WO2004059021A1 - 溶接熱影響部の耐軟化性に優れたバーリング性高強度鋼板およびその製造方法 - Google Patents

溶接熱影響部の耐軟化性に優れたバーリング性高強度鋼板およびその製造方法 Download PDF

Info

Publication number
WO2004059021A1
WO2004059021A1 PCT/JP2003/015275 JP0315275W WO2004059021A1 WO 2004059021 A1 WO2004059021 A1 WO 2004059021A1 JP 0315275 W JP0315275 W JP 0315275W WO 2004059021 A1 WO2004059021 A1 WO 2004059021A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
heat
strength
affected zone
pearling
Prior art date
Application number
PCT/JP2003/015275
Other languages
English (en)
French (fr)
Inventor
Tatsuo Yokoi
Teruki Hayashida
Masahiro Ohara
Kouichi Tsuchihashi
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32677232&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004059021(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US10/540,628 priority Critical patent/US7749338B2/en
Priority to AU2003284496A priority patent/AU2003284496A1/en
Priority to EP03775966.9A priority patent/EP1577412B2/en
Priority to DE60311680.9T priority patent/DE60311680T3/de
Priority to CA2511661A priority patent/CA2511661C/en
Publication of WO2004059021A1 publication Critical patent/WO2004059021A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention has a tensile strength of 540 MPa or more, which is excellent in softening resistance of a heat affected zone of welding.
  • the present invention relates to a high-strength, high-strength steel sheet and a method for producing the same.
  • TECHNICAL FIELD The present invention relates to a high-strength steel plate having excellent softening resistance in a heat-affected zone of a welding, which is suitable as a material used for automobile parts and the like in which compatibility between the steel and the welded portion is required.
  • the strength of the weld is very important, along with the formability such as pearling workability. Cannot satisfy both of these characteristics. Further, even if both characteristics are satisfied, it is important to provide a manufacturing method that can be manufactured stably at a low cost, and the above-mentioned conventional technology must be said to be insufficient.
  • a polygonal ferrite having an area ratio of 85% or more is indispensable to obtain high stretch flangeability, but to obtain a polygonal ferrite of 85% or more.
  • long-term holding is required to promote the growth of fly grains after hot rolling, which is not preferable in terms of operating costs.
  • the invention described in Japanese Patent Application Laid-Open No. 2000-178654 relates to a ferrite-martensite composite structure steel, and it is clear that the invention is a technology for obtaining a microstructure of a steel sheet having excellent pearling workability of the present invention. different. Disclosure of the invention
  • the present invention solves the above-mentioned problems, and requires both workability and the strength of the welded part when welding is performed by spots, arcs, plasmas, lasers, or the like after forming, or when these are formed after welding.
  • An object of the present invention is to obtain a pearling high-strength steel sheet excellent in softening resistance of a heat affected zone of welding, which is suitable as a material used for applications such as automobile parts, and a method for producing the same. That is, the present invention provides a high-strength pearling steel sheet having a tensile strength of 540 MPa or more, which is excellent in softening resistance of a heat-affected zone of a weld and a steel sheet thereof. It is an object of the present invention to provide a manufacturing method capable of manufacturing a board stably at low cost.
  • the present inventors considered the softening resistance of the welded heat-affected zone of a pearling high-strength steel sheet, keeping in mind the manufacturing process of thin steel sheets that are currently produced on an industrial scale using manufacturing equipment that is currently employed. We have conducted extensive research to improve it.
  • C 0.01 to 0.1%
  • Si 0.01 to 2%
  • Mn 0.05 to 3%
  • Al 0.005 to 1%
  • N 0.0005 to 0 005%
  • Ti 0.05-0.5%, containing 0% C- (12 / 48Ti-12 / 14N-12 / 32S) ⁇ 0.05%, Mo + Cr ⁇ 0.2%
  • the inventors found out that the cause of the softening of the weld heat affected zone of the pearling-resistant high-strength steel sheet was due to the tempering of the microstructure due to the welding temperature history.In order to improve the softening resistance, Cr and Mo were used.
  • the present inventors have newly found that the composite addition of is very effective, and made the present invention. That is, the gist of the present invention is as follows.
  • the steel further contains, by mass%, Nb: 0.01-0.5%, and furthermore, C- (12 / 48Ti + 12 / 93Nb-12 / 14N-12 / 32S) ⁇ 0.05
  • Nb 0.01-0.5%
  • a high-strength balling steel sheet with excellent softening resistance in the heat affected zone of welds characterized in that the steel contains Nb in the range satisfying% and the balance consists of Fe and inevitable impurities.
  • the steel according to (1) or (2) further contains, by mass%, Ca: 0.005 to 0.002%, REM: 0.0005 to 0.02%, Cu: 0.2 to 1.2%, Ni: 0
  • a high-strength pearling steel sheet with excellent softening resistance in the heat-affected zone of the weld characterized in that it contains one or two types of 1-0.6% and B: 0.0002-0.002%.
  • a pearl that is excellent in softening resistance of a heat affected zone by welding characterized in that the thin steel sheet for automobiles according to any one of (1) to (3) is zinc-coated. High strength steel sheet.
  • the finish rolling is performed at the temperature of the Ar 3 transformation point + 30 ° C or more during hot rolling of a slab having the component. Finish in the temperature range, then cool down to the temperature range of 700 ° C or less at an average cooling rate of 50 ° C or more for 10 seconds or less to the end of cooling within 10 seconds, and wind up to 350 ° C to 650 ° C.
  • a temperature range of 800 ° C or more is obtained.
  • Heat-affected zone characterized in that it is subjected to a heat treatment in a step of cooling to a temperature range of 700 ° C or less at a cooling rate of 50 ° C / sec or more at an average cooling rate of 50 ° C / sec or more.
  • the method of manufacturing according to (5) characterized in that after the hot rolling step, the steel sheet surface is galvanized by dipping in a zinc plating bath.
  • FIG. 1 is a graph showing the relationship between the amounts of C * and Cr + Mo and the degree of softening ⁇ of the heat affected zone.
  • FIG. 2 is a graph showing the relationship between the C * content and the Cr + Mo content of a steel sheet having a different composition and the arc weld hardness.
  • the heat-affected zone of a material that has gained strength due to its basic microstructure may soften in a welding heat cycle such as arc welding. It is presumed that Mo or Cr increases the strength by clustering or precipitation with elements such as C even in a short heat cycle such as welding, thereby suppressing the softening of the heat-affected zone. However, this effect is lost if the total content of Mo and Cr is less than 0.2%.
  • the hardness of the heat-affected zone in arc welding was measured using the No. 1 test piece described in JI SZ 3101 according to the test method described in JI SZ 2244.
  • minute the welding current: 260 Sat 10A
  • the welding voltage 26 ⁇ 1 V
  • the thickness of the test material was 2.6 mm
  • the hardness measurement position was 0.25 mm from the surface
  • the measurement interval was 0.5 ⁇
  • the test force was 98 kN.
  • the ferrite single phase is desirable for the microstructure of the steel sheet to ensure excellent pearling workability.
  • the volume fraction of bainite is desirably 10% or less.
  • ferrite includes both vanity ferrites and ash-yukiura ferrite organizations.
  • bainite is a structure that contains carbides such as cementite between ferrite trusses or that contains carbides such as cementite in the ferrite truss when the thin film is observed with a transmission electron microscope.
  • vanity ferrite and ash-yukura ferrite structures are defined as structures that do not contain carbide in ferrite trusses and ferrite trusses except for carbonitrides of Ti and Nb.
  • the volume of residual austenite and martensite must be combined.
  • the rate should be less than 5%.
  • the volume fraction of pearlite containing coarse carbides is desirably 5% or less.
  • the volume fractions of ferrite, bainite, residual austenite, perlite, and martensite are defined as 1/4 W or 3 Z 4 W of the steel sheet width. Is defined by the area fraction of the microstructure at 1/4 t of the plate thickness observed at a magnification of 200 to 500 times using an optical microscope. .
  • C is one of the most important elements in the present invention.
  • C has an effect of suppressing the softening of the weld heat affected zone by being precipitated with Mo or Cr and clustering or even with a short heat cycle such as welding.
  • the content should be 0.1% or less. If it is less than 0.01%, the strength will decrease. To be 0.01% or more.
  • Si is effective for increasing strength as a solid solution strengthening element.
  • the content In order to obtain the desired strength, the content must be 0.01% or more. However, if the content exceeds 2%, the workability deteriorates. Therefore, the content of Si is set to 0.01% or more and 2% or less.
  • Mn is effective for increasing strength as a solid solution strengthening element. To obtain the desired strength, 0.05% or more is required. It is also desirable hot by S in addition to Mn (an element such as suppressing Ti generation of cracks adding a Mn amount to be MnZ S ⁇ 20 mass% when not sufficiently added. Meanwhile, 3% If added excessively, slab cracks will occur, so the content should be 3% or less.
  • P is an impurity and is preferably as low as possible. If the content of P exceeds 0.1%, it adversely affects the workability and weldability and also deteriorates the fatigue characteristics. If S is too large, it causes cracking during hot rolling, so it should be reduced as much as possible, but if it is 0.3% or less, it is in an acceptable range.
  • A1 must be added at 0.005% or more for molten steel deoxidation, but its cost is raised, so the upper limit is 1%. Further, if added in an excessively large amount, nonmetallic inclusions increase and elongation is deteriorated. Therefore, the content is desirably 0.5% or less.
  • N forms precipitates with Ti and Nb at higher temperatures than C and reduces Ti and Nb, which are effective in fixing the desired C. Therefore, it should be reduced as much as possible, but within 0.005% is within the acceptable range.
  • Ti is one of the most important elements in the present invention. That is, Ti contributes to an increase in the strength of the steel sheet by precipitation strengthening. However, if the content is less than 0.05%, the effect is insufficient, and if the content exceeds 0.5%, the effect is not only saturated but also causes an increase in alloy cost. Therefore, the content of Ti is set to 0.05% or more and 0.5% or less. Furthermore, the pearling processability is deteriorated. C (12/48 ⁇ -12 / 14 ⁇ -12 / 32S) ⁇ 0.05% in order to precipitate and fix C, which causes carbides such as cementite to be precipitated, and to improve the pearling workability. It is necessary to satisfy On the other hand, from the viewpoint of suppressing the softening of the heat-affected zone by welding, a sufficient amount of solid solution C for clustering or precipitating Mo or Cr is necessary. 14N -12/32 S).
  • Mo and Cr are one of the most important elements of the present invention.Even during a short heat cycle such as welding, clustering or precipitation with elements such as C suppresses softening of the heat-affected zone. I do. However, if the total content of Mo and Cr is less than 0.2%, this effect is lost. The effect is saturated even if the content exceeds 0.5%, respectively, so that Mo ⁇ 0.5% and Cr ⁇ 0.5%, respectively.
  • Nb contributes to the increase in the strength of the steel sheet by precipitation strengthening. However, if the content is less than 0.01%, the effect is insufficient, and if the content exceeds 0.5%, the effect is not only saturated but also raises the alloy cost. Therefore, the content of Nb should be 0.01% or more and 0.5% or less.
  • Et al is, to secure precipitate C causing carbides such Sementai bets degrading Pali ring pressurizing E resistance, C one (12 / / 48Ti + 12 / 93Nb-12 / 14N -12 / 32S) ⁇ 0.05 It is necessary to satisfy the condition of%.
  • Cu has the effect of improving fatigue properties in a solid solution state. However, if the content is less than 0.2%, the effect is small. If the content exceeds 1.2%, precipitation occurs during winding and the precipitation strengthening significantly increases the static strength of the steel sheet, so that the workability is significantly deteriorated. In addition, with such precipitation strengthening of Cu, the fatigue limit does not improve as much as the increase in static strength, so the fatigue limit ratio decreases. Therefore, the content of Cu should be in the range of 0.2 to 1.2%.
