WO2004073081A1 - スイッチング素子 - Google Patents

スイッチング素子 Download PDF

Info

Publication number
WO2004073081A1
WO2004073081A1 PCT/JP2004/001750 JP2004001750W WO2004073081A1 WO 2004073081 A1 WO2004073081 A1 WO 2004073081A1 JP 2004001750 W JP2004001750 W JP 2004001750W WO 2004073081 A1 WO2004073081 A1 WO 2004073081A1
Authority
WO
WIPO (PCT)
Prior art keywords
bistable material
organic bistable
electrode layer
switching element
layer
Prior art date
Application number
PCT/JP2004/001750
Other languages
English (en)
French (fr)
Inventor
Haruo Kawakami
Hisato Kato
Keisuke Yamashiro
Masami Kuroda
Nobuyuki Sekine
Original Assignee
Fuji Electric Holdings Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Co., Ltd. filed Critical Fuji Electric Holdings Co., Ltd.
Priority to EP04711724A priority Critical patent/EP1598877B1/en
Priority to US10/545,854 priority patent/US7786470B2/en
Priority to JP2005505037A priority patent/JP4826254B2/ja
Publication of WO2004073081A1 publication Critical patent/WO2004073081A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/50Bistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/611Charge transfer complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/20Organic diodes
    • H10K10/26Diodes comprising organic-organic junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom

