WO2004070258A1 - 耐圧シェル及び同耐圧シェルを具備する高圧タンク及び同高圧タンクの製造方法並びに同高圧タンクの製造装置 - Google Patents

耐圧シェル及び同耐圧シェルを具備する高圧タンク及び同高圧タンクの製造方法並びに同高圧タンクの製造装置 Download PDF

Info

Publication number
WO2004070258A1
WO2004070258A1 PCT/JP2004/001091 JP2004001091W WO2004070258A1 WO 2004070258 A1 WO2004070258 A1 WO 2004070258A1 JP 2004001091 W JP2004001091 W JP 2004001091W WO 2004070258 A1 WO2004070258 A1 WO 2004070258A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
tank
fiber
fiber layer
high pressure
Prior art date
Application number
PCT/JP2004/001091
Other languages
English (en)
French (fr)
Inventor
Toshiaki Ohta
Hiromichi Onikura
Takao Sajima
Original Assignee
Kyushu Tlo Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Tlo Company, Limited filed Critical Kyushu Tlo Company, Limited
Priority to US11/196,772 priority Critical patent/US7763137B2/en
Priority to JP2005504841A priority patent/JP4617411B2/ja
Priority to EP04707633A priority patent/EP1593904A4/en
Priority to CA002515468A priority patent/CA2515468C/en
Publication of WO2004070258A1 publication Critical patent/WO2004070258A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/60Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
    • B29C53/602Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels for tubular articles having closed or nearly closed ends, e.g. vessels, tanks, containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/56Tensioning reinforcements before or during shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7154Barrels, drums, tuns, vats
    • B29L2031/7156Pressure vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0119Shape cylindrical with flat end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0607Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0624Single wall with four or more layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0665Synthetics in form of fibers or filaments radially wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0668Synthetics in form of fibers or filaments axially wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0673Polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/012Reducing weight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/017Improving mechanical properties or manufacturing by calculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/036Avoiding leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • F17C2270/0194Applications for fluid transport or storage in the air or in space for use under microgravity conditions, e.g. space
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • Patent application title High pressure tank having pressure-resistant shell and pressure-resistant shell and method for producing same, and apparatus for manufacturing same high-pressure tank
  • the present invention provides a pressure-resistant shell which is provided on the outer peripheral surface of a tank for containing gas or liquid to improve pressure resistance, a high-pressure tank equipped with this pressure-resistant shell, a method of manufacturing this high-pressure tank, and It relates to a manufacturing apparatus.
  • this high pressure tank comprises a tank base made of a liner made of high density polyethylene, and a reinforcing fiber such as carbon fiber coated with an adhesive such as epoxy resin is brazed on the outer surface of this liner to form a pressure resistant shell.
  • Japanese Patent Application Laid-Open No. 2 0 0 2-1 8 8 7 9 4 describes the construction.
  • the reinforcement fiber is brazed to the outside surface of the liner while applying a certain brazing tension, and after the brazing operation, the epoxy resin applied to the reinforcement fiber etc.
  • the pressure-resistant shell is formed by curing the epoxy resin by curing the resin under predetermined conditions.
  • the reinforcing fiber in the inner side portion of the pressure-resistant shell is Higher tensile stress than reinforcing fibers in the outer part of the pressure-resistant shell
  • the critical pressure of the high pressure tank is determined when the stress acting on the reinforcing fiber in the inner part of the pressure-resistant shell exceeds the tensile limit of the reinforcing fiber.
  • the critical pressure of the high pressure tank is determined, and the critical pressure value is relatively small.
  • the present inventors set the pressure value in the high pressure tank where the reinforcing fiber in the inner part of the pressure shell reaches the tension limit to the pressure value in the high pressure tank where the reinforcing fiber in the outer part of the pressure shell reaches the tension limit.
  • the value of the limit pressure is considered to be large, and research and development have been conducted to achieve the present invention.
  • the tank base is reinforced.
  • a pressure-resistant shell is formed as a laminated structure in which a fiber layer formed by winding fibers is laminated into a multilayer structure.
  • the method of manufacturing a high pressure tank having a pressure resistant shell formed by brazing reinforcing fibers with a resin material for curing on the outer surface of a hollow tank base.
  • the inside of the tank base is filled with a pressure control fluid, and while the pressure control fluid is pressurized, a fiber layer is formed by winding a reinforcing fiber obtained by applying a brazing tension to the tank base.
  • This fiber layer is laminated in multiple layers to form a pressure resistant shell.
  • the tensile stress starts to act after the compression stress is released with the filling of the gas or liquid, and the critical pressure of the high pressure tank where the lower fiber layer reaches the tensile limit can be improved.
  • the amount of gas or liquid stored by the high pressure tank can be increased.
  • the pressure applied is 0.01 to 100 MPa
  • the tension applied to reinforcing fibers is 1 to 100 ON
  • the pressure applied to the pressure control fluid is While gradually decreasing according to the number of layers, tension applied to reinforcing fibers It was decided to be formed while gradually increasing according to the number of layers.
  • a fluid for adjusting pressure is heated. It was decided to form a fiber layer while promoting the curing of the curing resin material applied to the reinforcing fibers. As a result, since the reinforced fibers wound in a predetermined position can be successively cured, the fiber layer can be formed quickly. Furthermore, since a new fiber layer can be formed on the upper surface of the sufficiently cured fiber layer, stress can be stably generated in each fiber layer, and the reliability of the high pressure tank can be further improved. In addition, by forming the pressure-resistant shell while sequentially curing the curing resin material, it is possible to eliminate the need for a curing process in which the high-pressure tank after formation of the uppermost fiber layer is accommodated in an open space or the like.
  • a pressure-resistant seal formed by brazing reinforcing fibers with a resin material for curing on an outer surface of a tank base hollowed by reinforcing fiber brazing means.
  • the inside of the tank base is filled with a pressure control fluid, and pressure control means is provided for controlling the pressure applied to the pressure control fluid.
  • the reinforcing fiber is brazed to the outer surface of the tank base by means of reinforcing fiber brazing while pressurizing the pressure control fluid to form a fiber layer, and this fiber layer is laminated in multiple layers to form a pressure resistant shell. It was configured.
  • the reinforcing fiber is bonded to the tank substrate while adjusting the brazing tension condition applied to the reinforcing fiber in correlation with the pressurizing condition of the pressure adjusting fluid by the pressure adjusting means.
  • the brazing means were configured. This makes it easy to control the compressive stress generated in the lower fiber layer after the formation of the high pressure tank to a predetermined stress, so the limit of the high pressure tank where the lower fiber layer reaches the tension limit.
  • the pressure can be further improved, and a high pressure tank with a predetermined critical pressure can be formed with a relatively small number of fiber layers. Therefore, a lightweight high-pressure tank can be manufactured.
  • a fluid for heating a pressure adjusting member is heated.
  • a heating means was provided, and the curing resin material applied to the reinforcing fibers was configured to form a fiber layer while promoting curing by heat applied by the heating means.
  • the reinforcing fibers wound in place can be cured one by one, the fiber layer can be formed quickly, and the high pressure tank after the formation of the uppermost fiber layer can be opened inside or the like. It is possible to eliminate the need for curing treatment carried out by Furthermore, since a new fiber layer can be formed on the upper surface of the sufficiently cured fiber layer, stress can be stably generated in each fiber layer, and the limit pressure in the high pressure tank can be further improved.
  • a flexible material can be used as the tank substrate, the cost of the tank substrate can be reduced, and the high pressure tank can be manufactured at low cost.
  • Fig. 1 shows the stress acting on the pressure resistant shell according to the present invention and the high pressure provided with the pressure resistant shell. It is the graph which showed the relationship with the pressure in a pressure tank.
  • FIG. 2 is a graph showing the relationship between the stress applied to each fiber layer in the pressure-resistant shell formed in the high pressure tank according to the present invention and the fiber layer.
  • FIG. 3 is a graph showing stress transition lines in the first fiber layer.
  • FIG. 4 is a graph showing stress transition lines in the first fiber layer.
  • FIG. 5 is a graph showing stress transition lines in the first fiber layer.
  • FIG. 6 is a graph showing stress transition lines in the respective fiber layers in the pressure-resistant shell formed in the high pressure tank according to the present invention.
  • FIG. 7 is an explanatory view of a high pressure tank manufacturing apparatus according to the present invention.
  • FIG. 8 is an explanatory view showing a method of brazing reinforcing fibers to a tank base.
  • FIG. 9 is an explanatory view showing a method of brazing reinforcing fibers to a tank base.
  • FIG. 10 is an explanatory view of a high pressure tank manufacturing apparatus for supporting the tank base in a cantilever manner.
  • FIG. 11 is a graph showing the relationship between the stress acting on the pressure-resistant shell formed in the conventional high pressure tank and the pressure in the high pressure tank.
  • the reinforcing fiber attached to the resin material for curing is brazed on the outer surface of the base on which the pressure-resistant shell is formed to form a fiber layer, and this fiber layer is laminated in multiple layers It is formed to have a structure.
  • the compressive stress in the lower fiber layer and the tensile stress in the upper fiber layer are generated by utilizing the action of bringing the pressure resistant shell itself into a stress equilibrium state in the state where no external force is applied to the pressure resistant shell. It is
  • the pressure-resistant shell provided in the high-pressure tank is a laminated structure in which a fiber layer formed by winding a reinforcing fiber with a resin material for curing is wound around the outer surface of the hollow tank base, When the inside is empty, as shown in Fig. 1, compressive stress is applied to the lower fiber layer and tensile stress is applied to the upper fiber layer.
  • the largest compressive stress is applied among the fiber layers
  • the largest tensile stress among the respective fiber layers is applied.
  • the internal pressure reaches a predetermined pressure
  • the compressive stress acting on the lowermost fiber layer is eliminated.
  • the internal pressure at which this compressive stress acting on the lowermost fiber layer is removed is called the equilibrium pressure. Note that the fiber layer that was initially under compressive stress is subjected to tensile stress after the compressive stress is eliminated as the internal pressure rises.
  • the tensile stress gradually increases due to the expansion action of the high pressure tank.
  • the high pressure tank is further expanded, and the stress acting on the lowermost fiber layer of the pressure-resistant shell also becomes a tensile stress, and this tensile stress gradually increases with the subsequent rise of the internal pressure. Do. Also in the fiber layers other than the lowermost layer of the pressure-resistant shell, the tensile stress gradually increases as the internal pressure rises. When at least one of the tensile stress acting on the lowermost fiber layer and the uppermost fiber layer of the pressure-resistant shell reaches the tensile limit, the internal pressure at that time is the limit pressure and become.
