WO2004065663A1 - スズ含有メッキ浴 - Google Patents

スズ含有メッキ浴 Download PDF

Info

Publication number
WO2004065663A1
WO2004065663A1 PCT/JP2004/000524 JP2004000524W WO2004065663A1 WO 2004065663 A1 WO2004065663 A1 WO 2004065663A1 JP 2004000524 W JP2004000524 W JP 2004000524W WO 2004065663 A1 WO2004065663 A1 WO 2004065663A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
plating bath
acid
sulfonic acid
compound
Prior art date
Application number
PCT/JP2004/000524
Other languages
English (en)
French (fr)
Inventor
Akihiro Masuda
Masayoshi Kohinata
Keigo Obata
Masakazu Yoshimoto
Kiyotaka Tsuji
Ei Uchida
Keiji Ori
Masahiro Eikawa
Original Assignee
Ishihara Chemical Co., Ltd.
Daiwa Fine Chemicals Co., Ltd.
Mitsubishi Materials Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Chemical Co., Ltd., Daiwa Fine Chemicals Co., Ltd., Mitsubishi Materials Corporation filed Critical Ishihara Chemical Co., Ltd.
Priority to US10/542,029 priority Critical patent/US20060113006A1/en
Priority to EP04704363.3A priority patent/EP1591563B1/en
Publication of WO2004065663A1 publication Critical patent/WO2004065663A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • C25D3/32Electroplating: Baths therefor from solutions of tin characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/1146Plating
    • H01L2224/11462Electroplating

