WO2004078889A1 - 原油の接触水素化処理方法 - Google Patents

原油の接触水素化処理方法 Download PDF

Info

Publication number
WO2004078889A1
WO2004078889A1 PCT/JP2004/002524 JP2004002524W WO2004078889A1 WO 2004078889 A1 WO2004078889 A1 WO 2004078889A1 JP 2004002524 W JP2004002524 W JP 2004002524W WO 2004078889 A1 WO2004078889 A1 WO 2004078889A1
Authority
WO
WIPO (PCT)
Prior art keywords
crude oil
oil
fraction
catalyst
naphtha fraction
Prior art date
Application number
PCT/JP2004/002524
Other languages
English (en)
French (fr)
Inventor
Mitsuru Yoshita
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to EP04716317A priority Critical patent/EP1600491A1/en
Priority to MXPA05009298A priority patent/MXPA05009298A/es
Publication of WO2004078889A1 publication Critical patent/WO2004078889A1/ja

Links

Classifications

    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/042Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/045Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment

Definitions

  • the present invention relates to a method for catalytically hydrotreating crude oil or crude oil from which a naphtha fraction and a lighter fraction have been removed, and a method for producing an ultra-low sulfur kerosene from the resulting oil.
  • the present inventors have also proposed a method of obtaining a high-quality kerosene oil fraction while hydrocracking heavy oil (Japanese Patent Application Laid-Open No. 6-98270) and hydrogenating crude oil excluding crude oil or naphtha fraction.
  • a method for improving the quality of a kerosene gas oil fraction by a combination of catalysts for treatment Japanese Patent Application Laid-Open No. 7-268361
  • a method for further hydrogenating a gas-phase fraction after gas-liquid separation Japanese Patent Application Laid-Open No. 2000-2000
  • the sulfur content of diesel oil is 350 ppm at present, but 200 It will be 50 ppm in 4 years, and it will be necessary to reduce it to 10 ppm or less thereafter.
  • the sulfur content of light oil can be reduced to only about 50 ppm even if the operating conditions are devised, and it is necessary to produce ultra low sulfur gas oil of 10 ppm or less. Is currently difficult
  • the present invention has been made under the above circumstances, and in order to improve the conventional crude oil refining treatment method, catalytic hydrogenation of a crude oil or a crude oil excluding a naphtha fraction and a lighter fraction is collectively performed.
  • the catalytic hydrogenation method and the produced oil are used to greatly improve the quality of kerosene gas oil in the resulting product oil and produce ultra-low sulfur kerosene gas with a sulfur content of less than 10 ppm. It is an object of the present invention to provide a method for obtaining light oil.
  • the present inventor has found that the crude oil or crude oil excluding the naphtha fraction and lighter fractions are collectively subjected to the hydrodemetallization treatment step, the hydrocracking treatment step, and the hydrodesulfurization treatment.
  • a periodic table is used as a hydrocracking catalyst on a zeolite catalyst carrier in which ultrafine particles of titanium group metal oxide are complexed on the inner surface of mesopores. It has been found that the above object of the present invention can be effectively achieved by using a catalyst supporting at least one selected from metals belonging to Groups 6, 8.9 and 10 groups. It was completed.
  • the gist of the present invention is as follows.
  • Crude oil or crude oil excluding naphtha fraction and lighter fractions are subjected to hydrodemetallization, batch hydrocracking, and hydrodesulfurization.
  • a method for catalytic hydrogenation of crude oil or crude oil excluding naphtha fraction consisting of zeolite with ultrafine particles of titanium group metal oxide complexed on the inner surface of mesopores as a hydrocracking catalyst.
  • a method for the catalytic hydrogenation of crude oil excluding distillates are subjected to hydrodemetallization, batch hydrocracking, and hydrodesulfurization.
  • Crude oil or naphtha fraction and crude oil excluding lighter fractions are subjected to hydrodemetallization at once, followed by hydrodesulfurization, and then crude oil or naphtha fraction to be hydrocracked In the method of catalytic hydrogenation of crude oil except for the components.
  • a hydrocracking catalyst a catalyst carrier consisting of zeolite in which ultrafine particles of titanium group metal oxide are compounded on the inner surface of mesopores
  • Crude oil characterized by using a catalyst carrying at least one selected from metals belonging to group 8, 8, 9 and 10 or crude oil excluding naphtha fraction and lighter fractions Catalytic hydrogenation method.
  • the crude oil or crude oil excluding the naphtha fraction and lighter fractions are subjected to hydrodemetallization at once, followed by hydrodesulfurization, then hydrocracking, and then hydrodesulfurization Carrier consisting of zeolite in which ultrafine particles of titanium group metal oxide are complexed on the inner surface of mesopores as a catalyst for hydrocracking in a method for catalytic hydrogenation of crude oil excluding naphtha fraction A crude oil, or a naphtha fraction and a lighter fraction thereof, using a catalyst carrying at least one selected from metals belonging to Groups 6, 8, 9, and 10 of the Periodic Table.
  • a method for catalytic hydrogenation of crude oil excluding distillates are subjected to hydrodemetallization at once, followed by hydrodesulfurization, then hydrocracking, and then hydrodesulfurization
  • Carrier consisting of zeolite in which ultrafine particles of titanium group metal oxide are complexed on the inner surface of mesopores as a catalyst for hydrocracking in a method for
  • FIG. 1 is a schematic flow chart of an embodiment (Case 1, Example 1) of the present invention.
  • FIG. 2 is a schematic flow chart of an embodiment (Case 2, Example 2) of the present invention.
  • FIG. 3 is a schematic flow chart of an embodiment (Case 3, Example 3) of the present invention.
  • FIG. 4 is a schematic flow chart of an embodiment (Case 4, Example 4) of the present invention.
  • FIG. 5 is a schematic flow chart of an embodiment (Case 5, Example 5) of the present invention.
  • FIG. 6 is a schematic flowchart of an embodiment (Case 6, Example 6) of the present invention.
  • FIG. 7 is a schematic flow chart of the prior art of the present invention (Comparative Example 1).
  • FIG. 8 is a schematic flow chart of the prior art of the present invention (Comparative Example 2). BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 to 6 Schematic flow diagrams (cases 1 to 6) of an embodiment of the present invention are shown in FIGS.
  • the present invention can be summarized as follows: “The crude oil or the naphtha fraction and the crude oil excluding the lighter fraction (hereinafter also referred to as the naphtha fraction, etc.) are collectively subjected to the hydrodemetallization process.
  • zeolite in which ultrafine particles of titanium group metal oxide are compounded on the inner surface of mesopores is used as a hydrocracking catalyst.
  • a crude carrier or a naphtha fraction, etc., characterized by using an erosion medium carrying at least one selected from metals belonging to Groups 6.8, 9 and 10 of the Periodic Table on a catalyst carrier comprising:
  • the method for catalytic hydrotreating of crude oil excluding oil hereinafter also referred to as “extracted crude oil”). " Will be.
  • each step and the like will be described in detail.
  • the crude oil in the present invention includes not only petroleum-based crude oil but also non-petroleum-based crude oil.
  • the non-petroleum-based crude oil include coal liquefied oil, tar sands oil, oil sand oil, oil shale oil, orinoco tar, and synthetic crude oil obtained therefrom.
  • a mixed crude oil of petroleum-based crude oil and non-petroleum-based crude oil can be used as a feedstock.
  • Examples of the desalination method include chemical desalination generally performed by those skilled in the art, (4) Treco's electric desalination, and Howe-Baker's electric desalination.
  • the oil produced by the method of the present invention is subjected to atmospheric pressure distillation in the next step to separate a naphtha fraction and the like, followed by catalytic reforming.
  • a general preflash column or preflash column may be used as a method for removing 15 such as naphtha fraction.
  • Operating temperature is 150 to 300 It is preferable that the separation be performed at a temperature and a pressure of 0.2 to IMPa.
  • the boiling point of the naphtha fraction to be separated is determined by the crude oil as the starting point, and the end point is preferably in the range of 125 to 174 ° C. If the end point is lower than 125 ° C, the reaction rate may decrease due to a decrease in the partial pressure of water in the subsequent catalytic hydrogenation treatment. If the end point exceeds 174 ° C, the sulfur content of the kerosene fraction in the generated oil may increase and may fall outside the specification.
  • Crude oil 10 or unprocessed crude oil 16 is heated and pressurized, and is subjected to batch hydrodemetallization with hydrogen in the first stage of hydrodemetallization process 2.
  • This step comprises one or more reaction towers.
  • Catalysts used in this hydrodemetallization process include porous inorganic oxides such as alumina, silica, silica-alumina or sepiolite, acidic carriers, natural minerals, and the like.
  • a hydrodemetallization catalyst available from Toshiba Corporation may be used.
  • the required amount of hydrodemetallization catalyst is preferably 10 to 80% by volume of the cumulative amount of metal contained in the feed oil during the treatment.
  • Hydrodemetallization process conditions include reaction temperature 300-450 ° C, hydrogen partial pressure 3-20 MPa (G), hydrogen-Z oil ratio 200-2,000 Nm 3 / k1, LHS V (liquid Spatio-temporal velocity) 0.1 to: LO hr— 1 , preferably reaction temperature 330 to 410 ° C, hydrogen partial pressure 10 to 18 MPa, hydrogen Z oil ratio 400 to
  • reaction efficiency will decrease, and if the ratio exceeds the above ranges, the economic efficiency may decrease. Conversely, if the LHSV falls below the above range, the economic efficiency will decrease, and if the LHSV exceeds the above range, Reaction efficiency may decrease.
  • the oil that has been subjected to batch hydrodemetallization (Cases 1 and 2) or the oil that has been batch hydrodesulfurized (Cases 3 to 6) is then subjected to batch hydrocracking in the hydrocracking process.
  • This step comprises one or more reaction towers.
  • a catalyst carrier (hereinafter sometimes referred to as a modified zeolite) consisting of zeolite in which ultrafine particles of titanium group metal oxide are complexed on the inner surface of mesopores is used. It is a feature of the present invention to use a material that carries at least one selected from metals belonging to Groups 6, 8, 9, and 10 of the Ritsumei Table.
  • the catalyst support is composed of zeolite in which ultrafine titanium group metal oxide particles are compounded on the inner surface of the mesopore, and the atomic ratio of aluminum to silicon contained in the zeolite [A 1] / [S i] preferably uses a modified zeolite in the range of 0.01 to 0.1, more preferably 0.03 to 0.08.
  • the titanium group metal oxide includes titania and zirconia.
  • the size of the ultrafine titanium-group metal oxide particles composited on the inner surface of the zeolite mesopores is preferably a particle size that does not affect the diffusion rate of the reactant. It is preferably substantially uniform in the range of 10 nm.
  • the content of the titanium group metal oxide is 1 to 10% by mass, preferably 3 to 7% by mass in the catalyst carrier.
  • a proton exchange type zeolite is used as a raw material for producing the zeolite-based catalyst carrier.
  • the atomic ratio [A 1] [S i] between aluminum and silicon contained therein is from 0.01 to 0.35, preferably from 0.1 to 0.33.
  • the ratio of the mesopores is at least 10%, preferably at least 15% of the total pore volume.
  • the upper limit is not particularly limited, but is usually about 30%.
  • the average primary particle size of zeolite is not particularly limited, it is usually 0.1 to 0.1.
  • an aqueous solution of a titanium group metal salt (a water-soluble salt such as a sulfate or a halide) is brought into contact with the raw material zeolite.
  • concentration of the titanium group metal (hereinafter simply referred to as metal) salt in the aqueous solution is 0.02 to 0.1 mol / liter, preferably 0.05 to 0.1 mol / liter. .
  • the ⁇ of the aqueous solution is adjusted to 0.8 to 2, preferably 1.0 to 1.9.
  • the contact temperature is about 25-80 ° C.
  • a dealumination reaction occurs between aluminum and a strong acid on the surface of zeolite (aluminum silicate), and this reaction is accompanied by the formation of ultrafine particles.
  • Metal hydroxide precipitates on the inner surface of zeolite mesopores.
  • the contact conditions such as the contact time, temperature, and pH of the aqueous solution may be adjusted.
  • the zeolite is sufficiently washed with water to such an extent that no acid radical is observed, and then dried.