  • the internal pressure when the tensile stress acting on the lowermost fiber layer of the pressure-resistant shell reaches the tensile limit is called the lowermost layer limit pressure.
  • the internal pressure when the tensile stress acting on the uppermost fiber layer of the pressure-resistant shell reaches the tensile limit is called the upper limit pressure.
  • the internal pressure when the tensile stress acting on the fiber layer located between the lowermost layer and the uppermost layer of the pressure-resistant shell reaches the tensile limit is referred to as the intermediate layer limit pressure.
  • a predetermined compressive stress is generated in the fiber layer on the lower layer side of the pressure-resistant shell by utilizing the action of equilibrating the internal stress in the pressure-resistant shell, and a predetermined tensile force is applied to the fiber layer on the upper layer side.
  • the lower limit pressure of the lower layer can be increased by an amount equivalent to the equilibrium pressure which eliminates all the compressive stress in the fiber layer on the lower side of the pressure-resistant shell.
  • the high pressure tank can be filled with more gas or liquid, and the capacity of the gas or liquid in the high pressure tank can be increased.
  • the upper limit pressure of the high pressure tank can be made the upper limit pressure. The critical pressure can be greatly improved.
  • the lower limit pressure and the upper limit pressure are configured to be approximately the same, and efficiency is reduced by generating more than necessary compressive stress in the lower fiber layer of the pressure-resistant shell. Is prevented from occurring.
  • the compressive stress is gradually decreased from the first layer of the lowermost layer to the nth layer of the uppermost layer, and then the tensile stress is While laminating gradually.
  • A acts on each fiber layer.
  • Change curve of compressive stress and tensile stress In FIG. 2, the stress change curve A is substantially linear, but it may be an appropriate curve, and it is desirable to adjust the intermediate layer limit pressure not to be smaller than the uppermost layer limit pressure.
  • the pressure-resistant shell is in a stress equilibrium state when the inside of the high pressure tank is empty, so when graphed as shown in FIG. 2, the compressive stress action area al and the tensile stress action area a2
  • a hollow tank base is filled with a pressure control fluid (hereinafter referred to as "pressure control fluid"), and the pressure control fluid is pressurized to a predetermined pressure to expand the tank base.
  • pressure control fluid a pressure control fluid
  • the pressure that causes the expansion of the tank base in this way is called the expansion pressure, and here it is assumed that the expansion pressure P1 is applied to the tank base.
  • reinforcing fibers are wound around the outer surface of the tank substrate to form a first fiber layer.
  • the reinforcing fibers are brazed so as to cover the tank base while applying a predetermined bending tension.
  • the reinforcing fiber to be the second fiber layer is brazed on the upper surface of the first fiber layer. Even when the reinforcing fiber to be the second fiber layer is brazed, the expansion pressure P1 is applied to the tank base, and the reinforcing fiber is coated with the predetermined base tension while covering the tank base.
  • the second fiber layer is formed by brazing.
  • transition line B The tensile stress generated in the second fiber layer with the formation of the second fiber layer, as shown in FIG. A transition occurs, and the stress acting on the first fiber layer transitions in the compression direction by a predetermined transition amount Q1.
  • transition line B the transition of the stress in the compression direction is sequentially generated in the first fiber layer, and this transition is shown in FIG. It can be expressed as transition line B.
  • the amount of change in stress in the lower fiber layer due to the formation of the fiber layer Q1 can be adjusted by the brazing tension applied to the reinforcing fiber when the reinforcing fiber is wound around the tank base.
  • the magnitude of the transition amount Q2 becomes larger than the magnitude of the transition amount Q1 of FIG. Can be further increased.
  • the expansion pressure P1 applied to the tank base is constant.
  • the line B can be a stress transition line B ′ ′ translated in the direction of the pressure axis (y axis).
  • the brazing tension applied to the reinforcing fiber is constant.
  • the stress transition line B can adjust the y-axis intercept by adjusting the expansion pressure P1 and adjust the inclination by adjusting the winding tension of the reinforcing fiber, the expansion pressure P1 and the reinforcing fiber Arbitrary stress transition line B can be obtained by adjustment with brazing tension.
  • the inflating pressure P1 can be increased to prevent breakage of the reinforcing fiber when the reinforcing fiber is brazed to the tank substrate. Can be attached.
  • FIG. 3 to 5 show stress transition lines in the first fiber layer, respectively, and the expansion pressure P1 applied to the tank base is always made constant, and it is applied to the reinforcing fiber.
  • the stress transition line B of all the fiber layers (the first to nth layers) formed on the tank substrate with the brazing tension always kept constant is as shown in FIG. Then, after forming the pressure-resistant shell by forming the whole fiber layer, By removing the pressure-regulating fluid in the body and eliminating the expansion pressure P1, the pressure-resistant shell acts to balance the internal stress of the pressure-resistant shell, and based on the function, all stress transition lines are It moves parallel to the compressive stress side.
  • a stress represented as a stress change curve A shown in FIG. 2 can be generated in the fiber layer constituting the pressure-resistant shell, and a compressive stress is applied to the fiber layer on the lower layer side.
  • a tensile stress can be applied to the side fiber layer.
  • the tank base used to manufacture the high pressure tank will be described.
  • the high pressure tank of the present embodiment is used to store hydrogen gas, it may store containers other than hydrogen gas.
  • the tank base 1 is a cylindrical pressure vessel formed of high density polyethylene, and the upper end plate portion la provided with the opening 2 and the upper end plate portion la. And a cylindrical body portion lc connecting the upper end plate portion la and the lower end plate portion lb.
  • the tank base 1 is a liner, and the high pressure tank manufactured using the tank base 1 is made of a material and a configuration capable of preventing hydrogen gas from leaking when it is filled with hydrogen gas. .
  • the tank base 1 can also be configured to remove the body portion lc leaving the upper end plate portion la and the lower end plate portion 1b after the pressure-resistant shell 4 is formed.
  • the body portion lc may be dissolved and removed using an appropriate solution or the like, or the body portion lc is made of a flexible material and provided in the upper end plate portion la. It may be removed from the opening 2 and removed.
  • the tank base 1 is not limited to one made of synthetic resin, and may be made of metal. Alternatively, only the upper end plate portion la and the lower end plate portion lb may be made of metal such as aluminum.
  • the high pressure tank D is manufactured by brazing the fibers 3 in multiple layers to form the pressure-resistant shell 4.
  • the high pressure tank manufacturing apparatus C includes a front end support 5 for supporting the front end of the tank base 1, a rear end support 6 for supporting the rear end of the tank base 1, and the front and rear end supports. 5, 6, a reinforced fiber feeding portion 7 for feeding reinforcing fiber 3 to be wound on a tank substrate 1 supported, a winding tension adjusting portion 8 for applying a required brazing tension to the reinforcing fiber 3, and a tank substrate 1 And a pressure control fluid supply unit 9 for supplying a pressure control fluid to be filled.
  • the front end support 5 is connected to the upper end plate portion la of the tank base 1 and is provided with a front end connector 5 a which is rotatable relative to the front end support 5.
  • the front end connector 5 a is rotatable by a first drive motor 5 b mounted on the front end support 5.
  • Reference numeral 5c is a connecting belt for interlockingly connecting the front end connecting tool 5a and the first drive motor 5b.
  • the rear end support 6 is connected to the lower end plate portion lb of the tank base 1 and is provided with a rear end connecting member 6 a rotatable relative to the rear end support 6.
  • the rear end coupler 6 a is rotatable by a second drive motor 6 b mounted on the rear end support 6.
  • Reference numeral 6c is a connecting belt for interlockingly connecting the rear end connecting tool 6a and the second drive motor 6b.
  • the front end support 5 and the rear end support 6 are provided in mirror symmetry, so that the rotation axis of the front end connector 5a and the rotation axis of the rear end connection 6a are located on the same straight line.
  • the tank base 1 supported at its both ends by the support 5 and the rear end support 6 can be rotated at a required speed.
  • the reinforcing fiber delivery section 7 holds a reel (not shown) around which reinforcing fibers are wound, and is configured to be capable of feeding out the reinforcing fibers 3.
  • the reinforcing fiber delivery section 7 is provided with a resin coating section for applying a curing resin material to the delivered reinforcing fiber 3.
  • carbon fiber is used as the reinforcing fiber 3 used in the present embodiment
  • Aramid fibers, glass fibers, PBO fibers, etc. may be used, or fibers composited with these may be used.
  • an epoxy resin is used as the curing resin material, other adhesive resins may be used.
  • an ultraviolet-curable adhesive resin of an ultraviolet curing type can also be used.
  • the brazing tension adjustment unit 8 is configured to be able to apply a required brazing tension to the reinforcing fiber 3 to be crimped to the tank base 1, and the reinforcing fiber 3 is controlled by a control unit (not shown). Is given a predetermined brazing tension.
  • a reinforcing fiber winding means is constituted by the reinforcing fiber feeding unit 7 and the brazing tension adjusting unit 8, and if necessary, a weir for efficiently performing the brazing operation of the reinforcing fiber 3 onto the tank substrate 1.
  • An attachment arm may be provided.
  • the pressure control fluid supply unit 9 includes a feed pipe 9a having one end inserted into the tank base 1 supported by the front end support 5 and the rear end support 6, and the feed pipe 9a in this order from the upstream side. It comprises the provided feed pump 9b and the heater 9c.
  • the feeding pipe 9a is constituted of a double pipe inserted in the tank base 1.
  • the inner pipe 9a ' is used as a feeding path and the outer pipe 9 is used as a discharging path.
  • the pressure control fluid supplied from the inner pipe 9 a ′ into the tank base 1 is discharged from the outer pipe 9 to the outside of the tank base 1.
  • the pressure control fluid discharged to the outside of the tank base 1 by the outer pipe 9a ′ ′ is discharged through a discharge pipe 9d, and a pressure control valve 9e is provided in the discharge pipe 9d.
  • the pressure control pulp 9e is connected to the control unit described above, and discharge control is performed based on the control of the control unit to generate the required pressure in the tank base 1, that is, the expansion pressure described above. It is possible. '
  • a feed pump 9b for pumping the pressure control fluid to the feed pipe 9a is also connected to the control unit, so that the pressure feed amount of the pressure control fluid by the feed pump 9b can be adjusted.
  • the pressure adjusting valve 9e and the feed pump 9b constitute a pressure adjusting means.
  • the heater 9c is a heater that heats the pressure control fluid, which is pumped in the feed pipe 9a, to a predetermined temperature. It is an apparatus.
  • the pressure control fluid is water
  • the heater 9c is a high frequency heating coil wound around the outer periphery of the feed pipe 9a.
  • the pressure control fluid is not limited to water, and may be other liquid or gas such as water vapor.
  • the heater 9c is not limited to one configured by a high frequency heating coil, and an appropriate heating device capable of efficiently heating the pressure control fluid may be used.
