WO2004048297A1 - 水素化反応方法 - Google Patents

水素化反応方法 Download PDF

Info

Publication number
WO2004048297A1
WO2004048297A1 PCT/JP2003/015134 JP0315134W WO2004048297A1 WO 2004048297 A1 WO2004048297 A1 WO 2004048297A1 JP 0315134 W JP0315134 W JP 0315134W WO 2004048297 A1 WO2004048297 A1 WO 2004048297A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
catalyst
liquid phase
hydrogenation reaction
saturated
Prior art date
Application number
PCT/JP2003/015134
Other languages
English (en)
French (fr)
Inventor
Kango Fujitani
Yutaka Hayashi
Original Assignee
New Japan Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co., Ltd. filed Critical New Japan Chemical Co., Ltd.
Priority to JP2004555059A priority Critical patent/JP4802497B2/ja
Priority to EP03811941.8A priority patent/EP1566372B1/en
Publication of WO2004048297A1 publication Critical patent/WO2004048297A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • C07C209/70Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton by reduction of unsaturated amines
    • C07C209/72Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton by reduction of unsaturated amines by reduction of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/177Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds with simultaneous reduction of a carboxy group

Definitions

  • the present invention relates to a heterogeneous catalytic hydrogenation method.
  • Heterogeneous catalytic hydrogenation is a complex reaction involving three phases: gas-liquid-solid surface, and heretofore disclosed what kind of gas-liquid flow conditions can achieve high productivity. Technology is not found.
  • a catalyst containing nickel metal or copper metal is brought into contact with the above raw materials together with hydrogen gas in advance to desulfurize the oil or fat or fatty acid ester.
  • a technology has been disclosed that a low sulfur content raw material having a sulfur content of 0.6 ppm or less has the same reduction reactivity as when a raw material having the same sulfur content obtained by distillation of the raw material is used.
  • the hydrogenation reaction itself adopts a conventionally known method using a liquid phase suspended bed or a fixed bed reaction system, and a raw material having a reduced sulfur content is used. It merely describes hydrogenation to the corresponding alcohol in the presence of a copper-based ester reduction catalyst according to a conventionally known method.
  • Heterogeneous catalytic hydrogenation is a complex reaction involving three phases: gas-liquid-solid surface. Conventionally, under which conditions high productivity can be obtained, Did not.
  • a zinc-chromium-based or zinc-chromium-aluminum-based composite metal oxide catalyst is used to hydrogenate unsaturated aldehydes, unsaturated fatty acids or unsaturated fatty acid esters.
  • unsaturated alcohol is produced by the above method, there is a method in which the copper content and the nickel content in the composite metal oxide catalyst are not more than a certain amount (Japanese Patent Application Laid-Open No. 2000-89430). (See claims 1 and 2, paragraphs 0022 and 0023).
  • the catalyst having a specific composition has a breaking strength of 20 to 500 kg / cm 3 , a transverse breaking strength of 2 to 10 kg per cm, and a bulk specific gravity of 1.0 to 1.8. Is preferred. This method focuses only on the importance of the copper content and the nickel content in the catalyst, and the breaking strength of the catalyst, but does not describe the gas-liquid flow state in the reaction system.
  • An object of the present invention is to provide a heterogeneously catalyzed hydrogenation reaction method which can be generally applied to hydrogenation of various raw materials and has high productivity. Disclosure of the invention
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, using a solid catalyst-filled tubular reactor in which both hydrogen gas and a liquid-phase hydrogen-containing material flow down from above, the irrigation flow in the hydrogen I spoon reaction under the conditions, 0. 0 0 5 X 1 0- 3 ⁇ 0 in the reaction conditions dynamic liquid phase retained amount per unit catalyst outer surface area. 1 4 X 1 0-3 m 3 Zm
  • it was found that the use of a solid catalyst having a minimum catalyst strength of 1.0 kg or more per catalyst resulted in high productivity in the hydrogenation reaction of various raw materials.
  • the present invention has been completed by further studies based on such findings, and provides a heterogeneous catalytic hydrogenation method shown below.
  • Item 1 Solid flow of hydrogen gas and liquid phase containing hydrogenated substance
  • Catalyst strength A-2 ⁇
  • represents the average value of the minimum crushing strength measured for 100 pieces of the above catalyst in accordance with the method described in “Crushing strength test method” of JISZ8841-1993. Indicates the standard deviation value of the minimum crushing strength.
  • a heterogeneous catalytic hydrogenation reaction method wherein the catalyst strength determined by the above is 1.0 kg or more.
  • An organic compound in which the substance to be hydrogenated contains at least one group selected from the group consisting of an ester group, a carbon-carbon double bond, an aromatic ring, a nitrile group, an acid amide group and a imide group.
  • the heterogeneous catalytic hydrogenation reaction method according to the above item 1, wherein Item 3.
  • the hydrogenation reaction is a reduction reaction of a saturated or unsaturated fatty acid alkyl ester to a saturated alcohol, a reduction reaction of an unsaturated fatty acid alkyl ester to an unsaturated alcohol, a fatty acid of an aliphatic or alicyclic dicarponic acid dialkyl ester.
  • Item 1 The heterogeneous system according to Item 1, which is a reduction reaction to an aliphatic or alicyclic diole, a reduction reaction of a dicarboxylic anhydride to a lactone-based compound, or a reduction reaction of a lactone-based compound to an aliphatic diol.
  • Catalytic hydrogenation reaction method is a reduction reaction of a saturated or unsaturated fatty acid alkyl ester to a saturated alcohol, a reduction reaction of an unsaturated fatty acid alkyl ester to an unsaturated alcohol, or a reaction of an aliphatic or alicyclic dicarboxylate dialkyl ester.
  • Hydrogenation reaction is hydrogenation reaction of carbon-carbon double bond, nuclear hydrogenation reaction of aromatic compound, hydrogenation reaction of nitrile compound to amine, acid amide compound to amine Item 1.
  • Item 6 The heterogeneous catalyst according to any one of Items 1 to 5 above, wherein the total content of chlorine atoms and sulfur atoms contained in the hydrogenated substance subjected to the hydrogenation reaction is 5 pm or less.
  • Item 7 The solid catalyst according to any one of the above items 1 to 6, wherein the solid catalyst supports at least one selected from the group consisting of copper, zinc, nickel, ruthenium, palladium, platinum, mouth dies, and oxides thereof.
  • the solid catalyst is at least one selected from the group consisting of copper, zinc, nickel, ruthenium, palladium, platinum, orifice and oxides thereof, and chromium, molybdenum, tungsten, magnesium, barium, aluminum 9.
  • Item 9 The heterogeneous system according to any one of Items 1 to 8, wherein the solid catalyst is a solid catalyst supporting at least one selected from the group consisting of copper, chromium, zinc, nickel, ruthenium, and oxides thereof. Catalytic hydrogen reaction method.
  • the shape of the solid catalyst is at least one selected from the group consisting of a cylinder, a hollow cylinder, a trilobe, a tetralobe, and a sphere, and the minimum length is 1 to 10 mm.
  • Item 10 The heterogeneous catalytic hydrogenation reaction method according to any one of Items 1 to 9 above. Claim 1 1 dissolved hydrogen concentration in the liquid phase of the reaction column is, 0. 0 1 ⁇ 5.
  • Item 12 In the steady state of the hydrogenation reaction, when the dissolved hydrogen concentration in the liquid phase is 1 m below the highest point of the catalyst layer in the reaction tower, 10 to 100% of the saturated hydrogen concentration in the liquid phase Item 2.
  • Item 1 3 Hydrogenation reaction is
  • the dissolved hydrogen concentration in the liquid phase is adjusted to 10 to 60% of the saturated hydrogen concentration in the liquid phase at a point lm below the highest point of the catalyst layer in the reaction tower.
  • the heterogeneous catalytic hydrogenation reaction method as described in the above. Item 14 Hydrogenation reaction is
  • FIG. 1 is a schematic diagram showing the perfusate flow conditions of the present invention.
  • FIG. 2 is a plan view of a solid catalyst having a trilobal column shape, and R indicates a minimum length.
  • FIG. 3 is a plan view of a solid catalyst having a four-leaf column shape, and L indicates a minimum length.
  • FIG. 4 is a schematic diagram of a reaction apparatus used in each of the examples and comparative examples. The meanings of the symbols used in FIGS. 1 to 4 are as follows.
  • the substance to be hydrogenated used as a raw material in the hydrogenation reaction of the present invention is at least selected from the group consisting of an ester group, a carbon-carbon double bond, an aromatic ring, a nitrile group, an acid amide group and an imide group.
  • An organic compound containing one group is at least selected from the group consisting of an ester group, a carbon-carbon double bond, an aromatic ring, a nitrile group, an acid amide group and an imide group.
  • the substance to be hydrogenated includes (1) fats and oils, saturated or unsaturated fatty acids derived from fats and oils, alkyl esters of the saturated or unsaturated fatty acids, (2) unsaturated fatty acids or alkyl esters thereof, and (3) aliphatic dicarbones.
  • Acid dialkyl ester reaction product of aliphatic dicarboxylic acid and aliphatic diol (oligomer), (4) alicyclic dicarboxylate dialkyl ester, (5) dicarboxylic anhydride, (6) containing carbon-carbon double bond (Unsaturated fatty acids, unsaturated alcohols, etc.), (7) a compound containing an aromatic nucleus of an aromatic compound, (8) a nitrile conjugate, an acid amide compound, and (9) an acid imide compound. .
  • the hydrogen reaction according to the present invention includes a reduction reaction of a saturated or unsaturated fatty acid alkyl ester to a saturated alcohol, a reduction reaction of an unsaturated fatty acid alkyl ester to an unsaturated alcohol, a dialkyl aliphatic or alicyclic dicarboxylate.
  • Hydrogenation reaction of acid amide compound to amine, hydrogenation reaction of acid imide compound to pyrrolidine compound and amine are recommended.
  • lower alkyl refers to an alkyl group having 1 to 4 carbon atoms, unless otherwise specified.
  • the method of the present invention comprises a saturated alcohol having 8 to 22 carbon atoms from a raw material selected from the group consisting of a saturated or unsaturated fatty acid, its triglyceride and its lower alkyl ester.
  • a saturated alcohol having 8 to 22 carbon atoms from a raw material selected from the group consisting of a saturated or unsaturated fatty acid, its triglyceride and its lower alkyl ester.
  • coconut oil, palm oil, palm oil, olive oil, soybean oil, low-elsin rapeseed oil are used as a raw material for producing a saturated alcohol having 8 to 22 carbon atoms.
  • Used frying oil such as beef tallow, lard, chicken fat, fish oil, etc., having 8 to 22 carbon atoms of saturated or unsaturated fatty acid triglyceride (oil or fat), or having 8 to 22 carbon atoms obtained from these fats or oils.
  • Examples include at least one selected from unsaturated fatty acids and lower alkyl esters of saturated or unsaturated fatty acids having 8 to 22 carbon atoms.
  • lower alkyl esters of the saturated or unsaturated fatty acids are preferred as the raw material for the reduction reaction.
  • a specific carbon number component can be concentrated and separated by distillation or cooling solid fractionation at the stage of fatty acid lower alkyl ester (especially methyl ester) or fatty acid to obtain a reduction reaction raw material.
  • a copper-based solid catalyst described below is usually used.
  • the method of the present invention produces an unsaturated alcohol having 16 to 22 carbon atoms from a raw material selected from the group consisting of unsaturated fatty acid, its triglyceride and its lower alkyl ester.
  • a raw material selected from the group consisting of unsaturated fatty acid, its triglyceride and its lower alkyl ester.
  • Examples of the unsaturated alcohol to be produced include unsaturated alcohols having 16 to 22 carbon atoms and having at least one or more (particularly 1 to 3) unsaturated bonds in the molecule. Specific examples include elaidyl alcohol, oleyl alcohol, linoleyl alcohol, linolenyl alcohol, and the like.
  • Raw materials for producing the unsaturated alcohol include coconut oil, palm kernel oil, palm oil, olive oil, soybean oil, rapeseed oil, safflower oil, corn oil, cottonseed oil, sunflower oil, rice bran oil, linseed oil Etc .; used frying oil such as soybean oil, rapeseed oil, safflower oil, corn oil, cottonseed oil, sunflower oil, olive oil, rice bran oil, etc .; carbon number of tallow, ginger, chicken fat, fish oil, etc.
  • lower alkyl esters of the unsaturated fatty acids, particularly methyl esters, are preferred as the raw material for the reduction reaction.
  • the unsaturated fatty acid can be obtained by hydrolyzing the fat or oil according to a conventional method.
  • the unsaturated fatty acid alkyl ester can be obtained by esterifying the unsaturated fatty acid thus obtained with a lower alcohol (for example, d-C alcohol such as methyl alcohol). It can also be obtained by transesterification with a C 1 -C 4 alcohol.