  • Ni is added as necessary to prevent hot brittleness due to the inclusion of Cu.
  • the content is set to 0.1 to 1%.
  • B is added as necessary because it has the effect of raising the fatigue limit by suppressing grain boundary embrittlement due to P, which is considered to be caused by the decrease in the amount of solid solution C. Furthermore, when the base metal strength is 640MPa or more, hardening does not occur due to low CeP in the heat affected zone of the heat affected zone where ⁇ ⁇ ⁇ ⁇ hypertransformation occurs and there is a possibility of softening. Addition of B, which improves the weldability, has the effect of suppressing softening at the relevant site and transitioning the fracture mode of the joint from the welded part to the base metal part, so it is added as necessary. However, if it is less than 0.0002%, it is insufficient to obtain these effects, and if it exceeds 0.002%, slab cracking occurs. Therefore, the addition of B should be 0.0002% or more and 0.002% or less.
  • V and Zr precipitation strengthening or solid solution strengthening elements may be added. However, if they are less than 0.02% and 0.02%, respectively, the effect cannot be obtained. The effect is saturated even if they are added in excess of 0.2% and 0.2%, respectively.
  • steel containing these as main components may contain Sn, Co, Zn, W, and Mg in a total amount of 1% or less.
  • Sn may cause flaws during hot rolling, 0.05% or less is desirable.
  • the present invention relates to a method for producing a hot rolled steel sheet or a cold-rolled steel sheet in a line in which a hot rolled steel sheet or a cold-rolled steel sheet is melted after being formed, hot-rolled, or as-cooled or hot-rolled; It can also be obtained by subjecting these steel sheets to a separate surface treatment while heat-treating them.
  • the production method prior to hot rolling is not particularly limited.
  • the components are adjusted in the various secondary processes so that the target component content is obtained.
  • the ingot method, and thin slab It may be manufactured by a method such as manufacturing. Scrap may be used as a raw material.
  • the slab may be directly sent to a hot rolling mill as it is, or may be cooled to room temperature and then re-heated in a heating furnace before hot rolling.
  • the reheating temperature is not particularly limited, but if it is 1400 ° C or higher, the scale-off amount becomes large and the yield decreases, so the reheating temperature is preferably less than 1400 ° C. Heating at less than 1000 ° C significantly impairs operating efficiency on a schedule, so it is desirable that the reheating temperature be 1000 ° C or more. Furthermore, heating below 1100 ° C not only causes the precipitates containing Ti and / or Nb not to be redissolved in the slab and becomes coarse and loses the precipitation strengthening ability, but also has the desired size and distribution for pearling workability. A reheating temperature of 1100 ° C or higher is desirable because precipitates containing Ti, Z or Nb do not precipitate.
  • finish rolling is performed after the rough rolling is completed, but the sheet par may be joined after the rough rolling or after the subsequent descaling, and the finish rolling may be continuously performed.
  • the rough par is wound into a coil once, stored in a cover with heat insulation function if necessary, and then rewound again. The joining may be performed after that.
  • the subsequent finish rolling is
  • Finish rolling has to end with the final pass temperature (FT) forces r 3 transformation point + 30 ° C or more temperature ranges. This is because, in the cooling process after hot rolling, ⁇ ⁇ ⁇ transformation occurs at a low temperature in order to obtain ferritic ferrite which is favorable for pearling workability or ferrite and veneite. However, in the temperature range where the final pass temperature (FT) is lower than the Ar 3 transformation point + 30 ° C, strain-induced ferrite transformation nucleation occurs, and polygonal and coarse ferrite is generated. There is a concern.
  • the upper limit of the finishing temperature is not particularly required to obtain the effects of the present invention, but is preferably 1100 ° C. or lower because scale flaws may occur during operation.
  • the Ar 3 transformation point temperature is simply shown in relation to the steel composition by, for example, the following formula.
  • Ar 3 910-310 X% C + 25 X% Si-80 X% Mn
  • the time until the start of cooling is within 10 seconds. This is because if the time until the start of cooling is longer than 10 seconds, the austenite grains recrystallized immediately after rolling become coarse, and there is a concern that the fly grains after the ⁇ ⁇ transformation become coarse.
  • CT specified winding temperature
  • the upper limit of the cooling rate is less than 500 ° CZ seconds considering the actual factory equipment capacity.
  • the cooling end temperature must be within the temperature range of 700 ° C or less. This is desirable for pearling workability if the cooling end temperature is over 700 ° C. This is because there is a risk that ⁇ -lights or micro-mouth tissue other than the lights and bainites may be generated.
  • the lower limit of the cooling end temperature does not need to be particularly determined in order to obtain the effects of the present invention. However, below the winding temperature, it is impossible in the process of the present invention.
  • the process from the end of cooling to winding up is not specified, but it may be cooled down to the winding up temperature if necessary. In this case, however, 300 ° C / s or less is desirable.
  • the winding temperature should be 350 ° C to 650 ° C.
  • the cooling rate after winding is not particularly limited.
  • pickling may be performed as necessary, and then, in-line or off-line skin pass with a rolling reduction of 10% or less or cold rolling to a rolling reduction of about 40% may be performed.
  • the hot finish rolling condition is not particularly limited. Also, final pass temperature of finish rolling
  • FT may be completed at a temperature lower than the Ar 3 transformation point, but in that case, since a strong processed structure remains before or during rolling, it is recovered by subsequent winding or heating treatment. Desirable to recrystallize .
  • the effect of the present invention can be obtained without any particular limitation on the cold rolling step after the pickling.
  • the heat treatment of such a cold-rolled steel sheet is based on a continuous annealing process.
  • First perform for 5 to 150 seconds in a temperature range of 800 ° C or higher. If the heat treatment temperature is lower than 800 ° C, there is a concern that in the subsequent cooling, it is not possible to obtain vanite ferrite or ferrite and venaite which is preferable for pearling workability.
  • Temperature should be 800 ° C or higher.
  • the upper limit of the heat treatment temperature is not particularly specified, but is substantially 900 ° C or less due to the restriction of the continuous annealing equipment.
  • the holding time in this temperature range is less than 5 seconds, the carbonitrides of Ti and Nb are not enough to completely solidify again, and the effect is saturated even if the heat treatment is performed for more than 150 seconds.
  • the holding time should be 5 to 150 seconds, as this will not only reduce the productivity but also reduce the productivity.
  • the average cooling rate until the end of cooling but 50 ° C / sec or more is required. This means that if the average cooling rate to the end of cooling is less than 50 ° C / sec, the preferred ferrite for pearling workability or the volume fraction of ferrite and bainite decreases. This is because there is a risk of doing so.
  • the upper limit of the cooling rate is 200 ° C / sec or less in consideration of the actual plant equipment capacity.
  • the cooling end temperature must be within the temperature range of 700 ° C or less. However, when using continuous annealing equipment, there is no need to pay special attention because the cooling end temperature does not usually exceed 550 ° C. The lower limit of the cooling end temperature does not need to be particularly determined in order to obtain the effects of the present invention.
  • Steels A to M having the chemical components shown in Table 1 are melted in a converter, continuously manufactured, reheated at the heating temperature shown in Table 2, and subjected to rough rolling followed by finish rolling. 5. After winding to the thickness of 5 bandits, it was wound up. However, the indication of chemical composition in the table is% by mass. In addition, as shown in Table 2, after the hot rolling process, a part was subjected to pickling, cold rolling and heat treatment. The thickness is 0.7 to 2.3 mm. On the other hand, among the above steel sheets, steel H and steel C-17 were zinc-plated.
  • Table 2 shows the details of the manufacturing conditions.
  • SRT is the slab heating temperature
  • FT is the final pass finishing rolling temperature
  • Start time is the time from the end of rolling to the start of cooling
  • Cooling rate is the time from the start of cooling to the stop of cooling.
  • CT is the winding temperature.
  • polishing It is defined as the area fraction of the microstructure at 1 to 4 t of plate thickness observed at 200 to 500 times magnification using an optical microscope after etching.
  • a tensile test was performed on the welded joint tensile test piece shown in Fig. 3 according to the method in accordance with JISZ 2241, and the fracture was classified as a base material Z welded part by visual observation. From the viewpoint of joint strength, this weld fracture is more preferably at the base material than at the weld.
  • the hardness of the heat affected zone in arc welding was measured using the No. 1 test piece described in JI SZ 3101 in accordance with the test method described in JI SZ 2244.
  • YM - 60 C ⁇ 1. 2mm as required YM- 80 C 1. 2mm
  • welding current 260 ⁇ 10 A
  • welding voltage 26 ⁇ 1 V
  • the thickness of the test material is polished to 2.6 mm
  • the hardness measurement position is 0 from the surface. .25mm
  • measurement interval 0.5mm test force 98N.
  • the steels according to the present invention are nine steels of steels A, B, C-11, C-7, F, H, K, L, and M, which contain a predetermined amount of steel components, and whose microstructure is A pearling high-strength steel sheet excellent in softening resistance of a weld heat-affected zone characterized by being made of ferrite or ferrite and bainite has been obtained, and was therefore evaluated by the method described in the present invention. A significant difference is observed, while the heat-affected zone softening degree ⁇ of the conventional steel is 50 or more.
  • the desired micro-mouth structure described in claim 1 cannot be obtained and sufficient hole expandability can be obtained. (E) is not obtained. Since the coiling temperature of steel C-16 is out of the scope of claim 8 of the present invention, the desired microstructure of the mouth opening described in claim 1 cannot be obtained, and sufficient hole expandability ( ⁇ ) can be obtained. Not. Since the heat treatment temperature of steel C-18 is out of the range of claim 9 of the present invention, the intended microstructure described in claim 1 cannot be obtained, and sufficient hole expandability ( ⁇ ) has not been obtained.
  • Steel G has a large degree of softening ( ⁇ ) of the heat-affected zone because the amount of Mo + Cr is outside the range of claim 1 of the present invention. Since the amount of Mo + Cr of steel I is out of the range of claim 1 of the present invention, the degree of softening ( ⁇ ) of the heat-affected zone is large. Steel J has a large degree of softening ( ⁇ ) of the heat-affected zone because C * is outside the scope of claim 1 or 2 of the present invention. table 1
  • the present invention relates to a high-strength pearling steel sheet having a tensile strength of 540 MPa or more and excellent in softening resistance of the heat-affected zone of the weld, and a method for producing the same. Accordingly, a significant improvement in the softening resistance of the weld heat-affected zone can be expected when welding is performed by spot, arc, plasma, laser, or the like after forming, or when forming is performed after these weldings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本発明は、溶接熱影響部の耐軟化性に優れたバーリング性高強度鋼板およびその製造方法を提供するもので、質量%にて、C:0.01~0.1%、Si:0.01~2%、Mn:0.05~3%、P≦0.1%、S≦0.03%、Al:0.005~1%、N:0.0005~0.005%、Ti:0.05~0.5%、を含み、さらに0%<C−(12/48Ti−12/14N−12/32S)≦0.05%、さらに、Mo+Cr≧0.2%、かつCr≦0.5%、Mo≦0.5%、を満たす範囲でC、S、N、Ti、Cr、Moを含有し残部がFe及び不可避的不純物からなる鋼であって、そのミクロ組織が、フェライト、またはフェライトおよびベイナイトからなることを特徴とする溶接熱影響部の耐軟化性に優れたバーリング性高強度鋼板。

