WO2004051733A1 - Thin gaas die with copper back-metal structure - Google Patents
Thin gaas die with copper back-metal structure Download PDFInfo
- Publication number
- WO2004051733A1 WO2004051733A1 PCT/US2003/030861 US0330861W WO2004051733A1 WO 2004051733 A1 WO2004051733 A1 WO 2004051733A1 US 0330861 W US0330861 W US 0330861W WO 2004051733 A1 WO2004051733 A1 WO 2004051733A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microns
- gaas substrate
- semiconductor device
- metal layer
- die
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/433—Auxiliary members in containers characterised by their shape, e.g. pistons
- H01L23/4334—Auxiliary members in encapsulations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/482—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body (electrodes)
- H01L23/4827—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04026—Bonding areas specifically adapted for layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/291—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/29111—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/8538—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/85399—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01015—Phosphorus [P]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0105—Tin [Sn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01073—Tantalum [Ta]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01322—Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/049—Nitrides composed of metals from groups of the periodic table
- H01L2924/0495—5th Group
- H01L2924/04953—TaN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/1026—Compound semiconductors
- H01L2924/1032—III-V
- H01L2924/10329—Gallium arsenide [GaAs]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/156—Material
- H01L2924/157—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2924/15738—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
- H01L2924/15747—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Definitions
- This invention relates generally to semi-conductor devices, and more particularly to Gallium Arsenide (GaAs) semiconductor devices.
- GaAs Gallium Arsenide
- Ceramic packages are preferred over plastic packages in some instances (e.g. when hemeticity and/or high frequency is required), but plastic packages are generally preferred over ceramic packages because plastic packages are less expensive.
- Plastic packages are routinely used to package silicon die, however, attempts to package GaAs semiconductor die in plastic packages have proven somewhat problematic.
- GaAs die i.e. those die having a thickness greater than about 3 mils
- GaAs die limit the maximum power capabilities that can be implemented.
- Tn order to overcome the power dissipation problems and allow more complex circuits, attempts have been made to reduce the thickness of the GaAs die to less than 3 mils.
- the die handling processes associated with packaging are incompatible with thin, i.e. less than 3 mils, GaAs die.
- the use of a thick, about 18 ⁇ m, gold back metal layer has been proposed in an attempt to strengthen GaAs die thinned for power dissipation purposes.
- the thick gold back-metal layer is incompatible with plastic packaging processes for at least two reasons: 1) the thick gold causes embrittlement of the soft-solder used in plastic packaging processes to attach the semiconductor die to the lead-frame; and 2) gold tends to de-laminate from a plastic package. What is needed, therefore, is a way to allow high-powered GaAs semiconductor die to be used in plastic packages. By allowing a high-powered semiconductor die to be used in a plastic package, substantial cost savings could be achieved without performance loss.
- FIG. 1 is a diagram of a thin GaAs semiconductor die having a copper back-metal structure according to an embodiment of the present disclosure.
- FIG. 2 is a thin GaAs die having a copper back-metal structure encapsulated in a plastic package according to an embodiment of the present disclosure.
- FIGS. 1-2 illustrate a thin GaAs die with a copper back-metal structure suitable for use in a plastic package, in accordance with the present disclosure.
- various anti-stress and oxidation resistant layers are shown in addition to the copper back-metal layer.
- FIG. 2 illustrates a completed semiconductor die encapsulated in a plastic package.
- the GaAs substrate is less than 2 mils (about 50 microns) thick, and particular embodiments of the GaAs substrate of the semiconductor die have thicknesses of approximately 1-2 mils (about 25-50 microns), less than approximately 1.5 mils (about 38 microns), or less than or equal to approximately 1 mil (about 25 microns).
- the copper back-metal layer provides both mechanical strength and improved heat dissipation properties to the GaAs die, and makes the GaAs die compatible with soft-solder die attach technologies.
- Soft solder die attach refers to die attach methods using soft solders that generally comprise about 5% tin and 95% lead. Since soft-solder die attached methods are used when preparing a semiconductor die for encapsulation in a plastic package, the thin GaAs substrate with copper back-metal layer can be packaged in a plastic package.
- Die 300 includes a GaAs Substrate 310 in which a semiconductor circuit is formed using methods known to those skilled in the art. While not shown in FIG. 1, GaAs Substrate 310 may also include various interconnection terminals on top of GaAs Substrate 310 for connecting Die 300 to leads during the packaging process.