  • a raw material selected from the group consisting of unsaturated fatty acids, their triglycerides and their lower alkyl esters is distilled or, if necessary, subjected to a cooling solid fractionation operation to obtain an iodine value of 40 to 20. It is preferable to use 0 as a reduction reaction raw material.
  • ester of unsaturated fatty acid and unsaturated alcohol (ester of long-chain unsaturated fatty acid and long-chain unsaturated alcohol, ie, wax ester) generated during the reduction reaction or distillation of the reduction reaction product is also reduced. It can be used as a reaction raw material.
  • the method of the present invention can be used to produce an aliphatic diol having 3 to 22 carbon atoms from an aliphatic dicarboxylic acid dialkyl ester, hydroxyalkanoic acid, its lower alkyl ester, lactone and the like.
  • aliphatic diols having 3 to 22 carbon atoms to be produced include 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexane.
  • the raw materials include (a) an aliphatic dicarboxylic acid having 3 to 22 carbon atoms which may have at least one double bond (particularly 1 to 2). Di-lower alkyl ester, (b) lower alkyl ester of aliphatic monocarboxylic acid having 3 to 22 carbon atoms having l hydroxyl groups, (c) having at least one (particularly 1 to 2) double bond
  • Examples thereof include an oligoester formed by a reaction with an aliphatic group or (d) a lactone obtained from an aliphatic monocarboxylic acid having 3 to 22 carbon atoms having one hydroxyl group.
  • Examples of the lower alkyl group include an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, and an n-butyl group, and a methyl group is particularly preferable.
  • the raw material for 1,3-propanediol is 1-hydroxypropanoic acid, which is a water adduct to the double bond of acrylic acid lower alkyl ester (eg, methyl ester).
  • Alkyl esters eg, methyl esters
  • a demethyl alcohol condensate of 1-hydroxypropanoic acid lower ester can also be used.
  • a condensate (particularly, an oligomer) of 1-hydroxypropanoic acid and its reduction product, 1,3-propanediol can also be used.
  • examples of the raw material of 1,4-butanediol include di-lower alkyl maleate, di-lower alkyl succinate, and carboxylactone. Is done.
  • alkyl group examples include a linear or branched alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, and an n-butyl group.
  • the substitution position is not particularly limited.
  • 1,6-hexanediol as raw materials, specifically, di-lower alkyl adipate, ⁇ -force prolactone, 1-hydroxycaproic acid and / or 1-hydroxycaproic acid lower
  • Examples include oligo sesame obtained by subjecting an alkyl ester to dehydration esterification condensation and / or transesterification, and 1,6-hexanediol and 1-hydroxycabronic acid and ⁇ or 1-hydroxycabronic acid lower alkyl ester.
  • oligoesters of 1,6-hexanediol and adipic acid are examples of 1,6-hexanediol and adipic acid.
  • the method of the present invention can be used to produce an alicyclic diol having 8 to 12 carbon atoms from an alicyclic dicarponic acid di (C i -C ⁇ ) alkyl ester.
  • alicyclic diol having 8 to 12 carbon atoms to be produced include 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, and 1,4-cyclohexane.
  • examples include sandimethanol, 1,5-decalin dimethanol, and 2,6-decalin dimethanol.
  • the starting materials include alicyclic dicarponates (C i—) which may have at least one (particularly 1 to 2) double bonds in the molecule.
  • C10 ) alkyl esters are exemplified.
  • Alkyl groups include methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, n-pentyl, n-hexyl, n- Linear or branched aliphatic group such as butyl group, n-butyl group, cyclopentyl group, cyclohexyl group, 2-methylcyclohexyl group, 3-methylcyclohexyl group, 4-methylcyclohexyl An alicyclic group such as a hexyl group is exemplified.
  • a 1,4-hexahydrophthalic acid di (C i -C 10 ) alkyl ester is exemplified. .
  • 1,5-decalin dimethanol or 2,6-decalin dimethanol as raw materials, specifically, 1,5-decalin dicarboxylic acid di (C i -C 4 ) alkyl
  • the ester include 2,6-decalin dicarboxylic acid di (C i -C 4 ) alkyl ester.
  • the heterogeneous catalytic hydrogenation reaction of the present invention is carried out using a copper-based solid catalyst described below. Is preferred.
  • the present invention can be used to produce an intramolecular esterification reaction product, a captyrolactone-based compound, from a dicarboxylic anhydride.
  • a captyrolactone-based compound from a dicarboxylic anhydride.
  • the aptyrolactone-based compound include arptyrolactone, phthalide, hexahydrofuride and the like.
  • a nickel-based solid catalyst described below or a noble metal-based solid catalyst described below is used. Is preferably used to carry out the heterogeneous catalytic hydrogenation reaction of the present invention.
  • the present invention is applicable to a reaction for hydrogenating a carbon-carbon double bond.
  • the method of the present invention can be used to produce a fat and oil from fats and oils which are glycerides of unsaturated fatty acids, and the carbon-carbon duplex slightly remaining in a saturated alcohol having 8 to 22 carbon atoms. It can be applied to the process of hydrogenating bonds to reduce iodine value and produce high quality saturated alcohol. In these cases, it is usually preferable to carry out the heterogeneous catalytic hydrogenation reaction of the present invention using a nickel-based solid catalyst.
  • the method of the present invention comprises the steps of: starting from an unsaturated alcohol containing a conjugated double bond in the liver (C 16 —c 22 , particularly c 18 ) as a raw material, hydrogenating a conjugated gen in the unsaturated alcohol to a monoene,
  • the present invention can be applied to a process for producing an unsaturated alcohol containing no gen compound.
  • Such unsaturated alcohols are excellent in stability over time and heat resistance.
  • a process for producing a succinic anhydride by hydrogenating maleic anhydride delta 4 - tetrahydrofuran Yuru anhydride process for producing Kisahidorofu Yurusan anhydride to be hydrogenated
  • delta 4 Process of hydrogenating dialkyl tetrahydrophthalate (straight or branched C1-13) ester to produce dialkylhexahydrophthalate (straight or branched C1-13) ester Applicable to In this case, it is usually preferable to carry out the heterogeneous catalytic hydrogenation reaction of the present invention using a nickel-based solid catalyst described below or a noble metal-based solid catalyst described below.
  • This invention is applicable to the nuclear hydrogenation reaction of an aromatic compound.
  • the aromatic compound as a raw material include a compound containing a benzene ring and a naphthalene ring.
  • Cyclohexanedicarboxylic carboxylic acid di (C ⁇ one c 13) alkyl cycloheteroalkyl as a raw material, terephthalic acid di (C i- C 1 3) alkyl, isophthalic acid di (C i- c 13) ⁇ alkyl, Examples thereof include di (C i -C ⁇ ) alkyl terephthalate.
  • Examples of the C 13 alkyl group include a methyl group, an ethyl group, and an n-pro Straight chain such as pill, iso-propyl, n-butyl, sec-butyl, iso-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl And alicyclic groups such as linear or branched aliphatic groups, cyclopentyl groups, cyclohexyl groups, 2-methylcyclohexyl groups, 3-methylcyclohexyl groups, and 4-methylcyclohexyl groups. .
  • the raw materials used are raw tecole, resorcinol, hydroquinone, 4,4'-biphenol, bisphenol A, Bisphenol Z and the like are exemplified.
  • alicyclic diamines such as methylenebis (cyclohexylamine), o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, m-xylylenediamine, p-xylylenediamine , 4,4′-methylenedianiline and the like.
  • the method of the present invention can be applied to a heterocyclic hydrogenation reaction of a complex ring compound having at least one (particularly 1 to 5) unsaturated bonds.
  • heterocyclic compounds include pyridine compounds such as pyridine and methyl nicotinate, quinoline compounds such as quinoline, and furan compounds such as furfuryl aldehyde and furan carboxylic acid.
  • piperidine from pyridine methylhexahydronicotinate from methyl nicotinate, decahydroquinoline from quinoline, tetrahydrofurfuryl alcohol from furfurylaldehyde capra, Tetrahydrofurfurylcarboxylic acid can be produced from furancarboxylic acid.
  • the heterogeneous catalytic hydrogenation reaction of the present invention is usually performed using a nickel-based solid catalyst described below or a noble metal-based solid catalyst described below. Is preferred.
  • the method of the present invention is applicable to the hydrogenation reaction of nitrile compounds to amines.
  • the nitrile compound as a raw material is not particularly limited, but specific examples thereof include butyronitrile, laurylonitrile, and stearonitrile.
  • the method of the present invention can be applied to a hydrogenation reaction of an acid amide compound to an amine.
  • the acid amide as a raw material is not particularly limited, but specific examples thereof include butyric amide, lauric amide, and stearic amide.
  • the heterogeneous catalytic hydrogenation of the present invention is usually carried out from a nitrile compound or an acid amide compound using a nickel-based solid catalyst described below or a noble metal-based solid catalyst described below.
  • the amine is produced by the reaction.
  • the present invention can be applied to a hydrogenation reaction of an acid imide to a pyrrolidine compound diamine.
  • a hydrogenation reaction of an acid imide to a pyrrolidine compound diamine for example, the ⁇ 4 Tetorahido port phthalate Imido and Z or to Kisahido port phthalate I Mi de hydrogenated, it is possible to manufacture the O Kuta tetrahydroisoquinoline indole.
  • a copper-based solid catalyst described below or a noble metal-based solid catalyst described below it is usually preferable to use a copper-based solid catalyst described below or a noble metal-based solid catalyst described below to produce a pyrrolidine compound amine from the acid imide compound by the heterogeneous hydrogenation reaction of the present invention.
  • the hydrogenation reaction is a reduction reaction of a saturated (unsaturated) fatty acid alkyl ester to a saturated alcohol, and a hydrogenation reaction of an unsaturated fatty acid alkyl ester to an unsaturated alcohol.
  • the reaction and the nuclear hydrogenation reaction of aromatic compounds are particularly suitable for the present invention.
  • the above-mentioned various compounds can be used.
  • the total content of chlorine atoms and sulfur atoms is 5 ppm or less, preferably 3 ppm or less, particularly It is preferably at most 1 ppm, more preferably at most 0.3 ppm.
  • catalyst poisoning by chlorine atoms is completely different from catalyst poisoning by sulfur atoms. That is, the sulfur compound reacts extremely quickly with the catalyst metal under the hydrogenation reaction conditions, and is localized at the top of the catalyst layer as a metal sulfide.
  • a chlorine atom may take a behavior called migration.
  • metal chlorides produced by reacting with the catalyst metal tend to dissolve in the reaction solution and diffuse downward in the catalyst layer, expanding the poisoned area (catalyst inactive area).
  • the reaction of the organochlorine compound with the catalyst is delayed, and as a result, reaches the lower portion of the catalyst layer and behaves in the same manner as the above migration.
  • the present inventors have found that a raw material having a total content of chlorine atoms and sulfur atoms of 5 ppm or less is effective in the presence of two types of poisoning substances having completely different behaviors of sulfur and chlorine. It is a thing.
  • the cause of the chlorine atom is included when inorganic compounds such as salt (NaCl) and hydrochloric acid salt are mixed, and when organic chlorine compounds are mixed.
  • Contamination of salt is a fundamental problem, especially when the substance to be hydrogenated is derived from a natural product such as a plant, because many of the natural products require salt for the activity of producing the substance to be hydrogenated.
  • Chlorine atoms may be mixed in due to the use of hydrochloric acid for the neutralization of the transesterification catalyst or the esterification catalyst.
  • Inorganic compounds can generally be reduced and removed by washing with water.
  • chlorine compounds may react with the raw materials to form organic chlorine compounds.
  • high temperatures are heated together with the blood and gravy of slaughtered beef and pork, so that some of the salt is made organic and the fatty acids derived from tallow and lard convert organic chlorine.
  • the recovered vegetable frying oil (commonly known as vegetable No. 2 oil) contains organic chlorine as a result of contact with food containing salt at high temperatures.
  • Fatty acids derived from coconut oil also contain naturally occurring organic chlorine.
  • the most preferable method is to use these chlorine-free raw materials, but it can be selected in consideration of raw material prices and supply stability.
  • Sulfur atoms may be mixed in due to the use of P-toluenesulfonic acid or sulfuric acid in the ester exchange catalyst neutralization or esterification catalyst. These compounds can generally be reduced and removed by washing with water.
  • protein-derived sulfur compounds such as cystine are mixed.
  • Beef tallow, lard, palm oil, palm oil, and palm kernel oil contain such a protein-derived sulfur compound.
  • the sulfur compound is mixed with the fatty acid and methyl ester supplied to the present invention. Sulfur compounds from these proteins are reduced by distillation. Can be reduced.
  • sulfur compound content is often influenced by the upstream raw material production process, and raw material selection is the preferred method.