Description

溶接熱影響部の耐軟化性に優れたパーリ ング性高強度鋼板およびそ の製造方法
技術分野
本発明は、 溶接熱影響部の耐軟化性に優れた引張強度 540MPa以上 明
のパーリ ング性高強度鋼板およびその製造方法に関するものであり 、 特に、 成形後にスポッ ト、 アー田ク、 プラズマ、 レーザー等により 溶接される場合や、 これら溶接後に成書形される場合において加工性 と溶接部の強度の両立が求められる自動車部品等の用途に用いられ る素材として好適な溶接熱影響部の耐軟化性に優れたパーリ ング性 高強度鋼板およびその製造方法に関するものである。
背景技術
近年、 自動車の燃費向上などのために軽量化を目的と して、 A1合 金等の軽金属や高強度鋼板の自動車部材への適用が進められている
しかし、 A1合金等の軽金属は比強度が高いという利点があるもの の鋼に比較して著しく高価であるためその適用は特殊な用途に限ら れてきた。 よ り広い範囲で自動車の軽量化を推進するためには安価 な高強度鋼板の適用が強く求められている。
一般に材料は高強度になるほど成形性が悪くなる。 鉄鋼材料にお いても例外ではなく、 これまでに高強度と高延性の両立の試みがな されてきた。 また、 自動車部品に使用される材料に求められる特性 と しては延性の他にパーリ ング加工性がある。 しかし、 パーリ ング 加工性も高強度化に伴って低下する傾向を示すため、 パーリ ング加 ェ性の向上も高強度鋼板の自動車部品への適用の課題となっている 。 一方、 自動車部品はプレス成形等によって加工された部材をスポ ッ ト、 アーク、 プラズマ、 レーザー等の溶接によってアッセンブル される。 また、 最近では鋼板をこれら溶接によって接合した後にプ レス成形される場合もある。 いずれにしても成形時もしくは部品と して組み付けられて使用された時の溶接部強度は成形限界、 安全性 の面から非常に重要である。 従って、 自動車部品等への高強度鋼板 の適用にあたっては、 そのパーリ ング加工性と ともに溶接部強度も 重要な検討課題となる。
パーリ ング加工性に優れた高強度鋼板については、 Ti、 Nbを添加 することによ り第二相を低減し主相であるポリ ゴナルフェライ ト中 に Ti NbCを析出強化させることによって伸びフランジ性の優れた 高強度熱延鋼板と した発明が提案されている。 (特開平 6 - 200351 号公報) 。
また、 Ti、 Nbを添加することによ り第二相を低減しミ ク ロ組織を ァシキユラ一フェライ ト と し TiC、 NbCで析出強化するこ とによって 伸びフランジ性の優れた高強度熱延鋼板とした発明も提案されてい る。 (特開平 7— 11382号公報) 。
一方、 溶接部強度を改善する技術と しては、 Nb、 Moの複合添加に より溶接部の軟化を抑制する鋼板を得る発明が提案されている。 ( 特開 2000— 87175号公報) 。
また、 NbNの析出を活用して溶接部の軟化を抑制するフェライ ト およびマルテンサイ トからなる鋼板を得る発明も提案されている。
(特開 2000— 178654号公報) 。
しかしながら、 サスペンショ ンアームゃフロ ン トサイ ドメ ンバー 等一部の部品用鋼板においては、 パーリ ング加工性をはじめとする 成形性と ともに溶接部の強度が大変に重要であり、 上記従来技術で は、 これら両特性を共に満足することができない。 また例え両特性 が満足されたと しても安価に安定して製造できる製造方法を提供す ることが重要であり、 上記従来技術では、 不十分であると言わざる を得ない。
すなわち、 特開平 6 — 200351号公報に記載の発明では、 高い伸び フランジ性を得るために面積率で 85 %以上のポリ ゴナルフエライ ト が必須であるが、 85 %以上のポリ ゴナルフェライ トを得るためには 熱間圧延後にフ ライ ト粒の成長を促進するため長時間の保持が必 要であり操業コス ト上好ましくない。
また、 特開平 7 — 11382号公報に記載の発明では、 転位密度が高 いミクロ組織と微細な Ti C及び 又は NbCの析出によつて 80kgf/ mm2 で 17 %程度の延性しかなく成形性が不十分である。
さ らに、 これらの発明は溶接部の軟化については何ら言及してい ない。 一方、 特開 2000—87175号公報に記載の発明には、 パーリ ン グ加工性向上に関しては何も記載されていない。
さ らに、 特開 2000— 178654号公報に記載の発明は、 フェライ ト一 マルテンサイ ト複合組織鋼に関するものでは本発明のパーリ ング加 ェ性に優れる鋼板のミク口組織を得る技術とは明らかに異なる。 発明の開示
本発明は、 上記問題点を解決して成形後にスポッ ト、 アーク、 プ ラズマ、 レーザー等により溶接される場合や、 これら溶接後に成形 される場合において加工性と溶接部の強度の両立が求められる自動 車部品等の用途に用いられる素材と して好適な溶接熱影響部の耐軟 化性に優れたパーリ ング性高強度鋼板およびその製造方法得よう と するものである。 すなわち、 本発明は、 溶接熱影響部の耐軟化性に 優れた引張強度 540MPa以上のパーリ ング性高強度鋼板およびその鋼 板を安価に安定して製造できる製造方法を提供することを目的とす るものである。
本発明者らは、 現在通常に採用されている製造設備により工業的 規模で生産されている薄鋼板の製造プロセスを念頭において、 パー リ ング性高強度鋼板の溶接熱影響部の耐軟化性を向上させるベく鋭 意研究を重ねた。 その結果、 C : 0.01〜0.1%、 Si : 0.01〜 2 %、 M n : 0.05〜 3 %、 P≤0.1%, S≤ 0.03%、 Al : 0.005〜 1 %、 N : 0 .0005〜0· 005%、 Ti : 0.05〜0.5%、 を含み、 さ らに 0 く C— (12 /48Ti - 12/ 14N -12/32 S ) ≤ 0.05%, さ らに、 Mo + Cr≥0.2% 、 かつ Cr≤0.5%、 Mo≤ 0.5%、 を満たす範囲で C、 S、 N、 Tiを含 有し残部が Fe及び不可避的不純物からなる鋼であって、 そのミクロ 組織が、 フユライ ト、 またはフ ライ トおよびべイナイ トからなる パーリ ング性高強度鋼板がパーリ ング性は非常に優れるものの溶接 熱影響部が著しく軟化することを知見した。 さ らに上記パーリ ング 性高強度鋼板の溶接熱影響部軟化の原因が溶接温度履歴によるミク 口組織の焼き戻しによるものであることを突き止め、 耐軟化性を向 上させるためには Cr、 Moの複合添加が非常に有効であることを新た に見出し、 本発明をなしたものである。 即ち、 本発明の要旨は、 以 下の通りである。
( 1 ) 質量0 /。にて、 C : 0.01〜0.1%、 Si : 0.01〜 2 %、 Mn: 0.0 5〜 3 %、 P≤0.1%, S≤0.03%、 A1: 0.005〜 1 %、 N : 0.0005 〜 0.005%、 Ti : 0.05〜0.5%、 を含み、 さらに 0 %く C— (12/48 Ti-12/14N -12/32S ) ≤0.05%, さらに、 Mo + Cr≥0.2%、 力、 つ Cr≤0.5%、 Mo≤0.5%、 を満たす範囲で C、 S、 N、 Ti、 Cr、 Mo を含有し残部が Fe及び不可避的不純物からなる鋼であって、 そのミ クロ組織が、 フェライ ト、 またはフェライ トおよびべイナイ トから なることを特徴とする溶接熱影響部の耐軟化性に優れたパーリ ング 性高強度鋼板。
( 2 ) 前記鋼がさらに、 質量%にて、 Nb: 0· 01〜0.5%を含み、 さらに 0く C一 (12/48Ti + 12/93Nb-12/14N -12/32S ) ≤0. 05%、 を満たす範囲で Nbを含有し残部が Fe及び不可避的不純物から なる鋼であることを特徴とする溶接熱影響部の耐軟化性に優れたバ 一リ ング性高強度鋼板。
( 3 ) ( 1 ) 又は ( 2 ) に記載の鋼が、 さらに、 質量%にて、 Ca : 0.005〜0.002%、 REM: 0.0005〜0.02%、 Cu: 0.2〜1.2%、 Ni : 0
• 1〜0.6%、 B : 0.0002〜0.002%の一種または二種を含有すること を特徴とする、 溶接熱影響部の耐軟化性に優れたパーリ ング性高強 度鋼板。
( 4) ( 1 ) 〜 ( 3 ) のいずれか 1項に記載の自動車用薄鋼板に 亜鉛めつきが施されていることを特徴とする、 溶接熱影響部の耐軟 化性に優れたパーリ ング性高強度鋼板。
( 5 ) ( 1 ) 〜 ( 3 ) のいずれか 1項に記載の薄鋼板を得るため に該成分を有する鋼片の熱間圧延に際して仕上圧延を Ar3変態点温 度 + 30°C以上の温度域で終了し、 その後 10秒以内に冷却終了までの 平均冷却速度が 50 °CZ秒以上の冷却速度で 700 °C以下の温度域まで 冷却し、 350°C以上 650°C以下の巻き取り温度にて巻き取ることを特 徴とする、 溶接熱影響部の耐軟化性に優れたパーリ ング性高強度鋼 板の製造方法。
( 6 ) ( 1 ) 〜 ( 3 ) のいずれか 1項に記載の薄鋼板を得るため に該成分を有する鋼片を熱間圧延、 酸洗、 冷間圧延後、 800°C以上 の温度域で 5〜150秒間保持し、 その後平均冷却速度が 50°C/秒以 上の冷却速度で 700°C以下の温度域まで冷却する工程の熱処理をす ることを特徴とする、 溶接熱影響部の耐軟化性に優れたパーリ ング 性高強度鋼板の製造方法。 ( 7 ) ( 5 ) に記載の製造方法に際し、 熱間圧延工程終了後に亜 鉛めつき浴中に浸積させて鋼板表面を亜鉛めつきすることを特徴と する、 溶接熱影響部の耐軟化性に優れたパーリ ング性高強度鋼板の 製造方法。
( 8 ) ( 6 ) に記載の製造方法に際し、 熱処理工程終了後、 亜鉛 めっき浴中に浸積させて鋼板表面を亜鉛めつきすることを特徴とす る、 溶接熱影響部の耐軟化性に優れたパーリ ング性高強度鋼板の製 造方法。
( 9 ) ( 7 ) 又は ( 8 ) に記載の製造方法に際し、 亜鉛めつき浴 中に浸積して亜鉛めつき後、 合金化処理することを特徴とする、 溶 接熱影響部の耐軟化性に優れたパーリ ング性高強度鋼板の製造方法
図面の簡単な説明
図 1は、 C*量および Cr + Mo量と溶接熱影響部の軟化程度 ΔΗνと の関係を示す図である。
図 2は、 C*量および Cr + Mo量を変化させた成分組成鋼板につい てのアーク溶接部硬度との関係を示す図である。 発明を実施するための最良の形態
