WO2004064460A1 - 高周波電力供給装置およびプラズマ発生装置 - Google Patents

高周波電力供給装置およびプラズマ発生装置 Download PDF

Info

Publication number
WO2004064460A1
WO2004064460A1 PCT/JP2004/000258 JP2004000258W WO2004064460A1 WO 2004064460 A1 WO2004064460 A1 WO 2004064460A1 JP 2004000258 W JP2004000258 W JP 2004000258W WO 2004064460 A1 WO2004064460 A1 WO 2004064460A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
frequency
plasma generator
frequency power
load
Prior art date
Application number
PCT/JP2004/000258
Other languages
English (en)
French (fr)
Inventor
Yuichi Setsuhara
Tatsuo Shoji
Masayoshi Kamai
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to EP04702413.8A priority Critical patent/EP1589793B1/en
Priority to US10/542,289 priority patent/US7567037B2/en
Priority to JP2005508013A priority patent/JP4451392B2/ja
Publication of WO2004064460A1 publication Critical patent/WO2004064460A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to a high-frequency power supply device and a plasma generation device which are particularly suitable for a thin film forming process for a large-area substrate and an ion implantation process for a long member in a plasma ion implantation method.
  • Inductively coupled plasma generators that use high-frequency power can generate high-density plasma and thus achieve high throughput, and have been used for thin film formation of substrates and plasma ion injection.
  • the antenna 54 is supplied as a plurality of loads.
  • the high-frequency signal from the oscillator 55 is amplified by a plurality of amplifiers 56 to obtain high-frequency power, and the high-frequency power is output by the phase matching device 57 together. It has become.
  • the high-frequency power generated between the terminals of each antenna 54 is compared with the case where high-frequency power is supplied in series to each of two or more antennas 54 having a finite inductance and the case where they are supplied in parallel.
  • the voltage is the same in both cases in that the voltage is proportional to the product of the inductance of each antenna 54 and the high-frequency current, but the combined inductance supplies high-frequency power in parallel compared to supplying high-frequency power in series. This is because it is possible to reduce.
  • each antenna 54 in order to increase the diameter or volume of the plasma generator, each antenna 54 must be connected to a plasma to generate uniform plasma over a large area or large volume. It is arranged so as not to be localized in the generation room 59, and as a result, the distance between the impedance matching device 53 and one antenna 54 via the wiring portion 58, and the other antenna 54 The difference from the distance increases.
  • the inductance in the wiring portion 58 required to supply the high-frequency power to each antenna 54 in parallel is reduced by plasma. It increases with an increase in the diameter or volume of the generating section. For this reason, there is a problem that a high-frequency voltage larger than a high-frequency voltage generated between the terminals of the single antenna 54 is generated in the antenna 54 connected to the end.
  • the high-frequency current flowing through each antenna 54 is an impedance.
  • a high-frequency current is distributed by a passive circuit between the matching device 53 and the antenna 54 serving as a load. For this reason, not only the current distribution becomes non-uniform due to the non-uniformity of the impedance parasitic on the shunt circuit, but also the current distribution cannot be actively controlled.
  • the high-frequency current flowing between the antennas 54 becomes uneven due to the non-uniformity of the loading resistance of the plasma, the parasitic impedance of the shunt circuit, and the temporal change due to the generated heat. Even in such a case, there is a problem that the high-frequency current cannot be controlled, the plasma generation becomes uneven and unstable, and the thin film formation using the plasma becomes unstable.
  • a high-frequency power supply device includes a high-frequency power supply device provided with two or more capacitive or inductive loads. This is a configuration provided near each corresponding load.
  • the above configuration eliminates the necessity of supplying a high-frequency current to each load in parallel or in series, and can reduce variations in high-frequency voltage generated in each load.
  • a plasma generator of the present invention includes: a high-frequency power supply device according to the above; and a vacuum mounted so that a load of the high-frequency power supply device generates plasma by applying high-frequency power. And a container.
  • the above configuration eliminates the need to supply a high-frequency current to each load in parallel or in series, so that the dispersion of the high-frequency voltage generated in each load can be reduced, and the diameter of the plasma generation unit can be increased or increased. Even if the volume is increased, more uniform plasma can be generated, and the formation of a thin film by the plasma and the plasma ion injection can be stabilized.
  • FIG. 1 is a circuit block diagram of the high-frequency power supply device of the present invention.
  • FIG. 2 is a configuration diagram of the plasma generator of the present invention, and shows a cross-sectional structure of the plasma generator in which a plurality of inductively coupled antennas are connected to the high-frequency power supply of the present invention.
  • FIG. 3 is a circuit block diagram of a high-frequency oscillation controller of the high-frequency power supply device.
  • FIG. 4 is a circuit block diagram of an amplifier (integrated high-frequency amplifier unit) showing a main part of the plasma generator.
  • FIGS. 5 (a) and 5 (b) are schematic diagrams when the phase of the high-frequency current supplied to a plurality of antenna conductors in the above-described plasma generator is changed, and FIG. 5 (a) shows the phase in one direction.
  • Figure 5 (b) shows the case where the phase is changed in the opposite direction.
  • FIG. 6 is a schematic perspective view of an inductively-coupled embodiment in which four antenna conductors are arranged on each side surface of a rectangular vacuum vessel in the above-described plasma generator.
  • FIGS. 7 (a) to 7 (c) show the plasma uniformity in the vacuum vessel when the high-frequency power supplied to the antenna conductor is changed in the plasma generator of the present invention shown in FIG.
  • FIG. 7 is a graph showing the change.
  • (a) shows the case where the same power is supplied to all four wires on each surface
  • Fig. 7 (b) shows that the high-frequency power supplied to the antenna conductors at both ends of each surface is 20% higher than the remaining two wires.
  • Fig. 7 (c) shows a case where the high-frequency power supplied to the antenna conductors at both ends of each surface is reduced by 40% from the remaining two.
  • Figures 8 (a) and (b) are graphs showing the ground amplitude when a high-frequency current is supplied to the antenna conductor, which is an inductive load.
  • Figure 8 (a) shows the case where one of the antenna conductors is grounded.
  • Figure 8 (b) shows the case where the floating potential is caused by the blocking capacitor and the like.
  • FIG. 9 is a block diagram showing the voltage at each part in the conventional plasma generator.
  • FIG. 10 is a block diagram showing a voltage at each part in the plasma generator according to the second embodiment of the present invention.
  • FIG. 11 is a block diagram showing a voltage at each part in the plasma generator according to the third embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of the antenna peripheral structure in the plasma generator of the second and third embodiments of the above embodiment.
  • FIG. 13 is a cross-sectional view of a modification of the antenna peripheral structure in the plasma generator of the second and third embodiments of the above embodiment.
  • FIG. 14 is a cross-sectional view of a structure around an antenna in a plasma generator according to a fourth embodiment of the present invention.
  • FIG. 15 is a cross-sectional view of a modified example of the antenna peripheral structure in the plasma generator according to the fourth embodiment.
  • FIGS. 16 (a) to (c) show the shape of the ground electrode according to the fourth embodiment of the present invention.
  • FIG. 16 (a) is a plan view
  • FIG. 16 (b) is a front view
  • FIG. c) shows a perspective view.
  • FIG. 17 is a rough graph showing the difference in the floating potential of the plasma depending on the presence or absence of the ground electrode in the fourth embodiment.
  • FIGS. 18 (a) and 18 (b) show a sensor of a plasma generator according to a sixth embodiment of the present invention.
  • FIG. 18 (a) is a cross-sectional view
  • FIG. 18 (b) is a perspective view.
  • FIG. 18 (a) is a cross-sectional view
  • FIG. 18 (b) is a perspective view.
  • FIG. 19 is a schematic configuration diagram showing the sensor and the detection unit.
  • FIG. 20 is a graph showing attenuation characteristics of a high-frequency induction magnetic field from an antenna conductor.
  • FIGS. 21 (a) to (c) are graphs showing the time change of the plasma state during the pulse operation of the conventional inductively coupled load.
  • FIG. 21 (a) shows the plasma density
  • FIG. (b) shows the electron temperature
  • FIG. 21 (c) shows the plasma potential as the above-mentioned plasma state.
  • FIG. 22 is a graph showing the plasma density dependence of the increase rate of the electron temperature at the time of the pulse ⁇ N with respect to the electron temperature value in the steady state under the inductive coupling load immediately before the pulse is turned on.
  • FIG. 23 is a graph showing the dependence of the increase rate of the plasma potential during the pulse ON on the plasma density immediately before the pulse ⁇ N with respect to the plasma potential value in the steady state under the inductive coupling load.
  • FIGS. 24 (a) to (c) are graphs showing the time change of the plasma state associated with the pulse operation of the inductively coupled load according to the sixth embodiment of the present invention. Indicates the plasma density, FIG. 24 (b) indicates the electron temperature, and FIG. 24 (c) indicates the plasma potential as the above-mentioned plasma state.
  • FIG. 25 is a circuit block diagram of a conventional high-frequency power supply device.
  • FIG. 26 is a configuration diagram of a conventional plasma generator, and shows a cross-sectional structure of a plasma generator in which a plurality of inductively coupled antenna conductors are connected in parallel to a conventional high-frequency power supply.
  • the high-frequency power supply device includes a plurality of antennas 1 as loads, and a high-frequency oscillation controller for supplying high-frequency power to each of the antennas 1 (Power control unit, plasma control unit) 2, and a distributed constant line 3 for transmitting a high-frequency signal for supplying a high-frequency signal for the high-frequency power to each antenna 1.
  • a high-frequency oscillation controller for supplying high-frequency power to each of the antennas 1 (Power control unit, plasma control unit) 2
  • a distributed constant line 3 for transmitting a high-frequency signal for supplying a high-frequency signal for the high-frequency power to each antenna 1.
  • Distributed constant The characteristic impedance of line 3 is set to 50 ⁇ .
  • amplifiers 4 for amplifying the high-frequency signal and supplying the high-frequency power to the antennas 1 are individually provided close to the respective antennas 1. As a result, even if two or more antennas 1 are provided, the voltage generated by the high-frequency power supplied to these antennas 1 can be made uniform, and the generation of plasma due to the inductive coupling of each antenna 1 can be stabilized. it can.
  • the antenna 1 is set to be an inductive load, but may be set to be a capacitive load.
  • Antenna 1 The shape may be any shape that can generate plasma as an inductive load or a capacitive load. In the case of an inductive load, one turn (turns) or less is used to reduce inductance. More preferably, the length is less than one turn, and is a semicircular shape or a substantially U-shape.
  • the plasma generating apparatus of the present invention has the above-described high-frequency power supply apparatus, and includes a substrate stage 5 on a bottom inner surface thereof and a vacuum vessel 6 for generating plasma. Are provided adjacent to each other so as to surround the substrate stage 5 and protrude inward from the inner wall surface of the vacuum vessel 6.
  • the shape of the vacuum container 6 is not particularly limited as long as it is a shape corresponding to a substrate to be processed such as a thin film formation, but is set to a rectangular parallelepiped shape or a cylindrical shape.
  • the vacuum vessel 6 is provided with a gas inlet for generating plasma, an exhaust port for controlling the pressure in the vacuum vessel 6, and a gas supply unit and a vacuum pump. ing.
  • a target mounting portion for sputtering or the like may be provided in the vacuum vessel 6.
  • the high-frequency oscillation controller 2 includes an integrated control system 21, a high-frequency circuit system 22, and a DC power supply system 23.
  • the high-frequency circuit system 2 2 includes: 1) a phase modulator (phase control unit) 22 b connected to one main oscillator (oscillation frequency: f 0) 22 a; a frequency modulator (frequency control unit) 22 c, a plurality of signal amplifiers 22 d. 2)
  • the output high-frequency signal is output from the high-frequency output terminal connected to each high-frequency circuit system 22 and is input to the amplifier 4 directly connected via the high-frequency line 3a of the distribution constant line 3. 3)
  • the high-frequency signal output from the high-frequency circuit 22 is converted by the phase modulator 22b, frequency modulator 22c, and signal amplifier 22d that constitute the high-frequency circuit 22. Power, frequency and phase can be controlled independently.
  • the DC power supply system 23 includes 1) a plurality of DC power supplies 23a, and 2) each DC power output from the DC power supply system 23 is supplied from a DC output terminal connected to each DC power supply 23a. It is output and input to the amplifier 4 directly connected via the DC line 3 b of the distributed constant line 3. 3) The DC power output from each DC power supply 23a can be controlled independently.
  • the integrated control system 21 includes the measurement signals of the high-frequency voltage, current, and power supplied to the antenna 1 as a load in each unit, and the plasma generation state (plasma density) near the load provided in each unit. Measurement signals (Prf_l to Prf-n, Vrf-l to Vrf-n, Irf-l to Irf-n PL-l to PL-n) Input Input as a signal.
  • the integrated control system 21 uses the signals indicating the high-frequency voltage, current, power, and plasma state input from each amplifier 4 to the integrated control system 21 as control signals, and outputs a signal for X and a high-frequency circuit 2 Phase modulation control signal generator 21a, frequency modulation control signal generator 21b, signal amplification factor for performing feedback control of the output of DC power supply 2 and DC power supply system 23 so as to satisfy the desired process conditions It has a control signal generator 21c and a DC output control signal generator 21d.
  • the phase modulation control signal generator 21a can control each phase modulator 22b.
  • the frequency modulation control signal generator 2 1 b This is for individually controlling the wave number modulators 22c.
  • Signal amplification rate control The signal generator 21c controls each signal amplifier 22d separately.
  • the DC output control signal generator 21d can control each DC power supply 23a.
  • the integrated control system 21 can maintain the state in the process device in a stable and highly reproducible state by the feedback control described above.
  • the antenna conductor of antenna 1 Furthermore, by comparing the high-frequency power, voltage, and current flowing through the antenna conductor of antenna 1 with the plasma state (intensity ratio, phase difference), the antenna
  • the ratio of the high frequency magnetic field strength to Irf decreases as the ratio of absorption and shielding of the high frequency magnetic field by the deposit increases. Therefore, by monitoring the plasma state with respect to this Irf, it is possible to predict the degree of deposits on the periphery of the antenna 1 and to clean the area around the antenna 1 with an appropriate etching gas or use a new one. 'Replacement for antenna 1'-you will be able to know exactly when.
  • the monitor provides feedback input signals to the integrated control system 21 (high-frequency voltage, high-frequency current, phase, high-frequency magnetic field strength signals supplied to the antenna, and each signal from each of the measurement units).
  • the state of the plasma and the state of the shield around the antenna are output to the outside and monitored.
  • the amplifier 4 includes a high-frequency power amplifier 41 in which a high-frequency power amplifying element (MOS FET) is mounted on a water-cooled Cu base.
  • the high-frequency power amplifier 41 is connected to the low-impedance antenna 1 via a vacuum flange and a high-frequency feedthrough (insulator) 6a, so that the amplifier 4 is a unit integrated with a high-frequency amplifier.
  • the antenna 1 has an inductively coupled antenna conductor la and an antenna sheath 1b made of an electrical insulator such as ceramic and a low dielectric material and covering the antenna conductor 1a.
  • the amplifier 4 includes various measurement circuits (measurement units) 4 2, 4 3 for measuring the high-frequency power (Prf-n), voltage (Vrf-n), and current (Irf-n) supplied to the antenna conductor 1a, respectively. , 44 and a measurement probe (measurement unit) 45 and a measurement circuit (measurement unit) 46 for measuring the plasma state (PL-n) near the antenna conductor 1a.
  • the measurement probe 45 has a rod shape, and its tip end projects into the vacuum vessel 6.
  • a high-frequency magnetic field probe for measuring the high-frequency magnetic field intensity around the antenna, a Langmuir probe, an ion collector, a plasma absorption probe, and an emission spectroscopic probe can be used.
  • a high-frequency signal having a maximum power of 10 W input from the high-frequency oscillation controller 2 is input to a class C amplifier circuit in the amplifier 4 and is power-amplified by supplying drive power from the DC power supply 23 a to the M ⁇ SFET. It becomes high frequency power.
  • the output of high-frequency power is directly connected to the low impedance inductively coupled antenna conductor 1a, and impedance matching between the antenna conductor 1a and the amplifier 4 is received.
  • the high-frequency power supplied to the antenna conductor 1 a is given by the product of the high-frequency signal supplied from the high-frequency oscillation controller 2 and the amplification factor of the amplifier 4.
  • the amplification factor depends on the input high-frequency signal, its frequency, and the DC power supplied to the amplifier 4.
  • the high-frequency power supplied to the antenna conductor 1a is controlled by the high-frequency signal supplied from the high-frequency oscillation controller 2 to the amplifier 4, the frequency thereof, and the DC power.
  • the specifications of the amplifier 4 are as follows.
  • Amplification circuit Push-pull high-frequency power amplification circuit
  • Amplification frequency band 2 to 50 MHz
  • Impedance matching box and antenna load
  • a shunt circuit for shunting a high-frequency current between the shunt circuit and the passive circuit becomes unnecessary, and it is possible to avoid a non-uniform current distribution due to the non-uniformity of the parasitic impedance of the shunt circuit. Become.
  • the output section of the high-frequency power amplifier 41 can be directly connected to the antenna 1 through a lumped constant circuit with low impedance (a matching circuit with the conventional 50 ⁇ transmission line is not required).
  • High output can be easily achieved with low cost and multiple implementations (less than 1/3 of conventional products).
  • the dissociation process, ionization process, and excitation process of the process gas used in plasma CVD and plasma etching are governed by the collision of the process gas with the electrons in the plasma, and by controlling the electron energy distribution in the plasma.
  • the ratio of neutral radicals and ionic species and the excited state are controlled.
  • the ratio of these neutral radicals and ionic species and the excited state Surface reactions and gas phase reactions are dominant, and processing processes such as plasma CVD and plasma etching can be controlled to desired states.
  • a first embodiment of the present invention using a plasma generator having a vacuum vessel 6 whose inner wall surface has a substantially rectangular parallelepiped shape shown in FIG. 6 will be described below.
  • Antenna 1 is placed inside each inner wall of vacuum vessel 6.
  • 'Four antennas 1 from two short sides: (Bl, B2, B3, B4) and (D1, D2, D3, D4)
  • the origin of the z axis is the center position in the height direction.
  • the origin of the XY plane is the center of the plane.
  • the substantially U-shaped antenna conductor la in each antenna 1 has a closed curve formed by an imaginary line connecting their tips (portions substantially parallel to the inner wall surface of the vacuum vessel 6).
  • the tips are set to be larger than the surface shape (for example, rectangle) of the target substrate and similar to the above surface shape, and substantially parallel to each other, and the distances between the adjacent antenna conductors 1a on the imaginary line are set at substantially equal intervals. Is set.
  • the distribution of plasma generated in the vacuum vessel 6 is arbitrarily controlled by independently controlling the high-frequency power supplied to each antenna conductor 1a. It is possible.
  • the antenna 1 is arranged on the side wall of the vacuum vessel, even when a plurality of antennas 1 are arranged on the top plate, the high-frequency waves supplied to the antenna conductors adjacent to each other are also provided. By controlling the power independently, it is possible to easily control the distribution of plasma generated in the vacuum vessel.
  • the power feeding side Oscillates at a ground amplitude determined by the product of the angular frequency ( ⁇ ) of the high-frequency power supply, the inductance (L) of the antenna 1 and the amplitude of the high-frequency current (I rf). 8 As shown in (b)
  • one of the ends of the antenna conductor 1a shows a high ground amplitude.
  • this high-frequency voltage is applied to the sheath portion of the plasma, not only does the capacitive coupling with the plasma cause abnormal oscillation of the plasma potential, but also the high-frequency voltage at which ions in the plasma are applied to the sheath portion. Then, it is accelerated and incident on the side of the antenna conductor 1a, causing a phenomenon such as sputtering, thereby causing problems such as generation of impurities.
  • the voltage (V s) applied to the plasma sheath region 14 as shown in the equivalent circuit of Fig. 9 Can be expressed by the following equation (1) using the voltage (V a) generated in the antenna conductor la and the potential drop (V i) in the insulator 12.
  • Z i and Z s represent the impedances in the region of the insulator 12 and the sheath portion 14, respectively.
  • a second embodiment of the present invention is aimed at further reducing the voltage applied to the region of the sheath portion 14.
  • a vacuum region (space region) 1 is formed around a portion (more preferably all portions) of the antenna conductor 1 a inside the vacuum vessel 6.
  • Insulators 12 are arranged at intervals of 8.
  • the degree of vacuum in the vacuum region 18 may be a degree set in the vacuum vessel 6 for generating plasma.
  • the relative permittivity of the vacuum region 18 is almost 1, which is lower than any dielectric material, so that a high impedance can be secured. Therefore, the voltage (V s) applied to the region of the plasma sheath portion 14 is the voltage (V a) generated in the antenna conductor 1 a, the potential drop (V v) in the vacuum region 18 and the insulator 1
  • the following equation (2) can be expressed by using the potential drop (V i) at 2.
  • ZV indicates the impedance of the vacuum region 18.
  • the antenna conductor 1 a is located inside the vacuum vessel 6.
  • the first insulator 12a (the above-mentioned portion) is disposed around the portion (more preferably all the portions) through a first vacuum region 18a (corresponding to the above-mentioned vacuum region 18).
  • the second insulator 12b is disposed so as to cover the first insulator 12a with a second vacuum region 18b therebetween. .
  • the high-frequency voltage applied to the region of the sheath portion 14 near the end of the antenna conductor 1a, which causes abnormal vibration of the sputtering of the second insulator 12b and the plasma potential, is reduced. It will be possible to reduce it more effectively and more than before.
  • Desirable shapes of the second insulator 12b include a protective tube or a protective plate.
  • FIG. 11 shows an equivalent circuit in the case where the second insulator 12 b is arranged around the first insulator 12 a with a second vacuum region 18 b therebetween.
  • the voltage (V s) applied to the region of the plasma sheath portion 14 is the voltage (V a) generated in the antenna conductor 1 a , the potential drop (V vl) in the first vacuum region 18 a And the potential drop (V i 1) in the first insulator 12 a, the potential drop (VV 2) in the second vacuum region 18 b, and the potential drop (V V 2) in the second insulator 12 b Using Vi 2), it can be expressed as the following equation (3).
  • the high-frequency voltage applied to the region of the sheath portion 14 at the end of the antenna conductor 1a can be effectively and further reduced.
  • ZV1 and Zi1 are the first vacuum regions 18a and 18a, respectively.
  • ZThe impedance of the first insulator 12a is shown, and
  • Zv2 and Zi2 are the impedances of the second vacuum region 18b and the second insulator 12b, respectively.
  • a cylindrical shape is formed at a portion close to the wall of the vacuum vessel 6 which is the end of the antenna conductor la.
  • the ground electrode 15 having a zigzag cross section is provided so as to surround the first insulator 12a with a coaxial structure.
  • the zigzag structure of the cross section means that the antenna conductor 1a is bent in a zigzag manner so that it projects perpendicularly to the direction of conduction (long axis direction) of the antenna conductor 1a and alternately protrudes in the direction opposite to each other along the direction of conduction. Structure.
  • ground electrode 15 By installing the ground electrode 15, it is possible to block a high-frequency voltage generated at the end of the antenna conductor 1 a from being applied to the region of the sheath portion 14 of the plasma.
  • the above-described antenna conductor is formed by the ground electrode 15 and the second insulator 12 b. It is possible to completely block the application of the high-frequency voltage generated at the end of 1a to the region of the sheath portion 14 of the plasma.
  • the ground electrode 15 in a zigzag structure, it is possible to effectively cut off the electrostatic coupling due to the high-frequency voltage generated in the antenna introduction portion, and to extend the current path for the induced electric field in the ground electrode 15. To suppress heat generation induced by the ground electrode 15 and reduce power loss. It is possible to reduce.
  • the antenna 1 has an antenna conductor 1 a that generates an induced electric field by the applied high-frequency power, and a high-frequency feedthrough 6 a, which is a vacuum flange in a vacuum vessel 6, or a wall of a champer. is installed is attached to, is constituted Katsua antenna conductor 1 a is a metal pipe or a metal plate, in addition ⁇ antenna conductor 1 a, present in the vacuum chamber 6, preferably to around all parts, cylinder Insulator 12 is arranged with vacuum region 18 interposed therebetween, and has a structure that completely blocks the contact between plasma and antenna conductor 1a.
  • the insulator 12 includes a cylindrical main body 12 c and a holding insulator 12 d. Since the main body 1 2c is arranged with the vacuum area 18 separated from the antenna conductor 1a, the holding insulator 12 d moves inward from the inner wall of the main body 1 2c. An extended rib shape is inserted into the main body 12c to hold the antenna conductor 1a. As a result, the insulator 12 is stably arranged around the antenna conductor 1a across the vacuum region 18.
  • the area of the loop surrounded by the portion of the antenna conductor 1a inside the vacuum vessel 6 and the wall of the vacuum vessel 6 is such that the antenna conductor 1a is present in order to reduce the inductance of the antenna conductor 1a. It is preferable that the cross-sectional area (projection area) of the vacuum container 6 in a plane is 1/2 or less.
  • the inductance of the antenna conductor 1a which is the antenna system, is low, the high-frequency voltage generated in the antenna conductor 1a can be suppressed. Furthermore, the insulator 12 arranged around all the parts of the antenna conductor 1a inside the vacuum vessel 6 has a seamless structure, and completely cuts off the contact between the plasma and the antenna conductor 1a. To have a structure.
  • a second insulator 12b may be arranged around the insulator 12 with a vacuum region 18b therebetween.
  • Examples of the shape of the second insulator 12b include a protection tube or a protection plate.
  • the insulator 12 becomes the first insulator 12a. This suppresses the coupling of the high-frequency voltage generated at the end of the antenna conductor 1a into the plasma, thereby reducing the generation of impurities due to the sputtering of the insulator 12 and suppressing the fluctuation of the plasma potential.
  • FIG. 13 is another embodiment of the second and third embodiments of the present invention.