  • carbon - used in the reaction for hydrogenating carbon-carbon double bond delta 4 - tetrahydrofuran Yuru acid anhydride and delta 4 -
  • a conjugated diene of compound anhydride Manufactured by a Diels-Alder reaction of maleic acid, but sulfur compounds such as carbon disulfide are often mixed in butadiene-isoprene of the conjugated conjugate, and it is preferable to select raw materials.
  • reaction raw material for nuclear hydrogenation of an aromatic compound it is preferable to select a deep desulfurized raw material of extremely low sulfur content for a petroleum-based one.
  • sulfur compounds such as thiophene are often contained in a large amount, and it is preferable that they are not used in the present invention.
  • solid catalyst used in the present invention known solid catalysts used in hydrogenation reactions can be used. Among them, copper, zinc, nickel, ruthenium, palladium, platinum, rhodium and their oxides are exemplified. Solid catalysts supporting at least one member selected from the group consisting of products are exemplified. Further, such a solid catalyst includes, as a co-catalyst, at least one metal selected from the group consisting of chromium, molybdenum, tungsten, magnesium, barium, aluminum, calcium, zirconium, manganese, nickel, silicon and oxides thereof. May be further carried.
  • Examples of the carrier used for such a solid catalyst include silica, alumina, silica alumina, titania, diatomaceous earth, terra alba, activated carbon, carbon, graphite, zeolite, clays such as montmorillonite, and carriers such as alkaline earth silicates. You.
  • the solid catalyst used in the present invention is a known catalyst. These catalysts can be used as they are, but are preferably subjected to a suitable activation treatment such as a reduction treatment before use. Activation treatment such as reduction treatment can be performed by a commonly used method.
  • Copper-based catalysts include copper, copper-zinc, copper-chromium, copper-zinc-chromium and these One or more catalysts selected from the following oxides; and copper-based catalysts, with addition of polybutene, tungsten, magnesium, barium, aluminum, iron / steam, zirconia, gaynes and their oxides
  • a solid catalyst supporting the modified catalyst is exemplified.
  • solid catalysts supported on alkaline earth metal silicates in the form of copper-calcium-silicic acid, copper-manganese monosilicate, copper-barium monosilicate, copper-calcium-barium-silicate, copper-calcium-barium-manganese-silicate. Is exemplified.
  • copper-based solid catalysts can be suitably used for a reduction reaction of a saturated or unsaturated fatty acid ester to a saturated alcohol.
  • the notation “M 1 -M 2 oxide” such as the above-mentioned copper-chromium oxide refers to a catalyst containing an oxide of metal Ml and an oxide of metal M 2.
  • copper-chromium oxide refers to a catalyst comprising copper oxide and chromium oxide.
  • M1-M2-M3 oxide such as copper-zinc-aluminum oxide refers to the oxide of metal M1, the oxide of metal M2, and the oxide of metal M3.
  • “copper-zinc-aluminum oxide” refers to a catalyst containing copper oxide, zinc oxide, and aluminum oxide. The same applies to other similar expressions.
  • zinc catalyst examples include zinc-chromium oxide, zinc-aluminum oxide, zinc-aluminum-chromium oxide, zinc-chromium-manganese oxide, zinc-iron oxide, zinc-iron-aluminum oxide, and the like. Is done. These zinc-based solid catalysts can be suitably used for the reduction reaction of unsaturated fatty acid ester to unsaturated alcohol.
  • nickel-based catalyst examples include nickel-diatomaceous earth and nickel-chromium oxide. These nickel-based solid catalysts can be suitably used for a hydrogenation reaction of a double bond or a nuclear hydrogenation reaction.
  • Noble metal-based solid catalysts containing ruthenium, palladium, platinum, rhodium or oxides thereof include silica, alumina, silica-alumina, titania, activated carbon, carbon, graphite, and other such carriers.
  • a solid catalyst supporting an oxide of the metal is exemplified. These noble metal-based solid catalysts are effective catalysts for various hydrogenation reactions, and are particularly effective for hydrogenation reactions of double bonds and nuclear hydrogenation reactions.
  • the shape of the solid catalyst used in the present invention is preferably a cylinder, a hollow cylinder, a three-lobe pillar, a four-leaf pillar, and a three-dimensional shape, or the like. Solid catalysts having two or more different shapes may be used. No.
  • a solid catalyst with a minimum length of about 1 to about L O mm is recommended.
  • the "minimum length" means, for example, for a spherical catalyst having a diameter of 5 mm, the minimum length is 5 mm, and the diameter is 3 mm x height. For a 5 mm cylindrical catalyst, its minimum length is 3 mm.
  • the minimum length of the hollow cylinder is 3 mm which is larger than the inner diameter.
  • the size (R) shown in Fig. 2 is the minimum length for trilobular columns
  • the size (L) shown in Fig. 3 is the minimum length for tetralobular columns (both height (axial direction)). Length) is larger than R or L).
  • the productivity tends to decrease because the external surface area of the solid catalyst in the reactor becomes small. If the diameter is less than 1 mm, the solid catalyst is too clogged, and the pressure loss tends to be large, so that it tends to be difficult to form a perfusate flow.
  • the method for producing these solid catalysts is not particularly limited. Conventionally known methods such as a molding method, an extrusion molding method, and a melt granulation method can be exemplified. Specifically, powders and pastes are compressed by a tableting machine, a granulator, an extrusion molding machine, a spherical molding machine in oil, or the like. It can be easily manufactured.
  • the solid catalyst of the present invention is filled with a solid catalyst having a catalyst strength of 1.0 kg or more per catalyst.
  • the catalyst strength in the present invention is defined as the strength obtained by measuring the minimum crushing strength individually for 100 catalysts, calculating the average value A and the standard deviation value ( ⁇ ), and obtaining the equation ⁇ 2 ⁇ . is there. In the present invention, it is important that the strength of the catalyst is not less than 1.0 kg, particularly 1.5 to 4.0 kg.
  • the minimum crushing strength is measured in accordance with JIS Z—8841–1993, “3.1 Method of crushing strength test method”.
  • the “minimum crushing strength” refers to the crushing strength measured by compressing the solid catalyst of the cylinder, hollow cylinder, trilobe, and tetralobe used in the invention in the longitudinal direction (axial direction).
  • Degree of crushing is the smaller of the crushing strengths measured by compressing from the degree and the lateral direction (radial direction, that is, the direction perpendicular to the axis direction).
  • it has the shape of a hollow cylinder, a trilobular pillar, a tetralobular pillar, etc., it is horizontal (perpendicular to the axial direction).
  • the consolidation strength is called the minimum consolidation strength. If the above catalyst strength is less than 1.0 kg, there is a tendency for catalyst outflow due to damage to the catalyst and, in particular, a tendency to block the reaction vessel and connecting pipes. Also, even if the catalyst has a high average value (A), if the standard deviation value ( ⁇ ) is large, that is, if the ratio of catalysts with low strength is large, these weak catalysts will be damaged, and catalyst loss and equipment loss will occur. Solid catalysts, which tend to be clogged and take into account variations in strength, are effective. This does not occur within the scope of the present invention.
  • the catalyst strength determined by the above equation ⁇ 2 ⁇ is based on the fact that the minimum compaction strength of 97.5% or more of the solid catalyst is 1 kg or more in arbitrary 100 catalysts. It is a representation of the total. Hydrogenation reaction method
  • the heterogeneous catalytic hydrogenation reaction method of the present invention comprises the steps of: using an undesired S hydrogenation material as a raw material in the presence of the above-mentioned catalyst, and performing an upward reaction between hydrogen gas and the hydrogenation material under perfusate flow conditions. It is a method of flowing down in parallel flow, and the details are described below.
  • the perfusate flow of the present invention is defined as a liquid phase (that is, a liquid hydrogenated substance) flows down in a film form on the solid catalyst by the action of gravity, and is parallel to a film liquid phase flowing down on the surface of the solid catalyst particles.
  • a liquid phase that is, a liquid hydrogenated substance
  • Fig. 1 shows an example.
  • the liquid phase 100 flows in the form of a film along the surface of the solid catalyst particles 102, flows down in the form of a film along the surface of the solid catalyst i 103 under the solid catalyst particles 102, and further flows in a solid form. It flows down in a film along the surface of the solid catalyst particles 104 below the catalyst particles 103 (and the solid catalyst particles following it).
  • the liquid phase 100 flows in a film along the surface of the solid catalyst particles 110 adjacent to the solid catalyst particles 102, and the solid catalyst particles 1 1 1 (and subsequent solid catalyst particles 1 11 Particles) along the surface of the particles.
  • FIG. 1 shows an example in which a spherical solid catalyst is used, the above description also applies to solid catalysts of other shapes.
  • Such irrigation flow conditions vary depending on the tube diameter, feed rate and hydrogen gas supply rate, hydrogen gas pressure, and catalyst dimensions;
  • the raw material supply rate per reactor cross-sectional area lm 2 is under the reaction conditions, 0. 4 ⁇ 4 0 m 3 Zh about (preferably l ⁇ 3 0 m 3 Zh extent, more preferably about 2 ⁇ 3 0 m 3 / h ⁇ , hydrogen gas feed rate per reactor cross-sectional area lm 2 is under the reaction conditions, 4 ⁇ 4 0 0 0 m 3 /7 !! about (preferably Is 10 to 2 0 0 0 m 3 / h, more preferably about ⁇ flow is obtained within the range of about 40 ⁇ 1000m 3 / h.
  • the hydrogen gas supply rate is higher than this, a part of the liquid phase (substance to be hydrogenated) becomes a spray flow that flows as droplets, and the high productivity of the present invention cannot be obtained.
  • Larger feed rates result in pulsating flow.
  • the solid catalyst collides and crushes due to a phenomenon of increasing pressure loss and a phenomenon of fluidization of the solid catalyst, which is not preferable for the heterogeneous catalyst hydrogenation reaction method of the present invention.
  • the supply amount of the raw material increases, the raw material becomes a continuous phase, and the gas is dispersed to form a bubble flow that flows as bubbles, so that the high productivity of the present invention cannot be obtained.
  • the dynamic liquid phase retention amount per unit tactile surface area is changed under the reaction conditions after the time when the hydrogenation reaction is in a steady state.
  • 0. 005X 10- 3 ⁇ 0. 14X 10- 3 m 3 / m 2 approximately, preferably 0. 05X 10-3 ⁇ 0. 12X 10- 3 m 3 is important is Zm 2 about. If the dynamic liquid phase retention amount per catalyst external surface area is greater than 0.14X10-3 mV m 2 , a pulsatile flow will tend to occur where the liquid phase retention volume is too high and the liquid phase retention volume is low. There, whereas, 0. 005X 10- 3 m 3 or Zm 2 than less the Most feeding rate is too small theoretically high productivity can not be obtained, the gas flow rate is large to Kisugi to form a spray stream of the aforementioned would.
  • Dynamic liquid phase retained amount per unit catalyst outer surface area to be adjusted to 0. 005X 10- 3 ⁇ 0. 14X 10- 3 m 3 Zm 2 approximately ranges, in particular employing the ⁇ flow conditions In addition, it can be carried out by adjusting the size (minimum length) and shape of the solid catalyst to be filled.
  • the “catalyst outer surface area” of the present invention is the outer surface area of the solid catalyst, and is the surface area of the solid catalyst particles when viewed macroscopically.
  • the outer surface area of the catalyst is, for example, in the case of a cylindrical catalyst having a radius of r and a height of !!!, the sum of the area 2 ⁇ r 2 of the upper and lower circles and the side area 27 rh, For example, in the case of a sphere with a radius r, it is 4 Ttr 2 .
  • the above terms will be used to distinguish them from the microscopic surface area of the catalyst containing pores.
  • “per unit catalyst external surface area” means a total of the catalyst external surface areas of a plurality of catalysts packed in the reaction tower per 1 m 2 .
  • the “dynamic liquid phase holding amount” in the present invention is a value obtained by subtracting the static holding amount from the total hold-up amount.
  • reaction solution near the catalyst point where the solid catalysts come into contact with each other is almost completely shaded by the solid catalyst and the surface tension, etc. It is stationary and has little contribution to production and is not taken into account. This is called a static holding amount.
  • the liquid phase (substance to be hydrogenated) 100 is shaded by the solid catalyst 102 in the space between the solid catalyst 102 and the solid catalyst 103. Due to factors such as surface tension and the like, they stay in the space between the solid catalyst 102 and the solid catalyst 103 and are almost still. The amount of liquid phase that has stayed and is almost stationary is called static liquid phase retention.
  • the dynamic liquid phase holding amount per outer surface area of the catalyst of the present invention indicates the total amount of liquid phase flowing down along the surface of each catalyst in a film in parallel with the descending hydrogen gas. Therefore, the sum of the static liquid phase holding amount and the dynamic liquid phase holding amount is the total hold-up amount.