  • the tank base 1 is attached to the high pressure tank manufacturing apparatus C. That is, the feed pipe 9a is inserted into the tank base 1 from the opening 2 of the tank base 1, and the upper end plate portion la of the tank base 1 is connected to the front end connector 5a of the front end support 5, Attach the tank base 1 to the high pressure tank manufacturing equipment C by connecting the lower end plate part lb of the base 1 to the rear end connector 6 a of the rear end support 6.
  • control unit controls the pressure control valve 9e and the feed pump 9b to fill the tank base 1 with the pressure control fluid, and applies the expansion pressure to the tank base 1 by the pressure control fluid.
  • the expansion pressure may be set so that 0 to 100 MPa (absolute pressure) can be applied.
  • the expansion pressure is 0.01. It is desirable to set it as ⁇ 10 O MPa. In this embodiment, it is about 0.4 MPa.
  • the pressure control fluid is heated by the heater 9c to heat the tank substrate 1 to a predetermined temperature.
  • the heating temperature of the tank substrate 1 may be set on the basis of the resin curing temperature of the resin material for curing applied to the reinforcing fiber 3, and in general, it may be in the range of 60 to 150 ° C.
  • the heating state of the tank substrate 1 is measured indirectly by measuring the temperature of the pressure control fluid with a temperature sensor (not shown), and the control unit controls the heater 9c based on the measurement result. By doing this, the tank base 1 is kept at a predetermined temperature. In this embodiment, since water is used as the pressure control fluid and an epoxy resin is used as the resin material for curing, the temperature of the pressure control fluid is adjusted to 70 to 90 ° C.
  • the first layer is formed by brazing the reinforcing fiber 3 along the longitudinal direction of the tank base 1, that is, the distraction direction of the tank base 1.
  • the fiber layer of the layer is formed.
  • the first layer does not necessarily have to be wound with the reinforcing fiber 3 along the extension direction of the tank base 1, and the reinforcing fiber 3 may be brazed along the circumference of the tank base 1 .
  • reinforcing fiber 3 When reinforcing fiber 3 is welded to tank substrate 1, as described above, it is carried out while applying a predetermined tensile tension, and the required stress based on the required stress change curve is generated in the formed fiber layer. I am able to do it.
  • the tension applied to the reinforcing fiber 3 may be about 1 to 150 N, and in the present embodiment, since carbon fiber is used as the reinforcing fiber 3 and the first layer is formed, reinforcement is performed.
  • the tension applied to the fibers 3 is 1 to 100 N, preferably 3 to 100 N.
  • the adjustment of the brazing tension is performed by the brazing tension adjustment unit 8 controlled by the control unit, and a predetermined brazing tension correlated with the expansion pressure applied to the tank base 1 is applied. Configured.
  • the tank substrate 1 is brazed with the reinforcing fiber 3 coated with the resin material for curing in the resin-coated portion of the reinforcing fiber delivery unit 7.
  • the fiber layer is not only brazed with reinforcing fiber 3 only one layer on tank substrate 1 to form one fiber layer, but optionally reinforced
  • the fibers 3 may be brazed in multiple layers to form one fiber layer.
  • the brazing of the reinforcing fiber 3 is temporarily stopped, and the heat applied to the tank substrate 1 causes the reinforcing resin 3 to be coated with the resin material for curing. It accelerates curing and forms a cured first layer.
  • the reinforcing fiber 3 is brazed to the tank base 1 and the tank base 1 is irradiated with ultraviolet rays to accelerate the curing of the resin layer.
  • brazing of the reinforcing fiber 3 to be the second layer is started.
  • one fiber layer is formed by the brazing of the reinforcing fiber 3 and the process of curing the curing resin material applied to the brazed reinforcing fiber 3.
  • the brazing of the reinforcing fiber 3 is temporarily stopped when the brazing of the first layer reinforcing fiber 3 is finished, but the winding speed of the reinforcing fiber 3 is not necessarily stopped.
  • the resin material for curing applied to the reinforcing fiber 3 may be sequentially cured while the reinforcing fiber 3 is wound, and formation of the next layer may be started continuously.
  • the brazing of the second layer reinforcing fiber 3 may be performed in the longitudinal direction of the tank substrate 1 as shown in FIG.
  • the reinforcing fiber 3 may be brazed along the circumference of the tank body 1.
  • the first layer fiber layer is already cured, so the first layer reinforcing fiber 3 is brazed together with the first layer fiber layer 1. It is possible to prevent deformation of the fiber layer in the layer.
  • the first fiber layer may be deformed or loosened, and this deformation or loosening may relieve the stress that would otherwise be generated in the first layer, and may not be able to generate the required compressive stress. Such fear can be eliminated by curing the first fiber layer.
  • the pressure-resistant shell 4 is formed by laminating several tens to several hundreds of fiber layers, so the fiber layer formed immediately before may not necessarily be completely cured.
  • the fiber layer of at least two to three previous layers may be cured.
  • the resin material for curing applied to the reinforcing fiber 3 is successively cured to form a fiber layer continuously. It can be carried out.
  • the brazing rate of the reinforcing fiber 3 in accordance with the curing rate of the resin material for curing, the brazing rate can be made relatively low, thereby adjusting the brazing tension force. It can be done with high accuracy, and reliable reinforcement fiber 3 can be brazed without loosening.
  • the work of forming the next fiber layer is repeated while curing the fiber layer formed previously, and when the predetermined number of laminations is reached, the formation of the fiber layer is finished, and the pressure resistant shell 4 is formed.
  • the pressure applied to the pressure control fluid is the pressure applied when forming the first fiber layer which is the lowermost layer (0.0
  • the tension gradually decreased according to the number of laminations from 1 to 10 O MPa) and the tension applied to the reinforcing fiber 3 was applied when forming the first fiber layer which is the lowermost layer (1
  • Each fiber layer is formed while gradually increasing according to the number of laminations from ⁇ 100 ON.
  • the pressure resistant shell 4 can be made to have a required stress change curve, and the stress generated in the fiber layer of the pressure resistant shell 4 can be controlled to a predetermined stress, and the limit pressure can be reduced. It can be increased as much as possible.
  • the type of the reinforcing fiber 3 to be used may be changed as necessary. That is, in the case of forming the lower fiber layer, carbon fibers may be used, and on the upper layer side to which a large tension is applied, ferrite fibers or PBO fibers may be used.
  • the fiber layer is successively cured along with the formation of the respective fiber layers serving as the pressure-resistant shell 4. It is possible to eliminate the curing process of the manufactured high pressure tank D and shorten the manufacturing process, since the heat curing process by the above can be eliminated.
  • the pressure-regulating fluid is discharged from the high pressure tank D to apply a required compressive stress to each fiber layer forming the pressure-resistant shell 4, in particular to the fiber layer of the inner layer. be able to.
  • the reinforcing fiber 3 is brazed by the front end support 5 and the rear end support 6 while the tank base 1 is supported at both ends.
  • the substrate 1 can be configured to be cantilevered.
  • a feed pipe 19a for feeding the pressure control fluid by being inserted into the tank base 1 is provided on the front end support base 15, and this feed pipe 19a is
  • the tank base 1 is fixedly supported by the first end plate support 21 and the second end plate support 22 provided in the feed pipe 19a by inserting the tank base 1 to the back.
  • the feed pipe 19a includes the inner pipe 19a 'for supplying the pressure control fluid into the tank base 1 and the outer pipe 19a "for discharging the pressure control fluid supplied into the tank base 1 as described above. Double pipe.
  • the bottom support shaft 24 provided with the bottom contact member 23 contacting the lower mirror plate portion lb of the tank base 1 at the tip end is inserted through the inner pipe 19a '.
  • the inner pipe 19a ' is configured to be able to move forward and backward, and, as the inner pipe 19a' moves forward and backward, the cylindrical forward and backward cylindrical shaft 25 with the inner pipe 19a 'ringed on the bottom support shaft 24. It is configured to be advanced and retracted along the bottom support shaft 24.
  • the first end plate support 21 is provided with a plurality of inner surface support pieces 21 a to be brought into contact with the inner side surface of the tank base 1.
  • Each inner surface support piece 21a has one end pivoted to the inner surface support piece 21a and the other end to the first arm 21b pivotally connected to the inner pipe 19a ', and one end pivoted to the inner surface support piece 21a and the other end outer It comprises a second arm 21c pivotally attached to the pipe 19 so that it abuts on the inner surface of the tank base 1 by the operation of the inner pipe 19a '.
  • the second end plate support 22 is provided with a plurality of inner surface support pieces 22 a to be brought into contact with the inner side surface of the tank base 1.
  • Each of the inner surface support pieces 22a has one end pivoted to the inner surface support piece 22a and the other end pivoted to the first arm 22b pivoted to the cylindrical shaft 25 and one end pivoted to the inner surface support piece 22a and the other end
  • the second arm 22c is pivotally attached to the bottom contact member 23, and advances and retracts the cylindrical shaft 25 by advancing and retracting the inner pipe 19a 'so as to abut on the inner side surface of the tank base 1.
  • the inner support piece 21a of the upper end plate support 21 and the inner support piece 22a of the lower end plate support 22 are expanded in an umbrella shape to expand the tank substrate 1 It can be supported from the inside.
  • the tank substrate 1 can be made of a flexible material such as rubber or plastic.
  • a multi-layered fiber layer may be formed by the reinforcing fiber 3 on the tank substrate 1 having such flexibility, and may be used as a general liner.
  • the inner surface of the tank substrate 1 is coated with resin to prevent leakage of the contained substance such as hydrogen, or thermal spraying of a nonconductor is performed to cause corrosion due to dissimilar conductors. It is desirable to configure to prevent
  • the embodiment described above is a high pressure tank manufacturing apparatus C in which the high pressure tank D is formed by forming the pressure resistant shell 4 on the tank substrate 1 in the pressure vessel shape, but the reinforcing fiber 3 is wound to form the pressure resistant shell.
  • the base forming the base is not limited to the tank base 1, and may be a wire (CFRP rod), a cylindrical tube (CFRP), or a rectangular body having a storage space inside.
  • Table 1 shows the results of calculation of the weight ratio of the high pressure tank in which the conventional pressure resistant shell is formed of CFRP and the high pressure tank in which the pressure resistant shell 4 of the present invention is formed.
  • the weight ratio is not affected by the inner diameter of the high pressure tank.
  • the lowermost layer has a pressure adjusting fluid pressure of 0.4 MPa,
  • the tension applied to the reinforcing fiber is 5 ON, and the formation of the fiber layer is started, and the outermost layer is such that the pressure regulation body pressure is O MPa and the tension applied to the reinforcing fiber is 15 ON, the formation of the fiber layer is ended.
  • a target stress gradient can be obtained.
  • the pressure-resistant shell of the present invention a high-pressure tank comprising the pressure-resistant shell, a method of producing the high-pressure tank, and a device for producing the high-pressure tank, the high-pressure tank comprising the highly resistant pressure-resistant shell and the pressure-resistant shell.
  • the storage capacity of the contents can be increased, and a high-pressure tank excellent in storage of hydrogen gas or liquid hydrogen, or storage of oxygen gas or liquid oxygen can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Laminated Bodies (AREA)

