WO2004052809A1 - Verfahren zur herstellung von 1-olefinen durch katalytische spaltung von 1-alkoxyalkanen - Google Patents

Verfahren zur herstellung von 1-olefinen durch katalytische spaltung von 1-alkoxyalkanen Download PDF

Info

Publication number
WO2004052809A1
WO2004052809A1 PCT/EP2003/011919 EP0311919W WO2004052809A1 WO 2004052809 A1 WO2004052809 A1 WO 2004052809A1 EP 0311919 W EP0311919 W EP 0311919W WO 2004052809 A1 WO2004052809 A1 WO 2004052809A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleavage
olefins
oxide
octene
carried out
Prior art date
Application number
PCT/EP2003/011919
Other languages
English (en)
French (fr)
Inventor
Alfred Kaizik
Dietrich Maschmeyer
Dirk Röttger
Franz Nierlich
Cornelia Borgmann
Original Assignee
Oxeno Olefinchemie Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32403736&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004052809(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP2004557875A priority Critical patent/JP4422033B2/ja
Priority to YUP-2005/0431A priority patent/RS20050431A/sr
Priority to EP03758074A priority patent/EP1569881B1/de
Priority to AU2003274089A priority patent/AU2003274089B2/en
Priority to CA2506495A priority patent/CA2506495C/en
Application filed by Oxeno Olefinchemie Gmbh filed Critical Oxeno Olefinchemie Gmbh
Priority to AT03758074T priority patent/ATE451342T1/de
Priority to MXPA05006186A priority patent/MXPA05006186A/es
Priority to BR0317091-8A priority patent/BR0317091A/pt
Priority to DE50312217T priority patent/DE50312217D1/de
Priority to US10/538,475 priority patent/US7342144B2/en
Publication of WO2004052809A1 publication Critical patent/WO2004052809A1/de
Priority to EGNA2005000276 priority patent/EG24126A/xx
Priority to NO20053365A priority patent/NO20053365L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/12Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of actinides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a process for the preparation of 1-olefins from 1-alkoxyalkanes, in particular the preparation of 1-octene from 1-alkoxyoctane, by catalytic elimination of alcohol under non-isomerizing conditions.
  • olefins are among the most important building blocks in organic chemistry. They are precursors for a large number of compounds, such as aldehydes, ketones, alcohols, carboxylic acids and halogen compounds. They are used in large quantities for the production of homo- or cooligomers and homo- and copolymers, such as polyethylene or polypropylene.
  • Ethene and propene are produced in large quantities worldwide by steam cracking or catalytic cracking of hydrocarbons. Considerable amounts of C-olefins (isobutene, 1-butene, 2-butenes) and Cs-olefins are obtained.
  • Olefins with more than four carbon atoms increase rapidly in their number of isomers.
  • a separation of such mixtures of isomers, e.g. incurred in cracking processes is technically complex.
  • Higher olefins can be linear or branched, the position of the double bond being terminal (terminal, ⁇ -olefins, 1-olefins) or internal (internal).
  • the linear ⁇ -olefins (LAO) represent the industrially most important product group.
  • Straight-chain ⁇ -olefins such as 1-hexene and 1-octene are used in large quantities in the production of various chemical products.
  • surfactants, plasticizers, lubricants and polymers are made from 1-octene.
  • An economically important area of application is the use of 1-octene as a comonomer in polymer plastics, in particular in modified polyethylene and modified polypropylene.
  • Higher linear olefins are e.g. B. by building reactions based on ethene or generated by dehydrochlorination of n-chlorine paraffms.
  • Ethene can be oligomerized with the help of Ziegler catalysts (triethyl aluminum), resulting in a mixture of unbranched ⁇ -olefins with an even C number.
  • Ziegler catalysts triethyl aluminum
  • Other production processes for ⁇ -olefins are also based on ethene as the starting material, but differ significantly in the catalyst used for oligomerization (see: “Applied Homogeneous Catalysis with Organometallic Compounds”, Edited by B. Cornils, WAHerrmann, VCH Verlag Weinheim 1996, Vol 1, pp.
  • unbranched ⁇ -olefins with even and odd C numbers can be produced from ethene.
  • This process involves three reaction steps, namely ethene oligomerization, double bond isomerization, i.e. H. Shifting of the double bonds and cross metathesis (ethenolysis) of the olefin mixture with internal double bonds with ethene.
  • the processes currently used for the production of 1-octene are mainly based on the raw material ethene. This gives olefin mixtures from which 1-octene is obtained by distillation is won. For example, only an olefin mixture with a 1-octene content of at most 25% by weight can be obtained by the SHOP process under optimized reaction conditions.
  • 1-octene is not obtained via the direct synthetic route, for example via dimerization, but via several reaction steps.
  • WO 92/10450 describes a process in which 1,3-butadiene is preferably reacted with methanol or ethanol to give a 2,7-octadienyl ether which, after hydrogenation to give octyl ether (e.g. 1-methoxyoctane), on an acidic ⁇ - Al 2 O 3 is split to 1-octene.
  • octyl ether e.g. 1-methoxyoctane
  • the first process step which is generally referred to as telomerization, is characteristic of all processes.
  • a telogen such as water, methanol, ethanol and carboxylic acid
  • a taxogen (1,3-butadiene, 2 equivalents
  • the 1-octene is obtained by cleaving an n-octane (alkoxyoctane) substituted at the 1-position .
  • the selectivities in this step are often unsatisfactory.
  • WO 92/10450 when 1-methoxyoctane is cleaved on pure aluminum oxide or on acid-modified aluminum oxide, a selectivity to octenes of only 66% is achieved with a conversion of 80%.
  • the cleavage of 1- and 2-octanols and C 8 -alkyl esters and 1-alkoxyoctane to 1-octene is also known in the patent literature.
  • JP 02172924 describes the cleavage (dehydration) of 1-octanol, which was obtained by a telomerization reaction of 1,3-butadiene with water and subsequent hydrogenation to 1-octene and water.
  • a calcium phosphate modified with sodium hydroxide is used as a catalyst for the cleavage.
  • EP 0 440 995 describes the thermal cleavage of alkyl esters, obtained from a telomerization reaction and subsequent hydrogenation, to give 1-octene. No catalysts are used in the cleavage reaction.
  • CN 1158277 A claims catalysts selected from modified silicon oxide (SiO 2 ), thorium oxide (ThO 2 ), the oxides of alkaline earth metals, rare earths and Group IV B metals for the cleavage of alkoxyalkanes (ethers).
  • CN 1165053 discloses the cleavage of 1-methoxyoctane (octylmethyl ether) to 1-octene in the presence of a silicon oxide modified with magnesium oxide. With these MgO-SiO 2 catalysts, 1-octene selectivities of over 95% could be achieved with 1-methoxyoctane conversions of over 80%.
  • the splitting of 1-alkoxyalkanes can be carried out both in the liquid phase and in the gas phase.
  • the cleavage of 1 -alkoxyalkanes to 1 -olefins as carried out a heterogeneously catalyzed gas phase reaction.
  • DE 101 05 751 discloses the use of SiO 2 and Al 2 O 3 , both unmodified as pure substances.
  • the invention relates to a process for the preparation of ⁇ -olefins having 3 to 16 carbon atoms by catalytic cleavage of 1-alkoxyalkanes, the cleavage of aluminum oxide and / or zirconium dioxide containing 0.01 to 10% by weight of at least one Alkali and / or alkaline earth oxide is carried out.
  • the group (R1) is preferably a hydrocarbon group with 1 to 14 carbon atoms, the group (R2) preferably a hydrocarbon group with 1 to 4 carbon atoms
  • Preferred products of the process according to the invention are 1-octene, 1-pentene, isobutene or 1-butene.
  • the ⁇ -olefins produced by the process according to the invention preferably have 4 to 8 carbon atoms.
  • 1-alkoxyalkanes When 1-alkoxyalkanes are cleaved, 1-methoxyoctane, 1-ethoxyoctane, tert-butyl methyl ether and / or tert-amyl methyl ether, tert-amyl ethyl ether or tert-amyl butyl ether in particular are cleaved to give the corresponding ⁇ -olefins and alcohols, the olefin being preferably 1-octene, 1-pentene, isobutene or 2-methyl-1-butene is obtained.
  • the cleavage of the 1-alkoxyalkanes to the 1-olefin is preferably carried out in the process according to the invention as a heterogeneously catalyzed gas phase reaction.
  • Basic and strongly basic catalysts are preferably used as catalysts in the process according to the invention.
  • the catalysts used according to the invention contain aluminum oxide and / or zirconium dioxide as main components as well as alkali metal and / or alkaline earth metal oxides. Titanium dioxide, silicon dioxide and / or thorium oxide can be present as further components in the catalyst with 0.01 to 3% by weight, preferably 0.5 to 5% by weight. These catalysts are basic in the sense of the present invention.