まず、 溶接熱影響部の耐軟化性に及ぼす C*量 (C*= C一 (12/ 48ΤΪ-12/14Ν -12/32S ) : 以下 C*と標記する。 ) および Cr、 M 0含有量の影響についての調査を行った。 そのための供試材は、 次 のようにして準備した。 すなわち、 0.05% C—1.0%Si— l.4%Mn— 0.01% P—0.001% Sをベースに C*量 (Ti、 N含有量) および Cr + Mo量を変化させて成分調整し溶製した錶片を熱間圧延して常温で卷 き取り、 550°Cで 1時間等温保持した後、 炉冷する熱処理を施した 。 これらの鋼板についてアーク溶接部硬度測定を行った結果を図 2 に示す。
ここで、 この結果より、 C *量および Cr + Mo量と溶接熱影響部の 軟化程度 Δ Ην ( Δ Ην = Ην (母材硬度平均値) 一 Ην (溶接熱影響最軟 化部硬度) と定義する : 図 1参照) には強い相関があり、 C *量が 0よ り大きく 0. 05 %以下かつ Cr + Mo量が 0. 2 %以上で溶接熱影響部 の軟化が著しく抑制されることを新規に知見した。
このメカニズムは必ずしも明らかではないが、 べィニティ ックな ミク口組織によ り強度を得ている材料は、 アーク溶接等の溶接熱サ ィクルでその熱影響部が軟化する場合がある。 Moもしくは Crは溶接 のような短時間の熱サイクルでも、 C等の元素とクラスタリ ングも しく は析出して強度を上昇させ、 結果として熱影響部の軟化を抑制 したと推測される。 ただし、 Moと Crの含有量の合計が 0. 2%未満で はこの効果が失われる。
一方、 Moもしく は Cr炭化物等を得るためには、 TiC等の高温で祈 出する炭化物で固定される当量以上の Cを含有しなければならない 。 従って、 C *≤ 0でこの効果は失われる。
なお、 アーク溶接の溶接熱影響部の硬度測定については、 JI S Z 3101記載の 1号試験片にて、 JI S Z 2244記載の試験方法に準じてで 測定した。 ただし、 アーク溶接は、 シールドガス : C02、 ワイヤ : 日鐡溶接工業 (株) 製 YM- 60C <i) 1. 2mmを用い、 溶接速度 : lOOcm,分 、 溶接電流 : 260土 10A、 溶接電圧 : 26 ± 1 V、 供試材の板厚は 2. 6 mmと し、 硬度測定位置は、 表面よ り 0. 25mm、 測定間隔は、 0. 5ππηで 、 試験力は 98kNと した。
次に、 本発明における鋼板のミク口組織について説明する。
鋼板のミク口組織は、 優れたパーリ ング加工性を確保するために フェライ ト単相が望ましい。 ただし、 必要に応じ一部べィナイ トを 含むことを許容するものであるが、 良好なパーリ ング加工性を確保 するためには、 ベイナイ トの体積分率は 10 %以下が望ましい。 なお
、 ここで言うフェライ ト とはべィニティ ックフェライ トおよびァシ ユキユラ一フェライ ト組織も含む。 また、 ベイナイ ト とは透過型電 子顕微鏡にて薄膜を観察した場合フェライ トラス間にセメ ンタイ ト 等の炭化物を含むかもしくはフェライ トラス内にセメンタイ ト等の 炭化物を含む組織である。 一方、 べィニティ ックフェライ トおよび ァシユキユラ一フェライ ト組織とは Ti、 Nbの炭窒化物以外はフェラ ィ トラス内およびフェライ トラス間に炭化物を含まない組織と定義 する。
また、 不可避的なマルテンサイ ト、 残留オーステナイ トおよびパ 一ライ トを含むことを許容するものであるが、 良好なパーリ ング性 を確保するためには、 残留オーステナイ トおよびマルテンサイ トを 合わせた体積分率は 5 %未満が望ましい。 さらに、 良好な疲労特性 を確保するためには、 粗大な炭化物を含むパーライ トの体積分率は 5 %以下が望ましい。 また、 ここで、 フェライ ト、 ベイナイ ト、 残 留オーステナイ ト、 パーライ ト、 マルテンサイ トの体積分率とは鋼 板板幅の 1 / 4 Wもしく は 3 Z 4 W位置より切出した試料を圧延方 向断面に研磨し、 ナイタール試薬を用いてエッチングし、 光学顕微 鏡を用い 200〜500倍の倍率で観察された板厚の 1 / 4 t におけるミ ク 口組織の面積分率で定義される。
次に、 本発明の化学成分の限定理由について説明する。
Cは、 本発明における最も重要な元素の一つである。 すなわち、 Cは溶接のよ うな短時間の熱サイクルでも Moもしく は Crとクラスタ リ ングもしく は析出して溶接熱影響部の軟化を抑制する効果がある 。 ただし、 0. 1 %超含有していると加工性及び溶接性が劣化するの で、 0. 1 %以下とする。 また 0. 01 %未満であると強度が低下するの で 0· 01%以上とする。
Siは、 固溶強化元素として強度上昇に有効である。 所望の強度を 得るためには、 0.01%以上含有する必要がある。 しかレ、 2 %超含 有すると加工性が劣化する。 そこで、 Siの含有量が 0.01%以上、 2 %以下とする。
Mnは、 固溶強化元素として強度上昇に有効である。 所望の強度を 得るためには、 0.05%以上必要である。 また、 Mn以外に Sによる熱 間 (割れの発生を抑制する Tiなどの元素が十分に添加されない場合に は質量%で MnZ S≥20となる Mn量を添加することが望ましい。 一方 、 3 %超添加するとスラブ割れを生ずるため、 3 %以下とする。
Pは、 不純物であり低いほど望ましく、 0.1%超含有すると加工 性や溶接性に悪影響を及ぼすと ともに疲労特性も低下させるので、 0.1%以下とする。 Sは、 多すぎると熱間圧延時の割れを引き起こ すので極力低減させるべきであるが、 0.3%以下ならば許容できる 範囲である。
A1は、 溶鋼脱酸のために 0.005%以上添加する必要があるが、 コ ス トの上昇を招くため、 その上限を 1 %とする。 また、 あまり多量 に添加すると、 非金属介在物を増大させ伸びを劣化させるので望ま しくは 0, 5%以下とする。
Nは、 Cよ り も高温にて Tiおよび Nbと析出物を形成し、 所望の C を固定するのに有効な Tiおよび Nbを減少させる。 従って極力低減さ せるべきであるが、 0.005%以下ならば許容できる範囲である。
Tiは、 本発明における最も重要な元素の一つである。 すなわち、 Tiは析出強化によ り鋼板の強度上昇に寄与する。 ただし、 0.05%未 満ではこの効果が不十分であり、 0.5%超含有してもその効果が飽 和するだけでなく合金コス トの上昇を招く。 従って Tiの含有量は 0. 05%以上、 0.5%以下とする。 さらに、 パーリ ング加工性を劣化さ せるセメ ンタイ ト等の炭化物の原因となる Cを析出固定し、 パーリ ング加工性の向上に寄与するためには、 C一 (12/48ΤΪ-12/14Ν -12/32S ) ≤0.05%の条件を満たすことが必要である。 一方、 溶 接熱影響部の軟化抑制の面からは、 Moもしく は Crをクラスタ リ ング もしくは析出させるに十分な固溶 Cが必要であるので、 0く C— ( 12/48ΤΪ - 12/ 14N -12/32 S ) とする。
Mo、 Crは、 本発明の最も重要な元素の一つであり、 溶接のような 短時間の熱サイ クルでも、 C等の元素とクラスタリ ングもしく は析 出して熱影響部の軟化を抑制する。 ただし、 Moと Crの含有量の合計 が 0.2%未満ではこの効果が失われる。 また、 それぞれ、 0.5%超含 有してもその効果が飽和するので、 それぞれ、 Mo≤ 0.5%、 Cr≤0.5 %とする。
Nbは、 Ti同様に析出強化により鋼板の強度上昇に寄与する。 ただ し、 0.01%未満ではこの効果が不十分であり、 0.5%超含有しても その効果が飽和するだけでなく合金コス トの上昇を招く。 従って Nb の含有量は 0.01%以上、 0.5%以下とする。 さ らに、 パーリ ング加 ェ性を劣化させるセメンタイ ト等の炭化物の原因となる Cを析出固 定し、 C一 (12//48Ti + 12/93Nb-12/14N -12/32S ) ≤ 0.05% の条件を満たすことが必要である。 一方、 溶接熱影響部の軟化抑制 の面からは、 Moもしくは Crをクラスタ リ ングもしく は析出させるに 十分な固溶 Cが必要であるので、 0く C一 (12/48Ti + 12/93Nb- 12/14N -12/32S ) とする。
Caおよび REMは、 破壊の起点となったり、 加工性を劣化させる非 金属介在物の形態を変化させて無害化する元素である。 ただし、 0. 005%未満添加してもその効果がなく、 Caならば 0.02%超、 REMなら ば 0.2%超添加してもその効果が飽和するので Ca = 0.005〜0.02%、 REM=0.005〜0· 2%添加することが好ましい。 Cuは、 固溶状態で疲労特性を改善する効果がある。 ただし、 0.2 %未満では、 その効果は少なく、 1.2%を超えて含有すると卷取り 中に析出して析出強化により鋼板の静的強度が著しく上昇するため 、 加工性が著しく劣化することになる。 また、 このような Cuの析出 強化では、 疲労限は静的強度の上昇ほどには向上しないので疲労限 度比が低下してしまう。 そこで、 Cuの含有量は 0.2〜; 1.2%の範囲と する。
Niは、 Cu含有による熱間脆性防止のために必要に応じ添加する。 ただし、 0.1%未満ではその効果が少なく、 1 %を超えて添加して もその効果が飽和するので、 0.1〜 1 %とする。
Bは、 固溶 C量の減少が原因と考えられる Pによる粒界脆化を抑 制することによって疲労限を上昇させる効果があるので必要に応じ 添加する。 さらに、 母材強度が 640MPa以上である場合、 溶接熱影響 部のうち α→ γ→ひ変態が起こる熱履歴を受ける部位において低 Ce P故に焼が入らず、 軟化する恐れがある場合に焼き入れ性を向上さ せる Bを添加することによ り、 当該部位での軟化を抑制し、 継手の 破断形態を溶接部 ら、 母材部へ遷移させる効果があるので必要に 応じて添加する。 ただし、 0.0002%未満ではそれら効果を得るため に不十分であり、 0.002%超の添加ではスラブ割れが起こる。 よつ て、 Bの添加は、 0.0002%以上、 0.002%以下とする。
さらに、 強度を付与するために、 V、 Zrの析出強化もしく は固溶 強化元素の一種または二種以上を添加してもよい。 ただし、 それぞ れ、 0.02%、 0.02%未満ではその効果を得ることができない。 また 、 それぞれ、 0.2%、 0.2%を超え添加してもその効果は飽和する。