  • the drying in this case is preferably performed at a temperature as low as possible in order to prevent agglomeration of the ultrafine metal hydroxide particles deposited on the inner surface of the mesopore of zeolite, preferably at 25 to 100 ° C, and more preferably at 25 to 100 ° C. It is better to perform at around 50 ° C.
  • the zeolite is calcined at 400-600 ° C, preferably 450-550 ° C. In this case, the sintering atmosphere is not particularly limited.
  • the catalyst carrier of the present invention is obtained.
  • the acid point density ([A 1] / [S i] ratio) is appropriately adjusted in relation to its use.
  • the [Al] / [Si] ratio is smaller than 0.01, the decomposition activity of high boiling oil components (components having a boiling point of 520 ° C or more) may rapidly decrease.
  • the activity when the raw material oil is light, the activity may be controlled by adding 10 to 50% by weight of alumina or the like to the above-mentioned modified zeolite.
  • a hydrogenation active metal is supported on the catalyst support.
  • at least one selected from metals belonging to Groups 6, 8, 9, and 10 of the periodic table is used as the hydrogenation active metal.
  • Tungsten and molybdenum are preferable as the metals belonging to Group 6 of the periodic table, and metals of Groups 8 to 10 of the periodic table may be used alone or in combination with a plurality of metals.
  • the combination of Ni—Mo, Co—Mo, Ni—W, and Ni—Co—Mo is preferred because of its high hydrogenation activity and little deterioration.
  • the content of the hydrogenation active metal is 0.1 to 10% by mass, preferably 1 to 8% by mass in terms of metal. / 0 , but it is preferable that the metal is supported so as to be 20% by mass or more, preferably 25 to 50% by mass with respect to the titanium group metal oxide.
  • the average pore size of the catalyst is 5 to 30 nm, preferably 10 to 25 nm. The average pore diameter in this case was obtained by the nitrogen adsorption method (BJH method, measured pore diameter: 17 to 3,000 A).
  • the form of the hydrogen-activated metal supported on the catalyst carrier is an oxide, sulfide, Z or a metal. Nickel, cobalt, platinum, palladium and the like have a high hydrogenation ability in a metal state.
  • the processing conditions in this hydrocracking process include a reaction temperature of 300 to 450 ° C, a hydrogen partial pressure of 3 to 20 MPa, and a hydrogen / oil ratio of 200 to 2,000 Nm 3. / kl, LHS V (Liquid hourly space velocity) 0.1 to: L 0 hr— 1 , preferably reaction temperature 360 to 420 ° C, hydrogen partial pressure 10 to 18 MPa (G), hydrogen / oil ratio 4 00 ⁇ 800 Nm 3 Zk 1, LHSVO. is 2 ⁇ 2 hr- 1.
  • reaction efficiency will decrease, and if the ratio exceeds the above ranges, the economic efficiency may decrease.
  • the economic efficiency is reduced, and if it exceeds the above range, the reaction efficiency may be reduced.
  • the catalyst used in this hydrodesulfurization step may be an ordinary hydrodesulfurization catalyst for heavy oil, that is, a carrier of alumina, silica, zeolite or a mixture thereof, etc.
  • Zirconia carrier, alumina catalyst, etc.A catalyst comprising at least one selected from metals belonging to Groups 5, 6, 8, 9, and 10 of the periodic table on a carrier selected from carriers and the like, Light Light oil fraction reforming effect Suitable for high.
  • the processing conditions in this hydrodesulfurization process are as follows: 50 ° C, Hydrogen partial pressure 3 ⁇ 201 ⁇ ? & Hydrogen / oil ratio 200 ⁇ 2, OO ONm 3 / kl, LH SV (Liquid hourly space velocity) 0.1 ⁇ : I 0 hr- 1 , preferably reaction temperature 300 ⁇ 420 ° (:, hydrogen partial pressure 1 0 ⁇ 1 8MP a (G), a hydrogen / oil ratio of 4 00 ⁇ S 00 N m 3 / k 1 ⁇ LHSVO 2 ⁇ 2 hr one 1..
  • reaction efficiency will decrease, and if the ratios exceed the above ranges, the economic efficiency may decrease.
  • the LHSV is below the above range, the economic efficiency is reduced, and if it exceeds the above range, the reaction efficiency may be reduced.
  • the batch hydrodemetallization, batch hydrocracking, and batch hydrodesulfurization oils are introduced into the separation process according to ordinary methods, and are processed in multiple separation tanks to form gas and liquid parts. Is separated into Of these, the gaseous portion is subjected to treatment for improving hydrogen purity after removing hydrogen sulfide, ammonia, etc., and then combined with fresh feed gas before being recycled to the reaction process.
  • the separated naphtha fraction is processed by the following methods (1) or (2) depending on the demand for products.
  • the resulting oil may be used as it is, or it may be introduced into equipment for removing hydrogen sulfide accompanying desulfurization, for example, into a hydrogen sulfide stripper to obtain a reformed crude oil.
  • the effect of using generated oil as reformed crude oil is that existing crude oil shipping facilities can be used as they are, and that large-sized crude oil tankers can be used to transport large quantities of products at low cost.
  • the liquid part obtained in the separation step is introduced into the distillation step 7 and fractionated into products according to a conventional method.
  • the conditions for fractionation at this time include, for example, naphtha fraction 71 at atmospheric pressure distillation 21 to 20: I 57 ° C, kerosene fraction 72 at 15 7 to 239 ° C, gas oil Naphtha, kerosene, gas oil (ultra low sulfur gas oil with a sulfur content of less than 10 ppm) and normal It can be fractionated in pressure residue.
  • the atmospheric residue may be continuously distilled under reduced pressure to fractionate into vacuum gas oil and vacuum residue.
  • the type of the reactor in the batch hydrodemetallation treatment, the batch hydrocracking treatment, and the batch hydrodesulfurization treatment is not particularly limited.
  • a fixed bed, a moving bed, a fluidized bed, a boiling bed, a slurry bed Etc. can be adopted.
  • hydrocracking catalyst supported Co and Mo on a carrier prepared by the method described in Example 115 of Patent No. 334101. '
  • Example 1 Batch hydrodemetallization of crude oil, hydrocracking, hydrodesulfurization, case 1; see Fig. 1; In this order, 28% by volume of catalyst A and 33% by volume of catalyst B shown in Table 2 were charged into a 300 milliliter reaction tube, and 39% by volume of catalyst C were charged into a 300 milliliter reaction tube. The reaction was performed in series. The raw fuel oil, the Arabian heavy desalted crude oil shown in Table 1 was supplied, the hydrogen partial pressure 1 3.
  • Atmospheric pressure residue was further subjected to simple distillation under reduced pressure to separate reduced pressure gas oil (343-525 ° C).
  • Table 3 also shows the properties of vacuum gas oil.
  • Kerosene fractions and gas oil fractions have high quality with very few sulfur, aromatics and polycyclic aromatics.
  • gas oil has a sulfur content of less than 10 ppm.
  • the raw material, Arabian heavy crude is hydrocracked, reducing its density and increasing the liquid volume by about 8%.
  • Example 1 To each of the catalysts shown in Example 1, the Arabian heavy demineralized crude oil shown in Table 1 was supplied, and the oil was passed for 1,500 hours under the same conditions as in Example 1.
  • Table 3 shows the properties of each fraction of the product oil obtained by this treatment.
  • Example 1 high-quality kerosene fraction and gas oil fraction with extremely low sulfur, aromatic and polycyclic aromatic content were obtained, and the sulfur content of kerosene and diesel was 10 pp. less than m.
  • Example 1 The hydrodesulfurization catalyst C and the hydrocracking catalyst B of Example 1 were oiled for 1,500 hours under the same conditions as in Example 1 except that the order of treatment was changed without changing the filling amount.
  • Table 3 shows the properties of each fraction of the product oil obtained by this treatment.
  • Example 1 high-quality kerosene fraction and gas oil fraction with extremely low sulfur content, aromatic content and polycyclic aromatic content are obtained, and the sulfur content of kerosene gas oil is less than 10 ppm.
  • the hydrodesulfurization catalyst C and the hydrocracking catalyst B of Example 2 were passed for 1,500 hours under the same conditions as in Example 2 except that the order of treatment was changed without changing the filling amount.
  • Table 3 shows the properties of each fraction of the product oil obtained by this treatment.
  • Example 2 high-quality kerosene fraction and gas oil fraction with extremely low sulfur content, aromatic content and polycyclic aromatic content are obtained, and the sulfur content of kerosene fuel oil is less than 10 ppm.
  • Example 5 (Refer to Fig. 5 in case of batch hydrodemetallation of crude oil, hydrodesulfurization, hydrocracking, hydrodesulfurization treatment, case 5)
  • Example 1 Half of the hydrodesulfurization catalyst C shown in Example 1 (19.5% by volume) was placed after the hydrodehydrogenation catalyst A, and the other half was placed after the hydrocracking catalyst B.
  • the feedstock was supplied in the order of Catalyst C, Catalyst B and then Catalyst C.
  • the reaction conditions of each catalyst were the same as in Example 1.
  • Table 3 shows the properties of each fraction of the product oil obtained by this treatment.
  • Example 1 high-quality kerosene fraction and gas oil fraction with extremely low sulfur, aromatic and polycyclic aromatic content were obtained, and the sulfur content of kerosene and diesel was 10 pp. m.
  • Example 2 Half of the hydrodesulfurization catalyst C (19.5% by volume) shown in Example 2 was disposed after the hydrotreating demetalization catalyst A, and the other half was disposed after the hydrocracking catalyst B.
  • the feedstock was supplied in the order of Catalyst C, Catalyst B and then Catalyst C.
  • the reaction conditions for each catalyst were exactly the same as in Example 2.
  • Table 3 shows the properties of each fraction of the product oil obtained by this treatment.
  • Example 2 high-quality kerosene fractions and gas oil fractions with very little sulfur, aromatics, and polycyclic aromatics are obtained, and the sulfur content of kerosene oil is less than 10 ppm.
  • Vacuum gas oil fraction (17.1) 0.890 3,300 '350
  • catalyst A shown in Table 2 was placed in a volume of 283 ⁇ 4 ° C, catalyst D, which is a conventional catalyst for elongating cracking, in a volume of 33% by volume.
  • the contents were filled in a reaction tube of 300 milliliters in the same manner, and the reaction was carried out by connecting them in series in this order.
  • Other conditions are the same as in the first embodiment.
  • Table 5 shows the properties of the product oil A17 obtained by this treatment.
  • the produced oil A obtained in the above-mentioned reaction (2) is separated into naphtha, kerosene, gas oil, and vacuum gas oil fractions by a batch type distillation apparatus, According to continuous gas-liquid separation adiabatic calculation using Sim Sim process simulator (product name: PRO / ⁇ Ver.5), the gas phase at 340 and total pressure of 13.2 MPa (A) was obtained. Based on the results of the above composition calculation, a hydrogenated feedstock B18 having the same composition as that of the gas phase fluid in the high-temperature high-pressure gas-liquid separation tank was prepared. Table 2.4 shows the properties of this hydroreforming feedstock.
  • the hydrogenation catalyst D described in Table 2 of JP-A-2000-1.36391 was charged into a 30-milliliter reactor tube, and the hydrogenated reforming feedstock B18 shown in Table 4 was hydrogenated.
  • Oil was passed at O hr _1 .
  • Residual oil obtained when the hydrogenated reforming feedstock B was prepared from the generated oil A during the oil passing time of 1 5,000 2,000 hours that is, the liquid phase fluid 19 in the high-pressure high-temperature gas-liquid separation tank and the above-mentioned hydrogenated reformed oil 20 were mixed in a predetermined ratio to obtain a produced oil C.21.
  • the obtained product oil C21 was subjected to LPG (propane + pentane), naphtha fraction (pentane to 157 ° C), and kerosene fraction (157723C) , A gas oil fraction (239 343 ° C) and a normal pressure residue (fraction above 343 ° C) were separated by distillation and the quality of each fraction was analyzed. Table 5 shows the properties of each fraction at this time. The quality of kerosene and gas oil is improved by going through the hydro-reforming process after high-pressure high-temperature gas-liquid separation, but the quality is inferior to Example 1, and the sulfur content of gas oil exceeds 50 ppm .
  • a hydrogenated feedstock having the same composition as that of the gas-phase fluid in the high-temperature high-pressure gas-liquid separation tank was prepared by the method shown in (1) of Comparative Example 1 and hydrotreated. Table 5 shows the properties of each fraction at this time.
  • Example 2 Compared with Example 2, the kerosene fraction and the gas oil fraction were inferior in the sulfur, aromatic and polycyclic aromatic qualities.
  • the sulfur content of gas oil is over 50 ppm.
  • the quality of kerosene gas oil in the resulting product oil is greatly improved in performing batch catalytic hydrogenation of crude oil or crude oil excluding naphtha fraction, and sulfur content is 10 ppm. It is possible to provide a hydrotreating method capable of producing an ultra-low sulfur kerosene gas oil having a low level and a method of producing an ultra-low sulfur kerosene oil from the resulting oil.