  • a connecting portion 12 e that forms a curved portion of the insulator 12 disposed around the antenna conductor 1 a by connection may be provided.
  • Each main body 1 2 c They are connected to each other via a connection 12 e.
  • the connecting portion 12 e may be made of any material having heat resistance, such as ceramic, glass, metal, etc., which can be processed into a curved shape.
  • Each main body portion is a pipe-shaped linear insulator. The combination with 12 c makes it possible to easily realize the first insulator 12 a.
  • a high voltage generated in a high-frequency introducing portion of the antenna conductor la is effectively shielded, It has an effect of suppressing capacitive coupling, the ground electrode 1-5 of the tubular, so as to cover the antenna conductor 1 a from the outside, and is provided so as to be coaxially with the antenna conductor 1 a.
  • the ground electrode 15 is provided between the antenna conductor 1a and the first insulator 12a.
  • the ground electrode 15 is provided between the first insulator 12a and the second insulator 12b.
  • the metal ground electrode 15 used at that time has a zigzag structure in cross section, as shown in FIG. 16, as shown in FIG.
  • the electrostatic coupling due to the high-frequency voltage generated at the introduction portion of the antenna conductor 1a can be effectively cut off, and the current path for the induced electric field of the ground electrode 15 can be made longer by the zigzag structure. It is possible to suppress heat generation induced by the electrode 15 and reduce power loss.
  • FIG. 17 shows a hydrogen plasma (discharge pressure of 2 Pa) generated by using each of the antennas 1 of the embodiments of FIGS. 12 (without ground electrode) and FIG. 15 (with ground electrode).
  • the results obtained by measuring the floating potential in () with a Langmuir probe are shown below.
  • Fig. 1 shows that the plasma potential was effectively reduced with the ground electrode compared to the case without the ground electrode.
  • the results of 7 are shown.
  • a sensor for measuring the high-frequency induced magnetic field intensity radiated from the antenna conductor 1a be provided in the vacuum vessel 6.
  • a sensor 30 described in a sixth embodiment described later can be used.
  • Examples of the physical quantity measured by the sensor include the strength of a high-frequency magnetic field emitted from the antenna conductor la, and preferably the azimuthal direction with respect to the antenna current.
  • a high-frequency current measuring element pickup coil, loop coil, etc. installed in an insulating protection tube is used.
  • the sensor should be installed at a location close to the antenna 1 installation potential, preferably within a distance of 50 mm or less from the dielectric (insulator) shield of the antenna 1 ′. Up to the position where it attenuates to 0).
  • the physical interpretation and effect of the measured quantity is that the high-frequency magnetic field radiated from the antenna 1 is induced by the high-frequency current flowing through the antenna 1 and mainly has an azimuthal component with respect to the antenna current. Therefore, the following information can be obtained by measuring the high-frequency magnetic field strength and comparing it with the high-frequency current flowing through the antenna 1 (intensity ratio, phase difference). 4 000258
  • a) a high-frequency magnetic field B proportional to the current I rf is generated in the azimuthal direction of the current by flowing a high-frequency current I rf through the antenna, and b) the Faraday's induction law.
  • the high-frequency magnetic field B which fluctuates at the high-frequency power supply frequency, generates an induction electric field E having a strength proportional to the high-frequency current I rf and the frequency.
  • [Faraday's induction law: rot E — ⁇ B / ⁇ t ]: E oc B (e I rf) X frequency, c) It is driven by the acceleration of electrons in the plasma by the induced electric field E.
  • the present invention by providing a sensor for directly measuring the high-frequency induction magnetic field intensity radiated from the antenna conductor 1a in the vacuum vessel 6, it is possible to directly measure the high-frequency magnetic field driving the inductive coupling plasma, It is possible to measure the plasma generation state (drive source) itself, not the plasma density or electron temperature that is the result of plasma generation.
  • a sensor (magnetic field intensity detector) 30 for measuring a high-frequency magnetic field intensity is provided in a vacuum vessel 6 at a distance from the antenna 1. Is installed at each of two or more different locations (not shown), and measures the antenna current along with the high-frequency magnetic field strength at each location.
  • Examples of the sensor 30 include a sensor provided with an insulating protection tube 32 and a loop coil 34 installed in the insulating protection tube 32.
  • the above-described sensor 30 may be used for the measurement probe 45 in the plasma state shown in FIG. 4 described above.
  • the insulating protective tube 32 includes a dielectric shield (first shield) 32a that covers the loop coil 34 with a gap therebetween, and an adhering material shield (second shield) that covers the outside of the dielectric shield 32a with a gap therebetween.
  • the dielectric shield 32a is made of an insulator such as quartz or alumina.
  • the sensor 30 is arranged around a portion existing inside the vacuum vessel 6 so as to block direct contact between the plasma and the sensor 30.
  • the dielectric shield 32a functions also as an electrostatic shield described later.
  • the adhering material shield 32b is designed to prevent the entire surface of the dielectric shield 32a from being covered with the adhering material from the plasma around the dielectric shield 32a, and to form a loop coil. It is arranged to have a structure to avoid shielding of the high-frequency induction magnetic field from 34.
  • the loop coil 34 includes a coil conductor 34a and an electrostatic shield 34b covering the coil conductor 34a.
  • the influence of electrostatic potential fluctuation of plasma is suppressed by the electrostatic shield 34b. Further details of the sensor 130 will be described later.
  • the detecting section 38 can measure the high-frequency magnetic field strength (B) in the loop section 34c by detecting a high-frequency voltage generated in the loop section 34c of the loop coil 34.
  • the detection unit 38 may be the measurement circuit 46 described above.
  • the electromagnetic wave (frequency f 0 ) radiated from the high-frequency antenna or the like into the plasma is f, with respect to the cutoff frequency f pe determined by the electron density (ne) of the plasma.
  • the intensity of the electromagnetic wave attenuates exponentially with the distance r from the boundary surface in contact with the plasma where high-frequency power is supplied to the plasma due to the skin effect, and the skin depth Only about ⁇ ⁇ (the length at which the intensity decays to 1 Z e in the plasma: e is the base of the natural logarithm) can penetrate into the plasma.
  • B p is the amplitude of the high-frequency magnetic field strength of the component of the high-frequency magnetic field perpendicular to the antenna 1 on the surface on the razor side at the boundary where the insulator and the plasma come into contact.
  • the skin depth ⁇ ⁇ is determined by the type of discharge gas, pressure, frequency of high frequency, electron energy distribution of plasma, and plasma density.
  • the type of discharge gas, pressure and high frequency The frequency is known and ultimately depends only on the state of plasma production (electron temperature and plasma density).
  • the plasma density There is shown a 1 0 1 1 cm- 3, the calculation results relating to the attenuation characteristics of the high-frequency magnetic field at the electron temperature in an argon plasma 3 electron volts.
  • the high-frequency magnetic field strength on the plasma-side surface of the insulator 12 B p is generally reduced by the absorption and shielding of the high-frequency power to the deposit 40, and the high-frequency magnetic field strength of the insulator 12 on the inner surface of the deposit 40.
  • I rf the high-frequency magnetic field strength B e (r, t) at the above-mentioned distance r is
  • the state of the plasma in the vacuum vessel 6 and the degree of the deposit 40 on the insulator 12 covering the antenna 1 can be detected. Based on the detection results, the above-described high-frequency
  • the state of the plasma in the vacuum vessel 6 can be controlled by controlling the driving of each antenna 1 by the oscillation controller 2 using at least one of the electric energy, the frequency, and the phase.
  • the high-frequency magnetic field strengths are measured as Be (rl, t) and Be (r2, respectively.
  • the shielding ratio 77 d can be obtained as follows by simultaneously measuring the antenna current I rf.
  • the position where the high frequency magnetic field sensor 30 is installed is preferably at a distance of 10 mm from the surface of the insulator 12 and at a distance of 70 mm, at two different points, The greater the distance between each other, the higher the accuracy of the above measurements.
  • the direction of the loop portion 34c of the sensor 30 may be set so that the high-frequency magnetic field detected by the knock portion 34c is maximized.
  • the virtual plane including 4c is set so as to include the minute section of the antenna conductor 1a closest to the loop section 34c.
  • the senor 30 is installed at two points in the plasma at different distances from the surface of the insulator 12, but the installation place is not limited to only two points. It is clear that the measurement accuracy is improved by installing the sensors in the above different places.
  • the sensor 30 is equipped with an electrostatic shield 34b and a dielectric shield 32a for electrostatic potential fluctuations of the plasma so that the area in contact with the plasma is not completely covered with the deposit 40 from the plasma. Is characterized in that it has a structure in which an attached matter shield 32b is provided outside the dielectric shield 32a.
  • the high-frequency magnetic field strength is measured as a voltage Vb generated at both ends of the coil by electromagnetic induction of a time change dB B Z dt of a magnetic flux passing through a coil in which the coil conductor 34 a is connected in a loop.
  • the loop coil 34 is used in a process of forming an adhering substance 40 on a surface exposed to plasma by a process such as film formation or etching, and the above-described plasma generation state and the insulator 12 are used.
  • the deposit 40 formed on the surface where the loop coil 34 is exposed to the plasma is also used as the measuring point.
  • the high-frequency magnetic field strength at the same time is similarly absorbed and shielded, and the measurement accuracy is degraded.
  • the above-mentioned disadvantage is solved by adopting at least one of the following components [1] or [3].
  • a dielectric shield 32 a made of an insulator is placed around the portion of the coil conductor 34 a for detecting the high-frequency magnetic field strength existing inside the vacuum vessel 6 between the plasma and the coil conductor 34 a. Arrange so as to block contact.
  • FIG. 18 (a) shows a cross-sectional structure of the sensor 30, and FIG. 18 (b) shows a perspective view of the sensor 30.
  • a semi-rigid cable (coaxial cable) 36 with a characteristic impedance of 50 ⁇ is used.
  • the semi-rigid cable 36 uses a copper pipe without coating as the outer conductor, and incorporates a copper wire as the center conductor in the copper pipe via an electrical insulator made of fluororesin or the like. Things.
  • one end of a semi-rigid cable 36 is formed into a single loop of 10 mm in diameter (round, square, or triangular) to form the loop coil 34 of the sensor 30.
  • the coil conductor 34a which is the center conductor at the tip of the loop, is electrically connected to the outer conductor at the base of the loop.
  • the coil conductor 34 a at the loop-shaped distal end is connected to the loop-shaped external conductor at the proximal end, the external conductor at the proximal end and the external conductor at the distal end are electrically connected to each other at the connection.
  • a gap of about 1 mm, for example, is provided between the two to prevent contact.
  • the loop coil 34 is formed by such a manufacturing method.
  • the outer conductor is electrostatically shielded. Effectively acts as 34b, shields against electrostatic potential fluctuations, and makes it possible to measure the strength of the high-frequency magnetic field that penetrates the internal space surrounded by the loop-shaped coil conductor 34a .
  • the above-described loop core which is a high-frequency magnetic field strength detector is used.
  • a dielectric shield 32 a made of an insulator around a portion of the coil 34 located inside the vacuum vessel 6, it is possible to completely shut off the contact between the plasma and the loop coil 34. It becomes possible. This prevents the internal conductor exposed in the gap provided at the connection portion of the above-mentioned loop coil 34 from coming into contact with the plasma and preventing a signal due to the potential fluctuation of the plasma from being mixed.
  • the dielectric shield 32a made of the insulator is used for the dielectric shield 32a made of the insulator, but the insulator material that can be used is a low dielectric material such as alumina or aluminum nitride. It is possible to use a ceramic dielectric material having a high resistivity and a high heat resistance. The thickness is not problematic as long as it can completely shield the plasma, and preferably has a thickness of about 1 mm.
  • a structure is provided around the dielectric shield 32a so that the entire surface of the dielectric shield 32a is not covered with the deposits from the plasma and the high-frequency induction magnetic field is not shielded.
  • Kimono shield 32b is arranged.
  • the reason that the dielectric shield 32a is not completely covered with the adhering substance is that the adhering substance (conductor) on the dielectric shield 32a is generated by an eddy current generated by a high-frequency magnetic field and has a high frequency. This is to prevent the magnetic field from being shielded.
  • the attached material shield 32b prevents the dielectric shield 32a from being completely covered by the attached material and prevents the high frequency induction magnetic field from being shielded by the attached material shield 32b.
  • the dielectric shield 32a is not completely covered, but is provided with a slit-like gap 32c.
  • the gap 32c may be formed so that the high-frequency induction magnetic field reaches the loop coil 34, but a part of the gap 32c in the longitudinal direction is formed by the loop 34c of the loop coil 34. It is preferable to set in parallel to the plane direction formed by being surrounded by.
  • the longitudinal direction of the gap 32c is perpendicular to the surface of the inner wall attached to the vacuum vessel 6. It may be formed in the direction crossing the dielectric shield 32a parallel to the inner wall surface.
  • the adhered material shield 32b is formed of two members made of aluminum having a thickness of 0.5 mm to form a gap 32c having a width of 1 mm and a dielectric shield. It is formed so as to cover 32a.
  • a material used for the deposit shield 32b a material of a ceramic dielectric group can be used in addition to metal.
  • a material of the ceramic dielectric group having excellent heat resistance is preferably used.
  • the slit width in the gap 32c for preventing the shielding of the high-frequency magnetic field may be about 1 mm.
  • the dielectric shield 32 a and the attached matter shield 32 b were arranged, and signals due to a high-frequency magnetic field were measured.
  • a radio frequency power of 13.56 MHz is applied to antenna 1 Plasma was generated, and the RF signal strength was measured with a 50 ⁇ oscilloscope connected to the loop coil 34 at a RF power of 506 W, and a sine wave with an amplitude of 23 mV was observed. This indicates that the loop coil 34 can measure a high-frequency induction magnetic field.
  • the discharge is pulsed (time for supplying high frequency power). And the time for stopping the supply are provided periodically and exclusively).
  • the spatial pattern to which the high-frequency power was supplied could not be freely changed, and the entire plasma source flickered.
  • the plasma generated while the high-frequency power is supplied (pulse ON time) is generated while the high-frequency power supply is stopped (pulse OFF time).
  • the electron temperature (Fig. 21 (b)) and the plasma potential (Fig. 21 (c)) are accompanied by a sharp decrease in plasma density (Fig. 21 (a)) due to diffusion and recombination to the wall. Decrease.
  • the decrease in electron temperature during the pulse OFF time has been used for negative ion generation and the like.
  • the decrease in plasma potential has been used as a means of suppressing plasma damage by reducing the time-average plasma potential.
  • the plasma potential becomes abnormally higher than the plasma potential in the steady state during the initial time when the pulse ⁇ FF changes to the pulse ON, and the plasma damage occurs.
  • the cause of this problem was assumed to be as follows. Because the plasma density decreases during the pulse OFF time, the same high-frequency power as in the steady state is supplied when the pulse changes to ⁇ N, despite the fact that the electron density is lower than in the steady state. The high-frequency power density per electron is higher than in the steady state. As a result, the electrons are heated more than in the steady state, causing an increase in the electron temperature, resulting in an abnormal increase in the plasma potential via the sheath at the wall.
  • the above problem is caused by the fact that the ON-OFF operation of the high-frequency power supplied to the plasma source is performed simultaneously over the entire plasma source. This was an inevitable problem with the conventional high frequency power supply type plasma generator.
  • a seventh embodiment of the present invention in order to solve the above-mentioned problems, high-frequency power supplied to each load for pulse discharge (plasma damage suppression) in which an abnormal rise in plasma potential is suppressed
  • plasma damage suppression in which an abnormal rise in plasma potential is suppressed
  • each group is individually pulsed at separate and independent timings, and even when the load of one group is in a panoramic FF state, the load of another group adjacent to it is The timing of the pulse operation is shifted exclusively from each other so that the antenna 1 is in the pulse-on state, so that the electron density near the antenna 1 belonging to the group that turns into the pulse-on state is controlled, and the electron temperature and plasma potential Abnormal rise can be suppressed.
  • each of the groups adjacent to each other is prevented from being in the ON state.
  • the above-mentioned exclusion may be such that both groups adjacent to each other are in the OFF state.
  • the peak values of the electron temperature and the plasma potential immediately after the pulse ON were about 4 eV and 30 V, respectively. This is because, when the plasma density control near the load was not performed by the adjacent load (Figs. 21 (a) to (c)), the plasma potential increased to about 50 V in this embodiment. It can be seen that the example shows a remarkable suppression effect.
  • each of the embodiments is described independently. However, any of these embodiments may be combined in any way, and the effects are obtained in each combination. It is clear that this will be done. Further, in the first to seventh embodiments of the above embodiments, members having the same functions as those described in any one of the embodiments are assigned the same member numbers in other embodiments, and Description omitted.
  • the conventional plasma process technology includes (1) a cleaning step for removing impurities from a processing substrate, (2) an assing step for removing a resist, (3) a thin film forming step that requires nanostructure control, and ( 4) Used in various processes such as an etching process for applying microfabrication to the surface.
  • the plasma generator and the plasma process of the present invention are provided with a plurality of low-inductance antennas 1 and actively drive and control them independently of each other, as shown in FIG.
  • the plasma source By controlling the plasma source, the area of the plasma source is increased, the density of the plasma source is increased, and the potential is reduced, while the problems of low plasma damage and standing waves can be avoided.
  • a high-frequency power supply for supplying power to the load corresponds. It is characterized by being installed near each load.
  • each high-frequency power supply includes a high-frequency power amplifier close to a corresponding load.
  • the frequency modulation control section for controlling the frequency of the high-frequency current supplied to each load is independent of each high-frequency power supply attached to each load, and one type.
  • the high-frequency currents of the above frequencies are supplied to two or more loads simultaneously, and the impedance of each load is adjusted by frequency modulation of the high-frequency current supplied to each load. You may.
  • a phase modulation control unit for controlling the phase of each current is independently supplied by each high-frequency power supply attached to each load, and high-frequency currents of the same phase or different phases are simultaneously supplied to two or more loads. It may be provided as follows.
  • the power control unit for controlling the high-frequency power supplied to each load is independently controlled by each power supply corresponding to each load, and one or more types of high-frequency power are supplied to each load. It may be provided so that it is supplied to one or more loads at the same time.
  • a plasma generator includes: a high-frequency power supply device according to any one of the above; and a vacuum vessel in which a load of the high-frequency power supply device is attached so as to generate plasma by applying high-frequency power. It is characterized by having.
  • the above-described plasma generator may include a measuring unit for measuring a high-frequency current, a high-frequency voltage, a phase supplied to each load, and a plasma generation state near the load.
  • the plasma generator includes a negative feedback circuit that generates a control signal from a signal of high-frequency power flowing through each load, and a control system that supplies high-frequency power by self-oscillation based on the control signal. Is also good.
  • a negative feedback circuit that generates a control signal from a signal of high-frequency power flowing through each load, and a control system that supplies high-frequency power by self-oscillation based on the control signal. Is also good.
  • two or more loads are mounted adjacent to each other, and the phases and frequencies of the high-frequency current supplied to the adjacent loads are set independently, and the loads are generated at the adjacent loads. It is preferable to provide a plasma controller for controlling the effective acceleration potential of electrons in the plasma by the high-frequency electric field generated.
  • high frequency current of high frequency power feeds successive measurements of the state of the plasma (eg, plasma density) near the phase and load, and independently and actively supplies high-frequency power to two or more loads by either phase modulation, frequency modulation, or amplitude modulation.
  • a control system is provided to control the impedance matching for each load by controlling the load, and to control the uniformity and reproducibility of the plasma in the vacuum vessel, and a monitor to show the plasma state is provided. It is desirable that
  • a single high-frequency power supply is independently provided near each corresponding load for each antenna and the like, and each load is provided with:
  • the high-frequency power supply device and the plasma generation device provide a high-frequency power supply to each load.
  • measurement and monitoring of the high-frequency current, high-frequency voltage, phase applied to each load and the plasma state near the antenna conductor enable feedback control of the measurement signal.
  • a control system for controlling the uniformity and reproducibility of the plasma can be provided, so that the thin film formation by the plasma and the plasma ion implantation can be further stabilized.
  • another plasma generator according to the present invention is provided with a vacuum vessel for generating plasma, and has at least an antenna conductor for generating an induced electric field when high-frequency power is applied in the vacuum vessel.
  • One is installed around the portion of the antenna conductor present inside the vacuum vessel, with the first insulator s, separated by the first spatial region so as to cut off the contact between the plasma and the antenna conductor. It is characterized by
  • a second insulator is disposed around the first insulator with a second space region therebetween.
  • the arrangement of the second insulator further increases the area of the sheath portion.
  • the high frequency voltage applied to the region can be effectively reduced.
  • a ground electrode surrounding the periphery of the first insulator is provided at an antenna introduction portion of the antenna conductor close to an inner wall of the vacuum vessel, and the ground electrode is provided around the ground electrode. It is desirable that the two insulators are arranged so as to suppress the contact between the plasma and the ground electrode. In the above configuration, by providing the ground electrode, it is possible to block a high frequency voltage generated at the end of the antenna conductor from being applied to the region of the plasma sheath.
  • the ground electrode preferably has a zigzag structure that alternately protrudes in a direction orthogonal to the direction of conduction of the antenna conductor along the direction of conduction.
  • the ground electrode in a zigzag structure, it is possible to effectively cut off the electrostatic coupling due to the high-frequency voltage generated in the antenna introduction portion, and to extend the current path for the induced electric field in the ground electrode. In addition, it is possible to suppress heat generation induced by the ground electrode and reduce power loss.
  • a sensor for measuring the intensity of a high-frequency induction magnetic field radiated from an antenna conductor as a load may be provided in the vacuum vessel.
  • a plurality of sensors may be provided at positions different in distance from the antenna conductor.
  • the plasma generator has a plasma control unit that calculates a plasma state in the vacuum vessel from each measurement result from each sensor and a high-frequency current value flowing through the antenna conductor, and controls driving of the antenna conductor. May be I
  • the senor may include a magnetic field strength detection unit and a first shield that covers the magnetic field strength detection unit.
  • the senor may further include a second shield that suppresses the formation of deposits on the first shield and that prevents a high-frequency induction magnetic field from being interrupted to the magnetic field strength detection unit.
  • the second shield preferably has a slit part in order to avoid interruption of the high-frequency induction magnetic field to the magnetic field strength detection part.
  • the high-frequency magnetic field radiated from the antenna conductor is induced by the high-frequency current flowing through the antenna conductor, and mainly has an azimuthal component with respect to the antenna current. Therefore, by measuring this high-frequency magnetic field strength and comparing it with the high-frequency current flowing through the antenna conductor (intensity ratio, phase difference), the high-frequency magnetic field strength driving the inductively coupled discharge in the plasma can be calculated. Can be measured directly.
  • the above measurement corresponds to directly monitoring the driving source in the plasma generation, and if the feedback control is performed so that the measured amount is constant when generating the plasma, the plasma generation state It is possible to keep the state more constant.
  • a power supply control unit for controlling each high-frequency power supply so as to change the spatial distribution pattern of each plasma generated based on the pulse-like high-frequency power supplied to each load is provided. You may be angry.
  • the above-mentioned power supply control part is a space component of each plasma.
  • the cloth pattern may be changed periodically.
  • the power control unit may change a spatial distribution pattern of each plasma independently of each other.
  • a sensor for measuring the intensity of a high-frequency induced magnetic field radiated from a load may be provided in the vacuum vessel.
  • the high-frequency power supply device and the plasma generator according to the present invention eliminate the need to supply a high-frequency current to each load in parallel or in series, so that the variation of the high-frequency voltage generated in each load can be reduced.
  • the above configuration can generate a more uniform plasma even if the diameter or volume of the plasma generation section is increased, stabilize the thin film formation by the above plasma, and stabilize the plasma ion implantation. It can be suitably used for forming thin films for semiconductors such as silicon.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本発明の高周波電力供給装置およびそれを用いたプラズマ発生装置は、2つ以上の、誘導性のアンテナ(1) と、各アンテナ(1) に対して電力を供給するための高周波電源(2, 4)と、各アンテナ(1)が高周波電力の印加によりプラズマを発生するように取り付けられた真空容器(6)とを有し、高周波電源(2, 4)が、それに対応するアンテナ(1)に近接してそれぞれ設けられている。各アンテナ(1)にそれぞれ発生する高周波電圧のバラツキを低減できて、プラズマ発生部の大口径化あるいは大容積化を図っても、より均一なプラズマを発生でき、上記プラズマによる薄膜形成や、プラズマイオン注入を安定化できる。