- a Diffusion Barrier 320 is formed over the bottom of GaAs Substrate 310, such that any subsequent layers formed over Diffusion Barrier 320 will not adversely impact the semiconductor circuits within GaAs Substrate 310.
- Diffusion Barrier 320 includes an adhesion metal such as tantalum deposited in the form of tantalum nitride, or another suitable diffusion barrier known to those skilled in the art.
- over or “overlying” is used to describe a layer formed completely or partially over another layer or surface.
- overlying is used irrespective of the surface of the substrate on which overlying layer is formed.
- a layer formed on the backside surface of a substrate and a layer formed on an active surface of a substrate are both considered to be overlying the substrate.
- a Stress Relief Layer 330 is formed over Diffusion Barrier 320 in at least one embodiment.
- Stress Relief Layer 330 provides protection for GaAs Substrate 310 and or diffusion layer 320 from uneven expansion, contraction or other physical movements of a back-metal or other layer overlying Stress Relief Layer 330.
- gold is used as a stress relief layer. While FIG. 1 illustrates a single stress relief layer, using more than one stress relief layer does not depart from the spirit and scope of the present invention.
- Copper Back-metal Layer 340 On top of Stress Relief Layer 330, a Copper Back-metal Layer 340 is formed. Copper Back-metal Layer 340 has a thickness chosen to be sufficient to provide the necessary support for GaAs Substrate 310 during the packaging process, including the process of soft-solder die attach. For example, a 3-mil-thick (about 16 microns) GaAs die needs very little, if any, additional mechanical support. Consequently, a 3-mil-thick (about 76 microns) GaAs die may not include Copper Back-metal Layer 340. However, a 1 mil thick (about 25 microns) GaAs die may include a Copper Back-metal layer 340 having a thickness of between about 11-15 microns to provide the additional mechanical support.
- An appropriate thickness for Copper Back-metal Layer 340 can be selected empirically. For example, if it is known that 18-19 microns of gold are needed to provide adequate mechanical strength for a 25 micron thick GaAs die, then using the known physical properties of gold and copper, for example tensile strength, malleability, etc., the thickness of copper needed to provide an equivalent mechanical stability can be calculated.
- Copper Metal Back layer 340 provides improved heat dissipation as compared to a thick GaAs substrate.
- GaAs Substrate 310 can be made thinner and still dissipate enough heat through the use of the Copper Metal Back layer 340 to support high power circuits formed overlying the thin GaAs Substrate 310.
- Those skilled in the art can readily calculate the amount of heat dissipation required by the circuits, and incorporate that information in their decision ⁇ regarding the thickness of Copper Back-metal Layer 340.
- Oxidation Resistant Layer 350 is formed over Copper Back-metal Layer 340 to prevent oxidation of Copper Back-metal Layer 340.
- Oxidation of Copper Back-metal Layer 340 is undesirable, since oxidation can adversely affect both the electrical and heat transfer properties of Copper Back-metal Layer 340.
- the oxidation can adversely affect the bonding of Copper Back-metal layer 340 to the packaging (e.g. to the solder).
- Oxidation Resistant Layer 340 is a thin layer of gold about 1500 Angstroms thick, which is referred to as a flash of gold.
- Oxidation Resistant Layer 350 should be limited, particularly when gold is used, because solder embrittlement may occur due to soft-solder attachment of Die 300 to a lead frame if the Oxidation Resistant Layer 350 is formed too thick.
- the semiconductor die shown in FIG. 1 is compatible with soft-solder die attach processes that are commonly used during packaging operations.
- the GaAs Substrate 310 is less than 2 mils thick, thereby allowing a relatively high power circuit to be formed in GaAs Substrate 310.
- GaAs Substrate 310 is less than 1 mil thick, and in at least one embodiment, GaAs Substrate 410 is nominally 1 mil (about 25 microns).
- the use of Copper Back-metal Layer 340 also permits Die 300 to be packaged in a plastic package, because
- Semiconductor Die 300 is compatible with soft-solder die attach methods.
- FIG. 2 a semiconductor die having a thin GaAs substrate and a copper back-metal layer are illustrated inside of a plastic package according to an embodiment of the present invention.