Definitions

  • the present invention relates to a switching element for driving an organic EL display panel, and a switching element used for high-density memory and the like, in which an organic bistable material is disposed between two electrodes.
  • An organic bistable material is an organic material exhibiting a so-called non-linear response, in which when a voltage is applied to a material, the current of a circuit suddenly increases above a certain voltage and a switching phenomenon is observed.
  • FIG. 19 shows an example of the voltage-current characteristics of the organic bistable material exhibiting the switching behavior as described above.
  • the organic bistable material has two current-voltage characteristics, a high resistance characteristic 51 (0 ff state) and a low resistance characteristic 52 (on state).
  • Vth2 high transition voltage
  • Vthl low transition voltage
  • the state changes from the on state to the off state.
  • Vthl low transition voltage
  • It has a non-linear response characteristic in which the resistance changes with a transition. That is, a so-called switching operation can be performed by applying a voltage of Vth2 or more or Vthl or less to this organic bistable material.
  • Vthl and Vth2 can be applied as pulsed voltages.
  • organic bistable materials exhibiting such a nonlinear response.
  • RSPotember and others are based on Cu-TCNQ (copper-tetracyanoquinodium).
  • Cu-TCNQ copper-tetracyanoquinodium
  • the switching element using the above organic charge transfer complex has the following problems. That is, since the above organic bistable material is a charge transfer complex, it is a two-component material composed of a donor molecule or a combination of a donor metal and an axceptor molecule such as TCQN. .
  • each column component expresses bistability by performing partial charge transfer between molecules (or metal atoms). Therefore, if there is an excess or deficiency in the composition ratio of the two components, it has a large effect on the overall bistability.
  • the composition ratio of Cu and TCNQ is different, the crystallinity and electrical properties of the materials are different, which causes a variation in bistable properties.
  • a film is formed by a vacuum evaporation method or the like, a large difference is caused due to a difference in vapor pressure of both components and a geometric arrangement in a case where separate evaporation sources are used for both materials in a co-evaporation method.
  • area is difficult to form a uniform film.
  • the conventional two-component organic bistable material described above has a problem that it is difficult to mass-produce a switching element having uniform bistable properties and uniform quality.
  • the transition voltage Vth2 from the 0 ff state to the on state shown in Fig. 19 is as high as about 10 V, but the repetition performance is not sufficient. There was a point.
  • the switching element disclosed in WO 02/37500 has good repetition performance, but the transition voltage V th2 from the 0 ff state to the on state shown in FIG. Assuming application to display driving such as EL, there was a problem that the transition voltage was too low.
  • the present invention has been made in view of the above-described problems of the related art, and suppresses a change in material composition, can obtain uniform bistable characteristics, is suitable for mass production, has a high transition voltage, and An object of the present invention is to provide a switching element having excellent repetition performance. Disclosure of the invention
  • one of the switching elements of the present invention is a switching element having two kinds of stable resistance values with respect to a voltage applied between the electrodes, wherein a first electrode layer, an organic bistable material layer,
  • the organic bistable material formed as a thin film in the order of the two electrode layers and constituting the organic bistable material layer is a quinomethane compound represented by the following general formula (I).
  • ⁇ 4 represents a group selected from a hydrogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, and an aryl group which may have a substituent.
  • Ri R 4 may be the same or different.
  • R 5, R 6 represents any heterocyclic ring which may have even better Ariru groups or substituents have a substituent, R 5, R 6 may be the same or different, and A represents a group selected from the following (1) to (10).
  • the quinomethane compound of the above formula (I) has a quinone group which is an electron-accepting functional group, so that it has an electron transporting property and exhibits excellent bistability. Since it has an appropriate metal diffusion rate, it can be suitably used in the present invention.
  • quinomethane compound of the above formula (I) is represented by 1 ⁇ 2: c ⁇
  • Low resistance state Z The ratio of the high resistance state is high, so that the composition is excellent in bistability. Further, since a thin film can be easily formed by a vapor deposition method or the like, it can be particularly preferably used as an organic bistable material.
  • Another one of the switching elements of the present invention is a switching element having two kinds of stable resistance values with respect to a voltage applied between the electrodes, wherein a first electrode layer, an organic bistable material layer,
  • the organic bistable material formed as a thin film in the order of the second electrode layer and constituting the organic bistable material layer is a monoquinomethane-based compound represented by the following general formula ( ⁇ ).
  • R 7 to R 1 Q represent a hydrogen atom, a halogen atom, a carbon atom which may have a substituent, an alkyl group of 6 or an aryl group which may have a substituent. And R 7 to R 1 Q may be the same or different, and m and n each represent an integer of 0 to 3.
  • the monoquinomethane compound of the above formula ( ⁇ ) is Since it has a quinone group which is an electron-accepting functional group, it has an electron-transporting property and exhibits excellent bistability, and has an appropriate metal diffusion rate. Can be used.
  • the monoquinomethane compound of the above formula ( ⁇ ) has a high ratio of low resistance state / high resistance state and thus has excellent bistable suitability. Further, since a thin film can be easily formed by a vapor deposition method or the like, an organic compound is used. It can be particularly preferably used as a bistable material.
  • Still another one of the switching elements of the present invention is a switching element having two kinds of stable resistance values with respect to a voltage applied between the electrodes, wherein a first electrode layer and an organic bistable material are provided on a substrate. And a metal forming the second electrode layer is diffused in the organic bistable material layer.
  • a diffusion made of an organic bistable material different from the organic bistable material layer is provided between the organic bistable material layer and at least one of the first electrode layer and the second 'electrode layer.
  • a suppression layer is formed, and the another organic bistable material is a material having a lower metal diffusion rate in the second electrode layer than the organic bistable material layer.
  • this switching element it is estimated that the lowest unoccupied orbital level and the highest occupied orbital level of the diffused portion are both high because the diffused metal is considered to act as an acceptor. Therefore, a large electric field is required for switching because the metal diffusion portion acts as an energy barrier, and the transition voltage is considered to be high. Also, since this switching does not involve a phase change, the repetition performance is good. Further, according to the aspect in which the diffusion suppressing layer is formed, the diffusion of the metal into the organic bistable material layer becomes excessive and the resistance of the organic bistable material layer is reduced, thereby preventing the leakage current from increasing. Thus, the leakage current can be suppressed.
  • the second electrode layer is formed by vapor deposition, and the temperature of the substrate during the vapor deposition is 30 to 150 ° C. According to this, the diffusion rate of the metal is increased by setting the substrate temperature at the time of vapor deposition within the above range, so that the diffusion of the metal constituting the second electrode layer into the organic bistable material layer can be sufficiently performed. It can be carried out.
  • the second electrode layer is preferably made of at least one selected from gold, platinum, rhodium, silver, and chromium. These metals have a high absolute value of work function among the electrode materials, and easily behave as an acceptor when diffused into an organic bistable material. Therefore, these metals can be suitably used in the present invention.
  • FIG. 1 is a schematic configuration diagram showing one embodiment of the switching element of the present invention.
  • FIG. 2 is a schematic configuration diagram showing another embodiment of the switching element of the present invention.
  • FIG. 3 is a schematic configuration diagram showing still another embodiment of the switching element of the present invention.
  • FIG. 4 is a schematic configuration diagram showing still another embodiment of the switching element of the present invention.
  • FIG. 5 is an explanatory diagram showing energy levels in the switching element of the present invention.
  • FIG. 6 is an explanatory diagram showing energy levels in a conventional switching element.
  • FIG. 7 is a chart showing current-voltage characteristics of the switching element in Example 1.
  • FIG. 8 is a chart showing current-voltage characteristics of the switching element in Example 2.
  • FIG. 9 is a chart showing current-voltage characteristics of the switching element in Example 3.
  • FIG. 10 is a chart showing the result of metal composition analysis of a cross section by TEM-EPMA in the examples.
  • FIG. 11 is a chart showing current-voltage characteristics of the switching element in Example 4.
  • FIG. 12 is a chart showing current-voltage characteristics of the switching element in Example 5.
  • FIG. 13 is a chart showing current-voltage characteristics of the switching element in Example 6.
  • FIG. 14 is a TEM cross-sectional photograph of the switching Hatako of Example 4.
  • FIG. 15 is a cross-sectional photograph by TEM of the switching element of Example 5.
  • FIG. 16 is a chart showing current-voltage characteristics of the switching element in Example 7.
  • FIG. 17 is a chart showing current-voltage characteristics of the switching element in Example 8.
  • FIG. 18 is a chart showing current-voltage characteristics of the switching element in Example 9.
  • FIG. 19 is a chart showing the concept of voltage-current characteristics of a conventional switching element.
  • FIG. 20 is a conceptual diagram showing the structure of a conventional two-component organic bistable material. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic configuration diagram showing an embodiment of the switching element of the present invention.
  • this switching element has a configuration in which a first electrode layer 21 a, an organic bistable material layer 30, and a second electrode layer 21 b are sequentially stacked on a substrate 10.
  • the substrate 10 is not particularly limited, but a conventionally known glass substrate or the like is preferably used. Can be
  • the first electrode layer 21a formed on the substrate 10 includes metal materials such as aluminum, gold, silver, chromium, nickel, and iron; inorganic materials such as ITO and carbon; conjugated organic materials; and liquid crystals.
  • Organic materials, such as, and semiconductor materials, such as silicon, can be appropriately selected, and are not particularly limited.
  • a conventionally known method such as a vacuum evaporation method is preferably used, and is not particularly limited.
  • the substrate temperature during the deposition is appropriately selected depending on the electrode material to be used, but is preferably 0 to 150 ° C.
  • the thickness is preferably 50 to 200 nm.
  • An organic bistable material layer 30 is formed as a thin film on the first electrode layer 21a.
  • the organic bistable material used for the organic bistable material layer 30 has a functional group for transporting electric charges, and has an electron-donating functional group and an electron-accepting functional group in one molecule. It is preferable to use a compound containing
  • Examples of such a compound having the above electron donating functional group and the above electron accepting functional group in one molecule include, for example, an aminoimidazole compound, a dicyano compound, and a pyridone compound. And styryl compounds, stilbene compounds, quinometan compounds, butadiene compounds and the like.
  • ⁇ 4 represents a group selected from a hydrogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, and an aryl group which may have a substituent.
  • Ri ⁇ R 4 are the same Or it may be different.
  • R 5 and R 6 represent either an aryl group which may have a substituent or a heterocyclic ring which may have a substituent, and R 5 and R 6 may be the same or different.
  • A represents a group selected from the following (1) to (10).
  • the above quinomethane compound (I) can be synthesized, for example, by the following reaction formula.
  • the following compounds are examples in which A is (2) or (3) (X represents oxygen or sulfur).
  • the compound (I-a) and the compound (I-b) are reacted with the compound (I-c) with a suitable organometallic catalyst such as n_butyllithium (I_d), and then
  • a suitable organometallic catalyst such as n_butyllithium (I_d)
  • the compound (I_e) is synthesized by removing the protective group, TMS (trimethylsilyl group), and further dehydrated and condensed with a catalyst such as P-toluenesulfonic acid to obtain a quinomethane compound.
  • (I-f) can be obtained.
  • TBAF in the above reaction formula represents tetrabutylammonium fluoride.
  • the above synthesis method is described in detail, for example, in JP-A-2003-228185, JP-A-2003-23861, and Japanese Patent Application No. 2003-105039.
  • quinomethane-based compound examples include compounds represented by the following structural formulas (I1) to (1-32). .
  • R 7 to R 1Q represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, or an aryl group which may have a substituent.
  • R 7 to R 1G may be the same or different.
  • M and n each represent an integer of 0 to 3.
  • the monoquinomethane compound of the above general formula ( ⁇ ) is, for example, It can be synthesized by the formula.
  • the following is a synthesis example of the compound of the above structural formula ( ⁇ -11), but a compound of another structure can be synthesized by the same method.
  • structural formula (A-1) 4-bromo-2,6-di-tert-butyl-11- [trimethylsilyl] benzene (structural formula (A-1)) is synthesized by a known method described in, for example, JP-A-2003-238561. be able to.
  • G2_Cheeriketone structural formula (B-1) is available from Sigma-Aldrich Japan.
  • Methods for forming the organic bistable material layer 30 include a vacuum deposition method, a spin coating method, an electrolytic polymerization method, a chemical vapor deposition method (CVD method), a monomolecular film accumulation method (LB method), a dip method, and a bar coating method.
  • a production method such as an ink jet method and a screen printing method is used, and is not particularly limited.
  • the substrate temperature during evaporation is appropriately selected depending on the organic bistable material to be used, but is preferably 0 to 100 ° C.
  • the thickness is preferably from 20 to 150 nm.
  • the coating solvent may be, for example, halogen-based dichloromethane, dichloromethane, dichloromethane, ether-based tetrahydrofuran (THF), or the like.
  • Ethylene glycol dimethyl ether, aromatic toluene, xylene, alcohol-based ethyl alcohol, ester-based ethyl acetate, butyl acetate, ketone-based acetone, acetonitrile, and the like can be used.
  • the organic bistable material is dissolved in these solvents in the range of 0.001 to 30% by mass, and a binder resin is added as necessary to prepare a coating solution.
  • the binder resin for example, polyester resin, polyester, polyvinyl alcohol, polystyrene and the like can be used.
  • the spin coating conditions can be appropriately set according to the target film thickness, but the rotation speed is preferably in the range of 200 to 360 rpm.
  • a second electrode layer 21b is formed on the organic bistable material layer 30. Then, the metal constituting the second electrode layer 21b is diffused in the organic bistable material layer 30.
  • the second electrode layer 21b is selected from gold, platinum, rhodium, and silver because it has the highest absolute work function among the electrode materials and easily behaves as an acceptor when diffused into an organic bistable material. It is preferably from one kind, and more preferably gold.
  • the thickness of the second electrode layer 21b is preferably 50 to 200 nm.
  • the second electrode layer 21 b is vacuum-deposited in the same manner as the first electrode layer 21 a. In this case, the temperature of the substrate 10 at the time of vapor deposition is set to 30 to 150 ° C.
  • the metal is diffused into the organic bistable material layer 30 simultaneously with the vapor deposition, so that a separate diffusion step is not required. If the temperature of the substrate is lower than 30 ° C., the gold constituting the second electrode layer 21 b into the organic bistable material layer 30 It is not preferable because diffusion of the genus becomes insufficient. On the other hand, when the temperature exceeds 150 ° C., the glass transition point of the organic bistable material is exceeded, so that the thin film is crystallized.
  • the diffusion of the metal into the organic bistable material layer 30 is not limited to the above method.For example, after forming the second electrode layer 21 b by vapor deposition or the like, the second electrode layer 2 lb is heated. By doing so, the metal may be diffused.
  • the metal diffuses into the organic bistable material layer 30 not in the entire organic bistable material layer 30 but in the middle. No. Specifically, it is preferable that the diffusion from the second electrode layer 21b side is diffused to 5 to 70% of the entire thickness of the organic bistable material layer 30. If the diffusion depth is less than 5%, the diffusion becomes insufficient and the transition voltage does not increase, which is not preferable.If the diffusion depth exceeds 70%, the leakage current described later increases. It is not preferred.