Description

明 細 書 高周波電力供給装置およびプラズマ発生装置 技術分野
本発明は、 特に大面積基板の薄膜形成処理やプラズマイオン注入法に おける長尺部材のイオン注入処理に適する、 高周波電力供給装置および プラズマ発生装置に関するものである。 背景技術
高周波電力を用いた誘導結合方式のプラズマ発生装置は、 高密度のプ ラズマを発生できることから高いスループッ トを実現でき、 基板の薄膜 形成処理やプラズマィオン注入処理に使用されるようになつてきた。
高周波電力を用いた誘導結合方式のプラズマ発生装置では、 少なく と も 1つのアンテナに印加される高周波電圧の対地振幅が大きくなると異 常放電を生じ易く なると共にプラズマの電位変動が大きく なつてプラズ マダメージを生じることから、 アンテナに発生する高周波電圧を低減す ることが求められている。
このため、 従来では、 図 2 5に示すように、 高周波電源 5 1からの高 周波電力を高周波電力伝送用分布定数線路 ( 5 0 Ω ) 5 2およびイ ンピ 一ダンス整合器 5 3を介して、 複数の負荷と してのアンテナ 5 4に供給 するようになつている。 また、 高周波電源 5 1においては、 発振器 5 5 からの高周波信号を複数の増幅器 5 6でそれぞれ増幅してそれぞれ高周 波電力とし、 それら高周波電力を位相整合器 5 7にて合わせて出力する ようになっている。
このようなアンテナ 5 4への高周波電力の供給方式において、 2っ以 上のアンテナ 5 4を用いる誘導結合方式のプラズマ発生装置では、 図 2 6に示すようにアンテナ 5 4の各々への高周波電力を配線部 5 8によ り 直列ではなく並列にて供給する方式が用いられていた (特開 2 0 0 1 — 3 5 6 9 7号公報) 。
これは、 有限のインダクタンスを有する 2つ以上のアンテナ 5 4の各 々へ高周波電力を直列に供給した場合と並列に供給した場合を比較する と、 各々のアンテナ 5 4の端子間に発生する高周波電圧は各々のアンテ ナ 5 4のィンダクタンスと高周波電流の積に比例する点では両者とも同 じであるが、 合成ィンダクタンスは直列に高周波電力を供給する場合に 比べて並列に高周波電力を供給する方が低減可能であるためである。
(特許文献 1 )
特開 2 0 0 1 — 3 5 6 9 7号公報 (公開日 : 2 0 0 1年 2月 9 日) しかしながら、 誘導結合方式のプラズマ発生装置において、 2つ以上 のアンテナ 5 4に高周波電力を並列に供給する従来の方式では、 プラズ マ発生部を大口径化あるいは大容積化しよう とすれば、 大面積あるいは 大^積にわたって均一なプラズマ生成を行うために、 各々のアンテナ 5 4は、 プラズマ発生室 5 9に局在しないよ うに配置され、 結果的に、 ィ ンピーダンス整合器 5 3 と、 配線部 5 8を介した一つのアンテナ 5 4 と の距離、 およびそれ以外のアンテナ 5 4 との距離との差が増大する。
このため、 上記従来においては、 直列に供給される場合に比べれば合 成インダクタンスが低減するものの、 各々のアンテナ 5 4へ高周波電力 を並列に供給するのに要する配線部 5 8でのインダクタンスがプラズマ 発生部の大口径化あるいは大容積化に伴って増大してしまう。 このため 、 単体のアンテナ 5 4端子間に発生する高周波電圧に比べて大きい高周 波電圧が端部に接続されたアンテナ 5 4に発生するという問題を生じて いる。
さらに、 2つ以上のアンテナ 5 4に並列に高周波電流を供給する図 2 6に示す従来の高周波電力供給方式を用いたプラズマ発生装置では、 各 々のアンテナ 5 4に流れる高周波電流は、 ィンピーダンス整合器 5 3 と 負荷であるアンテナ 5 4 との間において高周波電流を受動回路により分 流している。 このため、 分流回路に寄生するイ ンピーダンスの不均一性 により不均一な電流分布となるばかりではなく、 上記電流分布を能動的 に制御することができない。
これにより、 上記従来では、 プラズマのローデイング抵抗ならびに分 流回路に寄生するイ ンピーダンスの不均一性ならびに発生する熱による 時間的な変化による影響で、 アンテナ 5 4間に流れる高周波電流が不均 一となつた場合でも、 上記高周波電流を制御できず、 プラズマ生成が不 均一、 不安定になり、 上記プラズマを用いた薄膜形成等が不安定になる という問題があった。
さらに、 2つ以上のアンテナ 5 4に並列に高周波電流を供給する、 図 2 6に示す従来の高周波電力供給方式を用いたプラズマ発生装置では、 並列に接続された複数のアンテナ 5 4の合成ィンピーダンスに対するィ ンピーダンス整合は可能であるものの、 それぞれのアンテナ 5 に供給 される高周波電流に対するィンピーダンス整合の状態を独立に制御でき ず、 プラズマ生成が不均一、 不安定になり、 上記プラズマを用いた薄膜 形成等が不安定になるという、 前記と同様な問題があった。 さらに、 上記従来の構成では、 生成するプラズマのシース部の領域に 印加される高周波電圧に起因する、 ァンテナに対するスパッタリングが 生じて、 上記アンテナの減耗が大きく、 プラズマ生成が不均一、 不安定 になり、 上記プラズマを用いた薄膜形成等が不安定になるという、 前記 と同様な問題があり、 かつ、 上記スパッタ リ ングによる不純物を生じる 問題点もあった。 発明の開示
本発明の高周波電力供給装置は、 以上の課題を解決するために、 容量 性または誘導性の負荷を 2つ以上設けた高周波電力供給装置において、 負荷に対して電力を供給するための高周波電源が、 対応する負荷に近接 してそれぞれ設けられている構成である。
それゆえ、 上記構成は、 各々の負荷へ高周波電流を並列または直列に 供給する必要を省けるから、 各負荷にそれぞれ発生する高周波電圧のバ ラツキを低減できる。
本発明のプラズマ発生装置は、 前記の課題を解決するために、 上記に 記載の高周波電力供給装置と、 上記高周波電力供給装置の負荷が高周波 電力の印加によりプラズマを発生するように取り付けられた真空容器と を備えた構成である。
それゆえ、 上記構成は、 各々の負荷へ高周波電流を並列または直列に 供給する必要を省けるから、 各負荷にそれぞれ発生する高周波電圧のパ ラツキを低減できて、 プラズマ発生部の大口径化あるいは大容積化を図 つても、 より均一なプラズマを発生できて、 上記プラズマによる薄膜形 成や、 プラズマィオン注入を安定化できる。 本発明のさらに他の目的、 特徴、 および優れた点は、 以下に示す記載 によって十分わかるであろう。 また、 本発明の利益は、 添付図面を参照 した次の説明で明白になるであろう。 図面の簡単な説明
図 1は、 本発明の高周波電力供給装置の回路プロック図である。
図 2は、 本発明のプラズマ発生装置の構成図であり、 本発明の高周波 電力供給装置に複数個の誘導結合型のアンテナを接続したプラズマ発生 装置の断面構造を示す。
図 3は、 上記高周波電力供給装置の高周波発振制御器の回路プロック 図である。
図 4は、 上記プラズマ発生装置の要部を示す増幅器 (高周波増幅器一 体型ュニッ ト) の回路ブロック図である。
図 5 ( a ) および (b ) は、 上記プラズマ発生装置における、 複数の アンテナ導体に供給される高周波電流の位相を変化させた際の概略図を 示し、 図 5 ( a ) は一方向に位相を変化させる場合を示し、 図 5 ( b ) は互いに反対方向に位相を変化させる場合を示す。
図 6は、 上記プラズマ発生装置における、 矩形の真空容器の各側面に 4本ずつのアンテナ導体をそれぞれ配置した誘導結合型の実施例であり 、 その概略斜視図を示す。
図 7 ( a ) ないし ( c ) は、 図 6に示した本発明のプラズマ発生装置 において、 アンテナ導体に供給される高周波電力を変化させた際におけ る、 真空容器内でのプラズマ均一性の変化を示すグラフであって、 図 7 ( a ) は、 各面の 4本全てに同じ電力を供給した場合を示し、 図 7 ( b ) は、 各面の両端部のアンテナ導体に供給する高周波電力を残り 2本よ り も 2 0 %減じた場合を示し、 図 7 ( c ) は、 各面の両端部のアンテナ 導体に供給する高周波電力を残り 2本より も 4 0 %減じた場合を示す。
図 8 ( a ) および (b ) は、 誘導性負荷であるアンテナ導体に高周波 電流を供給した場合の対地振幅を示すグラフであって、 図 8 ( a ) はァ ンテナ導体の一方を接地した際を示し、 図 8 ( b ) はブロッキングコン デンサ等により浮遊電位となっている際を示す。
図 9は、 従来のプラズマ発生装置における、 各部位での電圧を示すた めのブロック図である。
図 1 0は、 本発明に係る実施の第二形態のプラズマ発生装置における 各部位での電圧を示すためのブロック図である。
図 1 1は、 本発明に係る実施の第三形態のプラズマ発生装置における 各部位での電圧を示すためのプロック図である。
図 1 2は、 上記の実施の第二おょぴ第三形態のプラズマ発生装置にお けるァンテナ周辺構造の断面図である。
図 1 3は、 上記の実施の第二おょぴ第三形態のプラズマ発生装置にお けるアンテナ周辺構造の一変形例の断面図である。
図 1 4は、 本発明に係る実施の第四形態におけるプラズマ発生装置に おけるァンテナ周辺構造の断面図である。
図 1 5は、 上記実施の第四形態におけるプラズマ発生装置におけるァ ンテナ周辺構造の一変形例の断面図である。
図 1 6 ( a ) ないし ( c ) は、 本実施の第四形態における接地電極の 形状を示し、 図 1 6 ( a ) は平面図、 図 1 6 ( b ) は正面図、 図 1 6 ( c ) は斜視図を示す。
図 1 7は、 本実施の第四形態での、 接地電極の有無によるプラズマの 浮遊電位の違いを示すダラフである。
図 1 8 ( a ) および ( b ) は、 本発明に係る実施の第六形態における プラズマ発生装置のセンサーを示し、 図 1 8 ( a ) は断面図であり、 図 1 8 ( b ) は斜視図である。
図 1 9は、 上記センサーと検出部とを示す概略構成図である。
図 2 0は、 アンテナ導体からの高周波誘導磁場の減衰特性を示すダラ フである。
図 2 1 ( a ) ないし ( c ) は、 従来の誘導結合負荷のパルス運転に伴 う、 プラズマ状態の時間変化を示すグラフであって、 図 2 1 ( a ) はプ ラズマ密度、 図 2 1 ( b ) は電子温度、 図 2 1 ( c ) はプラズマ電位を それぞれ上記プラズマ状態と して示す。
図 2 2は、 誘導結合負荷における、 定常状態での電子温度の値に対す る、 パルス〇 N時における電子温度の増加率の、 パルス ON直前のプラ ズマ密度依存性を示すグラフである。
図 2 3は、 誘導結合負荷における、 定常状態でのプラズマ電位の値に 対する、 パルス O N時におけるプラズマ電位の増加率の、 パルス〇 N直 前のプラズマ密度依存性を示すグラフである。
図 2 4 ( a ) ないし ( c ) は、 本発明に係る実施の第六形態における 誘導結合負荷のパルス運転に伴う、 プラズマ状態の時間変化を示すグラ フであって、 図 2 4 ( a ) はプラズマ密度、 図 2 4 ( b ) は電子温度、 図 2 4 ( c ) はプラズマ電位をそれぞれ上記プラズマ状態として示す。
図 2 5は、 従来の高周波電力供給装置の回路プロック図である。 図 2 6は、 従来のプラズマ発生装置構成図であり、 従来の高周波電力 供給装置に複数個の誘導結合型アンテナ導体を並列に接続したプラズマ 発生装置の断面構造を示す。 発明を実施するための最良の形態
以下、 実施の各形態により、 本発明をさらに詳細に説明するが、 本発 明はこれらにより何ら限定されるものではない。
本発明の実施の各形態について図 1ないし図 2 5に基づいて説明すれ ば、 以下の通りである。
(実施の第一形態)
本発明の実施の第一形態に係る高周波電力供給装置は、 図 1に示すよ うに、 負荷と してのアンテナ 1を複数備え、 上記各アンテナ 1に高周波 電力を供給するための高周波発振制御器 (電力制御部、 プラズマ制御部 ) 2 と、 上記高周波電力のための高周波信号を各アンテナ 1に供給する ための、 高周波信号伝送用の分布定数線路 3 とを有している。 分布定数 線路 3の特性ィンピーダンスは、 5 0 Ωに設定されている。
そして、 上記高周波電力供給装置においては、 高周波信号を増幅して 高周波電力をアンテナ 1に供給するための増幅器 4が、 各アンテナ 1に それぞれ近接して個別に設けられている。 これにより、 2以上の多数の アンテナ 1 を設けても、 それらアンテナ 1に供給される高周波電力によ り発生する電圧を均一化できて、 上記各アンテナ 1の誘導結合によるプ ラズマ発生を安定化できる。
なお、 上記では、 アンテナ 1は、 誘導性負荷となるように設定されて いるが、 容量性負荷となるように設定されていてもよい。 アンテナ 1の 形状と しては、'誘導性負荷または容量性負荷となってプラズマ発生でき るものであればよいが、 誘導性負荷の場合では、 低インダクタンス化を 図るために、 1 ターン (卷数) 以下、 より好ましくは 1ターン未満で、 半円状や略コの字状が挙げられる。
本発明のプラズマ発生装置は、 図 2に示すように、 上記高周波電力供 給装置を有し、 基板ステージ 5を底内面上に備えた、 プラズマ発生のた めの真空容器 6内に各アンテナ 1が、 基板ステージ 5を囲むよ うに、 か つ、 真空容器 6の内壁面より内方に向かって突出するように互いに隣り 合って設けられている。
なお、 真空容器 6の形状は、 薄膜形成等の処理の対象となる基板に応 じた形状であれば特に限定されないが、 直方体形状あるいは円柱状に設 定されている。 また、 真空容器 6には、 図示しないが、 プラズマ発生用 の気体取り入れ口や、 真空容器 6内の圧力を制御するための排気口が設 けられ、 さらに、 気体供給部や真空ポンプが取り付けられている。 その 上、 真空容器 6内には、 スパッタ リ ング用等のターゲッ ト取り付け部が 設けられていてもよい。
高周波発振制御器 2は、 図 3に示すよ うに、 統合制御系 2 1、 高周波 回路系 2 2、 直流電源系 2 3 とを備えている。 高周波回路系 2 2は、 1 ) 一つの主発振器 (発振周波数 : f 0 ) 2 2 aに接続された、 位相変調 器 (位相制御部) 2 2 b、 周波数変調器 (周波数制御部) 2 2 c、 信号 増幅器 2 2 d とを、 複数、 有している。 2 ) 出力される高周波信号は、 各々の高周波回路系 2 2に接続された高周波出力端子から出力され、 分 布定数線路 3の高周波線路 3 aを介して直結された増幅器 4に入力され る 3 ) 高周波回路系 2 2から出力される高周波信号は、 高周波回路系 2 2 を構成する位相変調器 2 2 b、 周波数変調器 2 2 c、 信号増幅器 2 2 d によって、 出力される高周波信号の電力、 周波数および位相が各々独立 に制御可能なものとなっている。
直流電源系 2 3は、 1 ) 複数の直流電源 2 3 aを備え、 2 ) 直流電源 系 2 3から出力される各直流電力は、 各々の直流電源 2 3 aに接続され た直流出力端子から出力され、 分布定数線路 3の直流線路 3 bを介して 直結された増幅器 4に入力される。 3 ) 各々の直流電源 2 3 aから出力 される直流電力は、 各々独立に制御可能である。
統合制御系 2 1 には、 各ユニッ トで負荷と してのアンテナ 1に供給さ れる高周波電圧、 電流、 電力の測定信号および各ユニッ トに備えられた 負荷近傍のプラズマの生成状態 (プラズマ密度、 電子温度、 プラズマポ テンシャル等) を測定して診断する測定回路 (測定部) からの測定信号 ( Prf_l〜Prf - n、 Vrf - l〜Vrf - n、 Irf- l ~ Irf-n PL-l ~ PL-n) 入力 信号と して入力される。
統合制御系 2 1は、 各増幅器 4から統合制御系 2 1 に入力される高周 波電圧、 電流、 電力おょぴプラズマ状態を示す信号を制御信号と し X用 レ、、 高周波回路系 2 2および直流電源系 2 3の出力を、 所望のプロセス 条件を満たすようにブイ一ドバック制御するための、 位相変調制御信号 発生器 2 1 a、 周波数変調制御信号発生器 2 1 b、 信号増幅率制御信号 発生器 2 1 c、 および直流出力制御信号発生器 2 1 dをそれぞれ有して いる。
位相変調制御信号発生器 2 1 aは、 各位相変調器 2 2 bをそれぞれ制 御できるようになつている。 周波数変調制御信号発生器 2 1 bは、 各周 波数変調器 2 2 cを個々に制御するためのものである。 信号増幅率制御 信号発生器 2 1 cは、 各信号増幅器 2 2 dを別々に制御するものである 。 直流出力制御信号発生器 2 1 dは、 各直流電源 2 3 aをそれぞれ制御 できるようになつている。
統合制御系 2 1は、 上記のフィードバック制御により、 プロセス装置 内の状態を安定かつ再現性のよい状態に保つことが可能となる。
4 ) プラズマ発生装置においては、 プラズマの均一性の制御、 プロセス の安定性ならぴに再現性をはかり、 プロセス状態の一つであるプラズマ 状態を現すモニターに出力する。
さらに、 アンテナ 1のアンテナ導体に流れる高周波電力、 電圧、 電流 とプラズマ状態の比較 (強度比、 位相差) を行う ことにより、 アンテナ
1の周囲に対する付着物の度合いを予測することが可能となる。
具体的には、 付着物による高周波磁場の吸収 ·遮蔽の割合が増加する に従って、 Irfに対する高周波磁場強度の比は減少する。 このため、 こ の Irfに対するプラズマ状態をモニタ一することにより、 アンテナ 1周 辺への付着物の程度を予測することが可能となり、 適切なエッチングガ スによるアンテナ 1の周辺のク リーニングあるいは新品のアンテナ 1へ の '交換—時期を確実に知ることができるよ うになる。
このようにモニターは、 統合制御系 2 1へのフィ一ドバック入力信号 (アンテナに供給される高周波電圧、 高周波電流、 位相、 高周波磁場強 度の各信号と前記の各測定部からの各信号) を処理することにより、 プ ラズマ状態ならびにアンテナ周辺のシールドの状態を外部へ出力してモ 二ターするためのものである。
一方、 従来技術においては、 試行錯誤による経験則によってク リー- ングあるいは新品への交換を行わざるを得ず、 アンテナの動作が不安定 となることがあった。
前記の増幅器 4は、 図 4に示すように、 高周波電力増幅素子 (M O S F E T ) を水冷 C uベース上に実装した高周波電力増幅器 4 1 を備えて いる。 高周波電力増幅器 4 1は、 低インピーダンスのアンテナ 1に真空 フランジおよび高周波フィー ドスルー (絶縁体) 6 aを介して接続され ていることによって、 増幅器 4は高周波増幅器一体型ュニッ トとなって いる。 アンテナ 1は、 誘導結合型のアンテナ導体 l a と、 セラミ ック等 の電気絶縁体およぶ低誘電体からなりアンテナ導体 1 aを覆うアンテナ 鞘部 1 b とを有している。
増幅器 4には、 アンテナ導体 1 aに供給される高周波電力 (Prf- n) 、 電圧 (Vrf- n) 、 電流 (Irf-n) をそれぞれ測定する各測定回路 (測定 部) 4 2、 4 3、 4 4 とアンテナ導体 1 a近傍のプラズマ状態 (PL-n) を測定するための測定プローブ (測定部) 4 5およびその測定回路 (測 定部) 4 6を備えている。 測定プローブ 4 5は、 棒状であり、 その先端 部が真空容器 6内に突出するようになっている。 上記のプラズマ状態の 測定には、 ァンテナ周辺の高周波磁場強度を測定する高周波磁場プロ一 ブ、 ラングミユアプローブ、 イオンコレクター、 プラズマ吸収プローブ 、 発光分光プローブを用いることができる。