  • the proportion of basic metal oxides (hydroxides are converted into oxides) in the catalyst is preferably 0.01 to 10% by mass, particularly preferably 0.1 to 5% by mass, particularly preferably 0.1 to 3% by mass.
  • Preferred alkali metal oxides are sodium and / or potassium oxide. Magnesium, strontium and / or barium oxide are preferably used as alkaline earth metal oxides.
  • ⁇ - aluminas are preferred with a BET surface area of 80 to 350 m 2 / g, preferably 120-250 m 2 / g used.
  • the catalysts are produced by known methods. Common methods are, for example, precipitation, impregnation or spraying of an Al O 3 body with an appropriate salt solution and subsequent calcination.
  • the catalysts are expediently used in the form of spheres, tablets, cylinders, extrudates or rings.
  • the 1-alkoxyalkane can be cleaved in the presence of substances which are inert or largely inert under the cleavage conditions.
  • substances which are inert or largely inert under the cleavage conditions For example, nitrogen or argon, but also water, steam or alkanes such as methane, propane or dimethyl ether can be added.
  • the proportion of these inert substances is preferably between 0 and 90% by volume, particularly preferably between 0 and 50 and, between 0 and 30 and, between 0 and 20 or between 0 and 10% by volume.
  • the cleavage of the 1-alkoxyalkanes in the gas or liquid / gas mixed phase is carried out continuously or batchwise over suspended or particulate catalysts arranged in a fixed bed.
  • the continuous cleavage is preferably carried out over a catalyst arranged in the fixed bed.
  • Different process variants can be selected for continuous splitting. It can be carried out adiabatically, polytropically, preferably practically isothermally, ie with a temperature difference of typically less than 10 ° C., in one or more stages. In the latter case, all reactors, conveniently tubular reactors, can be operated practically isothermally.
  • the cleavage is preferably carried out in a single pass. It can, however, also be operated under product return. It is possible to at least partially separate the products between the reactors.
  • 1-Alkoxyalkanes can be cleaved at temperatures between 100 and 600 ° C., preferably between 200 and 450 ° C., particularly preferably between 280 and 350 ° C. The cleavage can also at significantly lower temperatures such. B.
  • MTBE methyl tert-butyl ether
  • TAME tert-amyl ethyl ether
  • the pressure (absolute) at which the cleavage is carried out is typically between 0.1 and 25 bar. Pressures between 0.2 and 10 bar are preferred, particularly preferably between 1 and 5 bar.
  • the weight hourly space velocity (WHSV), stated in grams of starting material per gram of catalyst per hour, is preferably 0.01 to 30 h "1 , particularly preferably 0.1 - 15 h " 1 , very particularly preferably 0.5 - 10 h "1 .
  • the cleavage of the 1 -alkoxyalkanes to 1 -olefins can be complete or partial
  • the cleavage is preferably carried out with partial conversion.
  • the conversion is between 10 and 95%, particularly preferably between 30 and 95%, very particularly preferably between 70 and 95%.
  • the separation of the target product, the 1-olefin, from the other components of the removal of the cleavage is carried out by known methods such as phase separation, extraction, washing or distillation.
  • the reaction product is separated into an olefin fraction and a fraction which contains unreacted alkoxyalkane, alcohol, water and, if appropriate, other by-products.
  • the olefin fraction consists of more than 85%, preferably more than 90, in particular 95 to over 98% of 1-olefin.
  • it is processed into an even purer 1-olefin.
  • the unreacted starting material can be returned to the cleavage reactor.
  • the 1-olefins produced by the process according to the invention can be used as comonomers used in the manufacture of polyolefms. They can also be the starting material for organic syntheses.
  • the process according to the invention has the following advantages: in the product mixture after the cleavage, the proportion of internal olefins which cannot be separated from the valuable product 1-olefin or can only be removed with difficulty is low.
  • the olefin fraction in the cleavage of 1-methoxyoctane consists of 91.5 to 98.5% of 1-octene, 1 to 8.4% of 2-octene and 0.1 to 2.0% of 3, 4-octene isomers , so that an economical extraction of pure 1-octene is possible.
  • the catalysts used have a long service life in the process, since coking, as is observed when using acidic catalysts such as SiO, is almost completely avoided.
  • Barium nitrate Ba (NO 3 ) 2 used before the barium salt was applied, the aluminum oxide was first dried in a forced air drying cabinet at 90 ° C. for 5 hours. The dried extrudates were then in a rotary drum (dragee) at room temperature with the
  • Barium nitrate solution impregnated via a spray nozzle Barium nitrate solution impregnated via a spray nozzle.
  • the desired barium content in the extrudates to be impregnated can be adjusted via the concentration of the Ba salt solution.
  • the Al O 3 extradates loaded with the barium salt were first in one at 110 ° C. for 5 hours
  • EXAMPLE 2 Production of a Na-Modified AbOr Catalyst
  • the acidic ⁇ -aluminum oxide described in Example 1 with Na2O content ⁇ 300 ppm from Axens was used.
  • An aqueous sodium hydroxide solution was used as the impregnation solution.
  • Example 3 (Comparative example) cleavage of 1-methoxyoctane on an unmodified ⁇ -
  • 1-methoxyoctane (1-MOAN, methyl-n-octyl ether), obtained by hydrogenation of 1-methoxyoctadiene (telomerization product of 1,3-butadiene with methanol), was obtained with a purity of approx. 98 wt .-% (2% high boilers) for the cleavage in an electrically heated flow-through fixed bed reactor in the presence of a catalyst.
  • the catalyst (Cat. 1) was a commercially available, surface-rich acidic ⁇ -Al 2 O 3 (BET surface area 225 m 2 /, pore volume 0.68 cm 3 / g) with the designation Spheralite 52 IC from Fa. Axens.
  • the liquid starting material was evaporated at 220 ° C. in an upstream evaporator.
  • a reaction temperature of 300 ° C. and a pressure of 1 bar in the reactor 75.0 gh of starting material per hour were passed through 13.9 g of catalyst in extradata form in the gas phase, corresponding to a WHSV value of 5.4 h "1 gaseous product was cooled in a cooler and collected in liquid form in a glass receiver.
  • Aluminum oxide (Al 2 O 3 with 1.0% by weight BaO) from Example 1 is used.
  • the 1-MOAN of Ba-modified aluminum oxide becomes significantly more selective to the valuable product 1-octene compared to the unmodified, acidic ⁇ -aluminum oxide (cat. 1) with comparable MOAN conversions
  • Example 5 (according to the invention) cleavage on the Na-modified ⁇ -ALO catalyst
  • the product of the hydrogenation of 1-methoxyoctadiene was 1-methoxyoctane (1-MOAN, methyl-n-octyl ether) used as a starting material for the gas phase splitting in a flow-through fixed bed reactor.
  • An alumina modified with sodium hydroxide solution (Al 2 O 3 with 1.5% by weight Na 2 O) from Example 2 was used as the catalyst.
  • the GC analysis of the cleavage product is shown in Table 1, column 4.
  • the 1-MOAN also becomes the desired product of value on a Na-modified ⁇ -aluminum oxide (cat. 3) with little formation of 3-, 4-octenes with a high 1-octene selectivity 1-octene split.
  • the by-products listed under rest contain components that can also be cleaved to form 1-octene, including dioctyl ether. If necessary, these can also be returned to the cleavage.
  • Example 6 (According to the invention) cleavage of methyl tert-butyl ether (MTBE) on a Na-modified ⁇ -Al? O 3
  • Methyl tert-butyl ether (MTBE, ter-butyl methyl ether) from Oxeno with a purity of 99.94% by weight was used as starting material for the catalytic gas phase cleavage in a flow-through fixed bed reactor.
  • a ⁇ -alumina (Al 2 O 3 with 1.5% by weight Na O) from Example 2 modified with sodium hydroxide solution was used as the catalyst for the cleavage.
  • the liquid starting material was evaporated at 180 ° C. in an upstream evaporator.
  • a reaction temperature of 235 ° C and one 15 g of methyl tert-butyl ether were passed through 20.0 g of catalyst in 1 hour pressure
  • Extradata form in the gas phase corresponding to a WHSV value of 0.75 h "1 , passed through.
  • reaction discharge was cooled in a cooler and collected in liquid form in a glass receiver. After the GC analysis, the reaction discharge contains the unreacted starting material
  • Methyl tert-butyl ether 38.0% by weight MTBE