- the packaged die will be referred to as Packaged Die 500.
- the semiconductor die illustrated in FIG.2 includes a thin GaAs Substrate 510 (in one embodiment having a thickness in the range of 15-35 microns), a Diffusion Barrier 520, a Copper Back-metal Layer 530 and an Oxidation Resistant Layer 540.
- the semiconductor die is attached to Flag 560 using a soft-solder die attach method.
- Flag 560 is coated with Soft-solder Layer 590.
- Soft-solder Layer 590 is a layer of soft-solder, which in at least one embodiment comprises 5% tin and 95% lead. In alternate embodiments, eutectic solder or conductive epoxies can be used.
- Soft-solder Layer 590 is heated, and brought into contact with the oxidation resistant layer 540 of the semiconductor die.
- the Oxidation Resistant Layer 540, a portion of the Copper Back- metal Layer 530 and Soft-solder Layer 590 melt such that the components of each of the layers intermingle with the others to form a solder joint when the heat is removed and the materials are allowed to cool.
- Soft-solder Layer 590 is adjacent to Copper Back-metal Layer 530, and the material in Oxidation Resistant Layer 540 (e.g. gold) is present within Soft-solder Layer 590, and at the interface between Soft-solder Layer 590 and Copper Back-metal Layer 530.
- Bonding Wires 582 are bonded to the die and Bonding Fingers 580, and then the assembly is in a mold die.
- a mold die Usually a plurality of such assemblies, e.g. as exist in a lead frame, is placed in a mold die.
- a thermoset plastic compound is transferred into a cavity of the mold die to encapsulate the semiconductor die, thus forming a completed semiconductor package such as Plastic Package 500.
- the thermoset plastic may be cured, and further processing (e.g. lead trim and form, package marking, and test) occur in a conventional manner.
- a thin GaAs Substrate can be provided with a copper back- metal layer to allow the GaAs Substrate to be packaged using conventional plastic packaging technologies.
- the GaAs substrate can be made thinner than 2 mils (about 50 microns), thereby reducing heat dissipation problems as well as allowing the semiconductor die to be compatible with soft-solder techniques.
- substantial cost savings can be achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Die Bonding (AREA)
- Electrodes Of Semiconductors (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN038254352A CN1720610B (zh) | 2002-11-27 | 2003-09-30 | 具有铜背部金属结构的薄GaAs管芯 |
| JP2004557131A JP2006517054A (ja) | 2002-11-27 | 2003-09-30 | 銅裏面金属構造を備えるGaAs薄型ダイ |
| AU2003277129A AU2003277129A1 (en) | 2002-11-27 | 2003-09-30 | Thin gaas die with copper back-metal structure |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/306,834 US6870243B2 (en) | 2002-11-27 | 2002-11-27 | Thin GaAs die with copper back-metal structure |
| US10/308,334 | 2002-11-27 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2004051733A1 true WO2004051733A1 (en) | 2004-06-17 |
Family
ID=32325776
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2003/030861 Ceased WO2004051733A1 (en) | 2002-11-27 | 2003-09-30 | Thin gaas die with copper back-metal structure |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US6870243B2 (enExample) |
| JP (1) | JP2006517054A (enExample) |
| KR (1) | KR20050085143A (enExample) |
| CN (1) | CN1720610B (enExample) |
| AU (1) | AU2003277129A1 (enExample) |
| TW (1) | TWI339425B (enExample) |
| WO (1) | WO2004051733A1 (enExample) |
Families Citing this family (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6870243B2 (en) * | 2002-11-27 | 2005-03-22 | Freescale Semiconductor, Inc. | Thin GaAs die with copper back-metal structure |