高周波発振制御器 2から入力される最大電力 1 0 Wの高周波信号は、 増幅器 4において C級増幅回路に入力され、 直流電源 2 3 aから前記 M 〇 S F E Tへの駆動電力の供給により電力増幅されて高周波電力となる 。 高周波電力の出力を低インピーダンスの誘導結合アンテナ導体 1 aに 直結し、 アンテナ導体 1 a と増幅器 4の間でのインピーダンス整合は受 3
動回路により構成されている。
アンテナ導体 1 aに供給される高周波電力は、 高周波発振制御器 2か ら供給される高周波信号と、 増幅器 4の増幅率の積で与えられる。 増幅 率は、 入力される高周波信号、 その周波数および増幅器 4に供給される 直流電力に依存している。
このため、 アンテナ導体 1 a に供給される高周波電力は、 高周波発振 制御器 2から増幅器 4に供給される高周波信号とその周波数ならびに直 流電力により制御される。
増幅器 4の仕様は以下の通りである。
• 増幅回路 : プッシュ · プル式高周波電力増幅回路
•増幅器コス ト = US $ 0. 25 /W
•増幅周波数帯域 = 2 〜 5 0 M H z
. 直流入力電圧 = 5 0 V
• 直流入力電流 = 4 0 A 〜 5 0 A
- 高周波入力電力-最大 1 0 W
• 高周波出力電力 = l k W ( l 0 W入力時)
本願発明の効果について以下に説明する。
1 ) '高周波発振制御器 2から増幅器 4 へ供給される高周波信号の電力と 周波数、 位相および直流電力を制御することにより、 高周波電力が独立 に各アンテナ導体 1 aに対し、 それぞれ供給され、 かつ周波数、 電力お よび位相と共にそれぞれの負荷に対するインピーダンス整合状態を能動 的に制御することが可能である。
(周波数、 電力、 位相の独立制御可)
2 ) 従来方式において必要な、 インピーダンス整合器とアンテナ (負荷 ) との間で高周波電流を受動回路により分流するための分流回路が、 本 願発明では不要となり、 分流回路に寄生するイ ンピーダンスの不均一性 による不均一な電流分布を回避することが可能となる。
3 ) 大面積ないし大容積のプラズマ生成において、 インピーダンス整合 器から負荷への配線の長大化によるイ ンダクタンスの増大を伴うことな く負荷と してのアンテナ 1 を増設可能となる。
(配線部のィンダクタンスによる R F高電圧の発生が回避される)
4 ) 高周波電力増幅器 4 1の出力部からアンテナ 1へは互いに低インピ 一ダンスの集中定数回路を通じて直結可能 (従来の 5 0 Ω伝送線路との マッチング回路が不要) である。
5 ) 複数実装によ り高出力化を低コス トかつ容易に実現可能 (従来の 1 / 3以下) 、 特に、 マルチアンテナ型 I C P生成における新しい方式の R F電力の供給が可能となる。
位相制御効果
図 5 ( a ) および図 5 ( b ) に示すように、 各々の I C Pモジュール に供給される入力 R F信号の位相制御を行う ことにより、 隣接するュ- ッ ト間での位相関係で決まる実効的な電子の加速ポテンシャルが変化し 、 電子の加速ポテンシャルを変化させることにより電子エネルギー分布 を制御できる。
特に、 プラズマ C V Dならびにプラズマエッチングで用いられるプロ セス気体の解離過程、 電離過程、 励起過程は、 プラズマ中の電子とプロ セス気体との衝突により支配され、 プラズマ中の電子エネルギー分布を 制御することにより、 中性ラジカル、 イオン種の割合と励起状態が制御 される。 さらに、 これら中性ラジカル、 イオン種の割合と励起状態によ り表面反応および気相反応が支配され、 プラズマ C V Dならびにプラズ マエッチング等の加工プロセスを所望の状態に制御することが可能とな る。
分布制御の一例
分布制御について、 図 6に示す、 内壁面が略直方体形状の真空容器 6 を有するプラズマ発生装置を用いた、 本実施の第一形態を以下に示す。
• 平面形状 : 水平方向の断面が矩形 (長方形)
•長辺 : 1 2 3 cm、 短辺 : 1 0 3 cm、 高さ : 3 8 cm
•真空容器 6の内側壁の各々よりアンテナ 1を内部に配置。
' アンテナ 1 を 2つの長辺から 4本ずつ : (Al, A2, A3, A4)と (Cl, C2, C3, C4)
' アンテナ 1を 2つの短辺から 4本ずつ : (B l, B2, B3, B4)と (D1 , D2, D3, D4)
•真空容器 6の高さ方向に z軸、 平面に X軸および y軸をとる。
• z軸の原点は高さ方向の中心位置。
. X y面の原点は平面の中心位置。
• アンテナ導体 1 a の位置 : Z = 1 . 5 cm
プラズマ分布のシミ ュ レーショ ン結果
• y = 5 2 cmにおけるプラズマ密度の x分布を図 7に示す。
• シミ ュ レーショ ンの拘束条件 (高周波電力供給) 各面の両端 2 ·本に 供給する電力は全て同じであり、 各面の残りの 2本に供給する電力は全 て同じである。
• 各面の 4本全てに同じ電力を供給した場合は、 図 7 ( a ) に示すよ うに、 隣り合う面との重なりあわせのために各面の両端部での密度が髙 く なりすぎることを特徴とする不均一な分布となる。
• 各面の両端部のアンテナ導体に供給する高周波電力を残り 2本より も 2 0 %減じることによ り、 図 7 ( b ) に示すように、 良好な一様性を 有する分布が得られる。
• 各面の両端部のアンテナ導体に供給する高周波電力を残り 2本より も 4 0 %減じることにより、 図 7 ( c ) に示すように、 各面の両端部で の密度が低くなりすぎることを特徴とする不均一な分布となる。
本実施の第一形態では、 各アンテナ 1における略コの字状のアンテナ 導体 l aは、 それらの先端部 (真空容器 6の内壁面と略平行な部分) を 結ぶ仮想線が閉曲線となり、 上記閉曲線が、 対象となる基板の表面形状 (例えば長方形) より大きな、 上記表面形状と相似形で略平行に設定さ れ、 互いに隣り合う各アンテナ導体 1 aの上記仮想線上での距離がほぼ 等間隔に設定されている。
このような本実施の第一形態では、 各アンテナ導体 1 aに対して供給 される高周波電力を独立にそれぞれ制御することによ り、 真空容器 6に て発生させるプラズマの分布を任意に制御することが可能である。
さらに、 アンテナ 1 を真空容器の側壁に配置した上記の実施の第一形 態以外に、 天板に複数のアンテナ 1 を配置する場合においても、 互いに 隣り合う各アンテナ導体に対して供給される高周波電力を独立にそれぞ れ制御することにより、 真空容器にて発生させるプラズマの分布を容易 に制御することが可能である。
(実施の第二形態)
誘導性負荷であるアンテナ導体 1 aに高周波電流を供給した場合、 ァ ンテナ導体 1 aの一方を接地すると、 図 8 ( a ) に示すように、 給電側 は高周波電源の角周波数 (ω ) 、 アンテナ 1のイ ンダクタンス (L) お ょぴ高周波電流の振幅 ( I rf) の積で決まる対地振幅で振動し、 ブロッ キングコンデンサ等により浮遊電位とすると、 図 8 ( b ) に示すように
、 対極に対して同等の高周波電圧を示す上記対地振幅で振動する。
何れの場合でも、 アンテナ導体 1 aの端部の何れかが高い対地振幅を 示すことになる。 この高周波電圧がプラズマのシース部にかかることに より、 プラズマとの容量性結合に伴ってプラズマ電位の異常な振動を招 くばかりでなく、 プラズマ中のイオンがシース部に印加される高周波電 圧でアンテナ導体 1 aの側へ加速されて入射し、 スパッタ リ ング等の現 象を生じることにより不純物を生成する等の問題を生じる。
アンテナの内部表面を絶縁体によ り密着させて覆った従来のプラズマ 発生装置の場合、 図 9の等価回路に示すように、 プラズマのシース部 1 4の領域に印加される電圧 (V s ) は、 アンテナ導体 l aに発生する電 圧 (V a ) と絶縁体 1 2における電位降下分 (V i ) を用いて次式 ( 1 ) のよ うに表すことができる。
V s =V a -V i =V a · Z s / (Z i + Z s ) … ( 1 )
ここで、 Z i 、 Z s は、 各々、 絶縁体 1 2およびシース部 1 4の領域 のインピーダンスを示す。 このよ う にァンテナ導体 1 aの表面を絶縁体 1 2で密に被覆することにより、 アンテナ 1 とプラズマとの静電結合成 分が抑制される (特開 2 0 0 1 _ 3 5 6 9 7号公報を参照) 。
しかし、 被覆材である絶縁体 1 2あるいは誘電体のスパッタリ ングに よる不純物を生じる問題点があった。
この問題点を技術的に解決するため、 シース部 1 4の領域に印加され る電圧をさらに低減することを目的として、 本発明に係る実施の第二形 態のプラズマ発生装置では、 図 1 0の等価回路に示すように、 アンテナ 導体 1 aの真空容器 6内部に存在する部分 (より好ましくは全ての部分 ) の周囲に、 真空領域 (空間領域) 1 8を隔てて絶縁体 1 2が配置され ている。 上記真空領域 1 8の真空度は、 プラズマを発生させるための、 真空容器 6内にて設定された程度のものでよい。
真空領域 1 8の比誘電率は、 ほぼ 1であり、 何れの誘電体材料に比べ ても低い値を示すため、 高いイ ンピーダンスを確保することが可能とな る。 よって、 プラズマのシース部 1 4の領域に印加される電圧 (V s ) は、 アンテナ導体 1 aに発生する電圧 (V a ) 、 真空領域 1 8における 電位降下分 (V v ) および絶縁体 1 2における電位降下分 (V i ) を用 いて次式 ( 2 ) のように表すことができる。
V s =V a -V v -V i =V a · Z s / (Z v + Z i + Z s ) … ( 2 ) これにより、 生成するプラズマのシース部 1 4の領域に印加される高 周波電圧を、 真空領域 1 8を隔てた絶縁体 1 2の配置によって、 効果的 にかつ従来より もさらに低減することが可能となり、 前記の問題点を軽 減できる。 上記の式 ( 2 ) では、 Z Vは真空領域 1 8のインピーダンス を示す。
(実施の第三形態)
さらに、 図 8 ( a ) およぴ図 8 ( b ) のアンテナ導体 l aにおける電 圧振動にも示めされるように、 アンテナ導体 1 aが接地されている場合 と浮遊電位となっている場合の何れの場合においても、 高周波電圧が高 い対地振幅となる場所はアンテナ導体 1 aの端部である。
このため、 本発明に係る実施の第三形態のプラズマ発生装置において は、 図 1 1に示すように、 アンテナ導体 1 aの真空容器 6内部に存在す る部分 (より好ましくは全ての部分) の.周囲に、 第一の真空領域 1 8 a (前記の真空領域 1 8に相当) を介して配置される第一の絶縁体 1 2 a (前記の絶縁体 1 2に相当) の周囲に、 さらに、 第二の真空領域 1 8 b を隔てて第二の絶縁体 1 2 bが第一の絶縁体 1 2 aを覆う ように配置さ れている。
これによ り、 第二の絶縁体 1 2 bのスパッタリ ングゃプラズマ電位の 異常振動の原因となるアンテナ導体 1 aの端部近傍における、 シース部 1 4の領域に印加される高周波電圧を、 効果的に、 かつ従来より もさら に低減することが可能となる。 上記の第二の絶縁体 1 2 bの望ましい形 状と しては、 保護管または保護板が挙げられる。
前記第一の絶縁体 1 2 aの周囲に、 第二の真空領域 1 8 bを隔てて第 二の絶縁体 1 2 bを配置する場合における等価回路を図 1 1に示すよ う になり、 プラズマのシース部 1 4の領域に印加される電圧 (V s ) は、 アンテナ導体 1 aに発生する電圧 ( V a ) 、 第一の真空領域 1 8 aにお ける電位降下分 (V v l ) および第一の絶縁体 1 2 aにおける電位降下 分 ( V i 1 ) 、 第二の真空領域 1 8 bにおける電位降下分 ( V V 2 ) お よび第二の絶縁体 1 2 bにおける電位降下分 (V i 2 ) を用いて次式 ( 3 ) のように表すことができる。
V s =V a -V v l -V i 1 -V v 2 -V i 2 =V a · Z s / ( Z v 1 + Z i l + Z v 2 + Z i 2 + Z s ) ··· ( 3 )
このように本実施の第三形態では、 ァンテナ導体 1 aの端部でのシー ス部 1 4の領域に印加される高周波電圧を効果的に、 かつさらに低減す ることが可能となる。
式 ( 3 ) では、 Z V 1および Z i 1は各々第一の真空領域 1 8 aおよ ぴ第一の絶縁体 1 2 aのイ ンピーダンスを、 Z v 2および Z i 2は各々 第二の真空領域 1 8 bおよび第二の絶縁体 1 2 bのイ ンピーダンスを示 す。
(実施の第四形態)
さらに、 本発明に係る実施の第四形態のプラズマ発生装置では、 図 1 4ないし図 1 6に示すように、 アンテナ導体 l a の端部である真空容器 6の壁に近接した部分において、 円筒状で、 断面がジグザグ構造を有す る接地電極 1 5が、 前記第一の絶縁体 1 2 aを同軸構造にて囲むように 設けられている。
断面がジグザグ構造とは、 アンテナ導体 1 aの通電方向 (長軸方向) に対し直交し、 かつ、 互いに背向する各方向に上記通電方向に沿って交 互に突出するようにジグザクに折れ曲がった構造である。
上記接地電極 1 5の設置により、 上記のアンテナ導体 1 aの端部に発 生する高周波電圧がプラズマのシース部 1 4 の領域に印加されることを 遮断することが可能である。
さらに、 上記接地電極 1 5の周囲に前記第二の絶縁体 1 2 bが配置さ れていると、 上記接地電極 1 5 と上記第二の絶縁体 1 2 b とにより、 上 記のアンテナ導体 1 aの端部に発生する高周波電圧がプラズマのシース 部 1 4の領域に印加されることをより、 完全に遮断することが可能であ る。
ここで、 上記接地電極 1 5をジグザグ構造とすることによって、 アン テナ導入部に発生する高周波電圧による静電結合を効果的に遮断すると 共に、 接地電極 1 5において誘導電界に対する電流パスを長く とること ができ、 接地電極 1 5に誘導される発熱を抑制すると共に、 電力損失を 軽減することが可能である。
以下に、 本実施の第二および第三形態におけるアンテナ 1の実施例に ついて、 図 1 2および図 1 3に基づいて説明する。 まず、 図 1 2に示す ように、 アンテナ 1は、 印加された高周波電力により誘導電界を発生さ せるアンテナ導体 1 aが、 真空容器 6内の真空フランジである高周波フ イードスルー 6 aあるいはチャンパ一壁に装着されて設置され、 かつァ ンテナ導体 1 aが金属製パイプまたは金属板により構成され、 さらにァ ンテナ導体 1 aにおける、 真空容器 6内部に存在する, 好ましくは全て の部分の周囲に、 筒状の絶縁体 1 2が真空領域 1 8を隔てて配置され、 プラズマとアンテナ導体 1 a との接触を完全に遮断する構造を有する。 本実施例では、 絶縁体 1 2は、 筒状の本体部 1 2 c と保持用絶縁体 1 2 d とを備えている。 上記本体部 1 2 cがアンテナ導体 1 aに対して真 空領域 1 8を隔てて配置されるために、 上記保持用絶縁体 1 2 dは、 本 体部 1 2 cの内壁から内方に延びるリブ形状にて、 アンテナ導体 1 aを 保持するように本体部 1 2 c内部に揷入されている。 これにより、 絶縁 体 1 2は、 真空領域 1 8を隔ててアンテナ導体 1 aの周囲に安定に配置 されている。
また、 アンテナ導体 1 aの真空容器 6内部に存在する部分と真空容器 6の壁とで囲まれるループの面積は、 アンテナ導体 1 a のインダクタン スを低減するため、 アンテナ導体 1 aの存在する平面における、 真空容 器 6の断面積 (投射面積) の 1 / 2以下であることが好ましい。
インダクタンスの大きさ Lは、 誘導アンテナで囲まれるループの面積 を S、 巻数を Nとすると、 概ね S X N 2に比例し大きくなる。 このため 、 卷数を 1以下と してインダクタンスを低減したアンテナ導体 1 aのィ ンダクタンスをさらに低減するためには、 真空容器 6の壁との間で囲ま れるループの面積を小さくすることが効果的である。
このよ うにアンテナ系であるアンテナ導体 1 aのインダクタ ンスが低 い構造を有することによ り、 ァンテナ導体 1 aに発生する高周波電圧を 抑,できる構造となっている。 さらに、 アンテナ導体 1 a の真空容器 6 内部に存在する全ての部分の周囲に配置される絶縁体 1 2が継ぎ目のな い構造を有し、 プラズマとアンテナ導体 1 a との接触を完全に遮断する 構造を有する。
さらに、 前記絶縁体 1 2の周囲には、 真空領域 1 8 bを隔てて第二の 絶縁体 1 2 bが配置されていてもよい。 第二の絶縁体 1 2 bの形状と し ては、 保護管または保護板が挙げられる。 このときには、 前記の絶縁体 1 2は、 第一の絶縁体 1 2 a となる。 これにより、 アンテナ導体 1 aの 端部に発生する高周波電圧がプラズマに結合することを抑制して絶縁体 1 2のスパッタリ ングによる不純物発生の低減とプラズマ電位の変動を 抑制する効果を奏する。
また、 この第二の絶縁体 1 2 bを設けることにより、 導電性材料の成 膜プロセスにおいて、 アンテナ導体 1 aの周囲に配置した第一の絶縁体
1 2 aが成膜物質で完全に被覆されることを防止し、 高周波誘導電界が 遮蔽されることを抑制して、 導電性材料の成膜プロセスにおいても安定 なプラズマ生成を可能とする効果を有する。
また、 図 1 3に示す実施例は、 本発明に係る実施の第二および第三形 態の別の実施例である。 本実施の第二および第三形態では、 アンテナ導 体 1 a の周辺に配置する絶縁体 1 2 の湾曲部を接続により形成する接続 部 1 2 eが設けられていてもよい。 直線形状である各本体部 1 2 cは接 続部 1 2 e を介して互いに接続されて構成されている。
接続部 1 2 eは、 セラミ ック、 ガラス、 金属等の、 耐熱性を有し、 湾 曲形状に加工が可能な材質であればよく、 パイプ形状で直線形状の絶縁 体である各本体部 1 2 c との組み合わせにより、 第一の絶縁体 1 2 a を 容易に実現できるものとなっている。
次に、 本実施の第四形態の実施例について説明すると、 図 1 4および 図 1 5に示すように、 アンテナ導体 l aの高周波導入部に発生する高電 圧を効果的にシールドして、 静電結合を抑制する効果を有する、 筒状の 接地電極 1 5が、 アンテナ導体 1 aを外方から覆う ように、 かつアンテ ナ導体 1 aに対して同軸状となるように設けられている。 図 1 4では、 接地電極 1 5は、 アンテナ導体 1 a と第一の絶縁体 1 2 a との間に設け られている。 図 1 5においては、 接地電極 1 5は、 第一の絶縁体 1 2 a と第二の絶縁体 1 2 b との間に設けられている。 その際に用いられる金 属製の接地電極 1 5は、 図 1 6に示すように、 前述した、 断面がジグザ グ構造を有する。
これにより、 ァンテナ導体 1 aの導入部に発生する高周波電圧による 静電結合を効果的に遮断すると共に、 接地電極 1 5を誘導電界に対する 電流パスをジグザク構造によ り長く とることができ、 接地電極 1 5に誘 導される発熱を抑制すると共に電力損失を削減することが可能である。
さらに、 図 1 7には、 図 1 2 (接地電極無し) と図 1 5 (接地電極有 り) の実施例のアンテナ 1を各々 1つずつ用いて生成した水素プラズマ (放電圧力は 2 P a ) における浮遊電位をラングミユアプローブにより 測定した結果をそれぞれ示す。 接地電極有りの場合は、 接地電極無しの 場合に比べて、 効果的にプラズマの電位低減が図られていることを図 1 7の結果は示している。
これらの結果から、 アンテナ導体 1 aの端部において発生する高周波 電圧がプラズマのシース部 1 4に印加されるのを抑制するためのシール ド、 例えば接地電極 1 5を設けることは、 プラズマの浮遊電位低減を可 能にし、 安定でかつ良好なプラズマの発生が可能となる。