  • Whether or not the metal is diffused into the organic bistable material layer 30 can be determined by, for example, observing a cross section using a TEM (transmission electron microscope) or a cross section using a TEM-EPMA (transmission electron microscope-electron beam microanalyzer). Can be confirmed by performing a metal composition analysis of
  • the configuration of the switching element in the present invention is not limited to the configuration as shown in FIG. 1, and may be, for example, the configuration as shown in FIGS.
  • the embodiment of FIG. 2 is different from the above-described embodiment of FIG. 1 in that the embodiment is a three-terminal element in which a third electrode 22 is further provided in an organic bistable material layer 30.
  • the bias Vb in FIG. 19 described above is applied by using the electrode layers 21 a and 21 b as electrodes through which an additional current flows, and further, the third electrode 22 is connected to the bistable material layer 30.
  • the low threshold voltage V th1 or the high threshold voltage V th2 in FIG. 19 can be applied as an electrode for controlling the resistance state of the transistor.
  • the insulating layer 41 is formed on the second electrode layer 23, and the organic bistable material layer 31 and the organic bistable material layer 3 are further formed on the insulating layer 41. Electrode layers 24 a and 24 b are formed on both sides to sandwich 1, and an insulating layer 42 and a fourth electrode layer 25 are sequentially formed on the bistable material layer 31 4 terminal element It has become.
  • the third electrode 23 is a silicon substrate
  • the insulating layers 41 and 42 are metal oxide deposited films
  • the electrode layers 24.a, 24b, and the fourth electrode. 25 can be an aluminum evaporated film. Then, an additional current is passed through the electrode layers 24a and 24b.
  • the bias Vb in FIG. 19 described above is applied, and further, an electric field is applied to the organic bistable material layer 31 by the third electrode 23 and the fourth electrode 25.
  • the resistance state of the material layer 31 can be controlled.
  • FIG. 4 shows another embodiment of the present invention.
  • the same parts as those of the above embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • This embodiment is different from the above embodiment in that a diffusion suppressing layer 31 is provided between a first electrode layer 21a and an organic bistable material layer 30.
  • the diffusion suppressing layer 31 is made of an organic bistable material different from the organic bistable material layer 30, and this other organic bistable material is different from the organic bistable material layer 30 in the second electrode layer 21b. This material has a low metal diffusion rate. The presence of the diffusion suppressing layer 31 prevents the metal from being excessively diffused into the organic bistable material layer 30 to reduce the resistance of the organic bistable material layer 30 and prevent the leakage current from increasing. Leak current can be suppressed.
  • the organic bistable material in the organic bistable material layer 30 and the diffusion suppressing layer 31 for example, as the organic bistable material in the organic bistable material layer 30, a disocyanate having a large metal diffusion rate is used.
  • a combination using a quinomethane-based compound as a different organic bistable material in the diffusion suppressing layer 31 using a quinomethane-based compound as a different organic bistable material is used.
  • the method for forming the diffusion suppressing layer 31 can be the same as that for the organic bistable material layer 30 described above.
  • the thickness of the diffusion suppressing layer 31 is preferably 3 to 10 nm.
  • the diffusion suppressing layer may be provided between the organic bistable material layer 30 and the first electrode layer 21a as shown in FIG. It may be provided between the electrode layer 21b and both of them.
  • the switching element of the present invention having the above configuration has good repetition performance and a high transition voltage. The reason is presumed as follows.
  • the switching principle is a charge transfer in a metal-TCNQ complex, and therefore necessarily involves a phase change, which is presumed to be a cause of poor repetition performance.
  • the switching principle is considered to be caused by the fine metal particles, and the switching causes a phase change like the TCNQ system.
  • the control of the transition voltage was not easy.
  • the lowest unoccupied orbital level (LUMO level) of the organic bistable material is higher than the work function of the electrode, and the switching principle is based on local electric field concentration and It is considered that charge injection due to tunnel effect caused by this electric field concentration.
  • the metal of the second electrode is diffused in the organic bistable material, it is considered that the diffused metal behaves as an exciter, so that the LUM O level and the HOMO level (the highest occupied orbital level) It is considered that both will be higher.
  • Example 1 As described above, according to the present invention, it is possible to suppress variation in the material composition, obtain uniform bistable characteristics, be suitable for mass production, have a high transition voltage, and have excellent switching performance.
  • An element can be provided. Therefore, this switching element can be suitably used for a switching element for driving an organic EL display panel, a high-density memory, and the like.
  • the switching element of the present invention will be described in more detail using examples.
  • a switching element having the configuration shown in Fig. 1 was created by the following procedure.
  • a glass substrate was used as the substrate 10, and aluminum was sequentially applied as the first electrode layer 2la, a quinomethane compound was used as the organic bistable material layer 30, and gold was applied as the second electrode layer 21b by vacuum evaporation. Thus, a thin film was formed to form a switching element.
  • the quinone compound a compound represented by the following structural formula (1-1) was used. HgCO OCH3
  • the first electrode layer 21a, the organic bistable material layer 30, and the second electrode layer 21b were formed to have thicknesses of 100 nm, 80 nm, and 100 nm, respectively.
  • the vapor deposition apparatus in diffusion pumping was performed at a vacuum degree of 3 X 10_ 6 orr.
  • the aluminum and quinomethane compounds were deposited at a substrate temperature of 20 ° C and a deposition rate of 3 AZsec and 2 A / sec, respectively.
  • the substrate was heated to a temperature of 50 ° C, and a film was formed by a resistance heating method at a deposition rate of 3 A / sec.
  • the deposition of each layer was performed successively in the same vapor deposition apparatus, and was performed under conditions where the sample did not come into contact with air during the vapor deposition.
  • the quinomethane-based compound a compound of the following structural formula (I-13) is used, and the thickness of each vapor deposition layer is determined by the first electrode layer 21a, the organic bistable material layer 30, and the second electrode layer 21b.
  • a film was formed under the same conditions as in Example 1 so as to have a thickness of 100 nm, 80 nm, and 100 nm, respectively, to obtain a switching element.
  • Example 1 a switching element was obtained under the same conditions as in Example 3, except that the deposition of aluminum, a quinomethane-based compound, and gold were all performed at a substrate temperature of 20 ° C. Test example 1
  • Table 1 summarizes the results of measuring the current-voltage characteristics of the switching elements of Examples 1 to 3 above at room temperature and measuring the low transition voltage Vihl and the high transition voltage Vth2, which are the threshold voltages in Fig. 19. Show. Figures 7 to 9 show the current-voltage characteristics of each switching element.
  • Example 1 of FIG. 7 when the low transition voltage Vthl was 0.6 V or less, the state transitioned from the low resistance state to the high resistance state (from the on state to the off state), and the resistance value changed.
  • the high transition voltage Vth2 was 21.2 V or higher, the resistance changed from the high-resistance state to the low-resistance state (from the off-state to the on-state).
  • Example 2 of Fig. 8 when the low transition voltage Vthl was 5.4V or less, the resistance changed from the low resistance state to the high resistance state (from the on state to the o: ff state).
  • the high transition voltage Vth2 was 14.6 V or higher, the resistance changed from the high-resistance state to the low-resistance state (from the off-state to the on-state).
  • FIG. 10 shows the results of a composition analysis of the diffusion state of gold into the organic bistable material layer 30 using TEM-EPMA.
  • Example 3 in which the substrate temperature during the deposition was 20, gold was not diffused into the organic bistable material layer 30.
  • Example 1 in which the substrate temperature during vapor deposition was 50 ° C., it was found that gold was diffused into the organic bistable material layer 30.
  • a glass substrate is used as the substrate 10, aluminum is used as the electrode layer 21a, and diffusion is suppressed.
  • a thin film was sequentially formed by a vacuum deposition method using a quinomethane compound as the layer 31, a dicyano compound as the organic bistable material layer 30, and gold as the electrode layer 21b, thereby forming a switching element of Example 4.
  • the compound of the following structural formula (1-1) was used as the quinomethane-based compound, and the compound of the following structural formula (III) was used as the dicyano-based compound.
  • the electrode layer 21a, the diffusion suppressing layer 31, the organic bistable material layer 30, and the electrode layer 21b were formed to have a thickness of 100 nm, 20 nm, 40 nm, and 100 nm, respectively. Further, the vapor deposition apparatus in diffusion pumping, was line summer a vacuum of 3 X 10- 6 torr. The deposition of aluminum, quinomethane-based compound, and dicyano-based compound was performed at a deposition rate of 3 A / sec, 2 A / sec, and 2 A / sec, respectively, at a substrate temperature of 20 ° C. In the deposition of gold, the substrate was heated to a temperature of 35 ° C., and a film was formed at a rate of 3 AZsec by a resistance heating method. The deposition of each layer was performed successively with the same vapor deposition device, and the conditions were such that the sample did not come into contact with air during the vapor deposition.
  • a switching element was obtained under the same conditions as in Example 4 except that the diffusion suppressing layer 31 was not used and the quinomethane compound of the structural formula (I-11) was 80 nm thick as the organic bistable material layer 30.
  • the diffusion suppressing layer 31 was not used and the quinomethane compound of the structural formula (I-11) was 80 nm thick as the organic bistable material layer 30.
  • a glass substrate was used as the substrate 10, platinum was used as the electrode layer 2 la, a carbonitrile compound was used as the organic bistable material layer 30, a quinomethane compound was used as the diffusion suppressing layer 30, and gold was used as the electrode layer 21b.
  • a thin film is sequentially formed, a compound of the following structural formula (IV) is used as a carbonitrile compound, a compound of the following structural formula (I-13) is used as a quinomethane compound, and the thickness of each vapor deposition layer is The electrode layer 2 1 a, the same as in Example 4, so that the bistable material layer 32, the diffusion suppressing layer 31 and the electrode layer 21b have a thickness of 100 nm, 50 nm, 50 nm and 100 nm, respectively. A film was formed under the conditions to obtain a switching element.
  • the current-voltage characteristics of the switching elements of Examples 4 to 6 were measured in a room temperature environment according to the following procedure. That is, after raising the voltage from zero to Vth2 where the transition from the OFF state to the ON state is observed, the voltage is reduced to ViM where the transition from the 0N state to the OFF state is observed. After measuring VtM and Vth2, the voltage was returned to zero after raising the transition from the OFF state to the ON state again to Vth2, and the sample was stored at room temperature for 10 days.
  • the measurement conditions were as follows: 1 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ electrical resistance was connected in series to each switching element, and current in the ON state was limited to prevent damage to the element due to overcurrent.
  • FIGS. 11 to 13 show the current-voltage characteristics of the switching elements of Examples 4 to 6, respectively.
  • Table 2 shows the measurement results of Vthl and Vth2 in Examples 4 to 6. Vthl is all negative.
  • the average low threshold voltage Vthl was -1.4 to -0.8 V
  • the average high threshold voltage Vth2 was 4.0 to 5.0 V
  • a value of 1000 or more was obtained as the ratio of the low-resistance state Z and the high-resistance state, and good results were obtained as the bistable characteristics.
  • FIGS. 14 and 15 show the results of TEM (transmission electron microscope) observation of the cross section of the interface between the organic bistable material layer 30 and the second electrode layer 21b in Examples 4 and 5, respectively.
  • gold particles 35 having a diameter of about 2 nm are diffused at a depth of about 40 nm in the organic bistable material layer 30, but gold is diffused in the diffusion suppression layer 31.
  • the diffusion suppressing layer 31 made of a quinomethane compound suppresses the diffusion of gold.
  • the gold particles 35 of the organic bistable material layer 30 diffused to the interface at a depth of several nm, but diffused to the entire organic bistable material layer 30.
  • the diffusion rate of gold is low, so that the leakage current can be prevented without providing the diffusion suppressing layer 31.
  • a glass substrate was used as the substrate 10, and aluminum was successively successively formed as the first electrode layer 2la, a monoquinomethane compound as the organic bistable material layer 30, and gold as the second electrode layer 21b by a vacuum evaporation method.
  • a switching element was formed by forming a thin film.
  • the monoquinomethane compound a compound represented by the following structural formula (II-11) was used.
  • the first electrode layer 21a, the organic bistable material layer 30, and the second electrode layer 21b were formed to have a thickness of 100 nm, 80 nm, and 100 nm, respectively.
  • the vapor deposition apparatus in diffusion pumping was performed at a vacuum degree of 3 X 10- 6 torr. Also aluminum The deposition rate of the deposit is 3 A / sec with the resistance heating method, the deposition rate of the monoquinomethane compound is 2 AZsec with the resistance heating method, and the deposition rate of the gold is the resistance heating method. The speed was set at 3 AZs ec. The deposition of each layer was performed successively in the same vapor deposition apparatus, and was performed under conditions where the sample did not come into contact with air during the vapor deposition.
  • a glass substrate is used as the substrate 10, and aluminum is successively successively formed as the first electrode layer 21 a, a monoquinomethane compound as the organic bistable material layer 30, and gold as the second electrode layer 21 b by a vacuum deposition method.
  • a switching element was formed by forming a thin film.
  • the monoquinomethane-based compound a compound represented by the above structural formula (II-12) was used.
  • a glass substrate is used as the substrate 10, and aluminum is used as the first electrode layer 2 la, a monoquinomethane compound is used as the organic bistable material layer 30, and gold is used as the second electrode layer 21 b.
  • the monoquinomethane compound the compound represented by the above structural formula (II-19) was used.
  • Table 3 summarizes the results of measuring the current-voltage characteristics of the switching elements of Examples 7 to 9 in a room temperature environment and measuring the low threshold voltage Vthl and high threshold voltage Vth2, which are the threshold voltages in Fig. 19. Shown in FIGS. 16 to 18 show the current-voltage characteristics of the switching elements of Examples 7 to 9, respectively.
  • Example 7 of FIG. 16 when the low threshold voltage Vthl was 0.0 V, the resistance changed from the low resistance state 72 to the high resistance state 71 (from the on state to the 0ff state) and the resistance value changed.
  • the high threshold voltage Vth2 is 10.0 V or higher, the resistance changes from the high resistance state 71 to the low resistance state 72 (from the off state to the on state), and the resistance value changes. A ratio of about 106 was obtained.
  • Example 8 of FIG. 17 the low threshold voltage Vthl was 0.0 V, and the resistance changed from the low resistance state 82 to the high resistance state 81 (from the on state to the off state).
  • the high threshold voltage Vth2 is 10. QV or more
  • Example 9 in FIG. 18 the low threshold voltage Vthl was 0.0 V, and the resistance changed from the low resistance state 92 to the high resistance state 91 (from the on state to the off state).
  • the threshold voltage Vth2 is 9.5 V or more, the resistance changes from the high resistance state 91 to the low resistance state 92 (from the off state to the on state), and the low resistance state Z high resistance state as a ratio of from about 1 0 3 it was obtained.
  • bistability is obtained in all the switching elements of Examples 7 to 9, and the low threshold voltage Vthl is 0.0 V and the high threshold voltage Vth2 is 9.5 to 10.0 as shown in Table 2. A bistable state is obtained.
  • the switching element of the present invention can suppress variation in the material composition, obtain uniform bistable characteristics, is suitable for mass production, has a high transition voltage, and has excellent repetition performance. It can be suitably used for driving switching elements and high-density memories.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Electroluminescent Light Sources (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Thin Film Transistor (AREA)
  • Thermistors And Varistors (AREA)