| US6833289B2 (en) * | 2003-05-12 | 2004-12-21 | Intel Corporation | Fluxless die-to-heat spreader bonding using thermal interface material |
| US20050085084A1 (en) * | 2003-10-16 | 2005-04-21 | Chang Edward Y. | Method of fabricating copper metallization on backside of gallium arsenide devices |
| US7221055B2 (en) * | 2005-05-23 | 2007-05-22 | Texas Instruments Incorporated | System and method for die attach using a backside heat spreader |
| US7923842B2 (en) | 2006-03-16 | 2011-04-12 | Skyworks Solutions, Inc. | GaAs integrated circuit device and method of attaching same |
| CN100449740C (zh) * | 2006-06-19 | 2009-01-07 | 上海集成电路研发中心有限公司 | 降低半导体器件发热的散热方法、相应器件及其制造方法 |
| JP4917375B2 (ja) * | 2006-07-25 | 2012-04-18 | 株式会社豊田中央研究所 | パワー半導体モジュールの製造方法 |
| CN101641785B (zh) * | 2006-11-09 | 2011-07-13 | 怡得乐Qlp公司 | 具有延展层的微电路封装体 |
| US20090108437A1 (en) * | 2007-10-29 | 2009-04-30 | M/A-Com, Inc. | Wafer scale integrated thermal heat spreader |
| JP5103245B2 (ja) | 2008-03-31 | 2012-12-19 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
| US8987878B2 (en) | 2010-10-29 | 2015-03-24 | Alpha And Omega Semiconductor Incorporated | Substrateless power device packages |
| US8415805B2 (en) | 2010-12-17 | 2013-04-09 | Skyworks Solutions, Inc. | Etched wafers and methods of forming the same |
| JP2013098481A (ja) * | 2011-11-04 | 2013-05-20 | Sumitomo Electric Device Innovations Inc | 半導体装置 |
| US8900969B2 (en) | 2012-01-27 | 2014-12-02 | Skyworks Solutions, Inc. | Methods of stress balancing in gallium arsenide wafer processing |
| CN103377914A (zh) * | 2012-04-18 | 2013-10-30 | 稳懋半导体股份有限公司 | 半导体元件背面铜金属的改良结构及其加工方法 |
| US9093506B2 (en) | 2012-05-08 | 2015-07-28 | Skyworks Solutions, Inc. | Process for fabricating gallium arsenide devices with copper contact layer |
| JP2014099547A (ja) * | 2012-11-15 | 2014-05-29 | Mitsubishi Electric Corp | 電力半導体モジュールおよびその製造方法 |
| US9530719B2 (en) | 2014-06-13 | 2016-12-27 | Skyworks Solutions, Inc. | Direct die solder of gallium arsenide integrated circuit dies and methods of manufacturing gallium arsenide wafers |
| TWI660471B (zh) * | 2017-10-06 | 2019-05-21 | 財團法人工業技術研究院 | 晶片封裝 |
| US11133241B2 (en) | 2019-06-28 | 2021-09-28 | Stmicroelectronics, Inc. | Semiconductor package with a cavity in a die pad for reducing voids in the solder |
| CN112989744B (zh) * | 2021-02-08 | 2023-11-17 | 泰凌微电子(上海)股份有限公司 | 一种半导体芯片的封装设计方法以及装置 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0194475A2 (en) * | 1985-03-14 | 1986-09-17 | Olin Corporation | Semiconductor die attach system |
| US5821154A (en) * | 1995-01-27 | 1998-10-13 | Nec Corporation | Semiconductor device |
| EP1063701A2 (en) * | 1999-06-24 | 2000-12-27 | Intersil Corporation | Backmetal drain terminal with low stress and thermal resistance |
Family Cites Families (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3755720A (en) * | 1972-09-25 | 1973-08-28 | Rca Corp | Glass encapsulated semiconductor device |
| US3942186A (en) * | 1973-10-09 | 1976-03-02 | Westinghouse Electric Corporation | High frequency, field-effect transistor |
| US4321099A (en) * | 1979-11-13 | 1982-03-23 | Nasa | Method of fabricating Schottky barrier solar cell |
| US4543442A (en) * | 1983-06-24 | 1985-09-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | GaAs Schottky barrier photo-responsive device and method of fabrication |
| JPS61174723A (ja) * | 1985-01-30 | 1986-08-06 | Mitsubishi Electric Corp | 半導体装置の製造方法 |