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von 1-Olefinen aus 1-Alkoxyalkanen, insbesondere die Herstellung von 1-Octen aus 1-Alkoxyoctan, durch basische katalysierte Alkoholabspaltung.

Description

Verfahren zur Herstellung von 1-Olefϊnen durch katalytische Spaltung von 1-Alkoxyalkanen
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von 1-Olefinen aus 1- Alkoxyalkanen, insbesondere die Herstellung von 1-Octen aus 1-Alkoxyoctan, durch katalytische Alkoholabspaltung unter nicht isomerisierenden Bedingungen.
Olefine zählen wegen ihrer Reaktivität zu den wichtigsten Synthesebausteinen der organischen Chemie. Sie sind Vorstufen für eine Vielzahl von Verbindungen, wie beispielsweise Aldehyde, Ketone, Alkohole, Karbonsäuren und Halogenverbindungen. In großen Mengen werden sie zur Herstellung von Homo- oder Cooligomeren und Homo- und Copolymeren verwendet, wie beispielweise Polyethylen oder Polypropylen.
Ethen und Propen werden durch Steamcracking oder durch katalytische Spaltung von Kohlenwasserstoffen weltweit in großen Mengen hergestellt. Dabei fallen beträchtliche Mengen an C -Olefϊnen (Isobuten, 1 -Buten, 2-Butene) und Cs-Olefine an.
Olefine mit mehr als vier C-Atomen nehmen in ihrer Isomerenzahl rasch zu. Eine Trennung solcher Isomerengemische, wie sie z.B. bei Crackverfahren anfallen, ist technisch aufwendig.
Höhere Olefine können linear oder verzweigt sein, wobei die Lage der Doppelbindung endständig (terminal, α-Olefine, 1 -Olefine) oder innenständig (intern) sein kann. Die linearen α-Olefine ( LAO) stellen davon die industriell bedeutendste Produktgruppe dar.
Geradkettige α-Olefine wie 1 -Hexen und 1-Octen werden in großen Mengen in der Produktion verschiedener chemischer Produkte eingesetzt. So werden beispielweise aus 1-Octen oberflächenaktive Stoffe, Weichmacher, Schmierstoffe und Polymere hergestellt. Ein wirtschaftlich wichtiges Einsatzgebiet ist die Verwendung von 1-Octen als Comonomer in Polymerkunstoffen, insbesondere in modifiziertem Polyethylen und modifiziertem Polypropylen.
Höhere lineare Olefine werden z. B. durch Aufbaureaktionen auf der Basis von Ethen bzw. durch Dehydrochlorierung von n-Chlorparaffmen erzeugt.
Ethen kann mit Hilfe von Ziegler-Katalysatoren (Triethylaluminium) oligomerisiert werden, wobei ein Gemisch von unverzweigten α-Olefinen mit gerader C-Zahl anfällt. Weitere Herstellverfahren für α-Olefine basieren ebenfalls auf Ethen als Einsatzstoff, unterscheiden sich jedoch wesentlich durch den zur Oligomerisierung eingesetzten Katalysator (siehe: „Applied Homogeneous Catalysis with Organometallic Compounds", Edited by B.Cornils,W.A.Herrmann , VCH Verlag Weinheim 1996, Vol. 1, S. 245-258 ). So wird in dem von Shell entwickelten SHOP-Prozess (Shell higher olefin process) ein Nickel- Phosphinkomplex-Katalysator für die Ethen-Oligomerisierung verwendet (siehe: K.Weissermel, H.-J.Arpe, „Industrielle Organische Chemie", VCH Verlag Weinheim 1994, 4.Aufl, S. 95 ff.).
Nach einer Variante des SHOP -Prozesses können aus Ethen unverzweigte α-Olefine mit gerader und ungerader C-Zahl hergestellt werden. Dieses Verfahren umfasst drei Reaktionsschritte, nämlich Ethenoligomerisierung, Doppelbindungs-Isomerisierung, d. h. Verschiebung der Doppelbindungen, und Kreuzmetathese (Ethenolyse) des Olefingemisches mit innenständigen Doppelbindungen mit Ethen.
Für die Herstellung von Olefinen auf Basis von n-Paraffinen haben sich unter anderem thermisches Cracken, katalytische Dehydrierung und chlorierende Dehydrierung (Chlorierang und anschließende Chlorwasserstoffabspaltung) bewährt.
Bei diesen Verfahren entstehen Olefine mit überwiegend innenständigen Doppelbindungen, die durch Kreuzmetathese zu α-Olefinen umgesetzt werden können.
Die obengenannten Verfahren zur Herstellung von höheren Olefinen haben allerdings den Nachteil, dass immer eine Vielzahl an α-Olefinen unterschiedlicher Kettenlänge gebildet wird, die zum einen aufwendig getrennt werden müssen, zum anderen die Ausbeute des gewünschten α-Olefins stark mindern.
Die zur Zeit für die Herstellung von 1-Octen angewandten Verfahren basieren hauptsächlich auf dem Rohstoff Ethen. Man erhält Olefmgemische, aus denen 1-Octen durch Destillation gewonnen wird. Beispielsweise kann nach dem SHOP -Verfahren unter optimierten Reaktionsbedingungen nur ein Olefingemisch mit einem 1-Octen-Gehalt von maximal 25 Gew.-% erhalten werden.
Neben den Verfahren auf Ethen-Basis hat darüber hinaus auch die Isolierung von 1-Octen aus dem Produktspektrum der Fischer-Tropsch-Synthese eine technische Bedeutung erlangt.
In der Literatur sind neben den Herstellverfahren auf Basis von Ethen auch Verfahren bekannt, die als Rohstoff für die 1-Octen-Herstellung 1,3 -Butadien verwenden.
Bei der Verwendung von 1,3 -Butadien als Rohstoffbasis wird 1-Octen nicht auf dem direkten Syntheseweg, beispielsweise über eine Dimerisierung erhalten, sondern über mehrere Reaktionsschritte. So beschreibt WO 92/10450 ein Verfahren, bei dem 1,3-Butadien vorzugsweise mit Methanol oder Ethanol zu einem 2,7-Octadienylether umgesetzt wird, der nach Hydrierung zum Octylether (z. B. 1-Methoxyoctan) an einem sauren γ-Al2O3 zum 1-Octen gespalten wird. In EP 0 440 995 wird ein analoger Weg beschritten, die Umsetzung erfolgt im ersten Schritt jedoch mit einer Carbonsäure. Charakteristisch für alle Verfahren ist der erste Prozessschritt, den man allgemein als Telomerisation bezeichnet. Bei der Telomerisation wird allgemein ein Telogen (wie z.B. Wasser, Methanol, Ethanol und Carbonsäure) mit einem Taxogen (1,3 -Butadien, 2 Äquivalente) zu einem Telomer umgesetzt.
Bei den bekannten Verfahren zur Herstellung von 1-Octen auf der Basis von Butadien, wie beispielweise in WO 92/10450 oder EP 0 440 995 beschrieben, wird das 1-Octen durch Spaltung eines an 1 -Position substituierten n-Octans (Alkoxyoctan) erhalten. Die Selektivitäten in diesem Schritt sind dabei oftmals unbefriedigend. So wird in WO 92/10450 bei der Spaltung von 1-Methoxyoctan an reinen Aluminiumoxid oder an sauer modifizierten Aluminiumoxid bei einem Umsatz von 80 % eine Selektivität zu Octenen von nur 66 % erreicht. Auch die Spaltung von 1- und 2-Octanolen und C8-Alkylestern sowie 1 -Alkoxyoctan zu 1- Octen ist in der Patentliteratur bekannt.
Die Spaltung von tert.-Butanol zu Wasser und Isobuten wird in EP 0 726 241 mittels saurer Ionenaustauscher in einer Reaktivdestillation durchgeführt. Die Übertragung dieses Reaktorkonzepts zur Spaltung von Methyl-tert-butylether zu Wasser und Isobuten kann EP 1 149 814 entnommen werden.
JP 02172924 beschreibt die Spaltung (Dehydratation) von 1-Octanol, das durch eine Telomerisationsreaktion von 1,3 -Butadien mit Wasser und anschließende Hydrierung erhalten wurde zu 1-Octen und Wasser. Als Katalysator für die Spaltung kommt unter anderem ein mit Natriumhydroxid modifiziertes Calciumphosphat zum Einsatz.
EP 0 440 995 beschreibt die thermische Spaltung von Alkylestern, erhalten aus einer Telomerisationsreaktion und anschließender Hydrierung, zu 1-Octen. Es werden keine Katalysatoren in der Spaltungsreaktion eingesetzt.
Die Spaltung von Alkoxyalkanen (Ether) zu Olefinen ist ebenfalls bekannt. Einige Arbeiten wurden zu Beginn des 20. Jahrhunderts publiziert, beispielsweise die Spaltung von Ethern über saurem Ton (japanese acid clay) (W. Ipatiew, Berichte der Deutschen Chemischen Gesellschaft, 1904, 37, 2961; K. Kashima, Bull. Chem. Soc. Jpn. 1930, 25).
Die Spaltung eines Methylethers in Gegenwart von Aluminiumoxid, Aluminiumphosphaten, Aluminiumsilikaten und Mischungen von Aluminiumsilikaten mit Metallphosphaten und Metallsulfaten ist Gegenstand des Patents US 2 561 483.
In CN 1158277 A werden Katalysatoren, ausgewählt aus modifiziertem Siliziumoxid (SiO2), Thoriumoxid (ThO2), den Oxiden der Erdalkalimetalle, der seltenen Erden und der Metalle der Gruppe IV B für die Spaltung von Alkoxyalkanen (Ethern) beansprucht.
CN 1165053 offenbart die Spaltung von 1-Methoxyoctan (Octylmethyl ether) zu 1-Octen in Gegenwart eines mit Magnesiumoxid modifizierten Siliziumoxides. Mit diesen MgO-SiO2- Katalysatoren konnten bei 1-Methoxyoctan-Umsätzen von über 80 % 1-Octen -Selektivitäten von über 95 % erzielt werden.
Die Spaltung von 1- Alkoxyalkanen kann sowohl in der Flüssigphase als auch in der Gasphase durchgeführt werden. In allgemeinen wird die Spaltung von 1 -Alkoxyalkanen zu 1 -Olefinen als eine heterogen katalysierte Gasphasenreaktion durchgeführt. DE 101 05 751 offenbart zu diesem Zweck die Verwendung von SiO2 und Al2O3, beides unmodifiziert als Reinstoff.