Abstract

本発明は、安定した双安定特性を持ち、遷移電圧が高く、かつ繰返し性能に優れたスイッチング素子を提供する。 電極間に印加される電圧に対して2種類の安定な抵抗値を持つスイッチング素子であって、基板上に第1電極層、有機双安定材料層、第2電極層の順に薄膜として形成されており、有機双安定材料層を構成する有機双安定材料がキノメタン系化合物又はモノキノメタン系化合物である。また、有機双安定材料層中に第2電極層を構成する金属が拡散している。第2電極層は蒸着により形成され、蒸着時の基板の温度が30~150℃であることが好ましい。

Description

明 細 書 スィッチンク素子 技術分野
本発明は、 有機 E Lディスプレーパネルの駆動用スイッチング素子や、 高密度メ モリ等に利用される、 有機双安定材料を 2つの電極間に配置したスイッチング素子 に関する。 背景技術
近年、 有機電子材料の特性は目覚しい進展をみせている。 特に電荷移動錯体など の低次元導体のなかには、金属一絶縁体遷移などの特徴ある性質を持つものがあり、 有機 E Lデイスプレーパネルの駆動用スィッチング素子や、 高密度メモリなどへの 適用が検討されている。
上記のスィツチング素子への適用が可能な材料として、 有機双安定材料が注目さ れている。 有機双安定材料とは、 材料に電圧を印加していくと、 ある電圧以上で急 激に回路の電流が増加してスィツチング現象が観測される、 いわゆる非線形応答を 示す有機材料である。
図 1 9には、 上記のようなスイッチング挙動を示す有機双安定材料の、 電圧ー電 流特性の一例が示されている。
図 1 9に示すように、 有機双安定材料においては、 高抵抗特性 5 1 ( 0 f f 状態) と、 低抵抗特性 5 2 ( o n状態) との 2つの電流電圧特性を持つものであり、 あら かじめ Vbのバイアスをかけた状態で、 電圧を Vth2 (高遷移電圧) 以上にすると、 o f f状態から o n状態へ遷移し、 Vthl (低遷移電圧) 以下にすると、 o n状態か ら o f f状態へと遷移して抵抗値が変化する、 非線形応答特性を有している。 つま り、 この有機双安定材料に、 Vth2以上、 又は Vthl以下の電圧を印加することによ り、 いわゆるスイッチング動作を行なうことができる。 ここで、 Vthl、 Vth2 は、 パルス状の電圧として印加することもできる。
このような非線形応答を示す有機双安定材料としては、 各種の有機錯体が知られ ている。 例えば、 R.S.Potember等は、 Cu— TCNQ (銅—テトラシァノキノジメ夕 ン) 錯体を用い、 電圧に対して、 2つの安定な抵抗値を持つスイッチング素子を試 作している (R.S.Potember et al. Appl. Phys. Lett. 34, (1979) 405) 。
また、 熊井等は、 K— TCNQ (カリウム—テトラシァノキノジメタン) 錯体の単 結晶を用い、非線形応答によるスイッチング挙動を観測している(熊井等 固体物理 35 (2000) 35) 。
更に、 安達等は、 真空蒸着法を用いて Cu— TCNQ錯体薄膜を形成し、 そのスィ ツチング特性を明らかにして、 有機 E Lマトリックスへの適用可能性の検討を行な つている (安達等応用物理学会予稿集 2 0 0 2年春 第 3分冊 1236) 。
また、 Yang Yang らは、 メモリ素子として、 ァミノイミダゾ一ルジカーボ二トリ ル (A I D C N) 、 アルミキノリンやポリスチレン、 ポリメチルメタクレ一ト (P MMA) 等の低導電率材料中に、 金、 銀、 アルミニウム、 銅、 ニッケル、 マグネシ ゥム、 インジウム、 カルシウム、 リチウム等などの高導電率材料を薄膜形成、 もし くは分散微粒子として存在させることにより、 双安定特性が得られるとともに、 印 加する電圧をゼロとしても、 その前の o n / o f f状態を記憶できることを開示し ている (国際公開第 0 2ノ 3 7 5 0 0号パンフレツト) 。
しかしながら、 上記の有機電荷移動錯体を用いたスィツチング素子については以 下の問題点があった。すなわち、上記の有機双安定材料は電荷移動錯体であるので、 ドナー性分子、 もしくはドナー性を持つ金属元素と、 T C Q Nのようなァクセプ夕 性分子との組み合わせによりなる、 2成分系の材料である。
このため、 スイッチング素子の作製にあたっては、 2成分の構成比を厳密に制御 する必要があった。 すなわち、 これらの 2成分系の電荷移動錯体では、 例えば、 図 2 0に示すように、 ドナ一分子とァクセプタ分子が、 それぞれカラム状に積層して ドナー分子カラム 6 1と、 ァクセプ夕分子カラム 6 2を形成しており、 各カラム成 分が、 分子 (あるいは金属原子) 間での部分的な電荷移動を行なうことにより、 双 安定特性を発現させるものである。 したがって、 2成分の構成比に過不足がある場 合には全体の双安定特性に大きな影響を与える。
したがって、 例えば、 上記の Cu— TCNQ錯体では、 Cuと TCNQの構成比が異なれば 材料の結晶性、 電気特性が異なり、 双安定特性のパラツキの要因となる。 特に、 真 空蒸着法等により成膜を行なう場合、両成分の蒸気圧の違いや、共蒸着法における、 両材料について別々の蒸着源を使用する場合の幾何的配置等に起因して、 大面積で 均一な成膜が困難である。このため、上記の従来の 2成分系の有機双安定材料では、 双安定特性にバラツキのない、 均一な品質のスイッチング素子を量産することが困 難であるという問題点があった。 また、 有機電荷移動錯体を用いたスイッチング素 子を用いたスイッチング素子では、 図 19で示される 0 f f 状態から on状態への 遷移電圧 Vth2 は約 10 Vと高いものの、 繰返し性能が充分でないという問題点が あった。
また、 国際公開第 02/37500号パンフレットのスイッチング素子では、 繰 返し性能は良いものの、 図 1 9で示される 0 f f状態から on状態への遷移電圧 V th2 が 3V程度と非常に低く、 特に有機 ELなどのディスプレイ駆動への応用を想 定した場合、 .遷移電圧が低すぎるという問題があった。
本発明は、 上記従来技術の問題点を鑑みてなされたもので、 材料組成の変動を抑 制し、 均一な双安定特性を得ることができ、 量産に適し、 かつ、 遷移電圧が高く、 かつ繰返し性能に優れたスィツチング素子を提供することを目的とする。 発明の開示
すなわち、 本発明のスイッチング素子の 1つは、 電極間に印加される電圧に対し て 2種類の安定な抵抗値を持つスィツチング素子において、 基板上に第 1電極層、 有機双安定材料層、 第 2電極層の順に薄膜として形成され、 前記有機双安定材料層 を構成する有機双安定材料が、 下記一般式 ( I) で表されるキノメタン系化合物で あることを特徴とする。
Figure imgf000004_0001
(式 (I) 中、 1〜!^4は水素原子、 置換基を有してもよい炭素数 1〜6のアル キル基、 置換基を有してもよいァリール基より選ばれる基を表し、 Ri R4は同一 又は異なっていてもよい。 R5、 R6は置換基を有してもよいァリール基又は置換基 を有してもよい複素環のいずれかを表し、 R5、 R6は同一又は異なってもよい。 A は下記 (1) 〜 (1 0) より選ばれる基を表す。 )
Figure imgf000005_0001
(1) (2) (3) (4) (6)
Figure imgf000005_0002
(7) (8) (9) (10)
上記のスイッチング素子によれば、 上記の式 ( I ) のキノメタン系化合物は、 電 子受容性の官能基であるキノン基を有するので、 電子輸送性を備えるとともに優れ た双安定性を示し、 また、 適度な金属の拡散速度を有しているので、 本発明に好適 に用いることができる。
また、 上記の式 (I ) のキノメタン系の化合物は、 ½ :c -
H )低抵抗状態 Z高抵抗状態の比 が高いので双安定適性に優れ、 また、 蒸着法等によって容易に薄膜形成が可能であ るので、 有機双安定材料として特に好適に用いることができる。
本発明のスィツチング素子の他の 1つは、 電極間に印加される電圧に対して 2種 類の安定な抵抗値を持つスイッチング素子において、 基板上に第 1電極層、 有機双 安定材料層、 第 2電極層の順に薄膜として形成され、 前記有機双安定材料層を構成 する有機双安定材料が、 下記一般式 (Π ) で表されるモノキノメタン系化合物であ ることを特徴とする。
Figure imgf000005_0003
(式 (Π ) 中、 R 7〜R 1 Qは水素原子、 ハロゲン原子、 置換基を有してもよい炭 〜 6のアルキル基、置換基を有してもよいァリール基より選ばれる基を表し、 R 7〜R 1 Qは同一又は異なっていてもよい。 mおよび nは、 それぞれ 0〜 3の整数 を表す。 )
上記のスィツチング素子によれば、上記の式(Π )のモノキノメタン系化合物は、 電子受容性の官能基であるキノン基を有するので、 電子輸送性を備えるとともに優 れた双安定性を示し、 また、 適度な金属の拡散速度を有しているので、 本発明に好 適に用いることができる。
また、 上記の式 (Π ) のモノキノメタン系の化合物は、 低抵抗状態/高抵抗状態 の比が高いので双安定適性に優れ、 また、 蒸着法等によって容易に薄膜形成が可能 であるので、 有機双安定材料として特に好適に用いることができる。
本発明のスィツチング素子の更に他の 1つは、 電極間に印加される電圧に対して •2種類の安定な抵抗値を持つスイッチング素子において、 基板上に第 1電極層、 有 機双安定材料層、 第 2電極層の順に薄膜として形成され、 前記有機双安定材料層中 に前記第 2電極層を構成する金属が拡散していることを特徴とする。
この場合、 前記有機双安定材料層と、 前記第 1電極層又は前記第 2'電極層の少な くとも一方との間に、 前記有機双安定材料層とは別の有機双安定材料からなる拡散 抑制層が形成されており、 前記別の有機双安定材料は、 前記有機双安定材料層より 前記第 2電極層の金属の拡散速度が小さい材料であることが好ましい。
このスィツチング素子によれば、 拡散した金属がァクセプターとして振る舞うと 考えられるために、 拡散部分の最低非占有軌道準位、 最高占有軌道準位ともに高く なるものと推定される。 したがって、 金属の拡散部分がエネルギー障壁となること により、 スイッチングにより大きな電界が必要となり、 遷移電圧が高くなると考え られる。 また、 このスイッチングは相変化を伴わないので、 繰返し性能も良い。 また、 上記の拡散抑制層を形成した態様によれば、 有機双安定材料層への金属の 拡散が過剰になって有機双安定材料層の抵抗が小さくなり、 リーク電流が大きくな ることを防止し、 リーク電流を抑制することができる。
本発明においては、 前記第 2電極層が蒸着により形成され、 前記蒸着時の前記基 板の温度が 3 0〜 1 5 0 °Cであることが好ましい。 これによれば、 蒸着時の基板温 度を上記範囲とすることにより、 金属の拡散速度が大きくなるので、 有機双安定材 料層中への第 2電極層を構成する金属の拡散を充分に行うことができる。