Abstract

中空としたタンク基体の外側面に硬化用樹脂材料付きの強化繊維を巻付けて形成する耐圧シェル、及びこの耐圧シェル耐圧シェルを具備する高圧タンク、及びこの高圧タンクの製造方法、並びにこの高圧タンクの製造装置であって、耐圧シェルは、タンク基体に強化繊維を巻付けて形成した繊維層を多層積層した積層構造とし、高圧タンクの内部が空の状態において、下層側の繊維層には圧縮応力を作用させるとともに、上層側の繊維層には引張応力を作用させるようにする。特に、タンク基体に強化繊維を巻付ける際にはタンク基体の内部に圧力調整用の流体を充填し、圧力調整用の流体に加えた圧力を調整するとともに、強化繊維に加える張力を調整しながら強化繊維を巻付ける。

Description

明 細 書 耐圧シェル及び同耐圧シェルを具備する高圧タンク及ぴ同高圧タンクの製造 方法並びに同高圧タンクの製造装置 技術分野
本発明は、 気体あるいは液体を収容するタンクの外周面に設けて耐圧性を向上 させる耐圧シェル、 及ぴこの耐圧シェルを具備する高圧タンク、 及びこの高圧タ ンクの製造方法、 並びにこの高圧タンクの製造装置に関するものである。 背景技術
従来、 燃料電池自動車の燃料として使用する水素の供給を行うためや、 宇宙空 間などの過酷な使用条件下における液体酸素の貯留を行う場合には、 耐圧性を向 上させた高圧タンクが用いられている。
特に、 この高圧タンクは、 高密度ポリエチレンからなるライナーでタンク基体 を構成し、 このライナーの外側面にエポキシ樹脂等の接着剤を塗着した炭素繊維 等の強化繊維を卷付けて耐圧シェルを形成して構成することが特開 2 0 0 2 - 1 8 8 7 9 4号公報に記載されている。
このような高圧タンクでは、 強化繊維に一定の卷付張力を作用させながらライ ナ一の外側面への卷付けを行っており、 卷付作業の終了後には、 強化繊維等に塗 着したェポキシ樹脂を所定条件の硬化処理によってェポキシ樹脂を硬化させるこ とにより耐圧シェルを形成している。
そして、 エポキシ樹脂の硬化後、 高圧タンクの内部が空の状態では耐圧シェル には何らの応力も作用していない状態となっている。
このような高圧タンクにおいて、 内部に気体あるいは液体を充填することによ り高圧タンク内の圧力が上昇してくると、 図 1 1に示すように、 耐圧シェルの内 側部分の強化繊維には耐圧シェルの外側部分の強化繊維よりも大きな引張応力が 作用し、 耐圧シェルの内側部分の強化繊維に作用する応力が、 強化繊維の引張限 界を超えたところで高圧タンクの限界圧力が決定されている。
この場合、 耐圧シェルの外側部分の強化繊維は未だ引張限界に達していないに もかかわらず高圧タンクの限界圧力が決定されることとなり、 限界圧力の値が比 較的小さくなっていた。
したがって、 耐圧シェルを具備した製品の適用範囲が狭いものとなって利便性 が低下するという問題があった。 特に、 このような耐圧シェルを具備する高圧タ ンクに気体を収容する場合には、 限界圧力が小さいことによって気体の収容量が 少なくなるとこととなっていた。
そこで、 本発明者らは、 耐圧シェルの内側部分の強化繊維が引張限界に達する 高圧タンク内の圧力値を、 耐圧シェルの外側部分の強化繊維が引張限界に達する 高圧タンク内の圧力値にまで引き上げることによって限界圧力の値を大きく しょ うと考え、 研究開発を行い、 本発明を成すに至ったものである。
発明の開示
請求の範囲第 1項に記載の耐圧シ: ルでは、 基体の外側面に硬化用樹脂材料付 きの強化繊維を卷付けて形成する繊維層を多層積層させて積層構造とした耐圧シ エルにおいて、 この耐圧シェルに外力の作用していない状態では、 下層側の繊維 層に圧縮応力を作用させるとともに、 上層側の繊維層に引張応力を作用させるよ うに構成した。 これによつて、 耐圧シェルの限界圧力を、 下層側の繊維層に作用 させた圧縮応力を解消するに要する圧力分だけ向上させることができるので、 こ の耐圧シェルを用いた製品の許容範囲を広げることができる。
請求の範囲第 2項に記載の高圧タンクでは、 中空としたタンク基体の外側面に 硬化用樹脂材料付きの強化繊維を巻付けて形成した耐圧シェルを具備する高圧タ ンクにおいて、 タンク基体に強化繊維を巻付けて形成した繊維層を多層積層した 積層構造からなる耐圧シェルとし、 高圧タンクの内部が空の状態において、 下層 側の繊維層には圧縮応力を作用させるとともに、 上層側の繊維層には引張応力を 作用させた。これによつて、高圧タンク内に気体あるいは液体を充填した場合に、 下層側の繊維層では気体あるいは液体の充填にともなつて圧縮応力が解消された 後に引張応力が作用し始めることにより、 下層側の繊維層が引張限界に達する高 圧タンクの限界圧力を向上させることができるので、 高圧タンクにおける気体あ るいは液体の収容量を増大させることができる。
請求の範囲第 3項に記載の高圧タンクの製造方法では、 中空としたタンク基体 の外側面に硬化用樹脂材料付きの強化繊維を卷付けて形成した耐圧シェルを具備 する高圧タンクの製造方法において、 タンク基体の内部には圧力調整用の流体を 充填し、 この圧力調整用の流体を加圧しながらタンク基体に卷付張力を加えた強 化繊維を巻付けることにより繊維層を形成するとともに、 この繊維層を多層積層 して耐圧シェルを形成することとした。 これによつて、 製造した高圧タンクの内 部が空の状態において、 下層側の繊維層には圧縮応力を作用させることができる ので、 高圧タンク内に気体あるいは液体を充填した場合に、 下層側の繊維層では 気体あるいは液体の充填にともなって圧縮応力が解消された後に引張応力が作用 し始めることにより、 下層側の繊維層が引張限界に達する高圧タンクの限界圧力 を向上させることができ、 高圧タンクによる気体あるいは液体の収容量を增大さ せることができる。
請求の範囲第 4項に記載の高圧タンクの製造方法では、 請求の範囲第 3項記載 の高圧タンクの製造方法において、 繊維層の積層にともなって、 圧力調整用の流 体の加圧条件と、 強化繊維に加える卷付張力条件とを調整することとした。 これ によって、 高圧タンクの形成後に耐圧シェルの繊維層に生じる応力を所定の応力 に制御することができ、 高圧タンクの信頼性の向上を図ることができる。
請求の範囲第 5項に記載の高圧タンクの製造方法では、 請求の範囲第 3項記載 の高圧タンクの製造方法において、 最下層の繊維層を形成する場合には、 圧力調 整用の流体に加える圧力を 0 . 0 1〜 1 0 0 MPa、' 強化繊維に加える張力を 1〜 1 0 0 O Nとして形成し、 新たな繊維層を積層する場合には、 圧力調整用の流体に 加える圧力を積層数に応じて漸次減少させるとともに、 強化繊維に加える張力を 積層数に応じて漸次増大させながら形成することとした。 これによつて、 高圧タ ンクの形成後に耐圧シェルの繊維層に生じる応力を所定の応力に制御するととも に、 限界圧力を可及的に大きく増大させることができる。
請求の範囲第 6項に記載の高圧タンクの製造方法では、 請求の範囲第 3〜 5項 のいずれか 1項に記載の高圧タンクの製造方法において、 圧力調整用の流体を加 温することにより強化繊維に塗着した硬化用樹脂材料の硬化を促進させながら繊 維層を形成することとした。 これによつて、 所定の位置に巻き付けられた強化繊 維を逐次硬化させることができるので、 速やかに繊維層を形成できる。 しかも、 十分硬化した繊維層の上面に新たな繊維層を形成できるので、 各繊維層に安定的 に応力を生起することができ、 高圧タンクのさらなる信頼性の向上を図ることが できる。 そのうえ、 硬化用樹脂材料を逐次硬化させながら耐圧シェルを形成する ことによって、 最上層の繊維層の形成後における高圧タンクをオープン内等に収 容して行う硬化処理を不要とすることができる。
請求の範囲第 7項に記載の高圧タンクの製造装置では、 強化繊維卷付手段によ つて中空としたタンク基体の外側面に硬化用樹脂材料付きの強化繊維を卷付けて 形成した耐圧シヱルを具備する高圧タンクの製造装置において、 タンク基体の内 部には圧力調整用の流体を充填するとともに、 この圧力調整用の流体に加えた圧 力を調整する圧力調整手段を設け、 この圧力調整手段で圧力調整用の流体を加圧 しながら強化繊維卷付手段によってタンク基体の外側面に強化繊維を卷付けて繊 維層を形成するとともに、 この繊維層を多層積層して耐圧シェルを形成するよう に構成した。 これによつて、 製造した高圧タンクでは、 空の状態において、 下層 側の繊維層に圧縮応力を作用させることができるので、 高圧タンクの内部に気体 または液体を充填した場合には、 下層側の繊維層では気体または液体の充填にと もなつて圧縮応力が解消された後に引張応力が作用し始めることにより、 最下層 の繊維層が引張限界に達する高圧タンクの限界圧力を向上させることができ、 気 体または液体の収容量を増大させた高圧タンクを製造できる。
請求の範囲第 8項に記載の高圧タンクの製造装置では、 請求の範囲第 7項記載 W
5
の高圧タンクの製造装置において、 圧力調整手段による圧力調整用の流体の加圧 条件と相関させて強化繊維に加える卷付張力条件を調整しながら強化繊維をタン ク基体に卷付けるように強化繊維卷付手段を構成した。 これによつて、 高圧タン クの形成後に下層側の繊維層に生起される圧縮応力を所定の応力に制御しやすく することができるので、 下層側の繊維層が引張限界に達する高圧タンクの限界圧 力をさらに向上させることができ、 所定の限界圧力の高圧タンクを比較的少ない 数の繊維層で形成することができる。 したがって、 軽量化した高圧タンクを製造 できる。
請求の範囲第 9項に記載の高圧タンクの製造装置では、 請求の範囲第 7項また は請求の範囲第 8項に記載の高圧タンクの製造装置において、 圧力調整用の流体 を加温する加温手段を設け、 強化繊維に塗着した硬化用樹脂材料を加温手段で加 えた熱により硬化を促進させながら繊維層を形成するように構成した。 これによ つて、所定の位置に卷き付けられた強化繊維を逐次硬化させることができるので、 速やかに繊維層を形成でき、 最上層の繊維層の形成後における高圧タンクをォー プン内等に収容して行う硬化処理を不要とすることができる。 しかも、 十分硬化 した繊維層の上面に新たな繊維層を形成できるので、 各繊維層に安定的に応力を 生起することができ、 高圧タンクにおける限界圧力のさらなる向上を図ることが できる。
請求の範囲第 1 0項に記載の高圧タンクの製造装置では、 請求の範囲第 7〜 9 項のいずれか 1項に記載の高圧タンクの製造装置において、 タンク基体を、 この タンク基体の内部に挿入して圧力調整用の流体を送給する送給管に設けた第 1鏡 板支持体と第 2鏡板支持体とによって固定支持するように構成した。 これによつ て、 タンク基体として可撓性を有する素材を使用することができ、 タンク基体の コス トを低減させて、 低コストで高圧タンクを製造できる。 図面の簡単な説明
図 1は、 本発明にかかる耐圧シェルに作用する応力と同耐圧シェルを設けた高 圧タンク内の圧力との関係を示したグラフである。
図 2は、 本発明にかかる高圧タンクに形成した耐圧シェル中の各繊維層に作用 した応力と繊維層との関係を示したグラフである。
図 3は、 第 1層の繊維層における応力推移線を示したグラフである。
図 4は、 第 1層の繊維層における応力推移線を示したグラフである。
図 5は、 第 1層の繊維層における応力推移線を示したグラフである。
図 6は、 本発明にかかる高圧タンクに形成した耐圧シェル中の各繊維層におけ る応力推移線を示したグラフである。
図' 7は、 本発明にかかる高圧タンク製造装置の説明図である。
図 8は、 タンク基体への強化繊維の卷付方法を示した説明図である。
図 9は、 タンク基体への強化繊維の卷付方法を示した説明図である。
図 1 0は、 タンク基体を片持ち支持する高圧タンク製造装置の説明図である。 図 1 1は、 従来の高圧タンクに形成した耐圧シェルに作用する応力と高圧タン ク内の圧力との関係を示したグラフである。 発明を実施するための最良の形態
本発明の耐圧シェルは、 耐圧シェルが形成される基体の外側面に硬化用榭脂材 料付ぎの強化繊維を卷付けて繊維層を形成するとともに、 この繊維層を多重に積 層して積層構造を有するように形成しているものである。
特に、 耐圧シェルでは、 耐圧シェルに外力が作用していない状態において、 下 層側の繊維層には圧縮応力を作用させるとともに、 上層側の繊維層には引張応力 を作用させているものである。
この下層側の繊維層における圧縮応力と、上層側の繊維層における引張応力は、 耐圧シェルに外力が作用していない状態において耐圧シェル自体を応力平衡状態 とする作用を利用することによって生起しているものである。
そして、 耐圧シェルを形成した基体に膨脹の圧力が作用した場合には、 下層側 の繊維層では、 繊維層に作用している圧縮応力が基体の膨脹にともなって解消さ れた後、 引張応力の作用が開始されることにより、 繊維層に作用している圧縮応 力の解消に要する圧力分だけ耐圧シヱルの耐圧性能を向上させることができる。 以下において、 この耐圧シェルを具備した高圧タンクについて、 具体的に説明 する。
高圧タンクに設けた耐圧シェルは、 中空としたタンク基体の外側面に硬化用樹 脂材料付きの強化繊維を巻付けて形成した繊維層を多層積層した積層構造として いるものであり、 高圧タンクの内部が空の状態において、 図 1に示すように、 下 層側の繊維層には圧縮応力を作用させるとともに、 上層側の繊維層には引張応力 を作用させている。
特に、 耐圧シェルの最下層の繊維層では、 各繊維層の中で最も大きい圧縮応力 が作用しており、 耐圧シェルの最上層の繊維層では、 各繊維層の中で最も大きい 引張応力が作用している。
そして、 高圧タンクの内部に気体あるいは液体を充填すると、 高圧タンクの内 部の圧力 (以下において、単に 「内圧」 という) が上昇して高圧タンクは膨張し、 この高圧タンクの膨張作用によって耐圧シェルの下層側の繊維層に作用している 圧縮応力は、 図 1に示すように漸次解消される。