(実施の第五形態)
本発明では、 真空容器 6内にて、 アンテナ導体 1 aから放射される高 周波誘導磁場強度を測定するセンサー (図示せず) が設けられているこ とが望ましい。 上記センサーと しては、 後述する実施の第六形態に記載 のセンサー 3 0を用いることができる。
上記センサーにて測定する物理量と しては、 アンテナ導体 l aから放 射される高周波磁場強度好ましくはアンテナ電流に対する方位角方向が 挙げられる。 その測定方法と しては、 絶縁保護管内に設置した高周波電 流測定子 (ピックアップコイル、 ループコイル等) を用いることが挙げ られる。
上記センサーの設置場所は、 アンテナ 1の設置電位に近い場所、 好ま しくは、 アンテナ 1 'の誘電体 (絶縁体) シールドから、 5 0 mm以内の距 離 (シールド表面から高周波磁場が 1 / 1 0に減衰する位置まで) であ る。
上記測定量の物理的解釈 · 効果は、 アンテナ 1から放射される高周波 磁場は、 アンテナ 1に流れる高周波電流により誘起され、 主と してアン テナ電流に対する方位角方向の成分を有している。 このため、 この高周 波磁場強度を測定して、 アンテナ 1に流れる高周波電流との比較 (強度 比、 位相差) を行う ことにより、 以下の情報を得ることが可能である。 4 000258
2 5
1 ) プラズマ中で誘導結合放電を駆動している高周波磁場強度を直接 測定することが可能となる。 その効果は、 上記の測定がプラズマ生成に おける駆動源を直接モニターすることに相当するため、 プラズマを安定 に生成する上においては、 この測定量が一定となるよ う にフィー ドバッ ク制御をかければ、 プラズマの生成状態をよ り一定に保つことが可能な ことである。
従来技術では、 プロセス毎の傾向から経験則と して制御すること しか できず、 プラズマの生成状態を一定に保つことが困難となることがあつ た。
また、 誘導結合型プラズマでは、 a ) アンテナに高周波電流 I rfを流 すことによ り、 電流 I rfに比例した高周波磁場 Bが電流の方位角方向に 発生し、 b ) ファラデーの誘導法則によ り、 高周波電源周波数で時間変 動する高周波磁場 Bによって、 高周波電流 I rfと周波数に比例する強度 をもつ誘導電場 Eが発生し、 [ファラデーの誘導法則 : rot E = — δ B / δ t ] : E oc B ( e I rf) X周波数、 c ) 誘導電場 Eによ りプラズマ 中の電子が加速されることよ り駆動されている。
本発明では、 真空容器 6内でアンテナ導体 1 aから放射される高周波 誘導磁場強度を直接測定するセンサーを設けることによ り、 誘導結合プ ラズマを駆動する高周波磁界を直接測定することができ、 プラズマ生成 の結果であるプラズマ密度や電子温度ではなく 、 プラズマ生成状態 (駆 動源) そのものを測定することが可能となる。
2 ) アンテナ 1 に流れる高周波電流との比較 (強度比、 位相差) を行 う ことによ り、 アンテナ 1 の周囲に配置されている誘電体シールドの表 面への付着物の度合いを予測することが可能である。 その予測の効果は、 具体的には、 付着物による高周波磁場の吸収 '遮 蔽の割合が増加するに従って、 I rfに対する高周波磁場強度の比は減少 するため、 この I rfに対する高周波磁場強度の比をモニターすることに より、 アンテナ 1ならぴに誘電体シールドへの付着物の程度を予測する ことが可能となり、 適切なエッチングガスによるク リーニングあるいは 新品への交換時期を確実に知ることができるようになる。
一方、 従来技術では、 試行錯誤による経験則によってク リ ーニングあ るいは新品への交換を行わざるを得ず、 ク リーニングあるいは新品への 交換時期が不確実となって、 プラズマを用いた成膜等のプロセスが不安 定となることがあった。
(実施の第六形態)
本発明のプラズマ発生装置の実施の第六形態は、 図 1 8に示すように 、 高周波磁場強度を測定するセンサー (磁場強度検出部) 3 0を、 真空 容器 6内において、 ァンテナ 1からの距離が相異なる 2点以上の各場所 (図示せず) にそれぞれ設置して、 それぞれの地点での高周波磁場強度 と共に、 アンテナ電流を測定するものである。
上記センサー 3 0 と しては、 絶縁保護管 3 2 と、 絶縁保護管 3 2内に 設置したループコイル 3 4 とを備えたものが挙げられる。 前述の図 4に 示すプラズマ状態の測定プローブ 4 5に上記センサー 3 0を用いてもよ レ、。
上記絶縁保護管 3 2は、 ループコイル 3 4を離間して覆う誘電体シー ルド (第一シールド) 3 2 a と、 誘電体シールド 3 2 a の外側を離間し て覆う付着物シール ド (第二シール ド) 3 2 b とを有している。
誘電体シール ド 3 2 aは、 石英やアルミナといった絶縁体製であり 、 上記センサー 3 0における真空容器 6内部に存在する部分の周囲に、 プ ラズマとセンサー 3 0 との直接的な接触を遮断するよ うに配置されてい る。 誘電体シールド 3 2 aは後述する静電シールドと しても機能するも のである。
付着物シールド 3 2 bは、 誘電体シールド 3 2 aの周囲において、 誘 電体シールド 3 2 aの表面の全てがプラズマからの付着物で覆われるこ とを防止するように、 かつ、 ループコイル 3 4に対する高周波誘導磁場 の遮蔽を回避する構造を有するよ うに配置されている。
上記ループコイル 3 4は、 コイル導体 3 4 a と、 それを覆う静電シ一 ルド 3 4 b とを備えている。 センサー 3 0は、 静電シールド 3 4 bによ りプラズマの静電的な電位変動の影響が抑制されている。 なお、 センサ 一 3 0の更なる詳細については後述する。
このようなループコイル 3 4は、 図 1 9に示すように、 セミ リジッ ド ケーブル 3 6 (同軸ケーブル、 特性インピーダンス = 5 0 Ω ) により外 部の検出部 3 8に接続されている。 検出部 3 8は、 ループコイル 3 4の ループ部 3 4 cに発生する高周波電圧を検出することにより、 上記ルー プ部 3 4 cでの高周波磁場強度 (B ) を測定できるものである。 検出部 3 8は、 前述の測定回路 4 6であってもよい。
このような高周波磁場強度 (B ) の測定を、 真空容器 6内のアンテナ 1近傍の複数点にてそれぞれ行う ことによって、 以下の各効果 [ 1 ] 〜 [ 3 ] をそれぞれ得ることができる。
[ 1 ] アンテナ導体 1 aから放射される高周波誘導磁場強度の、 プラズ マ中での減衰特性が測定され、 これによりアンテナ周辺 (磁気プローブ であるセンサー 3 0を設置した場所近傍) でのプラズマ密度を予測する ことができる'。
[ 2 ] 該絶縁体 1 2の表面付近の高周波誘導磁場強度の大きさを予測す ることができる。
[ 3 ] 該絶縁体 1 2の表面への付着物の度合いを予測することが可能で ある。
高周波アンテナ等からプラズマへ放射された電磁波 (周波数 f 0) は 、 プラズマの電子密度 (ne) で決まる遮断周波数 f peに対して、 f 。く f peとなる高密度の条件では、 表皮効果によりプラズマへの高周波電力 が供給されているプラズマに接する境界表面からの距離 rに対して指数 関数的に電磁波の強度が減衰し、 表皮深さ δ ρ (強度がプラズマ中で 1 Z eに減衰する長さ : eは自然対数の底) 程度しかプラズマ中に侵入で きない。
図 2 0に示す配置で、 誘電体シール ド (絶縁体 1 2 ) で囲まれたアン テナ導体 1 aに高周波電流を流すことにより生じる高周波磁場のアンテ ナ 1に垂直な成分の、 上記プラズマ中での距離 rの地点における強度 B e(r,t)は、 以下の式 (4 ) に示すよ うに、
Be (r, t) = B pexp (-r/ δ p) sin ( 2 π f 。t) … (4 )
で表され、 B pは該絶縁体とプラズマが接する境界のブラズャ側の表面 における高周波磁場のアンテナ 1 に垂直な成分の高周波磁場強度の振幅 である。 ここで、 表皮深さ δ ρは、 放電ガスの種類、 圧力、 高周波の周 波数、 プラズマの電子エネルギー分布、 プラズマ密度により決まるが、 プラズマ生成を行う際は、 放電ガスの種類、 圧力および高周波の周波数 は既知であり、 結局のところプラズマの生成状態 (電子温度およぴプラ ズマ密度) のみに依存する。 また、 図 2 0中においては、 プラズマ密度 が 1 0 1 1 cm— 3、 電子温度が 3電子ボルトのアルゴンプラズマ中での高 周波磁場の減衰特性に関する計算結果を示している。
プロセス条件 (放電ガス種、 圧力、 高周波電力等) により、 該絶縁体 1 2のプラズマ側の表面へ付着物 4 0が形成された場合、 該絶縁体 1 2 のプラズマ側の表面における高周波磁場強度 B pは、 該付着物 4 0への 高周波電力の吸収 ·遮蔽により一般に減じられ、 該絶縁体 1 2の該付着 物 4 0の内側の表面における高周波磁場強度を B。とすると、
B ρ = ( 1- η d ) Β 0 … ( 5 )
で表される。 ここで、 77 dは該絶縁体 1 2表面の付着物 4 0の内側での 高周波磁場強度が該付着物 4 0による吸収 ·遮蔽のために減じられる割 合を表しており、 付着物 4 0が全く無い状態では 77 d = 0であり、 付着 物 4 0により高周波磁場が完全に遮蔽されている状態では 77 d = 1 とな る。
さらに、 該絶縁体 1 2の該付着物 4 0における内側の表面における高 周波磁場強度 B。は、 アンテナ 1に流れている高周波電流 I rfに比例し ているため、 比例係数を k。とし、 B。 = k。 I rfで表すと、 上記距離 r の地点における高周波磁場強度 B e (r, t)は、
B θ (r, t) = (1- 77 d) k o I rf exp (-r/ δ p) s in ( 2 π f 0 t) … ( 6 ) で与えられる。 こ こで、 式 ( 6 ) のパラメータのうち、 高周波の周波数 f 。は既知であり、 比例係数 k。は該絶縁体 1 2の構造おょぴ材質で決 まる定数であるため、 結局のところ、 プラズマの生成状態の指標である 表皮深さ δ ρと該付着物 4 0による吸収 ·遮蔽の割合を示す η dの 2つが 未知数である。 このため、 プラズマ中で該絶縁体 1 2の表面からの距離 が異なる少なく とも 2点での該高周波磁場強度計測と共にアンテナ電流 258
I rfの測定を行うことにより、 これらの未知数を決定することが可能で ある。
このよ うに決定された各未知数から、 真空容器 6内のプラズマ状態や 、 アンテナ 1 を覆う絶縁体 1 2への付着物 4 0の程度を検出できて、 そ の検出結果に基づき、 前述の高周波発振制御器 2により、 各アンテナ 1 への駆動を、 電力量、 周波数おょぴ位相の少なく との一つにて制御する ことで、 真空容器 6内のプラズマ状態を制御できる。
プラズマ中で該絶縁体 1 2の表面からの距離が異なる r = r 1および r = r 2 ( r 1> r 2) の 2つの位置で該高周波磁場強度 B θ (r, t)を測定 した例では、 該高周波磁場強度は、 各々 Be(rl, t)および Be(r2, と 測定され、 これらの測定値を用いて上記の未知数である表皮深さ δ と 該付着物 4 0による吸収 ·遮蔽の割合 77 d は、 アンテナ電流 I rfを同時 に測定することによ り、 以下のように求められる。
δ p =(rl-r2)/ln[ | B e(r2, t) | / | B e(rl, t) 门 … ( 7 )
7] d=l- I B e(rl, t) I / [k o I rf exp(- rl/ δ p) ] … ( 8 ) これら式 ( 7 ) およぴ式 ( 8 ) では、 I B θ (rl, t) Iおよび i B e(r2,t) | は、 各々 Be(rl,t)および Be(r2, t)の振幅を表し、 Inは自然 対数である。
実用的には、 付着物 4 0による吸収 ·遮蔽の割合 77 dは、 付着物 4 0 が全くついていない新品のアンテナシールドの状態 ( 77 d=0 ) において 、 上記式 ( 7 ) および式 ( 8 ) から比例係数 k。を較正することにより 、 絶対値を測定することができる。
高周波磁場のセンサー 3 0を設置する位置は、 好ましくは該絶縁体 1 2の表面から 1 0 mmなレ、し 7 0 mmの距離にある、 互いに異なる 2点で、 互いの間の距離ができる限り長いほど上記の測定において高い精度が得 られる。 また、 センサー 3 0のループ部 3 4 cの向きについては、 ノレ一 プ部 3 4 cにて検出される高周波磁場が最も大きくなるよ うに設定され ていればよいが、 通常は、 ループ部 3 4 cを含む仮想平面が、 上記ルー プ部 3 4 cに最も近いアンテナ導体 1 aの微小区間を含むように設定さ れている。
なお、 上記の例では、 プラズマ中で該絶縁体 1 2の表面からの距離が 異なる 2点に該センサー 3 0を設置した例を示したが、 設置場所は 2点 のみに限られなく、 それ以上の互いに異なる場所に該センサーを設置す ることにより、 測定精度が向上することは明らかである。
続いて、 高周波誘導磁場強度の測定用の、 前記センサー 3 0に関する さらなる詳細について説明する。 センサー 3 0は、 プラズマの静電的な 電位変動に対する静電シールド 3 4 bおよび誘電体シールド 3 2 aを具 備し、 プラズマに接する領域がプラズマからの付着物 4 0で全て覆われ ないようにするための付着物シール ド 3 2 bが、 該誘電体シールド 3 2 aの外側に設けられている構造を有していることを特徴と している。 高周波磁場強度は、 コィル導体 3 4 aをループ状に結線したコイルを 貫く磁束の時間変化 d B Z d tの電磁誘導により コイルの両端に発生す る電圧 V b と して計測される。 コイルを貫く磁束の時間変化 d B Z d t は、 ファラデーの電磁誘導の法則▽ X E i =— d B / d tにより導線に 沿った電場 E i が誘導され、 電場 E i の導線に沿った積分値と してコィ ルの両端には電圧 V bが発生する。 従って、 該高周波の周波数を と すると、 V bは
V b ^ 2 π f 。 1 B i · ·· ( 9 ) と式 ( 9 ) にて表される。 このため、 高周波磁場の計測に当たっては、 プラズマ中の静電的な電位変動に対する静電シールドをセンサー 3 0に 設けることが、 測定精度を高める上で好ましい。 また、 上記のループコ ィル 3 4を用いる方法以外にも半導体ホール素子を磁場強度検出器と し て用いることも可能であるが、 この場合も、 プラズマ中の静電的な電位 変動により素子に誘起されるノイズを抑制して測定精度を高めるために 、 静電シールドを設けることが望ましい。
さらに、 このループコイル 3 4を、 成膜やエッチングなどのプロセス によりプラズマに曝されている面への付着物 4 0を形成させるプロセス に用いて、 前記のプラズマの生成状態および該絶縁体 1 2への付着物 4 0による高周波の吸収 ·遮蔽の割合の測定に用いる場合には、 該ループ コイル 3 4がプラズマに曝されている面にも形成される付着物 4 0によ つて、 測定地点での高周波磁場強度が同様に吸収 '遮蔽されて、 測定精 度が劣化するという不都合があった。
このため、 本発明のセンサー 3 0においては、'下記の各構成 [ 1 ] な いし [ 3 ] の少なく とも一つを採用することで、 上記の不都合を解決し ている。
[ 1 ] プラズマ中の静電的な電位変動に対する静電シールド 3 4 bを設 ける。 これにより、 高周波磁場の測定精度を高めることができる。
[ 2 ] 高周波磁場強度を検出するためのコイル導体 3 4 aにおける真空 容器 6内部に存在する部分の周囲に、 絶縁体製の誘電体シールド 3 2 a を、 プラズマとコイル導体 3 4 a との接触を遮断するように配置する。
[ 3 ] 誘電体シールド 3 2 aの周囲に、 誘電体シールド 3 2 aの表面の 全てがプラズマからの付着物で覆われないように、 かつ、 アンテナ 1か らの高周波誘導磁場が遮蔽されない構造を有する付着物シールド 3 2 b を配置する。
以下に、 高周波磁場検出用の、 センサー 3 0の具体例を図 1 8で説明 する。 図 1 8 ( a ) はセンサー 3 0の断面構造を示しており、 図 1 8 ( b ) にセンサー 3 0の斜視図を示す。 この具体例では、 特性インピーダ ンスが 5 0 Ωのセミ リジッ ドケーブル (同軸ケーブル) 3 6を用いてい る。 セミ リジッ ドケーブル 3 6は、 外部導体と して銅パイプを被膜無に て用い、 その銅パイプ内に中心導体と しての銅線を、 フッ素樹脂製等の 電気絶縁体を介して内蔵するものである。
この具体例においては、 センサー 3 0のループコイル 3 4を形成する ために、 セミ リジッ ドケーブル 3 6の一端部を直径 1 0 mmで 1卷きのル ープ状 (円形や四角形や三角形) に加工し、 そのループ状の先端部にお ける中心導体であるコィル導体 3 4 aを、 ループ状の基端部の外部導体 と電気的に接続している。 ループ状の先端部におけるコイル導体 3 4 a を、 ループ状の基端部の外部導体と接続するとき、 その接続部では、 基 端部の外部導体と先端部の外部導体とを互いに電気的に接触しないよう に例えば 1 mm程度の間隙が上記両者間に設けられている。 このような作 製方法により、 該ループコイル 3 4を形成している。
上霄己セミ リジッ ドケーブル 3 6を用いてこのよ うなループコィル 3 4 の構造を形成することによって、 該ループコイル 3 4の付近に静電的な 電位変動あっても、 外部導体が静電シールド 3 4 b と して有効に作用し 、 静電的な電位変動を遮蔽して、 ループ状のコイル導体 3 4 aにて囲ま れる内部空間を貫く高周波磁場の強度を測定することが可能となる。
さらに、 この具体例では、 高周波磁場強度検出器である上記ループコ ィル 3 4における、 真空容器 6内部に存在する部分の周囲に、 絶縁体製 の誘電体シールド 3 2 aを配置することにより、 プラズマとループコィ ル 3 4 との接触を完全に遮断することが可能となる。 これによつて、 上 記のループコィル 3 4の接続部に設けられた間隙に露出した内部導体が プラズマに接触してプラズマの電位変動による信号が混入するのを防止 している。
本具体例では、 この絶縁体製の誘電体シール ド 3 2 aには厚さ l mmの 石英を用いているが、 用いることが可能な絶縁体の材質は、 アルミナや 窒化アルミニウム等の低誘電率で高抵抗率を有し、 かつ耐熱性に優れた セラミ ックス誘電体郡の材料を用いることができる。 また、 厚さは、 プ ラズマとの電気的な遮蔽を完全に行う ことができれば問題なく、 好まし くは 1 mm程度の厚さであればよい。
さらに、 上記の誘電体シールド 3 2 aの周囲には、 誘電体シールド 3 2 aの表面の全てがプラズマからの付着物で覆われないよ うに、 かつ高 周波誘導磁場が遮蔽されない構造を有する付着物シールド 3 2 bが配置 されている。 誘電体シール ド 3 2 aが付着物で完全に覆われないように するのは、 誘電体シールド 3 2 aへの付着物 (導電体) において、 高周 波磁場により発生する、 うず電流によって高周波磁場が遮蔽されるのを 防ぐためである。
上記付着物シールド 3 2 bは、 上記の誘電体シールド 3 2 aが付着物 で完全に覆われるの防ぎ、 かつ付着物シールド 3 2 bで高周波誘導磁場 が遮蔽されないよ うにするため、 図 1 8 ( b ) に示すよ うに、 誘電体シ ールド 3 2 aを完全に覆うのではなく、 スリ ツ ト状の間隙部 3 2 cを設 けて配置されている。 間隙部 3 2 cは、 ループコィル 3 4に対し高周波誘導磁場が達するよ うに形成されればよいが、 間隙部 3 2 cの長手方向の一部が、 ループコ ィル 3 4のループ部 3 4 cにて囲まれて形成される平面方向に対し平行 に設定されていることが好ましい。