Zusammenfassend kann gesagt werden, dass die bekannten Verfahren zur Spaltung von Alkoxyalkanen oder Alkanolen an sauren Katalyatoren wie sulfonierten Ionenaustauscherharzen, Al2O3 oder SiO durchgeführt werden. Saure Verbindungen katalysieren jedoch nicht nur die Spaltung, sondern auch die Isomerisierung der erhaltenen 1- Olefine zu Olefinen mit innenbeständigen Doppelbindungen.
Neben dem gewünschten Wertprodukt 1-Olefin werden daher als Nebenprodukte unerwünschte innenständige Olefine gebildet, die nur schlecht vom Wertprodukt 1-Olefin abgetrennt werden können. Unter isomerisierenden Bedingungen kann ein 1-Olefin bis zur Einstellung des thermodynamischen Gleichgewichts in Olefine mit innenständigen Doppelbindungen umgesetzt werden. Bei der Herstellung von 1 -Olefinen ist die Bildung von Olefinen mit innenständigen Doppelbindungen (interne Olefinisomere) aus zwei Gründen unerwünscht, zum einen wegen des Ausbeuteverlustes und zum anderen wegen des technischen Aufwands für die Abtrennung des 1-Olefins von internen Olefinisomeren, da die Siedepunkte der isomeren Olefine nahe beieinander liegen.
Die Forderung für ein technisches Verfahren zur Herstellung eines 1-Olefins aus einem 1- Alkoxyalkan oder aus einem Alkanol ist daher eine selektive Spaltung zu dem Zielprodukt, unter weitgehender Minimierung einer anschließenden Isomerisierung des gebildeten 1- Olefϊns.
Es wurde nun gefunden, dass in Gegenwart von basischen Katalysatoren auf Basis von modifizierten Aluminiumoxiden oder Zirkondioxid im Vergleich zu den bislang verwendeten saueren Katalysatoren die Selektivität der Spaltung von Methoxyalkanen zu 1 -Olefinen und das Verhältnis von 1-Olefin zu innenständigen Olefinen deutlich verbessert wird.
Gegenstand der Erfindung ist ein Verfahren zur Herstellung von α-Olefinen mit 3 bis 16 Kohlenstoffatomen durch katalytische Spaltung von 1 -Alkoxyalkanen, wobei die Spaltung an Aluminiumoxid und/oder Zirkoniumdioxid enthaltend 0.01 bis 10 Gew.-°/o mindestens eines Alkali- und/oder Erdalkalioxids, durchgeführt wird.
Im erfmdungsgemäßen Verfahren können Alkoxyalkane mit der allgemeinen Struktur (Rl)- CH2-CH2-O(R2) an den erfindungsgemäßen Katalysatoren zu den entsprechenden 1 -Olefinen mit der allgemeinen Struktur (R1)-CH=CH2 umgesetzt werden.
Analog können Verbindungen der allgemeinen Formeln (Rl)-CH CH -OH oder (Rl)CH(OH)CH3 zu 1 -Olefinen mit der Formel (Rl)-CH = CH2 umgesetzt werden.
Die Gruppe (Rl) ist dabei bevorzugt eine Kohlenwasserstoffgruppe mit 1 bis 14 Kohlenstoffatomen, die Gruppe (R2) bevorzugt eine Kohlenwasserstoffgruppe mit 1 bis 4 Kohlenstoffatomen
Bevorzugte Produkte des erfindungsgemäßen Verfahrens sind 1-Octen, 1-Penten, Isobuten oder 1 -Buten.
Die mit dem erfindungsgemäßen Verfahren hergestellten α-Olefine weisen bevorzugt 4 bis 8 Kohlenstoffatome auf.
Bei der Spaltung von 1 -Alkoxyalkanen werden insbesondere 1-Methoxyoctan, 1-Ethoxyoctan, tert.-Butylmethylether und/oder tert.-Amylmethylether, tert.-Amylethylether oder tert- Amylbutylether zu den entsprechenden α-Olefinen und Alkoholen gespalten, wobei als Olefin bevorzugt 1-Octen, 1-Penten, Isobuten oder 2 -Methyl- 1 -Buten erhalten wird.
Die Spaltung der 1 -Alkoxyalkane zum 1 -Olefin wird im erfindungsgemäßen Verfahren bevorzugt als eine heterogen katalysierte Gasphasenreaktion durchgeführt.
Als Katalysatoren bei dem erfindungsgemäßen Verfahren werden bevorzugt basische und stark basische Katalysatoren verwendet. Die erfindungsgemäß eingesetzten Katalysatoren enthalten als Hauptkomponenten Aluminiumoxid und/oder Zirkoniumdioxid sowie Alkalimetall- und/oder Erdalkalimetalloxide. Als weitere Komponenten können im Katalysator Titandioxid, Siliciumdioxid und/oder Thoriumoxid mit 0,01 bis 3 Gew.-%, bevorzugt 0,5 bis 5 Gew.-% enthalten sein. Diese Katalysatoren sind basisch im Sinne der vorliegenden Erfindung. Der Anteil an basischen Metalloxiden (Hydroxide werden in Oxide umgerechnet) im Katalysator beträgt bevorzugt 0,01 bis 10 Massen-%, besonders bevorzugt 0,1 bis 5 Massen-%, insbesondere bevorzugt 0,1 bis 3 Massen-%. Bevorzugte Alkalimetalloxide sind Natrium- und/oder Kaliumoxid. Als Erdalkalimetalloxide werden bevorzugt Magnesium-, Strontium- und/oder Bariumoxid eingesetzt.
Bevorzugt werden γ- Aluminiumoxide mit einer BET-Oberfläche von 80 bis 350 m2/g, bevorzugt 120 - 250 m2/g eingesetzt. Die Katalysatoren werden nach bekannten Methoden hergestellt. Gängige Methoden sind beispielsweise Fällung, Tränkung oder Besprühung eines Al O3-Körpers mit einer entsprechenden Salzlösung und anschließende Calcinierung.
Die Katalysatoren werden zweckmäßig in Form von Kugeln, Tabletten, Zylindern, Strangextrudaten oder Ringen eingesetzt.
Die Spaltung des 1-Alkoxyalkan kann in Gegenwart von Stoffen erfolgen, die unter den Spaltbedingungen inert beziehungsweise weitgehend inert sind. So können beispielsweise Stickstoff oder Argon, aber auch Wasser, Wasserdampf oder Alkane wie beispielsweise Methan, Propan oder auch Dimethylether zugesetzt werden. Bevorzugt liegt der Anteil dieser inerten Stoffe zwischen 0 und 90 Vol.-%, besonders bevorzugt zwischen 0 und 50 und, zwischen 0 und 30 und, zwischen 0 und 20 oder zwischen 0 und 10 Vol.-%.
Im erfindungsgemäßen Verfahren wird die Spaltung der 1 -Alkoxyalkane in der Gas- oder Flüssig/Gas-Mischphase an suspendierten oder stückigen im Festbett angeordneten Katalysatoren kontinuierlich oder diskontinuierlich durchgeführt. Bevorzugt wird die kontinuierliche Spaltung an im Festbett angeordneten Katalysator durchgeführt.
Bei der kontinuierlichen Spaltung können unterschiedliche Verfahrensvarianten gewählt werden. Sie kann adiabatisch, polytrop vorzugsweise praktisch isotherm, d. h. mit einer Temperaturdifferenz von typischerweise kleiner als 10 °C, ein- oder mehrstufig durchgeführt werden. Im letzteren Falle kann man alle Reaktoren, zweckmäßig Rohrreaktoren praktisch isotherm betreiben. Bevorzugt wird die Spaltung im geraden Durchgang betrieben. Sie kann, jedoch auch unter Produktrückfuhrang betrieben werden. Es ist möglich, zwischen den Reaktoren zumindest teilweise die Produkte abzutrennen. Die Spaltung von 1 -Alkoxyalkanen kann bei Temperaturen zwischen 100 und 600 °C, bevorzugt zwischen 200 und 450 °C, besonders bevorzugt zwischen 280 und 350 °C erfolgen. Die Spaltung kann auch bei deutlich geringeren Temperaturen wie z. B. 100 - 250 °C, bevorzugt 100 - 200 °C durchgeführt werden, wie z. B. bei der Spaltung von Methyl-ter - butylether (MTBE) oder tert.-Amyl ethylether (TAME).
Der Druck (absolut), unter dem die Spaltung durchgeführt wird, liegt typischerweise zwischen 0,1 und 25 bar. Bevorzugt werden Drücke zwischen 0,2 und 10 bar, besonders bevorzugt zwischen 1 und 5 bar. Die Weight-Hourly- Space- Velocity (WHSV), angegeben in Gramm Edukt pro Gramm Katalysator pro Stunde, beträgt bevorzugt 0,01 bis 30 h"1, besonders bevorzugt 0,1 - 15 h"1, ganz besonders bevorzugt 0,5 - 10 h"1.
Die Spaltung der 1 -Alkoxyalkane zu 1 -Olefinen kann unter vollständigem oder teilweisen
Umsatz durchgeführt werden. Nicht umgesetztes Edukt kann, nach Abtrennung des gebildeten 1-Olefins und gegebenenfalls anderer Spaltungsprodukte, in die Spaltung zurückgeführt werden. Es ist dabei auch möglich, nur das 1 -Olefin und gegebenenfalls einen Teil der
Spaltprodukte abzutrennen und den Rest in die Vorreinigung vor der eigentlichen Spaltung zurückzuführen.
Bevorzugt wird die Spaltung unter teilweisem Umsatz durchgeführt. Der Umsatz beträgt dabei zwischen 10 und 95 %, besonders bevorzugt zwischen 30 und 95 %, ganz besonders bevorzugt zwischen 70 und 95 %.
Die Abtrennung des Zielprodukts, des 1-Olefins, von den anderen Komponenten des Austrage der Spaltung erfolgt nach bekannten Verfahren wie beispielsweise Phasenseparation, Extraktion, Wäsche oder Destillation.
Der Reaktionsaustrag wird in eine Olefinfraktion und eine Fraktion, die nicht umgesetztes Alkoxyalkan, Alkohol, Wasser und gegebenenfalls andere Nebenprodukten enthält, getrennt. Die Olefinfraktion besteht zu mehr als 85 %, bevorzugt mehr als 90, insbesondere 95 bis über 98 % aus 1 -Olefin. Optional wird sie zu noch reinerem 1 -Olefin aufgearbeitet. Das nicht umgesetzte- Edukt kann in den Spaltungsreaktor zurückgeführt werden.
Die nach dem erfindungsgemäßen Verfahren hergestellten 1 -Olefine können als Comonomere bei der Herstellung von Polyolefmen verwendet werden. Weiterhin können sie Ausgangsstoff für organische Synthesen sein.