さらに、 内圧が所定の圧力となったところで最下層の繊維層に作用している圧 縮応力は解消される。 最下層の繊維層に作用しているこの圧縮応力が解消された 時点の内圧を均衡圧力と呼ぶことにする。 なお、 最初に圧縮応力が作用していた 繊維層は、 内圧の上昇にともなって圧縮応力が解消された後は、 引張応力が作用 する。
一方、 耐圧シェルの上層側の繊維層では、 高圧タンクの膨張作用によって引張 応力が漸次増大する。
内圧を均衡圧力よりもさらに上昇させることにより高圧タンクはさらに膨張し、 耐圧シェルの最下層の繊維層に作用する応力も引張応力となり、 その後の内圧の 上昇にともなつてこの引張応力は漸次増大する。 また、 耐圧シェルの最下層以外 の繊維層でも、 内圧の上昇にともなって引張応力が漸次増大する。 そして、 耐圧シェルの最下層の繊維層と、 最上層の繊維層とにそれぞれ作用し ている引張応力のうち少なく ともいずれか一方が引張限界に達した場合に、 その ときの内圧が限界圧力となる。
耐圧シェルの最下層の繊維層に作用している引張応力が引張限界に達した場合 の内圧を最下層限界圧力と呼ぶことにする。 また、 耐圧シェルの最上層の繊維層 に作用している引張応力が引張限界に達した場合の内圧を最上層限界圧力と呼ぶ ことにする。 また、 耐圧シェルの最下層と最上層との間に位置する繊維層に作用 している引張応力が引張限界に達した場合の内圧を中間層限界圧力と呼ぶことに する。
このよ うに、 耐圧シェルにおける内部応力を平衡状態とする作用を利用して、 耐圧シェルの下層側の繊維層に所定の圧縮応力を生じさせておく とともに、 上層 側の繊維層には所定の引張応力を生じさせておくことにより、 耐圧シェルの下層 側の繊維層における圧縮応力を全て解消させる均衡圧力の分だけ最下層限界圧力 を大きくすることができるので、 高圧タンクの限界圧力を向上させることができ る。
したがって、 高圧タンクにはより多くの気体あるいは液体を充填することがで き、 高圧タンクにおける気体あるいは液体の収容量を増大させることができる。 特に、 最下層限界圧力が最上層限界圧力よりも大きくなるように耐圧シェルの 下層側に生じさせる圧縮応力を調整することによって、高圧タンクの限界圧力を、 最上層限界圧力とすることができ、 限界圧力を最も大きく向上させることができ る。
なお、 図 1においては、 最下層限界圧力と最上層限界圧力とを略一致させるよ うに構成しており、 耐圧シェルの下層側の繊維層に必要以上の圧縮応力を生じさ せることによって効率低下が生じることを防止している。
耐圧シェルを構成している複数の繊維層には、 図 2に示すように、 最下層の第 1層目から最上層の第 n層目に進むにつれて圧縮応力を漸次減少させ、 その後、 引張応力を漸次増大させながら積層している。 図 2中、 Aは各繊維層に作用させ る圧縮応力及び引張応力の応力変化曲線である。 図 2では、 応力変化曲線 Aは略 直線状としているが、 適宜の曲線形状としてもよく、 中間層限界圧力が最上層限 界圧力よりも小さくならないように調整することが望ましい。
なお、 耐圧シェルは、 高圧タンクの内部が空の状態では応力平衡状態となるた めに、 図 2に示すようにグラフ化した際に、圧縮応力作用領域 al と、 引張応力作 用領域 a2との面積はほぼ一致する。
上記したように高圧タンクの内部が空の状態において下層側の繊維層に確実に 圧縮応力を作用させるには、 次のようにして行うことができる。
まず、 中空としたタンク基体の内部に圧力調整用の流体(以下において、 「圧力 調整流体」 と呼ぶ) を充填し、 この圧力調整流体を所定圧力に加圧することによ りタンク基体を膨張させる。 このようにタンク基体に膨張を生じさせる圧力を膨 張圧力と呼ぶことにし、 ここでは、 タンク基体には膨張圧力 P1を加えているもの とする。
次いで、 タンク基体の外側面に強化繊維を巻付けて第 1層目の繊維層を形成す る。 タンク基体の外側面に強化繊維を卷付ける際には、 強化繊維には所定の卷付 張力を作用させながらタンク基体を被覆するように卷付けている。
したがって、 第 1層目の繊維層には引張応力が作用している。 特に、 タンク基 体には膨張圧力 P1を作用させていることにより、強化繊維にはより大きい巻付張 力を加えることができる。
第 1層目の繊維層の形成後、 この第 1層目の繊維層の上面に第 2層目の繊維層 となる強化繊維の卷付けを行う。 第 2層目の繊維層となる強化繊維の卷付けの際 にも、 タンク基体には膨張圧力 P1を作用させるとともに、強化繊維には所定の卷 付張力を作用させながらタンク基体を被覆するように卷付けを行うことにより、 第 2層目の繊維層を形成する。
第 2層目の繊維層の形成にともなって第 2層目の繊維層に生じた引張応力によ り、 図 3に示すように、 第 1層目の繊維層には圧縮方向への応力の推移が生じ、 第 1層目の繊維層に作用する応力が所定の推移量 Q1だけ圧縮方向に推移する。 以下、 同様にして必要な層数分だけ繊維層を逐次形成することにより、 第 1層 目の繊維層には圧縮方向への応力の推移が逐次生じ、 この推移を図 3に示すよう に応力推移線 Bとして表すことができる。
繊維層の形成にともなう下層側の繊維層における応力の推移量 Q1は、タンク基 体への強化繊維の巻付け時に強化繊維に作用させている卷付張力によって調整す ることができる。
例えば卷付張力をさらに大きく した場合には、 図 4に示すように、 推移量 Q2 の大きさが図 3の推移量 Q1 の大きさよりも大きくなることにより、 応力推移線 B'の傾きの大きさをさらに大きくすることができる。 ここで、 タンク基体に作用 させた膨張圧力 P1は一定としている。
また、強化繊維の卷付張力ではなく、 タンク基体に作用させた膨張圧力 P1を調 整した場合、 例えば膨張圧力 P1をさらに大きい膨張圧力 P2とした場合には、 図 5に示すように応力推移線 Bを圧力軸 (y軸) 方向に平行移動させた応力推移線 B' 'とすることができる。 ここで、 強化繊維に作用させている卷付張力は一定とし ている。
すなわち、応力推移線 Bは、膨張圧力 P1を調整することにより y軸切片を調整 し、強化繊維の巻付張力を調整することにより傾きを調整することができるので、 膨張圧力 P1 と強化繊維の卷付張力との調整によって任意の応力推移線 Bを得る ことができる。
特に、 より大きい強化繊維の卷付張力を必要とする場合には、膨張圧力 P1を高 めることにより、 タンク基体への強化繊維の卷付時に、 強化繊維に破断を生じさ せることなく卷付けを行うことができる。
なお、 図 3〜 5は、 それぞれ第 1層目の繊維層における応力推移線を示してい るものであり、 タンク基体に作用させた膨張圧力 P1を常に一定とするとともに、 強化繊維に作用させている卷付張力を常に一定としてタンク基体に形成した全繊 維層 (第 1層目〜第 n層目) の応力推移線 Bを表すと、 図 6に示すようになる。 そして、 全繊維層を形成することによって耐圧シェルを形成した後、 タンク基 体内の圧力調整流体を除去して膨張圧力 P1を解消することにより、耐圧シェルに は耐圧シェルの内部応力を平衡な状態とする作用が生じ、 その作用に基づいて、 ここでは全応力推移線が圧縮応力側に平行移動する。
その結果、 耐圧シェルを構成している繊維層には図 2に示した応力変化曲線 A として表される応力を生起することができ、 下層側の繊維層には圧縮応力を作用 させるとともに、 上層側の繊維層には引張応力を作用させることができる。
以下において、 本発明の高圧タンクの製造方法及ぴ高圧タンクの製造装置につ いて、 図面に基づいて実施形態を説明する。
. まず、 高圧タンクの製造にあたって使用するタンク基体について説明する。 な お、 本実施形態の高圧タンクは水素ガスの収容に使用するものとするが、 水素ガ ス以外の収容物を収容してもよい。
本実施形態では、 タンク基体 1は、 図 7に示すように、 高密度ポリエチレンを 用いて形成した円筒状の圧力容器としており、 開口部 2を設けた上側鏡板部 la と、同上側鏡板部 laに対向させた下側鏡板部 lbと、上側鏡板部 laと下側鏡板部 lbとを連結する筒状の胴部 lcとで構成している。
本実施形態では、 タンク基体 1はライナーであって、 このタンク基体 1を用い て製造した高圧タンクの内部に水素ガスを充填した際に、 水素ガスの漏出を防止 可能な素材及ぴ構成としている。
なお、 タンク基体 1は、 耐圧シェル 4の形成後、 上側鏡板部 la及び下側鏡板部 lbを残して胴部 lcを除去するように構成することもできる。
すなわち、高圧タンクの形成後、適宜の溶解液等を用いて胴部 lcを溶解除去し てもよいし、 胴部 l cを可撓性材料で構成しておくことにより上側鏡板部 laに設 けた開口部 2から取出して除去してもよい。
なお、タンク基体 1は合成樹脂製であるものに限らず、金属製であってもよい。 あるいは、 上側鏡板部 laと下側鏡板部 lbのみをアルミニウム等の金属製として もよい。
上記したタンク基体 1を高圧タンク製造装置 Cに装着し、 タンク基体 1に強化 繊維 3を多重に卷付けて耐圧シェル 4を形成することにより高圧タンク Dを製造 している。
高圧タンク製造装置 Cは、 図 7に示すように、 タンク基体 1の前端を支持する 前端支持台 5と、 タンク基体 1の後端を支持する後端支持台 6と、 この前後端支 持台 5, 6によって支持されたタンク基体 1に卷付ける強化繊維 3を繰り出す強化 繊維繰出部 7と、 強化繊維 3に所要の卷付張力を加える巻付張力調整部 8と、 タ ンク基体 1内に充填する圧力調整流体を供給する圧力調整流体供給部 9とで構成 している。
前端支持台 5には、 タンク基体 1の上側鏡板部 laと接続し、前端支持台 5に対 して回転自在とした前端連結具 5aを設けている。
この前端連結具 5aは、 前端支持台 5に装着した第 1駆動モータ 5bによって回 転可能としている。符号 5cは、前端連結具 5aと第 1駆動モータ 5bとを連動連結 する連結ベルトである。
後端支持台 6には、 タンク基体 1の下側鏡板部 lbと接続し、後端支持台 6に対 して回転自在とした後端連結具 6aを設けている。
この後端連結具 6aは、 後端支持台 6に装着した第 2駆動モータ 6bによって回 転可能としている。符号 6cは、後端連結具 6aと第 2駆動モータ 6bとを連動連結 する連結ベルトである。
特に、前端支持台 5と後端支持台 6とは鏡面対称に設け、前端連結具 5aの回転 軸と、後端連結具 6aの回転軸とが同一直線上に位置するように構成し、前端支持 台 5と後端支持台 6とによって両端を支持されたタンク基体 1を所要の速度で回 転可能としている。
強化繊維綠出部 7は、 強化繊維を巻付けたリール (図示せず) を保持して、 強 化繊維 3を繰出可能に構成している。
また、 図示していないが、 強化繊維繰出部 7には、 繰出した強化繊維 3に硬化 用樹脂材料を塗着する樹脂塗着部を設けている。
ここで、 本実施形態で使用する強化繊維 3には炭素繊維を用いているが、 それ 以外にもァラミ ド繊維、 ガラス繊維、 P B O繊維等を用いてもよいし、 これらを 複合させた繊維を用いてもよい。 また、 硬化用樹脂材料としてはエポキシ樹脂を 用いているが、 それ以外の接着性樹脂を用いてもよい。 例えば、 紫外線により硬 化する紫外線硬化タィプの接着性樹脂を使用することもできる。
卷付張力調整部 8は、 タンク基体 1に卷付ける強化繊維 3に所要の卷付張力を 加えることができるように構成しており、 図示していない制御部による制御によ つて、 強化繊維 3に所定の卷付張力を加えている。
強化繊維繰出部 7と卷付張力調整部 8とによって強化繊維巻付手段を構成して おり、 必要であれば、 タンク基体 1への強化繊維 3の卷付作業を効率よく行うた めの卷付用アームを設けてもよい。
圧力調整流体供給部 9は、 前端支持台 5と後端支持台 6とによって支持された タンク基体 1内に一端を揷入した送給管 9aと、 同送給管 9aに上流側から順番に 設けた送給ポンプ 9bと、 加熱器 9cとによって構成している。
特に、 本実施形態では、 送給管 9aは、 タンク基体 1内に挿入した部分を二重管 で構成しており、内管 9a'を送給路とするとともに外管 9 を排出路として、 内管 9a'からタンク基体 1内に送給した圧力調整流体を、外管 9 からタンク基体 1外 に排出するように構成している。
外管 9a"によってタンク基体 1外に排出した圧力調整流体は、排出管 9dを介し て排出するように構成しており、 同排出管 9dには圧力調整バルブ 9eを介設して いる。 .
同圧力調整パルプ 9eは上記した制御部と接続しており、制御部の制御に基づい て排出制御を行うことにより、 タンク基体 1内に所要の圧力、 すなわち、 先に述 ベた膨張圧力を生起可能としている。 '
また、 送給管 9aに圧力調整流体を圧送する送給ポンプ 9bも制御部と接続し、 送給ポンプ 9bによる圧力調整流体の圧送量を調整可能としている。圧力調整バル ブ 9eと送給ポンプ 9bとによって圧力調整手段を構成している。
加熱器 9cは、 送給管 9a内を圧送する圧力調整流体を所定温度に加熱する加熱 装置である。
本実施形態の場合、 圧力調整流体を水としており、 加熱器 9cは送給管 9aの外 周囲に卷回した高周波加熱コイルとしている。
圧力調整流体は水に限定するものではなく、 それ以外の液体や水蒸気等の気体 であってもよい。また加熱器 9cは高周波加熱コイルで構成するものに限定するも のではなく、 圧力調整流体を効率よく加熱することが可能な適宜の加熱装置を用 いてよい。
上記の高圧タンク製造装置 Cを用いて高圧タンク Dを製造する場合には、 次の ようにしている。 .
まず、 高圧タンク製造装置 Cにタンク基体 1を取付ける。 すなわち、 タンク基 体 1の開口部 2からタンク基体 1内に送給管 9aを挿入して、タンク基体 1の上側 鏡板部 laを前端支持台 5の前端連結具 5aに接続し、 次いでタ^ク基体 1の下側 鏡板部 lbを後端支持台 6の後端連結具 6aに接続することにより、 タンク基体 1 を高圧タンク製造装置 Cに取付ける。