また、 本発明においては、 前記第 2電極層が金、 白金、 ロジウム、 銀、 クロムよ り選択される少なくとも 1種からなることが好ましい。 これらの金属は、 電極材料 のなかでも仕事関数の絶対値が高く、 有機双安定材料中に拡散した際にァクセプタ 一として振る舞いやすいので、 本発明に好適に用いることができる。 図面の簡単な説明
図 1は、 本発明のスィツチング素子の一実施形態を示す概略構成図である。
図 2は、 本発明のスィツチング素子の他の実施形態を示す概略構成図である。 図 3は、本発明のスィツチング素子の更に他の実施形態を示す概略構成図である。 図 4は、本発明のスイッチング素子の更に他の実施形態を示す概略構成図である。 図 5は、本発明のスィツチング素子におけるエネルギー準位を示す説明図である。 図 6は、 従来のスィツチング素子におけるエネルギー準位を示す説明図である。 図 7は、 例 1におけるスィツチング素子の電流〜電圧特性を示す図表である。 図 8は、 例 2におけるスィツチング素子の電流一電圧特性を示す図表である。 図 9は、 例 3におけるスィッチング素子の電流 ~電圧特性を示す図表である。 図 1 0は、 実施例において T E M—E P MAによる断面の金属組成分析を行った 結果を示す図表である。
図 1 1は、 例 4におけるスイッチング素子の電流一電圧特性を示す図表である。 図 1 2は、 例 5におけるスイッチング素子の電流一電圧特性を示す図表である。 図 1 3は、 例 6におけるスイッチング素子の電流一電圧特性を示す図表である。 図 1 4は、 例 4のスィツチング秦子の T E Mによる断面写真である。
図 1 5は、 例 5のスイッチング素子の T E Mによる断面写真である。
図 1 6は、 例 7におけるスイッチング素子の電流一電圧特性を示す図表である。 図 1 7は、 例 8におけるスイッチング素子の電流—電圧特性を示す図表である。 図 1 8は、 例 9におけるスイッチング素子の電流一電圧特性を示す図表である。 図 1 9は、 従来のスイッチング素子の電圧—電流特性の概念を示す図表である。 図 2 0は、 従来の 2成分系の有機双安定材料の構造を示す概念図である。 発明を実施するための最良の形態
以下、 図面を用いて本発明を詳細に説明する。 図 1は、 本発明のスイッチング素 子の一実施形態を示す概略構成図である。
図 1に示すよう(こ、 このスイッチング素子は、基板 1 0上に、第 1電極層 2 1 a、 有機双安定材料層 3 0、 第 2電極層 2 1 bが順次積層された構成となっている。 基板 1 0としては特に限定されないが、 従来公知のガラス基板等が好ましく用い られる。
基板 10上に形成される第 1電極層 21 aとしては、 アルミニウム、 金、 銀、 ク ロム、 ニッケル、 鉄などの金属材料や、 I TO、 カーボン等の無機材料、 共役系有 機材料、液晶等の有機材料、シリコンなどの半導体材料などが適宜選択可能であり、 特に限定されない。 また、 第 1電極層 21 aの形成方法としては、 真空蒸着法等の 従来公知の方法が好ましく用いられ、 特に限定されない。
真空蒸着で第 1電極層 2 1 aを形成する場合、 蒸着時の基板温度は、 使用する電 極材料によって適宜選択されるが 0〜1 50°Cが好ましい。 また、 膜厚は 50〜 200 nmが好ましい。
第 1電極層 2 1 a上には有機双安定材料層 30が薄膜形成される。 この有機双安 定材料層 30に用いる有機双安定材料としては、 電荷を輸送するための官能基を有 するものであり、 一つの分子内に電子供与性の官能基と電子受容性の官能基とを含 有する化合物を用いることが好ましい。
電子供与性の官能基としては、 — S CH3、 _OCH3、 一 NH2、 — NHCH3、 ― N (CH3) 2等が挙げられ、 電子受容性の官能基としては、 一 CN、 N02、 — CH 0、 — COCH3、 一 C〇OC2H5、 一 COOH、 一 B r、 — C l、 — 1、 -OH, _F、 =0等が挙げられる。
このような、 一つの分子内に上記の電子供与性の官能基と、 上記の電子受容性の 官能基とを有する化合物としては、 例えば、 ァミノイミダゾール系化合物、 ジシァ ノ系化合物、 ピリドン系化合物、 スチリル系化合物、 スチルベン系化合物、 キノメ タン系化合物、 ブタジエン系化合物等が挙げられる。
上記のような、 一つの分子内に上記の電子供与性の官能基と、 上記の電子受容性 の官能基とを有する化合物の 1つとして、 本発明では、 下記一般式 (I) で表され るキノメタン系化合物を用いることが好ましい。
Figure imgf000008_0001
(式 (I) 中、 1〜!^4は水素原子、 置換基を有してもよい炭素数 1〜6のアル キル基、 置換基を有してもよいァリール基より選ばれる基を表し、 Ri〜R4は同一 又は異なっていてもよい。 R5、 R6は置換基を有してもよいァリール基又は置換基 を有してもよい複素環のいずれかを表し、 R5、 R6は同一又は異なってもよい。 A は下記 (1) 〜 (1 0) より選ばれる基を表す。 )
Figure imgf000009_0001
(1) (2) (3) (4) (5) (6)
Figure imgf000009_0002
(7) (8) (9) (10)
上記のキノメタン系化合物 (I) は、 例えば、 下記に示すような反応式によって 合成することができる。 以下の化合物は上記の Aが(2) 又は(3) の例である (X は酸素又は硫黄を表す) 。
0
Figure imgf000010_0001
(レ a) (I-b) (I-c)
Figure imgf000010_0002
(I-f) すなわち、 化合物 ( I一 a) 及び化合物 ( I— b) と、 化合物 (I— c) とを、 例えば n_ブチルリチウム等の適当な有機金属触媒で反応させ( I _d)、その後、 保護基である TMS (トリメチルシリル基) を取り去ることにより化合物( I _ e) を合成して、 更に、 これを、 例えば、 P—トルエンスルホン酸等の触媒で脱水縮合 することにより、 キノメタン系化合物 (I— f) を得ることができる。 上記反応式 中の TBAFはフッ化テトラプチルアンモニゥムを表す。 なお、 上記の合成方法に ついては、 例えば、 特開 2003— 228 185号公報、 特開 2003— 2385 6 1号公報、 特願 2003— 1 05039号に詳細に記載されている。
上記のキノメタン系化合物としては、 具体的には、 例えば、 下記の構造式 ( I 1) 〜 (1-32) で示される化合物が挙げられる。 .
Figure imgf000011_0001
οτ
OSLlOO/ OOZdT/lDd
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000013_0001
(上記の化合物 I -1〜 I -32中、 置換基の 「+J は t一ブチル基を表す。) また、 有機双安定材料として、 下記構造式 (Π) で表されるモノキノメタン系化 合物を用いてもよい。
Figure imgf000013_0002
(式 (Π) 中、 R7〜R1Qは水素原子、 ハロゲン原子、 置換基を有してもよい炭 素数 1〜 6のアルキル基、置換基を有してもよいァリール基より選ばれる基を表レ、 R7〜R1Gは同一又は異なっていてもよい。 mおよび nは、 それぞれ 0〜3の整数 を表す。 )
このようなモノキノメタン系の化合物としては、 具体的には、 例えば、 下記の構
(Π— 12) で示される化合物が挙げられる
Figure imgf000014_0001
Figure imgf000014_0002
Figure imgf000014_0003
Figure imgf000014_0004
Figure imgf000014_0005
Figure imgf000014_0006
上 の一般式 (Π) のモノキノメタン系化合物は、 例えば、 下記に示すような反 応式によって合成できる。 なお、 以下は上記の構造式 (Π一 1) の化合物の合成例 であるが、 他の構造の化合物も同様の方法で合成できる。
Figure imgf000015_0001
すなわち、 例えば、 4ーブロモー 2, 6—ジー t一ブチル— 1— [トリメチルシ リル] ベンゼン (構造式 (A— 1) ) 4mmo 1 (8. 6 g) の THF溶液に、 — 78eC、窒素雰囲気下において、 1. 6Mの n—ブチルリチウムへキサン溶液(B uL i ) 29mmo 1 (18m l) を滴下し、 その後、 ジチェ二ルケトン (構造式 (B- 1) ) 2 Ommo 1 (3. 9 g) を加えて、 室温で攪拌して構造式 ( C一 1 ) の化合物を得る。
その後、 アンモニゥムクロライド水溶液、 次いで、 1. 0Mフッ化テトラブチル アンモニゥム THF溶液 (TBAF) 24 mm o 1 ( 24 m 1 ) を滴下して構造式 (D— 1) の化合物を得て、 更に、 p—トルエンサルフォニックアシッドモノハイ ドレイト (p_T s OH) を少量加えて、 加熱還流後、 溶媒を留去し、 固形分をク ロロホルムとへキサンの混合溶媒で再結晶することにより、 構造式 (Π— 1) の化 合物を得ることができる。
ここで、 4—ブロモー 2, 6—ジー t e r t—プチルー 1一 [トリメチルシリル] ベンゼン (構造式 (A— 1) ) は、 例えば、 特開 2003— 238561号公報等 に記載の公知の方法によって合成することができる。 また、 ジー 2 _チェ二ルケ卜 ン (構造式 (B— 1) ) はシグマアルドリッチジャパンより入手可能である。
なお、 上記の合成方法によって得た化合物の収量は 3. 3 g (収率 43. 2 %) であり、 マススペクトルより MS m/z 382 (M+) の結果が得られ、 上記 の構造式 (Π— 1 ) の構造が確認できた。
有機双安定材料層 3 0の形成方法としては、 真空蒸着法、 スピンコート法、 電解 重合法、 化学蒸気堆積法 (C V D法) 、 単分子膜累積法 (L B法) 、 ディップ法、 バーコート法、 インクジェット法、 スクリーン印刷法等の製法が用いられ特に限定 されない。
真空蒸着で有機双安定材料層 3 0を形成する場合、 蒸着時の基板温度は、 使用す る有機双安定材料によって適宜選択されるが 0〜 1 0 0 °Cが好ましい。 また、 膜厚 は 2 0〜 1 5 0 n mが好ましい。
スピンコート法等の塗布で有機双安定材料層 3 0を形成する場合、 塗布溶剤とし て、 例えば、 ハロゲン系のジクロロメタン、 ジク αロェタン、 クロ口ホルム、 エー テル系のテ卜ラヒドロフラン (T H F ) 、 エチレングリコールジメチルェ一テル、 芳香族のトルエン、 キシレン、 アルコール系のエチルアルコール、 エステル系の酢 酸ェチル、 酢酸ブチル、 ケトン系のアセトン、 Μ Ε Κ:、 ァセトニトリル等を用いる ことができる。 これらの溶剤中に 0 . 0 0 1〜 3 0質量%の範囲で有機双安定材料 を溶解させ、 また必要に応じてバインダー樹脂を加えて塗布液とする。 バインダ一 樹脂としては、 例えば、 ポリ力一ポネ一ト、 ポリエステル、 ポリビニールアルコ一 ル、 ポリスチレン等が使用できる。 スピンコート条件は目標膜厚に応じて適宜設定 可能であるが、 回転数 2 0 0〜3 6 0 0 r p mの範囲が好ましい。