Description

明 細 原油の接触水素化処理方法 技術分野
本発明は、 原油、 又はナフサ留分及びそれより軽質な留分を除いた原油 の接触水素化処理方法及ぴその生成油から超低硫黄灯軽油を製造する方法 に関する。 背景技術
従来の石油精製工業においては、 一般に原油を常圧蒸留して各留分に分 離したのち、 分離した各留分をそれぞれ脱硫する方法がとられている。 こ れに対して、 効率的な原油処理を目指して、 原油のまま一括脱硫する方法
[Chemical Eng. Progress, Vol.67(8), P.57(1971)] やナフサ留分を 除いた原油を一括脱硫する方法(特開平 3— 294390号公報)等が提案 されている。 これらの方法によれば、 石油精製設備を簡素にしつつ、 運転 変動費も削減することは可能であるが、 反面生成油中の各留分毎の品質、 特に軽油留分の硫黄分は、 50〜1 50 p p m程度であり、 昨今の地球環 境問題に端を発した石油製品の品質に対する規制強化には不十分であるこ とがわかってきた。
本発明者らも、 これまで、 重質油を水素化分解しつつ高品質な灯軽油留 分を得る方法 (特開平 6— 98270号公報) や原油またはナフサ留分を 除いた原油を水素化処理するための触媒の組合せによって灯軽油留分の品 質を向上する方法 (特開平 7— 26 836 1号公報) 、 気液分離後の気相 留分を更に水素化する方法 (特開 2000— 1 363 9 1号公報、 図 7、 8参照) を提案してきた。 ところが、 石油留分の品質の規制強化は、 上述の如く予想以上に急速に 進みつつあり、 硫黄分を例にとると、 軽油の硫黄分は現状 3 5 0 p p mで あるが、 西暦 2 0 0 4年には 5 0 p p mとなり, その後は 1 0 p p m以下 まで低減する必要がある。 しかし、 本発明者らの提案した従来の方法では、 運転条件等を工夫しても軽油の硫黄分は 5 0 p p m程度にしか低減できず、 1 0 p p m以下の超低硫黄軽油を製造することは困難であるのが現状であ
発明の開示
本発明は、 上記状況下でなされたもので、 従来の原油の精製処理方法を 改善するために、 原油、 又はナフサ留分及びそれより軽質な留分を除いた 原油を一括して接触水素化処理を行なうにあたり、 得られる生成油中の灯 軽油の品質を大幅に向上させ、 硫黄含有量 1 0 p p m未満の超低硫黄灯軽 油を生産できるような接触水素化処理方法及びその生成油から超低硫黄灯 軽油を得る方法を提供することを目的とするものである。
本発明者は、 鋭意研究を重ねた結果、 原油、 又はナフサ留分及びそれよ り軽質な留分を除いた原油を一括して水素化脱金属処理工程、 水素化分解 処理工程及び水素化脱硫処理工程を含む工程で接触水素化処理するにあた り、 水素化分解処理触媒として、 メソポア内表面にチタン族金属酸化物の 超微粒子を複合化させたゼォライ トからなる触媒担体に周期律表第 6、 8 . 9及び 1 0族に属する金属の中から選ばれた少なくとも一種を担持させた 触媒を使用することにより、 上記本発明の目的を効果的に達成しうること を見出し本発明を完成するに到った。
すなわち、 本発明の要旨は下記のとおりである。
1 . 原油、 又はナフサ留分及ぴそれより軽質な留分を除いた原油を一括し て水素化脱金属処理し、 次いで、 水素化分解処理し、 次いで、 水素化脱硫 処理する原油又はナフサ留分を除いた原油の接触水素化処理方法において. 水素化分解処理触媒として、 メソポア内表面にチタン族金属酸化物の超微 粒子を複合化させたゼォライ トからなる触媒担体に周期律表第 6、 8、 9 及ぴ 1 0族に属する金属の中から選ばれた少なくとも一種を担持させた蝕 媒を使用することを特徴とする原油、 又はナフサ留分及びそれより軽質な 留分を除いた原油の接触水素化処理方法。
2 . 原油、 又はナフサ留分及ぴそれより軽質な留分を除いた原油を一括し て水素化脱金属処理し、 次いで、 水素化脱硫処理し、 次いで、 水素化分解 処理する原油又はナフサ留分を除いた原油の接触水素化処理方法において. 水素化分解処理触媒として、 メソポア内表面にチタン族金属酸化物の超微 粒子を複合化させたゼォライ トからなる触媒担体に周期律表第 6、 8、 9 及び 1 0族に属する金属の中から選ばれた少なくとも一種を担持させた触 媒を使用することを特徴とする原油、 又はナフサ留分及びそれより軽質な 留分を除いた原油の接触水素化処理方法。
3 . 原油、 又はナフサ留分及びそれより軽質な留分を除いた原油を一括し て水素化脱金属処理し、 次いで、 水素化脱硫処理し、 次いで、 水素化分解 処理し、 さらに水素化脱硫する原油又はナフサ留分を除いた原油の接触水 素化処理方法において、 水素化分解処理触媒として、 メソポア内表面にチ タン族金属酸化物の超微粒子を複合化させたゼォライ トからなる触媒担体 に周期律表第 6、 8、 9及び 1 0族に属する金属の中から選ばれた少なく とも一種を担持させた触媒を使用することを特徴とする原油、 又はナフサ 留分及びそれより軽質な留分を除いた原油の接触水素化処理方法。
4 . 前記触媒担体のゼォライ ト中に含まれるアルミニウムとケィ素との原 子比 [A 1 ] Z [ S i ] が 0 . 0 1〜0 . 1の範囲にあるものである上記 1〜 3のいずれかに記载の原油、 又はナフサ留分及ぴそれより軽質な留分 を除いた原油の接触水素化処理方法。 5 . 上記 1〜4のいずれかの方法で生成した生成油を蒸留して超低硫黄灯 油を製造する方法。
6 . 上記 1〜4のいずれかの方法で生成した生成油を蒸留して超低硫黄軽 油を製造する方法。 図面の簡単な説明
図 1は本発明の実施態様 (ケース 1、 実施例 1 ) の概略フロー図である。 図 2は本発明の実施態様 (ケース 2、 実施例 2 ) の概略フロー図である。 図 3は本発明の実施態様 (ケース 3、 実施例 3 ) の概略フロー図である。 図 4は本発明の実施態様 (ケース 4、 実施例 4 ) の概略フロー図である。 図 5は本発明の実施態様 (ケース 5、 実施例 5 ) の概略フロー図である。 図 6は本発明の実施態様 (ケース 6、 実施例 6 ) の概略フロー図である。 図 7は本発明の従来技術の概略フロー図である (比較例 1 ) 。
図 8は本発明の従来技術の概略フロー図である (比較例 2 ) 。 発明を実施するための最良の形態
以下に本発明について詳細に説明する。 本発明の実施態様の概略フロー 図 (ケース 1〜6 ) を図 1〜6に示した。 本発明を纏めて表現すると、 「 原油、 又はナフサ留分及びそれより軽質な留分 (以下、 ナフサ留分等とい うこともある。 ) を除いた原油を一括して水素化脱金属処理工程、 水素化 分解処理工程及び水素化脱硫処理工程を含む工程で接触水素化処理するに あたり、 水素化分解処理触媒として、 メソポア内表面にチタン族金属酸化 物の超微粒子を複合化させたゼォライトからなる触媒担体に周期律表第 6 . 8、 9及ぴ 1 0族に属する金属の中から選ばれた少なくとも一種を担持さ せた蝕媒を使用することを特徴とする原油又はナフサ留分等を除いた原油 (以下、 抜頭原油ということもある。 ) の接触水素化処理方法。 」 という ことになる。 以下に、 各工程等について詳細に説明する。
( 1 ) 原料油
① 本発明における原油には、 石油系の原油だけではなく、 石油系以外の 原油も含まれる。 石油系以外の原油としては、 石炭液化油、 タールサンド 油、 オイルサンド油、 オイルシェール油、 オリノコタール等、 あるいはこ れらから得られる合成原油などが挙げられる。 また、 石油系原油と石油系 以外の原油との混合原油も原料油として使用できる。
② 石油系原油であって、 ァスフアルテン分を 1質量%以上、 V, N iを 1 0重量 以上、 硫黄分を 0 . 1質量%以上の三つの条件のうち少な くとも一つの条件を満足するものが、 水素化処理の経済的効果の上で最も 好ましい。
( 2 ) 前処理
① 原料原油は、 予備蒸留塔の汚れ防止や反応塔での詰まり防止の観点か ら脱塩処理することが好ましい。
② 脱塩処理方法としては、 当業者で一般的に行われている化学的脱塩、 ぺトレコ電気脱塩法、 ハウ ·ベイカー電気脱塩法等が挙げられる。
( 3 ) ナフサ留分等分離工程 1 (予備蒸留塔)
① 脱塩処理された原油 1 0は必要に応じてナフサ留分等 1 5を除くこと が有利な場合がある。 例えば、 本発明の方法による生成油を、 次の工程で 常圧蒸留してナフサ留分等を分離後、 接触改質するような場合である。 こ の場合にはナフサ留分等中の硫黄分は 0 . 5質量 p p m程度まで脱硫する 必要があり、 本発明における接触水素化処理では、 ナフサ留分等をそこま での脱硫することは困難であるため、 図 2に示すように予備蒸留塔で除く 方が有利である。
② ナフサ留分等 1 5を除く方法としては、 一般的なプレフラッシュドラ- ムまたはプレフラッシュカラムを使えば良い。 運転温度は 1 5 0〜 3 0 0 °C、 圧力は 0. 2〜 IMP aの範囲で分離することが好ましい。
③ 分離するナフサ留分等の沸点は、 初留点は原料の原油により決定され、 終点は 1 25〜 1 74°Cの範囲が好ましい。 終点が 125 °C未満の場合は 後段の接触水素化処理において水秦分圧が低下するため反応速度が低下す る場合がある。 終点が 1 74°Cを超えると、 生成油中の灯油留分の硫黄分 が増加して規格外となる恐れがある。