次いで、 制御部によって圧力調整バルブ 9eと送給ポンプ 9bとを制御しながら タンク基体 1内に圧力調整流体を充填するとともに、 タンク基体 1に圧力調整流 体によって膨張圧力を加える。
膨張圧力は、 0〜 1 0 0 MPa (絶対圧) を加えることができるようにしておけば よく、 特に、最下層である第 1層目を形成する場合には、 膨張圧力は 0 . 0 1〜 1 0 O MPaとしておくことが望ましい。 本実施形態では約 0 . 4 MPaとしている。 また、 このとき、圧力調整流体は加熱器 9cによって加熱して、 タンク基体 1を 所定温度に加熱している。
タンク基体 1の加熱温度は、 強化繊維 3に塗着した硬化用樹脂材料の樹脂硬化 温度に基づいて設定すればよく、 通常では 6 0〜 1 5 0 °Cの範囲であればよい。 なお、 タンク基体 1の加熱状態は、 図示していない温度センサで圧力調整流体 の温度を計測することにより間接的に計測しており、 この計測結果に基づいて制 御部が加熱器 9cを制御することにより、 タンク基体 1を所定温度としている。 本実施形態では、 圧力調整流体に水を用いているとともに、 硬化用樹脂材料に エポキシ樹脂を用いているために、 圧力調整流体の温度を 7 0〜9 0 °Cに調整し ている。
タンク基体 1が所定温度となったところでタンク基体 1への強化繊維 3の巻付 けを開始する。
特に、 本実施形態では、 第 1層目は、 図 8に示すように、 タンク基体 1の縦方 向、 すなわちタンク基体 1の伸延方向に沿って強化繊維 3の卷付けを行って、 第 1層目の繊維層を形成している。
なお、 第 1層目は必ずしもタンク基体 1の伸延方向に沿って強化繊維 3の巻付 けなければならないわけではなく、 タンク基体 1の胴回りに沿った強化繊維 3の 卷付けを行ってもよい。
タンク基体 1に強化繊維 3を卷付ける場合には、 先に述べたように、 所定の卷 付張力を加えながら行っており、 形成した繊維層に所要の応力変化曲線に基づく 所要の応力を生起できるようにしている。
強化繊維 3に加える張力は、 1〜 1 5 0 0 0 N程度であればよく、 本実施形態 では、強化繊維 3に炭素繊維を用いているとともに、第 1層目の形成であるので、 強化繊維 3に加える張力は 1〜 1 0 0 0 N、好適には 3 0〜 1 0 0 Nとしている。 卷付張力の調整は、 制御部によつて制御された卷付張力調整部 8によつて行つ ており、 タンク基体 1に加えた膨脹圧力に相関させた所定の卷付張力を加えるよ うに構成している。
特に、タンク基体 1には上記したように膨張圧力を作用させていることにより、 強化繊維 3にはより大きい卷付張力を加えることができる。 具体的には、 通常の 1 0〜 1 0 0倍の卷付張力を加えることができる。 したがって、 卷付けた強化繊 維 3に緩みを生じにくくすることができる。
また、 上記したように、 タンク基体 1には、 強化繊維繰出部 7の樹脂塗着部に おいて硬化用樹脂材料を塗着した強化繊維 3を卷付けている。
そのため、 より大きい卷付張力で強化繊維 3の卷付けを行った場合には、 硬化 用樹脂材料に内在した気泡の除去を行うことができるとともに、 強化繊維 3と硬 化用樹脂材料との体積比において強化繊維 3を大きくすることができ、 形成した 繊維層の強度向上を図ることができる。
タンク基体 1への強化繊維 3の卷付けによる繊維層の形成において、 繊維層は タンク基体 1に強化繊維 3を一重ねだけ卷付けて 1つの繊維層とするだけでなく、 必要に応じて強化繊維 3を多重に卷付けて 1つの繊維層としてもよい。
第 1層目となる強化繊維 3の巻付けが終了した時点で強化繊維 3の卷付けを一 旦停止し、 タンク基体 1に加えた熱によって、 強化繊維 3に塗着した硬化用樹脂 材料の硬化を促進させ、 硬化させた第 1層目を形成している。
なお、硬化用樹脂材料に紫外線硬化タイプの硬化用樹脂材料を用いた場合には、 タンク基体 1に強化繊維 3を卷付けるとともに、 タンク基体 1に紫外線を照射し て樹脂層の硬化を促進させてもよい。
そして、 第 1層目が硬化した後に、 第 2層目となる強化繊維 3の卷付けを開始 する。 このように、 強化繊維 3の卷付けと、 卷付けた強化繊維 3に塗着した硬化 用樹脂材料を硬化させる処理とによって、 1つの繊維層を形成している。
本実施形態では、 第 1層目となる強化繊維 3の卷付けが終了した時点で強化繊 維 3の卷付けを一旦停止しているが必ずしも停止する必要はなく、 強化繊維 3の 巻付け速度を遅くすることにより、 強化繊維 3の巻付けを行いながら強化繊維 3 に塗着した硬化用樹脂材料を逐次硬化させ、 連続的に次層の形成を開始してもよ い。
第 2層目の強化繊維 3の卷付けも、 第 1層目の強化繊維 3の卷付けと同様に、 タンク基体 1の縦方向に卷付けを行ってもよいし、 図 9に示すように、 タンク基 体 1の胴回りに沿って強化繊維 3の卷付けを行ってもよい。
第 2層目の強化繊維 3をタンク基体 1に巻付ける際には、 第 1層目の繊維層は 既に硬化しているので、 第 2層目の強化繊維 3の卷付けにともなって第 1層目の 繊維層に変形が生じることを防止できる。
第 1層目の繊維層が硬化する前に第 2層目の強化繊維 3を卷付けた場合には、 第 1層目の繊維層に変形や緩みが生じ、 'この変形や緩みによつて第 1層目に生起 されるはずの応力が緩和され、 所要の圧縮応力を生起できなくなるおそれがある が、 第 1層目の繊維層を硬化させておくことにより、 そのようなおそれを解消す ることができる。
なお、 現実的には、 耐圧シェル 4は、 数十層から数百層の繊維層を積層して形 成しているため、 直前に形成した繊維層が必ずしも完全に硬化していなくてもよ く、 少なくとも 2〜 3層前の繊維層が硬化していればよい。
そのため、 強化繊維 3の卷付け速度を調整することにより、 強化繊維 3の卷付 けを行いながら強化繊維 3に塗着した硬化用樹脂材料を逐次硬化させて、 連続的 に繊維層の形成を行うことができる。
特に、 硬化用樹脂材料の硬化速度に合わせて強化繊維 3の卷付け速度を調整す ることにより、 卷付け速度を比較的低速とすることができ、 これによつて卷付張 力の調整を精度よく行うことができるとともに、 緩みのない確実な強化繊維 3の 卷付けを行うことができる。
このように、 先に形成した繊維層を硬化させながら次の繊維層を形成する作業 を繰り返し、 所定の積層数に達したところで繊維層の形成を終了し、 耐圧シェル 4を形成している。
特に、 繊維層を順次形成して積層する場合には、 圧力調整用流体に加える圧力 を、最下層である第 1層目の繊維層を形成している際に加えていた圧力 (0 . 0 1 〜 1 0 O MPa) から積層数に応じて漸次減少させるとともに、強化繊維 3に加える 張力を、 最下層である第 1層目の繊維層を形成している際に加えていた張力 (1 〜 1 0 0 O N )から積層数に応じて漸次増大させながら各繊維層を形成している。
したがって、 高圧タンクの形成後、 耐圧シェル 4が所要の応力変化曲線を有す るようにすることができ、 耐圧シェル 4の繊維層に生じる応力を所定の応力に制 御するとともに、 限界圧力を可及的に大きく増大させることができる。
また、 繊維層を順次形成して積層する際に、 強化繊維 3に加える張力を変更す る場合には、 必要に応じて使用する強化繊維 3の種類を変えてもよい。 すなわち、 下層側の繊維層を形成する場合には炭素繊維を用い、 大きい張力を 作用させる上層側では、 ァラミ ド繊維や P B O繊維等を用いてもよい。
このように加える張力に応じて強化繊維 3の種類を変えることにより、 限界圧 力をさらに向上させた高圧タンクを製造することができる。 しかも、 各強化繊維 3の機能上の特性を複合させることができるので、 気密性の向上や軽量化等の機 能性の向上を図ることもできる。 '
このようにして耐圧シェル 4を形成した高圧タンク Dでは、 耐圧シェル 4とな る各繊維層の形成にともなって繊維層を逐次硬化させていることにより、 高圧タ ンク Dの形成後のオーブン等による加熱硬化処理を不要とすることができるので、 製造した高圧タンク Dの硬化処理を省略して製造工程の短縮化を図ることもでき る。
耐圧シヱル 4の形成後、 高圧タンク D内から圧力調整流体を排出することによ り、 耐圧シェル 4を形成している各繊維層、 特に内層の繊維層には所要の圧縮応 力を作用させることができる。
そして、 タンク基体 1の下側鏡板部 lbと後端支持台 6の後端連結具 6aとの接 続を解除し、 次いでタンク基体 1の上側鏡板部 la と前端支持台 5の前端連結具 5aとの接続を解除して、完成した高圧タンク Dを高圧タンク製造装置 Cから取り 外す。
上記した高圧タンク製造装置 Cでは、 前端支持台 5と後端支持台 6とによって タンク基体 1を両持ちとして強化繊維 3の卷付けを行っているが、 例えば図 1 0 に示すように、 タンク基体 1を片持ち支持するように構成することもできる。
すなわち、 図 1 0に示した高圧タンク製造装置 C'では、 タンク基体 1内に揷入 して圧力調整流体を送給する送給管 19aを前端支持台 15に設け、 この送給管 19a をタンク基体 1の奥まで挿入し、送給管 19aに設けた第 1鏡板支持体 21 と第 2鏡 板支持体 22とによってタンク基体 1を固定支持しているものである。
送給管 19aは、 上記したように、 タンク基体 1内に圧力調整流体を供給する内 管 19a'と、タンク基体 1内に供給した圧力調整流体を排出する外管 19a"とからな る二重管としている。
そして、 特に、 本実施形態では、 内管 19a'には、 先端にタンク基体 1の下側鏡 板部 lbと当接する底部当接体 23を設けた底部支持軸 24を挿通させている。
さらに、 内管 19a'は進退可能に構成しており、 しかも、 内管 19a'の進退にとも なって、 内管 19a'が底部支持軸 24に環装した円筒状の進退筒状軸 25を底部支持 軸 24に沿って進退させるように構成している。
第 1鏡板支持体 21には、タンク基体 1の内側面に当接させる複数の内面支持片 21aを設けている。
各内面支持片 21a は、 一端を内面支持片 21a に枢着するとともに他端を内管 19a'に枢着した第 1アーム 21bと、 一端を内面支持片 21aに枢着するとともに他 端を外管 19 に枢着した第 2アーム 21cとによって構成し、内管 19a'の進退操作 によりタンク基体 1の内側面と当接するようにしている。
また、第 2鏡板支持体 22には、 タンク基体 1の内側面に当接させる複数の内面 支持片 22aを設けている。
各内面支持片 22aは、 一端を内面支持片 22aに枢着するとともに他端を進退筒 状軸 25に枢着した第 1アーム 22bと、一端を内面支持片 22aに枢着するとともに 他端を底部当接体 23に枢着した第 2アーム 22c とによって構成し、 内管 19a'の 進退操作により進退筒状軸 25 を進退させてタンク基体 1の内側面と当接するよ うにしている。
したがって、 内管 19a'を進退操作することにより、 上側鏡板支持体 21 の内面 支持片 21a及び下側鏡板支持体 22の内面支持片 22aを傘状に拡開させることによ りタンク基体 1を内部から支持することができる。
これにより、 タンク基体 1には、 ゴムやプラスチック等の可撓性を有する材料 を用いることができる。 また、 このような可撓性を有するタンク基体 1に強化繊 維 3によって複数層の繊維層を形成することにより通常のライナーとして使用し てもよい。
さらに、 可撓性を有するタンク基体 1を用いて高圧タンク Dを形成した場合に は、 高圧タンク Dの形成後、 タンク基体 1内面には樹脂コーティングを行って水 素等の収容物の漏洩を防止するように構成したり、 不導体の溶射を行って異種導 体による腐食発生を防止するように構成したりすることが望ましい。
上記した実施形態は、 圧力容器形状となったタンク基体 1に耐圧シェル 4を形 成して高圧タンク Dを形成する高圧タンク製造装置 Cであるが、 強化繊維 3の巻 付けを行って耐圧シェルを形成する基体は、 タンク基体 1に限定するものではな く、 線材 (C F R Pロッド) や円筒管 (C F R P )、 あるいは内部に収容空間を有 する矩形体であってもよい。
最後に、 C F R Pで従来の耐圧シヱルを形成した高圧タンクと、 本発明の耐圧 シェル 4を形成した高圧タンクとでの重量比、 すなわち軽量化の割合の計算上で の結果を表 1に示す。 ここで、 比較の便宜上、 円周方向のみを考慮している。 重 量比は高圧タンクの内径に影響されることはない。
表 1
Figure imgf000022_0001
このように、 本発明の耐圧シェル 4とすることにより、 同一の耐圧性の製品を より軽い製品として製造することができることがわかる。
ここで、 C F R P強度が 2 0 0 0 MPa、 最高圧力 4 0 0 MPaで 1 2 kの炭素繊維 を用いて高圧タンクを製造する場合、最下層は、圧力調整流体の圧力を 0 . 4 MPa、 強化繊維に加える張力を 5 O Nとして繊維層の形成を開始し、 最外層は、 圧力調 整流体の圧力を O MPa、強化繊維に加える張力を 1 5 O Nとして繊維層の形成を終 了するように圧力調整流体の圧力及び強化繊維に加える張力を調整することによ り、 目的とする応力勾配を得ることができる。 産業上の利用可能性
本発明の耐圧シェル、 及び同耐圧シヱルを具備する高圧タンク、 及び同高圧タ ンクの製造方法、 並びに同高圧タンクの製造装置では、 高耐性の耐圧シェル、 及 ぴ同耐圧シェルを具備する高圧タンクを形成することができるので、 収容物の収 容量を増大さることができ、 水素ガスまたは液体水素の貯蔵、 あるいは酸素ガス または液体酸素の貯蔵等に優れた高圧タンクを提供できる。

