、 目標膜厚 1500 Aで成膜した。 成膜サンプルの透 過率は 95% (波長 650 nm) 、 屈折率は 2. 2 (波長 633 nm) であった。
そして、 成膜サンプルのァニ一ル処理 (600° CX30mi n、 Arフ ロー) 前後の XRD (Cu— Κα;、 40kV、 30mA, 以下同様) 測定を行つ た。 これによると、 特定の結晶ピークは見られず、 安定した非晶質性を保ってい た。
表 2
例 組成(wt%) 密度 (%) バルタ抵抗( Ωοιη) 実施 In: 8.2, 8.2, 8.3 92.0, 92.4, 92.5 0.021, 0.022, 0.025, 0.019, 例 8 Al: 2.9, 2.9, 2.8 0.023
実施 . In: 8.1, 8.0, 8.0 92.8, 93.5, 93.1 0.021, 0.022, 0.025, 0.019, 例 9 Ga: 4.8, 4.9, 4.8 0.023
実施 In: 8.4, 8.2, 8.3 90.8, 91.2, 91.4 0.034, 0.037, 0.028, 0.030, 例 10 Sn: 4.3, 4.2, 4.2 0.032
実施 In: 12.2, 12.1, 11.9 94.3, 94.0, 93.9 0.042, 0.048, 0.051, 0.038, 例 11 Cr: 0.6, 0.5, 0.6 0.037
比較 In: 8.6, 8.1, 8.0 80.0, 82.4, 85.5 0.35, 1.32, 1.54, 0.98, 0.64 例 5 Al: 2.4, 2.5, 3.0
比較 In: 15.0, 15.9, 14.2 75.2, 80.7, 80.1 0.2, 2.5, 0.4, 3.0, 0.7 例 6 Ga: 9.2, 9.3, 8.7 5
(実施例 9)
4N相当で 5 m以下の I n 23粉と 4 N相当で 3 m以下の G a 23粉 と 4 N相当で平均粒径 5 m以下の Z n〇粉を用意し、 I r^.。G a L Q3 (Z n〇) 3となるように調合して、 湿式混合し、 乾燥後、 1100° Cで仮焼した。
仮焼後の XRD測定にて I nし 。G a x.。〇3 (ZnO) 3の結晶ピークが 観察された。 さらにこの仮焼粉を平均粒径 1 m相当まで湿式微粉碎して乾燥し た。 この I n QG a 。〇3 (ZnO) 3粉と 4 N相当で平均粒径 5 m以下の Z n S粉を Z n S: I n 0G a x.0O3 (ZnO) 3=70 : 30vo l %とな るように混合する。 混合は湿式ボールミル混合又は高速攪拌混合機を用いて各粉 を均一に分散させる。
'次に、 この混合粉をカーボン製の型に充填し、 温度 950 ° Cでホットプ レスを行いターゲットとした。 このターゲットの相対密度は 94%であった。 夕 ーゲット内の平均結晶粒径は 3. 5 zmであった。
ターゲット内より任意に 3ケ所からサンプリングして組成 (I CP法) と 密度 (アルキメデス法) を測定した結果及び平滑加工したターゲットのスパッ夕 リング面における任意の 5ケ所におけるバルク抵抗 (4端子法) を測定した結果 は、 表 2に示すようになった。 表 2に示すように、 組成、 密度、 パルク抵抗値の ばらつきが極めて小さいという結果が得られた。
また、 これを 6インチ Φサイズに加工したターゲットを使用して、 スパッ 夕リングを行った。 スパッ夕条件は、 DCスパッ夕、 スパッ夕パワー 1000W、 Arガス圧 0. 5Paとし、 目標膜厚 1500 Aで成膜した。 成膜サンプルの透 過率は 98% (波長 650 nm) 、 屈折率は 2. 2 (波長 633 nm) であった。
そして、 成膜サンプルのァニール処理 (600° CX30mi n、 Arフ ロー) 前後の XRD測定を行った。 これによると、 特定の結晶ピークは見られず、 安定した非晶質性を保っていた。 (実施例 10)
4 N相当で 5 m以下の I n 203粉と4N相当で3 m以下の S ηθ粉と 4N相当で平均粒径 5 m以下の Z ηθ粉を用意し、 I n 。 S n 。 03. 5 (Z n〇) 4となるように調合して、 湿式混合し、 乾燥後、 1 100° Cで仮焼した。