(4) 水素化脱金属工程 2
① 原油 1 0または抜頭原油 1 6は、 加圧昇温され水素と共に第 1段の水 素化脱金属工程 2にて一括水素化脱金属処理する。 この工程は、 一塔又は 複数塔の反応塔からなる。
② この水素化脱金属工程に使用される触媒としては、 アルミナ、 シリカ、 シリカ—アルミナ又はセピオライ ト等の多孔性無機酸化物、 酸性担体、 天 然鉱物等に周期律表第 5、 6、 8、 9及び 10族に属する金属の中から選 ばれた少なくとも一種を、 触媒全量に基づき、 酸化物として 3〜30質量 %程度担持させてなる平均細孔径 10 OA以上の触媒が用いられ、 商業的 に入手可能な水素化脱金属触媒でもよい。 水素化脱金属触媒の必要量は、 処理期間中の原料油中に含まれる累積金属量の 10〜80容量%とするの が好適である。
③ 水素化脱金属工程の処理条件としては、 反応温度 300〜450°C、 水素分圧 3〜20MP a (G) 、 水素 Z油比 200〜2, 000 Nm3/ k 1、 LHS V (液時空間速度) 0. 1〜: L O h r—1 、 好ましくは反応 温度 330〜 410 °C、 水素分圧 10〜1 8MP a、 水素 Z油比 400〜
800 Nm3/k 1 LHS V 0. 3〜5 h r— 1である。
反応温度、 水素分圧、 水素/油比は上記範囲を下回ると反応効率が低下 し、 上記範囲を上回ると経済性が低下することがあるためである。 また、 LHSVは逆に上記範囲を下回ると経済性が低下し、 上記範囲を上回ると 反応効率が低下することがある。
(5) 水素化分解工程 3 ·
① 一括水素化脱金属処理された油 (ケース 1、 2) あるいは一括水素化 脱硫された油 (ケース 3〜 6 ) は、 次に水素化分解工程で一括水素化分解 処理される。 この工程は、 一塔又は複数塔の反応塔からなる。
② この水素化分解工程に使用される触媒として、 メソポア内表面にチタ ン族金属酸化物超微粒子を複合化させたゼォライトからなる触媒担体 (以 下、 修飾ゼォライ トということもある。 ) に周期律表第 6、 8、 9及び 1 0族に属する金属の中から選ばれた少なくとも一種を担持させたものを使 用するのが本発明の特徴である。 上記触媒担体として、 メソポア内表面に チタン族金属酸化物超微粒子を複合化させたゼォライ トからなり、 該ゼォ ライ ト中に含まれるアルミニウムとケィ素との原子比 [A 1 ] / [S i ] が、 好ましくは 0. 0 1〜0. 1、 より好ましくは 0. 03〜0. 0 8の 範囲にある修飾ゼォライトを用いるものである。 前記チタン族金属酸化物 には、 チタニア及びジルコニァが包含される。 また、 ゼォライ トのメソポ ァ内表面に複合化されているチタン族金属酸化物超微粒子のサイズは、 反 . 応物質の拡散速度に影響を与えない程度の粒径であるのが好ましく、 5〜 1 0 nmの範囲でほぼ均一であるのが好ましい。 チタン族金属酸化物の含 有量は、 触媒担体中、 1〜1 0質量%、 好ましくは 3〜7質量%である。 前記ゼォライ ト系触媒担体の製造原料としては、 プロトン交換型ゼオラ イ トが用いられる。 このゼォライ トにおいて、 それに含まれるアルミユウ ムとケィ素との原子比 [A 1 ] [ S i ] は、 0. 0 1〜 0. 35、 好ま しくは 0. 1〜0. 33である。 また、 そのメソポア (細孔直径 5 nm〜 30 nmの細孔) の割合は、 全細孔容積の 1 0 %以上、 好ましくは 1 5 % 以上である。 その上限値は、 特に制約されないが、 通常、 30%程度であ る。 ゼォライ トの平均一次粒径は、 特に制約されないが、 通常、 0. 1〜 Ι μπι、 好ましくは 0. 2〜0. 5 μπιである。 本発明の触媒担体を製造 するには、 前記原料ゼォライ トにチタン族金属塩(硫酸塩やハロゲン化物 等の水溶性塩)の水溶液を接触させる。 この場合、 水溶液中のチタン族金 属 (以下、 単に金属とも言う。 ) 塩の濃度は、 0. 02〜0. 1モル/リ ットル、 好ましくは 0. 05〜 0. 1モル/リットルである。 水溶液の ρ Ηは 0. 8〜2、 好ましくは 1. 0〜1. 9に調節する。 接触温度は 25 〜80°C程度である。 前記した条件下でのゼオラィ トと金属塩水溶液との 接触においては、 ゼォライ ト (ケィ酸アルミニウム) 表面のアルミニウム と強酸との間で脱アルミニウム反応が起り、 この反応を伴いながら、 超微 粒子状の金属水酸化物がゼォライ トのメソポア内表面に析出する。 この場 合の脱アルミニウム量は、 所定の [A l] / [S i ] 比が得られるように 調節する。 このためには、 接触時間や温度、 水溶液の p H等の接触条件を 調節すればよい。
次に、 前記の原料ゼォライ トと金属塩水溶液との接触後、 ゼォライ トを 酸根が、 認められない程度まで十分に水洗し、 次いで乾燥する。 この場合 の乾燥は、 ゼォライ トのメソポア内表面に析出した金属水酸化物超微粒子 の凝集化を防止するためにできるだけ低温度で行うのが好ましく、 好まし くは 25〜 100 °C、 好ましくは 50 °C付近で行うのがよい。 乾燥後、 ゼ ォライトを 400〜600°C、 好ましくは 450〜 550°Cで焼成する。 この場合、 焼成雰囲気は特に制約されないが、 通常、 窒素ガス雰囲気が好 ましく用いられるが、 空気雰囲気であってもよい。 焼成時間は 2〜4時間、 通常 3時間程度である。 このようにして、 本発明の触媒担体が得られるが、 この場合、 その酸点密度 ( [A 1 ] ノ [S i ] 比) をその用途との関連で 適宜調節する。 重質油の水素化分解処理用触媒担体として用いる場合には、 0. 01〜 0 · 1の範囲に調節した方が好ましい。 0. 1を超えるように なると、 得られる触媒のァスフアルテン分解活性が低くなる上、 分解生成 物中のガス成分の割合が多くなる場合がある。 一方、 [A l ] / [S i ] 比が 0. 0 1より小さくなると、 高沸点油成分 (沸点 520 °C以上の成分 ) の分解活性が急激に低下するようになる場合がある。
本発明においては、 原料油が軽質な場合等は上記の修飾ゼォライトに 1 0〜 50重量%のアルミナ等を添加して活性を制御しても良い。
本発明で使用する水素化分解処理触媒は、 前記触媒担体に対して、 水素 化活性金属を担持させる。 この場合、 その水素化活性金属として、 周期律 表第 6、 8、 9及び 1 0族に属する金属のうち選ばれた少なくとも一種が 用いられる。 周期律表第 6族に属する金属としてはタングステン、 モリブ デンが好ましく、 周期律表第 8〜1 0族の金属はそれぞれ一種用いてもよ く、 それぞれ複数種の金属を組合わせても良いが、 特に水素化活性が高く、 かつ劣化が少ない点から N i—Mo , C o— Mo, N i -W, N i -C o — Moの糸且合せが好適である。
触媒担体に対する水素化活性金属の担持方法としては、 含浸法等の従来 公知の方法を採用することができる。 本発明の水素化処理触媒において、 その水素化活性金属の含有量は、 金属換算量で、 0. 1〜1 0質量%、 好 ましくは 1〜8質量。 /0であるが、 チタン族金属酸化物に対して 20質量% 以上、 好ましくは 25〜50質量%になるように担持させるのがよい。 そ の触媒の平均細孔径は 5〜 30 nm、 好ましくは 1 0〜25 nmである。 なお、 この場合の平均細孔径は、 窒素吸着法 (B J H法、 測定細孔径: 1 7〜3, 000 A) により得られたものである。 触媒担体に担持された水 素活性化金属の形態は、 酸化物、 硫化物及び Z又は金属の形態であるが、 ニッケル、 コバルト、 白金、 パラジウム等は、 金属状態で高い水素化能を 有する。
③ この水素化分解工程における処理条件としては、 反応温度 300〜4 50°C、 水素分圧 3〜 20MP a、 水素/油比 200〜 2, 000 Nm3 /k l、 LHS V (液時空間速度) 0. 1〜: L 0 h r— 1、 好ましくは反応 温度 360〜420°C、 水素分圧 1 0〜1 8 MP a (G) 、 水素/油比 4 00〜 800 Nm3Zk 1、 LHSVO. 2〜2 h r— 1である。
反応温度、 水素分圧、 水素/油比は上記範囲を下回ると反応効率が低下 し、 上記範囲を上回ると経済性が低下することがあるためである。 また、 LHSVは逆に上記範囲を下回ると経済性が低下し、 上記範囲を上回ると 反応効率が低下する場合がある。
(6) 水素化脱硫工程 4
① 一括水素化分解処理された油 (ケース 1、 2、 5、 6) は、 また、 一 括水素化脱金属処理された油 (ケース 3〜6) 油は、 反応温度制御の必要 がある場合には熱交換器により流体温度を低下させる。 水素ガスクェンチ ゃ油クェンチにより反応温度制御が可能であれば、 熱交換器は設置しない でそのまま水素化脱硫工程で一括水素化脱硫処理される。 この工程は、 一 塔又は複数塔の反応塔からなる。