Claims

請 求 の 範 囲
. 基体の外側面に硬化用樹脂材料付きの強化繊維を卷付けて形成する繊維層を 多層積層させて積層構造とした耐圧シヱルにおいて、
この耐圧シェルに外力の作用していない状態では、 下層側の繊維層に圧縮応 力を作用させるとともに、 上層側の繊維層に引張応力を作用させるように構成 したことを特徵とする耐圧シェル。 . 中空としたタンク基体の外側面に硬化用樹脂材料付きの強化繊維を卷付けて 形成した耐圧シェルを具備する高圧タンクにおいて、
耐圧シェルは、 タンク基体に強化繊維を卷付けて形成した繊維層を多層積層 した積層構造とし、 高圧タンクの内部が空の状態において、 下層側の繊維層に は圧縮応力を作用させるとともに、 上層側の繊維層には引張応力を作用させて いることを特徴とする高圧タンク。 . 中空としたタンク基体の外側面に硬化用樹脂材料付きの強化繊維を卷付けて 形成した耐圧シェルを具備する高圧タンクの製造方法において、
前記タンク基体の内部には圧力調整用の流体を充填し、 この圧力調整用の流 体を加圧しながら前記タンク基体に卷付張力を加えた前記強化繊維を卷付ける ことにより繊維層を形成するとともに、 この繊維層を多層積層して前記耐圧シ エルを形成することを特徴とする高圧タンクの製造方法。 . 前記繊維層の積層にともなって、 前記圧力調整用の流体の加圧条件と、 前記 強化繊維に加える卷付張力条件とを調整することを特徴とする請求の範囲第 3 項記載の高圧タンクの製造方法。 . 最下層の繊維層を形成する場合には、 前記圧力調整用の流体に加える圧力を 0 . 1〜 1 0 0 MPa、 前記強化繊維に加える張力を 1〜 2 0 0 Nとして形成し、 新たな繊維層を積層する場合には、 前記圧力調整用の流体に加える圧力を積層 数に応じて漸次減少させるとともに、 前記強化繊維に加える張力を積層数に応 じて漸次増大させながら形成することを特徴とする請求の範囲第 3項記載の高 圧タンクの製造方法。 . 前記圧力調整用の流体を加温することにより前記強化繊維に塗着した前記硬 化用樹脂材料の硬化を促進させながら前記繊維層を形成することを特徴とする 請求の範囲第 3〜 5項のいずれか 1項に記載の高圧ダンクの製造方法。 . 強化繊維卷付手段によって中空としたタンク基体の外側面に硬化用樹脂材料 付きの強化繊維を卷付けて形成した耐圧シェルを具備する高圧タンクの製造装 置において、
前記タンク基体の内部には圧力調整用の流体を充填するとともに、 この圧力 調整用の流体に加えた圧力を調整する圧力調整手段を設け、
この圧力調整手段で前記圧力調整用の流体を加圧しながら前記強化繊維卷付 手段によって前記タンク基体の外側面に前記強化繊維を巻付けて繊維層を形成 するとともに、 この繊維層を多層積層して前記耐圧シェルを形成するように構 成したことを特徴とする高圧タンクの製造装置。 . 前記強化繊維卷付手段は、 前記圧力調整手段による前記圧力調整用の流体の 加圧条件と相関させて前記強化繊維に加える卷付張力条件を調整しながら前記 強化繊維を前記タンク基体に卷付けるように構成したことを特徴とする請求の 範囲第 7項記載の高圧タンクの製造装置。 . 前記圧力調整用の流体を加温する加温手段を設け、 前記強化繊維に塗着した 硬化用樹脂材料を前記加温手段で加えた熱により硬化を促進させながら前記繊 維層を形成するように構成したことを特徴とする請求の範囲第 7項または請求 の範囲第 8項に記載の高圧タンクの製造装置。
0 . 前記タンク基体を、 このタンク基体の内部に揷入して前記圧力調整用の流 体を送給する送給管に設けた第 1鏡板支持体と第 2鏡板支持体とによって固定 支持するように構成したことを特徴とする請求の範囲第 7〜 9項のいずれか 1 項に記載の高圧タンクの製造装置。
PCT/JP2004/001091 2003-02-03 2004-02-03 耐圧シェル及び同耐圧シェルを具備する高圧タンク及び同高圧タンクの製造方法並びに同高圧タンクの製造装置 WO2004070258A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/196,772 US7763137B2 (en) 2003-02-03 2004-02-03 Pressure shell, high-pressure tank provided with the pressure shell, manufacturing method of the high-pressure tank and manufacturing apparatus of the high-pressure tank
JP2005504841A JP4617411B2 (ja) 2003-02-03 2004-02-03 高圧タンクの製造方法並びに同高圧タンクの製造装置
EP04707633A EP1593904A4 (en) 2003-02-03 2004-02-03 PRESSURE CASE, HIGH PRESSURE VESSEL WITH THE PRESSURE CASE AND METHOD AND DEVICE FOR PRODUCING THE HIGH PRESSURE VESSEL
CA002515468A CA2515468C (en) 2003-02-03 2004-02-03 Pressure shell, high-pressure tank provided with the pressure shell, manufacturing method of the high-pressure tank and manufacturing apparatus of the high-pressure tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003026023 2003-02-03
JP2003-26023 2003-02-03

Publications (1)

Publication Number Publication Date
WO2004070258A1 true WO2004070258A1 (ja) 2004-08-19

Family

ID=32844127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001091 WO2004070258A1 (ja) 2003-02-03 2004-02-03 耐圧シェル及び同耐圧シェルを具備する高圧タンク及び同高圧タンクの製造方法並びに同高圧タンクの製造装置

Country Status (7)

Country Link
US (1) US7763137B2 (ja)
EP (1) EP1593904A4 (ja)
JP (1) JP4617411B2 (ja)
KR (1) KR100860677B1 (ja)
CN (1) CN100427822C (ja)
CA (1) CA2515468C (ja)
WO (1) WO2004070258A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004070258A1 (ja) * 2003-02-03 2006-05-25 株式会社産学連携機構九州 耐圧シェル及び同耐圧シェルを具備する高圧タンク及び同高圧タンクの製造方法並びに同高圧タンクの製造装置
WO2010107119A1 (ja) * 2009-03-19 2010-09-23 新日本石油株式会社 複合容器の製造方法及び製造装置
JP2010221401A (ja) * 2009-03-19 2010-10-07 Kyushu Univ 複合容器の製造方法及び複合容器の製造装置
JP2010223243A (ja) * 2009-03-19 2010-10-07 Toyota Motor Corp Frpタンクの製造装置及び製造方法
JP2011136491A (ja) * 2009-12-28 2011-07-14 Jx Nippon Oil & Energy Corp 複合容器の製造方法
JP2011206933A (ja) * 2010-03-29 2011-10-20 Jx Nippon Oil & Energy Corp 複合容器の製造方法、及び、複合容器
JP2016138622A (ja) * 2015-01-29 2016-08-04 トヨタ自動車株式会社 タンク
JP2019127968A (ja) * 2018-01-23 2019-08-01 トヨタ自動車株式会社 高圧ガスタンクの製造方法