また、 間隙部 3 2 cは、 その形成を容易化できるため、 間隙部 3 2 c の長手方向が、 真空容器 6に取り付けられる内壁表面に対し垂直方向に 誘電体シールド 3 2 aを縦断する方向に形成されているが、 内壁表面に 平行な誘電体シールド 3 2 a を横断する方向に形成されていてもよい。 本具体例では、 この付着物シール ド 3 2 bは、 厚さ 0 . 5 mmのアルミ ニゥム製の二つの部材が、 幅 1 mmの間隙部 3 2 cを設け、 かつ誘電体シ 一ル ド 3 2 aを覆う ように配置して形成されている。 ここで、 上記付着 物シール ド 3 2 bに用いられる材質は、 金属の他にセラミ ックス誘電体 郡の材料を用いることができる。 また、 好ましくは、 耐熱性に優れたセ ラミ ックス誘電体群の材料の方が良い。 また、 高周波磁場の遮蔽を防ぐ ための間隙部 3 2 cにおけるのス リ ッ ト幅は、 1 mm程度でよい。
さらに、 上記付着物シールド 3 2 bへの付着物の形成をより効果的に 抑制するには、 付着物シールド 3 2 bを加熱保持することが好ましい。 このため、 付着物シールド 3 2 bにヒーターを具備した構造と してもよ レヽ
図 1 8の構成による本具体例では、 高周波用のアンテナ導体 1 aの周 囲に設けた絶縁体 1 2の表面からの距離が r = 6 0 mmの位置にループコ ィル 3 4を配置し、 上記誘電体シールド 3 2 aおよぴ付着物シールド 3 2 bを配置して、 高周波磁場による信号を計測した。 アルゴン圧力 1 1 mTorrにて、 周波数 1 3 . 5 6 MHzの高周波電力をアンテナ 1に印加して プラズマを生成し、 高周波電力 5 0 6 Wにおいて、 高周波磁場信号'強度 を、 上記ループコイル 3 4に接続された 5 0 Ω終端のオシロスコープで 計測したところ、 振幅 2 3 mVの正弦波が観測されたことにより、 上記ル ープコイル 3 4において高周波誘導磁場を測定できることが分かる。
(実施の第七形態)
まず、 従来のプラズマ源 (複数の負荷を直列接続あるいは並列接続に より高周波電源に接続して高周波電力を供給することによりプラズマを 発生する) において、 放電をパルス化する (高周波電力を供給する時間 と供給を停止する時間とを周期的にかつ排他的に設ける) 場合に関する 問題点について説明する。
上記場合、 高周波電力が供給されている空間的なパターンを自在に変 化させることができず、 プラズマ源全体が点滅する方式となっていた。 図 2 1 ( a ) ないし ( c ) に示すよ うに、 高周波電力が供給されている 時間 (パルス O N時間) に生成したプラズマは、 高周波電力の供給が停 止している間 (パルス O F F時間) に、 壁への拡散と再結合によりプラ ズマ密度の急激な減少 (図 2 1 ( a ) ) に伴って、 電子温度 (図 2 1 ( b ) ) ならびにプラズマ電位 (図 2 1 ( c ) ) が減少する。
パルス O F F時間における電子温度の減少は負イオン生成等に利用さ れてきた。 プラズマ電位の減少は時間平均的なプラズマ電位の低減によ るプラズマダメージ抑制の手段と して利用されてきた。
しかしながら、 上記従来の場合では、 パルス〇 F Fからパルス O Nに 転ずる初期の時間において、 図 2 1 ( c ) に示すように、 プラズマ電位 が定常状態におけるプラズマ電位に比べて異常に高くなり、 プラズマダ メージの原因となるという問題点を生じている。 この問題点の原因は以下のものと想定された。 パルス O F F時間でプ ラズマ密度の減少のために、 パルス〇 Nに転ずる時点では定常状態に比 ベて少ない電子密度の状態であるにも関わらず、 定常状態と同じ高周波 電力が供給されるため、 電子 1個辺りの高周波電力密度が定常状態よ り も高い状態となる。 このため、 定常状態に比べて電子が余分に加熱され て電子温度の上昇を招き、 壁でのシースを介してプラズマ電位の異常な 上昇が結果的に生じる。
ところで、 図 2 2および図 2 3に示すように、 各々電子温度ならぴに プラズマ電位の定常状態における値に対する増加率のパルス O N直前の プラズマ密度依存性のグラフによれば、 これらは、 いずれもパルス O N 直前のプラズマ密度が低いほど、 上述の電子加熱のために電子温度なら ぴにプラズマ電位の増加率が高くなることを示している。
上記の問題点は、 プラズマ源に供給される高周波電力の O N— O F F 動作が、 プラズマ源全体にわたって同時に行われることに起因している 。 これは、 従来の高周波電力供給方式のプラズマ発生装置では避けられ ない問題点であった。
そこで、 本発明の実施の第七形態では、 上記問題点を解決するために 、 プラズマ電位の異常上昇を抑制したパルス放電 (プラズマダメージ抑 制) のために、 各々の負荷に供給される高周波電力のパターン (空間分 布) を、 各々の負荷に対応した個々の電源で独立かつ周期的に変動させ てプラズマを発生することにより 、 パルス O Nに転ずる時点でのプラズ マ密度を制御して、 電子温度ならびにプラズマ電位の異常上昇を抑制し ている。
すなわち、 互いに隣り合う複数のアンテナ 1を 2つ以上の、 互いに隣 り合うグループに分けて、 各々のグループを個別の、 互いに独立したタ ィ ミ ングでそれぞれパルス動作させ、 一つのグループの負荷がパノレス〇 F Fの状態にある時でも、 それと隣り合う他のグループのアンテナ 1は パルス O Nの状態となるように、 パルス動作のタイ ミングを互いに排他 的にずらすことにより、 パルス O Nに転ずるグループに属するアンテナ 1 の近傍の電子密度を制御して、 電子温度ならびにプラズマ電位の異常 上昇を抑制できる。
上記排他的とは、 互いの隣り合う各グループの双方がそれぞれ O N状 態となるときがあることを回避することを意味する。 ただし、 上記排他 的は、 互いの隣り合う各グループの双方がそれぞれ O F F状態となると きがあってもよい。
次に、 本実施の第七形態に係る誘導結合負荷を用いた実施例を示す。 • 高周波の周波数 : 1 3. 5 6 MH z
• 高周波電力 : 3 0 0 W
· ノ ルス周期 : 1 0 k H z
• パルス O N時間 : 4 0 / s
• パルス〇 F F時間 : 6 0 μ s
• 放電ガス : A r
• ガス圧力 : 2 0 mT o r r
本実施例における、 プラズマ密度、 電子温度、 プラズマ電位のシミュ レーシヨン結果 (図 2 4 ( a ) 〜 ( c ) ) を以下に示す。 本実施例にお いては、 隣接する他の誘導結合負荷により生成したプラズマを拡散させ ることにより、 該負荷がパルス O Nとなる直前においても、 上記の誘導 結合負荷の近傍の密度を定常状態におけるプラズマ密度の 4 0 %を維持 できる。
その結果、 本実施例では、 パルス O N直後の電子温度ならびにプラズ マ電位のピーク値は、 各々 4電子ボルトならびに 3 0 V程度となった。 これは、 隣接負荷による該負荷近傍のプラズマ密度制御を行わなかった 場合 (図 2 1 ( a ) ないし ( c ) ) では、 プラズマ電位が 5 0 V程度ま で上昇したのと比べると、 本実施例においては、 顕著な抑制効果を示し ていることが分かる。
なお、 上記の実施の第一ないし第七形態では、 それぞれの各形態を独 立して記載したが、 それら各形態を複数どのように組み合わせてもよく 、 それらの効果がそれぞれ各組み合わせにおいても得られることは明ら かである。 また、 上記の実施の第一ないし第七形態においては、 本実施 の何れかの形態に記載と同様な機能を有する部材については、 他の形態 においては同一の部材番号を付与して、 それらの説明を省いた。
ところで、 従来のプラズマプロセス技術は、 (1) 処理基板の不純物除 去を行うク リーニング工程、 (2) レジス ト除去を行うアツシング工程、 (3) ナノ構造制御が要求される薄膜形成工程、 (4) 微細加工を表面に施 すエツチング工程といった各工程に用いられている。
—このようなプラズマプロセス技術においては、 (a) 従来のプラズマ源 に比べて 1 0〜 1 0 0倍の高密度化 (髙スループッ ト化) 、 (b) プラズ マから基板に供給される粒子による損傷を御制すること (低プラズマダ メージ) 、 ( 大面積化 (特に、 平面ディスプレーの製造分野では処理 基板サイズのメ一トル級大型化) が要求されている。
従来方式のプラズマ源の単なるスケールアツブゃプロセスの改善のみ では解決が困難な問題 (不均一性、 プラズマダメージ増大) であった。 つまり、 プラズマ源の大型化に伴い、 プラズマ生成用電極の大きさが、 電極上を伝搬する高周波電力の波長に対して無視できない程度 ( 1 Z 4 波長以上) になると、 結果的に高周波電力が波と して電極上を伝搬する 状態が無視できなくなり、 電極上での電圧あるいは電流分布の不均一性
(定在波の発生) が顕在化している (Pl asma Sources Sc i . Technol . Vo l . 9 (2000) p545 - 561を参照下さい) 。
一方、 本発明のプラズマ発生装置や、 プラズマプロセスは、 低イ ンダ ク タ ンスのアンテナ 1 を複数設け、 それらを互いに独立に能動的に駆動 ' 制御することにより、 図 7に示すようにブラズマ分布を制御して、 プ ラズマ源の大面積化、 高密度化、 低電位化を図りながら、 低プラズマダ メージ、 かつ定在波による問題を回避できるものとなっている。
本発明の高周波電力供給装置は、 以上のように、 容量性または誘導性 の負荷を 2つ以上設けた高周波電力供給装置において、 負荷に対して電 力を供給するための高周波電源が、 対応する負荷に近接してそれぞれ設 けられていることを特徴としている。
上記高周波電力供給装置においては、 各高周波電源は、 それぞれ対応 する負荷に近接した高周波電力増幅器を備えていることが好ましい。 上記高周波電力供給装置では、 各々の負荷に供給される高周波電流の 周波数をそれぞれ制御するための周波数変調制御部が、 各々の負荷に取 り付けられた個々の高周波電源で独立に、 かつ 1種類以上の周波数の高 周波電流が 2つ以上の負荷に同時に供給されると共に、 それぞれの負荷 に供給される高周波電流の周波数変調によ りそれぞれの負荷に対するィ ンピーダンス整合が図られるように設けられていてもよい。
上記高周波電力供給装置においては、 各々の負荷に供給される高周波 電流の位相を、 それぞれ制御するための位相変調制御部が 各々の負荷 に取り付けられた個々の高周波電源で独立に、 かつ同位相または位相の 異なる高周波電流が 2つ以上の負荷に同時に供給されるように設けられ ていてもよい。
上記高周波電力供給装置では、 各々の負荷に供給される高周波電力を 、 それぞれ制御するための電力制御部が、 各々の負荷に対応した個々の 電源で独立に、 かつ 1種類以上の高周波電力が 2つ以上の負荷に同時に 供給されるように設けられていてもよい。
本発明のプラズマ発生装置は、 以上のように、 上記の何れかに記載の 高周波電力供給装置と、 上記高周波電力供給装置の負荷が高周波電力の 印加によりプラズマを発生するように取り付けられた真空容器とを備え たことを特徴と している。
上記プラズマ発生装置においては、 各々の負荷に供給される高周波電 流、 高周波電圧、 位相およ.ぴ負荷近傍のプラズマ生成状態の測定部を備 えていてもよレヽ。
上記プラズマ発生装置では、 各々の負荷に流れる高周波電力の信号か ら制御信号を生成する負帰還回路と、 上記制御信号に基づく 自己発振に より高周波電力を供給するための制御系とを備えていてもよい。 一 上記プラズマ発生装置においては、 2つ以上の負荷が互いに隣り合つ て取り付けられ、 それら隣り合う負荷に供給される高周波電流の位相お よび周波数を独立に設定して、 それら隣り合う負荷に発生する高周波電 界によりプラズマ中の電子の受ける実効的な加速ポテンシャルを制御す るプラズマ制御部が設けられていることが好ましい。
上記プラズマ発生装置では、 高周波電力の高周波電流、 高周波電圧、 位相おょぴ負荷近傍のプラズマ状態 (例えばプラズマ密度) の逐次測定 値をフィードパックし、 位相変調、 周波数変調、 ないし振幅変調の何れ かにより 2つ以上の負荷に供給する高周波電力を独立かつ能動的に制御 することによつてそれぞれの負荷に対するィンピーダンス整合の制御と 、 真空容器内のプラズマの均一性および再現性の制御とを行う制御シス テムが設けられ、 プラズマ状態を現すモニターが設けられていることが 望ましい。
本発明に係る、 高周波電力供給装置ならびにそれを利用したプラズマ 発生装置では、 各々のアンテナ等の負荷に対して、 独立に単体の高周波 電源を対応する負荷に近接して備え、 各々の負荷を、 それに対応した独 立の高周波電源によりそれぞれ駆動することによって、 各々の負荷へ高 周波電流を並列または直列に供給する必要をなく している。 . さらに、 本発明の上記構成においては、 それぞれの負荷に供給される 高周波電流に対して周波数変調をかけることができるため、 容量性の負 荷および回路素子のインピーダンスが周波数の逆数に比例し、 誘導性の 負荷および回路素子のインピーダンスが周波数に比例することを利用し て、 それぞれの負荷に対するィンピーダンス整合を独立かつ能動的に図 ることができる。
これにより、 本発明の上記構成では、 各負荷にそれぞれ発生する高周 波電圧のバラツキを低減できて、 プラズマ発生部の大口径化あるいは大 容積化を図っても、 より均一なプラズマを発生できて、 上記プラズマに よる薄膜形成や、 プラズマイオン注入を安定化できる。
その上、 本発明による高周波電力供給装置およびプラズマ発生装置は 、 2つ以上の負荷を用いる場合、 各々の負荷に供給される高周波電力の 周波数、 位相および電力の独立制御が可能であると共に、 各々の負荷に 印加された高周波電流、 高周波電圧、 位相およびアンテナ導体近傍のプ ラズマ状態の測定やモニターにより、 測定信号のフィ ードバック制御に よってプラズマの均一性および再現性の制御を行う制御システムを備え ることができて、 上記プラズマによる薄膜形成や、 プラズマイオン注入 をさらに安定化できる。
本発明の他のプラズマ発生装置は、 以上のよ うに、 プラズマを発生さ せるための真空容器が設けられ、 高周波電力が印加されて誘導電界を発 生させるアンテナ導体が、 真空容器内に少なく とも 1つ設置され、 アン テナ導体における、 真空容器内部に存在する部分の周囲に、 第一絶縁体 力 s、 プラズマとアンテナ導体との接触を遮断するように第一空間領域を 隔てて配- されていることを特徴と している。
上記構成では、 生成するプラズマのシース部の領域に印加される高周 波電圧を、 第一の空間領域を隔てた第一絶縁体の配置によって、 効果的 にかつ従来より もさらに低減することが可能となり、 シース部の領域に 印加される高周波電圧に起因する、 被覆材である第一絶縁体のスパッタ リ ングによる不純物を生じる問題点や、 アンテナ導体、 第一絶縁体への スパッタリ ングを軽減できて、 上記アンテナ導体おょぴ第一絶縁体の減 耗に起因する、 プラズマ生成の不均一、 不安定化を抑制でき、 上記ブラ ズマを用いた薄膜形成等が不安定化という問題を軽減することが可能と なる。
上記プラズマ発生装置では、 前記第一の絶縁体の周囲に、 第二空間镇 域を隔てて第二の絶縁体が配置されていることが好ましい。
上記構成によれば、 第二の絶縁体の配置により、 さらにシース部の領 域に印加される高周波電圧を、 効果的に低減することが可能となる。 上記プラズマ発生装置においては、 前記アンテナ導体の真空容器の内 壁に近接したアンテナ導入部にて、 前記第一の絶縁体の周囲を囲む接地 電極が設けられ、 上記接地電極の周囲に、 前記第二の絶縁体がプラズマ と接地電極との接触を抑制するように配置されていることが望ましい。 上記構成では、 接地電極の設置により、 上記アンテナ導体の端部に発 生する高周波電圧がプラズマのシース部の領域に印加されることを遮断 することが可能である。
上記プラズマ発生装置では、 接地電極は、 アンテナ導体の通電方向に 対し直交する方向に上記通電方向に沿って交互に突出するジグザグ構造 を有していることが好ましい。
上記構成では、 接地電極をジグザグ構造とすることによって、 アンテ ナ導入部に発生する高周波電圧による静電結合を効果的に遮断すると共 に、 接地電極において誘導電界に対する電流パスを長く とることができ 、 接地電極に誘導される発熱を抑制すると共に電力損失を軽減すること が可能である。
上記プラズマ発生装置では、 真空容器内にて、 負荷としてのアンテナ 導体から放射される高周波誘導磁場強度を測定するセンサーを設けても よい。
上記プラズマ発生装置においては、 センサーを、 複数、 アンテナ導体 からの距離が相違する位置にそれぞれ設けてもよい。
上記プラズマ発生装置では、 各センサーからの各測定結果と、 アンテ ナ導体に流れる高周波電流値とから、 真空容器内のプラズマ状態を算出 して、 アンテナ導体の駆動を制御するプラズマ制御部を有していてもよ い
上記プラズマ発生装置においては、 センサーは、 磁場強度検出部と、 磁場強度検出部を覆う第一シールドとを有していてもよい。
上記プラズマ発生装置では、 センサーは、 さらに、 第一シールド上へ の付着物の形成を抑制すると共に、 磁場強度検出部への高周波誘導磁場 の遮断を回避する第二シールドを有していてもよい。
上記プラズマ発生装置においては、 第二シールドは、 磁場強度検出部 への高周波誘導磁場の遮断を回避するためにスリ ッ ト部を有することが 好ましい。
上記構成によれば、 アンテナ導体から放射される高周波磁場は、 アン テナ導体に流れる高周波電流によ り誘起され、 主としてアンテナ電流に 対する方位角方向の成分を有している。 このため、 この高周波磁場強度 を測定して、 アンテナ導体に流れる高周波電流との比較 (強度比、 位相 差) を行う ことにより、 プラズマ中で誘導結合放電を駆動している高周 波磁場強度を直接測定することができる。
よって、 上記構成では、 上記の測定がプラズマ生成における駆動源を 直接モニターすることに相当し、 プラズマを生成する際に、 この測定量 が一定となるようにフィードバック制御をかければ、 プラズマの生成状 態をより一定に保つことが可能となる。
上記プラズマ発生装置においては、 それぞれの負荷に供給されるパル ス状の高周波電力に基づき発生する各プラズマの空間分布パターンを互 いに変化させるよ うに各高周波電源をそれぞれ制御する電源制御部が設 けられていてもよレ、。
上記プラズマ発生装置では、 上記電源制御部は、 各プラズマの空間分 布パターンを周期的に変化させるものであってもよい。
上記プラズマ発生装置においては、 上記電源制御部は、 各プラズマの 空間分布パターンを互いに独立に変化させるものであってもよい。
上記プラズマ発生装置では、 真空容器内にて、 負荷から放射される高 周波誘導磁場強度を測定するセンサーを設けてもよい。 尚、 発明を実施するための最良の形態の項においてなした具体的な実 施態様または実施例は、 あくまでも、 本発明の技術内容を明らかにする ものであって、 そのような具体例にのみ限定して狭義に解釈されるべき ものではなく、 本発明の精神と次に記载する特許請求の範囲内で、 いろ いろと変更して実施することができるものである。 産業上の利用の可能性
本発明の高周波電力供給装置およびプラズマ発生装置は、 各々の負荷 へ高周波電流を並列または直列に供給する必要を省けるから、 各負荷に それぞれ発生する高周波電圧のパラツキを低減できる。
この結果、 上記構成は、 プラズマ発生部の大口径化あるいは大容積化 を図っても、 より均一なプラズマを発生できて、 上記プラズマによる薄 膜形成や、 プラズマイオン注入を安定化できて、 ポリ シリ コン等の半導 体用薄膜の形成に好適に利用できる。