② この水素化脱硫工程に使用される触媒としては、 通常の重質油用の水 素化脱硫触媒でよい、 即ちアルミナ、 シリカ、 ゼォライ トあるいはこれら の混合物の担体等に周期律表第 5、 6、 8、 9、 及び 1 0族に属する金属 の中から選ばれた少なくとも一種を、 触媒全量に基づき、 酸化物として 3 〜30質量%程度担持している平均細孔径 80 A以上の触媒などであるが, 特開平 7— 3050 7 7号公報、 特開平 5 _ 9 82 70号公報に開示され るようなアルミナ—リン担体、 アルミナ—アルカリ土類金属化合物担体、 アルミナーチタニア担体、 アルミナ—ジルコニァ担体、 アルミナ一ボリ了 担体等から選ばれる担体に周期律表第 5、 6、 8、 9及び 1 0族に属する 金属 の中から選ばれた少なくとも一種を担持してなる触媒であれば、 灯 軽油留分の改質効果が高いために好適である。
③ この水素化脱硫工程における処理条件としては、 反応温度 300〜 4 50°C、 水素分圧3〜201^? &、 水素/油比 200〜2, O O ONm3 /k l、 LH S V (液時空間速度) 0. 1〜: I 0 h r— 1、 好ましくは反応 温度 300〜420° (:、 水素分圧 1 0〜1 8MP a (G) 、 水素/油比 4 00〜 S 00 N m 3 / k 1ゝ LHSVO. 2〜 2 h r一1である。
反応温度、 水素分圧、 水素/油比は上記範囲を下回ると反応効率が低下 し、 上記範囲を上回ると経済性が低下する場合があるためである。 また、 LHS Vは逆に上記範囲を下回ると経済性が低下し、 上記範囲を上回ると 反応効率が低下する場合がある。
(7) 分離工程
このように、 一括水素化脱金属処理、 一括水素化分解処理、 一括水素化 脱硫処理された油は、 常法に従って分離工程に導入され、 複数の分離槽で 処理することによって気体部分と液体部分に分離される。 このうち、 気体 部分は、 硫化水素、 アンモニア等を除去してから水素純度向上の処理等を 行なった後に、 新しい供給ガスと一緒になつた後に、 反応工程に再循環さ れる。
(8) ナフサ留分等の再混合工程
前項 (3) の予備蒸留塔で原油中のナフサ留分等を除去した場合につい ては、 分離したナフサ留分を製品の需要により以下の①又は②の方法で処 理する。
① ナフサ留分等を回収してそのまま出荷する。
② ナフサ留分等を回収して脱硫後、 後述の蒸留工程 7の供給流体に混合 する。
(9) 改質原油の製造
この製造装置の立地条件によっては改質原油として出荷した方が有利な 場合がある。 例えば、 産油国の原油出荷設備近傍に立地して、 原油出荷設 備は整っているが、 石油製品出荷設備が無いような場所に設備を設けるよ うな場合はこれにあたる。 このような場合には、 生成油をそのままでも良 いし、 脱硫に付随する硫化水素を取り除く設備、 例えば、 硫化水素ストリ ッパ一等に導入して、 改質原油を得る。 生成油を改質原油とする効果して は、 既存の原油出荷設備がそのまま使えるほか、 大型原油タンカーを使い、 大量かつ安価に各製品を輸送できるという効果も挙げられる。
( 1 0 ) 蒸留工程
上記 ( 9 ) の立地条件に当てはまらない場合には、 分離工程で得られた 液体部分は、 蒸留工程 7に導入され、 常法に従って各製品に分留される。 この時の分留条件としては、 例えば、 常圧蒸留においそはナフサ留分 7 1 を 2 0〜: I 5 7 °C、 灯油留分 7 2を 1 5 7〜2 3 9 °C、 軽油留分 7 3を 2 3 9〜 3 4 3 °C、 3 4 3 °C以上を常圧残油とすることによりナフサ、 灯油、 軽油 (硫黄分 1 0 p p m未満の超低硫黄軽油) 及び常圧残油に分留するこ とができる。 また常圧残油は引き続き減圧蒸留して減圧軽油と減圧残油等 に分留してもよい。
( 1 1 ) 反応塔の型式
本発明における、 一括水素化脱金属処理、 一括水素化分解処理、 一括水 素化脱硫処理における反応装置の型式は特に制限がなく、 例えば、 固定床、 移動床、 流動床、 沸騰床、 スラリー床等を採用できる。 実施例
次に、 本発明を実施例によりさらに具体的に説明するが、 本発明はこれ らの例によって何ら限定されるものではない。
原料油として、 アラビアンヘビー脱塩原油及びナフサ留分等を除いたァ ラビアンへビー脱塩原油 (以下、 ァラビアンへビー抜頭脱塩原油ともいう c ) を用いた。 第 1表にそれらの性状を示す。 また、 反応に使用した各工程 の触媒を第 2表に示す。 霞一-
第" iS 原料油の性状
ナフサ留分等を除去した 目 '.. マ I"1'マ、'へ!" ^ Ηϋ -ffe IB Jrh 除去 レ ノへし一 nn i /m 密^ (f?/riil@15°C) [JIS 2249] 0.892 0.924 硫 分 (質 G%) [JIS Iく 2541] 2.84 3.19 鑾 S分 (ppm) [J!S K2609] 1460 1640
V 分 (ppm) [JPI 5S-10] 53.6 56.5
N i分 (ppm) [JPI 5S-11] 17.1 . 17.9
Nヘプタン不溶解分 -(質量%) 4.59 5,11 蒸留性状 [ナフサ: ASTMD3710]
[その他: ASTMD5307]
J B P °C 1 101
50%点 423 450 -
E P
得 率 (vol%対原油) 100 85.8
Figure imgf000016_0001
なお、 水素化分解触媒 Βは、 特許第 3 34 1 0 1 1号の実施例 1一 5に 記載された方法で調製した担体に、 C o、 Moを担持した。'
〔実施例 1〕 (原油の一括水素化脱金属、 水素化分解、 水素化脱硫処理、 ケース 1の場合で、 図 1参照) 第 2表に示す触媒 Aを 28容量%、 触媒 Bを 33容量%この順序で 30 0ミリリツトルの反応管に、 また触媒 Cを 39容量%同じく 300ミリリ ットルの反応管に充填してこの順序で直列に連結して反応を行なった。 原 料油としては、 第 1表に示すアラビアンヘビー脱塩原油を供給し、 水素分 圧 1 3. 2 MP a (G) 、 水素/油比 550 Nm3/k 1、 反応温度は触 媒 Aが 3 80°C、 触媒 Bが 400°C、 触媒じが 360°Cにして、 LH S V 0. 408 h r 1で通油した。
通油時間 1 , 500時間において前記の反応で得られた生成油を、 1 5 段蒸留装置をもちいて、 LPG 70 ( プロパン +ブタン)、 ナフサ留分7 1 (ペンタン〜 1 5 7°C) 、 灯油留分 72 (1 5 7〜23 9°C) 、 軽油留 分 73 (239〜343°C) および常圧残油 74 (343°C以上の留分) に蒸留分離して各留分の品質を分析した。 この時の各留分の性状を第 3表 に示す。
常圧残油は更に、 減圧単蒸留して減圧軽油 (343〜525°C) を分離 した。 減圧軽油の性状も第 3表に示す。
灯油留分、軽油留分は硫黄分、 芳香族分、 多環芳香族の極めて少ない高 品質なものが得られている。 また、 驚くべきことに、 軽油の硫黄含有量が 1 0 p pm未満である。 さらに、 原料であるアラビアンヘビー原油が水素 化分解されるため、 密度が低下し、 液の容積が約 8%増している。
〔実施例 2〕 (抜頭原油の一括水素化脱金属、 水素化分解、 水素化脱硫処 理、 ケース 2の場合で図 2参照)
実施例 1に示す各触媒に、 第 1表に示すアラビアンヘビー脱塩抜頭原油 を供給し、 実施例 1と同じ条件で 1, 500時間通油した。 この処理によ り得られる生成油の各留分の性状を第 3表に示す。
実施例 1と同じく、 灯油留分、軽油留分の硫黄分、 芳香族分、 多環芳香 族の極めて少ない高品質なものが得られ、 灯軽油の硫黄含有量が 1 0 p p m未満となる。
〔実施例 3〕 (原油の一括水素化脱金属、 水素化脱硫、 水素化分解処理、 ケース 3の場合で図 3参照)
実施例 1の水素化脱硫触媒 Cと水素化分解触媒 Bを、 充填量は変えずに 処理の順序のみを入替え、 実施例 1と同じ条件で 1, 5 0 0時間通油した。 この処理により得られる生成油の各留分の性状を第 3表に示す。
実施例 1と同じく、 灯油留分、軽油留分の硫黄分、 芳香族分、 多環芳香 族の極めて少ない高品質なものが得られ、 灯軽油の硫黄含有量が 1 0 p p m未満となる。
〔実施例 4〕 (抜頭原油の一括水素化脱金属、 水素化脱硫、 水素化分解処 理、 ケース 4の場合で図 4参照)
実施例 2の水素化脱硫触媒 Cと水素化分解触媒 Bを、 充填量は変えずに 処理の順序のみを入替え、 実施例 2と同じ条件で 1, 5 0 0時間通油した。 この処理により得られる生成油の各留分の性状を第 3表に示す。
実施例 2と同じく、 灯油留分、軽油留分の硫黄分、 芳香族分、 多環芳香 族の極めて少ない高品質なものが得られ、 灯軽油の硫黄含有量が 1 0 p p m未満となる。
〔実施例 5〕 (原油の一括水素化脱金属、 水素化脱硫、 水素化分解、 水素 化脱硫処理、 ケース 5の場合で図 5参照)
実施例 1に示す水素化脱硫触媒 Cの半分 (19. 5容量%) を水素素化脱金 属触媒 Aの後段に配し、 残り半分を水素化分解触媒 Bの後段に配し、 触媒 A、 触媒 C、 触媒 B次いで触媒 Cの順で原料油を供給した。 各触媒の反応 条件は実施例 1と全く同じ処理を行なった。 この処理により得られる生成 油の各留分の性状を第 3表に示す。