  • the dynamic liquid is measured by measuring the weight (W) of the liquid discharged from the lower part of the reaction tower. The amount of phase retention can be measured. That is, W is the dynamic liquid phase holding amount.
  • the dynamic fluid phase holding amount 0. 0 0 5 X 1 0- 3 ⁇ 0 per catalyst outer surface area as described above.
  • the concentration of dissolved hydrogen in the liquid phase is preferably from 0.01 to 5.0 kmO I Zm 3 , particularly preferably from 0.3 to 5.0 ⁇ O kmol Zm 3 .
  • the dissolved hydrogen concentration in the liquid phase is changed to the saturated hydrogen concentration in the liquid phase at a point lm below the highest point of the catalyst layer in the reaction tower. It is preferably adjusted to 10 to 100%.
  • reaction is particularly intense, for example, (1) translation, saturated or unsaturated fatty acid derived from fats and oils, alkyl ester of the saturated or unsaturated fatty acid, (2) unsaturated fatty acid or its alkyl ester, (6) Hydrogenation of large amounts of double bonds, such as hydrogenation of double bonds in compounds containing carbon-carbon double bonds (unsaturated fatty acids, unsaturated alcohols, etc.), (7) aromatics Nuclear hydrogenation processes such as hydrogenation of compounds, (1) fats and oils, saturated fatty acids derived from fats and oils, alkyl esters of the saturated fatty acids, (2) unsaturated fatty acids or (3) aliphatic dicarboxylic acid dialkyl ester, reaction product of aliphatic dicarboxylic acid and aliphatic diol (oligomer), (4) hydrogenation reaction of alicyclic dicarboxylic acid dialkyl ester, etc.
  • the concentration of dissolved hydrogen in the liquid phase is adjusted to the value of the saturated hydrogen concentration in the liquid phase at a point 1 m below the highest point of the catalyst layer in the reaction tower. Preferably, it is adjusted to 10 to 60%.
  • a process of selecting a catalyst having a low reaction activity to maintain reaction selectivity such as a process for producing an unsaturated alcohol from an unsaturated carboxylic acid ester;
  • the process of selecting mild reaction conditions such as the process of hydrogenating to monoene and producing unsaturated alcohols that do not contain conjugated compounds; carbon remaining in saturated alcohols with 8 to 22 carbon atoms—
  • the dissolved hydrogen concentration is adjusted to 50 to 100% of the saturated hydrogen concentration in the liquid phase at a point lm below the highest point of the catalyst layer in the reaction tower.
  • the dissolved hydrogen concentration and the saturated hydrogen concentration refer to the concentration at the temperature and pressure of the hydrogenation reaction, respectively.
  • the “saturated hydrogen concentration in the liquid phase” indicates the maximum hydrogen concentration that can be dissolved in the reaction substrate itself, and the hydrogen gas and the liquid phase can be sufficiently dissolved under the set reaction conditions without a catalyst. Is the saturated hydrogen concentration obtained by contacting
  • the dissolved hydrogen concentration of the present invention is the concentration of hydrogen in a liquid phase that comes into contact with a solid catalyst together with a substance to be hydrogenated as a result of gas phase hydrogen molecules being dissolved in the liquid phase.
  • the dissolved hydrogen concentration is preferably set to 10 to 100% with respect to the saturated hydrogen concentration.
  • the actual value is 100%.
  • the reaction amount between the reaction substrate and the hydrogen molecule is very large, and the dissolved hydrogen concentration tends to be low. According to the study of the present inventors, it was found that maintaining the concentration of dissolved hydrogen in the liquid phase at 10% or more at the lm point in the upper part of the reaction tower was advantageous for obtaining high productivity.
  • the dissolved hydrogen concentration range and the ratio of the dissolved hydrogen concentration to the saturated hydrogen concentration are affected by an extremely large number of factors, various methods can be adopted.For example, considering the following factors, It can be done easily. That is, regarding the solid catalyst, the selection of a low-activity catalyst, the reduction of the active species concentration of the catalyst, the reduction of the catalytic surface area, and the reduction of the dynamic liquid phase retention amount tend to increase the hydrogen concentration. Regarding the hydrogen gas supply method, increasing the hydrogen pressure and increasing the hydrogen flow rate tend to increase the dissolved hydrogen concentration. As for the method of supplying hydrogenated substances, reducing the concentration of the reaction substrate and the amount of the supply of the reaction raw material tend to increase the dissolved hydrogen concentration. Therefore, the relationship between these factors and the above-mentioned dissolved hydrogen concentration (and the ratio of the dissolved hydrogen concentration to the saturated hydrogen concentration) is determined in advance under the set reaction conditions. It can be easily carried out by appropriately selecting these conditions according to the type of product.
  • the reaction temperature and reaction pressure of the hydrogenation reaction are not particularly limited as long as the hydrogenation reaction can be completed, but the reaction temperature is usually 50 to 350 as a condition for obtaining a practical reaction rate. And preferably in the range of about 50 to 300, and the reaction pressure is generally recommended to be in the range of normal pressure to about 35 MPa, preferably about 0.9 to 30 MPa.
  • the above hydrogenation reaction is usually carried out without a solvent, but when the raw materials and Z or the reaction product have a high melting point and are difficult to handle, improve the reactivity and selectivity, and efficiently use the heat of reaction.
  • a solvent can be used for removal or the like.
  • the reaction If the melting point of the reaction product is low, the reaction The use of the product itself is also an effective method. In the case of a nuclear hydrogenation reaction in which the heat of reaction is extremely large, a method of diluting with a solvent or a reaction product itself and supplying the diluted solution can be employed.
  • the solvent is generally inert to the hydrogenation reaction, and can be appropriately selected from solvents which do not react with the raw materials and the reaction products.
  • water alcohols having 1 to 10 carbon atoms, diols such as ethylene glycol and propylene glycol, ether solvents such as diglyme and triglyme, ether alcohols such as methyl propylene glycol and butyl cellulose, and carbon atoms 5 to 10 paraffins, cycloparaffin hydrocarbons and the like can be used.
  • aromatic hydrocarbons such as toluene and xylene can be used.
  • the amount of the solvent used is not particularly limited, but is in the range of 0.05 to 0.5 parts by weight, preferably 0.1 to 5 parts by weight, based on 1 part by weight of the material to be hydrogenated, on a weight basis. It is in the range of 0 parts by weight.
  • the reaction tower used in the present invention may be of any shape that forms a uniform irrigation flow when filled with a solid catalyst.
  • a facility such as a Pakarecap-type dispersion plate for uniformly supplying a supply liquid to the solid catalyst may be provided at the upper part.
  • the length and it diameter of the reactor can be selected as appropriate according to the type of raw material, type of reaction, production volume, equipment construction cost / operability, etc., but generally the diameter is about 2 to 200 cm. It is preferable to use a reactor having a length of about 3 to 100 cm, particularly about 2 to 20 m, particularly about 3 to 15 m.
  • a multi-tube reactor can be used as the reactor.
  • the diameter is about 2 to 2 Ocm, preferably 2 to about 0 cm, and the length of the catalyst layer is 2 to 2 cm.
  • a process of connecting piping for introducing hydrogen gas for cooling in the middle of the reaction tower is used, or a heat exchanger that removes heat during the most intense reaction is connected in series. It is preferred to select a process to connect to Example
  • the equipment shown in Fig. 4 is used. That is, the reactor 1 having a diameter of 40 cm and a catalyst height of lm of 40 mm, and the reactors 2, 3 and 4 having a height of 40 cm and a height of 3 m passing through a high pressure gas-liquid separator 5, 7 and 8 And connected in series.
  • a bubble-cap type dispersion plate (not shown) was installed horizontally at the top of each reaction tower.
  • the reactor 1 having a catalyst filling height of lm since the reactor 1 having a catalyst filling height of lm was used, a device capable of measuring the concentration of dissolved hydrogen at a point 1 m below the highest point of the catalyst layer of the reaction tower was obtained.
  • an integrated reaction tower equipped with a redispersion device may be used.
  • reaction tower 4 High-pressure gas-liquid connected to the last part (that is, reaction tower 4) of the reaction tower (reactor tower 4) consisting of reactors 1, 2, 3, and 4 (catalyst packed bed 11: total height of L4 is 10 m) Collected from separator 9 The conversion of the final reaction product taken was measured.
  • a low-pressure gas-liquid separator 6 is installed at the bottom of the high-pressure gas-liquid separator 5 connected to the reactor 1 with a catalyst filling height of 1 m, and moves from the high-pressure gas-liquid separator 5 to the next reactor 12.
  • the dynamics per unit catalyst external surface area under perfusate flow conditions The liquid phase retention was measured.
  • the catalyst outer diameter surface area was obtained by measuring the dimensions (diameter and height) of 10 catalysts used, obtaining an average value of the dimensions, and calculating from the average value.
  • a low-pressure gas-liquid separator 6 was installed at the bottom of the high-pressure gas-liquid separator 5 connected to the reactor 1 with a catalyst filling height of 1 m, and a certain amount of the reaction liquid (liquid phase) was withdrawn in a sealed state.
  • the amount of dissolved hydrogen gas was calculated by measuring the amount of dissolved hydrogen gas at high pressure based on changes in the pointer of the installed pressure gauge.
  • the dissolved hydrogen concentration becomes enthusiastic according to the reaction situation in the reactor 1 (that is, the point lm from the highest point of the catalyst layer). I have.
  • the liquid phase in the reactor 1 is transferred to the low-pressure gas-liquid separator 6, the hydrogen molecules dissolved in the liquid phase are released in a gaseous state, and the pointer of the pressure gauge 6 1 is attached. Appears as a change (pressure increase). From the space volume and the pressure increase of the low-pressure gas-liquid separator 6, the dissolved hydrogen concentration of the liquid phase in the high-pressure gas-liquid separator 5 was calculated.
  • a point 1 m below the highest point of the catalyst layer at the top of the reaction tower is abbreviated as “1 m point at the top of the reaction tower”.
  • the catalyst-free reaction solution collected by the method described in 4) above was batch-converted with a stirrer. Hydrogen gas was supplied to the flask while stirring, and the saturated hydrogen concentration of the liquid phase at the temperature and the pressure was measured.
  • the principle of measuring the pneumatic strength is as follows: a solid catalyst particle, which is the substance to be measured, is placed on a stationary sample table with a diameter of 25 mm, and a movable pressurized surface with a diameter of 5 mm is placed from above. It is processed at a speed of 1 mmZ seconds and measures the strength when it is pressed against the substance to be measured and breaks.
  • the compressive strength measured by compressing from the lateral direction was lower than the compressive strength measured by compressing from the longitudinal direction.
  • the crushing strength was defined as “minimum crushing strength”.
  • catalyst strength (kg) ⁇ -2 ⁇
  • indicates the average value of the minimum crushing strength
  • indicates the standard deviation value of the minimum crushing strength
  • the values of the raw material supply rate, the hydrogen gas rate, and the dynamic liquid phase holding amount are values under the reaction conditions.
  • Reactors 1, 2, 3 and 4 were filled with a cylindrical copper-chromium oxide catalyst (bulk specific gravity: 1.1 kg / liter) manufactured by a tableting machine having a diameter of 3 mm and a height of 3 mm. Hydrogenation was performed in advance to activate the catalyst. More specifically, after the inside of the reactor was replaced with nitrogen gas, the temperature was raised to 150 ° C. in a nitrogen stream. Over a period of 10 hours, gradually increase the hydrogen gas concentration so that the hydrogen gas becomes 100% gradually. A nitrogen-hydrogen mixed gas was flowed. After the hydrogen gas reached 100%, the temperature was increased to 220. Immediately before the supply of the raw material was started by operating the hydrogen gas circulator 16, the hydrogen gas supply rate was set to be equal to the predetermined rate below.
  • a cylindrical copper-chromium oxide catalyst bulk specific gravity: 1.1 kg / liter
  • Palm kernel oil-derived methyl laurate (vulcanization ⁇ Yuryou 0. 05ppm, chlorine content 0. 20 ppm), placed in a raw material tank T, reactor cross-sectional area lm 2 per raw material supply rate 1 ⁇ 3 ⁇ in the reaction column cross-sectional area lm 2 per hydrogen gas velocity 80 OMV, temperature 220, pressure 18 MPa, the reactor 1, 2, 3 and successively to 4 via the high-pressure gas-liquid separator 5, 7 and 8
  • the raw material and hydrogen gas were supplied, and the system was operated for 500 hours under perfusate flow conditions to obtain a crude product of lauryl alcohol as a hydrogenation product.
  • the dynamic liquid phase retention amount per unit catalyst external surface area was 0.09 ⁇ 10 ⁇ 3 mVm 2 .