仮焼後の XRD測定にて I 。3]^.。03.5 (Zn〇) 4の結晶ピーク が観察された。 さらにこの仮焼粉を平均粒径 1 m相当まで湿式微粉砕して乾燥 した。 この I n 。 。03. 5 (ZnO) 4粉と 4 N相当で平均粒径 5 m以 下の Z n S粉を Z n S : I nし 。 S n 。〇 3. 5 (Z nO) 4= 70 : 30 v o 1 %となるように混合する。 混合は湿式ポールミル混合又は高速攪拌混合機を用 いて各粉を均一に分散させる。
次に、 この混合粉をカーボン製の型に充填し、 温度 950 ° Cでホットプ レスを行いターゲットとした。 このターゲットの相対密度は 9 1 %であった。 夕 一ゲット内の平均結晶粒径は 3. 5 mであった。
ターゲット内より任意に 3ケ所からサンプリングして組成 (I CP法) と 密度 (アルキメデス法) を測定した結果及び平滑加工したターゲットのスパッ夕 リング面における任意の 5ケ所におけるバルク抵抗 (4端子法) を測定した結果 は、 表 2に示すようになった。 表 2に示すように、 組成、 密度、 バルク抵抗値の ばらつきが極めて小さいという結果が得られた。
また、 これを 6インチ φサイズに加工したターゲットを使用して、 スパッ タリングを行った。 スパッ夕条件は、 DCスパッ夕、 スパッタパヮ一 1000W、 Arガス圧 0. 5 P aとし、 目標膜厚 1500 Aで成膜した。 成膜サンプルの透 過率は 95% (波長 650 nm) 、 屈折率は 2. 3 (波長 633 nm) であった。
そして、 成膜サンプルのァニール処理 (600° CX 30m i n、 Arフ ロー) 前後の XRD測定を行った。 これによると、 特定の結晶ピークは見られず、 安定した非晶質性を保っていた。 (実施例 11 )
4 N相当で 5 xm以下の I n203粉と 4N相当で 3 m以下の C r 203粉 と 4 N相当で平均粒径 5 a m以下の Z n〇粉を用意し、 I n x. 3C r 0. 203 (Z ηθ) 3となるように調合して、 湿式混合し、 乾燥後、 1 1 00° Cで仮焼した。
仮焼後の XRD測定にて I 8C r 0. 203 (ZnO) 5の結晶ピークが 観察された。 さらにこの仮焼粉を平均粒径 1 II m相当まで湿式微粉砕して乾燥し た。 この I n 8C r 0· 203 (ZnO) 5粉と 4 N相当で平均粒径 5 m以下の Z n S粉を Z n S : I n x. 8C r 0. 203 (ZnO) 5=60 : 40 v o l %とな るように混合する。 混合は湿式ポールミル混合又は高速攪拌混合機を用いて各粉 を均一に分散させる。
次に、 この混合粉をカーボン製の型に充填し、 温度 950 ° Cでホットプ レスを行いターゲットとした。 このターゲットの相対密度は 94%であった。 夕 一ゲット内の平均結晶粒径は 4. 0 imであった。
ターゲット内より任意に 3ケ所からサンプリングして組成 (I CP法) と 密度 (アルキメデス法) を測定した結果及び平滑加工したターゲットのスパッ夕 リング面における任意の 5ケ所におけるバルク抵抗 (4端子法) を測定した結果 は、 表 2に示すようになった。 表 2に示すように、 組成、 密度、 バルク抵抗値の ばらつきが極めて小さいという結果が得られた。
また、 これを 6インチ Φサイズに加工したターゲットを使用して、 スパッ 夕リングを行った。 スパッ夕条件は、 DCスパッ夕、 スパッ夕パワー 1000W、 Arガス圧 0. 5P aとし、 目標膜厚 1500 Aで成膜した。 成膜サンプルの透 過率は 92% (波長 650 nm) 、 屈折率は 2. 3 (波長 633 nm) であった。
そして、 成膜サンプルのァニール処理 (600° CX 30m i n、 Arフ 口一) 前後の XRD測定を行った。 これによると、 特定の結晶ピークは見られず、 安定した非晶質性を保っていた。 8
(比較例 5)
4 N相当で 5 m以下の I n 203粉と4N相当でl ητι以下の A 1203粉 と 4 N相当で平均粒径 5 a m以下の Z n〇粉を用意し、 I 0A 1 0O3 (Z n〇) 3となるように調合して、 さらに 4 N相当で平均粒径 5 m以下の Z n S 粉を Z n S: I n 。 A 1 。03 (Z n〇) 3 = 70 : 30 v o 1 %となるよう に混合する。