Claims

請求の範囲
1 . 容量性または誘導性の負荷を 2つ以上設けた高周波電力供給装置 において、
負荷に対して電力を供給するための高周波電源が、 対応する負荷に近 接してそれぞれ設けられていることを特徴とする高周波電力供給装置。
2 . 請求の範囲第 1項に記載の高周波電力供給装置において、 各高周波電源は、 それぞれ対応する負荷に近接した高周波電力増幅器 を備えている高周波電力供給装置。
3 . 請求の範囲第 1項に記載の高周波電力供給装置において、 各々の負荷に供給される高周波電流の周波数をそれぞれ制御するため の周波数変調制御部が、 各々の負荷に取り付けられた個々の高周波電源 で独立に、 かつ 1種類以上の周波数の高周波電流が 2つ以上の負荷に同 時に供給されると共に、 それぞれの負荷に供給される高周波電流の周波 数変調によ りそれぞれの負荷に対するィンピーダンス整合が図られるよ うに設けられている高周波電力供給装置。
4 . 請求の範囲第 1項に記載の高周波電力供給装置において、 各々の負荷に供給される高周波電流の位相を、 それぞれ制御するため の位相変調制御部が、 各々の負荷に取り付けられた個々の高周波電源で 独立に、 かつ同位相または位相の異なる高周波電流が 2つ以上の負荷に 同時に供給されるように設けられている高周波電力供給装置。
5 . 請求の範囲第 1項に記載の高周波電力供給装置において、 各々の負荷に供給される高周波電力を、 それぞれ制御するための電力 制御部が、 各々の負荷に対応した個々の電源で独立に、 かつ 1種類以上 の高周波電力が 2つ以上の負荷に同時に供給されるように設けられてい る高周波電力供給装置。
6 . 請求の範囲第 1項ないし第 5項の何れか 1項に記載の高周波電力 供給装置と、 上記高周波電力供給装置の負荷が高周波電力の印加により プラズマを発生するよ うに取り付けられた真空容器とを備えたプラズマ 発生装置。
7 . 請求の範囲第 6項に記載のプラズマ発生装置において、 各々の負 荷に供給される高周波電流、 高周波電圧、 位相および負荷近傍のプラズ マ生成状態の測定部を備えたプラズマ発生装置。
8 . 請求の範囲第 6項に記載のプラズマ発生装置において、 各々の負 荷に流れる高周波電力の信号から制御信号を生成する負帰還回路と、 上 記制御信号に基づく 自己発振により高周波電力を供給するための制御系 とを備えたプラズマ発生装置。
9 . 請求の範囲第 6項に記載のプラズマ発生装置において、 2つ以上 の負荷が互いに隣り合って取り付けられ、 それら隣り合う負荷に供給さ れる高周波電流の位相および周波数を独立に設定して、 それら隣り合う 負荷に発生する高周波電界によりプラズマ中の電子の受ける実効的な加 速ポテンシャルを制御するプラズマ制御部が設けられているプラズマ発 生装置。
1 0 . 請求の範囲第 6項に記載のプラズマ発生装置において、 高周波電 力の高周波電流、 高周波電圧、 位相および負荷近傍のプラズマ状態の逐 次測定値をフィードパックし、 位相変調、 周波数変調、 ないし振幅変調 の何れかにより 2つ以上の負荷に供給する高周波電力を独立かつ能動的 に制御することによつてそれぞれの負荷に対するィンピーダンス整合の 制御と、 真空容器内のプラズマの均一性および再現性の制御とを行う制 御システムが設けられ、
プラズマ状態を現すモニターが設けられているプラズマ発生装置。
1 1 . プラズマを発生させるための真空容器が設けられ、
高周波電力が印加されて誘導電界を発生させるアンテナ導体が、 真空 容器內に少なく とも 1つ設置され、
アンテナ導体における、 真空容器内部に存在する部分の周囲に、 第一 絶縁体が、 プラズマとアンテナ導体との接触を遮断するように、 第一空 間領域を隔てて配置されていることを特徴とする高周波放電による誘導 結合方式のプラズマ発生装置。
1 2 . 請求の範囲第 1 1項に記載のプラズマ発生装置において、
さらに、 前記第一の絶縁体の周囲に、 第二空間領域を隔てて第二の絶 縁体が配置されているプラズマ発生装置。
1 3 . 請求の範囲第 1 2項に記載のプラズマ発生装置において、
前記アンテナ導体の真空容器の内壁に近接したアンテナ導入部にて、 前記第一の絶縁体の周囲を囲む接地電極が設けられ、
上記接地電極の周囲に、 前記第二の絶縁体が、 プラズマと接地電極と の接触を抑制するよ うに配置されているプラズマ発生装置。
1 4 . 請求の範囲第 1 3項に記載のプラズマ発生装置において、
前記接地電極は、 アンテナ導体の通電方向に対し直交する方向に上記 通電方向に沿って交互に突出するジグザグ構造を有しているプラズマ発 生装置。
1 5 . 請求の範囲第 6項に記載のプラズマ発生装置において、 真空容器 内にて、 負荷から放射される高周波誘導磁場強度を測定するセンサーを 設けたプラズマ発生装置。
1 6 . 請求の範囲第 1 1項に記載のプラズマ発生装置において、 真空容器内にて、 ァンテナ導体から放射される高周波誘導磁場強度を 測定するセンサーを設けたプラズマ発生装置。
1 7 . 請求の範囲第 1 6項に記載のプラズマ発生装置において、
センサーを、 複数、 アンテナ導体からの距離が相違する位置にそれぞ れ設けたプラズマ発生装置。
1 8 . 請求の範囲第 1 7項に記載のプラズマ発生装置において、
各センサーからの各測定結果と、 アンテナ導体に流れる高周波電流値 とから、 真空容器内のプラズマ状態を算出して、 アンテナ導体の駆動を 制御するプラズマ制御部を有するプラズマ発生装置。
1 9 . 請求の範囲第 1 6項に記載のプラズマ発生装置において、
センサーは、 磁場強度検出部と、 磁場強度検出部を覆う第一シール ド とを有するプラズマ発生装置。
2 0 . 請求の範囲第 1 9項に記載のプラズマ発生装置において、
センサーは、 さらに、 第一シールド上への付着物の形成を抑制すると 共に、 磁場強度検出部への高周波誘導磁場の遮断を回避する第二シール ドを有するプラズマ発生装置。
2 1 . 請求の範囲第≥ 0項に記載のプラズマ発生装置において、
第二シールドは、 磁場強度検出部への高周波誘導磁場の遮断を回避す るためにス リ ッ ト部を有するプラズマ発生装置。
2 2 . 請求の範囲第 6項に記載のプラズマ発生装置において、 それぞれ の負荷に供給されるパルス状の高周波電力に基づき癸生する各プラズマ の空間分布パターンを互いに変化させるよ うに各高周波電源をそれぞれ 制御する電源制御部が設けられていることを特徴とするプラズマ発生装 置。
2 3 . 請求の範囲第 2 2項に記載のプラズマ発生装置において、
上記電源制御部は、 各プラズマの空間分布パターンを周期的に変化さ せるものであるプラズマ発生装置。
2 4 . 請求の範囲第 2 2項に記載のプラズマ発生装置において、
上記電源制御部.は、 各プラズマの空間分布パターンを互いに独立に変 化させるものであるプラズマ発生装置。
2 5 . 請求の範囲第 2 2項に記載のプラズマ発生装置において、
各負荷を互いに隣り合う複数のグループに分け、
上記電源制御部は、 隣り合う各グループ間でのパルス動作をずらすよ うになっているプラズマ発生装置。
2 6 . 請求の範囲第 2 5項に記載のプラズマ発生装置において、
上記電源制御部は、 隣り合う各グループ間でのパルスの O N Z〇 F F 動作を互いに排他的にずらすようになつているプラズマ発生装置。
2 7 . 請求の範囲第 2 2項に記載のプラズマ発生装置において、
真空容器内にて、 負荷から放射される高周波誘導磁場強度を測定する センサーを設けたプラズマ発生装置。
PCT/JP2004/000258 2003-01-16 2004-01-15 高周波電力供給装置およびプラズマ発生装置 WO2004064460A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04702413.8A EP1589793B1 (en) 2003-01-16 2004-01-15 Plasma generation device
US10/542,289 US7567037B2 (en) 2003-01-16 2004-01-15 High frequency power supply device and plasma generator
JP2005508013A JP4451392B2 (ja) 2003-01-16 2004-01-15 プラズマ発生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003008648 2003-01-16
JP2003-008648 2003-01-16

Publications (1)

Publication Number Publication Date
WO2004064460A1 true WO2004064460A1 (ja) 2004-07-29

Family

ID=32709168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000258 WO2004064460A1 (ja) 2003-01-16 2004-01-15 高周波電力供給装置およびプラズマ発生装置

Country Status (6)

Country Link
US (1) US7567037B2 (ja)
EP (2) EP2565903B1 (ja)
JP (2) JP4451392B2 (ja)
KR (1) KR100783983B1 (ja)
TW (1) TWI266361B (ja)
WO (1) WO2004064460A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202638A (ja) * 2005-01-21 2006-08-03 Mitsui Eng & Shipbuild Co Ltd プラズマ生成装置及びプラズマ生成方法
JP2007294909A (ja) * 2006-03-29 2007-11-08 Tokyo Electron Ltd プラズマ処理装置
JP2008117777A (ja) * 2006-11-04 2008-05-22 Huettinger Elektronik Gmbh & Co Kg 少なくとも2つの高周波電力発生器のドライブ制御方法、高周波電力発生器ドライブ制御装置および高周波プラズマ励起装置
WO2009107196A1 (ja) * 2008-02-26 2009-09-03 株式会社島津製作所 プラズマ成膜方法、およびプラズマcvd装置
WO2009110226A1 (ja) * 2008-03-05 2009-09-11 株式会社イー・エム・ディー 高周波アンテナユニット及びプラズマ処理装置
US20090314349A1 (en) * 2006-03-29 2009-12-24 Ishikawajima-Harima Heavy Industries Co., Ltd. Microcrystalline Silicon Film Forming Method and Solar Cell
JP2010157511A (ja) * 2003-01-16 2010-07-15 Japan Science & Technology Agency 高周波電力供給装置およびプラズマ発生装置
US7981306B2 (en) 2005-08-13 2011-07-19 Huettinger Elektronik Gmbh + Co. Kg Supplying RF power to a plasma process
JP2011181292A (ja) * 2010-02-26 2011-09-15 Emd:Kk プラズマ処理装置用アンテナ及び該アンテナを用いたプラズマ処理装置
WO2012005201A1 (ja) * 2010-07-07 2012-01-12 イマジニアリング株式会社 プラズマ生成装置
JP5072096B2 (ja) * 2005-09-09 2012-11-14 株式会社アルバック イオン源およびプラズマ処理装置
WO2013030953A1 (ja) * 2011-08-30 2013-03-07 株式会社イー・エム・ディー プラズマ処理装置用アンテナ及び該アンテナを用いたプラズマ処理装置
WO2018131529A1 (ja) * 2017-01-10 2018-07-19 東レエンジニアリング株式会社 成膜装置
JP2020520536A (ja) * 2017-05-06 2020-07-09 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 局所的なローレンツ力を用いるモジュール式マイクロ波源
TWI709360B (zh) * 2018-03-20 2020-11-01 日商日新電機股份有限公司 電漿控制系統以及電漿控制系統用程式
KR20210024172A (ko) 2018-09-13 2021-03-04 가부시키가이샤 히다치 고쿠사이 덴키 고주파 전원 장치 및 기판 처리 장치
JP2021524654A (ja) * 2018-07-10 2021-09-13 トゥルンプフ ヒュッティンガー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトTRUMPF Huettinger GmbH + Co. KG 電力供給装置及び該電力供給装置を動作させる方法
JP2022540745A (ja) * 2019-05-23 2022-09-20 コメット アーゲー 無線周波数発生器