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY143720A (en) * 2006-03-30 2011-06-30 Peter Beck Plastic liner with internal center point for inserting flexible length winding shaft with self centering and fixation
ITMC20060074A1 (it) * 2006-06-13 2007-12-14 Sida Engineering Srl Serbatoio multi-celle, perfezionato, per gas in pressione.
US8858857B2 (en) * 2007-03-12 2014-10-14 Geoffrey Michael Wood Process for the rapid fabrication of composite gas cylinders and related shapes
FR2923575A1 (fr) 2007-11-13 2009-05-15 Michelin Soc Tech Reservoir de fluide sous pression, methode et appareil pour la fabrication d'un tel reservoir.
JP4552159B2 (ja) * 2008-07-09 2010-09-29 トヨタ自動車株式会社 ガスタンク及びガスタンクの製造方法
CN101936452B (zh) * 2010-08-31 2012-08-08 颜旭涛 高压气瓶
DE112011105278B4 (de) * 2011-05-23 2016-03-17 Toyota Jidosha Kabushiki Kaisha Herstellungsverfahren für einen Gastank
DE102011116553A1 (de) * 2011-10-21 2013-04-25 Kautex Textron Gmbh & Co. Kg Verfahren zur Herstellung eines Verbund-Druckbehälters sowie Verbund-Druckbehälter
JP5869362B2 (ja) * 2012-02-15 2016-02-24 高圧ガス保安協会 圧力容器ユニット
JP5531040B2 (ja) * 2012-02-27 2014-06-25 トヨタ自動車株式会社 高圧ガスタンクの製造方法
CN103104807B (zh) * 2013-02-27 2014-12-24 新兴能源装备股份有限公司 375l车用液化天然气气瓶半自动包覆装置
CN103174933B (zh) * 2013-04-10 2015-07-08 湘潭嘉顺机械制造有限公司 一种lng车载气瓶绝热复合层缠绕装置及方法
CN103322404A (zh) * 2013-07-11 2013-09-25 张家港保税区长江新能源装备有限公司 低温绝热气瓶内胆保温膜自动缠绕装置
KR101567197B1 (ko) 2014-03-12 2015-11-06 현대자동차주식회사 원심 와인딩법 기반의 라이너리스 압력용기 및 그 제조방법
CN103972549A (zh) * 2014-04-03 2014-08-06 上海华篷防爆科技有限公司 一种带有非金属材料储氢瓶的发电装置
CN103972536A (zh) * 2014-04-03 2014-08-06 上海华篷防爆科技有限公司 一种非金属材料储氢装置
CN104048043A (zh) * 2014-06-04 2014-09-17 纪新刚 一种复合型高压罐
KR101652254B1 (ko) * 2015-04-10 2016-08-30 (주)대창솔루션 초저온 유체 저장탱크 제조방법
JP6241450B2 (ja) * 2015-06-02 2017-12-06 トヨタ自動車株式会社 タンクの製造方法
CN105546327B (zh) * 2016-01-16 2017-11-03 芜湖市海格瑞德科技有限责任公司 车用lng卧式绝热气瓶内胆缠绕绝热纸的专用设备
US10538029B2 (en) 2016-04-14 2020-01-21 Toyota Jidosha Kabushiki Kaisha Method of manufacturing high pressure gas tank
CN105736941A (zh) * 2016-04-19 2016-07-06 柴德维 一种液化天然气车载气罐内胆保温层缠绕装置
CN105927854A (zh) * 2016-04-25 2016-09-07 新兴能源装备股份有限公司 Lng气瓶内胆绝热包覆装置
CN106003755B (zh) * 2016-07-06 2018-07-17 上海复合材料科技有限公司 用于运载火箭全复合材料低温液氧贮箱成型的模具及方法
US10514129B2 (en) * 2016-12-02 2019-12-24 Amtrol Licensing Inc. Hybrid tanks
DE102017208542A1 (de) * 2017-05-19 2018-11-22 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Druckbehälters sowie Druckbehälter
DE102017208540A1 (de) * 2017-05-19 2018-11-22 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Druckbehälters sowie Druckbehälter
KR102322373B1 (ko) 2017-05-26 2021-11-05 현대자동차주식회사 후프층 및 헬리컬층이 와인딩된 고압용기
JP6729497B2 (ja) * 2017-06-06 2020-07-22 トヨタ自動車株式会社 タンクの製造方法
JP6766756B2 (ja) * 2017-06-08 2020-10-14 豊田合成株式会社 耐圧容器
JP6801620B2 (ja) * 2017-09-27 2020-12-16 トヨタ自動車株式会社 高圧タンクの製造方法
CN109203508A (zh) * 2018-08-29 2019-01-15 江苏赛图新材料科技有限公司 一种纤维管卧式离心成型装置及其成型工艺
KR102598547B1 (ko) * 2018-11-30 2023-11-03 현대자동차주식회사 압력 용기 및 압력 용기의 제조 방법
DE102019107983A1 (de) * 2019-03-28 2020-10-01 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung einer Sperrschicht eines Druckbehälters sowie Druckbehälter
KR102173842B1 (ko) * 2019-08-07 2020-11-05 일진복합소재 주식회사 압력용기 및 이의 제조 방법
JP7131523B2 (ja) * 2019-10-16 2022-09-06 トヨタ自動車株式会社 モジュール
JP7259734B2 (ja) * 2019-12-25 2023-04-18 トヨタ自動車株式会社 高圧タンクの製造方法
CN112645164A (zh) * 2020-04-16 2021-04-13 中科富海(中山)低温装备制造有限公司 一种杜瓦缠绕方法
CN113290887A (zh) * 2021-04-27 2021-08-24 哈尔滨理工大学 一种紫外光固化复合材料压力容器及成型方法
CN113446509B (zh) * 2021-07-06 2023-05-16 江阴市富仁高科股份有限公司 一种塑料内胆高压储氢罐的设计方法
CN115447175B (zh) * 2022-09-13 2024-05-24 中国计量大学 一种气瓶中复合材料的缠绕张力调节方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144121A (ja) * 1974-04-19 1975-11-19
JP2000266288A (ja) * 1999-03-11 2000-09-26 Mitsubishi Chemicals Corp 耐圧容器及びその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3100171A (en) * 1958-05-29 1963-08-06 Ralph E Lazarus Method and apparatus for forming a pre-stressed hollow lined pressure vessel
US3316337A (en) * 1963-06-28 1967-04-25 Charles J North Process for fabricating filament wound hollow members
US3276705A (en) * 1964-01-31 1966-10-04 Porter W Erickson Winding machine
US4187738A (en) * 1978-05-10 1980-02-12 The United States Of America As Represented By The Department Of Energy Rim for rotary inertial energy storage device and method
FR2491044A1 (fr) * 1980-09-26 1982-04-02 Spie Batignolles Procede pour renforcer un corps creux realise par enroulement d'un profile, profile pour sa mise en oeuvre et canalisations s'y rapportant
JPS624999A (ja) * 1985-07-02 1987-01-10 Mitsubishi Heavy Ind Ltd 多層構造圧力容器
DE3528629A1 (de) * 1985-08-09 1987-02-12 Man Technologie Gmbh Verfahren zur herstellung eines rotorrohres
SE463834B (sv) * 1988-03-15 1991-01-28 Asea Plast Ab Tryckkaerl
DE4215756A1 (de) * 1992-05-13 1993-11-18 Basf Ag Verfahren zur Herstellung von Hohlkörpern
US5340625A (en) * 1992-11-16 1994-08-23 Weitsman Y Jack Layout and manufacturing method for fiber-reinforced composite shells
CN1031841C (zh) * 1994-05-31 1996-05-22 李奎银 耐蚀耐压复合管(玻璃钢、钢管)复合工艺及装置
JPH08200502A (ja) * 1995-01-30 1996-08-06 Arisawa Mfg Co Ltd 円形密閉蓋
JPH09203496A (ja) 1996-01-29 1997-08-05 Mitsubishi Heavy Ind Ltd 高圧タンクの製造方法
CA2269976C (en) 1999-04-23 2005-02-08 Rene Rutz Homogenizing process for fiber-wrapped structural composites
JP2001260240A (ja) * 2000-03-16 2001-09-25 Mitsubishi Rayon Co Ltd 繊維強化樹脂複合製品の成形用フィラメントワインディング機
JP2002188794A (ja) 2000-12-21 2002-07-05 Honda Motor Co Ltd 高圧水素タンクおよび高圧水素タンクの製造方法
CN2458481Y (zh) * 2000-12-29 2001-11-07 国家建筑材料工业局哈尔滨玻璃钢研究所 纤维缠绕复合材料橡胶内衬环形压力容器
EP1593904A4 (en) * 2003-02-03 2011-05-04 Univ Kyushu Nat Univ Corp PRESSURE CASE, HIGH PRESSURE VESSEL WITH THE PRESSURE CASE AND METHOD AND DEVICE FOR PRODUCING THE HIGH PRESSURE VESSEL

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144121A (ja) * 1974-04-19 1975-11-19
JP2000266288A (ja) * 1999-03-11 2000-09-26 Mitsubishi Chemicals Corp 耐圧容器及びその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004070258A1 (ja) * 2003-02-03 2006-05-25 株式会社産学連携機構九州 耐圧シェル及び同耐圧シェルを具備する高圧タンク及び同高圧タンクの製造方法並びに同高圧タンクの製造装置
JP4617411B2 (ja) * 2003-02-03 2011-01-26 国立大学法人九州大学 高圧タンクの製造方法並びに同高圧タンクの製造装置
WO2010107119A1 (ja) * 2009-03-19 2010-09-23 新日本石油株式会社 複合容器の製造方法及び製造装置
JP2010221401A (ja) * 2009-03-19 2010-10-07 Kyushu Univ 複合容器の製造方法及び複合容器の製造装置
JP2010223243A (ja) * 2009-03-19 2010-10-07 Toyota Motor Corp Frpタンクの製造装置及び製造方法
JP2011136491A (ja) * 2009-12-28 2011-07-14 Jx Nippon Oil & Energy Corp 複合容器の製造方法
JP2011206933A (ja) * 2010-03-29 2011-10-20 Jx Nippon Oil & Energy Corp 複合容器の製造方法、及び、複合容器
JP2016138622A (ja) * 2015-01-29 2016-08-04 トヨタ自動車株式会社 タンク
JP2019127968A (ja) * 2018-01-23 2019-08-01 トヨタ自動車株式会社 高圧ガスタンクの製造方法

Also Published As

Publication number Publication date
EP1593904A1 (en) 2005-11-09
KR20050097533A (ko) 2005-10-07
CN100427822C (zh) 2008-10-22
CA2515468C (en) 2009-12-29
JP4617411B2 (ja) 2011-01-26
KR100860677B1 (ko) 2008-09-26
JPWO2004070258A1 (ja) 2006-05-25
US7763137B2 (en) 2010-07-27
US20060065664A1 (en) 2006-03-30
CN1745273A (zh) 2006-03-08
EP1593904A4 (en) 2011-05-04
CA2515468A1 (en) 2004-08-19

Similar Documents

Publication Publication Date Title
WO2004070258A1 (ja) 耐圧シェル及び同耐圧シェルを具備する高圧タンク及び同高圧タンクの製造方法並びに同高圧タンクの製造装置
US10821657B2 (en) Systems and methods for liner braiding and resin application
CN106217915B (zh) 罐的制造方法
JP6939525B2 (ja) 高圧タンクの製造方法
JP2000504810A (ja) 薄い金属でライニングされ複合物で被覆された高性能圧力容器
US6651307B2 (en) Process for manufacturing a pre-stressed fiber-reinforced high pressure vessel
JP2008143029A (ja) 成形体の製造方法、成形体、並びにタンク
JP7014060B2 (ja) 高圧タンク、高圧タンク搭載装置、および高圧タンクの製造方法
JP2016142349A (ja) 圧力容器
JP2007125844A (ja) Frp補強タンクの成形装置
NO20161626A1 (en) System and method of manufacturing a field joint coating
CN105980763A (zh) 具有湿法缠绕的cfk的压力容器
JP2008286297A (ja) 高圧タンク製造方法
EP2675732B1 (en) Belted toroid pressure vessel and method for making the same
CN112497721B (zh) 罐的制造方法
JP4578068B2 (ja) シェル用積層体及びこれを用いた圧力容器
JP5446033B2 (ja) Frpタンクの製造装置及び製造方法
JP2010249147A (ja) Frpタンク及びその製造方法
JP2020142418A (ja) 圧力容器の製造方法及び圧力容器
JP2012045826A (ja) 圧力容器の製造方法
CN113524719A (zh) 金属内衬纤维缠绕储气瓶固化自紧热处理一体化工艺
CN111452392B (zh) 高压罐的制造方法
WO2009082189A2 (en) Compressed natural gas composite tank for vehicles
JP2011136474A (ja) 圧力容器の製造方法
CN115143384A (zh) 高压储罐及其制造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504841

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2515468

Country of ref document: CA

Ref document number: 1020057014203

Country of ref document: KR

Ref document number: 20048033616

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004707633

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057014203

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11196772

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004707633

Country of ref document: EP