次に、 この混合粉をカーボン製の型に充填し、 温度 900 ° Cでホットプ レスを行いターゲットとした。 このターゲットの相対密度は 82 %であった。 夕
—ゲット内の平均結晶粒径は 13; mであった。
ターゲット内より任意に 3ケ所からサンプリングして組成 (I CP法) と 密度 (アルキメデス法) を測定した結果及び平滑加工したターゲットのスパッ夕 リング面における任意の 5ケ所におけるバルク抵抗 (4端子法) を測定した結果 は、 表 2に示すようになった。 表 2に示すように、 組成、 密度、 バルク抵抗値の ばらつきが大きいという結果が得られた。
また、 これを 6インチ φサイズに加工したターゲットを使用して、 スパッ 夕リングを行った。 スパッ夕条件は、 DCスパッタ、 スパッ夕パワー 1000W、 Arガス圧 0. 5Paとしたが、 このターゲットは異常放電が多く、 DCスパッ 夕不可であった。
(比較例 6)
4 N相当で 5 m以下の I n23粉と4N相当でl m以下の Ga23粉 と 4N相当で平均粒径 5 m以下の ZnO粉を用意し、 I nGa〇3 (ZnO) 0. 7となるように調合して、 さらに 4 N相当で平均粒径 5 m以下の Z n S粉を Z n S: I n G a03 (ZnO) 0.7= 60 : 40 v o 1 %となるように混合する。
次に、 この混合粉をカーボン製の型に充填し、 温度 900 ° Cでホットプ レスを行いターゲットとした。 このターゲットの相対密度は 78 %であった。 夕 ーゲット内の平均結晶粒径は 11 , mであった。 9 ターゲット内より任意に 3ケ所からサンプリングして組成 ( I C P法) と 密度 (アルキメデス法) を測定した結果及び平滑加工したターゲットのスパッタ リング面における任意の 5ケ所におけるバルク抵抗 (4端子法) を測定した結果 は、 表 2に示すようになった。 表 2に示すように、 組成、 密度、 バルク抵抗値の ばらつきが大きいという結果が得られた。
また、 これを 6インチ φサイズに加工したターゲットを使用して、 スパッ タリングを行った。 スパッ夕条件は、 D Cスパッ夕、 スパッ夕パワー 1 0 0 0 W、 A rガス圧 0 . 5 P aとしたが、 このターゲットは異常放電が多く、 D Cスパッ 夕不可であった。
上記実施例 8〜1 1においては、 3価以上の陽性元素 (A、 B ) として、 インジウム、 錫、 クロム、 ガリウムを用いたが、 他の 3価以上の陽性元素である アルミニウム、 鉄、 スカンジウム、 イットリウム、 ランタン、 バナジウム、 マン ガン、 ニオブ、 タンタル、 ゲルマニウム、 錫、 アンチモン等から選択した少なく とも 1種類以上の元素を用いて実施した場合も、 実施例 8〜1 1と同様の結果が 得られた (結果が重複し、 煩雑になるので割愛した) 。 また、 以上の元素を複合 させた場合も同様の結果であった。 産業上の利用可能性
本発明は、 Z n S等のカルコゲン化亜鉛に Z η θを主成分とする化合物 (ホモ口ガス化合物) を添加して成分調整を行い、 非晶質性の安定化を図りかつ夕 ーゲッ卜に導電性を付与し、 光情報記録媒体の記録層材との密着性を向上させるこ とで特性を向上させ、 相対密度を 9 0 %以上に高密度化することによって安定し た D Cスパッ夕を可能とする。
そして、 この D Cスパッタリングの特徵である、 スパッ夕の制御性を容易に し、 成膜速度を上げ、 スパッタリング効率を向上させることができるという著しい 効果がある。 さらにこれによつて、 成膜の際にスパッ夕時に発生するパーテイクル (発 塵) ゃノジュールを低減し、 品質のばらつきが少なく量産性を向上させることが でき、 光ディスク保護膜をもつ光記録媒体を低コストで安定して製造できるとい う著しい効果がある。
さらに、 ターゲット内における亜鉛以外の、 元素のばらつきの範囲、 夕一ゲ ット内における密度のばらつきの範囲、 ターゲット内におけるバルク抵抗のばらつ きが平均値に対して小さいこと、 また夕一ゲッ卜内における平均結晶粒径が 1 0 β m以下であり、 酸化亜鉛を主成分とした酸化物とカルコゲン化物が均一に分散して いる組織を備えていることによって、 均一な成膜が可能であり、 また特性に優れた 光情報記録媒体用薄膜 (保護膜) を形成することができるという効果がある。