実施例 1と同じく、 灯油留分、軽油留分の硫黄分、 芳香族分、 多環芳香 族の極めて少ない高品質なものが得られ、 灯軽油の硫黄含有量が 1 0 p p m未満となる。
〔実施例 6〕 (抜頭原油の一括水素化脱金属、 水素化脱硫、 水素化分解、 水素化脱硫処理、 ケース 6の場合で図 6参照)
実施例 2に示す水素化脱硫触媒 Cの半分 ( 1 9 . 5容量%) を水素素化 脱金属触媒 Aの後段に配し、 残り半分を水素化分解触媒 Bの後段に配し、 触媒 A、 触媒 C、 触媒 B次いで触媒 Cの順で原料油を供給した。 各触媒の 反応条件は実施例 2と全く同じ処理を行なった。 この処理により得られる 生成油の各留分の性状を第 3表に示す。
実施例 2と同じく、 灯油留分、軽油留分の硫黄分、 芳香族分、 多環芳香 族の極めて少ない高品質なものが得られ、 灯軽油の硫黄含有量が 1 0 p p m未満となる。
第 3表 1 各留分の性状
•得率対 多璟芳香
硫 a分 全芳香 gl分 セタン, 項 目 原料原油 - i
νΌ \ (g/iiil) (ppm) (ppm) (vol 9 &) (vo i %)
c
し P G 分 υ U.00 /
i \ 7 n
ナフサ留分 37.3 0.729 12
Ζϋ. y . U. i
灯油留分 Ι)Ό o c · 0· 3
®油留分 16.2 U. BIO 0 4 72.1 例
常圧残油 30.0 15, 000 2.480
1
減圧軽油留分 (17.3) 0.889 3 J 00 370
全留分 108.0 0.808 5, 100
LPG留分 3.0 0.558
実 ナフサ留分 22.6 0.730 11 1> 6.8
灯油留分 21.0 0.805 2 1 0
施 0 軽油留分 16.7 '- 0.817 4 3 8.4 I. Ό to. 例
常圧残油 30.0 0.956 15, 400 2 360
2
減圧軽油留分 (17.3) 0.890 3,300 380
全留分 · 93.3 0.845 5, 900 1 010
L P G留分 3.5 0.558
ナフサ留分 37.2 0.729 13 1> Ί.6
Q Q
灯油留分 20.9 0.797 D \ o
軽油留分 16.0 0.817 9 5 9.3 1.7 71.9 例
常圧残油 30.2 0.959 15, 500 2, 580
3
減圧軽油留分 (17.5) 0.890 3,400 390
全留分 Ιυ . ο u. uy 0, UUVJ 1 1 i 1n unu
し P G留分 U. Oo
L 1 71 , o D
ナフサ留分 22.5 1 I
fi 1 η
田留分 o u 1> 9.9 0.3
施 11β Ό.7 / Q 4 10.4 1.8 7に / 例
常圧残油 30.2 0.957 15, 600 2.600
4
減圧輊油留分 (17.4) 0.890 3, 600 420
·7Τ 93.3 0.846 6, 100 1,050
一 一 一 ¾ 3.4 0.557
ナフサ留分 37.3 0.729 10 1> 7.0 ― 灯油留分 20.9 0.797 ' 4 1> 9.0 0.3
軽油留分 16.4 0.818 7 4 8.9 1.6 73.9 例
常圧残油 30.0 0.959 15, 000 2, 380
5
減圧軽油留分 (17.1) 0.890 3,300 '350
全留分 108.0 0.808 5, 800 •1,040
L PG留分 2.9 0.558
ナフサ留分 22.7 0.729 9 1> 7.8
灯油留分 21.6 0.804 3 1> 9.9 0.3
軽油留分 17.0 0.816 6 3 10.4 1.5 72.2 例
常圧残油 29.0 0.960 15, 500 2.510
6
減圧軽油留分 (16.8) 0.891 3, 540 360
全留分 93.2 0.845 6, 050 990 第 3表一 2 各留分の性状
ペンタン
ι 1 fes 項 目 不溶鑌分
(ppm) (P卿
(質 a%)
し PG 分 ― 一 一 一 ナフサ留分 ― 一 ― ― ― m 灯油留分 26.5 一 ― ― ―
& 軽油留分 ― 一 : ―
1 残由 ― 2.9 22 14 12.8 全留分 ― 1.2 9.1 5.8 τ
L P G留分
ナフサ留分 一
施 灯油留分 27.0
例 一
2 残油 . ― 3.0 ' 23 15 12.9 全留分 一 1.3 9.5 6.4 '
LPG留分 ― ― 実 ナフサ留分 一 ― 一 一 施 灯油留分 26.0 ― 一 一 ― 例 軽油留分 ― ― 一 一 一
3 残油 一 3.0 23 15 13.1 .
全留分 ― 1.3 9.5 6.4 ―
L P G留分 ― ― ― ― ― 実 ナフサ留分 ― ― ― ―
施 灯油留分 26.0 ― ― ― ― 一 例 軽油留分 ― ― ― ― 一
4 残?'由 ― 3.1 24 16 13.3 全留分 ― 1.3 9.6 6.3 ―
L PG留分 ― ― ― ― 一 ナフサ留分
施 灯油留分 28.0
例 軽油留分
5 残油 2.8 21 13 12.6 全留分 1.2 9.0 5.4
L PG留分
ナフサ留分
施 灯油留分 26.0
例 軽油留分
6 残油 . 2.9 23 15 13.2 全留分 1.3 9.5 6.4 〔比較例 1〕 (原油の一括水素化脱金属、 水素化分解、 水素化脱硫処理油 の気液分離後分離槽気相流体を氷秦化改質、 図 7参照)
①一括水素化脱金属、 水素化分解 (従来触媒) 、 7k秦化脱硫処理
第 2表に示す触媒 Aを 2 8容¾° 、 従来の永秦化分解触媒である触媒 D を 3 3容量%この順序で 3 0 0ミ リ リットルの反応管に、 また触媒 Cを 3 9容¾%同じく 3 0 0ミリリツトルの反応管に充填してこの順序で直列に 違結して反応を行なった。 その他の条件は、 実施例 1と同じである。 この 処理で得られる生成油 A 1 7の性状を第 5表に示す。
②髙圧高温気液分離後の水素化改質
1 , 0 0 0時間〜 3 , 0 0 0時間において前記①の反応で得られた生成 油 Aを、 回分型の蒸留装置によってナフサ、 灯油、 軽油、 減圧軽油の各留 分に分離し、 S i m S c i社のプロセスシミュレータ(製品名 : P R O / Π V e r . 5 )を用いた連続気液分離断熱計算にょ て、 3 4 0 、 全圧 1 3 . 2 M P a (A) における気相の組成計算結果に基づき高温高圧気液分 離槽の気相流体の組成と同じ組成の水素化原料油 B 1 8を調製した。 この 水素化改質原料油の性状を第.4表に示す。
第 4表 水素化改質原料油の性状
Figure imgf000023_0001
特開 2000— 1 3,63 9 1号公報の表 2に記載された水素化 質触媒 Dを 30ミリリツトルの反応管に充填し、 第 4表に示す水素化改質原料油 B 1 8を水素分圧 1 0. 3 MP a (G) 、 水素/油比 700 Nm3Zk 1 反応温度 340°C LH S V 3. O h r_1で通油した。
通油時間 1 5 00 2 000時間における、 生成油 Aから水素化改 質原料油 Bを調製した際の残油、 即ち高圧高温気液分離槽の液相流体 1 9 と上記水素化改質油 20を所定の割合で混合して、 生成油 C.2 1を得た。 得られた生成油 C 2 1を 1 5段蒸留装置を用いて、 L PG (プロパン +プ タン)、 ナフサ留分 (ペンタン〜 1 5 7°C) 、 灯油留分 (1 5 7 23 9C) 、 軽油留分 ( 23 9 343 °C) および常圧残油 (343°C以上の留 分) に蒸留分離して各留分の品質を分析した。 この時の各留分の性状を第 5表に示す。 高圧高温気液分離後の水素化改質工程を経ることにより、 灯油、 軽油の 品質は向上するが、 実施例 1に比べると、 品質は劣り、 軽油の硫黄分は 5 0 p p mを超 ている。
〔比較例 2〕 (抜頭原油の一括水素化脱金属、 水素化分解、 水素化脱硫処 理油の気液分離後分離槽気相流体を水素化改質)
①一括水素化脱金属、 水素化分解 (従来触媒) 、 水素化脱硫処理
第 2表に示す触媒 Aを 2 8容量%、 触媒 Dを 3 3容量%この順序で 3 0 0ミリリツトルの反応管に、 また触媒 Cを 3 9容量%同じく 3 0 0ミリ リ ットルの反応管に充填してこの順序で直列に連結して反応を行なつた。 そ の他の条件は、 実施例 2と同じである。
②高圧高温気液分離後の水素化改質
比較例 1の②に示す方法により高温高圧気液分離槽の気相流体の組成と 同じ組成の水素化原料油を調製しこれを水素化改質した。 この時の各留分 の性状を第 5表に示す。
実施例 2に比べて、 灯油留分、軽油留分の硫黄分、 芳香族分、 多環芳香族 の品質は劣る。 軽油の硫黄含有量は 5 0 p p mを超えている。
第 5表- 各留分の性状
Figure imgf000025_0001
第 5表一 2 各留分の性状
Figure imgf000026_0001
産業上の利用可能性
本発明によれば、 原油またはナフサ留分等を除いた原油を一括して接触 水素化処理を行なうにあたり、 得られる生成油中の灯軽油の品質を大幅に 向上させ、 硫黄含有量 1 0 p p m未満の超低硫黄灯軽油を生産できるよう な水素化処理方法及びその生成油から超低硫黄灯軽油を製造する方法を提 供することができる。