Das erfindungsgemäße Verfahren hat folgende Vorteile: Im Produktgemisch nach der Spaltung ist der Anteil an innenständigen Olefinen, die nicht bzw. nur schwer vom dem Wertprodukt 1- Olefin abtrennbar sind, gering. Die Olefinfraktion bei der Spaltung von 1-Methoxyoctan besteht zu 91,5 bis 98,5 % aus 1-Octen, 1 bis 8,4 % aus 2-Octen und 0,1 bis 2,0 % aus 3-, 4- Octenisomeren, sodass eine wirtschaftliche Gewinnung von reinem 1-Octen möglich ist.
Die eingesetzten Katalysatoren besitzen im Prozess eine lange Lebensdauer, da eine Verkokung wie sie beim Einsatz von sauren Katalysatoren wie SiO beobachtet wird, nahezu vollständig unterbleibt.
Die folgenden Beispiele sollen die Erfindung beschreiben, ohne ihre Anwendungsbreite einzuschränken, die sich aus der Beschreibung und den Patentansprüchen ergibt:
Beispiele
Beispiel 1: Herstellung eines Ba-modifzierten AbOj-Katafysators
Für die Herstellung des erfindungsgemäßen Katalysators wurde ein saures γ-Aluminiumoxid mit Na2O-Gehalt < 300 ppm der Fa.Axens verwendet. Das Aluminiumoxid mit einer BET-
Oberfläche von 225 m2/g und einem Porenvolumen von 0,68 ml/g lag als Extrudat ( Zylinder mit einer Länge von 4-6 mm und einem Durchmesser von 1 ,25 mm) vor. Als Barium- Vorläufer für die basische Modifizierung des Aluminiumoxides mit Bariumoxid (BaO) wurde
Bariumnitrat Ba(NO3)2 eingesetzt. Vor der Aufbringung des Bariumssalzes wurde das Aluminiumoxid zuerst bei 90 °C 5 Stunden lang in einem Umluftrockenschrank getrocknet. Die getrockneten Strangextrudate wurden anschließend in einer Rotationstrommel (Drageetrommel) bei Raumtemperatur mit der
Bariumnitrat-Lösung über eine Sprühdüse imprägniert.
Der gewünschte Barium-Gehalt in den zu imprägnierenden Strangextradaten kann über die Konzentration der Ba-Salzlösung eingestellt werden. Nach der Imprägnierung wurden die mit dem Barium-Salz beladenen Al O3-Extradate zuerst bei 110 °C 5 Stunden lang in einem
Umluftrockenschrank getrocknet. Die anschließende Kalzinierung, bei der das Bariumsalz zu Bariumoxid bzw. einer Barium/Aluminium/Sauerstoffverbindung umgewandelt wird, erfolgte in einem Wirbelbettreaktor in Luftstrom 10 Stunden lang bei 450 °C.
Beispiel 2: Herstellung eines Na-modifzierten AbOr-Katalvsators Für die Herstellung des mit Na-modifzierten Al O3-Katalysators wurde das im Beispiel 1 beschriebene saure γ-Aluminiumoxid mit Na2O-Gehalt < 300 ppm der Fa.Axens verwendet. Als Imprägnierlösung wurde eine wässrige Natronlauge verwendet.
Die Aufbringung der Natronlauge auf die Al2O3.Strangetrudate und die thermische Nachbehandlung (Trocknung und Kalzinierang) des Katalysators wurden nach dem in Beispiel 1 beschriebenen Herstellungsgang durchgeführt.
Beispiel 3: (Vergleichsbeispiel) Spaltung von 1-Methoxyoctan an einem unmodifizierten γ-
Al7O3- Katalysator
1-Methoxyoctan (1-MOAN, Methyl-n-octylether), erhalten durch Hydrierung von 1- Methoxyoctadien (Telomerisierangsprodukt von 1,3-Butadien mit Methanol), wurde mit einer Reinheit von rd. 98 Gew.-% (2 % Hochsieder) für die Spaltung in einem elektrisch beheizten Durchfluss-Festbettreaktor in Gegenwart eines Katalysators eingesetzt. Bei dem Katalysator (Kat.1) handelte es sich um ein handelsübliches, oberflächenreiches saures γ-Al2O3 (BET- Oberfläche 225 m2/ , Porenvolumen 0,68 cm3/g) mit der Bezeichnung Spheralite 52 IC der Fa. Axens.
Vor dem Eintritt in den Reaktor wurde das flüssige Edukt in einem vorgeschalteten Verdampfer bei 220 °C verdampft. Bei einer Reaktionstemperatur von 300 °C und einem Druck von 1 bar im Reaktor wurden stündlich 75,0 g h Edukt durch 13,9 g Katalysator in Extradatenform in der Gasphase, entsprechend einem WHSV-Wert von 5,4 h"1, durchgeleitet. Das gasförmige Produkt wurde in einem Kühler abgekühlt und in flüssiger Form in einer Glasvorlage gesammelt.
Die GC- Analyse des Spaltungsproduktes ist in Tabelle 1, Spalte 2, wiedergegeben. Nach den vorliegenden Ergebnissen wurden bei einem 1-MOAN-Umsatz von rd. 84,6 % folgende Octen-Selektivitäten erzielt : Wertprodukt 1-Octen Sei. 86,7 % , Nebenprodukte, innenständige C8-Isomere : 2-Octene Sei. 5,7 % und 3 /4-Octene Sei. 2,1 % Tabelle 1 : Spaltung von 1-Methoxyoctan am unmodifzierten γ-Al2O3- Katalysator
Figure imgf000012_0001
Beispiel 4; (gemäß der Erfindung) Spaltung am mit Ba-modifizierten γ-Al?O3 -Katalysator
Das Produkt der Hydrierung von 1 -Methoxyoctadien das 1-Methoxyoctan (1-MOAN) wurde mit einer Reinheit von rd. 98 Gew.-% (2 % Hochsieder) für die Spaltung in einem Durchfluss-
Festbettreaktor, wie in Beispiel 3 beschrieben, in Gegenwart eines mit BaO modifizierten
Aluminiumoxids (Al2O3 mit 1 ,0 Gew.-% BaO ) aus dem Beispiel 1 eingesetzt.
Bei einer Reaktionstemperatur von 300 °C und einem Druck von 1 bar im Reaktor wurden stündlich 50 g Methoxyoctan durch 14,1 g Katalysator in Zylinderform in der Gasphase, entsprechend einem WHSV-Wert von 3,5 h"1, durchgeleitet. Wie im Beispiel 3, wurde das gasförmige Produkt in einem Kühler abgekühlt und in flüssiger Form in einer Glasvorlage gesammelt.
Die GC- Analyse des Spaltungsproduktes ist in Tabelle 1, Spalte 3 (Kat.2) , wiedergegeben.
Wie man aus der Tabelle 1 entnehmen kann, wird das 1-MOAN an mit Ba-modifiziertem Aluminiumoxid im Vergleich zum unmodifizierten, sauren γ- Aluminiumoxid (Kat.l) bei vergleichbaren MOAN-Umsätzen deutlich selektiver zum Wertprodukt 1-Octen bei geringerer
Bildung von 3- und 4-Octenisomeren gespalten.
Bei einem 1-MOAN-Umsatz von rd. 83,7 % wurden an dem erfmdungsgemäßen Katalysator folgende Octen-Selektivitäten erzielt : Wertprodukt 1-Octen Sei. 94,2 %, Nebenprodukte innenständige C8-Isomere : 2-Octene Sei. 5,0 % und 3 /4-Octene Sei. 0,7 % .
Beispiel 5: (gemäß der Erfindung) Spaltung am mit Na-modifizierten γ-ALO -Katalysator Wie in den Beispielen 3 und 4 wurde das Produkt der Hydrierung von 1 -Methoxyoctadien das 1-Methoxyoctan (1-MOAN, Methyl-n-octylether) als Edukt für die Gasphasen-Spaltung in einem Durchfluss-Festbettreaktor verwendet. Als Katalysator wurde ein mit Natronlauge modifiziertes Aluminiumoxid (Al2O3 mit 1,5 Gew.-% Na2O) aus dem Beispiel 2 eingesetzt. Bei einer Reaktionstemperatur von 350 °C im Reaktor wurden stündlich 25 g Methoxyoctan durch 13,5 g Katalysator in Extradatenform in der Gasphase, entsprechend einem WHSV-Wert von 1,8 h"1, durchgeleitet. Das gasförmige Produkt wurde in einem Kühler abgekühlt und in flüssiger Form in einer Glasvorlage gesammelt.
Die GC- Analyse des Spaltungsproduktes ist in Tabelle 1, Spalte 4, wiedergegeben. Wie man aus der Tabelle 1 entnehmen kann, wird das 1-MOAN auch an einem mit Na- modifizierten γ- Aluminiumoxid (Kat. 3) bei geringer Bildung von 3-, 4-Octenen mit einer hohen 1-Octen-Selektivität zum gewünschten Wertprodukt 1-Octen gespalten.
Bei einem 1-MOAN-Umsatz von rd. 86,2 % wurden folgende Octen-Selektivitäten erzielt : Wertprodukt 1-Octen Sei. 93,8 % , Nebenprodukte innenständige C8-Isomere : 2- Octene Sei. 3,9 % und 3 /4-Octene Sei. 0,5 %.
Die unter Rest aufgeführten Nebenprodukte enthalten Komponenten, die ebenfalls zum 1- Octen gespalten werden können, unter anderem Dioctylether. Auch diese können ggf. in die Spaltung zurückgeführt werden.
Beispiel 6 : (gemäß der Erfindung) Spaltung von Methyl-tert.-butylether (MTBE) an einem mit Na-modifizierten γ-Al?O3
Methyl-tert.-butylether (MTBE, ter.-Butyl-methylether) von Oxeno mit einer Reinheit von 99,94 Gew.-% wurde als Edukt für die katalytische Gasphasen-Spaltung in einem Durchfiuß- Festtbettreaktor eingesetzt. Als Katalysator für die Spaltung wurde ein mit Natronlauge modifiziertes γ- Aluminiumoxid (Al2O3 mit 1,5 Gew.-% Na O) aus dem Beispiel 2 verwendet.
Vor dem Eintritt in den Reaktor wurde das flüssige Edukt in einem vorgeschalteten Verdampfer bei 180 °C verdampft. Bei einer Reaktionstemperatur von 235 °C und einem Druck von 1 bar wurden stündlich 15 g Methyl-tert.-butylether durch 20,0 g Katalysator in
Extradatenform in der Gasphase, entsprechend einem WHSV-Wert von 0,75 h"1, durchgeleitet.
Der gasförmige Reaktionsaustrag wurde in einem Kühler abgekühlt und in flüssiger Form in einer Glasvorlage gesammelt. Nach der GC-Analyse enthält der Reaktionsaustrag neben dem nicht umgesetzten Edukt
Methyl-tert.-butylether (38,0 Gew.-% MTBE) folgende Spaltprodukte:
38,83 Gew.-% Isobuten, 21,58 Gew.-% Methanol, 1,06 Gew.-% Dimethylether, 0,43 Gew.-%
Wasser und 0,10 Gew.-% 2,4,4-Trimethylpentene.
Nach diesem Ergebnis werden bei MTBE-Umsätzen von rd. 62% sehr hohe Selektivitäten (> 99,7 %) zu dem Zielprodukt Isobuten erzielt. Die Selektivitäten der MTBE-Spaltung zu
Methanol liegen, bedingt durch die Dimethylether-Bildung bei rd. 95,5 %.