Claims

2 請 求 の 範 囲
1. Α-, Βは其々異なる 3価以上の陽性元素であり、 その価数を其々 Ka、 K bとしたとき、 AxBY0 (KaX + KbY) /2(ZnO)m、 0く Xく 2、 Y=2— X、 1 ≤mを満たす酸化亜鉛を主成分とする化合物とカルコゲン化亜鉛を含有すること を特徴とするスパッタリング夕一ゲット
2. A、 Bは其々異なる 3価以上の陽性元素であり、 その価数を其々 Ka、 K bとしたとき、 AxBY0 (KaX+KbY) /2(ZnO)m、 0<X<2、 Y=2 - X、 1 ≤mを満たす酸化亜鉛を主成分とする化合物を含有し、 さらにカルコゲン化亜鉛 を含む、 相対密度 90%以上、 バルク抵抗値 0. 1 Ω cm以下であることを特徴 とするスパッタリングターゲット。
3. 2≤mを満たす酸化亜鉛を主成分とする化合物を含有することを特徴とす る請求の範囲第 1項又は第 2項記載のスパッ夕リングタ一ゲット。
4. Aがィンジゥムであることを特徴とする請求の範囲第 1項〜第 3項のいず れかに記載のスパッタリング夕ーゲット。
5. 酸化亜鉛を主成分とした化合物が力ルコゲン化亜鉛に対して体積比率で 2 5%以上含むことを特徴とする請求の範囲第 1項〜第 4項のいずれかに記載のス パッタリングタ一ゲット。
6. ターゲット内における亜鉛以外の、 元素のばらつきの範囲が 0. 5\¥セ%以 内であることを特徴とする請求の範囲第 1項〜第 5項のいずれかに記載のスパッ タリングターゲット。
7. 夕一ゲット内における密度のばらつきの範囲が 3%以内であることを特徴と する請求の範囲第 1項〜第 6項のいずれかに記載のスパッ夕リングターゲット。
8. 夕一ゲッ卜内におけるバルク抵抗のばらつきが平均値に対して 40 %以内で あることを特徴とする請求の範囲第 1項〜第 7項のいずれかに記載のスパッ夕リ ング夕ーゲッ卜。
9. ターゲット内における平均結晶粒径が 1 0 i m以下であり、 酸化亜鉛を主成 分とした酸化物とカルコゲン化物が均一に分散している組織を備えていることを特 徴とする請求の範囲第 1項〜第 8項のいずれかに記載のスパッタリング夕ーゲッ
1 0 . 請求の範囲第 1項〜第 9項のいずれかに記載のスパッタリング用ターゲ ットを使用して形成された光情報記録媒体用薄膜。
1 1 . 記録層と隣接して使用されることを特徴とする請求の範囲第 1 0項記載 の光情報記録媒体用薄膜。
1 2 . 請求の範囲第 1項〜第 9項のいずれかに記載のスパッタリング用夕ーゲ ットを使用して直流スパッ夕で薄膜を形成することを特徴とする光情報記録媒体 用薄膜の製造方法。
1 3. 平均粒径が 5 以下である各構成元素の酸化物粉末及びカルコゲン化物 粉末を常圧焼結又は高温加圧焼結することを特徴とする請求の範囲第 1項〜第 9項 のいずれかに記載のスパッ夕リング用ターゲットの製造方法。
1 4. 焼結前に、 酸化亜鉛を主成分とした酸化物粉末を 8 0 0〜1 3 0 0 ° Cで 仮焼することを特徴とする請求の範囲第 1 3項記載のスパッタリング用ターゲッ トの製造方法。
1 5. 仮焼した後、 1 以下に粉碎することを特徴とする請求の範囲第 1 4項 記載のスパッタリング用夕ーゲットの製造方法。
1 6. 真空中又はアルゴン、 窒素等の不活性雰囲気中で焼結することを特徴とす る請求の範囲第 1 3項〜第 1 5項のいずれかに記載のスパッタリング用ターゲッ トの製造方法。
1 7 . 焼結前の酸化物粉末が、 予め酸化亜鉛を主成分とした化合物を形成してい ることを特徴とする請求の範囲第 1 3項〜第 1 6項のいずれかに記載のスパッ夕 リング用ターゲットの製造方法。
PCT/JP2004/001050 2003-03-04 2004-02-03 スパッタリングターゲット及びその製造方法並びに光情報記録媒体用薄膜及びその製造方法 WO2004079037A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005502989A JP3768230B2 (ja) 2003-03-04 2004-02-03 スパッタリングターゲット及びその製造方法並びに光情報記録媒体用薄膜及びその製造方法
EP04707631A EP1602746B1 (en) 2003-03-04 2004-02-03 Sputtering target and process for producing the same, thin film for optical information recording medium and process for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-056935 2003-03-04
JP2003056911 2003-03-04
JP2003056935 2003-03-04
JP2003-056911 2003-03-04