  • Dissolved hydrogen concentration was 0. 8 kmo IZm 3.
  • Example 2 The same as in Example 1 except that at a hydrogen gas velocity of 5000 m 3 Zh per reactor cross section lm 2 , the raw material supply rate was set to 5 Om 3 ⁇ per reactor cross section lm 2 which is a flow rate at which a pulsating flow occurs. Operated.
  • Dynamic liquid phase retained amount per unit catalyst outer surface area was 0. 1 5X 10- 3 mVm 2.
  • the pressure in the high-pressure gas-liquid separator 9 in the reactor 4 decreased, and conversely, the pressure in the hydrogen gas pipe supplied to the reactor 1 increased.
  • the reaction was stopped, the reaction tower was opened, and the catalyst was inspected. As a result, the catalyst at the bottom of each reaction tower was crushed, and the bottom pipes were almost closed.
  • Reactors 1 to 4 were filled with a cylindrical copper-chromium oxide catalyst having a diameter of 3 mm and a height of 3 mm.
  • the reaction was carried out in the same manner as in Example 1 except that this catalyst was used.In 200 hours, the pressure of the high-pressure gas-liquid separator 9 of the reactor 4 was reduced. Pressure is rising. The reaction was stopped, the reaction tower was opened, and the catalyst was inspected. As a result, the catalyst at the bottom of each reaction tower was crushed, and the bottom piping was almost closed.
  • Reactors 1 to 4 were charged with a cylindrical copper-chromium oxide catalyst having a diameter of 3 mm and a height of 3 mm.
  • the operation was performed in the same manner as in Example 1 except that this catalyst was used. After 100 hours, the pressure of the high-pressure gas-liquid separator 9 of the reactor 4 was reduced. Pressure is rising. The reaction was stopped, the reaction tower was opened, and the catalyst was inspected. As a result, the catalyst at the bottom of each reaction tower was partially crushed, and the bottom pipe was almost closed.
  • Example 2 Hydrogenation reaction of unsaturated fatty acid alkyl ester to saturated alcohol Unsaturated fatty acid obtained by distilling a fatty acid obtained by hydrolyzing palm oil and fractionating the solid by cooling (Iodine value 98.3, glc composition C14: 0.6%, C16: 5.0%, C18F0: 1.8%, C18F1: 74.5%, C18F2: 18.0%, C20F 1: 0.1
  • the notation (Fn) such as Fl, F2, etc. indicates that the unsaturated fatty acid has n double bonds.
  • the same applies to the following description which is esterified with methyl alcohol and p-toluenesulfonate.
  • the methyl ester (0.5% sulfur content, 0.7 ppm chlorine content) washed with ⁇ and washed with ⁇ was used as a raw material.
  • Dynamic liquid phase retained amount per unit catalyst outer surface area was 0. 10X10- 3 m 3 Zm 2. Dissolved hydrogen concentration in the liquid phase was 0. 7 kmo lZm 3.
  • 500 ml of the reaction liquid phase obtained here was put into a 1000 ml batch type autoclave, hydrogen gas was supplied under stirring, heated to 220 ° C, and the saturated hydrogen concentration at 18 MPa was measured. It was 5 kmo 1 / m 3 . That is, the concentration of dissolved hydrogen in the liquid phase at a point 1 m above the reaction tower was 47% of the saturated hydrogen concentration in the liquid phase.
  • Example 3 Beef tallow Z Fatty acid mixed with lard fat ⁇ ! (Iodine value 57.0, g 1 cMC 12: 0.1%, C14: 2.2%, C16F0: 22.6%, C16F1: 4.8%, C18F0: 13. ⁇ %, C18Fi: 46.3%, Cl8F2: 5.1%, C18F3: 0.6%, C20F2: 0.4%, fatty acids of CI 5, fatty acids of C17 and fatty acids of C19 The total of 4.2%) was esterified with methyl alcohol and p-toluenesulfonic acid, and the methyl ester (sulfur content 2.5 ppm, chlorine content 1.0 ppm) washed with ⁇ was used as a raw material.
  • the reaction tower cross-sectional area lm 2 per feeding rate of 1 Om 3 Bruno h, except for using anti ⁇ sectional area lm 2 per hydrogen gas velocity 100 Om 3 / h as in Example 1 The operation was continuously performed for 500 hours under the conditions of perfusate flow to produce a crude beef and pig mixed fat alcohol. Table 3 shows the reaction results.
  • the dynamic liquid phase retention amount per unit catalyst external surface area was 0.08 ⁇ 10 ⁇ 3 mVm 2 .
  • the dissolved hydrogen concentration in the liquid phase was 1.1 kmo 1 Zm 3 .
  • Vegetable No.2 oil (Iodine value 119.5, g 1 ct C: 0.4%, C16: 12.0%, C16F1: 0. ⁇ %, C18: 4.3%, C18F1: 40.8%, C 18F2: 34.1%, C18F3: 7.3%, C20Fl: 0.4%) were transesterified with methyl alcohol and sodium hydroxide, neutralized with 10% hydrochloric acid, and washed with water to obtain methyl ester. (Sulfur content 3.3 ppm, chlorine content 4.2 ppm) were used as raw materials.
  • Example 2 The operation was continuously performed for 500 hours under the perfusate flow conditions in the same manner as in Example 1 except that the raw materials were used, to produce a crude vegetable oil-reduced alcohol.
  • Each reaction column was filled with a latex-type copper oxide-calcium silicate catalyst (bulk specific gravity 1.5 kg / l) manufactured by a tableting machine having a diameter of 3 mm and a height of 3 mm.
  • a latex-type copper oxide-calcium silicate catalyst (bulk specific gravity 1.5 kg / l) manufactured by a tableting machine having a diameter of 3 mm and a height of 3 mm.
  • the dynamic liquid phase retention amount per unit catalyst external surface area was 0.09 ⁇ 10-3 mVm 2 .
  • the dissolved hydrogen concentration per liquid phase volume was 0.8 kmo 1 Zm 3 .
  • 500 ml of the liquid phase of the crude reaction product obtained here was put into a separate 1000 ml zitch type autoclave, heated to 190, and the saturated hydrogen concentration at 20 MPa was measured. 6 kmo IZm 3 . That is, the dissolved hydrogen concentration per liquid phase volume at 1 m above the reactor was 50% of the saturated hydrogen concentration in the liquid phase.
  • Each reaction column was charged with a tablet-type copper-zinc-aluminum oxide catalyst (bulk specific gravity 1.6 kg / l) manufactured by a tableting machine having a diameter of 3 mm and a height of 3 mm.
  • a tablet-type copper-zinc-aluminum oxide catalyst (bulk specific gravity 1.6 kg / l) manufactured by a tableting machine having a diameter of 3 mm and a height of 3 mm.
  • Saturated fatty acid methyl obtained by transesterification of palm kernel oil with methyl alcohol and sodium hydroxide and distillation (g1c composition C12: 75%, C14: 25%) (sulfur content 0.2 ppm, chlorine content the amount 0.
  • Dynamic liquid phase retained amount per unit catalyst outer surface area was 0. 09x 10 one 3 mVm2.
  • Dissolved hydrogen concentration per liquid phase volume was 0. 8kmo lZm 3.
  • the liquid phase 50 Oml of the crude reaction product obtained here was put into a separate 1000 ml patch type autoclave, heated to 230, and the saturated hydrogen concentration at 20 MPa was measured. 1.6 kmo IZm was 3 . That is, the dissolved hydrogen concentration per liquid phase volume at 1 m above the reactor was 50% of the saturated hydrogen concentration in the liquid phase.
  • Example 7 Hydrogenation of dicarboxylic diester to diol The reaction was carried out continuously for 500 hours under the irrigation flow conditions in the same manner as in Example 1 except that dimethyl sepatate (sulfur content: 0.05 ppm, chlorine content: 0.05 ppm) was supplied. A crude 1,10-decanediol as a diol was obtained. The reaction results are shown in Table 7 below. From Table 7, it can be seen that the reaction proceeded without any abnormalities and exhibited excellent effects.
  • the dynamic liquid phase retention amount per unit catalyst external surface area was 0.09 ⁇ 10 3 mVm 2 .
  • Dissolved hydrogen concentration in the liquid phase was 0. 6kmo IZm 3.
  • Reactors 1 to 4 were filled with a columnar zinc-chromium oxide catalyst (bulk specific gravity 1.4 kg / l) manufactured by a tableting machine with a diameter of 5 mm and a height of 5 mm.
  • a columnar zinc-chromium oxide catalyst (bulk specific gravity 1.4 kg / l) manufactured by a tableting machine with a diameter of 5 mm and a height of 5 mm.
  • Unsaturated fatty acids obtained by distilling the fatty acids obtained by hydrolyzing palm kernel oil and fractionating them by cooling solids (iodine value 93.4, g 1 c «C12: 0.6%, C14: 0.6% C16: 5 5%, 018: 1.4%, C18F1: 78.5%, C18F2: 11.8%, C18F3: 0.5%, C20F2: 0.3%)
  • Product name: PALMAC 750: Acidke was used as a raw material, with methyl alcohol (sulfur content: 0.05 ppm, chlorine content: 0.05 ppm) obtained by esterification of methyl alcohol with methyl alcohol without a catalyst.
  • Dynamic liquid phase retained amount per unit catalyst outer surface area was 0. 07X10 one 3 MVM 2.
  • the dissolved hydrogen concentration in the liquid phase was 1.5 kmo IZm 3 .
  • the direction in which the strength of the packed catalyst was the weakest was the transverse strength.
  • Reactors 1-4 were filled with a cylindrical 0.5 wt% ruthenium-alumina catalyst manufactured by a tablet press having a diameter of 3 mm and a length of 3 mm.