Claims

Patentansprüche:
1. Verfahren zur Herstellung von α-Olefinen mit 3 bis 16 Kohlenstoffatomen durch katalytische Spaltung von 1 -Alkoxyalkanen, dadurch gekennzeichnet, dass die Spaltung an Aluminiumoxid und/oder Zirkoniumdioxid enthaltend 0.01 bis 10 Gew.-% mindestens eines Alkali- und/oder Erdalkalioxids, durchgeführt wird.
2. Verfahren nach Ansprach 1, dadurch gekennzeichnet, dass als Alkalioxid Kalium- und/oder Natriumoxid eingesetzt wird.
3. Verfahren nach Ansprach 1 oder 2, dadurch gekennzeichnet, dass als Erdalkalioxid Strontium-, Magnesium- und/oder Bariumoxid eingesetzt wird.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass der Katalysator zusätzlich 0,01 bis 5 Gew.-% Titanoxid, Siliziumdioxid und/oder Thoriumoxid enthält.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die katalytische Spaltung bis zu einem Umsatz von 10 bis 95 % durchgeführt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Spaltung in der Gasphase durchgeführt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Spaltung bei einer Temperatur von 100 bis 600 °C durchgeführt wird. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass 1-Methoxyoctan, 1-Ethoxyoctan, tert.-Butylmethylether, tert.-Amylmethylether, tert.- Amylethylether oder tert.-Amylbutylether zu den entsprechenden α-Olefinen und Alkoholen gespalten wird.
PCT/EP2003/011919 2002-12-10 2003-10-28 Verfahren zur herstellung von 1-olefinen durch katalytische spaltung von 1-alkoxyalkanen WO2004052809A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US10/538,475 US7342144B2 (en) 2002-12-10 2003-10-28 Method for producing 1-olefins by catalytically splitting 1-alkoxyalkanes
MXPA05006186A MXPA05006186A (es) 2002-12-10 2003-10-28 Proceso para la preparacion de 1-olefinas, por el desdoblamiento catalitico de los 1-alcoxialcanos.
EP03758074A EP1569881B1 (de) 2002-12-10 2003-10-28 Verfahren zur herstellung von 1-olefinen durch katalytische spaltung von 1-alkoxyalkanen
AU2003274089A AU2003274089B2 (en) 2002-12-10 2003-10-28 Method for producing 1-olefins by catalytically splitting 1-alkoxyalkanes
CA2506495A CA2506495C (en) 2002-12-10 2003-10-28 Process for preparing 1-olefins by catalytic cleavage of 1-alkoxyalkanes
JP2004557875A JP4422033B2 (ja) 2002-12-10 2003-10-28 1−アルコキシアルカンの接触分解による1−オレフィンの製造方法
AT03758074T ATE451342T1 (de) 2002-12-10 2003-10-28 Verfahren zur herstellung von 1-olefinen durch katalytische spaltung von 1-alkoxyalkanen
YUP-2005/0431A RS20050431A (en) 2002-12-10 2003-10-28 Method for producing 1-olefins by catalytically splitting 1- alkoxyalkanes
BR0317091-8A BR0317091A (pt) 2002-12-10 2003-10-28 Processo para preparação de 1-olefinas através da dissociação catalìtica de 1-alcoxialcanos
DE50312217T DE50312217D1 (de) 2002-12-10 2003-10-28 Verfahren zur herstellung von 1-olefinen durch katalytische spaltung von 1-alkoxyalkanen
EGNA2005000276 EG24126A (en) 2002-12-10 2005-06-06 Method for producing 1-olefins by catalytically splitting 1-alkoxyalkanes
NO20053365A NO20053365L (no) 2002-12-10 2005-07-11 Fremgangsmate til fremstilling av 1-olefiner ved katalytisk spaltning av 1-alkoksyalkaner.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10257499.5 2002-12-10
DE10257499A DE10257499A1 (de) 2002-12-10 2002-12-10 Verfahren zur Herstellung von 1-Olefinen durch katalytische Spaltung von 1-Alkoxyalkanen

Publications (1)

Publication Number Publication Date
WO2004052809A1 true WO2004052809A1 (de) 2004-06-24

Family

ID=32403736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/011919 WO2004052809A1 (de) 2002-12-10 2003-10-28 Verfahren zur herstellung von 1-olefinen durch katalytische spaltung von 1-alkoxyalkanen

Country Status (17)

Country Link
US (1) US7342144B2 (de)
EP (1) EP1569881B1 (de)
JP (1) JP4422033B2 (de)
KR (1) KR101017233B1 (de)
CN (1) CN100430348C (de)
AT (1) ATE451342T1 (de)
AU (1) AU2003274089B2 (de)
BR (1) BR0317091A (de)
CA (1) CA2506495C (de)
DE (2) DE10257499A1 (de)
EG (1) EG24126A (de)
ES (1) ES2337676T3 (de)
MX (1) MXPA05006186A (de)
NO (1) NO20053365L (de)
PL (1) PL205700B1 (de)
RS (1) RS20050431A (de)
WO (1) WO2004052809A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442845B2 (en) 2005-10-31 2008-10-28 Nova Chemicals (International) S.A. Conversion of ethers to olefins
US7576250B2 (en) 2006-02-28 2009-08-18 Nova Chemicals (International) S.A. Cracking 1-ethers over unmodified γ-alumina
WO2009149996A1 (de) * 2008-06-11 2009-12-17 Evonik Oxeno Gmbh Katalysator und verfahren zur herstellung von gesättigten ethern durch hydrierung ungesättigter ether
WO2014146961A1 (en) 2013-03-18 2014-09-25 Evonik Industries Ag Process for preparation of methacrylic acid and methacrylic acid esters
EP3266757A1 (de) 2016-07-08 2018-01-10 Evonik Degussa GmbH Herstellung von zumindest 1-hexen und octen aus ethen