Publications (1)

Publication Number Publication Date
WO2004079037A1 true WO2004079037A1 (ja) 2004-09-16

Family

ID=32964880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001050 WO2004079037A1 (ja) 2003-03-04 2004-02-03 スパッタリングターゲット及びその製造方法並びに光情報記録媒体用薄膜及びその製造方法

Country Status (6)

Country Link
EP (2) EP1602746B1 (ja)
JP (2) JP3768230B2 (ja)
KR (1) KR100673263B1 (ja)
CN (1) CN100476017C (ja)
TW (2) TW200802359A (ja)
WO (1) WO2004079037A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299307A (ja) * 2005-04-18 2006-11-02 Mitsubishi Materials Corp 光記録媒体保護膜形成用スパッタリングターゲット
WO2006137199A1 (ja) 2005-06-23 2006-12-28 Nippon Mining & Metals Co., Ltd. スパッタリングターゲット及び光情報記録媒体用薄膜
JP2007119289A (ja) * 2005-10-27 2007-05-17 Idemitsu Kosan Co Ltd 酸化物粒子、焼結体及びそれらの製造方法
WO2007083837A1 (en) * 2006-01-23 2007-07-26 Ricoh Company, Ltd. Optical recording medium
WO2007105662A1 (en) * 2006-03-10 2007-09-20 Ricoh Company, Ltd. Optical recording medium
JP2007270253A (ja) * 2006-03-31 2007-10-18 Mitsubishi Materials Corp 光記録媒体保護膜形成用スパッタリングターゲットの製造方法
JPWO2008012970A1 (ja) * 2006-07-27 2009-12-17 日鉱金属株式会社 リチウム含有遷移金属酸化物ターゲット及びその製造方法並びにリチウムイオン薄膜二次電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100631400B1 (ko) * 2006-06-29 2006-10-04 주식회사 아이피에스 상변화 메모리용 칼코제나이드막 증착 방법
CN103748055B (zh) * 2012-07-09 2017-10-13 吉坤日矿日石金属株式会社 导电性氧化物烧结体及其制造方法
TWI582255B (zh) * 2013-08-14 2017-05-11 光洋應用材料科技股份有限公司 用於光儲存媒體的介電濺鍍靶材及介電層
CN108178624A (zh) 2018-01-03 2018-06-19 京东方科技集团股份有限公司 一种氧化物靶材及其制备方法、薄膜晶体管、显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256321A (ja) * 1998-03-13 1999-09-21 Sumitomo Metal Mining Co Ltd ZnO系焼結体
JP2000026119A (ja) * 1998-07-09 2000-01-25 Hoya Corp 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000195101A (ja) * 1998-12-28 2000-07-14 Japan Energy Corp 光ディスク保護膜及び同保護膜形成用スパッタリングタ―ゲット
JP2000256061A (ja) * 1999-03-05 2000-09-19 Idemitsu Kosan Co Ltd 透明導電材料、透明導電ガラス及び透明導電フィルム
JP2001011615A (ja) * 1999-07-01 2001-01-16 Nikko Materials Co Ltd 光ディスク保護膜形成スパッタリングターゲット
JP2001316804A (ja) * 2000-05-08 2001-11-16 Mitsubishi Materials Corp 直流スパッタリング可能でかつ異常放電の少ない光記録保護膜形成用スパッタリングターゲット
JP2002161359A (ja) * 2000-11-22 2002-06-04 Mitsubishi Materials Corp 高出力スパッタ条件ですぐれた耐割損性を発揮する光記録媒体保護層形成用スパッタリングターゲット焼結材
JP2003099995A (ja) * 2001-09-26 2003-04-04 Ulvac Japan Ltd 光ディスク用誘電体ターゲット及び成膜方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2695605B2 (ja) 1992-12-15 1998-01-14 出光興産株式会社 ターゲットおよびその製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP3533333B2 (ja) * 1998-08-21 2004-05-31 Tdk株式会社 光記録媒体の干渉膜用スパッタリングターゲットおよびその製造方法