| US4872047A (en) * | 1986-11-07 | 1989-10-03 | Olin Corporation | Semiconductor die attach system |
| US4989117A (en) * | 1990-02-12 | 1991-01-29 | Rogers Corporation | Molded integrated circuit package incorporating thin decoupling capacitor |
| JPH04225536A (ja) * | 1990-12-27 | 1992-08-14 | Nikko Kyodo Co Ltd | 化合物半導体装置の製造方法 |
| JPH05243396A (ja) * | 1992-03-02 | 1993-09-21 | Matsushita Electric Ind Co Ltd | 半導体装置及びその製造方法 |
| JP2978351B2 (ja) * | 1993-02-16 | 1999-11-15 | 株式会社日立製作所 | 樹脂封止型半導体装置 |
| US5545289A (en) * | 1994-02-03 | 1996-08-13 | Applied Materials, Inc. | Passivating, stripping and corrosion inhibition of semiconductor substrates |
| IT1274129B (it) * | 1994-11-29 | 1997-07-15 | Soriani & Moser Manufacturers | Giostra di divertimento di tipo perfezionato |
| US5528076A (en) * | 1995-02-01 | 1996-06-18 | Motorola, Inc. | Leadframe having metal impregnated silicon carbide mounting area |
| US5622305A (en) * | 1995-05-10 | 1997-04-22 | Lucent Technologies Inc. | Bonding scheme using group VB metallic layer |
| JPH09306932A (ja) * | 1996-05-17 | 1997-11-28 | Sanyo Electric Co Ltd | 半導体装置の製造方法 |
| US6105865A (en) * | 1998-07-17 | 2000-08-22 | Hardesty; Laurence Daniel | Financial transaction system with retirement saving benefit |
| US6010966A (en) * | 1998-08-07 | 2000-01-04 | Applied Materials, Inc. | Hydrocarbon gases for anisotropic etching of metal-containing layers |
| JP3690171B2 (ja) * | 1999-03-16 | 2005-08-31 | 株式会社日立製作所 | 複合材料とその製造方法及び用途 |
| US6609106B1 (en) * | 1999-05-07 | 2003-08-19 | Steven C. Robertson | System and method for providing electronic multi-merchant gift registry services over a distributed network |
| US6426289B1 (en) * | 2000-03-24 | 2002-07-30 | Micron Technology, Inc. | Method of fabricating a barrier layer associated with a conductor layer in damascene structures |
| TWI248384B (en) * | 2000-06-12 | 2006-02-01 | Hitachi Ltd | Electronic device |
| US6551852B2 (en) * | 2001-06-11 | 2003-04-22 | Micron Technology Inc. | Method of forming a recessed magnetic storage element |
| JP2003045875A (ja) * | 2001-07-30 | 2003-02-14 | Nec Kagobutsu Device Kk | 半導体装置およびその製造方法 |
| US6583500B1 (en) * | 2002-02-11 | 2003-06-24 | Texas Instruments Incorporated | Thin tin preplated semiconductor leadframes |
| US6787910B2 (en) * | 2002-07-23 | 2004-09-07 | National Chiao Tung University | Schottky structure in GaAs semiconductor device |
| US6870243B2 (en) * | 2002-11-27 | 2005-03-22 | Freescale Semiconductor, Inc. | Thin GaAs die with copper back-metal structure |
| US20040146138A1 (en) * | 2003-01-23 | 2004-07-29 | Motorola, Inc. | Large flat panel gallium arsenide arrays on silicon substrate for low dose X-ray digital imaging |
-
2002
- 2002-11-27 US US10/306,834 patent/US6870243B2/en not_active Expired - Lifetime
-
2003
- 2003-09-30 CN CN038254352A patent/CN1720610B/zh not_active Expired - Fee Related
- 2003-09-30 WO PCT/US2003/030861 patent/WO2004051733A1/en not_active Ceased
- 2003-09-30 JP JP2004557131A patent/JP2006517054A/ja active Pending
- 2003-09-30 AU AU2003277129A patent/AU2003277129A1/en not_active Abandoned
- 2003-09-30 KR KR1020057009331A patent/KR20050085143A/ko not_active Ceased
- 2003-11-27 TW TW092133454A patent/TWI339425B/zh not_active IP Right Cessation
-
2005
- 2005-02-03 US US11/050,079 patent/US7092890B2/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0194475A2 (en) * | 1985-03-14 | 1986-09-17 | Olin Corporation | Semiconductor die attach system |
| US5821154A (en) * | 1995-01-27 | 1998-10-13 | Nec Corporation | Semiconductor device |