Definitions

  • the present invention relates to a tin plating bath or tin alloy plating bath based on an aliphatic sulfonic acid.
  • Alkanesulfonic acids such as methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid; alkanolsulfonic acids such as 2-hydroxyethanesulfonic acid, 2-hydroxypropanesulfonic acid; aromatic sulfonic acids such as p-phenolsulfonic acid, etc.
  • Tin plating baths or tin alloy plating baths containing an organic sulfonic acid as a base acid have been widely used since they are easy to treat waste water and have excellent solubility of tin salts.
  • the purity of the aliphatic sulfonic acid and the obtained coating film There is some relationship between the properties, and the problem has been raised that if the purity of the aliphatic sulfonic acid is low and impurities are contained even in trace amounts, the properties of the plating film may be adversely affected.
  • Japanese Patent Application Laid-Open No. 10-2 0 4 2 5 2 states that in the production method in which an alkyl mercaptan is oxidized with hydrogen peroxide, reaction intermediates such as disulfide remain, and the product is contaminated. (Paragraph 5).
  • an alkane sulfonic acid or an alkanol sulfonic acid is produced by reacting an alkyl mercaptan such as methyl mercabtan, ethyl mercaptan, 2-mercaptoethanol and hydrogen peroxide to produce alkane sulfonic acid or alkanol sulfonic acid.
  • aqueous hydrogen peroxide solution having a H 2 0 2 concentration is charged to the reaction tank in a usage amount exceeding the stoichiometric amount, and alkyl mercaptan is continuously supplied at a low temperature of 50 ° C or less, and it takes about 3 to 20 hours.
  • high purity alkanesulfonic acid or alkanolsulfonic acid can be obtained at high yield and low cost by contacting the reaction solution with an anion exchanger.
  • alkanesulfonic acid homopolymers or copolymers of alkanesulfonic acid and pinyl monomers can be used for various applications such as flocculants, dispersants, thickeners, and addition of tin plating baths, solder plating baths, etc. It is disclosed that it can also be used as an agent (see paragraph 2 of the same publication)
  • Japanese Patent Application Laid-Open No. 2 0 1 -6 4 2 4 9 describes conventional methods for producing alkane sulfonic acids such as oxidation of thiol (alkyl mercaptan), hydrolysis of halogenated alkylsulfonyl, and dimethyl disulfide.
  • which method, such as oxidation (see paragraph 3), contacted the aqueous solution of alkanesulfonic acid obtained by these conventional methods with a basic anion exchange resin, mainly to determine the content of sulfuric acid in the alkanesulfonic acid.
  • Disclosed purification methods are disclosed.
  • Alkane sulfonic acid, especially methane sulfonic acid is useful for conductive metal plating.
  • sulfuric acid contained as an impurity is harmful for conductive metal plating. It is said that the content of sulfuric acid in alkane sulfonic acid can be significantly reduced by contacting (see paragraphs 2-5).
  • the present invention has been made in view of the current state of the prior art described above.
  • the main object of the present invention is to use an aliphatic sulfonic acid in a tin plating bath or a tin alloy plating bath in which an aliphatic sulfonic acid is a base acid.
  • the present invention is to provide a tin bath or tin alloy plating bath capable of forming a plating film having excellent properties by further examining the relationship between the purity of the plating film and the properties of the resulting plating film.
  • the present inventor contains various io compounds as impurities in the aliphatic sulfonic acid such as alkane sulfonic acid derived from the production method.
  • the aliphatic sulfonic acid such as alkane sulfonic acid derived from the production method.
  • specific compounds only certain components such as ⁇ -black dimethylsulfone and dimethyldisulfide have an adverse effect on the plating properties, and other compounds such as dimethylsulfone have an adverse effect on the plating properties. I found out that it was a non-existent existence.
  • a specific purification separation method such as vacuum concentration is applied to a commercially available alkanesulfonic acid, a specific ion that adversely affects the metal properties is obtained.
  • the resulting purified alkane sulfonic acid is used as a base acid in a tin plating bath or a tin alloy plating bath, the reflow properties of the plating film and the appearance of the coating can be greatly improved.
  • the present invention was completed here.
  • the present invention provides the following tin-containing plating bath.
  • At least one aliphatic sulfonic acid selected from the group consisting of alkane sulfonic acids and alkanol sulfonic acids.
  • Two or more compounds selected from the group consisting of dimethyl disulfide, S-methyl methanethiosulfonate, ⁇ -chlorodimethyl sulfone and ⁇ -methylsulfonyl-a, ⁇ -dichlorodimethylsulfone are in the bath.
  • the tin-containing plating bath according to item 9 wherein the purified aliphatic sulfonic acid has been subjected to solid phase extraction treatment twice or more using the same adsorbent or different types of adsorbent.
  • 1 1.
  • the purified aliphatic sulfonic acid is obtained by combining aliphatic sulfonic acid with a vacuum concentration treatment and a solid phase extraction treatment.
  • a pump forming method characterized by forming a pump using the plating bath according to item 1 above.
  • the tin-containing plating bath of the present invention contains a soluble stannous salt alone as a plating metal component, or a copper salt, bismuth salt, silver salt, indium salt, zinc salt, nickel salt, and cobalt salt. It contains at least one soluble salt selected from the group consisting of peanthimon salt and soluble stannous salt, and as the base acid, alkane sulfonic acid and pi It contains at least one aliphatic sulfonic acid selected from the group consisting of lucanol sulfonic acids.
  • alkane sulfonic acids include methane sulfonic acid, ethane sulfonic acid, 1-propane sulfonic acid, 2-propane sulfonic acid, 1-butane sulfonic acid, 2-butane sulfonic acid, pentane sulfonic acid and the like. It is done.
  • alkanol sulfonic acid As alkanol sulfonic acid,
  • alkanol sulfonic acids include 2-hydroxyethane 1-1-sulfonic acid (isethionic acid), 2-hydroxypropane 1-1-sulfonic acid (2-propanol sulfonic acid), 2-hydroxypropyl.
  • a typical example of an alkanol sulfonic acid is 2-hydroxyethane 1 1 1 sulfonic acid.
  • alkanesulfonic acid and alkanolsulfonic acid can be used singly or in combination of two or more. Of these, alkenesulfonic acid is preferred, and methanesulfonic acid is particularly preferred.
  • dimethyldisulfide when wet-oxidized, it will be dissolved in the product methanesulfonic acid. A trace amount of unreacted dimethyldisulfide may remain. Furthermore, even in the method of hydrolyzing the octalogenated alkylsulfonyl, it has various halogen atoms in addition to the target aliphatic sulfonic acid. There is a possibility that a trace amount of ruo compound is mixed as an impurity. In this regard, there is a similar possibility in a method in which alkylmerkabutane is wet-oxidized with chlorine and water.
  • the aliphatic sulfonic acid may contain various compounds as impurities depending on the production method.
  • the present inventor extracted impurities contained in the aliphatic sulfonic acid before purification and separation with dichloromethane, subjected the obtained mixture of impurities to liquid chromatography, and identified each isolate with various analytical instruments. Next, a tin plating bath or tin containing each of these isolates in a newly-separated and purified aliphatic sulfonic acid as a base acid, which is an aliphatic sulfonic acid containing these isolates as impurities. An alloy plating bath was prepared and the properties of the obtained coating film were examined. As a result, we found a noteworthy conclusion that some of the compounds contained as impurities have adverse effects on the mechanical properties and some have no adverse effects.
  • the components that have adverse effects have common characteristics. That is, among the thio compounds included as impurities, in particular, (A) a compound having a thio atom with an oxidation number of + IV or less in the molecule, and (B) a compound having a thio atom and a chlorine atom in the molecule, It has been found that the properties of the plating film obtained from the bath and the tin alloy plating bath are adversely affected.
  • the content of (A) a compound having an oxidation atom with an oxidation number of + IV or less in the molecule, and (B) a compound having an ion atom and a chlorine atom in the molecule is zero or trace amount. It is necessary to use the aliphatic sulfonic acid thus purified as a base acid.
  • the total amount of the compound (A) and the compound (B) contained in the purified aliphatic sulfonic acid is an amount that is less than 200 ppm as the concentration in the plating bath when added to the plating bath. Preferably there is.
  • the compound (A) having a thio atom having an oxidation number of + IV or less in the molecule are compounds that are not in the state where the oxidation number of the thio atom is the largest, that is, the ionic atom has a complete octet structure. Means a compound that is not.
  • Specific examples of such an ion compound include a compound (1) represented by the following structural formula (a) and a structural formula (b).
  • the compound (2) represented can be mentioned.
  • the aliphatic sulfonic acid may contain, for example, a compound having the highest oxidation number of thio atoms, such as dimethylsulfone.
  • this compound has an adverse effect on the plating characteristics. Does not reach.
  • aliphatic sulfonic acids may contain various other impurities depending on the production method. Therefore, among the various impurities that may exist, in particular, (A) a compound having an oxidation atom with an oxidation number + IV or less in the molecule and (B) having an ion atom and a chlorine atom in the molecule. It can be said that it cannot be easily predicted that the properties of the plating film can be greatly improved by focusing on only the compounds and reducing their contents.
  • the content of impurities comprised of (A) a compound having an oxidation number less than or equal to IV in the molecule and (B) a compound having an ion and a chlorine atom in the molecule, contained in the aliphatic sulfonic acid is It is best that the concentration is zero, which cannot be measured by various analytical instruments. However, a trace amount may be contained as long as it does not adversely affect the plating characteristics of tin or tin alloy, in particular, the reflowability of the coating film and the coating appearance. Such allowable capacity varies depending on the type of impurities.
  • ⁇ -black dimethyl sulfone has the greatest adverse effect on the plating film, followed by hy-methylsulfonyl- ⁇ , ⁇ -dichlorodimethylsulfone, and dimethyldisulfide and methanethiosulfone.
  • the acid S-methyl tends to have less adverse effects than these compounds.
  • dimethyldisulfide is preferably less than 200 ppm
  • methanethiosulfonic acid S-methyl is preferably less than 4 ppm, in terms of the concentration in the bath.
  • ⁇ -black mouth dimethyl sulfone and ⁇ -methylsulfonyl- ⁇ , hijikuroku mouth dimethyl sulfone are each preferably less than 4 ppm.
  • a thio compound selected from the group consisting of dimethyl disulfide, S-methyl methanethiosulfonate, ⁇ -chlorodimethylsulfone and ⁇ -methylsulfonyl- ⁇ , ⁇ -dichlorodimethylsulfone is contained in the bath.
  • the total concentration of these compounds is preferably less than 2 ppm.
  • a compound having an io atom with an oxidation number of + IV or less in the molecule and (B) a compound having a thio atom and a chlorine atom in the molecule are removed from the aliphatic sulfonic acid to obtain purified aliphatic sulfonic acid.
  • a vacuum concentration treatment, a solid phase extraction treatment or the like can be adopted as a method for obtaining it.
  • the vacuum concentration treatment is a treatment in which a stock solution of aliphatic sulfonic acid is heated under reduced pressure to concentrate the stock solution.
  • Preferred decompression conditions vary depending on the type of aliphatic sulfone such as methanesulfonic acid 2-hydroxyethanesulfonic acid.
  • methanesulfonic acid about 0.13 to 6.6 kPa, preferably about 0.3.
  • the pressure should be about 6 6 to 3.9 kPa.
  • the heating conditions under reduced pressure also vary slightly depending on the type of aliphatic sulfone.
  • methane sulfonic acid it may be about 50 to about 100, and may be purified while gradually raising the temperature. However, it may be heated while maintaining an appropriate temperature.
  • the vacuum concentration time is generally about 1 to 10 hours, and preferably about 3 to 8 hours, but the concentration time can be shortened or extended appropriately depending on the type of the aliphatic sulfonic acid.
  • aliphatic sulfonic acid stock solution a commercially available aliphatic sulfonic acid, a solution obtained by preliminarily heating and concentrating it under normal pressure can be used.
  • the solid phase extraction treatment is a treatment for removing impurities from the aliphatic sulfonic acid by bringing the aliphatic sulfonic acid into contact with an adsorbent.
  • adsorbent known adsorbents such as activated carbon, silica gel, activated alumina, activated clay, zeolite, and porous polymer can be used.
  • any activated carbon can be used as long as it has undergone carbonization and activation steps.
  • a typical example of a porous polymer is a porous polymer based on a copolymer of styrene and divinylbenzene, and examples of commercially available products include Amberlite (manufactured by Spellco).
  • adsorbents are porous solids with a large surface area and many nanometer-order pores inside.
  • the adsorbent In the solid phase extraction treatment, the adsorbent is previously washed with methanol, ion-exchanged water, etc., and then the adsorbent is filled into the standing column, and aliphatic sulfonic acid is dropped onto the column at an appropriate flow rate, and the aliphatic is extracted.
  • the adsorbent may adsorb impurities contained in the sulfonic acid stock solution. As a result, impurities contained in the aliphatic sulfonic acid are removed, and a high purity purified aliphatic sulfonic acid is obtained.
  • the flow rate of the aliphatic sulfonic acid in the column may be appropriately adjusted according to the type of the aliphatic sulfonic acid, the type of the adsorbent that is the stationary phase, the amount used, and the like.
  • the solid phase extraction process may be repeated multiple times.
  • the same adsorbent may be used as the adsorbent, or adsorbents of different types may be used.
  • the second step is the same as the aliphatic sulfonic acid obtained in the first step.
  • Two-stage extraction can be carried out by dropping it onto a column packed with porous polymer.
  • multi-stage extraction may be performed as necessary.
  • the second step is to further fill the aliphatic sulfonic acid obtained in one step with a porous polymer.
  • Two-stage extraction may be performed by dropping it onto the column, and if necessary, multi-stage extraction may be performed.
  • a combination of vacuum concentration treatment and solid phase extraction treatment can be applied to aliphatic sulfonic acids.
  • an aliphatic sulfonic acid stock solution can be concentrated under reduced pressure and heated, and the resulting aliphatic sulfonic acid can be added dropwise to a column packed with an adsorbent for extraction.
  • the aliphatic sulfonic acid obtained by the solid phase extraction treatment can be subjected to a vacuum concentration treatment.
  • the solid phase extraction treatment may be performed before or after the vacuum concentration treatment, or may be performed in a separated state sandwiching the vacuum concentration treatment (that is, the order of solid phase extraction ⁇ vacuum concentration ⁇ solid phase extraction). Also good.
  • the above-mentioned Japanese Patent Application Laid-Open No. 2 0 1-6 4 2 4 9 uses an anion exchange resin in which a functional group such as a quaternary ammonium base is introduced into a matrix composed of a polymer, and in an alkane sulfonic acid.
  • a method for reducing the content of sulfuric acid is disclosed. This method differs from the method using the adsorbent described above in that the removal target is clearly different.
  • the tin-containing plating bath of the present invention includes a tin plating bath containing a stannous salt alone as a plating metal component, or a copper salt, bismuth salt, silver salt, indium salt, zinc salt, nickel as a plating metal component.
  • a lead-free tin alloy plating bath containing a mixture of at least one soluble salt selected from the group consisting of a salt, a cobalt salt and an antimony salt and a soluble stannous salt.
  • the electric tin plating bath contains a soluble stannous salt and an aliphatic sulfonic acid as a liquid base as essential components, and further, if necessary, an antioxidant, a stabilizer, an interface. It contains various additives such as activators, brighteners, semi-brighteners and pH adjusters.
  • the electrotin alloy plating bath is composed of at least one soluble salt selected from the group consisting of copper salt, bismuth salt, silver salt, indium salt, zinc salt, nickel salt, cobalt salt and antimony salt, and soluble stannous salt.
  • the metal component and the aliphatic soot as a liquid base Lead-free plating bath containing sulfonic acid as an essential component, and, if necessary, stabilizers for the purpose of preventing decomposition of the bath and promoting eutectoid of tin and other metals. It contains various additives that are similar to the additives in the metallizing bath.
  • soluble stannous salts include methanesulfonic acid, ethanesulfonic acid, 2-propanolsulfonic acid, sulfosuccinic acid, p-phenolsulfonic acid.
  • examples thereof include stannous salts of organic sulfonic acids such as stannous borofluoride, stannous sulfate, stannous oxide, stannous chloride, sodium stannate, and potassium stannate.
  • Soluble salts of certain metals other than lead that form an alloy with tin include Cu +, Cu 2 + , Ag + , B i 3 + , I n 3 + , Z n 2 + , N i 2 + , Inorganic salts and organic salts that generate various metal ions of Co 2 + , Co 3 + and S b 3 + in the bath can be used. These soluble salts can be used singly or in combination of two or more.
  • examples of the soluble copper salt include copper sulfate, copper chloride, copper oxide, copper carbonate, copper acetate, copper pyrophosphate, and copper oxalate.
  • Soluble silver salts include organic silver sulfonates such as silver sulfonate, silver ethanesulfonate, and silver 2-propanolsulfonate; silver cyanide, silver borofluoride, silver sulfate, silver sulfite, silver carbonate, sulfocolate Examples include silver octoate, silver nitrate, silver citrate, silver tartrate, silver dalconate, silver oxalate, silver oxide, and silver acetate.
  • Examples of the soluble bismuth salt include bismuth sulfate, bismuth oxide, bismuth chloride, bismuth bromide, bismuth nitrate, bismuth salt of organic sulfonic acid, and bismuth salt of sulfosuccinic acid.
  • Examples of the soluble indium salt include indium chloride, indium oxide, and organic indium sulfonate.
  • Examples of the soluble zinc salt include zinc chloride, zinc sulfate, zinc oxide, zinc organic sulfonate, and zinc sulfosuccinate.
  • Examples of the soluble nickel salt include nickel sulfate, nickel chloride, nickel sulfate ammonium, nickel oxide, nickel acetate, and nickel salt of organic sulfonic acid.
  • Examples of the soluble cobalt salt include cobalt sulfate, cobalt chloride, and a cobalt salt of organic sulfonic acid.
  • Examples of the soluble antimony salt include antimony chloride, antimony borofluoride, and antimony organic sulfonate.
  • the content of the soluble stannous salt is preferably about 1 to 200 , and about 3 to 100 g / 1 as the amount of Sn 2+ ions. More preferred.
  • the content of soluble stannous salt is about 1 to 200 g / I as the amount of Sn 2+ ions, and the content of other soluble gold dust salt is the amount of metal component.
  • the content of the soluble stannous salt is preferably about 3 to 100 g / 1 as the amount of Sn 2+ ions, and other soluble properties. It is more preferable that the content of the metal salt is about 0.5 to 50 as the amount of the metal component.
  • the concentration of the aliphatic sulfonic acid that is at least one selected from the group consisting of alkanesulfonic acid and alkane sulfonic acid in the tin plating bath or tin alloy plating bath is:! ⁇ 500 gZ 1 g degree is preferred, More preferably, it is about 200 g / 1.
  • the tin or tin alloy plating bath of the present invention can be used in any pH range from acidic to neutral or alkaline.
  • the Sn 2 + is in plated bath is stable in acidic, it tends to be unstable in near neutral. Therefore, when using a plated bath of the present invention in the pH range around neutral, to stabilize the S n 2 + in the neutral region, the occurrence of white precipitate, in order to prevent decomposition of the bath, complex It is effective to contain an agent.
  • the complexing agent oxycarboxylic acid, polycarboxylic acid, monocarboxylic acid, salts thereof and the like can be used.
  • darconic acid succinic acid, darcoheptonic acid, darconolactone, darcoheptlactone
  • formic acid acetic acid, propionic acid, butyric acid, ascorbic acid, oxalic acid, malonic acid, succinic acid, glycolic acid, apple Acid, tartaric acid, diglycolic acid, and their salts.
  • darconic acid, citrate, darcoheptonic acid, darconolactone, darcoheptlactone, and salts thereof are preferable.
  • ethylenediamine aminediaminetetraacetic acid 5 diethylenetriaminepentaacetic acid (DTPA), tritrimethyl triacetate (NTA), iminodiacetic acid (IDA), iminodipropionic acid (IDP), hydroxyethyl ethylenediamine Triacetic acid (H EDTA), Triethylenetetramine hexaacetic acid (TTHA), Ethylenedioxybis (ethylamine) monoacetic acid, ⁇ , ⁇ ', ⁇ '-tetraacetic acid, glycines, nitrilotrimethylphosphonic acid, 1-hydroxyethane 1,1-Diphosphonic acid and its salts are also effective as complexing agents.
  • Complexing agents can be used alone or in combination of two or more.
  • the concentration of the complexing agent in the tin plating bath or tin alloy plating bath is not particularly limited, but is usually preferably about 1 to 2 O m o 1/1.
  • the antioxidant is intended to S n 2 + oxidation prevention during plated bath TsugiAri phosphate or a salt thereof, Asukorupin acid or a salt thereof, hydroquinone, catechol, resorcinol arsine, phloroglucinol, cresol one
  • sulfonic acid or a salt thereof, phenolsulfonic acid or a salt thereof, strong technical sulfonic acid or a salt thereof, quinonesulfonic acid or a salt thereof, hydrazine, or the like can be used.
  • Antioxidants can be used singly or in combination of two or more.
  • the concentration of the antioxidant in the tin plating bath or tin alloy plating bath is not particularly limited, but it is usually preferably about 0.01 to 20 g / 1.
  • Stabilizers are specifically intended to stabilize or prevent the decomposition of tin alloy plating baths, and to eutectify tin with the metal that forms the alloy.
  • Thioureas, thiosulfates, sulfites, Known stabilizers such as thioglycol, thioglycolic acid, thioglycol polyethoxylate, thiocarboxylic acid-containing compounds such as acetylcystine, cyanoxy compounds, and oxycarboxylic acids such as citrate can be used.
  • Stabilizers can be used singly or in combination of two or more.
  • the concentration of the stabilizer in the tin alloy plating bath is not particularly limited, but it is usually preferable to set the concentration to about 0.01 to L0 gZl.
  • Surfactants contribute to improving the appearance, denseness, smoothness, adhesion, etc. of the coating film, and use various surfactants such as normal nonionic, anionic, amphoteric, and cationic surfactants. Can do.
  • anionic surfactants include alkyl sulfates, polyoxyethylene alkyl ether sulfates .. polyoxyshethylene alkyl phenyl ether sulfates .. alkyl benzene sulfonates, alkyl naphthenate sulfonates, etc. .
  • examples of the cationic surfactant include mono- to trialkylamine salts, dimethyldialkyl ammonium salts, and trimethylalkyl ammonium salts.
  • Nonionic surfactants include C 1 to C 2 . Al force Nord, phenol, naphthol Lumpur, bisphenols such, C j C ⁇ alkyl phenols, 7 reel alkyl Hue Nord, C 1 -C "5 alkyl naphthol, Ji-Ji ⁇ alkoxylated phosphoric acid (salt), Seo And rubitan esters, polyalkylene glycols, and aliphatic amides.
  • amphoteric surfactants include strong lupoxy betaine, sulfobetaine, imidazoline betaine, and aminocarboxylic acid.
  • Surfactants can be used singly or in combination of two or more.
  • concentration of the surfactant in the tin plating bath or tin alloy plating bath is not particularly limited, but it is usually preferably about 0.01 to 50 g / 1.
  • Brighteners and semi-brighteners include: benzaldehyde, o-black mouth benzaldehyde, 2, 4, 6-triclo mouth pendaldehyde, m-clo mouth benzaldehyde, ⁇ -nitrite mouth benzaldehyde, p-hydroxy Penzaldehyde, furfural, 1-naphthaldehyde, 2-naphthaldehyde, 2-hydroxy-1 mononaphthaldehyde, 3-acenaphthaldehyde, benzylideneacetone, pyrideneacetone, furfuryldenacetone, cinnamaldehyde, annisaldehyde , Salicylaldehyde, crotonaldehyde, acrolein, glutaraldehyde, paraaldehyde, vanillin and other aldehydes; benzothiazole, 2-methylbenzothiazol, 2-aminobenzothiazole, 2-mercapto