なお、 これらを主成分とする鋼に Sn、 Co、 Zn、 W、 Mgを合計 1 % 以下含有しても構わない。 しかしながら Snは熱間圧延時に疵が発生 する恐れがあるので、 0.05%以下が望ましい。 次に、 本発明の製造方法の限定理由について、 以下に詳細に述べ る。
本発明は、 铸造後、 熱間圧延後冷却ままもしくは熱間圧延後、 熱 間圧延後冷却 · 酸洗し冷延した後に熱処理、 あるいは熱延鋼板もし くは冷延鋼板を溶融めつきラインにて熱処理を施したまま、 更には これらの鋼板に別途表面処理を施すことによっても得られる。
本発明において熱間圧延に先行する製造方法は特に限定するもの ではない。 すなわち、 高炉ゃ電炉等による溶製に引き続き各種の 2 次製鍊で目的の成分含有量になるように成分調整を行い、 次いで通 常の連続錶造、 インゴッ ト法による铸造の他、 薄スラブ铸造などの 方法で铸造すればよい。 原料にはスクラップを使用しても構わない 。 連続铸造によって得たスラブの場合には高温铸片のまま熱間圧延 機に直送してもよいし、 室温まで冷却後に加熱炉にて再加熱した後 に熱間圧延してもよい。
再加熱温度については特に制限はないが、 1400°C以上であると、 スケールオフ量が多量になり歩留まりが低下するので、 再加熱温度 は 1400°C未満が望ましい。 また、 1000°C未満の加熱はスケジュール 上操業効率を著しく損なうため、 再加熱温度は 1000°C以上が望まし い。 さらには、 1100°C未満での加熱は Tiおよび/または Nbを含む析 出物がスラブ中で再溶解せず粗大化し析出強化能を失うばかりでな くパーリ ング加工性にとって望ましいサイズと分布の Tiおよび Zま たは Nbを含む析出物が析出しなくなるので、 再加熱温度は 1100°C以 上が望ましい。
熱間圧延工程は、 粗圧延を終了後、 仕上げ圧延を行うが、 粗圧延 後または、 それに続くデスケーリ ング後にシートパーを接合し、 連 続的に仕上げ圧延をしてもよい。 その際に粗パーを一旦コイル状に 巻き、 必要に応じて保温機能を有するカバーに格納し、 再度巻き戻 してから接合を行ってもよい。 また、 その後の仕上げ圧延はデスケ
―リ ング後に再びスケールが生成してしまうのを防ぐために 5秒以 内に行うのが望ましい。
仕上げ圧延は、 最終パス温度 (FT) 力 r3変態点 + 30°C以上の温 度域で終了する必要がある。 これは、 熱間圧延後の冷却工程におい てパーリ ング加工性にとつて好ましいべィ二ティ ックなフェライ ト 、 またはフェライ トおよびべィナイ トを得るために γ→ α変態が低 温で起こることが必要であるが、 最終パス温度 (FT) が Ar3変態点 + 30°C未満の温度域ではひずみ誘起によるフェライ ト変態核生成が 起こ り、 ポリ ゴナルで粗大なフェライ トが生成してしまう懸念があ る。 仕上げ温度の上限は本発明の効果を得るためには特に定める必 要はないが、 操業上スケール疵が発生する可能性があるため、 1100 °C以下とすることが好ましい。 こ こで Ar3変態点温度とは、 例えば 下記計算式によ り鋼成分との関係で簡易的に示される。
Ar3 = 910 - 310 X % C + 25 X % Si - 80 X % Mn
仕上圧延を終了した後は、 指定の卷取温度 (CT) まで冷却するが 、 その冷却開始までの時間は 10秒以内とする。 これは冷却開始まで の時間が 10秒超であると圧延直後に再結晶したオーステナイ ト粒が 粗大化してしまい γ→ひ変態後のフ ライ ト粒が粗大化してしまう 懸念があるからである。 次に冷却終了までの平均冷却速度であるが 、 50°C Z秒以上が必要である。 これは冷却終了までの平均冷却速度 が 50°C Z秒未満であるとパーリ ング加工性にとつて好ましいべィ二 ティ ックなフェライ ト、 またはフェライ トおよびべィナイ トの体積 分率が減少してしまう恐れがあるからである。 また、 冷却速度の上 限は実際の工場設備能力等を考盧すると 500°C Z秒以下である。 冷 却終了温度は 700°C以下の温度域であることが必要である。 これは 冷却終了温度が 700°C超であるとパーリ ング加工性にとつて好まし いべィ二ティ ックなフ; πライ ト、 またはフ ライ トおよびべィナイ ト以外のミク口組織が生成してしまう怖れがあるからである。 冷却 終了温度の下限は本発明の効果を得るためには特に定める必要はな い。 ただし、 卷き取り温度以下には本発明のプロセス上ありえない 。 冷却終了後から卷き取りまでの工程については特に定めないが、 必要に応じて巻き取り温度まで冷却してもよいが、 この場合、 熱ひ ずみによる板そりが懸念されることから、 300°C / s以下とするこ とが望ましい。
次に卷取温度が 350°C未満では十分な Tiおよび/または Nbを含む 析出物が生じなくなり、 強度低下が懸念される、 650°C超では Tiお よび/または Nbを含む析出物のサイズが粗大化し析出強化による強 度上昇に寄与しなくなるばかりでなく、 析出物が大きすぎると析出 物と母相の界面にボイ ドが生じやすくなり、 穴拡性が低下する恐れ がある。 従って卷取温度は 350°C〜650°Cとする。 さらに、 卷取り後 の冷却速度は特に限定しないが、 Cuを 1 %以上添加した場合、 巻取 温度 (CT) 力 W50°C超であると卷取り後に Cuが析出して加工性が劣 化するばかりでなく、 疲労特性向上に有効な固溶状態の Cuが失われ る恐れがあるので、 卷取温度 (CT) 力 S 450°C超の場合、 卷取り後の 冷却速度は 200°Cまでを 30°C / s以上とすることが望ましい。
熱間圧延工程終了後は必要に応じて酸洗し、 その後イ ンライ ンま たはオフラインで圧下率 10 %以下のスキンパスまたは圧下率 40%程 度までの冷間圧延を施しても構わない。
次に、 冷延鋼板と して最終製品にする場合であるが、 熱間での仕 上げ圧延条件は特に限定しない。 また、 仕上げ圧延の最終パス温度
( FT) は Ar3変態点温度未満で終了しても差し支えないが、 その場 合は、 圧延前もしくは圧延中に強い加工組織が残留するため、 続く 巻取処理または加熱処理によ り回復、 再結晶させることが望ましい 。 続く酸洗後の冷間圧延工程は特に限定することなく本発明の効果 が得られる。
この様に冷間圧延された鋼板の熱処理は連続焼鈍工程を前提とし ている。 まず、 800°C以上の温度域で 5〜150秒間行う。 この熱処理 温度が 800°C未満の場合には後の冷却においてパーリ ング加工性に とって好ましいべィニティ ックなフェライ ト、 またはフェライ トぉ よびべィナイ トが得られない懸念があるので、 熱処理温度は 800°C 以上とする。 また、 熱処理温度の上限は特に定めないが、 連続焼鈍 設備の制約上実質的に 900°C以下である。
一方、 この温度域での保持時間は、 5秒未満では、 Tiおよび Nbの 炭窒化物が完全に再固溶するのに不十分であり、 150秒超の熱処理 を行ってもその効果が飽和するばかりでなく生産性を低下させるの で、 保持時間は 5〜 150秒間とする。
次に冷却終了までの平均冷却速度であるが、 50°C /秒以上が必要 である。 これは冷却終了までの平均冷却速度が 50°C /秒未満である とパーリ ング加工性にとつて好ましいべィ二ティ ックなフェライ ト 、 またはフェライ トおよびべイナィ トの体積分率が減少してしまう 恐れがあるからである。 また、 冷却速度の上限は実際の工場設備能 力等を考慮すると 200°C /秒以下である。
冷却終了温度は 700°C以下の温度域であることが必要であるが、 連続焼鈍設備を用いる場合、 冷却終了温度が 550°C超になることは 通常はないので特に配慮する必要はない。 また、 冷却終了温度の下 限は本発明の効果を得るためには特に定める必要はない。
さ らにその後、 必要に応じてスキンパス圧延を施してもよい。 酸洗後の熱延鋼板、 もしく は上記の熱処理工程終了後の冷延鋼板 に亜鉛めつきを施すためには、 亜鉛めつき浴中に浸積し、 必要に応 じて合金化処理してもよい。 実施例
以下に、 実施例によ り本発明をさらに説明する。
表 1に示す化学成分を有する A〜Mの鋼は、 転炉にて溶製して、 連続铸造後、 表 2に示す加熱温度で再加熱し、 粗圧延に続く仕上げ 圧延で 1. 2〜5. 5匪の板厚にした後に卷き取った。 ただし、 表中の化 学組成についての表示は質量%である。 なお、 表 2に示すように一 部については熱間圧延工程後、 酸洗、 冷延、 熱処理を行った。 板厚 は 0. 7〜2. 3mmである。 一方、 上記鋼板のうち鋼 Hおよび鋼 C一 7に ついては、 亜鉛めつきを施した。
製造条件の詳細を表 2に示す。 ここで 「SRT」 はスラブ加熱温度 、 「FT」 は最終パス仕上げ圧延温度、 「開始時間」 とは圧延終了か ら冷却開始までの時間、 「冷却速度」 とは、 冷却開始から冷却停止 までの平均冷却速度、 「CT」 は卷き取り温度である。 ただし、 後に 冷延工程にて圧延を行う場合はこのような制限の限りではないので 「一」 とした。
このよ うにして得られた熱延板の引張試験は、 図 3 ( a ) 、 図 3 ( b ) に示すように供試材を、 まず、 J I S Z 2201記載の 5号試験片 に加工し、 JI S Z 2241記載の試験方法に従って行った。 図 3 ( a )
(平面図) 、 図 3 ( b ) (側面図) において、 1 、 2は鋼板 (試験 片) 、 3は溶接金属、 4は継目、 5、 6は補助板を表す。 表 2に降 伏強度 (YP) 、 引張強度 (TS) 、 破断伸び (E1 ) を示す。 一方、 パ ーリ ング加工性 (穴拡げ性) については日本鉄鋼連盟規格 JFS T 10 01- 1996記载の穴拡げ試験方法に従って評価した。 表 2に穴拡げ率
( λ ) を示す。 ここで、 フェライ ト、 ペイナイ ト、 残留オーステナ ィ ト、 パーライ ト、 マルテンサイ トの体積分率とは鋼板板幅の 1 / 4 Wもしく は 3 / 4 W位置よ り切出した試料を圧延方向断面に研磨 、 エッチングし、 光学顕微鏡を用い 200〜500倍の倍率で観察された 板厚の 1ノ 4 t におけるミ ク ロ組織の面積分率で定義される。 さ ら に、 図 3に示す溶接継手引張り試験片にて J I S Z 2241に準じた方法 で引張り試験を実施し、 その破断箇所を目視外観観察よ り母材部 Z 溶接部と分類した。 継手強度の観点からこの溶接破断部は溶接部よ り母材部の方がより望ましい。