  • a reduction reaction of a saturated or unsaturated fatty acid alkyl ester to a saturated alcohol a reduction reaction of an unsaturated fatty acid alkyl ester to an unsaturated alcohol, an aliphatic or alicyclic dicarboxylic acid dialkyl ester of an aliphatic or alicyclic diol

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

開示されているのは、水素ガスと被水素化物質を含む液相とを上方から並流で流下させる固体触媒充填式反応塔を用い、灌液流条件下で、該反応塔に充填されている触媒の単位触媒外形表面積当たりの動的液相保持量を0.005×10−3~0.14×10−3 m3/m2とし、式A−2σ[Aは上記触媒100個について、JIS Z8841−1993に記載の「圧壊強度試験方法」に記載の方法に従って測定された最小圧壊強度の平均値を示し、σは標準偏差値を示す。]により求められる触媒強度が1.0kg以上である不均一系触媒水素化反応方法である。

Description

明 細 書
水素化反応方法 技術分野
本発明は、 不均一系触媒水素化反応方法に関する。 背景技術
不均一系接触水素化反応は、 気体一液体一固体表面の三相が関与する複雑な反 応系であり、 従来、 どのような気液流動状態において、 高い生産性が得られるか を開示した技術は見あたらない。
たとえば、 灌液流条件下 (即ち、 tricle条件下) での重油直接脱硫装置に関し て記載した文献がある (化学工学 3 4巻 1 2号 1 2 6 0頁(1 9 7 0 )参照)。 こ の文献は、固定床での残渣油脱硫では、化学工学上の問題は数多く未解決であり、 特に、 流動状態や液混合はスケールァップに重要な影響を有することについて記 載しており、更に、水素ガスの溶解度の実測が必要であること、液相反応であり、 硫黄化合物が巨大な分子であるので、 触媒活性と細孔分布との関係を求める必要 性を説いている。 この文献には、 硫黄含有量の高い原料について、 ホールドアツ プ量に関する化学的な検討がなされている。 し力し、 エステル基、 炭素—炭素二 重結合を含む有機化合物等の水素化反応についての記載はない。
また、 油脂または脂肪酸エステルからなる原料をエステル還元して飽和アルコ ールを製造するに際して、 あらかじめニッケル金属或いは銅金属を含有する触媒 を水素ガスと共に上記原料に接触せしめて脱硫し、 油脂又は脂肪酸エステルの硫 黄含有量を 0 . 6 p p m以下にした低硫黄分濃度原料が、 原料の蒸留によって得 た同じ硫黄含有量の原料を使用した場合と同等の還元反応性を有する旨の技術が 開示されている (日本国特許第 2 5 4 4 5 5 2号公報 (請求項、 段落 0 0 2 3〜 0 0 2 5 )、 日本国特許第 2 8 4 6 4 5 0号公報 (請求項)、 日本国特許第 2 9 3 4 0 7 3号公報 (請求項、 段落 0 0 1 7 ) 参照)。
しかし、 これら日本国特許では、 水素化反応自体は、 液相懸濁床又は固定床反 応方式を用いた従来公知の方法を採用しており、 硫黄含有量を低減した原料を、 銅系エステル還元触媒の存在下で、 従来公知の方法に従って対応するアルコール へと水素化することが記載されているに過ぎない。
不均一系触媒水素化反応は、 気体—液体一固体表面の三相が関与する複雑な反 応系であり、 従来、 どのような状態において、 高い生産性が得られるかを開示し た技術はなかった。
また、 本出願人の先願に係る技術として、 亜鉛—クロム系又は亜鉛—クロム— アルミニウム系の複合金属酸化物触媒を使用し、 不飽和アルデヒド、 不飽和脂肪 酸又は不飽和脂肪酸エステルを水素化して不飽和アルコールを製造するに際し、 該複合金属酸ィ匕物触媒中の銅含有量とニッケル含有量を一定量以下とする方法が ある(日本国特開 2 0 0 1— 8 9 4 0 3号公報(請求項 1 , 2、段落 0022、 0023) 参照)。該方法においては、特定組成の該触媒の破壊強度が 2 0〜5 0 0 k g/ c m3、 横破壊強度が 1 c mあたり 2〜 1 0 k gでかつ嵩比重 1 . 0〜 1 . 8を有 するのが好ましいとされている。 この方法は、 触媒中の銅含有量及びニッケル含 有量の重要性、 並びに、 触媒の破壊強度に着目しているだけであって、 反応系内 の気液流動状態についての記載はない。
本発明は、 各種の原料の水素ィ匕に汎用的に適用でき、 しかも、 生産性の高い不 均一系触媒水素化反応方法を提供することを目的とする。 発明の開示
本発明者らは、 上記課題を解決すべく鋭意検討の結果、 水素ガスと液相の被水 素ィ匕物質の両者を上方から流下させる固体触媒充填管式反応塔を用いて、 灌液流 条件下での水素ィ匕反応において、 単位触媒外形表面積当たりの動的液相保持量を 反応条件下において 0. 0 0 5 X 1 0—3 〜0. 1 4 X 1 0—3 m3Zm2とすると 共に、触媒 1個当たりの最小触媒強度が 1 . 0 k g以上の固体触媒を使用すると、 各種の原料の水素化反応において、 高生産性をもたらすことを見いだした。 本発明は、 かかる知見に基づき、 更に検討を重ねて完成されたものであり、 以 下に示す不均一系触媒水素化反応方法を提供するものである。 項 1 水素ガスと被水素化物質を含む液相とを上方から並流で流下させる固 体触媒充填式反応塔を用い、灌液流条件下で該被水素化物質を水素化する不均一 系触媒水素化反応方法であって、 該反応塔に充填されている単位触媒外形表面積 当たりの動的液相保持量が反応条件下において 0 . 0 0 5 X 1 0—3 〜0 . 1 4 X 1 0 _3 m3/m2であり、 下記式
触媒強度 = A - 2 σ
[式中、 Αは、 上記触媒 1 0 0個について、 J I S Z 8 8 4 1— 1 9 9 3の 「圧壊強度試験方法」 に記載の方法に従つて測定された最小圧壌強度の平均値を 示し、 σは最小圧壊強度の標準偏差値を示す。]
により求められる触媒強度が 1 . 0 k g以上であることを特徴とする不均一系触 媒水素化反応方法。 項 2 被水素化物質が、 エステル基、 炭素—炭素二重結合、 芳香族環、 二トリ ル基、 酸アミド基及び ¾イミド基からなる群から選択される少なくとも一つの基 を含有する有機化合物である上記項 1に記載の不均一系触媒水素化反応方法。 項 3 水素化反応が、 飽和又は不飽和脂肪酸アルキルエステルの飽和アルコー ルへの還元反応、 不飽和脂肪酸アルキルエステルの不飽和アルコールへの還元反 応、 脂肪族又は脂環族ジカルポン酸ジアルキルエステルの脂肪族又は脂環族ジォ —ルへの還元反応、 ジカルボン酸無水物のラクトン系化合物への還元反応、 又は ラクトン系化合物の脂肪族ジオールへの還元反応である上記項 1に記載の不均一 系触媒水素化反応方法。 項 4 水素化反応が、 飽和又は不飽和脂肪酸アルキルエステルの飽和アルコー ルへの還元反応、 不飽和脂肪酸アルキルエステルの不飽和アルコールへの還元反 応、 又は脂肪族又は脂環族ジカルポン酸ジアルキルエステルの脂肪族又は脂環族 ジオールへの還元反応である上記項 1に記載の不均一系触媒水素化反応方法。 項 5 水素化反応が、 炭素一炭素二重結合の水素化反応、 芳香族化合物の核水 素化反応、 二トリル化合物のアミンへの水素化反応、 酸アミド化合物のァミンへ の水素化反応、 又は酸ィミド化合物のアミンへの水素化反応である上記項 1に記 載の不均一系触媒水素化反応方法。 項 6 水素化反応に供する被水素化物質中に含有される塩素原子と硫黄原子の 合計含有量が 5 pm以下である上記項 1〜5のいずれかに記載の不均一系触媒 水素化反応方法。 項 7 固体触媒が、 銅、 亜鉛、 ニッケル、 ルテニウム、 パラジウム、 白金、 口 ジゥム及びこれらの酸ィ匕物からなる群から選ばれる少なくとも 1種を担持した固 体触媒である上記項 1〜 6のいずれかに記載の不均一系触媒水素化反応方法。 項 8 固体触媒が、 銅、 亜鉛、 ニッケル、 ルテニウム、 パラジウム、 白金、 口 ジゥム及びこれらの酸化物からなる群から選ばれる少なくとも 1種、 並びにこれ らにクロム、 モリブデン、 タングステン、 マグネシウム、 バリウム、 アルミニゥ ム、 カルシウム、 ジルコニウム、 マンガン、 ニッケル、 ケィ素及びこれらの酸化 物からなる群から選ばれる少なくとも 1種を添加した変性触媒を担持した固体触 媒である上記項 1〜 7のいずれかに記載の不均一系触媒水素化反応方法。 項 9 固体触媒が、 銅、 クロム、 亜鉛、 ニッケル、 ルテニウム及びこれらの酸 化物からなる群から選ばれる少なくとも 1種を担持した固体触媒である上記項 1 〜 8のいずれかに記載の不均一系触媒水素ィヒ反応方法。 項 1 0 固体触媒の形状が、 円柱、 中空式円柱、 三葉柱、 四葉柱式及び球形か らなる群から選ばれる少なくとも 1種であり、 その最小長さが 1〜 1 0 mmであ る上記項 1〜 9のいずれかに記載の不均一系触媒水素化反応方法。 項 1 1 反応塔内の液相中の溶存水素濃度が、 0. 0 1〜5. O kmo l /m3 である上記項 1〜 1 0のいずれかに記載の不均一系触媒水素化反応方法。 項 1 2 水素化反応の定常状態において、 液相中の溶存水素濃度が、 反応塔内 の触媒層の最高地点から 1 m下の地点において、 液相の飽和水素濃度の 1 0〜 1 0 0 %に調整されている上記項 1に記載の不均一系触媒水素化反応方法。 項 1 3 水素化反応が、
(a) (1)油脂、油脂由来の飽和又は不飽和脂肪酸、該飽和又は不飽和脂肪酸のァ ルキルエステル、(2)不飽和脂肪酸又はそのアルキルエステル、(6)炭素炭素二重 結合を含有する化合物 (特に、 不飽和脂肪酸、 不飽和アルコール) 中の二重結 合の水素ィヒ反応、
Ob) (7)芳香族化合物の核水素化反応、 又は
(c) (1)油脂、 油脂由来の飽和脂肪酸、 該飽和脂肪酸のアルキルエステル、 (2) 不飽和脂肪酸又はそのアルキルエステル、(3)脂肪族ジカルポン酸ジアルキルェ ステル、 脂肪族ジカルボン酸と脂肪族ジオールとの反応生成物 (オリゴマー)、 (4)脂環族ジカルポン酸ジアルキルエステルから選ばれるカルボン酸エステル から飽和アルコールへの水素化反応
であり、 液相中の溶存水素濃度が、 反応塔内の触媒層の最高地点から l m下の 地点において、 液相の飽和水素濃度の 1 0〜 6 0 %に調整されている上記項 1 に記載の不均一系触媒水素化反応方法。 項 1 4 水素化反応が、
(i) (1)不飽和カルボン酸エステルから不飽和アルコールへの水素化反応、
(ii) 共役ジェン化合物を原料として、 共役ジェンをモノエンに水素化し、 共役 ジェン化合物を含有しない不飽和アルコールを製造するための水素化反応、 又 は
(iii) 炭素数 8〜2 2の飽和アルコール中にわずかに残存する炭素—炭素二重 結合を水素化してヨウ素価を低減して、 品位の高い飽和アルコールを製造する ための水素化反応
であって、 液相中の溶存水素濃度が、 反応塔内の触媒層の最高地点から l m下 の地点において、 液相の飽和水素濃度の 5 0〜: L 0 0 %に調整されている上記 項 1に記載の不均一系触媒水素化反応方法。 図面の簡単な説明
図 1は、 本発明の灌液流条件を示す模式図である。
図 2は、 三葉柱形状の固体触媒の平面図であり、 Rは最小長さを示す。 図 3は、 四葉柱形状の固体触媒の平面図であり、 Lは最小長さを示す。 図 4は、 各実施例及び各比較例で使用した反応装置の概略図である。 図 1〜図 4において使用されている符号の意味は、 次の通りである。
100 液相
102 固体触媒
103 固体触媒
104 固体触媒
110 固体触媒
111 固体触媒
S 空間
a 水素ガス導入用配管
b 水素ガスリサイクル用配管
c 水素化生成物取り出し用配管
1 反応器
2 反応器
3 反応器
4 反応器
5 高圧気液分離器
6 低圧気液分離器
7 高圧気液分離器
8 高圧気液分離器
9 高圧気液分離器
10 熱交換器 1 1 固体触媒充填層
1 2 固体触媒充填層
1 3 固体触媒充填層
1 4 固体触媒充填層
1 5 熱交換器
1 6 水素ガス循環機
1 7 水素ガス予熱器
1 8 原料予熱器
2 0 水素ガス圧縮機
6 1 圧力計 発明の詳細な記述
被水素化物質及び水素化生成物