  • Brighteners and semi-brighteners can be used singly or in combination of two or more depending on the required state of the coating film.
  • concentration of the brightening agent and the semi-brightening agent in the tin plating bath or tin alloy plating bath is not particularly limited, but is usually preferably about 0.01 to 100 g / 1.
  • pH adjusting agents include various acids such as hydrochloric acid and sulfuric acid; aqueous ammonia, potassium hydroxide, Various bases such as sodium hydroxide can be used.
  • monocarboxylic acids such as formic acid, acetic acid, and propionic acid
  • boric acids such as phosphoric acids, dicarponic acids such as oxalic acid, and succinic acid
  • oxyruccinic acids such as lactic acid and tartaric acid
  • conductive salts include sodium salts such as sulfuric acid, hydrochloric acid, phosphoric acid, sulfamic acid, and sulfonic acid, potassium salts, magnesium salts, ammonium salts, and amine salts. Sometimes you can.
  • the content of the conductive salt is usually about 0 to about I 100 g Z l.
  • Both the tin plating bath and the tin alloy plating bath of the present invention can be applied to any plating method such as barrel plating, rack plating, high-speed continuous plating, and rackless plating.
  • the conditions of electroplating using the tin plating bath or tin alloy bath of the present invention are also arbitrary.
  • the bath temperature is about 0 or more, preferably about 10 to 5 O
  • the cathode current density is 0. 0 1 to: about 10 OA / dm 2 , preferably about 0.0 1 to 3 OA / dm 2 .
  • the tin plating bath or tin alloy bath of the present invention can also be applied to electroless plating.
  • superior reflow characteristics and coating appearance can be imparted to the tin plating film or tin alloy plating film as compared with the conventional plating bath using aliphatic sulfonic acid.
  • electroless plating baths the inclusion of complexing agents such as thioureas is useful in order to accelerate the substitution reaction with base metals such as copper and copper alloys.
  • the tin plating bath and the tin alloy plating bath of the present invention contain purified aliphatic sulfonic acid having a very low content of specific impurities as a base acid, and the plating formed from these plating baths.
  • the film has very good reflow properties and film appearance.
  • the purified aliphatic sulfonic acid having a very small content of specific impurities used in the plating bath of the present invention is a complicated refinement process as described in JP-A-10-24052. It can be obtained by a relatively simple purification method such as vacuum concentration treatment, solid phase extraction treatment, etc., and can be obtained by an industrially very advantageous method.
  • the height of the substrate is higher than when using a conventional plating bath.
  • a mountain with a long tail that hinders densification Proper mushroom-shaped bumps can be smoothly formed instead of shapes.
  • the tin plating bath and tin alloy plating bath of the present invention are, for example, semiconductor devices, printed boards, flexible printed boards, film carriers, connectors, switches, resistors, variable resistors, capacitors, fill capacitors, inductors, thermistors, crystal vibrations. It can be applied well when a tin plating film or tin alloy plating film is formed on electronic parts such as children and lead wires.
  • Fig. 1 is a liquid chromatogram of methanesulfonic acid before and after the separation and purification process in Purification Example 2 described later.
  • Fig. 1A is a liquid chromatogram before purification
  • Fig. 1B is a liquid chromatogram after purification. is there.
  • Examples of purification of alkanesulfonic acid by vacuum concentration treatment and solid phase extraction treatment, examples of tin baths and tin alloy plating baths containing alkanesulfonic acid that have undergone these purification treatments, and these plating baths are used.
  • Examples of the reflowability evaluation test and the appearance evaluation test example of the tin film and tin alloy film obtained will be sequentially described.
  • alkane sulfonic acid before purification contains trace amounts of various io compounds as impurities.
  • the isolation and identification test examples of these io compounds are described, and the isolated io compounds are obtained by concentration under reduced pressure. The results of investigating the effect of these compounds on the appearance of the plating film will be described together with the addition of a small amount in the tin plating bath and tin alloy plating bath based on the purified alkanesulfonic acid.
  • purification example 1 is an example by vacuum concentration treatment
  • purification examples 2-3 are examples by solid phase extraction using an organic polymer as an adsorbent
  • purification example 4 adsorbs activated carbon.
  • Example of solid-phase extraction treatment used as an agent
  • Purification example 5 is an example of a two-stage solid-phase extraction treatment using an organic polymer as an adsorbent
  • Purification example 6 is an organic polymer and activated carbon as an adsorbent.
  • Examples of the two-stage solid phase extraction process used, purification examples 7 to 8 are two-stage purification examples that combine the vacuum concentration process and the solid-phase extraction process.
  • a commercially available methanesulfonic acid aqueous solution with a concentration of 60% was added as a stock solution to a 4 flask, and a distillation apparatus was assembled with a Liebig tube, a bent tube for fractional distillation, and an eggplant-shaped flask. Next, while reducing the pressure to 5 mmHg with a vacuum pump, start concentration at room temperature, gradually increase the temperature until the liquid temperature reaches 100 ° C, and concentrate under reduced pressure for about 5 hours to obtain 96% methanesulfonic acid. Got.
  • Styrene-divinylbenzene copolymer (Amberlite XAD2; manufactured by Spelco) 10 O.
  • O g was put into a 500 ml beaker, 500 ml of methanol (special grade) was added, and the mixture was stirred for about 1 hour at room temperature. The same operation was repeated three times with methanol.
  • 500 ml of distilled water was added and stirred at room temperature for 10 minutes. The supernatant was discarded, and the same operation was repeated 5 times with distilled water. Next, water was removed by vacuum filtration, and the adsorbent conditioning process was completed.
  • An open column with a diameter of 5 cm and a length of 40 cm was filled with 10 g of glass wool, filled with 100 g of the styrene-divinylbenzene copolymer that had been subjected to the above conditioning process, and 10 g of glass wool was packed from above.
  • Amperite XAD2 is an adsorbent, which is different from the basic anion exchange resin used in JP-A-2001-64249.
  • a brominated styrene-divinylbenzene copolymer (Separbead SP207; manufactured by Mitsubishi Chemical Co., Ltd.) was used as the adsorbent, and the conditioning and extraction processes were performed under the same conditions as in Purification Example 2, and a commercially available methanesulfonic acid ( (Concentration 70%) 300 g was dropped onto the column at a flow rate of 5 ml Z to obtain 70.0% methanesulfonic acid.
  • methanesulfonic acid having a concentration of 70.0% was obtained.
  • methanesulfonic acid was analyzed by high-performance liquid chromatography before and after purification, and methanesulfonic acid was evaluated for purification based on the obtained liquid chromatogram. I got it.
  • Fig. 1A is the chromatogram of methanesulfonic acid before purification
  • Fig. 1B is the chromatogram of methanesulfonic acid after purification.
  • a sparrow bath was prepared with the following composition.
  • Methanesulfonic acid from purification example 1 50 g / 1
  • Methanesulfonic acid from purification example 1 1 5 0 g / 1
  • the antioxidant can contain ascorbic acid, catechol, hydroquinone, etc. at a ratio of about 1 to 101, and the nonionic surfactant can be CiC ⁇ Al Nord, Huenol, Naf! One le, Ethylene oxide adducts such as c 25 alkylphenol and c 1 to c 2 2 aliphatic amines can be contained at a ratio of about 1 to 10 g / 1 (the same applies to the following examples and comparative examples). ) ⁇
  • the methanesulfonic acid obtained in the purification example 3 was used, and other components and contents were prepared in the same manner as in Example 1 to prepare a tin plating bath.
  • the methanesulfonic acid obtained in the purification example 4 was used, and the other components and contents were the same as in the example 1 to prepare a tin plating bath.
  • the methanesulfonic acid obtained in Purification Example 6 was used, and the other components and contents were the same as in Example 1, except that the tin plating bath was used. Produced.
  • the methanesulfonic acid obtained in the purification example 7 was used, and the other components and contents were the same as in the example 1 to prepare a tin plating bath.
  • the methanesulfonic acid obtained in the purification example 8 was used, and other components and contents were prepared in the same manner as in Example 1 to prepare a tin plating bath.
  • a tin-copper alloy plating bath was prepared with the following composition.
  • Methanesulfonic acid from purification example 7 50 g / 1
  • Methanesulfonic acid from purification example 7 50 g / 1
  • antioxidants and nonionic surfactants are as described for the tin plating bath.
  • the stabilizer is used to smoothly eutect tin and copper, and can be replaced with thioureas, nonionic surfactants (for example, laurylamine ethylene oxide adducts, etc.). .
  • Example 1 Instead of the methanesulfonic acid obtained in Purification Example 7, the methanesulfonic acid obtained in Purification Example 8 was used, and the other components and contents were the same as in Example 9, and a tin-copper alloy plating bath was used. Produced.
  • a tin-bismuth alloy plating bath was prepared with the following composition.
  • Methanesulfonic acid from purification example 1 1 5 0 g / 1
  • the stabilizer is for smooth eutectoidization of tin and bismuth, for example, a thio-based compound such as thioureas.
  • a tin-silver alloy plating bath was prepared with the following composition.
  • Methanesulfone from purification example 1 3 ⁇ 4 1 5 0 g / 1
  • antioxidants and nonionic surfactants are as described for the tin plating bath.
  • Stabilizers are used to smoothly eutect tin and silver.
  • thioureas, thioglycol These are thio-based compounds such as cholic acid, sulfite, and thiosulfate.
  • the methanesulfonic acid obtained in Purification Example 7 was used, and the other components and contents were the same as in Example 12 and a tin-bismuth alloy plating bath was used. Produced.
  • the methanesulfonic acid obtained in Purification Example 8 was used, and the other components and contents were the same as in Example 12 and tin-bismuth alloy plating. A bath was made.
  • the methanesulfonic acid obtained in Purification Example 7 was used, and the other components and contents were the same as in Example 13 and tin-silver alloy plating. A bath was made.
  • the methanesulfonic acid obtained in Purification Example 8 was used, and the other components and contents were the same as in Example 13 and a tin-silver alloy plating bath was used. Produced.
  • Example 2 Comparative Example 2. Refinement a In place of the methanesulfonic acid obtained in Example 1, use methanesulfone cake that has been concentrated under reduced pressure at room temperature, not under heating, and contain other ingredients and components. The amount was the same as in Example 1 to make a water bath.
  • the film has a good gloss and no discoloration or discoloration.
  • the film has a slightly cloudy luster but no wrinkles.
  • the film is discolored from yellow to blue, and wrinkles are also generated.
  • the tin plating bath and tin alloy bath containing the alkanesulfonic acid subjected to the separation and purification of the present invention as the pace acid are compared with the plating bath containing the alkanesulfonic acid not subjected to the separation and purification. It can be seen that there is a clear advantage in that the reflowability of the obtained coating is improved. Therefore, when the tin film or tin alloy film obtained from the plating bath of the present invention is applied to an electronic component or the like, the reliability of the plating can be remarkably improved as compared with the conventional art >>
  • the cathode current density was set to be higher than usual, and plating was performed under the condition where the unevenness of the cracks was likely to occur.
  • the appearance of the electrodeposition film obtained from each of the plating baths in Examples and Comparative Examples was evaluated. .
  • Examples 1 to 1 7 and Comparative Examples 1 and 3 to 6 Using the tin plating and tin alloy plating baths, electric plating was performed under the following conditions, and a film thickness of 10 x m was formed on a Cu-based lead frame. A tin plating film or a tin alloy plating film was formed. Observe the deposited state of the film on each end face of the lead with a magnifying glass, and then generate unevenness in the entire lead frame. The situation was visually observed to evaluate the appearance of the film.
  • Example 7 was an excellent result of A to B.
  • the cathode current density of electric plating is about 10 to 20 A / dm ⁇ , but in this test, it is increased to 40 to 5 OA / dm 2 and severe conditions are likely to cause unevenness. Set to. For this reason, it is considered that a crack was generated in Comparative Examples 13 to 6 using the conventional methanesulfone not subjected to the separation and purification treatment of the present invention. On the other hand, in Examples 1 to 17, no unevenness was observed and no cracks were observed in spite of this severe condition.
  • the separation of the present invention is also possible. It is clear that the Alfon sulfonic acid that has undergone purification treatment contributes to the improvement of the film appearance. Furthermore, from the comparison between Example 1 2 and Comparative Example 5, it was confirmed that when alkanesulfonic acid was subjected to vacuum concentration treatment, it was important to perform under heating to improve the film appearance. .
  • the tin plating bath and tin alloy plating bath containing alkanesulfonic acid subjected to the separation and purification treatment of the present invention as the base acid are compared with the plating bath containing alkanesulfonic acid not subjected to separation and purification.
  • the plating bath containing alkanesulfonic acid not subjected to separation and purification there is a clear advantage in improving the appearance of the resulting plated film.
  • the tin film or tin alloy film obtained from the plating bath of the present invention is applied to an electronic component or the like, the reliability of the plating can be remarkably improved as compared with the conventional case.
  • electric plating is performed using a tin plating bath or a tin alloy plating bath based on purified methanesulfonic acid as a base acid obtained by subjecting commercially available methanesulfonic acid to vacuum concentration treatment and / or solid phase extraction treatment.
  • purified methanesulfonic acid as a base acid obtained by subjecting commercially available methanesulfonic acid to vacuum concentration treatment and / or solid phase extraction treatment.
  • concentration of impurities present in methanesulfonic acid was calculated, including the estimated results, and 1.6 ppm for methanethiosulfonic acid S-methyl (2) and 2.5 p for dimethylsulfone (5).
  • dimethylsulfone (5) In light of the concentration of dimethylsulfone (5), it can be estimated that ⁇ -black dimethylsulfone (3) is 1.2 p pm -methylsulfonyl- ⁇ ⁇ -dichlorodimethylsulfone (4) is 2.5 p pm, respectively. In addition, the concentration of dimethyldisulfide (1) seems to be not much different from that of dimethylsulfone (5).
  • a sparrow bath having the following composition was prepared.
  • bisphenol polyethoxylate was used as the nonionic surfactant.
  • about 2 gZ 1 of dibutyl naphthalene sulfonate was contained as an anionic surfactant, and about 11 of ascorbic acid was contained as an antioxidant.
  • the iow compounds (1) to (5) isolated in the above test were added to the above-mentioned sparrow bath, respectively, and the iow compounds (3) and (4) were used in a weight ratio of 1: 1.
  • the addition concentration in the bath was changed to 0 to 5 ppm (changed every l pm), 10 ppm, 50 ppm, 100 ppm, and 200 ppm, respectively.
  • the evaluation criteria for the appearance of the film are as follows.
  • Compound (1) is dimethyldisulfide
  • Compound (2) is S-methyl methanesulfonate
  • Compound (3) is ⁇ -chlorodimethylsulfone
  • Compound (4) is ⁇ '-methylsulfonyl- ⁇ , ⁇ -dichlorodimethyl.
  • Sulfone, Compound (5) is dimethylsulfone.
  • dimethyl disulfide (1) had a rating of C at 20 00 pm and C, and evaluation of B at 10 00 pp m (that is, 1 000 ppm and below 2 000 ppm). Therefore, as is clear from the comparison with dimethylsulfone (5), it was confirmed that dimethyldisulfide (1) had an adverse effect on the plating properties.
  • methanethiosulfonic acid S-methyl (2), ⁇ -black dimethylsulfone (3), ⁇ -methylsulfonyl- ⁇ , ⁇ -dichlorodimethylsulfone (4) have a C appearance rating of 4 ppm, respectively.
  • B at 3 ppm (ie, greater than 3 ppm and less than 4 ppm). From these results, it was confirmed that the compounds (2) to (4) had an adverse effect on the plating properties as in the case of dimethyldisulfide (1).
  • compounds (2) to (4) have a lower allowable concentration in the bath than compound (1), and even if they are present in the bath in a very small amount, they may adversely affect the plating properties. found.
  • the appearance evaluation is B, but in the coexistence state, the total concentration is 2 ppm. Drops to C. In the coexistence state, the evaluation is B when the total concentration is 1 ppm (that is, 1 ppm or more and less than 2 ppm). From these results, it was confirmed that the appearance evaluation of the compounds (3) and (4) was inferior in the coexistence state even at the same concentration as compared with the case where each of them existed alone. Therefore, it was found that when a plurality of Xio compounds coexist, the synergistic action further promotes the deterioration of the plating characteristics.
  • the various thio compounds as impurities present in methanesulfonic acid do not all affect the mechanical properties, but the metallic properties.
  • the component that adversely affects the texture characteristics is compound (1). (4), and the important point was clarified that it is a compound having an io atom with an oxidation number of + IV or less in the molecule, and a compound having both an io atom and a chlorine atom.
  • the intensity of influence on the plating characteristics (ie, the allowable concentration in the plating bath) also differs between the compounds (1) to (4).
  • the compound (1) It can be estimated that the allowable concentration is less than 200 ppm and the allowable concentration of compounds (3) to (4) is less than 4 ppm.
  • the synergistic effect further promoted the reduction in plating properties.
  • the total allowable concentration can be estimated to decrease to less than 2 ppm.
  • a tin-bismuth alloy bath was prepared with the following composition.
  • nonionic surfactant was incorporated with about 5 g / 1 nonylphenolate, and ascorbic acid was contained with about 1 g Z 1 as an antioxidant.
  • the appearance of the electrodeposition film was evaluated by adding the thio compounds (1) to (5) isolated in the above test to the above-described tin-bismuth alloy plating bath under the same addition conditions as the above-described tin plating bath.
  • concentration in the plating bath is changed alone or in combination within the range of ⁇ 200 ppm, and a tin-bismuth alloy film is formed on the Cu-based lead frame under the same electrical plating conditions as the tin plating bath.
  • the ft inferiority of the electrodeposition coating was evaluated.
  • the evaluation criteria are the same as in the case of the tin bath.
  • the test results are shown in the following table.
  • dimethylsulfone (5) does not affect the appearance of the plating film and does not affect the plating properties even when mixed with 200 ppm.
  • the compounds (1) to (4) have an adverse effect on the plating characteristics since the appearance of the plating film is deteriorated by the incorporation of the compounds (1) to (4).
  • the effect on the plating properties varies depending on the type of compound. Like the tendency in the tin plating bath, the impact on the plating properties is small for compound (1), large for compound (4), and compounds (2) to (3 ) Was found to be intermediate between (1) and (4).
  • compounds (1) to (4) tend to further promote the deterioration of the plating characteristics by synergistic action when a plurality of components coexist in the plating bath instead of alone. I found out.
  • the permissible concentrations of the compounds (1) to (4) having an adverse effect on the plating characteristics were larger than those in the tin plating bath.
  • the appearance evaluation at 200 ppm in the tin plating bath is C
  • the appearance evaluation at 200 ppm in the tin-bismuth alloy plating bath is B.
  • B the appearance evaluation even if it exceeds 200 ppm.
  • the appearance evaluation at 10 ppm in the tin plating bath is C
  • the appearance evaluation at 10 ppm in the tin-bismuth alloy plating bath is B. Even if it exceeds 10 ppm, B may be evaluated instead of C. In this way, it was confirmed that the allowable concentration of each compound in the bath was larger in the tin-bismuth alloy plating bath than in the tin plating bath.
  • the tin-bismuth alloy plating bath has a greater resistance to degradation of plating properties than the tin plating bath, and the impurity concentration is increased compared to the tin bath. Also adversely affect the mechanical properties It can be estimated that it is difficult.
  • a tin-silver alloy plating bath was prepared with the following composition.
  • the types and contents of the nonionic surfactant and the antioxidant are the same as those in the tin-bismuth alloy plating bath.
  • odalyol polyethoxylate was used as a stabilizer.
  • the Xo compounds (1) to (5) isolated in the above test were added under the same addition conditions as the above-described tin plating bath, and the appearance of the electrodeposited film was evaluated. That is, for the thio compounds (1) to (5), the concentration in the plating bath is changed alone or in combination within the range of 0 ppm to 200 ⁇ pm, and the electrical plating conditions are the same as those of the tin plating bath.
  • a tin-silver alloy film was formed on a Cu lead frame, and the appearance of the electrodeposition film was evaluated for superiority or inferiority. The evaluation criteria are the same as in the case of the tin bath.
  • dimethylsulfone (5) does not affect the appearance of the plating film and does not affect the plating characteristics even when mixed with 200 ppm.
  • the compounds (1) to (4) have an adverse effect on the plating characteristics because they deteriorate the appearance of the plating film by mixing them. Effect on plating characteristics Depends on the type of compound, and similar to the tendency in the tin plating bath, it was found that the effect on the plating properties was small for compound (1) and compounds (2) to (4) were larger than compound (1). .
  • compounds (1) to (4) tend to further promote the reduction of the plating properties by synergistic action when multiple components are present in the plating bath instead of a single component. I found out.
  • the permissible concentrations of the compounds (1) to (4), which adversely affect the plating characteristics were larger than those in the tin plating bath and smaller than those in the tin-bismuth alloy plating bath.
  • the appearance evaluation in the tin-silver alloy bath is B, but in the tin bath is C, and compound (4) is in the bath.
  • the appearance rating in the tin-silver alloy bath is B, but in the tin bath it is C.
  • the allowable concentration of each compound in the bath is higher in the tin-silver alloy bath than in the tin bath.
  • the appearance evaluation in the tin-silver alloy bath is B, but in the tin-bismuth alloy bath, it is A.
  • the acceptable concentration in the tin-bismuth alloy bath was found to be larger than the tin-silver alloy bath.
  • the resistance to degradation of the plating characteristics in the tin-silver alloy bath is greater than in the tin plating bath, and is less likely to be in the tin-bismuth alloy bath. did it. Therefore, in the case of a tin-silver alloy bath, it can be estimated that even if the impurity concentration is increased as compared with the tin bath, adverse effects on the plating characteristics are less likely to appear, and it is easier to appear than the tin-bismuth alloy bath.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