Claims

請 求 の 範 囲
1 . 原油、 又はナフサ留分及びそれより軽質な留分を除いた原油を一括し て水素化脱金属処理し、 次いで、 水素化分解処理し、 次いで、 水素化脱硫 処理する原油又はナフサ留分を除いた原油の接触水秦化処理方法において. 水素化分解処理触媒として、 メソポア内表面にチタン族金属酸化物の超微 粒子を複合化させたゼォライ トからなる触媒担体に周期律表第 6、 8、 9 及び 1 0族に属する金属の中から選ばれた少なくとも一種を担持させた触 媒を使用することを特徴とする原油、 又はナフサ留分及ぴそれより軽質な 留分を除いた原油の接触水素化処理方法。
2 . 原油、 又はナフサ留分及びそれより軽質な留分を除いた原油を一括し て水素化脱金属処理し、 次いで、 水素化脱硫処理し、 次いで、 水素化分解 処理する原油又はナフサ留分を除いた原油の接触水素化処理方法において. 水素化分解処理触媒として、 メソポア内表面にチタン族金属酸化物の超微 粒子を複合化させたゼォライ トからなる触媒担体に周期律表第 6、 8、 9 及び 1 0族に属する金属の中から選ばれた少なくとも一種を担持させた触 媒を使用することを特徴とする原油、 又はナフサ留分及びそれより軽質な 留分を除いた原油の接触水素化処理方法。
3 . 原油、 又はナフサ留分及びそれより軽質な留分を除いた原油を一括し て水素化脱金属処理し、 次いで、 水素化脱硫処理し、 次いで、 水素化分解 処理し、 さらに水素化脱硫する原油又はナフサ留分を除いた原油の接触水 素化処理方法において、 水素化分解処理触媒として、 メソポア内表面にチ タン族金属酸化物の超微粒子を複合化させたゼォライ トからなる触媒担体 に周期律表第 6、 8、 9及び 1 0族に属する金属の中から選ばれた少なく とも一種を担持させた触媒を使用することを特徴とする原油、 又はナフサ 留分及びそれより軽質な留分を除いた原油の接触水素化処理方法。
4 . 前記触媒担体のゼォライ ト中に含まれるアルミニウムとケィ秦との原 子比 [A 1 ] / [ S i ] が 0 . 0 1〜0 . 1の範囲にあるものである請求 項 1〜3のいずれかに記載の原油、 又はナフサ留分及ぴそれより軽質な留 分を除いた原油の接触水素化処理方法。
5 . 請求項 1〜 4のいずれかの方法で生成した生成油を蒸留して超低硫黄 灯油を製造する方法。
6 . 請求項 1〜 4のいずれかの方法で生成した生成油を蒸留して超低硫黄 軽油を製造する方法。
PCT/JP2004/002524 2003-03-04 2004-03-02 原油の接触水素化処理方法 WO2004078889A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04716317A EP1600491A1 (en) 2003-03-04 2004-03-02 Catalytic hydrorefining process for crude oil
MXPA05009298A MXPA05009298A (es) 2003-03-04 2004-03-02 Proceso de hidrorrefinacion para petroleo crudo.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-056733 2003-03-04
JP2003056733A JP2004263117A (ja) 2003-03-04 2003-03-04 原油の接触水素化処理方法