なお、 アーク溶接の溶接熱影響部の硬度測定については、 JI S Z 3101記載の 1号試験片にて、 JI S Z 2244記載の試験方法に準じて測 定した。 ただし、 アーク溶接は、 シール ドガス : C02、 ワイヤ : 日 鐡溶接工業 (株) 製 YM— 28 φ 1. 2mm、 YM - 60 C φ 1. 2mm, YM- 80 C 1. 2mmを必要に応じて使い分け、 溶接速度 : 100cm/分、 溶接電流 : 260 ± 10A、 溶接電圧 : 26 ± 1 V、 供試材の板厚は研磨を行い 2. 6mm と し、 硬度測定位置は、 表面よ り 0. 25mm、 測定間隔は、 0. 5mmで、 試験力は 98Nとした。
本発明に沿うものは、 鋼 A、 B、 C一 1 、 C— 7 、 F、 H、 K、 L , Mの 9鋼であり、 所定の量の鋼成分を含有し、 そのミクロ組織 が、 フェライ ト、 またはフェライ トおよびべイナイ トからなること を特徴とする溶接熱影響部の耐軟化性に優れたパーリ ング性高強度 鋼板が得られており、 従って、 本発明記載の方法によって評価した 従来鋼の熱影響部軟化度 Δ Ηνが 50以上であるのに対して有意差が認 められる。 さらに、 鋼 Fについては Β添加の効果によ り、 溶接熱影 響部のうち α _ γ — ひ変態が起こる熱履歴を受ける部位において焼 入れ性が向上した結果、 破断位置が母材部となっている。
上記以外の鋼は、 以下の理由によって本発明の範囲外である。 す なわち、 鋼 C一 2は、 仕上圧延終了温度 (FT) が本発明請求項 8の 範囲外であるので、 請求項 1記載の目的とするミク ロ組織が得られ ず十分な穴拡げ性 ( λ ) が得られていない。 鋼 C一 3は、 仕上圧延 終了から冷却開始までの時間が本発明請求項 8の範囲外であるので 、 請求項 1記載の目的とするミク口組織が得られず十分な穴拡げ性 ( λ ) が得られていない。 鋼 C一 4は、 平均冷却速度が本発明請求 項 8の範囲外であるので、 請求項 1記載の目的とする ミクロ組織が 得られず十分な穴拡げ性 (え) が得られていない。 鋼 C _ 5は、 冷 却終了温度および卷き取り温度が本発明請求項 8の範囲外であるの で、 請求項 1記載の目的とするミ ク口組織が得られず十分な穴拡げ 性 (え) が得られていない。 鋼 C一 6は、 卷き取り温度が本発明請 求項 8の範囲外であるので、 請求項 1記載の目的とするミク口組織 が得られず十分な穴拡げ性 ( λ ) が得られていない。 鋼 C一 8は、 熱処理温度が本発明請求項 9の範囲外であるので、 請求項 1記載の 目的とするミクロ組織が得られず十分な穴拡げ性 ( λ ) が得られて いない。 鋼 C一 9は、 保持時間が本発明請求項 9の範囲外であるの で、 請求項 1記載の目的とするミク口組織が得られず十分な穴拡げ 性 ( λ ) が得られていない。 鋼 Dは、 C *が本発明請求項 1 または 2の範囲外であるので、 熱影響部の軟化度 (Δ Ην) が大きい。 鋼 Ε は、 C *が本発明請求項 1 または 2の範囲外であるので、 熱影響部 の軟化度 (厶 Ην) が大きい。 鋼 Εは、 C添加量および C *が本発明 請求項 1 または 2の範囲外であるので、 熱影響部の軟化度 (Δ Ην) が大きい。 鋼 Gは、 Mo + Cr量が本発明請求項 1の範囲外であるので 、 熱影響部の軟化度 (Δ Ην) が大きい。 鋼 I は、 Mo + Cr量が本発明 請求項 1の範囲外であるので、 熱影響部の軟化度 (Δ Ην) が大きい 。 鋼 J は、 C *が本発明請求項 1 または 2の範囲外であるので、 熱 影響部の軟化度 (Δ Ην) が大きい。 表 1
化学組成 (単位:質量%)
鋼 C Si Mn P S Al N Ti Nb Mo Cr Mo+Cr C* その他 備考
A 0.063 0.03 0.51 0. 005 0. 0008 0.031 0. 0028 0.089 0.036 0. 11 0. 10 0.210 0. 039 本発明 o
B 0. 082 1.60 2. 10 0.0010 0.015 0.0033 0. 131 0.041 0. 10 0. 12 0.220 0. 047 Ca:0.0011 本発明
C 0.055 0.91 1.33 0.005 0.0011 0.035 0.0026 0.122 0.032 0.30 0.300 0.023 本発明
D 0.024 1.02 1.41 0.010 0.0010 0.022 0.0022 0. 110 0.035 0.26 0.260 -0.006 比麵
E 0. 120 1.02 1.36 0. 008 0.0007 0.024 0.0045 0.060 0.21 0.210 0. 109 比欄
F 0.052 0.88 1.35 0.018 0.0020 0.018 0.0028 0. 116 0.22 0.220 0.026 B:0.0003 本発明
G 0.061 0.87 1.29 0.007 0.0011 0.022 0.0042 0.114 0.031 0.000 0.033 比簡
H 0.053 0.86 1.41 0.∞7 0.0012 0.031 0.0031 0. 112 0.025 0.25 0.250 0.025 Cu:0.8, Ni :0.3 本発明
I 0.058 0. 94 1.28 0. 003 0. 0070 0.022 0.0038 0. 121 0.038 0.000 0.029 比棚
J 0.088 0.78 1. 16 0. Oil 0.0009 0.031 0.議 0. 103 0. 16 0.21 0.370 0.066 比觀
K 0.060 0.90 1.40 0.007 0.0010 0.036 0. 0045 0. 121 0.019 0.20 0.09 0.290 0.032 REM:0.0008 本発明 し 0.035 1. 10 1.51 0.006 0.0008 0.036 0.0018 0.091 0.32 0.320 0.014 本発明
M 0.033 1. 12 1.31 0. 006 0. 008 0. 036 0.0034 0.096 0.26 0.260 0.012 Cu:0.3 本発明
表 2
製造条件
継手引張り 冷延、 ミクロ組織 機械的性質 熱影響部
熱間圧延工程 破断形態
開始 i 糊終 卷取 ¾¾¾ 保持
SRT FT Ar3 +30 フェライトへ'イナイト その他 YP TS El λ 厶 Ην
鋼 区分 時間 了温度 温度 赚 時間 ワイヤ 破断箇所 備考 (°C) (°C) (°C) ( %) (%) ( %) (MPa) (MPa) ( %) (%) (98kN)
(s) (。C/s) (°C) (°C) CO (s)
A 熱延 1230 960 880 5 70 680 500 ― ― 100 0 0 542 603 27 147 ΥΜ-28 -10 雕 本発明
B 誕 1230 910 787 5 70 680 500 ― ― 90 10 0 906 1011 16 61 YM-80C 40 溶接部 本発明
C-l 艇 1230 950 839 5 70 680 500 ― ― 100 0 0 716 796 23 110 YM-60C 25 溶接部 本発明
C-2 誕 1230 800 839 5 50 680 500 ― ― 80 10 10 680 774 23 55 YM-60C 30 溶接部 比觀
C-3 麵 1230 950 839 12 70 680 500 ― ― 80 15 5 677 763 24 46 YM-60C 20 溶接部 比棚
C-4艇 1230 950 839 5 10 680 500 一 ― 60 10 30 570 740 22 35 YM-60C 20 溶接部 比擁
C- 5 艇 1230 950 839 5 70 740 700 ― ― 70 10 20 523 748 24 40 YM-60C 25 溶接部 比麵
C-6熟延 1230 950 839 5 70 680 150 ― ― 75 5 20 622 846 25 33 W-60C 40 溶接部 比麵
C- 7 冷延 ― ― ― ― ― ― ― 850 120 100 0 0 700 801 20 87 YM-60C 20 溶接部 本発明
C-8 冷延 ― ― ― 一 ― ― ― 750 120 70 30 0 542 733 21 26 YM-60C 40 溶接部 比翻
C-9 冷延 ― ― ― ― ― ― ― 850 1 100 0 0 791 861 6 30 YM-60C 55 ' 溶接部 比棚
D 熱延 1180 900 845 7 60 700 600 ― ― 100 0 0 697 774 22 120 YM-60C 90 溶接部 比麵
E 熱延 1180 910 820 7 60 700 600 ― ― 70 30 0 780 885 19 35 YM-60C 30 溶接部 比欄
F 麵 1180 920 838 7 60 700 600 ― ― 100 0 0 710 789 22 105 YM-60C 15 本発明
G 熱延 1180 910 840 7 60 700 600 ― 一 100 0 0 714 793 22 100 YM-60C 70 溶接部 比麵
H 熱延 1180 930 832 7 60 ' 700 600 ― ― 100 0 0 706 797 20 82 YM-60C 20 溶接部 本発明
I 熱延 1180 900 843 7 60 700 600 ― ― 100 0 0 693 796 21 85 YM-60C 85 溶接部 比翻
J 熱延 1180 900 839 7 60 700 600 ― ― 80 20 0 719 799 23 51 YM-60C 20 赚部 比糊 艇 1180 930 832 7 60 700 600 ― ― 100 0 0 729 810 20 96 YM-60C 10 灘部 本発明
L 熟延 1180 920 836 7 60 700 600 ― 一 100 0 0 - 725 805 20 97 YM-60C 10 灘部 本発明
M 熱涎 1180 920 853 7 60 700 600 一 ― 100 0 0 730 816 19 90 YM-60C 20 溶接部 本発明
産業上の利用可能性
以上詳述したよ うに、 本発明は、 溶接熱影響部の耐軟化性に優れ た引張強度 540MPa以上のパーリ ング性高強度鋼板およびその製造方 法に関するものであり、 これらの薄鋼板を用いることにより、 成形 後にスポッ ト、 アーク、 プラズマ、 レーザー等によ り溶接される場 合や、 これら溶接後に成形される場合において溶接熱影響部の耐軟 化性の大幅な改善が期待できる。