本発明は、(a)可溶性第一スズ塩、又は銅塩、ビスマス塩、銀塩、インジウム塩、亜鉛塩、ニッケル塩、コバルト塩及びアンチモン塩からなる群から選ばれた少なくとも一種の可溶性塩と可溶性第一スズ塩との混合物、並びに(b)アルカンスルホン酸及びアルカノールスルホン酸からなる群から選ばれた少なくとも一種の脂肪族スルホン酸、を含有するスズ含有メッキ浴において、該脂肪族スルホン酸が、分子内に酸化数+IV以下のイオウ原子を有する化合物、及び分子内にイオウ原子と塩素原子を有する化合物からなる不純物としてのイオウ化合物の含有量が微量以下の精製脂肪族スルホン酸であることを特徴とするスズ含有メッキ浴を提供する。本発明のメッキ浴によれば、リフロー性、皮膜外観などに優れたスズメッキ皮膜又はスズ合金メッキ皮膜を形成できる。

Description

明 細 書
スズ含有メツキ浴
技術分野
本発明は、 脂肪族スルホン酸をベース酸とするスズメツキ浴又はスズ合金メッ キ浴に関する。
背景技術
メタンスルホン酸、 エタンスルホン酸、 プロパンスルホン酸などのアルカンスル ホン酸; 2—ヒドロキシエタンスルホン酸、 2—ヒドロキシプロパンスルホン酸な どのアルカノ一ルスルホン酸; p—フエノールスルホン酸などの芳香族スルホン酸 等の有機スルホン酸をベース酸として含有するスズメツキ浴又はスズ合金メツキ浴 は、 排水処理が容易であり、 スズ塩の溶解性に優れていることから、 従来から広く 用いられている。
この様な有機スルホン酸、 特に、 汎用されているアルカンスルホン酸などの脂肪 族スルホン酸をベース酸とするスズメツキ浴及ぴスズ合金メツキ浴では、 脂肪族ス ルホン酸の純度と得られるメツキ皮膜の特性との間に何らかの関連性があり、 脂肪 族スルホン酸の純度が低く不純物が微量でも含まれると、 メツキ皮膜の特性に悪影 響を及 すのではないかという問題が提起されている。
特開平 1 0— 2 0 4 2 5 2号公報は、 アルキルメルカプ夕ンを過酸化水素で酸化 する製法では、 ジスルフイ ドの様な反応中間体の残存もあり、 製品を汚染している ことを指摘している(段落 5 )。そして、 メチルメルカブタン、ェチルメルカブタン、 2—メルカプトエタノ—ルなどのアルキルメルカプ夕ンと過酸化水素とを反応させ てアルカンスルホン酸又はアルカノールスルホン酸を製造するに際して、 5 0重量 %以上の H 2 0 2濃度を有する過酸化水素水溶液を化学量論量を越える使用量で反応 槽に仕込み 5 0 °C以下の低温でアルキルメルカプ夕ンを連続供給し, 3〜2 0時 間程度の熟成期間を経て、 常圧下で沸騰蒸留処理を施した後、 反応液を陰イオン交 換体と接触させる方法により 高純度のアル力ンスルホン酸又はアルカノールスル ホン酸が高収率、 低コストで得られることを開示している(同公報の請求の範囲、 段 落 9〜 1 1参照)。 この方法は、 アルキルメルカブタンと過酸化水素を反応させてァ ルカンスルホン酸を製造する過程において、 過酸化水素を化学量論量を越えて多く 使用し、 反応温度を低温とし、 熟成期間を設け、 更に、 常圧下での沸騰蒸留、 陰ィ オン交換体による処理等の複雑な処理の組み合わせによって、 高純度のアルカンス ルホン酸を製造する方法である。 この文献は、 得られた高純度のアルカンスルホン 酸は、 (メタ)アクリル酸とのエステル化により反応性乳化剤として使用できること を示している。 更に、 アルカンスルホン酸の単独重合体又はアルカンスルホン酸と ピニルモノマーとの共重合体は、 凝集剤、 分散剤、 増粘剤などの各種用途に利用で き、 更に、 スズメツキ浴、 ハンダメツキ浴等の添加剤としても利用できることを開 示している(同公報の段落 2参照)
また、 特開 2 0 0 1 - 6 4 2 4 9号公報は、 従来のアルカンスルホン酸の製法と して、 チオール(アルキルメルカプタン)の酸化、 ハロゲン化アルキルスルホニルの 加水分解、 ジメチルジスルフイ ドの酸化な ,どの方法を挙げ (段落 3参照)、 これらの 従来製法で得られたアルカンスルホン酸の水溶液を塩基性ァニオン交換樹脂に接触 させて、 主にアル力ンスルホン酸中の硫酸の含有率を低減する精製方法を開示して いる。 そして、 アルカンスルホン酸、 特にメタンスルホン酸は、 導電金属のメツキ に有用であるが、 不純物として含まれる硫酸が導電金属のメツキに際して有害であ ることを指摘した上で、 塩基性ァニオン交換樹脂との接触により、 アルカンスルホ ン酸中の硫酸の含有率を大幅に低減することができるとしている(段落 2 ~ 5参照)。
発明の開示
本発明は、 上記した従来技術の現状に鑑みてなされたものであり、 その主な目的 は、 脂肪族スルホン酸をべ一ス酸とするスズメツキ浴又はスズ合金メッキ浴におい て、 脂肪族スルホン酸の純度と得られるメツキ皮膜の特性との関連性について更に 検討を加え、 優れた特性を有するメツキ皮膜を形成できるスズメツキ浴又はスズ合 金メッキ浴を提供することである。
本発明者は、 上記した目的を達成すべく鋭意研究を重ねた結果 アルカンスルホ ン酸等の脂肪族スルホン酸中には製造方法に由来して各種のィォゥ化合物が不純物 として含まれるが、これらのィォゥ化合物の中では、 α—クロ口ジメチルスルホン、 ジメチルジスルフィ ドなどの特定の成分のみがメツキ特性に悪影響を及ぼし、 この 特定成分以外のィォゥ化合物、 例えば、ジメチルスルホンなどはメツキ特性に影響を 及ぼさない存在であることを見出した。 そして、 減圧濃縮などの特定の精製分離方 式を市販のアルカンスルホン酸に施すと、 メツキ特性に悪影響を及ぼす特定のィォ ゥ化合物を有効に排除でき、 得られた精製アルカンスルホン酸を添加剤としてでは なく、 スズメツキ浴又はスズ合金メッキ浴のベース酸に用いると、 メツキ皮膜のリ フロー性、 皮膜外観等を大きく改善できることを見出し、 ここに本発明を完成する に至った。
即ち、 本発明は、 下記のスズ含有メツキ浴を提供するものである。
( a )可溶性第一スズ塩、 又は
銅塩、 ビスマス塩、 銀塩、 インジウム塩、 亜鉛塩、 ニッケル塩、 コバルト塩及 ぴァンチモン塩からなる群から選ばれた少なくとも一種の可溶性塩と可溶性第 ースズ塩との混合物、
並びに
( b ) アルカンスルホン酸及びアルカノールスルホン酸からなる群から選ばれた少 なくとも一種の脂肪族スルホン酸
を含有するスズ含有メツキ浴において、
該脂肪族スルホン酸が、 分子内に酸化数 +IV以下のィォゥ原子を有する化合物、 及び分子内にィォゥ原子と塩素原子を有する化合物からなるィォゥ化合物の含有量 が微量以下の精製脂肪族スルホン酸である
ことを特徴とするスズ含有メ Vキ浴。
2 . 分子内に酸化数 + IV以下のィォゥ原子を有する化合物が、 ジメチルジスルフ イドであり、 該化合物のメツキ浴中の含有量が 2 0 0 p p m未満である上記項 1に 記載のスズ含有メツキ浴。
3 . 分子内に酸化数 + IV以下のィォゥ原子を有する化合物が、 メタンチォスルホ ン酸 S—メチルであり、 該化合物のメツキ浴中の含有量が 4 p m未満である上記 項 1に記載のスズ含有メツキ浴。
4 . 分子内にィォゥ原子と塩素原子を有する化合物が、 α—クロ口ジメチルスル ホンであり、 該化合物のメツキ浴中の含有量が 4 p p m未満である上記項 1に記載 のスズ含有メツキ浴。
5 . 分子内にィォゥ原子と塩素原子を有する化合物が、 α—メチルスルホニルー a , α—ジクロロジメチルスルホンであり、該化合物のメツキ浴中の含有量が 4 p p m未満である上記項 1に記載のスズ含有メツキ浴。 6 . 分子内に酸化数 + IV以下のィォゥ原子を有する化合物が、 ジメチルジスルフ ィ ド及びメタンチォスルホン酸 S—メチルであり、 分子内にィォゥ原子と塩素原子 を有する化合物が、 α—クロ口ジメチルスルホン及び α—メチルスルホニルー a , ージクロ口ジメチルスルホンであって、
ジメチルジスルフイ ド、 メタンチォスルホン酸 S—メチル、 α—クロロジメチル スルホン及ぴ α—メチルスルホニルー a , α—ジクロ口ジメチルスルホンからなる 群から選ばれたィォゥ化合物の 2種以上がメツキ浴中に存在し、
該ィォゥ化合物のメツキ浴中の合計含有量が 2 p p m未満である上記項 1に記載 のスズ含有メツキ浴。
7 . 精製脂肪族スルホン酸が、 アルキルメルカプタン若しくはジアルキルジスル フィ ドを湿式酸化して得られた脂肪族スルホン酸、 又はハロゲン化アルキルスルホ ニルを加水分解して得られた脂肪族スルホン酸を精製したものである上記項 1に記 載のスズ含有メツキ浴。
8 . 精製脂肪族スルホン酸が、 脂肪族スルホン酸に加温下で減圧濃縮処理を施し たものである上記項 1に記載のスズ含有メツキ浴。
9 . 精製脂肪族スルホン酸が、 脂肪族スルホン酸を吸着剤に接触させて固相抽出 処理を施したものである上記項 1に記載のスズ含有メツキ浴。
1 0 . 精製脂肪族スルホン酸が、 同一の吸着剤又は異なる種類の吸着剤を用いて、 2回以上の固相抽出処理を施したものである上記項 9に記載のスズ含有メツキ浴。 1 1 . 精製脂肪族スルホン酸が、 脂肪族スルホン酸に、 減圧濃縮処理と固相抽出処 理とを組み合わせて施したものである上記項 1に記載のスズ含有メツキ浴。
1 2 . アル力ンスルホン酸がメタンスルホン酸である上記項 1に記載のスズ含有メ ツキ浴。
1 3 . 上記項 1に記載のメツキ浴を用いてパンプを形成することを特徵とするパン プ形成方法。
• 本発明のスズ含有メツキ浴は、 メツキ金属成分として、 可溶性第一スズ塩を単独 で含有するか、 或いは、 銅塩、 ビスマス塩、 銀塩、 インジウム塩、 亜鉛塩、 ニッケ ル塩、 コパルト塩及ぴァンチモン塩からなる群から選ばれた少なくとも一種の可溶 性塩と可溶性第一スズ塩とを含有し、 ベース酸として、 アルカンスルホン酸及ぴァ ルカノ一ルスルホン酸からなる群から選ばれた少なくとも一種の脂肪族スルホン酸 を含有するものである。
ベース酸として用いる脂肪族スルホン酸の内で、 アルカンスルホン酸としては、 化学式: CnH2n + 1S〇3H (例えば、 n= 1〜1 1 )で示されるものが使用できる。 この様なアルカンスルホン酸の具体例としては、 メタンスルホン酸、 エタンスルホ ン酸、 1—プロパンスルホン酸、 2—プロパンスルホン酸、 1—ブタンスルホン酸、 2—ブタンスルホン酸、 ペンタンスルホン酸などが挙げられる。
また、 アルカノールスルホン酸としては、
化学式: CmH2m+1— CH(OH)— CpH2p— S03H (例えば、 m=0〜6、 p= 1 〜5) で示されるものが使用できる。 この様なアルカノールスルホン酸の具体例と しては、 2—ヒドロキシェタン一 1—スルホン酸 (イセチオン酸) 、 2—ヒドロキ シプロパン一 1—スルホン酸 (2—プロパノールスルホン酸) 、 2—ヒドロキシプ タン一 1ースルホン酸、 2—ヒドロキシペンタン一 1—スルホン酸、 1ーヒドロキ シプロパンー 2—スルホン酸、 3—ヒドロキシプロパン一 1—スルホン酸、 4ーヒ ドロキシブタン一 1ースルホン酸、 2—ヒドロキシへキサン一 1—スルホン酸など が挙げられる。 アルカノ一ルスルホン酸の代表例は、 2—ヒドロキシェタン一 1一 スルホン酸である。
上記したアルカンスルホン酸及びアルカンノールスルホン酸は、 一種単独又は二 種以上混合して用いることができる。 これらの内で、 アル力ンスルホン酸が好まし く、 特にメタンスルホン酸が好ましい。
ベース酸として用いる脂肪族カルボン酸、 特にアルカンスルホン酸の従来の製法 としては、 アルキルメルカプ夕ンを湿式酸化する方法 (例えば、塩素及び水、 又は過 酸化水素により酸化する方法) が知られているが この方法では、 中間段階でジメ チルジスルフィ ドが生成する可能性がある。 前記した特開平 1 0— 204252号 公報でも、 ジスルフィ ドの様な反応中間体の残存を指摘している(同文献 5の段落 5 参照)。 また、 ジアルキルジスルフィ ドを湿式酸化する方法では、 未反応のジアルキ ルジスルフィ ドが生成物中に残留する可能性があり、 例えば、 ジメチルジスルフィ ドを湿式酸化すると、 生成物のメタンスルホン酸中に未反応のジメチルジスルフィ ドが微量残存する可能性がある。 さらに、 八ロゲン化アルキルスルホニルを加水分 解する方法でも、 目的とする脂肪族スルホン酸以外に、 各種のハロゲン原子を有す るィォゥ化合物が不純物として微量混入する可能性がある。 この点についてはアル キルメルカブタンを塩素と水で湿式酸化する方式でも同様の可能性がある。
この様に、 脂肪族スルホン酸には、 その製造方法に応じて各種のィォゥ化合物が 不純物として含まれる可能性がある。
本発明者は、 精製分離前の脂肪族スルホン酸に含まれる不純物をジクロロメタン で抽出し、 得られた不純物の混合体を液体クロマトグラフィーにかけ、 各単離物を 各種分析機器により同定した。 次いで、 これらの各単離物を新たに分離精製した脂 肪族スルホン酸に微量含有させて、 これらの単離物を不純物として含む脂肪族スル ホン酸をべ一ス酸とするスズメツキ浴又はスズ合金メッキ浴を作製し、 得られたメ ツキ皮膜の特性を調べた。その結果、不純物として含まれるィォゥ化合物の中には、 メツキ特性に悪影響を及ぼす成分と、 悪影響を及ぼさない成分があるという注目す べき結論を見出した。 そして、 メツキ特性に対する影響が異なる 2群の成分を特定 したところ、 悪影響を及ぼす成分には共通の特徴があることを突き止めた。 即ち、 不純物として含まれるィォゥ化合物の内で、 特に、 (A) 分子内に酸化数 + IV以下 のィォゥ原子を有する化合物、 及び (B ) 分子内にィォゥ原子と塩素原子を有する 化合物が、 スズメツキ浴及びスズ合金メッキ浴から得られるメツキ皮膜の特性に悪 影響を及ぼすことが明らかとなつた。
従って、 本発明では、 (A) 分子内に酸化数 + IV以下のィォゥ原子を有する化合 物、 及び (B ) 分子内にィォゥ原子と塩素原子を有する化合物の含有量が、 ゼロ又 は微量となるように精製した脂肪族スルホン酸をベース酸として用いることが必要 である。 この場合、精製脂肪族スルホン酸に含まれる上記化合物(A)と化合物(B ) の合計量は、 メツキ浴中に添加した場合のメツキ浴中の濃度として 2 0 0 p p m未 満となる量であることが好ましい。
この様な特定の不純物の含有 fiが極めて少ない精製脂肪族スルホン酸を用いるこ とにより、 得られるスズメツキ皮膜又はスズ合金メッキ皮膜の特性、 特に、 リフロ 一性、 皮膜外観が非常に良好となる。
上記した (A) 分子内に酸化数 + IV以下のィォゥ原子を有する化合物としては、 具体的には、 ィォゥ原子の酸化数が最も大きい状態ではない化合物、 即ち、 イオン 原子が完全なォクテツト構造になっていない化合物を意味する。 この様なイオン化 合物の具体例としては、 下記の構造式(a )で表される化合物(1)、 及び構造式(b )で 表される化合物(2)を挙げることができる。
(1)ジメチルジスルフィド
CH3-S -S -CH3 -(a)
(2)メ夕ンチォスルホン酸 S—メチル
0
CH3S-SCH3 (b)
0 また、 (B) 分子内にィォゥ原子と塩素原子を有する化合物の具体例としては、 下記構造式(c)で表される化合物(3)、 及び構造式 (d) で表される化合物 (4)を挙 げることができる。
(3) α—クロ口ジメチルスルホン
0
0
(4) α—メチルスルホニル一《, ひージクロ口ジメチルスルホン
Figure imgf000009_0001
尚、 脂肪族スルホン酸には、 上記した不純物の他に、 例えば、 ジメチルスルホン 等のィォゥ原子の酸化数が最も高い状態の化合物が含まれる可能性もあるが、 この 化合物はメツキ特性に悪影響を及ぼさない。 更に、 脂肪族スルホン酸には、 製造方 法に応じて、 その他の各種の不純物が含まれる可能性がある。 従って、 存在する可 能性のある各種の不純物の内で、 特に、 (A) 分子内に酸化数 + IV以下のィォゥ原 子を有する化合物と (B) 分子内にィォゥ原子と塩素原子を有する化合物にのみ着 目し、 これらの含有量を低減させることによって、 メツキ皮膜の特性を大きく改善 できることは、 容易には予測できないことといえる。
脂肪族スルホン酸中に含まれる (A) 分子内に酸化数 + IV以下のィォゥ原子を有 する化合物、 及び (B) 分子内にィォゥ原子と塩素原子を有する化合物、 からなる 不純物の含有量は、 各種の分析機器によっても測定不能な濃度ゼロであることが最 も好ましいが、 スズ又はスズ合金のメツキ特性、 特に、 メツキ皮膜のリフロー性及 び皮膜外観に悪影響を及ぼさない範囲であれば、 微量含まれても良い。 この様な許 容量は、 不純物の種類によって異なる。 上記した化合物の内では、 メツキ皮膜に対 する悪影響は、 α—クロ口ジメチルスルホンが最も大きく、 次いで、 ひ—メチルス ルホニルー α , α—ジクロロジメチルスルホンが大きく、 ジメチルジスルフィ ドとメ タンチォスルホン酸 S—メチルは、 これらの化合物よりも悪影響が小さい傾向があ る。
具体的な許容範囲については、 メツキ浴中における濃度どして、 ジメチルジスル フイ ドは 2 0 0 p p m未満であることが好ましく、 メタンチォスルホン酸 S—メチ ルは 4 p p m未満であることが好ましい。 また、 α—クロ口ジメチルスルホンと α ーメチルスルホニルー α , ひージクロ口ジメチルスルホンについては、夫々 4 p p m 未満であることが好ましい。
更に、 上記ィォゥ化合物(1) ~ (4)の内で、 複数の成分が共存する場合には、 これ らの相乗作用でメツキ特性への悪影響が増加すると考えられる。 従って、 ジメチル ジスルフイ ド、 メタンチォスルホン酸 S—メチル、 α—クロ口ジメチルスルホン及 ぴ α—メチルスルホニルー α, α—ジクロ口ジメチルスルホンからなる群から選ば れたィォゥ化合物が、 メツキ浴中に 2種以上含まれる場合には、 これらのィォゥ化 合物の合計濃度は 2 p p m未満とすることが好ましい。
(A) 分子内に酸化数 + IV以下のィォゥ原子を有する化合物と ( B ) 分子内にィ ォゥ原子と塩素原子を有する化合物を、 脂肪族スルホン酸から除去して精製脂肪族 スルホン酸を得る方法としては、 減圧濃縮処理、 固相抽出処理等を採用できる。 これらの方法の内で、 減圧濃縮処理は、 脂肪族スルホン酸の原液を減圧下で加温 して、 原液を濃縮する処理である。
好ましい減圧条件は、 メタンスルホン酸 2—ヒドロキシエタンスルホン酸など の脂肪族スルホンの種類に応じて異なり、 例えば、 メタンスルホン酸では、 0 . 1 3〜 6 . 6 k P a程度、 好ましくは 0 . 6 6〜 3 . 9 k P a程度の圧力とすればよ い。
減圧下の加温条件も脂肪族スルホンの種類に応じて多少異なり、 例えば、 メタン スルホン酸では、 5 0〜: 1 0 0 程度とすればよく、 徐々に温度を上昇させながら 精製しても良いし、 適正な温度を保持して加温しても良い。 減圧濃縮時間は 1〜 1 0時間程度が一般的であり、 3 ~ 8時間程度が好ましいが、 脂肪族スルホン酸の種類に応じて適正に濃縮時間を短縮或は延長できる。
尚、 脂肪族スルホン酸の原液とは、 市販の脂肪族スルホン酸、 これを予備的に常 圧下で適宜加温濃縮したもの等を用いることができる。
脂肪族スルホン酸の原液を減圧加温下で処理すると、 原液中の不純物又は低沸点 成分が効率良く蒸発して原液から除去され、 蒸発せずに残った残留液中では脂肪族 スルホン酸が濃縮され、 脂肪族スルホン酸の純度が上昇する。
固相抽出処理は、 脂肪族スルホン酸を吸着剤に接触させて、 脂肪族スルホン酸か ら不純物を除去する処理である。
吸着剤としては、 活性炭、 シリカゲル、 活性アルミナ、 活性白土、 ゼォライト、 多孔性ポリマーなどの公知の吸着剤を用いることができる。 例えば、 活性炭として は、 炭化と賦活工程を経たものであれば任意のものを使用できる。 多孔性ポリマー については、 スチレンとジビニルベンゼンの共重合体を母体とする多孔質のポリマ —が代表例であり、 市販品としては、 アンバーライト (スペルコ社製) などが挙げ られる。
これらの吸着剤は、 大きな表面積を持ち、 内部にナノメートルオーダーの細孔を 多く持った多孔質構造の固体である。