本発明の水素化反応において原料として使用する被水素化物質は、エステル基、 炭素一炭素二重結合、 芳香族環、 二トリル基、 酸アミド基及び イミド基からな る群から選択される少なくとも一つの基を含有する有機化合物である。
特に、 被水素化物質としては、 (1)油脂、 油脂由来の飽和又は不飽和脂肪酸、 該 飽和又は不飽和脂肪酸のアルキルエステル、 (2)不飽和脂肪酸又はそのアルキルェ ステル、 (3)脂肪族ジカルポン酸ジアルキルエステル、 脂肪族ジカルボン酸と脂肪 族ジオールとの反応生成物 (オリゴマー)、 (4)脂環族ジカルポン酸ジアルキルェ ステル、 (5)ジカルボン酸無水物、 (6)炭素炭素二重結合を含有する化合物 (不飽和 脂肪酸、 不飽和アルコール等)、 (7)芳香族化合物の芳香核を含有する化合物、 (8) 二トリルイ匕合物、 酸アミド化合物、 (9)酸イミド化合物等が挙げられる。
本発明に係る水素ィヒ反応としては、 飽和又は不飽和脂肪酸アルキルエステルの 飽和アルコールへの還元反応、 不飽和脂肪酸アルキルエステルの不飽和アルコー ルへの還元反応、 脂肪族又は脂環族ジカルポン酸ジアルキルエステルの脂肪族又 は脂環族ジオールへの還元反応、 ジカルボン酸無水物をラクトン系化合物とする 還元反応、 ラクトン系化合物を脂肪族ジオールとする還元反応、 炭素—炭素二重 結合を水素化する反応、 芳香族化合物の核水素化反応、 二トリル化合物のァミン への水素化反応、 酸アミド化合物のァミンへの水素化反応、 酸イミド化合物のピ 口リジン化合物やアミンへの水素化反応等が推奨される。
以下、 これら原料及び該原料を本発明に従って水素ィ匕 (還元) して得られる生 成物について、詳しく説明する。以下の記載において、 「低級アルキル」 は、特に 断らない限り、 炭素数 1〜4のアルキル基を指すものとする。
<飽和又は不飽和脂肪酸、 そのトリダリセリドおよび低級アルキルエステル > 本発明方法は、 飽和又は不飽和脂肪酸、 そのトリグリセリドおよびその低級ァ ルキルエステルからなる群から選ばれる原料から炭素数 8〜 2 2の飽和アルコー ルを製造するのに使用できる。
本発明において、 炭素数 8〜2 2の飽和アルコールを製造するための原料とし ては、 ヤシ油、 パ一ム力一ネル油、 パ一ム油、 オリ一ブ油、 大豆油、 低エルシン 菜種油、 高エルシン菜種油、 サフラワー油、 トウモロコシ油、 綿実油、 ひまわり 油、 米糠油、 亜麻仁油等;大豆油、 菜種油、 サフラワー油、 トウモロコシ油、 綿 実油、ひまわり油、オリ一ブ油、米糠油等の使用済み揚げ油;牛脂、豚脂、鶏脂、 魚油等の炭素数 8〜 2 2の飽和又は不飽和脂肪酸のトリグリセリド(油脂)、 これ ら油脂から得られる炭素数 8〜2 2の飽和又は不飽和脂肪酸、 及び該炭素数 8〜 2 2の飽和又は不飽和脂肪酸の低級アルキルエステル等から選ばれる少なくとも 1種が例示される。
なかでも、 該飽和又は不飽和脂肪酸の低級アルキルエステル、 特に、 メチルェ ステルが還元反応原料として好ましい。 また、 還元反応を行う前に、 脂肪酸低級 アルキルエステル (特にメチルエステル) や脂肪酸などの段階で蒸留や冷却固体 分別により、特定の炭素数成分を濃縮分離して還元反応原料とすることもできる。 上記飽和又は不飽和脂肪酸、 そのトリダリセリドおよびその低級アルキルエス テルからなる群から選ばれる原料から炭素数 8〜 2 2の飽和アルコールを製造す るには、 通常、 後述の銅系固体触媒を使用して、 本発明の不均一系接触水素化反 応を行うのが好ましい。
<不飽和脂肪酸、 そのトリグリセリドおよびその低級アルキルエステル > 本発明方法は不飽和脂肪酸、 そのトリグリセリドおよびその低級アルキルエステ ルからなる群から選ばれる原料から炭素数 1 6〜2 2の不飽和アルコールを製造 するのに使用できる。
製造される該不飽和アルコールとしては、 分子内に不飽和結合を少なくとも 1 個以上 (特に 1〜3個) 有している炭素数 1 6〜2 2の不飽和アルコールが例示 される。 具体的には、 エライジルアルコール、 ォレイルアルコール、 リノレイル アルコール、 リノレニルアルコール等が例示される。
上記不飽和アルコールを製造するための原料としては、 ヤシ油、 パームカーネ ル油、パ一ム油、ォリーブ油、大豆油、菜種油、サフラワー油、 トウモロコシ油、 綿実油、 ひまわり油、 米糠油、 亜麻仁油等;大豆油、 菜種油、 サフラワー油、 ト ゥモロコシ油、 綿実油、 ひまわり油、 オリ一ブ油、 米糠油等の使用済み揚げ油; 牛脂、劂旨、鶏脂、魚油等の炭素数 1 6〜 2 2の不飽和脂肪酸トリダリセリド(油 脂)、これら油脂から得られる炭素数 1 6〜2 2の不飽和脂肪酸及び該炭素数 1 6 〜2 2の不飽和脂肪酸低級アルキルエステルから選ばれる少なくとも 1種が例示 される。 特に、 該不飽和脂肪酸の低級アルキルエステル、 特にメチルエステルが 還元反応原料として好ましい。
当該還元反応原料のうち、 上記不飽和脂肪酸は、 上記油脂を常法に従って加水 分解することにより得ることができる。 また、 上記不飽和脂肪酸アルキルエステ ルは、 こうして得られる不飽和脂肪酸を、 低級アルコール (例えば、 メチルアル コール等の d— C アルコール) でエステル化することにより得られ、 また、 植 物性油脂とメチルアルコール等の C 一 C 4アルコールとのエステル交換反応に より得ることもできる。
通常、 不飽和脂肪酸、 そのトリグリセリドおよびその低級アルキルエステルか らなる群から選ばれる原料は、 これを蒸留するか、 または必要に応じて冷却固体 分別操作に供することにより、 ヨウ素価 4 0〜 2 0 0の還元反応原料とするのが 好ましい。
さらに、 還元反応時や還元反応物を蒸留する際に生じる不飽和脂肪酸と不飽和 アルコ一ルの蠟エステル (長鎖不飽和脂肪酸と長鎖不飽和アルコールとのエステ ル、 即ちワックスエステル) も還元反応原料として使用することができる。 上記原料から炭素数 1 6〜 2 2の不飽和アルコールを製造するには、 後述の亜 鉛系固体触媒を使用して、本発明の不均一系接触水素化反応を行うのが好ましい。 <脂肪族ジカルポン酸ジアルキルエステル、 ヒドロキシアルカン酸およびその 低級アルキルエステル、 ラク卜ン>
本発明方法は、 脂肪族ジカルボン酸ジアルキルエステル、 ヒドロキシアルカン 酸、 その低級アルキルエステル、 ラクトン等から、 炭素数 3〜2 2の脂肪族ジォ —ルを製造するのに使用できる。
製造される上記炭素数 3〜 2 2の脂肪族ジオールとしては、 具体的には、 1, 3—プロパンジオール、 1, 4一ブタンジオール、 1, 5—ペン夕ンジオール、 1, 6一へキサンジオール、 1, 7—ヘプタンジオール、 1, 8—オクタンジォ ール、 1, 9—ノナンジオール、 1 , 1 0—デカンジオール、 1, 1 2—ドデカ ンジオール、 1, 1 3—トリデカンジオール等が例示される。
かかる脂肪族ジオールを製造する場合、原料としては、 (a)二重結合を少なくと も 1個 (特に 1〜2個) 有していてもよい炭素数 3〜2 2の脂肪族ジカルボン酸 のジ低級アルキルエステル、(b) l個の水酸基を有する炭素数 3〜 2 2の脂肪族モ ノカルボン酸の低級アルキルエステル、 (c)二重結合を少なくとも 1個 (特に 1〜 2個) 有していてもよい炭素数 3〜2 2の脂肪族ジカルボン酸と、 1個の水酸基 を有する炭素数 3〜 2 2の脂肪族モノカルボン酸または水素化生成物である炭素 数 3〜 2 2の脂肪族ジォ一ルとの反応により生成するオリゴエステル又は (d) 1 個の水酸基を有する炭素数 3〜 2 2の脂肪族モノカルボン酸から得られるラクト ン等が例示される。 低級アルキル基としては、 メチル基、 ェチル基、 n—プロピ ル基、 n—ブチル基等の炭素数 1〜4のアルキル基が例示され、 なかでも特にメ チル基が好ましい。
例えば、 1, 3—プロパンジオールを製造する場合、 1, 3—プロパンジォー ルの原料として、 アクリル酸低級アルキルエステル (例えばメチルエステル) の 二重結合への水付加物である 1ーヒドロキシプロパン酸低級アルキルエステル (例えばメチルエステル) を用いることができる。 また、 1—ヒドロキシプロパ ン酸低級エステルの脱メチルアルコール縮合物 (特に、 オリゴエステル) も用い ることができる。 更に、 1—ヒドロキシプロパン酸とその還元生成物である 1 , 3—プロパンジォ一ルとの縮合物 (特に、 オリゴェステル) を用いることもでき る。 また、 1, 4—ブタンジオールを製造する場合、 1 , 4一ブタンジオールの原 料としては、 具体的には、 マレイン酸ジ低級アルキルエステル、 コハク酸ジ低級 アルキルエステル、 ァ—プチロラクトン等が例示される。
また、 アルキル基 (炭素数 1〜4) 置換 1 , 4一ブタンジオールを製造する場 合、 その原料としては、 具体的には、 アルキル基 (炭素数 1〜4) 置換マレイン 酸ジアルキル (炭素数 1〜4) エステル、 アルキル基 (炭素数 1〜4) 置換コハ ク酸ジアルキル (炭素数 1〜4) エステル、 アルキル基 (炭素数 1〜4) 置換 τ 一プチロラクトンが例示できる。 上記アルキル基としては、 具体的には、 メチル 基、 ェチル基、 n―プロピル基、 i s o—プロピル基、 n―ブチル基等の炭素数 1〜4の直鎖状または分岐鎖状アルキル基が例示され、 その置換位置は、 特に限 定されるものではない。
また、 1 , 6—へキサンジオールを製造する場合、 その原料としては、 具体的 には、 アジピン酸ジ低級アルキルエステル、 ε—力プロラクトン、 1ーヒドロキ シカプロン酸及び/又は 1一ヒドロキシカプロン酸低級アルキルエステルを脱水 エステル化縮合及び/又はエステル交換反応して得たォリゴマ一等が例示され、 また、 1, 6—へキサンジオールと 1—ヒドロキシカブロン酸及び Ζ又は 1ーヒ ドロキシカブロン酸低級アルキルエステルとのオリゴマー、 1 , 6—へキサンジ オールとアジピン酸とのオリゴエステル等が例示される。
上記原料を使用して脂肪族ジオールを製造するには、 通常、 後述の銅系固体触 媒を使用して、 本発明の不均一系接触水素化反応を行うのが好ましい。
<脂環族ジカルボン酸ジアルキルエステル >
また、 本発明方法は、 脂環族ジカルポン酸ジ (C i— C ^) アルキルエステル から炭素数 8〜 1 2の脂環族ジオールを製造するのに使用できる。
製造される上記炭素数 8〜1 2の脂環族ジオールとしては、 具体的には、 1 , 2—シクロへキサンジメタノール、 1, 3—シクロへキサンジメタノール、 1, 4—シクロへキサンジメタノール、 1 , 5—デカリンジメタノール、 2 , 6—デ 力リンジメ夕ノール等が例示される。
かかる脂環族ジオールを製造する場合、 原料としては、 分子内に二重結合を少 なくとも 1個 (特に 1〜2個) 有していてもよい脂環族ジカルポン酸ジ (C i— C 1 0) アルキルエステルが例示される。 アルキル基としては、 メチル基、 ェチル 基、 n—プロピル基、 i s o—プロピル基、 n—ブチル基、 s e c—ブチル基、 i s o—ブチル基、 n—ペンチル基、 n—へキシル基、 n—へプチル基、 n—才 クチル基等の直鎖状又は分岐鎖状の脂肪族基、 シクロペンチル基、 シクロへキシ ル基、 2—メチルシクロへキシル基、 3—メチルシクロへキシル基、 4一メチル シク口へキシル基等の脂環族基等が例示される。
例えば、 1, 2—シクロへキサンジメタノールを製造する場合、原料としては、 具体的には、 Δ4—テトラヒドロフタル酸ジ(C i— C )アルキルエステル、 1, 2—へキサヒドロフタル酸ジ ( 丄一 C 1 0) アルキルエステル等が例示される。 また、 1 , 4—シクロへキサンジメタノールを製造する場合、 原料としては、 具 体的には、 1, 4—へキサヒドロフタル酸ジ (C i一 C 1 0) アルキルエステルが 例示される。
さらに、 1, 5—デカリンジメタノールや 2, 6—デカリンジメタノールを製 造する場合、.原料としては、 具体的には、 それぞれ 1, 5—デカリンジカルボン 酸ジ (C i— C 4) アルキルエステル、 2, 6—デカリンジカルボン酸ジ (C i— C 4) アルキルエステルが例示される。
通常、 上記脂環族ジカルボン酸ジアルキルエステルを原料として用いて脂環族 ジオールを製造するには、 後述の銅系固体触媒を使用して、 本発明の不均一系接 触水素化反応を行うのが好ましい。
くジカルボン酸無水物 >
本発明は、 ジカルボン酸無水物から、 分子内エステル化反応生成物であるァ— プチロラクトン系化合物を製造するのに使用できる。 ァ一プチロラクトン系化合 物としては、 具体的には、 ァープチロラクトン、 フタリド、 へキサヒドロフ夕リ ド等が例示される。