| EP1063701A2 (en) * | 1999-06-24 | 2000-12-27 | Intersil Corporation | Backmetal drain terminal with low stress and thermal resistance |
Non-Patent Citations (3)
| Title |
|---|
| CHEN C Y ET AL: "Backside copper metallisation of GaAs MESFETs", ELECTRONICS LETTERS, IEE STEVENAGE, GB, vol. 36, no. 15, 20 July 2000 (2000-07-20), pages 1317 - 1318, XP006015473 * |
| CHEN C-Y ET AL: "BACKSIDE COPPER METALLIZATION OF GAAS MESFETS USING TAN AS THE DIFFUSION BARRIER", IEEE TRANSACTIONS ON ELECTRON DEVICES, IEEE INC. NEW YORK, US, vol. 48, no. 6, June 2001 (2001-06-01), pages 1033 - 1036, XP001082386, ISSN: 0018-9383 * |
| GREBS T ET AL: "THE USE OF COPPER BASED BACKMETAL SCHEMES AS A LOW STRESS AND LOW THERMAL RESISTANCE ALTERNATIVE FOR USE IN THIN SUBSTRATE POWER DEVICES", PROCEEDINGS OF THE ELECTROCHEMICAL SOCIETY, NEW YORK,NY, US, 3 May 1999 (1999-05-03), pages 185 - 193, XP008011990 * |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2003277129A1 (en) | 2004-06-23 |
| US6870243B2 (en) | 2005-03-22 |
| KR20050085143A (ko) | 2005-08-29 |
| CN1720610B (zh) | 2010-10-13 |
| US20050127480A1 (en) | 2005-06-16 |
| CN1720610A (zh) | 2006-01-11 |
| TW200416970A (en) | 2004-09-01 |
| JP2006517054A (ja) | 2006-07-13 |
| US20040099932A1 (en) | 2004-05-27 |
| US7092890B2 (en) | 2006-08-15 |
| TWI339425B (en) | 2011-03-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6870243B2 (en) | Thin GaAs die with copper back-metal structure | |
| US10074590B1 (en) | Molded package with chip carrier comprising brazed electrically conductive layers | |
| US5438021A (en) | Method of manufacturing a multiple-chip semiconductor device with different leadframes | |
| US5888847A (en) | Technique for mounting a semiconductor die | |
| US6764880B2 (en) | Semiconductor package and fabricating method thereof | |
| US4989069A (en) | Semiconductor package having leads that break-away from supports | |
| US5218229A (en) | Inset die lead frame configuration lead frame for a semiconductor device having means for improved busing and die-lead frame attachment | |
| KR101398404B1 (ko) | 기계적으로 분리된 리드 부착물을 갖는 플라스틱오버몰딩된 패키지들 | |
| US20020096755A1 (en) | Semiconductor device | |
| JP4023397B2 (ja) | 半導体モジュールおよびその製造方法 | |
| US20140232015A1 (en) | Semiconductor Modules and Methods of Formation Thereof | |
| JP2003510815A (ja) | 能動素子上に設けられた接着パッドを備える半導体チップ | |
| US20140001480A1 (en) | Lead Frame Packages and Methods of Formation Thereof | |
| JP2982126B2 (ja) | 半導体装置およびその製造方法 | |
| JPH0613477A (ja) | 露出したダイ面を有する半導体パッケージ | |
| EP0348972A2 (en) | A semiconductor device and a process for manufacturing thereof | |
| US7221055B2 (en) | System and method for die attach using a backside heat spreader | |
| US20050275089A1 (en) | Package and method for packaging an integrated circuit die | |
| US7811862B2 (en) | Thermally enhanced electronic package | |
| US5102831A (en) | Method of manufacturing multi-chip package | |
| CN113471162B (zh) | 电子器件、电子模块及其制造方法 | |
| CN112447615B (zh) | 半导体器件封装组件及其制造方法 | |
| US20020163074A1 (en) | Power device with a plastic molded package and direct bonded substrate | |
| JP2982971B2 (ja) | インターナル・ダム・バーを有する集積回路用ポスト・モールド・キャビティ型パッケージ | |
| CN115380376A (zh) | 半导体裸片接合垫上的金凸块上的铜线接合件 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 1020057009331 Country of ref document: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2004557131 Country of ref document: JP Ref document number: 20038254352 Country of ref document: CN |
|
| WWP | Wipo information: published in national office |
Ref document number: 1020057009331 Country of ref document: KR |
|
| 122 | Ep: pct application non-entry in european phase |