固相抽出処理では、 予め吸着剤をメタノール、 イオン交換水等で洗浄した後、 立 設したカラムに該吸着剤を充填し、 適度な流速で脂肪族スルホン酸をカラムに滴下 させて、 脂肪族スルホン酸の原液中に含まれる不純物などを吸着剤に吸着させれば よい。 これにより、 脂肪族スルホン酸に含まれる不純物が除去されて、 高純度の精 製脂肪族スルホン酸が得られる。 カラム中における脂肪族スルホン酸の流速は、 脂 肪族スルホン酸の種類、 固定相である吸着剤の種類、 その使用量などに応じて適宜 調整すればよい。
固相抽出処理は, 複数回繰り返しても良い。 この場合、 吸着剤としては、 同一の 吸着剤を用いてもよく、 或いは、 種類を変えた吸着剤を用いても良い。 例えば、 第 一工程として、 有機系吸着剤である多孔性ポリマーを充填したカラムに脂肪族スル ホン酸を滴下させた後、 第二工程として、 第一工程で得られた脂肪族スルホン酸を 同種の多孔性ポリマーを充填したカラムに滴下して、 2段階抽出を行うことができ る。 さらに、 必要に応じて、 多段階の抽出を行ってもよい。 また、 第一工程として、 活性炭、 シリ力ゲルなどの無機系吸着剤を充填したカラムに脂肪族スルホン酸を滴 下させた後、 第二工程として、 箄一工程で得られた脂肪族スルホン酸をさらに多孔 性ポリマーを充填したカラムに滴下して 2段階の抽出を行い、 更に、 必要に応じて 多段階の抽出を行ってもよい。
また、 脂肪族スルホン酸に対して、 減圧濃縮処理と固相抽出処理を組み合わせて 適用することもできる。
例えば、 脂肪族スルホン酸の原液を減圧加温下で濃縮処理した後、 得られた脂肪 族スルホン酸を吸着剤を充填したカラムに滴下して抽出処理を行うことができる。 また、 その逆に、 固相抽出処理で得られた脂肪族スルホン酸に減圧濃縮処理を施す こともできる。
更に、 減圧濃縮処理と、 複数工程の固相抽出処理とを組み合わせることも可能で ある。 この場合、 固相抽出処理は減圧濃縮処理の前後にまとめて行っても良いし、 減圧濃縮処理を挟んだ分離した状態(即ち、固相抽出→減圧濃縮→固相抽出の順番) で行っても良い。
尚、 前述した特開 2 0 0 1— 6 4 2 4 9号公報は、 ポリマ一からなる母体に第 4 級アンモニゥム塩基などの官能基を導入したァニオン交換樹脂を用いて、 アルカン スルホン酸中の硫酸の含有率を低減する方法を開示している。 この方法は、 上記し た吸着剤を用いる方法とは、 除去対象物が明らかに異なる方法である。
本発明のスズ含有メツキ浴は、 メツキ金属成分として、 第一スズ塩を単独で含有 するスズメツキ浴、 又は、 メツキ金属成分として、 銅塩、 ビスマス塩、 銀塩、 イン ジゥム塩、 亜鉛塩、 ニッケル塩、 コバルト塩及びアンチモン塩からなる群から選ば れた少なくとも一種の可溶性塩と可溶性第一スズ塩との混合物を含有する鉛フリー のスズ合金メッキ浴である。
これらの内で、 電気スズメツキ浴は、 可溶性第一スズ塩と、 液ベースとしての脂 肪族スルホン酸とを必須成分として含有し、 更に、 必要に応じて、 酸化防止剤、 安 定剤、 界面活性剤、 光沢剤、 半光沢剤、 p H調整剤などの各種添加剤を含有するも のである。
電気スズ合金メッキ浴は、 銅塩、 ビスマス塩、 銀塩、 インジウム塩、 亜鉛塩、 二 ッケル塩、 コバルト塩及びアンチモン塩からなる群から選ばれた少なくとも一種の 可溶性塩並びに可溶性第一スズ塩からなる金属成分と、 液べ一スとしての脂肪族ス ルホン酸とを必須成分として含有するする鉛フリーのメツキ浴であり、 更に、 必要 に応じて、 浴の分解防止、 スズと他の金属との共析促進等を目的とする安定剤等の 他、 スズメツキ浴中の添加剤に類似した各種の添加剤を含有するものである。 上記した電気スズメッキ浴及び電気スズ合金メッキ浴に添加する成分の内で、 可 溶性第一スズ塩としては、 メタンスルホン酸、 エタンスルホン酸、 2—プロパノー ルスルホン酸、 スルホコハク酸、 p—フエノールスルホン酸などの有機スルホン酸 の第一スズ塩;ホウフッ化第一スズ、 硫酸第一スズ、酸化第一スズ、塩化第一スズ、 スズ酸ナトリウム、 スズ酸カリウムなどを例示できる。 .
スズと合金を形成する鉛以外の特定金属の可溶性塩としては、 C u +、 C u 2 +、 A g +、 B i 3 +、 I n 3 +、 Z n 2 +、 N i 2 +、 C o 2 +、 C o 3 +及ぴ S b 3 +の各種金 属イオンを浴中で生成する無機塩、 有機塩等を使用できる。 これらの可溶性塩は、 一種単独又は二種以上混合して用いることができる。
これらの可溶性塩の内で、 可溶性銅塩としては、 硫酸銅、 塩化銅、 酸化銅、 炭酸 銅、 酢酸銅、 ピロリン酸銅、 シユウ酸銅等を例示できる。 可溶性銀塩としては、 メ 夕ンスルホン酸銀、 エタンスルホン酸銀、 2—プロパノールスルホン酸銀などの有 機スルホン酸銀; シアン化銀、 ホウフッ化銀、 硫酸銀、 亜硫酸銀、 炭酸銀、 スルホ コ八ク酸銀、 硝酸銀、 クェン酸銀、 酒石酸銀、 ダルコン酸銀、 シユウ酸銀、 酸化銀、 酢酸銀などを例示できる。 可溶性ビスマス塩としては、 硫酸ビスマス、 酸化ビスマ ス、 塩化ビスマス、 臭化ビスマス、 硝酸ビスマス、 有機スルホン酸のビスマス塩、 スルホコハク酸のビスマス塩などを例示できる。 可溶性インジウム塩としては、 塩 化インジウム、 酸化インジウム、 有機スルホン酸インジウムなどを例示できる。 可 溶性亜鉛塩としては、 塩化亜鉛、 硫酸亜鉛、 酸化亜鉛、 有機スルホン酸亜鉛、 スル ホコハク酸亜鉛などを例示できる。 可溶性ニッケル塩としては、 硫酸ニッケル、 塩 化ニッケル、 硫酸ニッケルアンモニゥム、 酸化ニッケル 酢酸ニッケル 有機スル ホン酸のニッケル塩などを例示できる。可溶性コバルト塩としては、硫酸コバルト、 塩化コバルト、 有機スルホン酸のコバルト塩などを例示できる。 可溶性アンチモン 塩としては、 塩化アンチモン、 ホウフッ化アンチモン、 有機スルホン酸アンチモン などを例示できる。
電気スズメツキ浴では、 可溶性第一スズ塩の含有量は、 S n 2 +イオン量として、 1〜2 0 0 1程度とすることが好ましく、 3 ~ 1 0 0 g / 1程度とすることが より好ましい。
また、 電気スズ合金メッキ浴では、 可溶性第一スズ塩の含有量が S n2+イオン量 として、 1~200 g/ I程度であって、 その他の可溶性金屑塩の含有量が金属成 分量として、 0. 1〜100 g/ 1程度であることが好ましく、 可溶性第一スズ塩 の含有量が S n2+イオン量として、 3〜 100 g/ 1程度であって、 その他の可溶 性金属塩の含有量が金属成分量として 0. 5〜50 1程度であることがより好 ましい。
スズメッキ浴又はスズ合金メッキ浴におけるアルカンスルホン酸及びアル力ノ一 ルスルホン酸からなる群から選ばれた少なくとも一種である脂肪族スルホン酸の濃 度は、 :!〜 500 gZ 1 g度とすることが好ましく、 :!〜 200 g/ 1程度とする ことがより好ましい。
本発明のスズ又はスズ合金メッキ浴は、 酸性〜中性、 或はアルカリ性の任意の p H領域で用いることができる。 一般的には、 メツキ浴中の Sn2 +は酸性では安定で あるが、 中性付近では不安定になり易い。 従って、 本発明のメツキ浴を中性付近の pH領域で用いる場合には、 中性領域において S n2 +を安定化させて、 白色沈殿の 発生、 浴の分解等を防止する目的で、 錯化剤を含有させることが有効である。 錯化剤としては、 ォキシカルボン酸、 ポリカルボン酸、 モノカルボン酸、 これら の塩等を用いることができる。 具体例としては、 ダルコン酸、 クェン酸、 ダルコへ プトン酸、 ダルコノラクトン、 ダルコヘプトラクトン、 ギ酸、 酢酸、 プロピオン酸、 酪酸、 ァスコルビン酸、 シユウ酸、 マロン酸、 コハク酸、 グリコール酸、 リンゴ酸、 酒石酸、 ジグリコール酸、 これらの塩などが挙げられる。 これらの内で、 ダルコン 酸、 クェン酸、 ダルコヘプトン酸、 ダルコノラクトン、 ダルコヘプトラクトン、 こ れらの塩などが好ましい。
また、 エチレンジァミン エチレンジァミン四酢酸 (EDTA) 5 ジエチレント リアミン五酢酸(DTPA)、 二トリ口三酢酸(NTA)、 イミノジ酢酸(I DA)、 イミノジプロピオン酸 (I DP) 、 ヒドロキシェチルエチレンジァミン三酢酸 (H EDTA) 、 トリエチレンテトラミン六酢酸 (TTHA) 、 エチレンジォキシビス (ェチルァミン)一 Ν,Ν,Ν' ,Ν' ーテトラ酢酸、 グリシン類、 二トリロトリメチ ルホスホン酸、 1ーヒドロキシェタン一 1, 1—ジホスホン酸、 これらの塩なども錯 化剤として有効である。 錯化剤は、 一種単独又は二種以上混合して用いることができる。
スズメツキ浴又はスズ合金メツキ浴中の錯化剤の濃度については、 特に限定的で はないが、 通常、 1 ~ 2 O m o 1 / 1程度とすることが好ましい。
酸化防止剤は、 メツキ浴中の S n 2 +の酸化防止を目的とするものであり、 次亜リ ン酸又はその塩、 ァスコルピン酸又はその塩、 ハイドロキノン、 カテコール、 レゾ ルシン、 フロログルシン、 クレゾ一ルスルホン酸又はその塩、 フエノールスルホン 酸又はその塩、 力テコ一ルスルホン酸又はその塩、 ハイド口キノンスルホン酸又は その塩、 ヒドラジンなどを用いることができる。 酸化防止剤は、 一種単独又は二種 以上混合して用いることができる。
スズメツキ浴又はスズ合金メッキ浴中の酸化防止剤の濃度については、 特に限定 的ではないが、 通常、 0 . 0 1 ~ 2 0 g / 1程度とすることが好ましい。
安定剤は、 特に、 スズ合金メツキ浴の安定化又は分解防止、 スズと合金を形成す る金属との共析化等を目的とするものであり、チォ尿素類、 チォ硫酸塩、亜硫酸塩、 チォグリコール、 チォグリコール酸、 チォグリコールポリエトキシレート、 ァセチ ルシスティンなどの含ィォゥ化合物、 シアン化合物、 クェン酸等のォキシカルボン 酸類などの公知の安定剤を用いることができる。 安定剤は、 一種単独又は二種以上 混合して用いることができる。
スズ合金メッキ浴中の安定剤の濃度については、 特に限定的ではないが、 通常、 0 . 0 1〜: L 0 0 g Z l程度とすることが好ましい。
界面活性剤は、 メツキ皮膜の外観、 緻密性、 平滑性、 密着性などの改善に寄与す るものであり、 通常のノニオン系、 ァニオン系、 両性、 カチオン系などの各種界面 活性剤を用いることができる。
ァニオン系界面活性剤としては、 アルキル硫酸塩、 ポリオキシエチレンアルキル エーテル硫酸塩.. ポリォキシェチレンアルキルフエニルエーテル硫酸塩.. アルキル ベンゼンスルホン酸塩、 アルキルナフ夕レンスルホン酸塩などが挙げられる。 カチ オン系界面活性剤としては、 モノ〜卜リアルキルアミン塩、 ジメチルジアルキルァ ンモニゥム塩、 トリメチルアルキルアンモニゥム塩などが挙げられる。
ノニオン系界面活性剤としては、 C 1〜C 2。アル力ノール、 フエノール、 ナフト ール、 ビスフエノール類、 C j C ^アルキルフエノール、 7リールアルキルフエ ノール、 C 1〜C„5アルキルナフトール、 じ 〜じ^アルコキシルリン酸 (塩) 、 ソ ルビタンエステル、 ポリアルキレングリコール、 じェ〜じ 脂肪族アミドなどにェ 付加縮合させたものなどが挙げられる。
両性界面活性剤としては、 力ルポキシべ夕イン、 スルホベタイン、 イミダゾリン ベタイン、 ァミノカルボン酸などが挙げられる。
界面活性剤は、 一種単独又は二種以上混合して用いることができる。 スズメツキ 浴又はスズ合金メツキ浴中の界面活性剤の濃度については、 特に限定的ではないが、 通常、 0 . 0 1 ~ 5 0 g / 1程度とすることが好ましい。
光沢剤及び半光沢剤としては、ベンズアルデヒド、 o—クロ口べンズアルデヒド、 2 , 4 , 6—トリクロ口ペンズアルデヒド、 m—クロ口べンズアルデヒド、 ρ—二ト 口べンズアルデヒド、 p—ヒドロキシペンズアルデヒド、 フルフラール、 1一ナフ トアルデヒド、 2—ナフトアルデヒド、 2—ヒドロキシー 1一ナフトアルデヒド、 3—ァセナフトアルデヒド、 ベンジリデンアセトン、 ピリジデンアセトン、 フルフ リルデンアセトン、 シンナムアルデヒド、 ァニスアルデヒド、サリチルアルデヒド、 クロトンアルデヒド、 ァクロレイン、 グルタルアルデヒド、 パラアルデヒド、 バニ リンなどの各種アルデヒド ;ベンゾチアゾール、 2ーメチルべンゾチアゾ一ル、 2 ーァミノベンゾチアゾール、 2ーメルカプトベンゾチアゾール等のベンゾチアゾ一 ル類; トリアジン、 イミダゾール、 インドール、 キノリン、 2—ピニルピリジン、 ァニリン、 フエナント口リン、 ネオクプロイン、 ピコリン酸、 チォ尿素類、 N—(3 ーヒドロキシブチリデン)一p—スルファニル酸、 N—ブチリデンスルファニル酸、 N—シンナモイリデンスルファニル酸、 2, 4ージアミノー 6—(2 ' 一メチルイミ ダゾリル (1 ' ) )ェチルー 1 , 3 , 5—トリアジン、 2 , 4ージアミノー 6— ( 2 '― エヂルー 4—メチルイミダゾリル(1 ' ))ェチル一 1 , 3, 5—トリアジン、 2, 4— ジァミノ一 6—(2 ' —ゥンデシルイミダゾリル(1 ' ) )ェチルー 1 , 3, 5—トリア ジン、 サリチル酸フエニルなどを用いることができる。
光沢剤及び半光沢剤は、 要求されるメツキ皮膜の状態に応じて、 一種単独又は二 種以上混合して用いることができる。 スズメツキ浴又はスズ合金メツキ浴中の光沢 剤及び半光沢剤の濃度については、 特に限定的ではないが、 通常、 0 . 0 1〜1 0 0 g / 1程度とすることが好ましい。
p H調整剤としては、塩酸、 硫酸等の各種の酸;アンモニア水、 水酸化カリウム、 水酸化ナトリウム等の各種の塩基などを用いることができる。 更に、 ギ酸、 酢酸、 ' プロピオン酸などのモノカルボン酸類;ホウ酸類、 リン酸類、 シユウ酸、 コ.ハク酸 などのジカルポン酸類;乳酸、酒石酸などのォキシ力ルポン酸類なども有効である。 導電性塩としては、 硫酸、 塩酸、 リン酸、 スルファミン酸、 スルホン酸などのナ トリウム塩、 カリウム塩、 マグネシウム塩、 アンモニゥム塩、 アミン塩などを用い ることができ、 上記 p H調整剤で共用できる場合もある。 導電性塩の含有量は、 通 常、 0〜: I 0 0 g Z l程度とすればよい。
本発明のスズメツキ浴とスズ合金メッキ浴は、 いずれも、 バレルメツキ、 ラック メツキ、高速連続メツキ、ラックレスメツキなどの任意のメッキ方法に適用できる。 本発明のスズメッキ浴又はスズ合金浴を用いた電気メツキの条件も任意であり、 例えば、 浴温は、 0 程度以上、 好ましくは 1 0〜5 O 程度であり、 陰極電流密 度は、 0 . 0 0 1〜: 1 0 O A/ d m 2程度、 好ましくは 0 . 0 1〜3 O A/ d m 2程度 とすればよい。
さらに、 本発明のスズメツキ浴又はスズ合金浴は、 無電解メツキに適用すること もできる。 この場合にも、 電気メツキ浴と同様に、 従来の脂肪族スルホン酸を用い たメツキ浴と比較して、 スズメツキ皮膜又はスズ合金メッキ皮膜に、 優れたリフロ 一性、 皮膜外観などを付与できる。 無電解メツキ浴では、 銅、 銅合金などの素地金 属との置換反応を促進するため、 チォ尿素類などの錯化剤の含有が有用である。 以上の通り、 本発明のスズメツキ浴及びスズ合金メッキ浴は、 特定の不純物の含 有量が極めて少ない精製脂肪族スルホン酸をベース酸として含むものであり、 これ らのメツキ浴から形成されるメツキ皮膜は、 リフロー性、 皮膜外観などが非常に良 好となる。
本発明のメツキ浴において用いる特定の不純分の含有量の極めて少ない精製脂肪 族スルホン酸は、 特開平 1 0— 2 0 4 2 5 2号公報に記載されている様な煩雑な精 製工程を要することなく、 減圧濃縮処理、 固相抽出処理等の比較的簡単な精製方法 によって得ることが可能であり、 工業的に非常に有利な方法で入手し得るものであ る。
また、 本発明のスズメツキ浴又はスズ合金メッキ浴を用いてプリント基板、 T A B (Tape Automated Bonding Carrier) などにバンプを形成する場合には、 従 来のメツキ浴を用いる場合と比べて、 基板の高密度化を阻害するような裾の長い山 形状などではなく、 適正なマッシュルーム形状のバンプを円滑に形成できる。
本発明のスズメツキ浴及びスズ合金メッキ浴は、 例えば、 半導体デバイス、 プリ ント基板、 フレキシブルプリント基板、 フィルムキヤリヤー、 コネクタ、 スィッチ、 抵抗、 可変抵抗、 コンデンサ、 フィル夕、 インダクタ、 サーミス夕、 水晶振動子、 リード線などの電子部品にスズメッキ皮膜又はスズ合金メッキ皮膜を形成する際に 良好に適用できる。
図面の簡単な説明
図 1は、 後述する精製例 2において分離精製処理を施す前後のメタンスルホン酸 についての液体クロマトグラムであり、 図 1 Aは精製前の液体クロマトグラム、 図 1 Bは精製後の液体クロマトグラムである。
発明を実施するための最良の形態
以下、 アルカンスルホン酸の減圧濃縮処理及び固相抽出処理による精製例、 これ らの精製処理を経たアルカンスルホン酸を含有するスズメツキ浴及びスズ合金メッ キ浴の実施例、 並びにこれらのメッキ浴から得られたスズ皮膜及びスズ合金皮膜の リフロー性評価試験例及び外観評価試験例を順次説明する。
また、 精製前のアルカンスルホン酸には、 各種ィォゥ化合物が不純物として微量 含まれるが、 これらのィォゥ化合物の単離 ·同定試験例を述べるとともに、 単離さ れたィォゥ化合物を、 減圧濃縮処理で得られた精製アルカンスルホン酸をベース酸 とするスズメツキ浴及びスズ合金メツキ浴に微量含有させて、 これらのィォゥ化合 物のメツキ皮膜外観への影響を調べた結果を併せて説明する。
《アルカンスルホン酸の精製例》
下記の精製例 1〜8の内で、 精製例 1は減圧濃縮処理による例、 精製例 2〜3は 有機系ポリマーを吸着剤として用いた固相抽出処理による例、 精製例 4は活性炭を 吸着剤として用いた固相抽出処理による例、 精製例 5は有機系ポリマーを吸着剤と して用いた 2段固相抽出処理の例、 精製例 6は有機系ポリマーと活性炭を吸着剤と して用いた 2段固相抽出処理の例、 精製例 7〜 8は減圧濃縮処理と固相抽出処理を 組み合わせた 2段精製例である。
(1)減圧濃縮処理による精製例 1
4ッロフラスコに濃度 6 0 %の市販のメタンスルホン酸水溶液を原液として加え、 リービッヒ管と分留用曲管、 ナス形フラスコで蒸留装置を組み立てた。 次いで、 真空ポンプで 5mmHgまで減圧しながら、 室温で濃縮を開始し、 液温が 100°Cになるまで徐々に温度を上昇させ、 約 5時間減圧濃縮を行って、 濃度 96 %のメタンスルホン酸を得た。
(2)固相抽出処理による精製例 2
スチレン—ジビニルベンゼン共重合体(アンバーライト XAD2;スペルコ社製) 10 O. O gを 500mlビーカーに入れ、 メタノール (特級) 500mlを添加し、 室 温下で約 1時間撹拌した後、 上澄み液を廃棄し、 同様の操作をメタノールにて 3度 繰り返した。 次いで、 蒸留水 500mlを入れ、 室温下で 10分撹拌した後、 上澄 み液を廃棄し、 同様の操作を蒸留水にて 5度繰り返した。 次いで、 減圧ろ過により 水分を抜き取り、 吸着剤のコンディショニング工程を終えた。
直径 5cmX長さ 40 cmのオープンカラムにグラスウール 10 gを詰め、 上記コン ディショニング工程を終えたスチレン—ジビニルベンゼン共重合体 100 gを充填 し、 その上からグラスウール 10 gを詰めた。
このカラムに対して、 市販のメタンスルホン酸(濃度 70 %) 300 gを 5m 1 Z 分の流速で滴下し、 濃度 70.0 %のメタンスルホン酸を得た。
尚、 前述したように、 アンパーライト XAD2は吸着剤であり、 特開 2001— 64 249号で用いる塩基性ァニオン交換樹脂とは異なるものである。
(3)固相抽出処理による精製例 3
吸着剤として臭素化スチレンージビニルベンゼン共重合体(セパビーズ SP207;三 菱化学社製)を用い、 その他は、 精製例 2と同様の条件でコンディショニング工程と 抽出工程を行い、 市販のメタンスルホン酸(濃度 70%) 300 gを 5ml Z分の流 速でカラムに滴下して、 濃度 70.0 %のメタンスルホン酸を得た。