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001270888A1 (en) * 2000-07-21 2002-02-05 Stephen Dominic Infield Method of specifying a location on a surface, and an article comprising such a surface
DE10058383A1 (de) 2000-11-24 2002-05-29 Oxeno Olefinchemie Gmbh Neue Phosphininverbindungen und deren Metallkomplexe
US7838708B2 (en) 2001-06-20 2010-11-23 Grt, Inc. Hydrocarbon conversion process improvements
DE10146848A1 (de) * 2001-09-24 2003-04-24 Oxeno Olefinchemie Gmbh Gemisch alicyclischer Polycarbonsäureester mit hohem cis-Anteil
DE10146869A1 (de) * 2001-09-24 2003-04-24 Oxeno Olefinchemie Gmbh Alicyclische Polycarbonsäureestergemische mit hohem trans-Anteil und Verfahren zu deren Herstellung
DE50211172D1 (de) * 2001-09-26 2007-12-20 Oxeno Olefinchemie Gmbh Phthalsäurealkylestergemische mit kontrollierter viskosität
DE10147776A1 (de) * 2001-09-27 2003-07-03 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von alicyclischen Polycarbonsäureestern aus Partialestern aromatischer Polycarbonsäuren
DE10220801A1 (de) * 2002-05-10 2003-11-20 Oxeno Olefinchemie Gmbh Verfahren zur Rhodium-katalysierten Hydroformylierung von Olefinen unter Reduzierung der Rhodiumverluste
DE10225565A1 (de) * 2002-06-10 2003-12-18 Oxeno Olefinchemie Gmbh Katalysator und Verfahren zur Hydrierung von aromatischen Verbindungen
DE10232868A1 (de) * 2002-07-19 2004-02-05 Oxeno Olefinchemie Gmbh Feinporiger Katalysator und Verfahren zur Hydrierung von aromatischen Verbindungen
EP1388528B1 (de) * 2002-08-06 2015-04-08 Evonik Degussa GmbH Verfahren zur Oligomerisierung von Isobuten in n-Buten-haltigen Kohlenwasserstoffströmen
CA2496838A1 (en) 2002-08-31 2004-03-11 Oxeno Olefinchemie Gmbh Process for the hydroformylation of olefinically unsaturated compounds, in particular olefins, in the presence of cyclic carbonic esters
JP2005537330A (ja) 2002-08-31 2005-12-08 オクセノ オレフィンヒェミー ゲゼルシャフト ミット ベシュレンクテル ハフツング 環状カルボン酸エステルの存在で非変性金属錯体により触媒活性されるオレフィン不飽和化合物のヒドロホルミル化によりアルデヒドを製造する方法
DE10329042A1 (de) * 2003-06-27 2005-01-13 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 1-Octen aus Crack-C4
RU2366642C2 (ru) 2003-07-15 2009-09-10 Джи Ар Ти, Инк. Синтез углеводородов
US20050171393A1 (en) 2003-07-15 2005-08-04 Lorkovic Ivan M. Hydrocarbon synthesis
DE10359628A1 (de) * 2003-12-18 2005-07-21 Oxeno Olefinchemie Gmbh Katalysator und Verfahren zur Herstellung von 1-Olefinen aus 2-Hydroxyalkanen
DE10360772A1 (de) * 2003-12-23 2005-07-28 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von Organoacylphosphiten
DE10360771A1 (de) * 2003-12-23 2005-07-28 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von dreiwertigen Organophosphor-Verbindungen
DE102004033410A1 (de) * 2004-02-14 2005-09-01 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von Olefinen mit 8 bis 12 Kohlenstoffatomen
DE102004013514A1 (de) * 2004-03-19 2005-10-06 Oxeno Olefinchemie Gmbh Verfahren zur Hydroformylierung von Olefinen in Anwesenheit von neuen phosphororganischen Verbindungen
US8173851B2 (en) 2004-04-16 2012-05-08 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US8642822B2 (en) 2004-04-16 2014-02-04 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor
US20060100469A1 (en) 2004-04-16 2006-05-11 Waycuilis John J Process for converting gaseous alkanes to olefins and liquid hydrocarbons
US20080275284A1 (en) 2004-04-16 2008-11-06 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
US7244867B2 (en) 2004-04-16 2007-07-17 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
US7674941B2 (en) 2004-04-16 2010-03-09 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
DE102004021128A1 (de) * 2004-04-29 2005-11-24 Oxeno Olefinchemie Gmbh Vorrichtung und Verfahren für die kontinuierliche Umsetzung einer Flüssigkeit mit einem Gas an einem festen Katalysator
DE102005036039A1 (de) 2004-08-28 2006-03-02 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 2,7-Octadienylderivaten
US7569196B2 (en) * 2004-09-16 2009-08-04 Oxeno Olefinchemie Gmbh Device for carrying out liquid reactions with fine-grained solid catalysts and method for the use thereof
DE102004063673A1 (de) * 2004-12-31 2006-07-13 Oxeno Olefinchemie Gmbh Verfahren zur kontinuierlichen katalytischen Hydrierung von hydrierbaren Verbindungen an festen, im Festbett angeordneten Katalysatoren mit einem wasserstoffhaltigen Gas
DE102005035816A1 (de) * 2005-07-30 2007-02-01 Oxeno Olefinchemie Gmbh Verfahren zur Hydrierung von Oxo-Aldehyden mit hohen Estergehalten
DE102005042464A1 (de) * 2005-09-07 2007-03-08 Oxeno Olefinchemie Gmbh Carbonylierungsverfahren unter Zusatz von sterisch gehinderten sekundären Aminen
WO2007092410A2 (en) 2006-02-03 2007-08-16 Grt, Inc. Separation of light gases from halogens
EP1993979A4 (de) 2006-02-03 2011-07-06 Grt Inc Kontinuierliches verfahren zur umwandlung von erdgas in flüssige kohlenwasserstoffe
US8921625B2 (en) 2007-02-05 2014-12-30 Reaction35, LLC Continuous process for converting natural gas to liquid hydrocarbons
CA2578494A1 (en) * 2007-02-14 2008-08-14 Nova Chemicals Corporation Catalytic cracking of ethers to 1-olefins
US7998438B2 (en) * 2007-05-24 2011-08-16 Grt, Inc. Zone reactor incorporating reversible hydrogen halide capture and release
US8282810B2 (en) 2008-06-13 2012-10-09 Marathon Gtf Technology, Ltd. Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery
JP2013515606A (ja) 2009-12-29 2013-05-09 ダウ グローバル テクノロジーズ エルエルシー アルファオレフィン生成用の触媒性組成物
US8198495B2 (en) 2010-03-02 2012-06-12 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
US8367884B2 (en) 2010-03-02 2013-02-05 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
DE102010030990A1 (de) 2010-07-06 2012-01-12 Evonik Oxeno Gmbh Verfahren zur selektiven Hydrierung von mehrfach ungesättigten Kohlenwasserstoffen in olefinhaltigen Kohlenwasserstoffgemischen
US8815050B2 (en) 2011-03-22 2014-08-26 Marathon Gtf Technology, Ltd. Processes and systems for drying liquid bromine
DE102011006721A1 (de) 2011-04-04 2012-10-04 Evonik Oxeno Gmbh Verfahren zur Herstellung von 1-Buten und einem 1,3-Butadienderivat
US8436220B2 (en) 2011-06-10 2013-05-07 Marathon Gtf Technology, Ltd. Processes and systems for demethanization of brominated hydrocarbons
US8829256B2 (en) 2011-06-30 2014-09-09 Gtc Technology Us, Llc Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons
US8802908B2 (en) 2011-10-21 2014-08-12 Marathon Gtf Technology, Ltd. Processes and systems for separate, parallel methane and higher alkanes' bromination
US9193641B2 (en) 2011-12-16 2015-11-24 Gtc Technology Us, Llc Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems
CN111807937B (zh) * 2020-07-03 2022-01-07 北京大学 利用乙二醇二甲醚合成乙烯基甲醚的方法
KR102317405B1 (ko) * 2020-07-31 2021-10-28 한국에너지기술연구원 1차 알코올 탈수 반응용 촉매, 이의 제조방법 및 이를 이용한 알파-올레핀의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB673547A (en) * 1948-07-27 1952-06-11 Alais & Froges & Camarque Cie Method for the preparation of isoprene
US4395580A (en) * 1980-10-29 1983-07-26 Institut Francais Du Petrole Process for producing an olefin by decomposition of the corresponding ether
GB2128972A (en) * 1982-10-26 1984-05-10 Shell Int Research Crystalline aluminosilicate catalyst
DE10105751A1 (de) * 2001-02-08 2002-08-22 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 1-Octen