有機双安定材料層 3 0の上には第 2電極層 2 1 bが形成される。 そして、 有機双 安定材料層 3 0中に、 第 2電極層 2 1 bを構成する金属が拡散している。
第 2電極層 2 1 bとしては、 電極材料のなかでも仕事関数の絶対値が高く、 有機 双安定材料中に拡散した際にァクセプタ一として振る舞いやすい点から、金、白金、 ロジウム、 銀より選択される 1種からであることが好ましく、 なかでも金であるこ とがより好ましレ 。また、第 2電極層 2 1 bの膜厚は 5 0〜2 0 0 n mが好ましい。 有機双安定材料層 3 0中に、 第 2電極層 2 1 bを構成する金属を拡散させるため には、 例えば、 第 2電極層 2 1 bを第 1電極層 2 1 aと同様に真空蒸着法等の蒸着 により形成し、 このとき、 蒸着時の基板 1 0の温度を 3 0〜1 5 0 °Cとする方法が 挙げられる。 このような温度範囲の基板温度とすることで、 蒸着と同時に金属が有 機双安定材料層 3 0中に拡散されるので別途拡散工程が不要となる。 基板の温度が 3 0 °C未満であると、 有機双安定材料層 3 0中への第 2電極層 2 1 bを構成する金 属の拡散が不充分となるので好ましくない。 また、 1 5 0 °Cを超えると有機双安定 材料のガラス転移点を超えるために薄膜が結晶化し、 その結果、 凝集、 剥離等の不 具合が生じるので好ましくない。
なお、 有機双安定材料層 3 0中への金属の拡散は上記の方法に限定されず、 例え ば、 第 2電極層 2 1 bを蒸着等によって形成した後に、 第 2電極層 2 l bを加熱す ることによって金属の拡散を行ってもよい。
なお、 後述するリーク電流の抑制の点から、 有機双安定材料層 3 0中への金属の 拡散深さは、 有機双安定材料層 3 0の全体ではなく途中まで拡散していることが好 ましい。 具体的には、 第 2電極層 2 1 b側からの拡散が、 有機双安定材料層 3 0の 厚さ全体の 5〜7 0 %まで拡散していることが好ましい。 拡散深さが 5 %未満であ るとの拡散が不充分となって遷移電圧の向上が発現しないので好ましくなく、 逆に 拡散深さが 7 0 %を超えると、 後述するリーク電流が増大するので好ましくない。 有機双安定材料層 3 0中へ金属が拡散しているか否かは、 例えば、 T E M (透過 型電子顕微鏡) による断面観察や、 T E M— E P MA (透過型電子顕微鏡一電子線 マイクロアナライザ) による断面の金属組成分析を行うことにより確認できる。 なお、 本発明におけるスイッチング素子の構成は、 図 1のような構成には限定さ れず、 例えば、 図 2、 3に示すような構成でもよい。
図 2の実施形態においては、 有機双安定材料層 3 0内に、 更に第 3電極 2 2が設 けられた 3端子素子となっている点が上記の図 1の実施形態と異なっている。 これ により、 電極層 2 1 a、 2 1 bを付加電流を流す電極として、 上記の図 1 9におけ るバイアス V bを印加し、 更に、 第 3電極 2 2を、 双安定材料層 3 0の抵抗状態を 制御する電極として、 図 1 9における低閾値電圧 V t h 1、 又は高閾値電圧 V t h 2を印加することができる。
また、 図 3の実施形態においては、 第 2電極層 2 3上に絶縁層 4 1が形成され、 さらに絶縁層 4 1上には、 有機双安定材料層 3 1、 及び有機双安定材料層 3 1を挟 むように両側に電極層 2 4 a、 2 4 bが形成され、 更に双安定材料層 3 1上には、 絶縁層 4 2と第 4電極層 2 5が順次形成されている 4端子素子となっている。
このスィツチング素子では、具体的には、例えば、第 3電極 2 3をシリコン基板、 絶縁層 4 1、 4 2を金属酸化物蒸着膜、 電極層 2 4. a、 2 4 b、 及び第 4電極 2 5 をアルミニウム蒸着膜とできる。 そして、 電極層 2 4 a、 2 4 bを付加電流を流す 電極として、 上記の図 1 9におけるバイアス V bを印加し、 更に、 第 3電極 2 3と 第 4電極 2 5とによって、 有機双安定材料層 3 1に電界をかけることによって、 有 機双安定材料層 3 1の抵抗状態を制御することができる。 ·
図 4には、 本発明の他の実施形態が示されている。 なお、 以下の実施形態の説明 においては、 前記実施形態と同一部分には同符合を付して、 その説明を省略するこ とにする。
この実施形態においては、 第 1電極層 2 1 aと有機双安定材料層 3 0との間に、 拡散抑制層 3 1が設けられている点が上記の実施形態と異なっている。
拡散抑制層 3 1は、 有機双安定材料層 3 0とは別の有機双安定材料からなり、 こ の別の有機双安定材料は、 有機双安定材料層 3 0より第 2電極層 2 1 bの金属の拡 散速度が小さい材料である。 この拡散抑制層 3 1の存在によって、 有機双安定材料 層 3 0への金属の拡散が過剰になって有機双安定材料層 3 0の抵抗が小さくなり、 リーク電流が大きくなることを防止し、 リーク電流を抑制することができる。
このような有機双安定材料層 3 0と拡散抑制層 3 1における有機双安定材料の組 み合わせとしては、 例えば、 有機双安定材料層 3 0における有機双安定材料として 金属の拡散速度が大きいジシァノ系化合物やカーボ二トリル系化合物を用い、 拡散 抑制層 3 1における別の有機双安定材料として金属の拡散速度が小さいキノメタン 系化合物を用いる組み合わせが挙げられる。
拡散抑制層 3 1の形成方法は、 上記の有機双安定材料層 3 0と同様の方法を用い ることができる。 また、 拡散抑制層 3 1の膜厚は 3〜 1 0 O n mが好ましい。
なお、 この拡散抑制層は、 図 4に示すように有機双安定材料層 3 0と第 1電極層 2 1 aとの間に設けられていてもよく、 有機双安定材料層 3 0と第 2電極層 2 1 b との間に設けられていてもよく、 両方に設けられていてもよい。
以上の構成からなる本発明のスイッチング素子は、 繰返し性能がよく、 高い遷移 電圧が得られる。 この理由は以下のように推定される。
上記の従来技術における T C N Qを用いたスィツチング素子では、 スィツチング 原理が金属一 T C N Q錯体内における電荷移動であるため、必然的に相変化を伴い、 これが繰返し性能がよくない原因であると推定される。 また、 国際公開第 0 2 Z 3 7 5 0 0号パンフレツトのスイッチング素子では、 スイッチング原理は金属微粒子 に起因しているものと考えられており、 スィツチングに T C N Q系のような相変化 を伴わないので繰返し性能は良いが、 遷移電圧の制御は容易ではなかった。
これに対して本発明のスィツチング素子では、 有機双安定材料の最低非占有軌道 準位 (L UM O準位) が電極の仕事関数より高くなつており、 スイッチング原理は 局所的な電界集中と、 この電界集中に起因するトンネル効果による電荷の注入と考 えられる。
更に、 有機双安定材料に第 2電極の金属が拡散しているので、 拡散した金属がァ クセプ夕一として振る舞うと考えられるために、 L UM O準位、 H O M O準位 (最 高占有軌道準位) ともに高くなるものと考えられる。
すなわち、 図 5の、 有機双安定材料層 3 0と第 2電極層 2 1 bとの界面における エネルギーバンド図に示すように、 本発明のスイッチング素子では、 金属の拡散に 起因するエネルギー準位の上昇 (図 5における拡散層) があり、 これを金属の拡散 層がない図 6の場合と比べると、 図 5においては金属の拡散部分がエネルギー障壁 となる。 これによつて、 スイッチングにより大きな電界が必要となり、 遷移電圧が 高くなるものと考えられる。 また、 このスイッチングは相変化を伴わないため繰返 し性能も良好となる。 なお、 図 5、 6において、 L UM Oは最低非占有軌道、 H O M Oは最高占有軌道、 W Fは仕事関数を表す。
以上説明したように、 本発明によれば、 材料組成の変動を抑制し、 均一な双安定 特性を得ることができ、 量産に適し、 かつ、 遷移電圧が高く、 かつ繰返し性能に優 れたスイッチング素子を提供できる。 したがって、 このスイッチング素子は、 有機 E Lディスプレーパネルの駆動用スイッチング素子や、 高密度メモリ等に好適に利 用できる。 以下、実施例を用いて、本発明のスイッチング素子について更に詳細に説明する。 例 1
以下の手順で、 図 1に示すような構成のスイッチング素子を作成した。
基板 1 0としてガラス基板を用い、 真空蒸着法により、 第 1電極層 2 l aとして アルミニウムを、 有機双安定材料層 3 0としてキノメタン系化合物を、 第 2電極層 2 1 bとして金を順次連続して薄膜を形成しスイッチング素子を形成した。 キノメ タン系化合物としては、 下記の構造式 (1— 1 ) の化合物を用いた。 HgCO OCH3
なお、 第 1電極層 21 a、 有機双安定材料層 30、 第 2電極層 21 bは、 それぞ れ、 100nm、 80nm、 100 nmの厚さとなるように成膜した。 また、 蒸着 装置は拡散ポンプ排気で、 3 X 10_6 o r rの真空度で行なった。 また、 アルミ 二ゥム、 キノメタン系化合物の蒸着は、 基板温度が 20°Cの条件において、 それぞ れ 3AZs e c、 2 A/s e cの成膜速度で作製した。 また、 金の蒸着は、 基板温 度を 50°Cに加熱して、 抵抗加熱方式により成膜速度は 3 A/s e cの条件で成膜 した。 各層の蒸着は同一蒸着装置で連続して行い、 蒸着中に試料が空気と接触しな い条件で行った。
例 2
キノメタン系化合物として、 下記の構造式 (I一 13) の化合物を用い、 各蒸着 層の厚さを、 第 1電極層 21 a、 有機双安定材料層 30、 第 2電極層 21 bが、 そ れぞれ 100nm、 80 nm, 100 nmの厚さとなるように、 実施例 1と同一の 条件で成膜してスィツチング素子を得た。
Figure imgf000020_0001
例 3
例 1において、 アルミニウム、 キノメタン系化合物、 金の蒸着を、 すべて基板温 度 20°Cの条件で行った以外は、 例 3と同様の条件でスイッチング素子を得た。 試験例 1
上記の例 1〜 3のスィツチング素子について、 電流一電圧特性を室温環境で測定 し、 図 19における閾値電圧である、 低遷移電圧 Vihl、 高遷移電圧 Vth2を測定し た結果をまとめて表 1に示す。 また、 図 7〜9には、 それぞれのスイッチング素子 についての電流一電圧特性を示す。
なお、 測定条件としては、 各スイッチング素子には、 1ΜΩの電気抵抗を直列に 接続し、 〇N状態の電流を制限して過電流による素子の損傷を抑制した ( 表 1
Vthl (V) Vth2(V) 例 1 0.6 21.2
例 2 5.4 14.6