(4)固相抽出処理による精製例 4
500mlビーカ一に市販のメタンスルホン酸(濃度 70.0 %) 500 と活性 炭(関東化学社製) 50 gを入れ、 5時間撹拌し、 グラスファイバ一のフィル夕一で 減圧ろ過し、 濾液を回収して、 濃度 70.0 %のメタンスルホン酸を得た。
(5) 2段の固相抽出処理による精製例 5
精製例 2と同様の操作により、 スチレン一ジビニルベンゼン共重合体(アンパーラ イト XAD2)を吸着剤として、 コンディショニング工程と抽出工程を行い、 市販のメタ ンスルホン酸(濃度 70%) 300 gを 5ml Z分の流速でカラムに滴下して、 濃度 7 0 . 0 %のメタンスルホン酸を得た。
さらに、 コンディショニングを施したアンバーライト XAD2を充填した同様のカラ ムを用いて、 もう一度固相抽出を行い、 濃度 7 0 . 0 %のメタンスルホン酸を得た。
(6) 2段の固相抽出処理による精製例 6
精製例 3と同様の操作により、臭素化スチレン一ジピエルベンゼン共重合体 (セパ ビーズ SP207)を吸着剤として、 コンディショニング工程と抽出工程を行い、 市販の メタンスルホン酸(濃度 7 0 %) 3 0 0 gを 5 m 1ノ分の流速でカラムに滴下して、 濃度 7 0 . 0 %のメタンスルホン酸を得た。
さらに、 活性炭を充填した同様のカラムを用いて、 もう一度固相抽出を行い、 濃 度 7 0 . 0 %のメタンスルホン酸を得た。
(7)減圧濃縮処理と固相抽出処理を組み合わせた精製例 7
4ッロフラスコに濃度 6 0 %のメタンスルホン酸水溶液を加え、 リービッヒ管と 分留用曲管、 ナス形フラスコで蒸留装置を組み立て、 真空ポンプで 5 mmH gまで減 圧しながら、 室温で濃縮を開始し、 液温が 1 0 0 になるまで徐々に温度を上げ、 約 5時間減圧濃縮を行って、 濃度 9 6 %のメタンスルホン酸を得た。
一方、 直径 5cm X長さ 40cmのオープンカラムにグラスウール 1 0 gを詰め、 コンデ イショニングを施したスチレンージビニルベンゼン共重合体(ァンバーラィト濯) 1 0 0 gを充填し、 その上からグラスウール 1 0 gを詰めた。
減圧濃縮した上記メタンスルホン酸 (濃度 9 6 . 0 %) 3 0 0 gをカラムに入れ、 5 m 1 分の流速で滴下して、 濃度 9 6 . 0 %のメタンスルホン酸を得た。
(8)減圧濃縮処理と固相抽出処理を組み合わせた精製例 8
4ッロフラスコに濃度 6 0 %のメタンスルホン酸水溶液を加え、 リービッヒ管と 分留用曲管、 ナス形フラスコで蒸留装置を組み立て、 真空ポンプで 5顏 H gまで減 圧しながら、 室温で濃縮を開始し、 液温が 1 0 0 °Cになるまで徐々に温度を上げ 約 5時間減圧濃縮を行って 濃度 9 6 %のメタンスルホン酸を得た。
一方、 直径 5cmX長さ 4Dcraのオープンカラムにグラスウール 1 0 gを詰め、 コンデ ィショニングを施した臭素化スチレン一ジピニルベンゼン共重合体(セパビーズ SP2 07) 1 0 0 gを充填し、 その上からグラスウール 1 0 gを詰めた。
減圧濃縮した上記メタンスルホン酸 (濃度 9 6 . 0 ) 3 0 0 gをカラムに入れ、 5 m 1 /分の流速で滴下して、 濃度 9 6 . 0 %のメタンスルホン酸を得た。 《液体ク口マトグラフィ一によるメタンスルホン酸の精製評価例》
固相抽出処理による精製例 2を代表例として、 メタンスルホン酸を精製の前と後 の段階で高速液体クロマトグラフィーにより分析し、 得られた液体クロマトグラム に基づいてメタンスルホン酸の精製評価を行つた。
島津製作所製のクロマトグラフ LC-10ASを用いた上記高速液体クロマトグラフィ
—の分析条件は下記の通りである。
カラム: 0DS-UG-3
移動相: メタノール:水 = 1: 5,リン酸 2 m 1 / 1
UV検出器: 230nm
カラム温度: 40
流速: 1ml/分
図 1 Aは精製前のメタンスルホン酸のクロマトグラム、 図 1 Bは精製後のメタン スルホン酸のクロマトグラムである。
分析結果は、 次の通りである。
*精製前
PKNO TIME AREA HEIGHT MK IDNO CONC
1 0. 957 120935 11207 92. 5134
2 1. 948 465 40 0. 3557
4 3. 029 5829 553 V 4. 4587
8 5. 816 . 3493 207 2. 6722
TOTAL 130722 12008 100
*精製後
PKNO TIME AREA HEIGHT MK IDNO CONC
2 16818 3194 V
3 20073 4880 SV 54. 4107
TOTAL 36891 8073 100 これらの液体クロマトグラムから判断すると、 メタンスルホン酸の精製前の原液 では、 図 1 Aに示すように、 保持時間 = 3.029と 5.816に吸収ピークが見られたが、 精製例 2で得られた精製後のメタンスルホン酸では、 図 1 Bに示すようにこれら 2 つの吸収ピークがほぼ消失しており、 固相抽出処理を施すことで原液中の不純物が 有効に除去され、 メタンスルホン酸が高純度化されていることが確認できた。 この 場合、 ほぼ消失が見られた吸収ピークの成分は、 厳密な特定には至らないまでも、 ィォゥを含有する化合物に多く見られるピーク位置に類することから、 ィォゥ化合 物と推定される。 但し、 上記消失ピークの位置から判断すると、 特開 2 0 0 1— 6 4 2 4 9号においてアルカンスルホン酸からの除去の対象成分に挙げられている硫 酸ではなかった。 従って、 本発明の脂肪族スルホン酸の分離精製と、 上記文献のァ ルカンスルホン酸の精製とでは、 除去の対象成分が異なることから、 精製メカニズ ムも異なるものと考えられる。
固相抽出処理に代えて、 メタンスルホン酸に精製例 1の減圧濃縮処理を施した場 合についても、 精製前と精製後の液体クロマトグラムの対比から同様のピークの消 失が確認できた。 この結果から、 減圧濃縮処理を適用してもメタンスルホン酸は有 効に高純度化されることが判明した。
また、 上記メタンスルホン酸に代えて、 市販の 2—ヒドロキシェタン一 1ースル ホン酸に本発明の分離精製処理を施して、 精製前と精製後の液体クロマトグラムを 調べたが、 吸収ピークの消失による同様の傾向を示した。 次いで、 上記精製例 1 ~ 8で得られた高純度メタンスルホン酸を含有するスズメ ツキ浴とスズ合金メッキ浴を下記の通り調製した。 また、 分離精製処理を施さない メタンスルホン酸を用いたプランク例と、 加温することなく常温下で減圧濃縮処理 を行ったメタンスルホン酸を用いた例を、 それぞれ比較例とした。
《スズ系メツキ浴の実施例》
(1)実施例 1
下記の組成でスズメツキ浴を作製した。
[リフ口一性評価用のスズメッキ浴]
塩化第一スズ(S n 2 +として) 5 0 g / 1
精製例 1のメタンスルホン酸 5 0 g / 1
酸化防止剤 少量
ノニオン系界面活性剤 少量 [皮膜外観評価用のスズメッキ浴]
塩化第一スズ(S n 2 ' として) 8 0 / 1
前記精製例 1のメタンスルホン酸 1 5 0 g/ 1
酸化防止剤
ノニオン系界面活性剤
尚、上記メツキ浴において、酸化防止剤としては、ァスコルビン酸、カテコール、 ヒドロキノンなどを 1〜1 0 1程度の割合で含有させることができ、 ノニオン 系界面活性剤としては、 C i C ^アル力ノール、 フエノール、 ナフ! ^一ル、 。 c 2 5アルキルフエノール、 c 1〜c 2 2脂肪族ァミン等のエチレンォキシド付加物を 1〜 1 0 g/ 1程度の割合で含有させることができる(以下の実施例及び比較例で も同様である)《
(2)実施例 2
精製例 1で得られたメタンスルホン酸に代えて、 精製例 2で得られたメタンスル ホン酸を用い、 それ以外の成分及ぴ含有量は実施例 1と同様にして、 スズメツキ浴 を作製した Θ
(3)実施例 3
精製例 1で得られたメタンスルホン酸に代えて、 精製例 3で得られたメタンスル ホン酸を用い、 それ以外の成分及び含有量は実施例 1と同様にして、 スズメツキ浴 を作製した。
(4)実施例 4
精製例 1で得られたメタンスルホン酸に代えて、 精製例 4で得られたメタンスル ホン酸を用い、 それ以外の成分及ぴ含有量は実施例 1と同様にして、 スズメツキ浴 を作製した。
(5)実施例 5
精製例 1で得られたメ夕ンスルホン に代えて、 精製例 5で得られたメタンスル ホン醆を用い、 それ以外の成分及ぴ含有 eは実施例 1と同様にして、 スズメツキ浴 を作製した Θ
(6)実施例 6
精製例 1で得られたメタンスルホン酸に代えて、精製例 6で得られたメタンスルホ ン酸を用い、 それ以外の成分及ぴ含有量は実施例 1と同様にして、 スズメツキ浴を 作製した。
(7)実施例 7
精製例 1で得られたメタンスルホン酸に代えて、 精製例 7で得られたメタンスル ホン酸を用い、 それ以外の成分及び含有量は実施例 1と同様にして、 スズメツキ浴 を作製した。
(8)実施例 8
精製例 1で得られたメタンスルホン酸に代えて、 精製例 8で得られたメタンスル ホン酸を用い、 それ以外の成分及び含有量は実施例 1と同様にして、 スズメツキ浴 を作製した。
(9)実施例 9
下記の組成でスズー銅合金メツキ浴を作製した。
[リフロー性評価用のスズー銅合金メッキ浴]
硫酸第一スズ(S n 2 +として) 5 0 g / 1
硫酸銅(C u 2 τとして) 5 g / 1
精製例 7のメタンスルホン酸 5 0 g / 1
酸化防止剤
ノニオン系界面活性剤
安定剤 少量
[皮膜外観評価用のスズ—銅合金メッキ浴]
硫酸第一スズ(S n 2 +として) 8 0 g / 1
硫酸銅(C u 2 τとして) 8 g / 1
精製例 7のメタンスルホン酸 5 0 g / 1
酸化防止剤 少』
ノニオン系界面活性剤
安定剤 少量
上記メツキ浴において、 酸化防止剤及ぴノニオン系界面活性剤の種類と含有量は スズメツキ浴について記載した通りである。 また、 安定剤はスズと銅を円滑に共析 化するためのものであり、 チォ尿素類、 ノニオン系界面活性剤(例えば、ラウリルァ ミンのエチレンォキシド付加物など)等で代替することもできる。
(10)実施例 1 0 精製例 7で得られたメタンスルホン酸に代えて、 精製例 8で得られたメタンスル ホン酸を用い、 それ以外の成分及ぴ含有量は実施例 9と同様にして、 スズー銅合金 メツキ浴を作製した。
(U)実施例 1 1
精製例 7で得られたメタンスルホン酸に代えて、 精製例 1で得られたメタンスル ホン酸を用い、 それ以外の成分及び含有量は実施例 9と同様にして、 スズ—銅合金 メツキ浴を作製した。
(12)実施例 1 2
下記の組成でスズービスマス合金メツキ浴を作製した。
硫酸第一スズ(S n 2 +として) 8 0 g / l
硫酸ビスマス(B i 3 +として) 8 g / l
精製例 1のメタンスルホン酸 1 5 0 g/ 1
酸化防止剤 少量
ノニオン系界面活性剤 少量
安定剤 少量
上記したメツキ浴において、 酸化防止剤及ぴノニオン系界面活性剤の種類と含有 量はスズメツキ浴について記載した通りである。 また、 安定剤は、 スズとビスマス を円滑に共析化するためのものであり、 例えば、 チォ尿素類などのィォゥ系化合物 である。
(13)実施例 1 3
下記の組成でスズ—銀合金メッキ浴を作製した。
塩化第一スズ(S n 2 τとして) 8 0 g/ 1
硝駿鐡(A g + (金屑銀)として〉 8 g / 1
精製例 1のメタンスルホン ¾ 1 5 0 g / 1
酸化防止剤
ノニオン系界面活性剤 少
安定剤
上記したメツキ浴において、 酸化防止剤及ぴノニオン系界面活性剤の種類と含有 量はスズメツキ浴について記載した通りである。 また、 安定剤は、 スズと銀を円滑 に共析化するためのものであり、 例えば、 チォ尿素類、 チォグリコール、 チ才ダリ コール酸、 亜硫酸塩、 チォ硫酸塩などのィォゥ系化合物である。
(U)実施例 1 4
精製例 1で得られたメタンスルホン酸に代えて、 精製例 7で得られたメタンスル ホン酸を用い、 それ以外の成分及び含有量は実施例 1 2と同様にして、 スズービス マス合金メッキ浴を作製した。
(15)実施例 1 5
精製例 1で得られたメタンスルホン酸に代えて、 精製例 8で得られたメタンスル ホン酸を用い、 それ以外の成分及び含有量は実施例 1 2と同様にして、 スズ—ビス マス合金メッキ浴を作製した。
(16)実施例 1 6
精製例 1で得られたメタンスルホン酸に代えて、 精製例 7で得られたメタンスル ホン酸を用い、 それ以外の成分及ぴ含有量は実施例 1 3と同様にして、 スズ—銀合 金メッキ浴を作製した。
(Π)実施例 1 7
精製例 1で得られたメタンスルホン酸に代えて、 精製例 8で得られたメタンスル ホン酸を用い、 それ以外の成分及び含有量は実施例 1 3と同様にして、 スズー銀合 金メッキ浴を作製した。
(18)比較例 1
精製例 1で得られたメタンスルホン酸に代えて、 分離精製をしていない市販のメ タンスルホン酸をそのまま使用し、 それ以外の成分及び含有量は実施例 1と同様に して、 スズメツキ浴を作製した。
(19)比較例 2 . 精 a例 1で得られたメタンスルホン酸に代えて、 加温下ではなく常温下で減圧濃 縮処理を施したメタンスルホン醆を使用し それ以外の成分及ぴ含有量は実施例 1 と同様にして、 スズメツキ浴を作 aした。
(20)比較例 3
精製例 7で得られたメタンスルホン ¾に代えて、 分離精製をしていない市販のメ タンスルホン酸をそのまま使用し、 それ以外の成分及ぴ含有量は実施例 9と同様に して、 スズー銅合金メッキ浴を作製した。
(21)比較例 4 精製例 1で得られたメタンスルホン酸に代えて、 分離精製をしていない市販のメ タンスルホン酸をそのまま使用し、 それ以外の成分及び含有量は実施例 1 2と同様. にして、 スズ—ビスマス合金メッキ浴を作製した。
(22)比較例 5
精製例 1で得られたメタンスルホン酸に代えて、 加温下ではなく常温下で減圧濃 縮処理を施したメタンスルホン酸を使用し、 それ以外の成分及び含有量は実施例 1 2と同様にして、 スズービスマス合金メッキ浴を作製した。
(23)比較例 6
精製例 1で得られたメタンスルホン酸に代えて、 分離精製をしていない市販のメ タンスルホン酸をそのまま使用して、 それ以外の成分及び含有量は実施例 1 3と同 様にして、 スズ—銀合金メッキ浴を作製した。 上記した上記実施例及び比較例の各メッキ浴から得られた電着皮膜について、 下 記の方法により通常より厳しい条件下でリフロー性を評価した。
《スズ含有メツキ皮膜のリフロー性評価試験例》
上記実施例 1〜 1 0及び比較例 1 ~ 3の各スズメツキ浴及びスズー銅合金メツキ 浴を用いて、浴温 3 0 °C、陰極電流密度 2 O AZ d m 2の条件で電気メツキを行い、 C u板上に膜厚 5 i mのスズメツキ皮膜又はスズ—銅合金メッキ皮膜を形成した。 この様にしてメツキ皮膜を形成した各試料を 3 0 0 に設定したホットプレート 上に 6 0秒放置し、 放置後の皮膜外観を目視観察して、 下記の基準に従ってメツキ 皮膜のリフロー性を評価した。
A:皮膜は 光沢が良好であり、 シヮ及ぴ変色は生じていない。
B :皮膜は やや曇った光沢であるが、 シヮは生じていない。
C :皮膜は、 黄色〜青色に変色したが シヮは生じていない。
D :皮膜は、 黄色〜青色に変色し、 シヮも発生している。
下記表 1に上記試験結果を示す。
表 1
Figure imgf000027_0001
以上の結果から明らかなように、 リフ口一性の評価は、 比較例 1 ~ 3では C ~ D であったが、 実施例 1 ~ 1 0では A~ Bの優れた結果であった リフロー性試験では、 2 6 0 又はこれを若干上回る温度で 1 0秒程度加熱する のが通常の条件であるが、 本試験では、 これより厳しく、 皮膜に変色やシヮが発生 し易い条件に設定した。 このため、 本発明の分離精製処理を施していない従来のメ タンスルホン酸を使用した比較例 1 ~ 2では、 皮膜に変色やシヮが発生したものと 思われるが、 実施例 1〜1 0では、 この厳しい条件にもかかわらず、 シヮは見られ ず、 光沢も概ね良好であった。
実施例 1〜 6と比較例 1の対比から、 スズメツキ洛においては、 アルカンスルホ ン酸に本発明の分離精製処理を施すと、 分離精製を行わない場合よりリフ口一性が 大きく向上することが確認できた βまた、実施例 9〜1 0と比較例 2との対比から、 スズ合金メッキ浴においても、 本発明の分離精製処理は、 リフロー性の向上に寄与 することが確認できた。 さらに、 実施例 1と比較例 2との対比から、 アルカンスル ホン酸に減圧濃縮処理を施す場合、 リフ口一性の向上には加温下での濃縮が重要で あることが確認できた。 実施例 1〜6と実施例 7〜 8とを対比すると、 減圧濃縮処 理と固相抽出処理を組み合わせることで、 これらの処理の一方のみを行う場合より リフロー性が改善されることが判明した。
以上のように、 本発明の分離精製を施したアルカンスルホン酸をペース酸として 含有するスズメツキ浴及ぴスズ合金メツキ浴では、 分離精製を施していないアル力 ンスルホン酸を含有するメツキ浴と比べて、 得られるメツキ皮膜のリフロー性が改 善される点で明らかな優位性があることが判る。 よって、 本発明のメツキ浴から得 られるスズ皮膜又はスズ合金皮膜を電子部品などに適用した場合、 メツキの信頼性 を従来より顕著に高めることができる》
次いで、 通常より陰極電流密度を髙く設定して、 ャケゃムラが発生し易い条件下 でメツキを行い 実施例及ぴ比較例の各メツキ浴から得られる電着皮膜の外観を評 価した。
《スズ系メツキ皮膜の外観評価試験例》
実施例 1 ~ 1 7及ぴ比較例 1、 3〜 6の各スズメツキ洛及ぴスズ合金メッキ浴を 用いて、 下記条件で電気メツキを行い、 C u系リードフレーム上に膜厚 1 0 x mの スズメツキ皮膜又ははスズ合金メツキ皮膜を形成した。 メツキ後の各リード端面の 皮膜の析出状態を拡大鏡で観察し、 更に、 リードフレーム全体のメツキムラの発生 状況を目視観察して、 皮膜外観の優劣を評価した。
[メツキ条件]
Sn浴 Sn— Cu浴 Sn - Bi浴 Sn— Ag浴
浴温 CC) 3 0 3 0 3 0 3 0
電流密度 (A/dm2) 4 0 3 0 4 0 3 0 皮膜外観の評価基準は次の通りである。
A:皮膜にャケ、 ムラは見られない。
B: リード端面にわずかにャケが見られるが、 ムラは見られない t
C: リード端面にャケが見られるが、 ムラは見られない。
D: リードのほぽ全面にャケ、 ムラが見られる。 下記表 2に試験結果を示す。
表 2
施 例
1 2 3 4 5 6 7 8 9 10 11 12 13 皮膜外観 B B B B B B A A A A B B B
表 2 (続き)
Figure imgf000029_0001
皮膜外観の評価は、 比較例 1、 3 6では Cであったが、 実施例 7では A 〜Bという優れた結果であった。
2:
通常、 電気メツキの陰極電流密度は 1 0 ~ 2 0 A/ d m ώ程度であるが、 本試験で は 4 0〜5 O A/ dm 2に増大させて、 ャケゃムラが発生し易い厳しい条件に設定 した。 このため、 本発明の分離精製処理を施していない従来のメタンスルホン駿を 使用した比 E¾例 1 3〜6では、 ャケが発生したものと思われる。 これに対して、 実施例 1〜 1 7では、 この厳しい条件にもかかわらず, ムラは見られず、 ャケも概 ね見られなかった。
実施例 1、 2〜7と比較例 1との対比から、 スズメツキ浴においては、 本発明の 分離精製処理を施したアルカンスルホン酸を用いると、 分離精製を行わない場合よ り皮膜外観が大きく改善されることが確認できた。 また、 実施例 1 0 ~ 1 1と比較 例 3との対比から、 スズー銅合金メッキ浴においても、 本発明の分離精製処理を施 したアルカンスルホン酸は、 皮膜外観の改善に寄与することが確認できた。 スズー ビスマス合金メッキ浴 (実施例 1 2、 1 5と比較例 4との対比)、 スズー銀合金メッ キ浴 (実施例 1 3、 1 7と比較例 6の対比)においても、 本発明の分離精製処理を施 したアル力ンスルホン酸が、皮膜外観の改善に寄与することは明白である。さらに、 実施例 1 2と比較例 5との対比から、 アルカンスルホン酸に減圧濃縮処理を施す場 合には、 皮膜外観の改善には加温下で行うことが重要であることが確認できた。 実 施例 1、 2〜6、 1 1〜: I 3と、 実施例 7〜1 0、 1 4〜 1 7とを対比すると、 減 圧濃縮処理と固相抽出処理を組み合わせることで、 これらの処理の一方のみを行う 場合より皮膜外観が改善されることが判明した。