JP3915109B2 (ja) * 1999-09-28 2007-05-16 三菱マテリアル株式会社 光記録媒体保護層形成用スパッタリングターゲット材
JP4198918B2 (ja) * 2002-02-14 2008-12-17 日鉱金属株式会社 硫化亜鉛を主成分とするスパッタリングターゲット及び該スパッタリングターゲットの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256321A (ja) * 1998-03-13 1999-09-21 Sumitomo Metal Mining Co Ltd ZnO系焼結体
JP2000026119A (ja) * 1998-07-09 2000-01-25 Hoya Corp 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000195101A (ja) * 1998-12-28 2000-07-14 Japan Energy Corp 光ディスク保護膜及び同保護膜形成用スパッタリングタ―ゲット
JP2000256061A (ja) * 1999-03-05 2000-09-19 Idemitsu Kosan Co Ltd 透明導電材料、透明導電ガラス及び透明導電フィルム
JP2001011615A (ja) * 1999-07-01 2001-01-16 Nikko Materials Co Ltd 光ディスク保護膜形成スパッタリングターゲット
JP2001316804A (ja) * 2000-05-08 2001-11-16 Mitsubishi Materials Corp 直流スパッタリング可能でかつ異常放電の少ない光記録保護膜形成用スパッタリングターゲット
JP2002161359A (ja) * 2000-11-22 2002-06-04 Mitsubishi Materials Corp 高出力スパッタ条件ですぐれた耐割損性を発揮する光記録媒体保護層形成用スパッタリングターゲット焼結材
JP2003099995A (ja) * 2001-09-26 2003-04-04 Ulvac Japan Ltd 光ディスク用誘電体ターゲット及び成膜方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1602746A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697404B2 (ja) * 2005-04-18 2011-06-08 三菱マテリアル株式会社 光記録媒体保護膜形成用スパッタリングターゲット
JP2006299307A (ja) * 2005-04-18 2006-11-02 Mitsubishi Materials Corp 光記録媒体保護膜形成用スパッタリングターゲット
WO2006137199A1 (ja) 2005-06-23 2006-12-28 Nippon Mining & Metals Co., Ltd. スパッタリングターゲット及び光情報記録媒体用薄膜
EP1895020A4 (en) * 2005-06-23 2012-11-14 Jx Nippon Mining & Metals Corp SPRAY TARGET AND THIN LAYER FOR OPTICAL INFORMATION RECORDING MEDIUM
JP4907528B2 (ja) * 2005-06-23 2012-03-28 Jx日鉱日石金属株式会社 スパッタリングターゲット
EP1895020A1 (en) * 2005-06-23 2008-03-05 Nippon Mining & Metals Co., Ltd. Sputtering target and thin film for optical information recording medium
JPWO2006137199A1 (ja) * 2005-06-23 2009-01-08 日鉱金属株式会社 スパッタリングターゲット及び光情報記録媒体用薄膜
JP2007119289A (ja) * 2005-10-27 2007-05-17 Idemitsu Kosan Co Ltd 酸化物粒子、焼結体及びそれらの製造方法
WO2007083837A1 (en) * 2006-01-23 2007-07-26 Ricoh Company, Ltd. Optical recording medium
US8017209B2 (en) 2006-01-23 2011-09-13 Ricoh Company, Ltd. Optical recording medium
US8075974B2 (en) 2006-03-10 2011-12-13 Ricoh Company, Ltd. Optical recording medium
WO2007105662A1 (en) * 2006-03-10 2007-09-20 Ricoh Company, Ltd. Optical recording medium
JP4697441B2 (ja) * 2006-03-31 2011-06-08 三菱マテリアル株式会社 光記録媒体保護膜形成用スパッタリングターゲットの製造方法
JP2007270253A (ja) * 2006-03-31 2007-10-18 Mitsubishi Materials Corp 光記録媒体保護膜形成用スパッタリングターゲットの製造方法
JPWO2008012970A1 (ja) * 2006-07-27 2009-12-17 日鉱金属株式会社 リチウム含有遷移金属酸化物ターゲット及びその製造方法並びにリチウムイオン薄膜二次電池