Publications (1)

Publication Number Publication Date
WO2004078889A1 true WO2004078889A1 (ja) 2004-09-16

Family

ID=32958716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002524 WO2004078889A1 (ja) 2003-03-04 2004-03-02 原油の接触水素化処理方法

Country Status (5)

Country Link
EP (1) EP1600491A1 (ja)
JP (1) JP2004263117A (ja)
CN (1) CN1756831A (ja)
MX (1) MXPA05009298A (ja)
WO (1) WO2004078889A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8372267B2 (en) 2008-07-14 2013-02-12 Saudi Arabian Oil Company Process for the sequential hydroconversion and hydrodesulfurization of whole crude oil
US8491779B2 (en) 2009-06-22 2013-07-23 Saudi Arabian Oil Company Alternative process for treatment of heavy crudes in a coking refinery
US8632673B2 (en) 2007-11-28 2014-01-21 Saudi Arabian Oil Company Process for catalytic hydrotreating of sour crude oils
US9260671B2 (en) 2008-07-14 2016-02-16 Saudi Arabian Oil Company Process for the treatment of heavy oils using light hydrocarbon components as a diluent

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4846540B2 (ja) * 2006-11-24 2011-12-28 コスモ石油株式会社 高オクタン価ガソリン基材の製造方法
US20100018904A1 (en) * 2008-07-14 2010-01-28 Saudi Arabian Oil Company Prerefining Process for the Hydrodesulfurization of Heavy Sour Crude Oils to Produce Sweeter Lighter Crudes Using Moving Catalyst System
FR2940313B1 (fr) * 2008-12-18 2011-10-28 Inst Francais Du Petrole Procede d'hydrocraquage incluant des reacteurs permutables avec des charges contenant 200ppm poids-2%poids d'asphaltenes
FR2940143B1 (fr) 2008-12-18 2015-12-11 Inst Francais Du Petrole Catalyseurs d'hydrodemetallation et d'hydrodesulfuration et mise en oeuvre dans un procede d'enchainement en formulation unique
CN101760235B (zh) * 2008-12-25 2013-03-06 中国石油化工股份有限公司 一种重质原油加氢裂化的方法
FR2950072B1 (fr) * 2009-09-11 2013-11-01 Inst Francais Du Petrole Procede d'hydroconversion en lit fixe d'un petrole brut, etete ou non, a l'aide de reacteurs permutables pour la production d'un brut synthetique preraffine.
CN102069004B (zh) * 2011-01-06 2014-09-24 中国科学院过程工程研究所 一种煤焦油制燃料油加氢裂化催化剂及其制备和应用方法
FR2970478B1 (fr) * 2011-01-18 2014-05-02 IFP Energies Nouvelles Procede d'hydroconversion en lit fixe d'un petrole brut, etete ou non, un fractionnement, puis un desasphaltage de la fraction lourde pour la production d'un brut synthetique preraffine
US8932451B2 (en) 2011-08-31 2015-01-13 Exxonmobil Research And Engineering Company Integrated crude refining with reduced coke formation
FR2983866B1 (fr) 2011-12-07 2015-01-16 Ifp Energies Now Procede d'hydroconversion de charges petrolieres en lits fixes pour la production de fiouls a basse teneur en soufre
US9080113B2 (en) 2013-02-01 2015-07-14 Lummus Technology Inc. Upgrading raw shale-derived crude oils to hydrocarbon distillate fuels
JP6600912B2 (ja) * 2013-10-11 2019-11-06 コスモ石油株式会社 重質炭化水素油の水素化処理触媒及び重質炭化水素油の水素化処理触媒の製造方法
US10603657B2 (en) 2016-04-11 2020-03-31 Saudi Arabian Oil Company Nano-sized zeolite supported catalysts and methods for their production
US11084992B2 (en) 2016-06-02 2021-08-10 Saudi Arabian Oil Company Systems and methods for upgrading heavy oils
US10301556B2 (en) 2016-08-24 2019-05-28 Saudi Arabian Oil Company Systems and methods for the conversion of feedstock hydrocarbons to petrochemical products
US10689587B2 (en) 2017-04-26 2020-06-23 Saudi Arabian Oil Company Systems and processes for conversion of crude oil
EP3655503A1 (en) * 2017-07-17 2020-05-27 Saudi Arabian Oil Company Systems and methods for processing heavy oils by oil upgrading followed by refining
US10696906B2 (en) 2017-09-29 2020-06-30 Marathon Petroleum Company Lp Tower bottoms coke catching device
US11975316B2 (en) 2019-05-09 2024-05-07 Marathon Petroleum Company Lp Methods and reforming systems for re-dispersing platinum on reforming catalyst
CA3109675A1 (en) 2020-02-19 2021-08-19 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US20220268694A1 (en) 2021-02-25 2022-08-25 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11692141B2 (en) 2021-10-10 2023-07-04 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive
CA3188122A1 (en) 2022-01-31 2023-07-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126196A (ja) * 1984-11-22 1986-06-13 Res Assoc Residual Oil Process<Rarop> 炭化水素類の水素化分解方法
JPH0753968A (ja) * 1993-08-09 1995-02-28 Idemitsu Kosan Co Ltd 重質炭化水素油の水素化処理方法
JP2000136391A (ja) * 1998-08-25 2000-05-16 Idemitsu Kosan Co Ltd 原油の水素化処理方法および改質原油
WO2002034865A1 (fr) * 2000-10-24 2002-05-02 Jgc Corpopation Huile raffinee et procede de production associe
JP3341011B2 (ja) * 1999-05-28 2002-11-05 独立行政法人産業技術総合研究所 触媒担体及び水素化用触媒

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126196A (ja) * 1984-11-22 1986-06-13 Res Assoc Residual Oil Process<Rarop> 炭化水素類の水素化分解方法
JPH0753968A (ja) * 1993-08-09 1995-02-28 Idemitsu Kosan Co Ltd 重質炭化水素油の水素化処理方法
JP2000136391A (ja) * 1998-08-25 2000-05-16 Idemitsu Kosan Co Ltd 原油の水素化処理方法および改質原油
JP3341011B2 (ja) * 1999-05-28 2002-11-05 独立行政法人産業技術総合研究所 触媒担体及び水素化用触媒
WO2002034865A1 (fr) * 2000-10-24 2002-05-02 Jgc Corpopation Huile raffinee et procede de production associe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8632673B2 (en) 2007-11-28 2014-01-21 Saudi Arabian Oil Company Process for catalytic hydrotreating of sour crude oils
US8372267B2 (en) 2008-07-14 2013-02-12 Saudi Arabian Oil Company Process for the sequential hydroconversion and hydrodesulfurization of whole crude oil
US9260671B2 (en) 2008-07-14 2016-02-16 Saudi Arabian Oil Company Process for the treatment of heavy oils using light hydrocarbon components as a diluent
US8491779B2 (en) 2009-06-22 2013-07-23 Saudi Arabian Oil Company Alternative process for treatment of heavy crudes in a coking refinery

Also Published As

Publication number Publication date
EP1600491A1 (en) 2005-11-30
JP2004263117A (ja) 2004-09-24
MXPA05009298A (es) 2006-03-21
CN1756831A (zh) 2006-04-05

Similar Documents

Publication Publication Date Title
WO2004078889A1 (ja) 原油の接触水素化処理方法
US8894838B2 (en) Hydroprocessing process using uneven catalyst volume distribution among catalyst beds in liquid-full reactors
WO2006061120A1 (en) Integrated sda and ebullated-bed process
JP2003049175A (ja) 原油脱硫
US6342152B1 (en) Hydrogenation treatment process for crude oil and crude oil reformed thereby
KR101944130B1 (ko) 하나 이상의 액체 재순환 스트림을 사용하여 황 제거를 개선시키기 위한 액체-풀 수소화가공
KR20140020902A (ko) 전체-액상 반응기에서의 표적화 전처리 및 선택적 개환
CA2652227C (en) Improved hydrocracker post-treat catalyst for production of low sulfur fuels
WO2009119390A1 (ja) 重質油水素化分解触媒
CA2901390C (en) Process for partial upgrading of heavy and/or extra-heavy crude oils for its transportation
JP4576333B2 (ja) 軽油留分の水素化処理方法
JP2008297471A (ja) 接触改質ガソリンの製造方法
JP4226154B2 (ja) 原油の水素化処理方法および改質原油
WO2015047971A2 (en) Gas oil hydroprocess
US5116484A (en) Hydrodenitrification process
CN111100698A (zh) 一种高干点高氮原料油的加氢裂化方法
US5376258A (en) Process for hydrogenating treatment of heavy hydrocarbon oil
WO2001074973A1 (fr) Procede d&#39;hydrodesulfuration d&#39;une fraction d&#39;huile legere
JP5220456B2 (ja) 常圧蒸留残渣油の分解方法
JPH0753968A (ja) 重質炭化水素油の水素化処理方法
CN112601802B (zh) 0℃下无浑浊重质基础油和用于生产的方法
JP2980436B2 (ja) 重質炭化水素油の処理方法
JP2000198990A (ja) 軽油留分の水素化処理方法
JP5852892B2 (ja) 重質油の水素化処理方法
JPH05230473A (ja) 重質炭化水素油の処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004716317

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/009298

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2004805989X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004716317

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2004716317

Country of ref document: EP