このように、 本発明の分離精製処理を施したアルカンスルホン酸をべ一ス酸とし て含有するスズメッキ浴及ぴスズ合金メッキ浴は、 分離精製を施さないアルカンス ルホン酸を含有するメッキ浴に比べて、 得られるメッキ皮膜の外観を改善する点で 明らかな優位性があることが判る。 この点からも、 本発明のメツキ浴から得られた スズ皮膜又はスズ合金皮膜を電子部品などに適用した場合、 メツキの信頼性を従来 より顕著に高めることができることが明らかである。
以上を総合すると、 市販のメタンスルホン酸に減圧濃縮処理及び/又は固相抽出 処理を施して得られた精製メタンスルホン酸をベース酸とするスズメツキ浴又はス ズ合金メッキ浴を用いて電気メツキを行うと、 メツキ皮膜の外観、 リフロー性等を 改善できることが明らかになった。
メタンスルホン酸にこれらの特定の精製分離処理を施すと優れたメツキ特性が得 られることは、 精製分離によってメ夕ンスルホン酸からメッキ特性に悪影響を与え る不純物が排除されていることを強く推測させるものである,
そこで 上記耱製分難によりメタンスルホン酸から排除されるィォゥ化合物を特 定し、 これらのィォゥ化合物の中で メツキ特性に悪影 @を及ぼす成分と、 影 Θを 及ぼさない成分を確認する作業を下記の試験に基づいて順次行った a
《メタンスルホン酸中の不純物の単離■同定試験例》
市販のメタンスルホン酸 1 0 0 m lをジクロロメタン 3 0 0 m lで抽出し、 その 後、 エバポレ一ターでジクロロメタンを除去した。 次いで、 抽出 .溶媒除去を数回 繰り返し、 不純物の含水混合物を得た。 不純物中に含まれる水分を除くためにジク ロロメタンを 30m 1加え、 硫酸ナトリウム 5 gを加えた。 上澄み液をデカンテ一 シヨンし、 エバポレーターで溶媒除去した後、 不純物の混合物を得た。
得られた不純物の混合物に 3m 1のメタノールを加え、 リサイクル分取型の高速 液体クロマトグラフィー (日本分析工業 (株)製; LC一 908型) を用いて以下に示す条 件で測定し、 単離物を得た。
カラム: Shodex Asahipak GS-310 21G
移動相:メタノール
流速: 3.8ml/分
検知器: RI
上記単離物は、 l C-NMR、 1 H-NMR, I R、 GC-MS, MS, 元素分析 などの各種分析機器を用いて同定した β
その結果、各種分析データに基づいて下記のィォゥ化合物(1)~ (5)が同定できた。 尚、 下記の分析デ一夕において、 1 Η— NMRの sはシングレットピーク、 I R の wは弱いピーク、 mはミドルピーク、 sは強いピークを意味する。
(1)ジメチルジスルフィド
P&T— GC/MS: ms 94, 79, 61, 45
(2)メタンチォスルホン酸 S—メチル
1 H-NMR(ppm) : 2.709 (s, 3H, - SO 2 CH 3 )、 3.315(s,3H, -SCH 3)
I R (cm—丄) :1134. l(s,R-S02— R)、 1305.7(m, R-S02—R)、 1330.8 (m, -S-CH3)、
1410.0( , -S-CH3)
(3) α—クロ口ジメチルスルホン
1 H-NMR(ppm): 3.054(s, 3H,一 S02 CH 3)、 4.447(s,2H, -CH2C1)
I R(cm~ -1·) :761.8(s,-CH2-Cl), 1120.6(s,R-S02-R), 1245.9(m,-CH2-Cl),
1313.4(s,R-S02-R)
GC/MS: m s 128、 113, 93, 79, 63、 49
元秦分析(C,H) : (C2H5S02C1) C:18.89%, H:3.48%
(4)な一メチルスルホニルー , α—ジクロロジメチルスルホン
1 H-NMR(ppm) : 2.920(s,3H,-S02CH3)、 3.369 (s, 3H, -S0CH3 )
1 3 C— NMR (ppm) :36.873、 39.832、 105.880
I R(cra—丄): 1083.9(s,-S0CH3)、 1147.6 (s, -SO 2 -R) , 1321.1 (s,R— S02- R)、 1332.7 (m, -S0CH3)
元素分析(C,H,N,S 0)
(C3H6S203C12) C: 16.20%, H: 2.56%, S: 29.86% 0:21.54% (5)ジメチルスルホン
^-H-NMRCppm) 2.991 (s, 3H, - SO 2 CH3 )
I R(cm~ 1) : 1136.0(s R- S02 - R 1298.0 (s,R— S02— R) 尚、 70 %の市販メタンスルホン酸 1リットルからジクロロメタンによって不純 物を抽出することにより、 精製前のメタンスルホン酸中に存在する不純物濃度を求 めた。 この結果を、推定も含めて示すと、 メタンチォスルホン酸 S—メチル(2)は 1. 6 p pm、 ジメチルスルホン(5)は 2.5 p pmであり、 ジメチルスルホン(5)の含有 濃度に照らして、 α—クロ口ジメチルスルホン(3)は 1.2 p pm —メチルスル ホニルー α α—ジクロロジメチルスルホン(4)は 2.5 p pmと夫々推定できる。 ま た、 ジメチルジスルフィ ド(1)の含有濃度はジメチルスルホン(5)とあまり変わらな いものと思われる。
そこで、 上記試験で単離、 同定された 5種のィォゥ化合物を、 精製例 1の減圧濃 縮処理で得られた精製メタンスルホン酸に夫々微量添加して、 各ィォゥ化合物を不 純物として含むスズメツキ浴及びスズ合金メッキ浴を調製した。 これらのメヅキ浴 から得られる電着皮膜の外観の優劣を評価し、 各ィォゥ化合物について、 メツキ特 性に悪影響を及ぼす成分であるか、 或は影響を及ぼさない成分であるかの判定試験 を行った。
《ィォゥ化合物のメツキ特性への影響度判定試験例》
以下では、 スズメツキ浴 スズ—ビスマス合金メッキ浴 スズー銀合金メッキ浴 に分けて順次説明する。
(1)スズメツキ浴
下記の組成のスズメツキ浴を作製した。
塩化第一スズ(S n として) 60 g/ I
精製例 1のメタンスルホン酸 06 g/ 1
ノニオン系界面活性剤 10 g/ 1
ァニオン系界面活性剤 酸化防止剤 少量
上記メツキ浴では、 ノニオン系界面活性剤としては、 ビスフエノールポリエトキ シレートを使用した。 また、 ァニオン系界面活性剤としてはジブチルナフタレンス ルホン酸ナトリウムを 2 gZ 1程度含有させ、 酸化防止剤としてはァスコルビン酸 を 1 1程度含有させた。
次いで、 上記スズメツキ浴に、 前記試験で単離したィォゥ化合物(1)〜(5)を夫々 単独で添加し、 また、 ィォゥ化合物(3)と(4)を 1対 1の重量混合比で併用添加する とともに、 そのメツキ浴中の添加濃度を 0~ 5 p pm(l pmごとに変化させた)、 10 p pm, 50 p pm、 100 ppm、 200 p p mに夫々変化させた。
そして、各ィォゥ化合物の添加濃度が異なるスズメツキ浴を用いて、浴温 40 °C、 陰極電流密度 20 A/ dm", 力ソードロッカー 6m/分の条件にて、 C u系リー ドフレーム上に膜厚 10 mのスズ皮膜を形成した。得られたメツキ皮膜について、 上記したメツキ皮膜の外観評価試験例と同様にして、 各リード端面の皮膜の析出状 態を拡大鏡で観察するとともに、 リードフレーム全体のメ Vキムラの発生状況を目 視観察し、 皮膜外観の優劣を評価した。
皮膜外観の評価基準は次の通りである。
A: メツキ皮膜の全表面積のうち、 60 %以上が良好な外観である。
B: メツキ皮膜の全表面積のうち、 良好な外観が 40〜60%である。
C: メツキ皮膜の全表面積のうち、 良好な外観が 40%より少ない。
下記表に試験結果を示す。 化合物(1)はジメチルジスルフィ ド、 化合物(2)はメタ ンチォスルホン酸 S—メチル、化合物(3)は α—クロロジメチルスルホン、化合物 (4) は α'—メチルスルホニルー α, α—ジクロロジメチルスルホン、 化合物(5)はジメチ ルスルホンである。
(5) (1) (2) (3) (4) (3) +
0 ppm A A A A A A
1 pm A A A A A B
2 ppm A A . B B B C
3 ppm A A B B B C
4 ppm A A C C C C
5 ppm A A C C C C 1 0 ppni A A C C C C
5 0 ppm A A C C C C
1 0 O ppm A B C C C C
2 0 0 ppm . A C C C C C 以上の結果から、 ジメチルスルホン(5)は、 2 0 0 p p m混入してもメツキ皮膜の 外観を損なわず、 メツキ特性に影響を与えないことが判る。
また、 ジメチルジスルフィド(1)は、 2 0 0 p p mで皮膜外観の評価は C、 1 0 0 P p m (即ち、 1 0 0 p p m以上で 2 0 0 p p m未満)での評価は Bであった。従って、 ジメチルスルホン(5)との対比からも明らかなように、 ジメチルジスルフイド(1)は メツキ特性に悪影響を及ぼすことが確認できた。
また、 メタンチォスルホン酸 S—メチル(2)、 α—クロ口ジメチルスルホン(3)、 α—メチルスルホニルー α , α—ジクロロジメチルスルホン(4)は、 夫々 4 p p mで の外観評価は C、 3 p p m (即ち、 3 p p m以上で 4 p p m未満)でば Bであった。 こ の結果から、 化合物(2)〜(4)は、 ジメチルジスルフイ ド(1)と同様にメツキ特性に悪 影響を及ぼすことが確認できた。 また、 化合物(2) ~ (4)は、 化合物(1)よりメツキ浴 中での許容可能な濃度が低く、 ごく微量を越えて浴中に存在しても、 メツキ特性に 悪影響を及ぼすことが判明した。
さらに、 ィォゥ化合物同士が共存する場合に着目すれば、 例えば、 化合物(3)又は (4)が単独で 2 p p m存在すると外観評価は Bであるが、共存状態では合計濃度が 2 p p mになると評価は Cに低下する。 また、 共存状態では、 合計濃度が 1 p p m (即 ち、 1 p p m以上で 2 p p m未満)での評価は Bである。 これらの結果から、 化合物 ( 3 ) 及ぴ (4 ) は 夫々が単独で存在する場合に比べて、 共存状態では、 同じ濃 度でも外観評価が劣ることが確認できた。 従って、 複数のィォゥ化合物が共存する と、 その相乗作用でメッキ特性の低下がさらに促進されてしまうことが判った。 以上のように、 メタンスルホン酸をペース酸とするスズメツキ浴において、 メタ ンスルホン酸中に存在する不純物としての各種のィォゥ化合物は、 その全てがメッ キ特性に影響を及ぼすものではなく、 メツキ特性に影響を及ぼさないジメチルスル ホン(5)のような化合物が存在し、 特定の化合物だけがメツキ特性に悪影響を及ぼす ことが確認できた。上記したとおり、メツキ特性に悪影響を及ぼす成分は、化合物(1) ~ (4)であり、 分子内に酸化数 +IV以下のィォゥ原子を有する化合物、 及びィォゥ原 子と塩素原子を併有する化合物であるという重要な点が明らかになった。
また、 化合物(1)〜(4)の間でも、 メツキ特性への影響の強度(即ち、メツキ浴中で の許容濃度)は異なり、 単独成分として浴に存在する条件では、 化合物(1)の許容濃 度は 2 0 0 p p m未満、 化合物(3) ~ (4)の許容濃度は 4 p p m未満と推定できる。 さらに、 単独ではなく複数成分がメツキ浴に共存するとその相乗作用でメツキ特性 の低下がさらに促進される傾向が確認できた。 化合物(1)〜(4)の 2種以上が浴に共 存する条件では、 その合計許容濃度は 2 p p m未満に低下すると推定できる。
(2)スズ一ビスマス合金メッキ浴
下記の組成でスズービスマス合金浴を作製した。
硫酸第一スズ(S n 2 +として) 8 0 g / 1
硫酸ビスマス(B i ω τとして) 8 g / 1
精製例 1のメタンスルホン酸 1 5 0 g / 1
ノニオン系界面活性剤
酸化防止剤
上記メツキ浴では、 ノニオン系界面活性剤としては、 ノニルフエノールポリエト キシレートを 5 g / 1程度含有させ、 酸化防止剤としては、 ァスコルビン酸を l g Z 1程度含有させた。
次いで、 上記したスズービスマス合金メッキ浴に、 前述したスズメツキ浴と同様 の添加条件で、 前記試験で単離したィォゥ化合物(1) ~ (5)を添加して電着皮膜の外 観を評価した。 即ち、 ィォゥ化合物(1) ~ (5)について、 0 p ρ π!〜 2 0 0 p p mの 範囲でメツキ浴中の濃度を変化させて単独又は併用で添加し、 スズメツキ浴と同様 の電気メツキ条件で C u系リードフレーム上にスズ—ビスマス合金皮膜を形成して、 電着皮膜の外観の ft劣を評価した。 評価基準は前記スズ浴の場合と同じである。 下記表に試験結果を示す。
(5) (1) (2) (3) (4) (3) + (4) O ppm A A A A A A
5 ppm A A A A A B
1 O pm A A A A B C
5 O ppm A A B B C C 1 0 0 ppm A A C C C C
2 0 0 ppm A B C C C C
この結果がら、 ジメチルスルホン(5)については、 2 0 0 p p m混入してもメツキ 皮膜の外観を損なわず、 メツキ特性に影響を与えないことが判る。
これに対して、 化合物(1) ~ (4)は、 その混入によってメツキ皮膜の外観を低下さ せることからメツキ特性に悪影響を及ぼすことが確認できる。 メツキ特性への影響 は、 化合物の種類によって異なり、 スズメツキ浴における傾向と同様に、 メツキ特 性への影響は、 化合物(1)は小さく、 化合物 (4)は大きく、 化合物(2)〜(3)は、 (1)と (4)の中間であることが判明した。
以上のように、 メタンスルホン酸をべ一ス酸とするスズ一ビスマス合金メッキ浴 においても、 メタンスルホン酸中に含まれる不純物としてのィォゥ化合物は、 その 全てがメツキ特性に影響を及ぼすのではなく、 メツキ特性に影響を及ぼさないジメ チルスルホン(5)のような化合物が存在する反面、分子内に酸化数 + IV以下のィォゥ 原子を有する化合物と、 ィォゥ原子と塩素原子を有する化合物がメツキ特性に悪影 響を及ぼすという重要な点が明らかになつた。
また、 スズメツキ浴の場合と同様に、 化合物(1)〜(4)は、 単独ではなく複数成分 がメツキ浴に共存する場合には、 相乗作用でメッキ特性の低下がさらに促進される 傾向があることが判った。
また、 スズ—ビスマス合金メッキ浴では、 メツキ特性に悪影響を与える化合物(1) 〜(4)の許容濃度はスズメツキ浴の場合より大きいことが確認できた。 化合物(1)に ついては、 スズメツキ浴では、 2 0 0 p p mでの外観評価は Cであるのに対して、 スズ—ビスマス合金メツキ浴では、 2 0 0 p p mでの外観評価は Bであるため、 2 0 0 p p mを越えても B評価の可能性がある。 また、 化合物(4)については、 スズメ ツキ浴では 1 0 p p mでの外観評価は Cであるのに対して、 スズ—ビスマス合金 メツキ浴では、 1 0 p p mでの外観評価は Bであるため、 1 0 p p mを越えても C ではなく B評価の可能性がある。 この様に、 各化合物の浴中での許容濃度はスズー ビスマス合金メツキ浴の方がスズメツキ浴より大きいことが確認できた。
従って、 これらの特定のィォゥ化合物が不純物として浴中に存在する場合、 スズ 一ビスマス合金メツキ浴では、 メツキ特性の低下への抵抗力はスズメツキ浴の場合 より大きく、 スズメツキ浴より不純物濃度が増してもメツキ特性への悪影響が現れ にくいことが推定できる。
(3)スズー銀合金メッキ浴
下記の組成でスズー銀合金メッキ浴を作製した。
硫酸第一スズ(S n 2 +として) 8 0 g / 1
硝酸銀(A g +として) 8 g / 1
精製例 1のメタンスルホン酸 1 5 0 g / 1
安定剤 4 0 g / 1
ノニオン系界面活性剤
酸化防止剤
上記スズー銀合金メッキ浴では、 ノニオン系界面活性剤と酸化防止剤の種類と含 有量は前記スズービスマス合金メッキ浴の場合と同じである。 また、 安定剤として はオダリコ一ルポリエトキシレー卜を使用した。
上記したスズー銀合金メッキ浴に、 前述したスズメツキ浴と同様の添加条件で、 前記試験で単離したィォゥ化合物(1) ~ (5)を添加して電着皮膜の外観を評価した。 即ち、 ィォゥ化合物(1) ~ (5)について、 0 p p m~ 2 0 0 ρ p mの範囲でメツキ浴 中の濃度を変化させて単独又は併用で添加し、 スズメツキ浴と同様の電気メツキ条 件で C u系リードフレーム上にスズー銀合金皮膜を形成して電着皮膜の外観の優劣 を評価した。 評価基準は前記スズ浴の場合と同じである。
下記表に試験結果を示す。
(5) (1) (2) (3) (4) (3) +
0 ppm A A A A A A
5 ppm A A A A A C
1 0 ppm A A B B B C
5 0 ppm A A C C C c
1 0 0 ppm A A C c C c
2 0 0 ppm A B c c c c
この結果から、 ジメチルスルホン(5)については、 2 0 0 p p m混入してもメツキ 皮膜の外観を損なわず、 メッキ特性に影響を与えないことが判る。
これに対して、 化合物(1)〜(4)は、 その混入によってメツキ皮膜の外観を低下さ せることからメッキ特性に悪影響を及ぼすことが確認できる。 メッキ特性への影響 は、 化合物の種類によって異なり、 スズメツキ浴での傾向と同様に、 メツキ特性へ の影響は、 化合物(1)は小さく、 化合物(2) ~ (4)は化合物(1)より大きいことが判明 した。
以上のように、 メタンスルホン酸をベース酸とするスズー銀合金メッキ浴におい ても、 メタンスルホン酸中に含まれる不純物としてのィォゥ化合物は、 その全てが メツキ特性に影響を及ぼすものではなく、 メツキ特性に影響を及ぼさないジメチル スルホン(5)のような化合物が存在する反面、分子内に酸化数 + IV以下のィォゥ原子 を有する化合物と、 ィォゥ原子と塩素原子を有する化合物だけがメツキ特性に悪影 響を及ぼすという重要な点が明らかになった。
また、 スズメツキ浴の場合と同様に、 化合物(1) ~ (4)は、 単独ではなく複数成分 がメツキ浴に共存する場合には、 相乗作用でメツキ特性の低下がさらに促進される 傾向があることが判った。
また、 スズー銀合金メッキ浴では、 メツキ特性に悪影響を与える化合物(1)〜(4) の許容濃度はスズメツキ浴の場合より大きく、 スズ—ビスマス合金メツキ浴の場合 より小さいことが確認できた。 例えば、 化合物(1)が浴中に 2 0 0 p p m存在する場 合、 スズー銀合金浴での外観評価は Bであるが、 スズ浴では Cであり、 化合物(4)が 浴中に 1 0 p p m存在する場合、 スズー銀合金浴での外観評価は Bであるが、 スズ 浴では Cである。 この様に、 各化合物の浴中での許容濃度は、 スズー銀合金浴の方 がスズ浴より大きい。 また、化合物(2)又は(3)が、浴中に 1 0 p p m存在する場合、 スズー銀合金浴での外観評価は Bであるが、 スズービスマス合金浴では Aであるこ とから、 各化合物の浴中での許容濃度はスズ—ビスマス合金浴の方がスズー銀合金 浴より大きいことが認められた。
以上より、 これらの特定のィォゥ化合物が不純物として存在する場合、 スズー銀 合金浴でのメツキ特性の低下への抵抗力は スズメツキ浴の場合より大きく、 スズ —ビスマス合金浴の場合より小さい傾向が確認できた。 よって、 スズー銀合金浴の 場合には、 スズ浴より不純物濃度が増加してもメツキ特性への悪影響が現れにくく、 スズービスマス合金浴より現れ易いことが推定できる。