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7742167B2 (en) * 2005-06-17 2010-06-22 Perkinelmer Health Sciences, Inc. Optical emission device with boost device
JP5162108B2 (ja) * 2005-10-28 2013-03-13 日新電機株式会社 プラズマ生成方法及び装置並びにプラズマ処理装置
US9011633B2 (en) * 2005-11-17 2015-04-21 Mks Instruments, Inc. Broadband techniques to reduce the effects of impedance mismatch in plasma chambers
US8932430B2 (en) * 2011-05-06 2015-01-13 Axcelis Technologies, Inc. RF coupled plasma abatement system comprising an integrated power oscillator
US8528498B2 (en) * 2007-06-29 2013-09-10 Lam Research Corporation Integrated steerability array arrangement for minimizing non-uniformity
US20090000738A1 (en) * 2007-06-29 2009-01-01 Neil Benjamin Arrays of inductive elements for minimizing radial non-uniformity in plasma
US9105449B2 (en) * 2007-06-29 2015-08-11 Lam Research Corporation Distributed power arrangements for localizing power delivery
KR101591404B1 (ko) * 2008-05-22 2016-02-03 가부시키가이샤 이엠디 플라즈마 생성장치 및 플라즈마 처리장치
WO2010007789A1 (ja) * 2008-07-17 2010-01-21 株式会社 東芝 気流発生装置およびその製造方法
US8044594B2 (en) 2008-07-31 2011-10-25 Advanced Energy Industries, Inc. Power supply ignition system and method
CN102160140B (zh) * 2008-09-20 2014-03-26 许廷格电子两合公司 等离子功率供给装置
KR101069384B1 (ko) * 2008-11-14 2011-09-30 세메스 주식회사 플라즈마 안테나 및 이를 포함하는 플라즈마 처리 장치
US8395078B2 (en) 2008-12-05 2013-03-12 Advanced Energy Industries, Inc Arc recovery with over-voltage protection for plasma-chamber power supplies
US8040068B2 (en) * 2009-02-05 2011-10-18 Mks Instruments, Inc. Radio frequency power control system
PL2648209T3 (pl) 2009-02-17 2018-06-29 Solvix Gmbh Urządzenie zasilające do obróbki plazmowej
JP5400434B2 (ja) * 2009-03-11 2014-01-29 株式会社イー・エム・ディー プラズマ処理装置
US20100301702A1 (en) * 2009-05-27 2010-12-02 General Electric Company High gain miniature power supply for plasma generation
CN104331183B (zh) * 2009-10-09 2017-12-15 禾瑞亚科技股份有限公司 二维度双差值感测资讯分析的方法与装置
WO2011041943A1 (zh) 2009-10-09 2011-04-14 禾瑞亚科技股份有限公司 分析位置的方法与装置
KR101236397B1 (ko) * 2009-12-31 2013-02-25 엘아이지에이디피 주식회사 기판 처리 장치
US8552665B2 (en) 2010-08-20 2013-10-08 Advanced Energy Industries, Inc. Proactive arc management of a plasma load
CN103155718B (zh) * 2010-09-06 2016-09-28 Emd株式会社 等离子处理装置
TWI559819B (zh) * 2010-09-10 2016-11-21 Emd Corp Plasma processing device
DE102010048809A1 (de) * 2010-10-20 2012-04-26 Hüttinger Elektronik Gmbh + Co. Kg Leistungsversorgungssystem für eine Plasmaanwendung und/oder eine Induktionserwärmungsanwendung
DE102010048810A1 (de) * 2010-10-20 2012-04-26 Hüttinger Elektronik Gmbh + Co. Kg System zur Bedienung mehrerer Plasma- und/oder Induktionserwärmungsprozesse
JP5170216B2 (ja) * 2010-11-16 2013-03-27 株式会社デンソー プラズマ発生装置
TWI556690B (zh) * 2011-08-30 2016-11-01 Emd Corp An antenna for a plasma processing apparatus, and a plasma processing apparatus using the same
JP5787712B2 (ja) * 2011-10-20 2015-09-30 株式会社日立製作所 プラズマ処理装置
JP6629071B2 (ja) 2012-12-18 2020-01-15 トゥルンプフ ヒュッティンガー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトTRUMPF Huettinger GmbH + Co. KG 高周波電力を発生させるための方法及び負荷に電力を供給するための電力変換器を備えた電力供給システム
KR102065809B1 (ko) 2012-12-18 2020-01-13 트럼프 헛팅거 게엠베하 + 코 카게 아크 제거 방법 및 전력 변환기를 갖는 전력 공급 시스템
JP2014189861A (ja) * 2013-03-28 2014-10-06 Dainippon Screen Mfg Co Ltd 膜形成方法
JP6126905B2 (ja) * 2013-05-14 2017-05-10 東京エレクトロン株式会社 プラズマ処理装置
JP2015070115A (ja) 2013-09-30 2015-04-13 株式会社Screenホールディングス 電子デバイス用構造体、プラズマcvd装置、および成膜方法
JP2015156326A (ja) * 2014-02-21 2015-08-27 日新電機株式会社 プラズマ発生装置用の高周波電流の測定方法および測定装置
JP6373707B2 (ja) * 2014-09-30 2018-08-15 株式会社Screenホールディングス プラズマ処理装置
JP6375225B2 (ja) * 2014-12-26 2018-08-15 東レエンジニアリング株式会社 プラズマ形成装置および薄膜形成装置
CN106920732B (zh) * 2015-12-25 2018-10-16 中微半导体设备(上海)有限公司 一种电极结构及icp刻蚀机
US10748745B2 (en) 2016-08-16 2020-08-18 Applied Materials, Inc. Modular microwave plasma source
TWI604679B (zh) * 2016-09-19 2017-11-01 綠點高新科技股份有限公司 電子裝置及電子裝置外殼的供電方法
JP6854450B2 (ja) * 2016-12-19 2021-04-07 パナソニックIpマネジメント株式会社 スパッタ装置およびスパッタ方法
JP6899693B2 (ja) * 2017-04-14 2021-07-07 東京エレクトロン株式会社 プラズマ処理装置及び制御方法
US10522315B2 (en) * 2017-09-08 2019-12-31 Schlumberger Technology Corporation Compact multi antenna based ion sources
KR102009348B1 (ko) 2017-09-20 2019-08-09 주식회사 유진테크 배치식 플라즈마 기판처리장치
KR102405258B1 (ko) * 2018-02-14 2022-06-03 삼성디스플레이 주식회사 표시 장치
CN110364408A (zh) * 2018-04-11 2019-10-22 北京北方华创微电子装备有限公司 电感耦合装置和等离子体处理设备
DE102018110240A1 (de) * 2018-04-27 2019-10-31 Infineon Technologies Ag Halbleitervorrichtung und Herstellung
US11830708B2 (en) * 2020-01-10 2023-11-28 COMET Technologies USA, Inc. Inductive broad-band sensors for electromagnetic waves
JP7417569B2 (ja) * 2021-10-29 2024-01-18 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム
CN114421133B (zh) * 2022-01-12 2024-10-08 深圳华大北斗科技股份有限公司 低成本全频段高精度定位金属薄膜天线

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273731A (ja) * 1986-05-21 1987-11-27 Tokyo Electron Ltd プラズマ処理装置
JPH08236294A (ja) * 1995-02-28 1996-09-13 Jeol Ltd 高周波プラズマ応用装置
JPH09270299A (ja) * 1996-03-31 1997-10-14 Furontetsuku:Kk プラズマ処理装置
JPH11318299A (ja) * 1998-05-16 1999-11-24 Kazumasa Matsumura つり用ワンタッチエサ絞り器
WO2001073814A2 (en) 2000-03-28 2001-10-04 Tokyo Electron Limited Method and apparatus for controlling power delivered to a multiple segment electrode
JP2001321662A (ja) * 2000-05-17 2001-11-20 Nihon Koshuha Co Ltd 均一電界分布型プラズマ処理装置
JP2002012977A (ja) * 2000-06-30 2002-01-15 Mitsubishi Heavy Ind Ltd 表面処理装置及び表面処理方法
JP2002359232A (ja) * 2001-05-31 2002-12-13 Tokyo Electron Ltd プラズマ処理装置
JP2003031504A (ja) * 2001-07-13 2003-01-31 Sharp Corp プラズマ処理装置及びプラズマ処理方法、それらを用いて作製した半導体装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482686A (en) * 1987-09-25 1989-03-28 Nec Corp Semiconductor laser
US5057185A (en) * 1990-09-27 1991-10-15 Consortium For Surface Processing, Inc. Triode plasma reactor with phase modulated plasma control
KR970010266B1 (ko) * 1992-03-31 1997-06-23 미쯔시다덴기산교 가부시기가이샤 플라즈마 발생방법 및 그 장치
DE4241927C2 (de) * 1992-12-11 1994-09-22 Max Planck Gesellschaft Zur Anordnung in einem Vakuumgefäß geeignete selbsttragende isolierte Elektrodenanordnung, insbesondere Antennenspule für einen Hochfrequenz-Plasmagenerator
JPH07226395A (ja) * 1994-02-15 1995-08-22 Matsushita Electric Ind Co Ltd 真空プラズマ処理装置
US5522934A (en) * 1994-04-26 1996-06-04 Tokyo Electron Limited Plasma processing apparatus using vertical gas inlets one on top of another
JPH0864393A (ja) * 1994-08-24 1996-03-08 Nissin Electric Co Ltd プラズマ処理装置
JP3425009B2 (ja) * 1995-05-30 2003-07-07 アネルバ株式会社 表面処理装置
KR100560886B1 (ko) * 1997-09-17 2006-03-13 동경 엘렉트론 주식회사 가스 플라즈마 프로세스를 감시 및 제어하기 위한 시스템및 방법
JPH11317299A (ja) * 1998-02-17 1999-11-16 Toshiba Corp 高周波放電方法及びその装置並びに高周波処理装置
JP3332857B2 (ja) * 1998-04-15 2002-10-07 三菱重工業株式会社 高周波プラズマ発生装置及び給電方法
DE19824077A1 (de) * 1998-05-29 1999-12-02 Leybold Systems Gmbh Vorrichtung zur Erzeugung von Plasma
US6064260A (en) * 1998-12-04 2000-05-16 Lucent Technologies, Inc. RF amplifier network with a redundant power supply
JP3276346B2 (ja) * 1999-06-17 2002-04-22 三菱重工業株式会社 放電電極、高周波プラズマ発生装置、給電方法および半導体製造方法
JP3836636B2 (ja) * 1999-07-27 2006-10-25 独立行政法人科学技術振興機構 プラズマ発生装置
JP4576011B2 (ja) * 1999-09-03 2010-11-04 株式会社アルバック プラズマ処理装置
DK1232676T3 (da) * 1999-11-16 2007-01-29 Hydro Quebec Fremgangsmåde og apparat til at lette gentænding i en lysbueovn
KR20010108968A (ko) * 2000-06-01 2001-12-08 황 철 주 플라즈마 공정장치
US6685798B1 (en) * 2000-07-06 2004-02-03 Applied Materials, Inc Plasma reactor having a symmetrical parallel conductor coil antenna
JP3763392B2 (ja) * 2000-08-03 2006-04-05 シャープ株式会社 高周波電極およびプラズマ処理装置
JP4531247B2 (ja) * 2000-12-19 2010-08-25 株式会社アルバック 真空処理装置
JP4451392B2 (ja) * 2003-01-16 2010-04-14 独立行政法人科学技術振興機構 プラズマ発生装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273731A (ja) * 1986-05-21 1987-11-27 Tokyo Electron Ltd プラズマ処理装置
JPH08236294A (ja) * 1995-02-28 1996-09-13 Jeol Ltd 高周波プラズマ応用装置
JPH09270299A (ja) * 1996-03-31 1997-10-14 Furontetsuku:Kk プラズマ処理装置
JPH11318299A (ja) * 1998-05-16 1999-11-24 Kazumasa Matsumura つり用ワンタッチエサ絞り器
WO2001073814A2 (en) 2000-03-28 2001-10-04 Tokyo Electron Limited Method and apparatus for controlling power delivered to a multiple segment electrode
JP2001321662A (ja) * 2000-05-17 2001-11-20 Nihon Koshuha Co Ltd 均一電界分布型プラズマ処理装置
JP2002012977A (ja) * 2000-06-30 2002-01-15 Mitsubishi Heavy Ind Ltd 表面処理装置及び表面処理方法
JP2002359232A (ja) * 2001-05-31 2002-12-13 Tokyo Electron Ltd プラズマ処理装置
JP2003031504A (ja) * 2001-07-13 2003-01-31 Sharp Corp プラズマ処理装置及びプラズマ処理方法、それらを用いて作製した半導体装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1589793A4 *
YAMAMOTO NAOKI ET AL.: "Multi naibu antenna hoshiki o mochiita daimenseki yudo ketsugo plasma no seisei", JOURNAL OF HIGH TEMPERATURE SOCIETY, vol. 28, no. 4, 22 July 2002 (2002-07-22), pages 13, XP002903789 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157511A (ja) * 2003-01-16 2010-07-15 Japan Science & Technology Agency 高周波電力供給装置およびプラズマ発生装置
JP4554380B2 (ja) * 2005-01-21 2010-09-29 三井造船株式会社 プラズマ生成装置及びプラズマ生成方法
JP2006202638A (ja) * 2005-01-21 2006-08-03 Mitsui Eng & Shipbuild Co Ltd プラズマ生成装置及びプラズマ生成方法
US7981306B2 (en) 2005-08-13 2011-07-19 Huettinger Elektronik Gmbh + Co. Kg Supplying RF power to a plasma process
JP5072096B2 (ja) * 2005-09-09 2012-11-14 株式会社アルバック イオン源およびプラズマ処理装置
JP2007294909A (ja) * 2006-03-29 2007-11-08 Tokyo Electron Ltd プラズマ処理装置
US20090314349A1 (en) * 2006-03-29 2009-12-24 Ishikawajima-Harima Heavy Industries Co., Ltd. Microcrystalline Silicon Film Forming Method and Solar Cell
JP2008117777A (ja) * 2006-11-04 2008-05-22 Huettinger Elektronik Gmbh & Co Kg 少なくとも2つの高周波電力発生器のドライブ制御方法、高周波電力発生器ドライブ制御装置および高周波プラズマ励起装置
US8884523B2 (en) 2006-11-04 2014-11-11 Trumpf Huettinger Gmbh + Co. Kg Driving at least two high frequency-power generators
US8272348B2 (en) 2008-02-26 2012-09-25 Shimadzu Corporation Method for plasma deposition and plasma CVD system
WO2009107196A1 (ja) * 2008-02-26 2009-09-03 株式会社島津製作所 プラズマ成膜方法、およびプラズマcvd装置
JP5530350B2 (ja) * 2008-02-26 2014-06-25 株式会社島津製作所 プラズマ成膜方法、およびプラズマcvd装置
JPWO2009110226A1 (ja) * 2008-03-05 2011-07-14 株式会社イー・エム・ディー 高周波アンテナユニット及びプラズマ処理装置
JP2013258153A (ja) * 2008-03-05 2013-12-26 Emd:Kk 高周波アンテナユニット及びプラズマ処理装置
WO2009110226A1 (ja) * 2008-03-05 2009-09-11 株式会社イー・エム・ディー 高周波アンテナユニット及びプラズマ処理装置
US9078336B2 (en) 2008-03-05 2015-07-07 Emd Corporation Radio-frequency antenna unit and plasma processing apparatus
JP2011181292A (ja) * 2010-02-26 2011-09-15 Emd:Kk プラズマ処理装置用アンテナ及び該アンテナを用いたプラズマ処理装置
WO2012005201A1 (ja) * 2010-07-07 2012-01-12 イマジニアリング株式会社 プラズマ生成装置
US8873216B2 (en) 2010-07-07 2014-10-28 Imagineering, Inc. Plasma generation device
WO2013030953A1 (ja) * 2011-08-30 2013-03-07 株式会社イー・エム・ディー プラズマ処理装置用アンテナ及び該アンテナを用いたプラズマ処理装置
WO2018131529A1 (ja) * 2017-01-10 2018-07-19 東レエンジニアリング株式会社 成膜装置
JP2020520536A (ja) * 2017-05-06 2020-07-09 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 局所的なローレンツ力を用いるモジュール式マイクロ波源
US11721532B2 (en) 2017-05-06 2023-08-08 Applied Materials, Inc. Modular microwave source with local lorentz force
US11037764B2 (en) 2017-05-06 2021-06-15 Applied Materials, Inc. Modular microwave source with local Lorentz force
JP6999697B2 (ja) 2017-05-06 2022-01-19 アプライド マテリアルズ インコーポレイテッド 局所的なローレンツ力を用いるモジュール式マイクロ波源
JP2022046598A (ja) * 2017-05-06 2022-03-23 アプライド マテリアルズ インコーポレイテッド 局所的なローレンツ力を用いるモジュール式マイクロ波源
JP7278361B2 (ja) 2017-05-06 2023-05-19 アプライド マテリアルズ インコーポレイテッド 局所的なローレンツ力を用いるモジュール式マイクロ波源
TWI709360B (zh) * 2018-03-20 2020-11-01 日商日新電機股份有限公司 電漿控制系統以及電漿控制系統用程式
JP2021524654A (ja) * 2018-07-10 2021-09-13 トゥルンプフ ヒュッティンガー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトTRUMPF Huettinger GmbH + Co. KG 電力供給装置及び該電力供給装置を動作させる方法
JP7351895B2 (ja) 2018-07-10 2023-09-27 トゥルンプフ ヒュッティンガー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 電力供給装置及び該電力供給装置を動作させる方法
KR20210024172A (ko) 2018-09-13 2021-03-04 가부시키가이샤 히다치 고쿠사이 덴키 고주파 전원 장치 및 기판 처리 장치
US11901159B2 (en) 2018-09-13 2024-02-13 Hitachi Kokusai Electric Inc. RF generator device and substrate processing apparatus
JP2022540745A (ja) * 2019-05-23 2022-09-20 コメット アーゲー 無線周波数発生器
JP7428728B2 (ja) 2019-05-23 2024-02-06 コメット アーゲー 無線周波数発生器、プラズマ処理システム、無線周波数発生器コントローラを動作させる方法、コンピュータプログラム要素、及びコンピュータ読み取り可能媒体

Also Published As

Publication number Publication date
TW200425285A (en) 2004-11-16
EP2565903A3 (en) 2013-07-10
EP1589793B1 (en) 2014-06-04
US7567037B2 (en) 2009-07-28
JP2010157511A (ja) 2010-07-15
EP2565903A2 (en) 2013-03-06
JPWO2004064460A1 (ja) 2006-05-18
JP4451392B2 (ja) 2010-04-14
EP1589793A1 (en) 2005-10-26
KR100783983B1 (ko) 2007-12-11
EP1589793A4 (en) 2009-12-02
US20060057854A1 (en) 2006-03-16
KR20060008280A (ko) 2006-01-26
EP2565903B1 (en) 2014-09-10
TWI266361B (en) 2006-11-11
JP4852140B2 (ja) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4852140B2 (ja) 高周波電力供給装置およびプラズマ発生装置
TWI239794B (en) Plasma processing apparatus and method
KR100779444B1 (ko) 플라즈마 리액터에서의 무선주파수 전력 변동율에 대한 전압제어 센서 및 제어 인터페이스
JP4838612B2 (ja) プラズマ処理装置
KR101632603B1 (ko) 전류 측정 센서 및 플라즈마 기판 처리 장치
WO2018101065A1 (ja) プラズマ処理装置
JPH10509557A (ja) プラズマ中のイオン流の測定方法及び装置
JP2006507662A (ja) プラズマ処理システム内のアーク抑制方法およびシステム
KR102544625B1 (ko) 고온 환경에서 무선 주파수 전력을 측정하기 위한 전압-전류 프로브 및 이를 교정하는 방법
JP2004055600A (ja) プラズマ処理装置
US11094509B2 (en) Plasma processing apparatus
KR102111206B1 (ko) 플라즈마 프로브 장치 및 플라즈마 처리 장치
JP2011014579A (ja) プラズマ処理装置及びプラズマ処理方法
KR20130018459A (ko) 플라즈마 처리장치 및 플라즈마 처리방법
CN112309818B (zh) 等离子体处理装置和控制方法
JP2020017445A (ja) プラズマ処理装置
JP3923323B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP4030766B2 (ja) プラズマ処理装置
KR102207755B1 (ko) 플라스마 처리 장치
US6528949B2 (en) Apparatus for elimination of plasma lighting inside a gas line in a strong RF field
JP2001007089A (ja) プラズマ処理方法及び装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005508013

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006057854

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10542289

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057013232

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004702413

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004702413

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057013232

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10542289

Country of ref document: US

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)