例 3 0.0 5.0
表 1及び図 7〜9の結果より、 例 1、 2のスイッチング素子では、 例 3と比べて o f ί状態から o n状態への遷移電圧が非常に高くなつていることが分かる。 すなわち、 図 7の例 1において、 低遷移電圧 Vthlが 0. 6V以下では、 低抵抗 状態から高抵抗状態へ (o n状態から o f f状態へ) 遷移して抵抗値が変化した。 また、 高遷移電圧 Vth2が 2 1. 2V以上では、 高抵抗状態から低抵抗状態へ (o f f 状態から on状態へ) 遷移して抵抗値が変化した。
また、 図 8の例 2においては、 低遷移電圧 Vthlが 5. 4V以下で、 低抵抗状態 から高抵抗状態へ(o n状態から o : f f 状態へ)遷移して抵抗値が変化した。また、 高遷移電圧 Vth2が 14. 6 V以上では、 高抵抗状態から低抵抗状態へ (o f f 状 態から o n状態へ) 遷移して抵抗値が変化した。
試験例 2
例 1と例 3との違いを確認するために、 金の有機双安定材料層 30への拡散状況 について、 TEM— EPMAを用いて組成分析を行った結果を図 10に示す。図 10 より、 蒸着時の基板温度が 20 の例 3においては有機双安定材料層 30へは金が 拡散していない。一方、蒸着時の基板温度が 50°Cの例 1では有機双安定材料層 30 へ金が拡散していることがわかる。
例 4
以下の手順で、 図 4に示すような構成のスイッチング素子を作成した。
基板 10としてガラス基板を用い、 電極層 21 aとしてアルミニウム、 拡散抑制 層 31としてキノメタン系化合物、有機双安定材料層 30としてジシァノ系化合物、 電極層 2 1 bとして金をそれぞれ真空蒸着法により、 順次薄膜を形成し、 例 4のス イッチング素子を形成した。 キノメタン系化合物としては下記の構造式 (1— 1) の化合物、 ジシァノ系化合物としては下記の構造式 (III) の化合物を用いた。
Figure imgf000022_0001
なお、電極層 21 a、拡散抑制層 3 1、有機双安定材料層 30、電極層 21 bは、 それぞれ、 100 nm、 20 nm, 40 nm, 1 00 nmの厚さとなるように成膜 した。 また、 蒸着装置は拡散ポンプ排気で、 3 X 10— 6t o r rの真空度で行なつ た。 また、 アルミニウム、 キノメタン系化合物、 ジシァノ系化合物の蒸着は、 基板 温度が 20°Cの条件において、 それぞれ 3 A/ s e c、 2 A/ s e c、 2 A/s e cの成膜速度で作製した。 また、 金の蒸着は、 基板温度を 35°Cに加熱して、 抵抗 加熱方式により成膜速度は 3 AZs e cの条件で成膜した。 各層の蒸着は同一蒸着 装置で連続して行い、 蒸着中に試料が空気と接触しない条件で行った。
例 5
拡散抑制層 3 1を用いず、 有機双安定材料層 30として構造式 (I一 1) のキノ メタン系化合物を厚さ 80 nmとした以外は、 例 4と同一の条件でスィツチング素 子を得た。
例 6
基板 10としてガラス基板を用い、 電極層 2 l aとして白金、 有機双安定材料層 30としてカーボ二トリル系化合物、 拡散抑制層 30としてキノメタン系化合物、 電極層 21 bとして金をそれぞれ真空蒸着法により、 順次薄膜を形成し、 カーボ二 トリル系化合物として、 下記の構造式 (IV) の化合物を用い、 キノメタン系化合物 として下記の構造式 (I一 1 3) の化合物を用い、 各蒸着層の厚さを、 電極層 2 1 a、 双安定材料層 32、 拡散抑制層 3 1、 電極層 2 1 bが、 それぞれ 1 00 n m、 5 0 nm、 5 0 nm、 1 0 0 nmの厚さとなるように、 例 4と同一の条件で成膜し てスィツチング素子を得た。
Figure imgf000023_0001
試験例 3
例 4〜 6の各スィツチング素子について、 室温環境において以下の手順で電流— 電圧特性の測定を行った。 すなわち、 電圧をゼロから、 OFF状態から ON状態へ の転移が観測される Vth2まであげた後、 0 N状態から O F F状態への転移が観測さ れる ViMまで電圧を低下させる。 これにより VtM と Vth2を測定した後、再度 OF F状態から ON状態への転移が観測される Vth2まであげた後、電圧をゼロに戻して、 試料を室温で 1 0日間保管した。 なお、 測定条件としては、 各スイッチング素子に は、 1ΜΩの電気抵抗を直列に接続し、 ON状態の電流を制限して過電流による素 子の損傷を抑制した。
図 1 1〜1 3には、 それぞれ、 例 4〜 6のスイッチング素子についての電流—電 圧特性を示す。また、表 2には例 4〜 6における Vthl、Vth2の測定結果を示す。 Vthl はすべてマイナスの値である。
表 2
Vthl (V) Vth2(V) 例 4 -0.8 5.0
例 5 -1.6 4.0
例 6 -1.4 4.6 1 0日後の測定において、 例 4〜6では各 1 0点の測定点全てが 1 0日前の最終 状態 (ON状態) を記憶しており、 ON状態の電流一電圧特性を示してメモリ性が ある事が確認できた。
また、 表 2、 図 1 1〜1 3から明らかなように、 例 4〜6においては、 平均低閾 値電圧 Vthlがー 1.4〜- 0.8V、 平均高閾値電圧 Vth2が 4.0〜5.0V、 及び低抵抗状 態 Z高抵抗状態の比として 1000以上の値が得られており双安定特性として良好 な結果が得られた。
試験例 4
図 14、 1 5には、 それぞれ例 4、 5における有機双安定材料層 30と第 2電極 層 21 bとの界面の断面を TEM (透過型電子顕微鏡) で観察した結果を示す。 図 14より、 例 4では、 有機双安定材料層 30中に、 直径約 2 nmの金の粒子 3 5が深さ約 40 nmで拡散しているが、拡散抑制層 31中には金は拡散しておらず、 キノメタン化合物からなる拡散抑制層 31が金の拡散を抑制していることがわかる。 また、 図 1 5より、 例 5においては、 有機双安定材料層 30の金の粒子 35が深 さ数 nmで界面に拡散しているが、 有機双安定材料層 30の全体には拡散しておら ず、 有機双安定材料層 30としてキノメタン化合物を用いた場合には金の拡散速度 が小さいため、 拡散抑制層 31を設けなくてもリーク電流を防止できることがわか る。
例 7
以下の手順で、 図 1に示すような構成のスイッチング素子を作成した。
基板 1 0としてガラス基板を用い、 真空蒸着法により、 第 1電極層 2 l aとして アルミニウムを、 有機双安定材料層 30としてモノキノメタン系化合物を、 第 2電 極層 21 bとして金を順次連続して薄膜を形成してスィツチング素子を形成した。 モノキノメタン系化合物としては、 下記の構造式 (II一 1) の化合物を用いた。
Figure imgf000024_0001
なお、 第 1電極層 21 a、 有機双安定材料層 30、 第 2電極層 21 bは、 それぞ れ、 100 nm、 80 nm, 1 00 nmの厚さとなるように成膜した。 また、 蒸着 装置は拡散ポンプ排気で、 3 X 10— 6t o r rの真空度で行なった。 また、 アルミ 二ゥムの蒸着は、 抵抗加熱方式により成膜速度は 3 A/s e c、 モノキノメタン系 化合物の蒸着は、 抵抗加熱方式で成膜速度は 2 AZs e c、 金の蒸着は、 抵抗加熱 方式により成膜速度は 3 AZs e cの条件で行った。 各層の蒸着は同一蒸着装置で 連続して行い、 蒸着中に試料が空気と接触しない条件で行った。
例 8
基板 10としてガラス基板を用い、 真空蒸着法により、 第 1電極層 2 1 aとして アルミニウムを、 有機双安定材料層 30としてモノキノメタン系化合物を、 第 2電 極層 21 bとして金を順次連続して薄膜を形成してスィツチング素子を形成した。 モノキノメタン系化合物としては、 前記の構造式 (II一 2) の化合物を用いた。
… - 2)
Figure imgf000025_0001
例 9
基板 10としてガラス基板を用い、 真空蒸着法により、 第 1電極層 2 l aとして アルミニウムを、 有機双安定材料層 30としてモノキノメタン系化合物を、 第 2電 極層 21 bとして金を順次連続して薄膜を形成してスィツチング素子を形成した。 モノキノメタン系化合物としては、 前記の構造式 (II一 9) の化合物を用いた。
…(! 1-9)
Figure imgf000025_0002
試験例 5
上記の例 7〜 9のスィツチング素子について、 電流一電圧特性を室温環境で測定 し、 図 1 9における閾値電圧である、 低閾値電圧 Vthl、 高閾値電圧 Vth2を測定し た結果をまとめて表 3に示す。 また、 図 1 6〜1 8には、 それぞれ、 例 7〜9のス ィツチング素子についての電流一電圧特性を示す。 伊伊伊
表 3 789
Vthl (V) Vth2(V)
0.0 10.0
0.0 10.0
0.0 9.5 表 3及び図 1 6〜 1 8の結果より、 例 7〜9のスイッチング素子においては、 そ れぞれ高抵抗状態 7 1、 8 1、 91及び低抵抗状態 72、 82、 92の双安定性が 得られた。
すなわち図 16の例 7において、 低閾値電圧 Vthlが 0.0 Vでは、 低抵抗状態 72 から高抵抗状態 7 1へ (on状態から 0 f f状態へ) 遷移して抵抗値が変化した。 また、 高閾値電圧 Vth2が 10.0V以上では、 高抵抗状態 71から低抵抗状態 72へ (o f f状態から on状態へ) 遷移して抵抗値が変化し、 この際の低抵抗状態 Z高 抵抗状態の比として、 約 106が得られた。
図 17の例 8においては、 低閾値電圧 Vthlが 0.0Vで、 低抵抗状態 82から高抵 抗状態 81へ (on状態から o f f状態へ) 遷移して抵抗値が変化した。 また、 高 閾値電圧 Vth2が 10. QV以上では、 高抵抗状態 81から低抵抗状態 82へ (o f f 状態から on状態へ) 遷移して抵抗値が変化し、 この際の低抵抗状態 Z高抵抗状態 の比として、 約 104が得られた。
図 18の例 9においては、 低閾値電圧 Vthlが 0.0 Vで、 低抵抗状態 92から高抵 抗状態 9 1へ (on状態から o f f状態へ) 遷移して抵抗値が変化した。 また、 髙 閾値電圧 Vth2が 9.5V以上では、 高抵抗状態 91から低抵抗状態 92へ (o f f状 態から on状態へ) 遷移して抵抗値が変化し、 この際の低抵抗状態 Z高抵抗状態の 比として、 約 1 03が得られた。
このように、 双安定性は実施例 7〜 9のすベてのスイッチング素子で得られ、 表 2に示すような低閾値電圧 Vthlが 0.0V、及び高閾値電圧 Vth2が9.5〜10.0 でぁ る双安定状態が得られた。 産業上の利用可能性
本発明のスイッチング素子は、 材料組成の変動を抑制し、 均一な双安定特性を得 ることができ、量産に適し、かつ、遷移電圧が高く、かつ繰返し性能に優れるので、 有機 E Lディスプレーパネルの駆動用スイッチング素子や、 高密度メモリ等に好適 に利用できる。