Claims

1. 質量%にて、
C : 0.01〜0.1%、
Si : 0.01〜 2 %、
Mn: 0.05〜 3 %、
P≤0.1%,
S≤0.03%,
A1 : 0.005〜 1 %、 の
N : 0.0005〜0.005%、
Ti : 0.05〜0.5%、 囲
を含み、 さ らに
0 % < C - (12/48ΤΪ-12/14Ν- 12/32 S ) ≤ 0.05%、
さらに、
Mo + Cr≥0.2%、 かつ Cr≤0.5%、 Mo≤ 0.5%,
を満たす範囲で C、 S、 N、 Ti、 Cr、 Moを含有し残部が Fe及び不可 避的不純物からなる鋼であって、 そのミクロ組織が、 フェライ ト、 またはフェライ トおよびべィナイ トからなることを特徴とする溶接 熱影響部の耐軟化性に優れたパーリ ング性高強度鋼板。
2. 前記鋼がさ らに、 質量%にて、
Nb: 0.01〜0.5%、
を含み、 さ らに
0 < C - (12/48Ti-12/93Nb-12/14N -12/32S ) ≤0.05% を満たす範囲で Nbを含有し残部が Fe及び不可避的不純物からなる鋼 であることを特徴とする、 溶接熱影響部の耐軟化性に優れたパーリ ング性高強度鋼板。
3 . 請求項 1又は 2に記載の鋼が、 さ らに、 質量%にて、
Ca: 0. 0005〜0. 002%、 REM: 0. 0005〜 0. 02 %、 Cu : 0. 2〜: 1. 2%、 Ni : 0. 1〜0. 6%、 B : 0. 0002〜0. 002 %の一種または二種を含有す ることを特徴とする、 溶接熱影響部の耐軟化性に優れたパーリ ング 性高強度鋼板。
4 . 請求項 1〜 3のいずれか 1項に記載の自動車用薄鋼板に亜鉛 めっきが施されていることを特徴とする、 溶接熱影響部の耐軟化性 に優れたパーリ ング性高強度鋼板。
5 . 請求項 1〜 3のいずれか 1項に記載の薄鋼板を得るために該 成分を有する鋼片の熱間圧延に際して仕上圧延を Ar3変態点温度 + 3 0°C以上の温度域で終了し、 その後 10秒以内に冷却終了までの平均 冷却速度が 50°C /秒以上の冷却速度で 700°C以下の温度域まで冷却 し、 350°C以上 650°C以下の卷き取り温度にて卷き取ることを特徴と する、 溶接熱影響部の耐軟化性に優れたパーリ ング性高強度鋼板の 製造方法。 '
6 . 請求項 1〜 3のいずれか 1項に記載の薄鋼板を得るために該 成分を有する鋼片を熱間圧延、 酸洗、 冷間圧延後、 800°C以上の温 度域で 5〜150秒間保持し、 その後平均冷却速度が 50°C Z秒以上の 冷却速度で 700°C以下の温度域まで冷却する工程の熱処理をするこ とを特徴とする、 溶接熱影響部の耐軟化性に優れたパーリ ング性高 強度鋼板の製造方法。
7 . 請求項 5に記載の製造方法に際し、 熱間圧延工程終了後に亜 鉛めつき浴中に浸積させて鋼板表面を亜鉛めつきすることを特徴と する、 溶接熱影響部の耐軟化性に優れたパーリ ング性高強度鋼板の 製造方法。
8 . 請求項 6に記載の製造方法に際し、 熱処理工程終了後、 亜鉛 めっき浴中に浸積させて鋼板表面を亜鉛めつきすることを特徴とす る、 溶接熱影響部の耐軟化性に優れたパーリ ング性高強度鋼板の製
IH力法。
9 . 請求項 7又は 8に記載の製造方法に際し、 亜鉛めつき浴中に 浸積して亜鉛めつき後、 合金化処理することを特徴とする、 溶接熱 影響部の耐軟化性に優れたパーリ ング性高強度鋼板の製造方法。
PCT/JP2003/015275 2002-12-24 2003-11-28 溶接熱影響部の耐軟化性に優れたバーリング性高強度鋼板およびその製造方法 WO2004059021A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/540,628 US7749338B2 (en) 2002-12-24 2003-11-28 High burring, high strength steel sheet excellent in softening resistance of weld heat affected zone and method of production of same
AU2003284496A AU2003284496A1 (en) 2002-12-24 2003-11-28 High strength steel sheet exhibiting good burring workability and excellent resistance to softening in heat-affected zone and method for production thereof
EP03775966.9A EP1577412B2 (en) 2002-12-24 2003-11-28 High strength steel sheet exhibiting good burring workability and excellent resistance to softening in heat-affected zone and method for production thereof
DE60311680.9T DE60311680T3 (de) 2002-12-24 2003-11-28 Hochfestes Stahlblech mit guter Kragenziehbarkeit sowie hervorragender Erweichungsfestigkeit in einer Wärmeeinflußzone und Herstellungsverfahren dafür
CA2511661A CA2511661C (en) 2002-12-24 2003-11-28 High burring, high strength steel sheet excellent in softening resistance of weld heat affected zone and method of production of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-372540 2002-12-24
JP2002372540 2002-12-24

Publications (1)

Publication Number Publication Date
WO2004059021A1 true WO2004059021A1 (ja) 2004-07-15

Family

ID=32677232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015275 WO2004059021A1 (ja) 2002-12-24 2003-11-28 溶接熱影響部の耐軟化性に優れたバーリング性高強度鋼板およびその製造方法

Country Status (8)

Country Link
US (1) US7749338B2 (ja)
EP (1) EP1577412B2 (ja)
KR (2) KR101019791B1 (ja)
CN (1) CN100591789C (ja)
AU (1) AU2003284496A1 (ja)
CA (1) CA2511661C (ja)
DE (1) DE60311680T3 (ja)
WO (1) WO2004059021A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100712796B1 (ko) * 2004-10-27 2007-04-30 가부시키가이샤 고베 세이코쇼 대입열 용접 이음매 인성이 우수한 후강판
KR100714540B1 (ko) * 2004-10-22 2007-05-07 가부시키가이샤 고베 세이코쇼 용접열 영향부 인성이 우수한 고강도 강재
CN103469058A (zh) * 2013-10-08 2013-12-25 武汉钢铁(集团)公司 抗拉强度450MPa级具有高扩孔性能的铁素体贝氏体钢及其生产方法
CN104955973A (zh) * 2013-01-31 2015-09-30 日新制钢株式会社 冷轧钢板及其制造方法

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE426686T1 (de) * 2004-04-22 2009-04-15 Kobe Steel Ltd Hochfestes und kaltgewaltzes stahlblech mit hervorragender verformbarkeit und plattiertes stahlblech
CN100554479C (zh) * 2006-02-23 2009-10-28 株式会社神户制钢所 加工性优异的高强度钢板
KR100851189B1 (ko) * 2006-11-02 2008-08-08 주식회사 포스코 저온인성이 우수한 초고강도 라인파이프용 강판 및 그제조방법
KR100833078B1 (ko) * 2006-12-22 2008-05-27 주식회사 포스코 내후성이 우수한 고강도 열연강판
JP5223360B2 (ja) * 2007-03-22 2013-06-26 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5200634B2 (ja) * 2007-04-11 2013-06-05 新日鐵住金株式会社 鍛造及び浸炭用熱間圧延棒鋼
KR100957972B1 (ko) * 2007-12-27 2010-05-17 주식회사 포스코 용접부 강도와 인성이 우수한 고강도 내후성 열연강판 및그 제조방법
KR100928785B1 (ko) * 2007-12-27 2009-11-25 주식회사 포스코 내후성이 우수한 고강도 열연강판 및 그 제조방법
JP5786319B2 (ja) * 2010-01-22 2015-09-30 Jfeスチール株式会社 耐バリ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
CN101974722A (zh) * 2010-10-29 2011-02-16 河北钢铁股份有限公司唐山分公司 一种用于制造混凝土搅拌车罐体的钢板及生产方法
WO2012118073A1 (ja) * 2011-02-28 2012-09-07 日新製鋼株式会社 溶融Zn-Al-Mg系めっき鋼板および製造方法
RU2562582C1 (ru) * 2011-08-09 2015-09-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Горячекатаный стальной лист с высоким отношением предела текучести к пределу прочности, который имеет превосходные характеристики поглощения энергии удара при низкой температуре и устойчивость к размягчению зоны термического влияния (haz), и способ его получения
US9689060B2 (en) * 2011-08-17 2017-06-27 Kobe Steel, Ltd. High-strength hot-rolled steel sheet
BR112014011809B1 (pt) * 2011-11-21 2019-03-26 Nippon Steel & Sumitomo Metal Corporation Folha de aço para a nitretação, método para a sua fabricação, e peça automotiva excelente na resistência à fadiga com o uso das mesmas
JP5578288B2 (ja) 2012-01-31 2014-08-27 Jfeスチール株式会社 発電機リム用熱延鋼板およびその製造方法
JP2013227656A (ja) 2012-03-30 2013-11-07 Nisshin Steel Co Ltd 冷延鋼板およびその製造方法
KR101706441B1 (ko) 2012-04-26 2017-02-13 제이에프이 스틸 가부시키가이샤 양호한 연성, 신장 플랜지성, 재질 균일성을 갖는 고강도 열연 강판 및 그 제조 방법
CA2880946C (en) * 2012-08-15 2018-06-12 Nippon Steel & Sumitomo Metal Corporation Steel sheet for hot stamping, method of manufacturing the same, and hot stamped steel sheet member
JP5618431B2 (ja) * 2013-01-31 2014-11-05 日新製鋼株式会社 冷延鋼板およびその製造方法
JP5618433B2 (ja) 2013-01-31 2014-11-05 日新製鋼株式会社 湿式多板クラッチ用クラッチプレートおよびその製造方法
JP5821864B2 (ja) * 2013-01-31 2015-11-24 Jfeスチール株式会社 バーリング加工性に優れた高強度熱延鋼板およびその製造方法
KR101758003B1 (ko) 2013-04-15 2017-07-13 신닛테츠스미킨 카부시키카이샤 열연 강판
JP5692305B2 (ja) * 2013-08-22 2015-04-01 Jfeスチール株式会社 大入熱溶接特性と材質均質性に優れた厚鋼板およびその製造方法
KR101561008B1 (ko) * 2014-12-19 2015-10-16 주식회사 포스코 구멍확장능이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
WO2016132549A1 (ja) 2015-02-20 2016-08-25 新日鐵住金株式会社 熱延鋼板
KR101957078B1 (ko) * 2015-02-20 2019-03-11 신닛테츠스미킨 카부시키카이샤 열연 강판
CN107406929B (zh) 2015-02-25 2019-01-04 新日铁住金株式会社 热轧钢板
WO2016135898A1 (ja) 2015-02-25 2016-09-01 新日鐵住金株式会社 熱延鋼板
MX2018010932A (es) * 2016-03-11 2018-11-22 Jfe Steel Corp Lamina delgada de acero de alta resistencia y metodo de fabricacion de la misma.
CN109563586B (zh) 2016-08-05 2021-02-09 日本制铁株式会社 钢板及镀覆钢板
CN109563580A (zh) 2016-08-05 2019-04-02 新日铁住金株式会社 钢板及镀覆钢板
CN106399830A (zh) * 2016-10-14 2017-02-15 武汉钢铁股份有限公司 扩孔性能稳定的高扩孔钢及其生产方法
KR101899670B1 (ko) * 2016-12-13 2018-09-17 주식회사 포스코 저온역 버링성이 우수한 고강도 복합조직강 및 그 제조방법
KR101899674B1 (ko) 2016-12-19 2018-09-17 주식회사 포스코 저온역 버링성이 우수한 고강도 강판 및 이의 제조방법
CN106521327B (zh) * 2016-12-27 2018-08-21 首钢集团有限公司 一种具有高扩孔性能的热轧酸洗带钢及其生产方法
KR101998952B1 (ko) 2017-07-06 2019-07-11 주식회사 포스코 재질편차가 적고 표면품질이 우수한 초고강도 열연강판 및 그 제조방법
CN109234642B (zh) * 2018-09-30 2021-06-01 日照钢铁控股集团有限公司 一种基于esp及pgl产线生产的铁素体贝氏体热镀锌板及其生产方法
KR102451005B1 (ko) 2020-10-23 2022-10-07 주식회사 포스코 열적 안정성이 우수한 고강도 강판 및 이의 제조방법
KR102468035B1 (ko) 2020-11-13 2022-11-18 주식회사 포스코 열적 안정성이 우수한 고항복비 고강도 강판 및 그 제조방법
KR102494555B1 (ko) 2020-12-21 2023-02-07 주식회사 포스코 열적 안정성이 우수한 고항복비 초고강도 강판 및 그 제조방법
CN113106336B (zh) * 2021-03-17 2022-06-10 唐山钢铁集团有限责任公司 一种降低激光焊接头软化程度的超高强双相钢及生产方法
KR20230094375A (ko) * 2021-12-21 2023-06-28 주식회사 포스코 저온 충격인성이 우수한 고강도 후강판 및 그 제조방법
CN114737037B (zh) * 2022-03-30 2023-06-27 马鞍山钢铁股份有限公司 一种基于CSP工艺的550MPa级高塑韧性热镀锌钢板及其生产方法
CN115287533A (zh) * 2022-07-14 2022-11-04 莱芜钢铁集团银山型钢有限公司 一种汽车用热轧高强钢及制备方法
CN115747643B (zh) * 2022-11-01 2024-03-15 本钢板材股份有限公司 一种1.2~2.0mm薄规格700MPa级热轧大梁钢及其制备方法
KR20240098898A (ko) 2022-12-21 2024-06-28 주식회사 포스코 열연강판 및 그 제조방법
KR20240098897A (ko) 2022-12-21 2024-06-28 주식회사 포스코 열연강판 및 그 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272923A (ja) * 1996-02-09 1997-10-21 Nkk Corp 高強度熱延鋼板の製造方法
JP2001220647A (ja) * 2000-02-04 2001-08-14 Kawasaki Steel Corp 加工性に優れた高強度冷延鋼板およびその製造方法
US20020162613A1 (en) * 1999-07-02 2002-11-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength hot-rolled steel sheet superior in stretch-flanging performance and fatigue resistance and method for production thereof
JP2002363685A (ja) * 2001-06-07 2002-12-18 Nkk Corp 低降伏比高強度冷延鋼板
JP2003034825A (ja) * 2001-07-25 2003-02-07 Nkk Corp 高強度冷延鋼板の製造方法
JP2003105446A (ja) * 2001-09-26 2003-04-09 Nkk Corp 高強度熱延鋼板およびその製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4388122A (en) * 1980-08-11 1983-06-14 Kabushiki Kaisha Kobe Seiko Sho Method of making high strength hot rolled steel sheet having excellent flash butt weldability, fatigue characteristic and formability
US4472208A (en) 1982-06-28 1984-09-18 Sumitomo Metal Industries, Ltd. Hot-rolled high tensile titanium steel plates and production thereof
JPH0826433B2 (ja) 1992-12-28 1996-03-13 株式会社神戸製鋼所 伸びフランジ性に優れた高強度熱延鋼板
JP3233743B2 (ja) 1993-06-28 2001-11-26 株式会社神戸製鋼所 伸びフランジ性に優れた高強度熱延鋼板
EP0666332A4 (en) 1993-08-04 1995-12-13 Nippon Steel Corp HIGH TENSILE STRENGTH, FATIGUE RESISTANCE AND HIGHER WELDING ABILITY AND METHOD OF MANUFACTURE.
JPH08157957A (ja) * 1994-12-06 1996-06-18 Kobe Steel Ltd 伸びフランジ加工性にすぐれた高強度熱延鋼板の製造方法
JP3292619B2 (ja) 1995-03-28 2002-06-17 株式会社神戸製鋼所 伸びフランジ性にすぐれる熱延鋼板の製造方法
DE19710125A1 (de) 1997-03-13 1998-09-17 Krupp Ag Hoesch Krupp Verfahren zur Herstellung eines Bandstahles mit hoher Festigkeit und guter Umformbarkeit
JP4022019B2 (ja) 1998-07-16 2007-12-12 新日本製鐵株式会社 溶接後の成形性に優れ溶接熱影響部の軟化しにくい高強度冷延鋼板
JP4157279B2 (ja) 1998-07-27 2008-10-01 新日本製鐵株式会社 形状凍結性に優れたフェライト系薄鋼板
JP2000178654A (ja) 1998-12-11 2000-06-27 Nippon Steel Corp 溶接熱影響軟化部の狭い高張力薄鋼板とその製造方法
WO2001023632A1 (fr) * 1999-09-28 2001-04-05 Nkk Corporation Tole d'acier laminee a chaud et possedant une resistance elevee a la traction, et procede de production associe
KR100415672B1 (ko) 1999-12-27 2004-01-31 주식회사 포스코 인장강도 780MPa급 구조용 열연강판 및 그 제조방법
DE60018940D1 (de) 2000-04-21 2005-04-28 Nippon Steel Corp Stahlblech mit hervorragender gratbearbeitbarkeit bei gleichzeitiger hoher ermüdungsfestigeit und verfahren zu dessen herstellung
ES2690275T3 (es) * 2000-10-31 2018-11-20 Jfe Steel Corporation Chapa de acero laminado en caliente de alta resistencia y método para la fabricación de la misma
JP3882577B2 (ja) 2000-10-31 2007-02-21 Jfeスチール株式会社 伸びおよび伸びフランジ性に優れた高張力熱延鋼板ならびにその製造方法および加工方法
JP2002146471A (ja) 2000-11-07 2002-05-22 Nippon Steel Corp 低温靱性および溶接熱影響部靭性に優れた超高強度鋼板、超高強度鋼管およびそれらの製造法
JP3644398B2 (ja) 2001-03-27 2005-04-27 Jfeスチール株式会社 溶接熱影響部靭性に優れた非調質厚肉高張力鋼板の製造方法
DE10161465C1 (de) 2001-12-13 2003-02-13 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von Warmband