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234752A (en) * 1979-09-28 1980-11-18 Phillips Petroleum Company Dehydration of alcohols
US4824869A (en) * 1988-02-22 1989-04-25 Texaco Inc. Base-modified metal oxide catalysts for the conversion of synthesis gas to alcohols
JPH06506189A (ja) * 1990-12-13 1994-07-14 ザ・ダウ・ケミカル・カンパニー 1−オクテン製造方法
DE19654340A1 (de) 1996-12-24 1998-08-06 Huels Chemische Werke Ag Verfahren zur Herstellung von höheren Oxo-Alkoholen
DE19842368A1 (de) 1998-09-16 2000-03-23 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von höheren Oxoalkoholen aus Olefingemischen durch zweistufige Hydroformylierung
DE19842369A1 (de) 1998-09-16 2000-03-23 Oxeno Oelfinchemie Gmbh Verfahren zur Hydrierung von Hydroformylierungsgemischen
DE19842370A1 (de) 1998-09-16 2000-03-23 Oxeno Oelfinchemie Gmbh Verfahren zur selektiven Hydrierung von Hydroformylierungsgemischen
DE19842371A1 (de) 1998-09-16 2000-03-23 Oxeno Oelfinchemie Gmbh Verfahren zur Herstellung von höheren Oxo-Alkoholen aus Olefingemischen
DE19925384A1 (de) 1999-06-02 2000-12-07 Oxeno Olefinchemie Gmbh Verfahren zur katalytischen Durchführung von Mehrphasenreaktionen, insbesondere Hydroformylierungen
DE19956410A1 (de) 1999-11-24 2001-05-31 Oxeno Olefinchemie Gmbh Verfahren zur Durchführung von Aldolkondensationen
DE19957528A1 (de) 1999-11-30 2001-05-31 Oxeno Olefinchemie Gmbh Verfahren zur Hydroformylierung von Olefinen
DE10009207A1 (de) 2000-02-26 2001-08-30 Oxeno Olefinchemie Gmbh Verbessertes Verfahren zur Hydroformylierung von Olefinen durch Reduzierung der Ameisensäurekonzentration
DE10034360A1 (de) 2000-07-14 2002-01-24 Oxeno Olefinchemie Gmbh Mehrstufiges Verfahren zur Herstellung von Oxo-Aldehyden und/oder Alkoholen
DE10048301A1 (de) 2000-09-29 2002-04-11 Oxeno Olefinchemie Gmbh Stabilisierung von Rhodiumkatalysatoren für die Hydroformylierung von Olefinen
DE10053272A1 (de) 2000-10-27 2002-05-08 Oxeno Olefinchemie Gmbh Neue Bisphosphitverbindungen und deren Metallkomplexe
DE10058383A1 (de) 2000-11-24 2002-05-29 Oxeno Olefinchemie Gmbh Neue Phosphininverbindungen und deren Metallkomplexe
DE10062448A1 (de) 2000-12-14 2002-06-20 Oxeno Olefinchemie Gmbh Verfahren zur Hydrierung von Hydroformylierungsgemischen
DE10100708A1 (de) 2001-01-10 2002-07-11 Oxeno Olefinchemie Gmbh Neue N-Phenylpyrrolbisphosphanverbindungen und deren Metallkomplexe
EP1231194B1 (de) 2001-02-10 2003-11-12 Oxeno Olefinchemie GmbH Herstellung von 1-Olefinen
DE10106186A1 (de) 2001-02-10 2002-08-14 Oxeno Olefinchemie Gmbh Verfahren zur Kondensation von Aldehyden mit Ketonen mittels Mehrphasenreaktion
DE10114868C1 (de) 2001-03-26 2002-10-31 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von Diphosphinen und deren Verwendung
DE10128144A1 (de) 2001-06-09 2002-12-12 Oxeno Olefinchemie Gmbh Verfahren zur Telomerisation von nicht cyclischen Olefinen
DE10135906A1 (de) 2001-07-24 2003-02-06 Oxeno Olefinchemie Gmbh Verfahren zur Hydroformylierung von höheren Olefinen mit Kobaltverbindungen als Katalysator
DE10140083A1 (de) 2001-08-16 2003-02-27 Oxeno Olefinchemie Gmbh Neue Phosphitverbindungen und deren Metallkomplexe
DE10140086A1 (de) 2001-08-16 2003-02-27 Oxeno Olefinchemie Gmbh Neue Phosphitverbindungen und neue Phosphitmetallkomplexe
DE10146848A1 (de) 2001-09-24 2003-04-24 Oxeno Olefinchemie Gmbh Gemisch alicyclischer Polycarbonsäureester mit hohem cis-Anteil
DE10146869A1 (de) 2001-09-24 2003-04-24 Oxeno Olefinchemie Gmbh Alicyclische Polycarbonsäureestergemische mit hohem trans-Anteil und Verfahren zu deren Herstellung
DE50211172D1 (de) 2001-09-26 2007-12-20 Oxeno Olefinchemie Gmbh Phthalsäurealkylestergemische mit kontrollierter viskosität
DE10147776A1 (de) 2001-09-27 2003-07-03 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von alicyclischen Polycarbonsäureestern aus Partialestern aromatischer Polycarbonsäuren
DE10149347A1 (de) 2001-10-06 2003-04-10 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 1-Octen durch reduktive Telomerisation
DE10149348A1 (de) 2001-10-06 2003-04-10 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 1-Olefin mit Palladiumcarbenverbindungen
BR0308432A (pt) 2002-03-15 2006-06-06 Oxeno Olefinchemie Gmbh processo para a hidroformilação de olefinas
DE10220801A1 (de) 2002-05-10 2003-11-20 Oxeno Olefinchemie Gmbh Verfahren zur Rhodium-katalysierten Hydroformylierung von Olefinen unter Reduzierung der Rhodiumverluste
DE10220799A1 (de) 2002-05-10 2003-12-11 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von C13-Alkoholgemischen
DE10232868A1 (de) 2002-07-19 2004-02-05 Oxeno Olefinchemie Gmbh Feinporiger Katalysator und Verfahren zur Hydrierung von aromatischen Verbindungen
EP1388528B1 (de) 2002-08-06 2015-04-08 Evonik Degussa GmbH Verfahren zur Oligomerisierung von Isobuten in n-Buten-haltigen Kohlenwasserstoffströmen
JP2005537330A (ja) 2002-08-31 2005-12-08 オクセノ オレフィンヒェミー ゲゼルシャフト ミット ベシュレンクテル ハフツング 環状カルボン酸エステルの存在で非変性金属錯体により触媒活性されるオレフィン不飽和化合物のヒドロホルミル化によりアルデヒドを製造する方法
CA2496838A1 (en) 2002-08-31 2004-03-11 Oxeno Olefinchemie Gmbh Process for the hydroformylation of olefinically unsaturated compounds, in particular olefins, in the presence of cyclic carbonic esters
DE102004021128A1 (de) 2004-04-29 2005-11-24 Oxeno Olefinchemie Gmbh Vorrichtung und Verfahren für die kontinuierliche Umsetzung einer Flüssigkeit mit einem Gas an einem festen Katalysator
DE102004059293A1 (de) 2004-12-09 2006-06-14 Oxeno Olefinchemie Gmbh Verfahren zur Hydroformylierung von Olefinen
DE102004059292A1 (de) 2004-12-09 2006-06-14 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von Alkoholen aus Olefinen durch Hydroformylierung und Hydrierung
DE102004063673A1 (de) 2004-12-31 2006-07-13 Oxeno Olefinchemie Gmbh Verfahren zur kontinuierlichen katalytischen Hydrierung von hydrierbaren Verbindungen an festen, im Festbett angeordneten Katalysatoren mit einem wasserstoffhaltigen Gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB673547A (en) * 1948-07-27 1952-06-11 Alais & Froges & Camarque Cie Method for the preparation of isoprene
US4395580A (en) * 1980-10-29 1983-07-26 Institut Francais Du Petrole Process for producing an olefin by decomposition of the corresponding ether
GB2128972A (en) * 1982-10-26 1984-05-10 Shell Int Research Crystalline aluminosilicate catalyst
DE10105751A1 (de) * 2001-02-08 2002-08-22 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 1-Octen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442845B2 (en) 2005-10-31 2008-10-28 Nova Chemicals (International) S.A. Conversion of ethers to olefins
US7576250B2 (en) 2006-02-28 2009-08-18 Nova Chemicals (International) S.A. Cracking 1-ethers over unmodified γ-alumina
WO2009149996A1 (de) * 2008-06-11 2009-12-17 Evonik Oxeno Gmbh Katalysator und verfahren zur herstellung von gesättigten ethern durch hydrierung ungesättigter ether
WO2014146961A1 (en) 2013-03-18 2014-09-25 Evonik Industries Ag Process for preparation of methacrylic acid and methacrylic acid esters
EP3266757A1 (de) 2016-07-08 2018-01-10 Evonik Degussa GmbH Herstellung von zumindest 1-hexen und octen aus ethen
US10196327B2 (en) 2016-07-08 2019-02-05 Evonik Degussa Gmbh Production of at least 1-hexene and octene from ethene

Also Published As

Publication number Publication date
ATE451342T1 (de) 2009-12-15
NO20053365L (no) 2005-07-11
AU2003274089B2 (en) 2009-04-23
EP1569881B1 (de) 2009-12-09
DE50312217D1 (de) 2010-01-21
DE10257499A1 (de) 2004-07-01
PL376155A1 (en) 2005-12-27
AU2003274089A1 (en) 2004-06-30
CA2506495A1 (en) 2004-06-24
KR20050084262A (ko) 2005-08-26
CN1723178A (zh) 2006-01-18
RS20050431A (en) 2007-12-31
US20060036121A1 (en) 2006-02-16
EP1569881A1 (de) 2005-09-07
KR101017233B1 (ko) 2011-02-25
JP4422033B2 (ja) 2010-02-24
BR0317091A (pt) 2005-10-25
CA2506495C (en) 2010-12-14
ES2337676T3 (es) 2010-04-28
PL205700B1 (pl) 2010-05-31
CN100430348C (zh) 2008-11-05
JP2006509016A (ja) 2006-03-16
EG24126A (en) 2008-07-08
US7342144B2 (en) 2008-03-11
MXPA05006186A (es) 2005-08-26

Similar Documents

Publication Publication Date Title
EP1569881B1 (de) Verfahren zur herstellung von 1-olefinen durch katalytische spaltung von 1-alkoxyalkanen
EP2041049B1 (de) Verfahren zur herstellung von 3-methylbut-1-en
DE10149348A1 (de) Verfahren zur Herstellung von 1-Olefin mit Palladiumcarbenverbindungen
DE102005009665A1 (de) Verfahren zur Herstellung von Propen aus 2-Buten- und Isobuten-reichen Feedströmen
EP1134271A2 (de) Verfahren zur flexiblen Herstellung von Propen und Hexen
EP3019457A1 (de) Oligomerizatoin von c4-strömen mit minimalem gehalt an 1-buten
DE69020586T2 (de) Verfahren zur herstellung von 1-okten.
EP1784476A1 (de) Verfahren zur herstellung von c5-aldehyden und propen aus einem 1-buten-und 2-buten-haltigen c4-strom
DE2521673A1 (de) Verfahren zur herstellung von alkyl- terbutylaethern
EP1694433B1 (de) Katalysator und verfahren zur herstellung von 1-olefinen aus 2-hydroxyalkanen
EP1581485B1 (de) Verfahren zur herstellung von alkylarylsulfonaten mittels modifizierter, dimerisierter olefine
DE10321523A1 (de) Verfahren zur Doppelbindungsisomerisierung bei Olefinen
EP2734489A1 (de) Aufarbeitung olefinhaltiger c4-kohlenwasserstoffgemische
EP3909940B1 (de) Verfahren zur oligomerisierung von olefinen mit kontrolle des gehalts an oligomeren in den zu oligomerisierenden kohlenwasserstoffströmen
DE2445568C2 (de) Verfahren zur Herstellung von acyclischen &amp;alpha;,&amp;omega;-Dienen durch katalytische Disproportionierung eines cyclischen Olefins und eines acyclischen Diens
DE1300551B (de) Verfahren zur kontinuierlichen Herstellung von aliphatischen oder cycloaliphatischenMonoolefinen
DE1279014B (de) Verfahren zur Herstellung von Alkenolen
DE2754540A1 (de) Verfahren zur herstellung von verzweigten olefinen
DE102015200702A1 (de) Herstellung von Butadien aus Ethen
DE1061318B (de) Verfahren zur selektiven Herstellung eines Propylenpolymeren mit vorwiegend 12 bis 24 Kohlenstoffatomen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: P-2005/0431

Country of ref document: YU

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003758074

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2506495

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003274089

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2006036121

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10538475

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/006186

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 20038A5582X

Country of ref document: CN

Ref document number: 1020057010669

Country of ref document: KR

Ref document number: 2004557875

Country of ref document: JP

Ref document number: 376155

Country of ref document: PL

WWP Wipo information: published in national office

Ref document number: 1020057010669

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003758074

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0317091

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10538475

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1-2005-500958

Country of ref document: PH