Claims

請 求 の 範 囲
1. 電極間に印加される電圧に対して 2種類の安定な抵抗値を持、
素子において、 基板上に第 1電極層、 有機双安定材料層、 第 2電極層の順に薄膜と して形成され、前記有機双安定材料層を構成する有機双安定材料が、下記一般式( I ) で表されるキノメタン系化合物であることを特徴とするスイッチング素子。
Figure imgf000028_0001
(式 ( I) 中、 !^1〜:^4は水素原子、 置換基を有してもよい炭素数 1 6のアル キル基、 置換基を有してもよいァリール基より選ばれる基を表し、 Ri R4は同一 又は異なっていてもよい。 R5 R6は置換基を有してもよいァリール基又は置換基 を有してもよい複素環のいずれかを表し、 R5 R6は同一又は異なってもよい。 A は下記 (1) (1 0) より選ばれる基を表す。 )
Figure imgf000028_0002
Figure imgf000028_0003
(7) (8) (9) (10)
2. 電極間に印加される電圧に対して 2種類の安定な抵抗値を持つスィツチング 素子において、 基板上に第 1電極層、 有機双安定材料層、 第 2電極層の順に薄膜と して形成され、前記有機双安定材料層を構成する有機双安定材料が、下記一般式( Π ) で表されるモノキノメタン系化合物であることを特徴とするスィツチング素子。
Figure imgf000029_0001
(式 (H) 中、 R7〜R1 Qは水素原子、 ハロゲン原子、 置換基を有してもよい炭 素数 1〜6のアルキル基、置換基を有してもよいァリール基より選ばれる基を表し、 R7〜R1 Qは同一又は異なっていてもよい。 mおよび nは、 それぞれ 0〜 3の整数 を表す。 )
3. 電極間に印加される電圧に対して 2種類の安定な抵抗値を持つスイッチング 素子において、 基板上に第 1電極層、 有機双安定材料層、 第 2電極層の順に薄膜と して形成され、 前記有機双安定材料層中に前記第 2電極層を構成する金属が拡散し ていることを特徴とするスィツチング素子。
4. 前記有機双安定材料層と、 前記第 1電極層又は前記第 2電極層の少なくとも 一方との間に、 前記有機双安定材料層とは別の有機双安定材料からなる拡散抑制層 が形成されており、 前記別の有機双安定材料は、 前記有機双安定材料層より前記第 2電極層の金属の拡散速度が小さい材料である請求項 3に記載のスィツチング素子。
5. 前記第 2電極層が蒸着により形成され、 前記蒸着時の前記基板の温度が 30 〜150°Cである請求項 1〜4のいずれか 1つに記載のスイッチング素子。
6. 前記第 2電極層が金、 白金、 ロジウム、 銀、 クロムより選択される少なくと も 1種からなる請求項 1〜 5のいずれか 1つに記載のスィツチング素子。
PCT/JP2004/001750 2003-02-17 2004-02-17 スイッチング素子 WO2004073081A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04711724A EP1598877B1 (en) 2003-02-17 2004-02-17 Switching element
US10/545,854 US7786470B2 (en) 2003-02-17 2004-02-17 Switching element
JP2005505037A JP4826254B2 (ja) 2003-02-17 2004-02-17 スイッチング素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-038530 2003-02-17
JP2003038530 2003-02-17
JP2003341488 2003-09-30
JP2003-341488 2003-09-30

Publications (1)

Publication Number Publication Date
WO2004073081A1 true WO2004073081A1 (ja) 2004-08-26

Family

ID=32871200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001750 WO2004073081A1 (ja) 2003-02-17 2004-02-17 スイッチング素子

Country Status (4)

Country Link
US (1) US7786470B2 (ja)
EP (1) EP1598877B1 (ja)
JP (1) JP4826254B2 (ja)
WO (1) WO2004073081A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005114761A1 (ja) * 2004-05-20 2008-03-27 富士電機ホールディングス株式会社 スイッチング素子
JP2012530347A (ja) * 2009-06-19 2012-11-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Oledデバイスを駆動する方法及びデバイス

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4729721B2 (ja) * 2003-08-19 2011-07-20 富士電機株式会社 スイッチング素子
US7851786B2 (en) 2006-09-01 2010-12-14 Alcatel-Lucent Usa Inc. Programmable polyelectrolyte electrical switches
WO2009064842A1 (en) * 2007-11-13 2009-05-22 William Marsh Rice Unvirsity Vertically-stacked electronic devices having conductive carbon films
JP2019149473A (ja) * 2018-02-27 2019-09-05 東芝メモリ株式会社 半導体記憶装置およびその製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037500A1 (en) * 2000-10-31 2002-05-10 The Regents Of The University Of California Organic bistable device and organic memory cells

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833894A (en) * 1973-06-20 1974-09-03 Ibm Organic memory device
JPS5283594A (en) * 1976-01-01 1977-07-12 Mitsubishi Chem Ind Ltd Bis-dithiolium salts
US4652894A (en) * 1980-03-14 1987-03-24 The Johns Hopkins University Electrical organic thin film switching device switching between detectably different oxidation states
EP0109240B1 (en) * 1982-11-05 1988-01-07 Riker Laboratories, Incorporated Novel enamines, pharmaceutical compositions, methods, synthetic processes and intermediates
JPS6370517A (ja) * 1986-09-12 1988-03-30 Canon Inc 電極形成方法
JPH0797219B2 (ja) * 1987-03-30 1995-10-18 富士ゼロックス株式会社 有機電子材料
JPH0463476A (ja) * 1990-07-03 1992-02-28 Mitsubishi Kasei Corp 画像読み取り素子
JPH0580374A (ja) * 1991-09-24 1993-04-02 Sumitomo Electric Ind Ltd 有機非線形光学材料
JP3199430B2 (ja) 1992-01-13 2001-08-20 財団法人川村理化学研究所 半導体素子
JP3313405B2 (ja) 1992-07-08 2002-08-12 財団法人川村理化学研究所 トンネルダイオード
JPH07121917A (ja) * 1993-10-26 1995-05-12 Canon Inc 記録媒体、その製造方法、及び該記録媒体を用いた記録・再生装置
US5844363A (en) * 1997-01-23 1998-12-01 The Trustees Of Princeton Univ. Vacuum deposited, non-polymeric flexible organic light emitting devices
JP3725335B2 (ja) 1998-06-25 2005-12-07 株式会社東芝 有機薄膜素子
JP2000143607A (ja) * 1998-09-04 2000-05-26 Fuji Electric Co Ltd 電子輸送物質、電子写真用感光体および電子写真装置
JP2001160492A (ja) 1999-12-06 2001-06-12 Japan Science & Technology Corp 有機薄膜エレクトロルミネッセンス素子およびその駆動方法
JP2002324683A (ja) 2001-04-25 2002-11-08 Rohm Co Ltd 有機el素子およびこれを用いた有機elディスプレイ
JP2003105039A (ja) 2001-09-28 2003-04-09 Dainippon Ink & Chem Inc エポキシビニルエステル樹脂組成物
DE10249054A1 (de) * 2001-10-26 2003-05-08 Bayer Ag Elektrochrome Vorrichtung und neue elektrochrome Verbindungen
JP3712062B2 (ja) * 2002-02-04 2005-11-02 富士電機画像デバイス株式会社 電子写真用感光体およびこれを用いた電子写真装置
JP2003238561A (ja) * 2002-02-13 2003-08-27 Fuji Denki Gazo Device Kk キノメタン化合物
US20040031965A1 (en) * 2002-08-16 2004-02-19 Forrest Stephen R. Organic photonic integrated circuit using an organic photodetector and a transparent organic light emitting device
DE602004027214D1 (de) * 2003-02-14 2010-07-01 Fuji Electric Holdings Schaltelement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037500A1 (en) * 2000-10-31 2002-05-10 The Regents Of The University Of California Organic bistable device and organic memory cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HARUO KAWAKIMA ET AL: "formation of organic switching devices with spin coating method", DAI KAI OYO BUTSURIGAKU KANKEI RENGO KOENKAI KOEN YOKUSHU, vol. 3, 27 March 2003 (2003-03-27), pages 1340 - 1341, XP002973942 *
See also references of EP1598877A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005114761A1 (ja) * 2004-05-20 2008-03-27 富士電機ホールディングス株式会社 スイッチング素子
US7645777B2 (en) 2004-05-20 2010-01-12 Fuji Electric Holdings Co., Ltd. Switching device
JP4729722B2 (ja) * 2004-05-20 2011-07-20 富士電機株式会社 スイッチング素子
JP2012530347A (ja) * 2009-06-19 2012-11-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Oledデバイスを駆動する方法及びデバイス

Also Published As

Publication number Publication date
JPWO2004073081A1 (ja) 2006-06-01
EP1598877B1 (en) 2012-03-28
EP1598877A1 (en) 2005-11-23
JP4826254B2 (ja) 2011-11-30
US7786470B2 (en) 2010-08-31
EP1598877A4 (en) 2006-09-13
US20070063187A1 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
EP1997814B1 (en) Electronic Device Including a Buffer Layer Comprising A Functionalized Metal Nanoparticle
JPWO2004073079A1 (ja) スイッチング素子
JP4729721B2 (ja) スイッチング素子
US7623213B2 (en) Switching device
WO2004073081A1 (ja) スイッチング素子
JP4254228B2 (ja) スイッチング素子及びその製造方法
WO2004006351A1 (ja) スイッチング素子
US7645777B2 (en) Switching device
WO2005041318A1 (ja) スイッチング素子
WO2005088746A1 (ja) スイッチング素子
JP2011204831A (ja) 有機半導体材料
KR101306987B1 (ko) 이극성 티오펜 화합물 및 이를 포함하는 전계 효과 트랜지스터
JP2005332977A (ja) スイッチング素子
JPWO2005060005A1 (ja) スイッチング素子
JP2005123394A (ja) スイッチング素子及びその製造方法
Bayat Charge Transport in Molecular Junctions Beyond Tunneling
JP2006261164A (ja) スイッチング素子
JP2005310903A (ja) スイッチング素子
JP2004247529A (ja) スイッチング素子
WO2004073080A1 (ja) 整流素子
Pyo Organic light emitting diodes and organic bistable devices
An Perylene-based materials: Potential components in organic electronics and optoelectronics

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505037

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004711724

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004711724

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007063187

Country of ref document: US

Ref document number: 10545854

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10545854

Country of ref document: US