Claims

請求の範囲
1 .
( a )可溶性第一スズ塩、 又は
銅塩、 ビスマス塩、 銀塩、 インジウム塩、 亜鉛塩、 ニッケル塩、 コバルト塩及 ぴアンチモン塩からなる群から選ばれた少なくとも一種の可溶性塩と可溶性第 ースズ塩との混合物、
並びに
( b ) アル力ンスルホン酸及びアル力ノ—ルスルホン酸からなる群から選ばれた少 なくとも一種の脂肪族スルホン酸
を含有するスズ含有メツキ浴において、
該脂肪族スルホン酸が、 分子内に酸化数 + IV以下のィォゥ原子を有する化合物、 及び分子内にィォゥ原子と塩素原子を有する化合物からなる不純物としてのィォゥ 化合物の含有量が微量以下の精製脂肪族スルホン酸である
ことを特徴とするスズ含有メッキ浴。
2 . 分子内に酸化数 + IV以下のィォゥ原子を有する化合物が、 ジメチルジスルフ ィドであり、 該化合物のメツキ浴中の含有量が 2 0 0 p p m未満である請求項 1に 記載のスズ含有メツキ浴。
3 . 分子内に酸化数 + IV以下のィォゥ原子を有する化合物が、 メタンチォスルホ ン酸 S—メチルであり、 該化合物のメツキ浴中の含有量が 4 p p m未満である請求 項項 1に記載のスズ含有メツキ浴。
4 . 分子内にィォゥ原子と塩素原子を有する化合物が、 α—クロ口ジメチルスル ホンであり、 当該化合物のメツキ浴中の含有量が 4 p m未満である請求項 1に記 載のスズ含有メツキ浴。
5 . 分子内にィォゥ原子と塩秦原子を有する化合物が、 α—メチルスルホニルー Q:, α—ジクロ口ジメチルスルホンであり、該化合物のメツキ浴中の含有量が 4 ρ ρ m未満である請求項 1に記載のスズ含有メツキ浴。
6 . 分子内に酸化数 + IV以下のィォゥ原子を有する化合物が、 ジメチルジスルフ ィド及びメタンチォスルホン酸 S —メチルであり、 分子内にィォゥ原子と塩素原子 を有する化合物が、 α'—クロ口ジメチルスルホン及び α'—メチルスルホニルー a , ージクロ口ジメチルスルホンであって、 ジメチルジスルフイ ド、 メタンチォスルホン酸 S —メチル、 α—クロロジメチル スルホン及び α—メチルスルホニルー α, a—ジクロ口ジメチルスルホンからなる 群から選ばれたィォゥ化合物の 2種以上がメツキ浴中に存在し、
該ィォゥ化合物のメツキ浴中の合計含有量が 2 p p m未満である請求項 1に記載 のスズ含有メツキ浴。
7 . 精製脂肪族スルホン酸が、 アルキルメルカブタン若しくはジアルキルジスル フィ ドを湿式酸化して得られた脂肪族スルホン酸、 又はハロゲン化アルキルスルホ ニルを加水分解して得られた脂肪族スルホン酸を精製したものである請求項 1に記 載のスズ含有メツキ浴。
8 . 精製脂肪 スルホン酸が、 脂肪族スルホン酸に加温下で減圧濃縮処理を施し たものである請求項 1に記載のスズ含有メツキ浴。
9 . 精製脂肪族スルホン酸が、 脂肪族スルホン酸を吸着剤に接触させて固相抽出 処理を施したものである請求項 1に記載のスズ含有メッキ浴。
1 0 . 精製脂肪族スルホン酸が、 同一の吸着剤又は異なる種類の吸着剤を用いて、 2回以上の固相抽出処理を施したものである請求項 9に記載のスズ含有メツキ浴。
1 1 . 精製脂肪族スルホン酸が、 脂肪族スルホン酸に、 減圧濃縮処理と固相抽出処 理とを組み合わせて施したものである請求項 1に記載のスズ含有メツキ浴。
1 2 . アルカンスルホン酸がメタンスルホン酸である請求項 1に記載のスズ含有メ ツキ浴。
1 3 . 請求項 1に記載のメツキ浴を用いてバンプを形成することを特徴とするバン プ形成方法。
PCT/JP2004/000524 2003-01-24 2004-01-22 スズ含有メッキ浴 WO2004065663A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/542,029 US20060113006A1 (en) 2003-01-24 2004-01-22 Tin-containing plating bath
EP04704363.3A EP1591563B1 (en) 2003-01-24 2004-01-22 Tin-containing plating bath

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003015562 2003-01-24
JP2003-015562 2003-01-24
JP2003432338A JP4441726B2 (ja) 2003-01-24 2003-12-26 スズ又はスズ合金の脂肪族スルホン酸メッキ浴の製造方法
JP2003-432338 2003-12-26

Publications (1)

Publication Number Publication Date
WO2004065663A1 true WO2004065663A1 (ja) 2004-08-05

Family

ID=32775187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000524 WO2004065663A1 (ja) 2003-01-24 2004-01-22 スズ含有メッキ浴

Country Status (6)

Country Link
US (1) US20060113006A1 (ja)
EP (1) EP1591563B1 (ja)
JP (1) JP4441726B2 (ja)
KR (1) KR101045189B1 (ja)
TW (1) TW200422439A (ja)
WO (1) WO2004065663A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016603A1 (ja) * 2004-08-10 2006-02-16 Dipsol Chemicals Co., Ltd. 錫-亜鉛合金電気めっき方法
WO2006108476A2 (de) * 2005-04-12 2006-10-19 Dr.-Ing. Max Schlötter Gmbh & Co. Kg Elektrolyt und verfahren zur abscheidung von zinn-wismut-legierungsschichten
US20110214994A1 (en) * 2010-03-02 2011-09-08 C. Uyemura & Co., Ltd Pretreating agent for electroplating, pretreatment method for electroplating, and electroplating method
US8083922B2 (en) * 2007-08-01 2011-12-27 Taiyo Yuden Co., Ltd. Tin electrolytic plating solution for electronic parts, method for tin electrolytic plating of electronic parts, and tin electroplated electronic parts
US8440066B2 (en) 2006-04-14 2013-05-14 C. Uyemura & Co., Ltd. Tin electroplating bath, tin plating film, tin electroplating method, and electronic device component
US20140318982A1 (en) * 2011-12-09 2014-10-30 Dong Hyun Kim Method for preparing tin-silver alloy plating solution and plating solution prepared by same

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004101860A1 (en) * 2003-05-12 2004-11-25 Arkema Inc. High purity electrolytic sulfonic acid solutions
JP4605359B2 (ja) * 2004-10-20 2011-01-05 石原薬品株式会社 鉛フリーの酸性スズ−ビスマス系合金電気メッキ浴
SE0403042D0 (sv) * 2004-12-14 2004-12-14 Polymer Kompositer I Goeteborg Improved stabilization and performance of autocatalytic electroless process
US7713859B2 (en) * 2005-08-15 2010-05-11 Enthone Inc. Tin-silver solder bumping in electronics manufacture
DE102005055742A1 (de) * 2005-11-23 2007-05-24 Robert Bosch Gmbh Verfahren zum Herstellen einer kontaktgeeigneten Schicht auf einem Metallelement
WO2008100648A1 (en) * 2007-02-13 2008-08-21 Arkema Inc. High speed tin plating process
EP1961840B1 (de) * 2007-02-14 2009-12-30 Umicore Galvanotechnik GmbH Kupfer-Zinn-Elektrolyt und Verfahren zur Abscheidung von Bronzeschichten
US8012886B2 (en) * 2007-03-07 2011-09-06 Asm Assembly Materials Ltd Leadframe treatment for enhancing adhesion of encapsulant thereto
DE102008032398A1 (de) * 2008-07-10 2010-01-14 Umicore Galvanotechnik Gmbh Verbesserter Kupfer-Zinn-Elektrolyt und Verfahren zur Abscheidung von Bronzeschichten
US9175400B2 (en) * 2009-10-28 2015-11-03 Enthone Inc. Immersion tin silver plating in electronics manufacture
US8795836B2 (en) * 2010-03-03 2014-08-05 Ppg Industries Ohio, Inc Electrodepositable coating composition comprising a bismuth salt and a stabilizing compound
EP2476779B1 (en) * 2011-01-13 2013-03-20 Atotech Deutschland GmbH Immersion tin or tin alloy plating bath with improved removal of cupurous ions
EP2481835B1 (en) * 2011-01-28 2013-09-11 Atotech Deutschland GmbH Autocatalytic plating bath composition for deposition of tin and tin alloys
US9005409B2 (en) 2011-04-14 2015-04-14 Tel Nexx, Inc. Electro chemical deposition and replenishment apparatus
US9017528B2 (en) 2011-04-14 2015-04-28 Tel Nexx, Inc. Electro chemical deposition and replenishment apparatus
KR101342408B1 (ko) * 2012-06-22 2013-12-17 김동현 주석-은 합금 도금액의 제조방법
EP2740820A1 (de) * 2012-12-04 2014-06-11 Dr.Ing. Max Schlötter GmbH & Co. KG Elektrolyt und Verfahren zur Abscheidung von lötbaren Schichten
US20150122662A1 (en) * 2013-11-05 2015-05-07 Rohm And Haas Electronic Materials Llc Plating bath and method
US9303329B2 (en) 2013-11-11 2016-04-05 Tel Nexx, Inc. Electrochemical deposition apparatus with remote catholyte fluid management
JP6411943B2 (ja) * 2014-05-26 2018-10-24 株式会社荏原製作所 基板電解処理装置、および該基板電解処理装置に使用されるパドル
CN106661752B (zh) * 2014-08-08 2021-08-10 奥野制药工业株式会社 铜-锡合金镀敷浴
TWI588292B (zh) * 2014-10-24 2017-06-21 國立高雄應用科技大學 錫銀膠體奈米粒子、及其製造方法與應用
JP6631349B2 (ja) 2015-03-26 2020-01-15 三菱マテリアル株式会社 アンモニウム塩を用いためっき液
WO2016152986A1 (ja) * 2015-03-26 2016-09-29 三菱マテリアル株式会社 アンモニウム塩を用いためっき液
EP3199666B1 (en) * 2016-01-29 2018-09-26 ATOTECH Deutschland GmbH Aqueous indium or indium alloy plating bath and process for deposition of indium or an indium alloy
US10879156B2 (en) 2016-03-08 2020-12-29 Washington State University Mitigation of whisker growth in tin coatings by alloying with indium
US20170321340A1 (en) * 2016-03-08 2017-11-09 Washington State University Method of electroplating tin films with indium using an alkanesulfonic acid based electrolyte
US9809892B1 (en) * 2016-07-18 2017-11-07 Rohm And Haas Electronic Materials Llc Indium electroplating compositions containing 1,10-phenanthroline compounds and methods of electroplating indium
JP6818520B2 (ja) * 2016-11-11 2021-01-20 ローム・アンド・ハース電子材料株式会社 中性スズめっき液を用いたバレルめっきまたは高速回転めっき方法
US10186456B2 (en) * 2017-04-20 2019-01-22 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for forming contact plugs with reduced corrosion
US10141225B2 (en) 2017-04-28 2018-11-27 Taiwan Semiconductor Manufacturing Company, Ltd. Metal gates of transistors having reduced resistivity
US11686007B2 (en) * 2017-12-18 2023-06-27 New Mexico Tech University Research Park Corporation Tin-indium alloy electroplating solution
US10711366B2 (en) * 2017-12-28 2020-07-14 Lam Research Corporation Removal of electroplating bath additives
BR112020014761B1 (pt) 2018-02-07 2022-12-20 Basf Se Processo para a fabricação de um ácido alcanossulfônico
DE102018208116A1 (de) * 2018-05-23 2019-11-28 Aurubis Stolberg Gmbh & Co. Kg Kupferband zur Herstellung von elektrischen Kontakten und Verfahren zur Herstellung eines Kupferbandes und Steckverbinder
JP7121390B2 (ja) * 2018-08-21 2022-08-18 ディップソール株式会社 すず合金電気めっき浴及びそれを用いためっき方法
CN111812229B (zh) * 2020-06-19 2023-08-01 广电计量检测(合肥)有限公司 一种气相色谱-质谱测定土壤/沉积物中2-甲基苯并噻唑的分析方法
KR20220125608A (ko) 2021-03-05 2022-09-14 주식회사 엠에스씨 솔더범프용 주석계 도금액의 제조방법 및 이에 의하여 제조된 솔더범프용 주석계 도금액
CN114059115A (zh) * 2021-12-20 2022-02-18 中国计量大学 锡锑电镀液及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864601A (ja) * 1994-08-24 1996-03-08 Fujitsu Ltd はんだバンプの形成方法
EP1138805A2 (en) * 2000-03-31 2001-10-04 Shipley Company LLC Tin electolyte
EP1167582A1 (en) * 2000-07-01 2002-01-02 Shipley Company LLC Metal alloy compositions and plating method related thereto

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094726B1 (en) * 1981-09-11 1993-12-21 I. Nobel Fred Limiting tin sludge formation in tin or tin/lead electroplating solutions
US5066367B1 (en) * 1981-09-11 1993-12-21 I. Nobel Fred Limiting tin sludge formation in tin or tin/lead electroplating solutions
US4871429A (en) * 1981-09-11 1989-10-03 Learonal, Inc Limiting tin sludge formation in tin or tin/lead electroplating solutions
US4599149A (en) * 1981-09-11 1986-07-08 Learonal, Inc. Process for electroplating tin, lead and tin-lead alloys and baths therefor
US4565610A (en) * 1983-12-22 1986-01-21 Learonal, Inc. Bath and process for plating lead and lead/tin alloys
US4617097A (en) * 1983-12-22 1986-10-14 Learonal, Inc. Process and electrolyte for electroplating tin, lead or tin-lead alloys
US4565609A (en) * 1983-12-22 1986-01-21 Learonal, Inc. Bath and process for plating tin, lead and tin-lead alloys
US4717460A (en) * 1983-12-22 1988-01-05 Learonal, Inc. Tin lead electroplating solutions
US4701244A (en) * 1983-12-22 1987-10-20 Learonal, Inc. Bath and process for electroplating tin, lead and tin/alloys
US5583253A (en) * 1991-03-27 1996-12-10 Henderson; Phyllis A. Method of preparing purified alkanesulfonic acid
JP3981430B2 (ja) 1997-01-20 2007-09-26 株式会社Adeka 純粋なアルカンスルホン酸の製造方法
DE19854428A1 (de) * 1998-11-25 2000-05-31 Basf Ag Verfahren zur Herstellung von Alkansulfonsäuren
FR2796941B1 (fr) * 1999-07-27 2001-09-14 Atofina Purification d'acides alcanesulfoniques

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864601A (ja) * 1994-08-24 1996-03-08 Fujitsu Ltd はんだバンプの形成方法
EP1138805A2 (en) * 2000-03-31 2001-10-04 Shipley Company LLC Tin electolyte
EP1167582A1 (en) * 2000-07-01 2002-01-02 Shipley Company LLC Metal alloy compositions and plating method related thereto

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1591563A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016603A1 (ja) * 2004-08-10 2006-02-16 Dipsol Chemicals Co., Ltd. 錫-亜鉛合金電気めっき方法
JP2006052431A (ja) * 2004-08-10 2006-02-23 Dipsol Chem Co Ltd 錫−亜鉛合金電気めっき方法
US20070199827A1 (en) * 2004-08-10 2007-08-30 Dipsol Chemicals Co., Ltd. Method for electroplating with tin-zinc alloy
EP1811063A4 (en) * 2004-08-10 2009-03-04 Dipsol Chem ETAN-ZINC ALLOY GALVANOPLASTY METHOD
JP4594672B2 (ja) * 2004-08-10 2010-12-08 ディップソール株式会社 錫−亜鉛合金電気めっき方法
WO2006108476A2 (de) * 2005-04-12 2006-10-19 Dr.-Ing. Max Schlötter Gmbh & Co. Kg Elektrolyt und verfahren zur abscheidung von zinn-wismut-legierungsschichten
WO2006108476A3 (de) * 2005-04-12 2007-05-31 Schloetter Fa Dr Ing Max Elektrolyt und verfahren zur abscheidung von zinn-wismut-legierungsschichten
US8440066B2 (en) 2006-04-14 2013-05-14 C. Uyemura & Co., Ltd. Tin electroplating bath, tin plating film, tin electroplating method, and electronic device component
US8083922B2 (en) * 2007-08-01 2011-12-27 Taiyo Yuden Co., Ltd. Tin electrolytic plating solution for electronic parts, method for tin electrolytic plating of electronic parts, and tin electroplated electronic parts
US20110214994A1 (en) * 2010-03-02 2011-09-08 C. Uyemura & Co., Ltd Pretreating agent for electroplating, pretreatment method for electroplating, and electroplating method
US20140318982A1 (en) * 2011-12-09 2014-10-30 Dong Hyun Kim Method for preparing tin-silver alloy plating solution and plating solution prepared by same
US9657403B2 (en) * 2011-12-09 2017-05-23 Msc Co., Ltd. Method for preparing tin-silver alloy plating solution and plating solution prepared by same

Also Published As

Publication number Publication date
KR20050092132A (ko) 2005-09-20
JP2004244719A (ja) 2004-09-02
KR101045189B1 (ko) 2011-06-28
EP1591563A1 (en) 2005-11-02
TW200422439A (en) 2004-11-01
TWI363814B (ja) 2012-05-11
EP1591563A4 (en) 2006-04-05
JP4441726B2 (ja) 2010-03-31
EP1591563B1 (en) 2018-04-04
US20060113006A1 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
WO2004065663A1 (ja) スズ含有メッキ浴
KR20020003104A (ko) 금속 합금 조성물 및 이와 관련된 도금방법
TWI449815B (zh) 無氰化物白青銅之黏著促進方法
EP1260614A1 (en) Tin plating
US6165342A (en) Cyanide-free electroplating bath for the deposition of gold and gold alloys
JP5384719B2 (ja) 高純度スルホン酸銅水溶液及びその製造方法
JP5150016B2 (ja) スズ又はスズ合金メッキ浴、及び当該メッキ浴を用いたバレルメッキ方法
EP1342817A2 (en) Limiting the loss of tin through oxidation in tin or tin alloy electroplating bath solutions
JP2004510053A (ja) 錫−銅合金層を析出させるための電解質及び方法
JPH1121692A (ja) めっき方法及びめっき物
SE506531C2 (sv) Komposition och förfarande för elektroplätering av guld eller guldlegering
KR102174876B1 (ko) 주석 합금 도금액
JP2013534276A (ja) 銅−錫合金層を沈着する電解質および方法
JP2013534276A5 (ja)
WO2013046731A1 (ja) スズめっき用酸性水系組成物
JP4441725B2 (ja) 電気スズ合金メッキ方法
EP3334853A1 (en) Electroless silver plating bath and method of using the same
JP2009191335A (ja) めっき液及び電子部品
KR20010040038A (ko) 합금 조성물 및 도금 방법
NL8001999A (nl) Bad voor het platteren met zilver en een legering van goud en zilver en een werkwijze voor het platteren daarmede.
CN111647918A (zh) 电解镀金液及其制造方法、以及镀金方法及金配合物
WO2018142776A1 (ja) 錫合金めっき液
CN1420946A (zh) 无晶须析出的锡、锡合金镀液、镀膜以及镀膜物
JP3466229B2 (ja) 錫めっき方法
JPS63161186A (ja) リフロ−処理錫−鉛合金めつき材の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006113006

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10542029

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004704363

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004802699X

Country of ref document: CN

Ref document number: 1020057013578

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057013578

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004704363

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10542029

Country of ref document: US