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272923A (ja) * 1996-02-09 1997-10-21 Nkk Corp 高強度熱延鋼板の製造方法
US20020162613A1 (en) * 1999-07-02 2002-11-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength hot-rolled steel sheet superior in stretch-flanging performance and fatigue resistance and method for production thereof
JP2001220647A (ja) * 2000-02-04 2001-08-14 Kawasaki Steel Corp 加工性に優れた高強度冷延鋼板およびその製造方法
JP2002363685A (ja) * 2001-06-07 2002-12-18 Nkk Corp 低降伏比高強度冷延鋼板
JP2003034825A (ja) * 2001-07-25 2003-02-07 Nkk Corp 高強度冷延鋼板の製造方法
JP2003105446A (ja) * 2001-09-26 2003-04-09 Nkk Corp 高強度熱延鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1577412A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100714540B1 (ko) * 2004-10-22 2007-05-07 가부시키가이샤 고베 세이코쇼 용접열 영향부 인성이 우수한 고강도 강재
KR100712796B1 (ko) * 2004-10-27 2007-04-30 가부시키가이샤 고베 세이코쇼 대입열 용접 이음매 인성이 우수한 후강판
CN104955973A (zh) * 2013-01-31 2015-09-30 日新制钢株式会社 冷轧钢板及其制造方法
US10144994B2 (en) 2013-01-31 2018-12-04 Nisshin Steel Co., Ltd. Cold-rolled steel plate and method of manufacturing the same
US10246764B2 (en) 2013-01-31 2019-04-02 Nisshin Steel Co., Ltd. Method of manufacturing a cold-rolled steel plate
CN103469058A (zh) * 2013-10-08 2013-12-25 武汉钢铁(集团)公司 抗拉强度450MPa级具有高扩孔性能的铁素体贝氏体钢及其生产方法
CN103469058B (zh) * 2013-10-08 2016-01-13 武汉钢铁(集团)公司 抗拉强度450MPa级具有高扩孔性能的铁素体贝氏体钢及其生产方法

Also Published As

Publication number Publication date
EP1577412A4 (en) 2006-04-12
CN100591789C (zh) 2010-02-24
DE60311680T2 (de) 2007-11-22
EP1577412A1 (en) 2005-09-21
KR20070041645A (ko) 2007-04-18
CN1732279A (zh) 2006-02-08
CA2511661C (en) 2010-01-26
DE60311680D1 (de) 2007-03-22
KR100962745B1 (ko) 2010-06-10
EP1577412B2 (en) 2014-11-12
AU2003284496A1 (en) 2004-07-22
US20060081312A1 (en) 2006-04-20
EP1577412B1 (en) 2007-02-07
KR101019791B1 (ko) 2011-03-04
US7749338B2 (en) 2010-07-06
KR20050085873A (ko) 2005-08-29
DE60311680T3 (de) 2015-03-26
CA2511661A1 (en) 2004-07-15

Similar Documents

Publication Publication Date Title
WO2004059021A1 (ja) 溶接熱影響部の耐軟化性に優れたバーリング性高強度鋼板およびその製造方法
JP5327410B1 (ja) 耐衝撃特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法、並びに、高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP4737319B2 (ja) 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
KR101630976B1 (ko) 표면품질 및 도금 밀착성이 우수한 초고강도 용융아연도금강판 및 그 제조방법
JP5821260B2 (ja) 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法
KR101165168B1 (ko) 용접성과 연성이 우수한 고항복비 고강도 박강판 및 고항복비 고강도 용융 아연 도금 박강판 및 고항복비 고강도 합금화 용융 아연 도금 박강판과 그 제조 방법
KR102344787B1 (ko) 용융 아연 도금 강판
JP4542515B2 (ja) 成形性と溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板、並びに、高強度冷延鋼板の製造方法、高強度溶融亜鉛めっき鋼板の製造方法、高強度合金化溶融亜鉛めっき鋼板の製造方法
KR20070061859A (ko) 신장과 구멍 확장성이 우수한 고강도 박강판 및 그 제조방법
EP2527484B1 (en) Method for manufacturing a high-strength galvanized steel sheet having excellent formability and spot weldability
JP5412746B2 (ja) 溶接性と伸びフランジ性の良好な高強度鋼板
WO2014020640A1 (ja) 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法
WO2002068703A1 (fr) Tole d&#39;acier zinguee a chaud presentant une grande resistance et son procede de production
WO2001053554A1 (fr) Tole d&#39;acier zingue par immersion a chaud et procede de production correspondant
JP2004315900A (ja) 伸びフランジ成形性に優れた高強度鋼板およびその製造方法
JP4445420B2 (ja) 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板、並びに高強度冷延鋼板の製造方法、高強度溶融亜鉛めっき鋼板の製造方法、高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2005105367A (ja) 溶接性と延性に優れた高降伏比高強度冷延鋼板および高降伏比高強度溶融亜鉛めっき鋼板、並びに、高降伏比高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP4291711B2 (ja) 焼付け硬化性を有する高バーリング熱延鋼板およびその製造方法
JP3881559B2 (ja) 溶接後の成形性に優れ、溶接熱影響部の軟化しにくい引張強さが780MPa以上の高強度熱延鋼板、高強度冷延鋼板および高強度表面処理鋼板
CN114585766A (zh) 高强度钢板及其制造方法
JP2004256906A (ja) 伸びフランジ成形性に優れた高強度鋼板およびその製造方法
JP4500197B2 (ja) 成形性と溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法
JP4288146B2 (ja) 溶接熱影響部の耐軟化性に優れたバーリング性高強度鋼板の製造方法
JP2006274378A (ja) 高降伏比高強度冷延鋼板と高降伏比高強度溶融亜鉛めっき鋼板及び高降伏比高強度合金化溶融亜鉛めっき鋼板並びにそれらの製造方法
JP2005105361A (ja) 溶接性と延性に優れた高降伏比高強度熱延鋼板及び高降伏比高強度溶融亜鉛めっき鋼板、並びに、高降伏比高強度合金化溶融亜鉛めっき鋼板とその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006081312

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10540628

Country of ref document: US

Ref document number: 1020057011806

Country of ref document: KR

Ref document number: 2003775966

Country of ref document: EP

Ref document number: 2511661

Country of ref document: CA

Ref document number: 2803/DELNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 20038A7477X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057011806

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003775966

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10540628

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003775966

Country of ref document: EP