Also Published As

Publication number Publication date
KR100673263B1 (ko) 2007-01-22
EP1602746A1 (en) 2005-12-07
EP1602746B1 (en) 2008-10-08
EP1602746A4 (en) 2006-07-05
TW200802359A (en) 2008-01-01
TW200417618A (en) 2004-09-16
EP2006412A1 (en) 2008-12-24
JPWO2004079037A1 (ja) 2006-06-08
TWI301157B (ja) 2008-09-21
CN1756858A (zh) 2006-04-05
TWI336472B (ja) 2011-01-21
JP4260801B2 (ja) 2009-04-30
KR20050102146A (ko) 2005-10-25
JP2006152443A (ja) 2006-06-15
CN100476017C (zh) 2009-04-08
JP3768230B2 (ja) 2006-04-19

Similar Documents

Publication Publication Date Title
JP4965540B2 (ja) スパッタリングターゲット、光情報記録媒体用薄膜及びその製造方法
JP4260801B2 (ja) 光情報記録媒体用薄膜の製造方法
JP4793773B2 (ja) スパッタリングターゲットの製造方法
JP4711244B2 (ja) スパッタリングターゲット
JP4907528B2 (ja) スパッタリングターゲット
JP5162883B2 (ja) 光記録媒体の記録層製膜用スパッタリングターゲット及びその製造方法、並びに光記録媒体の製造方法
JP5329537B2 (ja) スパッタリングターゲット及び非晶質性光学薄膜
JP4745319B2 (ja) 光情報記録媒体
JP5476636B2 (ja) スパッタリングターゲットの製造方法及びスパッタリングターゲット
JP5172868B2 (ja) スパッタリングターゲット並びに光情報記録媒体及びその製造方法
JP5389852B2 (ja) 光情報記録媒体の保護膜

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005502989

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004707631

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057015760

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048059781

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057015760

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004707631

Country of ref document: EP