ァ—プチロラクトン系化合物を製造する場合、原料としては、無水マレイン酸、 無水コハク酸、無水フタル酸、 Δ 4—テトラヒドロフタル酸無水物、へキサヒドロ フタル酸無水物等が例示される。
通常、 上記ジカルボン酸無水物を使用して上記のようなァ—プチロラクトン系 化合物を製造するには、 後述のニッケル系固体触媒又は後述の貴金属系固体触媒 を使用して、 本発明の不均一系接触水素化反応を行うのが好ましい。
く二重結合の水素化〉
本発明は、 炭素—炭素二重結合を水素化する反応に適用できる。
例えば、 本発明方法は、 不飽和脂肪酸のグリセリドである油脂から硬ィ匕油脂を 製造するのに使用でき、 また、 炭素数 8〜2 2の飽和アルコール中にわずかに残 存する炭素—炭素二重結合を水素化して、 ヨウ素価を低減して、 品位の高い飽和 アルコールを製造するプロセスに適用できる。 これらの場合は、 通常、 ニッケル 系固体触媒を使用して、 本発明の不均一触媒水素化反応を行うのが好ましい。 また、 本発明方法は、 肝内に共役二重結合を含む不飽和アルコール (C 1 6— c 22、特に c 18) を原料として、 該不飽和アルコール中の共役ジェンをモノエン に水素化し、 共役ジェン化合物を含有しない不飽和アルコールを製造するプロセ スに適用できる。 かかる不飽和アルコ一ルは経時安定性や耐熱性に優れている。 この場合は、 通常、 銅系固体触媒を使用して、 本発明の不均一触媒水素化反応を 行うのが好ましい。
更に本発明方法は、 マレイン酸無水物を水素化してコハク酸無水物を製造する プロセス、 Δ4—テトラヒドロフ夕ル酸無水物を水素化してへキサヒドロフ夕ル酸 無水物を製造するプロセス、 Δ 4—テトラヒドロフタル酸ジアルキル(直鎖又は分 岐の炭素数 1〜 1 3 )エステルを水素化してへキサヒドロフタル酸ジアルキル (直 鎖又は分岐の炭素数 1〜1 3 ) エステルを製造するプロセス等に適用できる。 こ の場合は、 通常、 後述のニッケル系固体触媒又は後述の貴金属系固体触媒を使用 して、 本発明の不均一触媒水素化反応を行うのが好ましい。
く芳香族ィ匕合物又は複素環化合物の核水素化 >
本発明は、 芳香族化合物の核水素化反応に適用できる。 原料である芳香族化合 物としては、 ベンゼン環、 ナフタレン環を含有する化合物が例示できる。
{シクロへキサンジカルボン酸ジ ( 一 C 1 3) アルキルの製造 }
シクロへキサンジカルボン酸ジ (C^一 c 13) アルキルを製造する場合、 原料と して、 テレフタル酸ジ (C i— C 1 3) アルキル、 イソフタル酸ジ(C i— c 13) ァ ルキル、 テレフタル酸ジ (C i— C ^) アルキル等が例示される。
ー C 1 3アルキル基としては、 具体的には、 メチル基、 ェチル基、 n—プロ ピル基、 i s o—プロピル基、 n—ブチル基、 s e c—ブチル基、 i s o—プチ ル基、 n—ペンチル基、 n—へキシル基、 n—へプチル基、 n—才クチル基等の 直鎖状又は分岐鎖状の脂肪族基、 シクロペンチル基、 シクロへキシル基、 2—メ チルシクロへキシル基、 3—メチルシクロへキシル基、 4ーメチルシクロへキシ ル基等の脂環族基等が例示される。
{シクロへキサン環又は飽和縮合環を有する化合物の製造 }
シクロへキサン、 メチルシクロへキサン、 ジメチレシクロへキサン、 ェチルシ クロへキサン、 トリメチルシクロへキサン、 メチルェチルシク口へキサン、 デカ リン、 石油系炭素数 8留分の芳香族炭化水素を核水素化した化合物 (例えば、 新 日本理化社製、 商品名 「リカソルブ 8 0 0」)、 石油系炭素数 9留分の芳香族炭化 水素を核水素化した化合物 (例えば、 新日本理化社製、 商品名 「リカソルブ 9 0 0」)、 石油系炭素数 1 0留分の芳香族炭化水素を核水素化した化合物等を製造す る場合、 原料として、 具体的には、 ベンゼン、 トルエン、 キシレン、 ェチルベン ゼン、 トリメチルベンゼン、 メチルェチルベンゼン、 ナフタレン、 石油系炭素数 8留分の芳香族炭化水素、 石油系炭素数 9留分の芳香族炭化水素、 石油系炭素数 1 0留分の芳香族炭化水素等が例示される。
{脂環族モノオールの製造 }
シクロへキサノール、 メチルシクロへキサノール、 ジメチルシクロへキサノー ル、 ェチルシクロへキサノール、 t一プチルシクロへキサノール、 ジ (t—プチ ル) シクロへキサノール、 4ーシクロへキシルシクロへキサノール及びこれらの 位置異性体等を製造する場合、 原料として、 フエノール、 o、 m、 p—クレゾ一 ル、 キシレノール、 ェチルフエノール、 o— t一ブチルフエノール、 ρ— t—ブ チルフエノール、 2 , 4—ジ (t—プチル) フエノール、 2 , 6—ジ (t—ブチ ル) フエノール、 p—フエニルフエノール等が例示される。
{脂環族ジオールの製造 }
1 , 2—シク口へキサンジオール、 1, 3—シク口へキサンジオール、 1 , 4 ーシク口へキサンジオール、 4 , 4, —ビス (シクロへキサノール)、水素化ビス フエノール A、 水素化ビスフエノール Zを製造する場合、 原料として、 力テコー ル、 レゾルシン、ハイドロキノン、 4, 4 ' ービフエノール、 ビスフエノール A、 ビスフエノール Z等が例示される。
(脂環族ジァミンの製造 }
1, 2—シクロへキサンジァミン、 1 , 3—シクロへキサンジァミン、 1 , 4 —シクロへキサンジァミン、 1, 3—ビスアミノメチレンシクロへキサン、 1 , 4一ビスアミノメチレンシク口へキサン、 4, 4, —メチレンビス (シクロへキ シルァミン) 等の脂環族ジァミン製造する場合、 原料として、 o—フエ二レンジ ァミン, m—フエ二レンジァミン, p—フエ二レンジァミン、 m—キシリレンジ ァミン、 p—キシリレンジァミン、 4 , 4 ' —メチレンジァニリン等が例示され る。
また、 本発明方法は、 不飽和結合を少なくとも 1個 (特に 1〜 5個) 有する複 素環化合物の複素環水素化反応にも適用できる。 かかる複素環化合物としては、 ピリジン、ニコチン酸メチル等のピリジン化合物、キノリン等のキノリン化合物、 フルフリルアルデヒド、 フランカルボン酸等のフラン化合物等が例示される。 特に、 本発明方法によれば、 ピリジンからピぺリジンを、 ニコチン酸メチルから へキサヒドロニコチン酸メチルを、 キノリンからデカヒドロキノリンを、 フルフ リルアルデヒドカゝらテ卜ラヒドロフルフリルアルコールを、 フランカルボン酸か らテトラヒドロフルフリルカルボン酸を製造することができる。
上記芳香族化合物又は不飽和の複素環化合物を原料として使用する場合、通常、 後述のニッケル系固体触媒又は後述の貴金属系固体触媒を使用して、 本発明の不 均一触媒水素化反応を行うのが好ましい。
く二トリル化合物、 酸ァミド化合物からアミンの製造 >
本発明方法は、 二トリル化合物のァミンへの水素化反応に適用できる。 原料で ある二トリル化合物としては、 特に限定されるものではないが、 具体的には、 ブ チロニトリル、 ラウリロ二トリル、 ステアロニトリル等が例示される。
また、 本発明方法は、 酸アミド化合物のァミンへの水素化反応に適用できる。 原料である酸アミドとしては、 特に限定されるものではないが、 具体的には、 酪 酸アミド、 ラウリン酸アミド、 ステアリン酸アミド等が例示される。
これらの場合、 通常、 後述のニッケル系固体触媒又は後述の貴金属系固体触媒 を使用して、 二トリル化合物又は酸ァミド化合物から本発明の不均一触媒水素化 反応によりアミンを製造するのが好ましい。
<酸イミド化合物原料 >
本発明は、酸ィミドのピロリジン化合物ゃァミンへの水素化反応に適用できる。 例えば、△ 4ーテトラヒド口フタル酸ィミド及び Z又はへキサヒド口フタル酸ィミ ドを水素化して、 ォクタヒドロイソインドールを製造することができる。
この場合、通常、後述の銅系固体触媒又は後述の貴金属系固体触媒を使用して、 酸イミド化合物から本発明の不均一触 ¾ Κ素化反応によりピロリジン化合物ゃァ ミンを製造するのが好ましい。
本発明においては、 上記の不均一触媒水素化反応の中でも、 水素化反応が、 飽 和 (不飽和) 脂肪酸アルキルエステルの飽和アルコールへの還元反応、 不飽和脂 肪酸アルキルエステルの不飽和アルコールへの還元反応、 脂肪族又は脂環族ジカ ルポン酸ジエステルの脂肪族又は脂環族ジオールへの還元反応、 ラクトン系化合 物を脂肪族ジオールとする還元反応、 炭素—炭素二重結合を水素化する反応、 芳 香族化合物の核水素化反応は、 特に、 本発明に好適である。
く被水素ィ匕物質の硫黄と塩素含有量 >
本発明における水素化反応に供する被水素化物質としては、 上記各種の化合物 が使用できるが、 特に、 塩素原子と硫黄原子の含有重量が合計で 5 p pm以下、 好ましくは 3 p pm以下、 特に好ましくは 1 p pm以下、 更に好ましくは 0. 3 p pm以下であるのが有利である。
上記の塩素原子と硫黄原子の含有重量が合計で 5 p pm以下であると、 頻繁に 固体触媒を交換する必要がなく、 より合理的なプロセスとなる。
本発明者の研究によると、 塩素原子による触媒被毒は、 硫黄原子による触媒被 毒とは全く現象が異なるものであることが見出されている。即ち、硫黄化合物は、 水素ィ匕反応条件下における触媒金属との反応が極めて速く、 金属硫化物として、 触媒層最上部に局在している。 一方、 塩素原子は、 移動 (migration)という挙動を とることがある。 例えば、 触媒金属と反応して生成した金属塩化物は反応液中に 溶解して、 触媒層の下方向に拡散して、 被毒領域 (触媒不活性領域) を拡大する 傾向があり、 また、 有機塩素化合物は、 触媒との反応が遅ぐ 結果として触媒層 下部に到達して上記移動 (migration)と同じ挙動となる。 本発明者は、 硫黄と塩素という全く挙動の異なる 2種の被毒物質の共存下にお いて、 塩素原子と硫黄原子の含有重量が合計で 5 p pm以下の原料が有効である ことを見出したものである。
ί塩素原子混入の原因と塩素原子含量低減方法 }
塩素原子が含まれる原因としては、食塩 (NaCl)や塩酸根などの無機化合物の 混入の場合と有機塩素化合物の混入の場合がある。
食塩の混入に関しては、 特に被水素化物質が植物などの天然物由来の場合は、 天然物が被水素化物質の産生活動に食塩を必要とするものが多く、 根元的な問題 である。 エステル交換触媒の中和やエステル化触媒に塩酸を使用したために、 塩 素原子が混入する場合もある。 無機化合物は一般に水洗で低減除去できる。
一方、 天然物からこれらの原料 (被水素化物質) を分離する工程や、 加工過程 において、 塩素化合物が原料と反応して、 有機塩素化合物となることもある。 例 えば、 牛脂や豚脂の製造工程では、 解体した牛や豚の血液や肉汁と共に高温で加 熱される為、 食塩が一部有機化してしまい、 牛脂や豚脂に由来する脂肪酸は有機 塩素を含有している。 又、 回収した植物系揚げ油 (通称、 植物二号油) も、 食塩 を含有する食材と高温で接触した結果、 有機塩素を含有している。 又、 ヤシ油に 起因した脂肪酸も天然由来の有機塩素を含有している。 これらの有機塩素化合物 は、 塩素原子量が 3 5. 4と炭素の原子量の 3倍に相当することに起因して、 分 子量が大きくて蒸気圧が低い為、 精密蒸留で低減除去できる。
最も好ましい方法は、これらの塩素を含有しない原料を使用することであるが、 原料価格と供給安定性などを考慮して、 選択することができる。
{硫黄原子混入の原因と硫黄原子含量低減方法 }
また、 硫黄原子は、 P—トルエンスルホン酸や硫酸をエステル交換触媒中和や エステル化触媒に使用したために混入する場合がある。 これらの化合物は一般に 水洗で低減除去できる。
天然物に起因する原料の場合は、 シスチンなどの蛋白質由来の硫黄化合物が混 入する。 牛脂、 豚脂、 ヤシ油、 パーム油、 パーム核油はかかる蛋白質由来の硫黄 化合物を含有しており、 そのままでは、 本発明に供給する脂肪酸やメチルエステ ルに硫黄化合物が混入する。 これらの蛋白質由来の硫黄化合物は蒸留によつて低 減除去できる。
一方、 石油系、 石炭系の原料の場合は、 その原料の川上原料の製造工程に硫黄 化合物含有量が左右されている場合が多く、 原料選別が好ましい方法である。 例 えば、炭素—炭素二重結合を水素化する反応に用いる、 Δ4—テトラヒドロフ夕ル 酸無水物や Δ4— 3—メチルテトラヒドロフタル酸無水物の場合は、共役ジェン化 合物と無水マレイン酸のディールス ·アルダー反応によって製造されるが、 共役 ジェンィ匕合物のブタジェンゃイソプレン中に二硫化炭素などの硫黄化合物が混入 していることが多く、 原料を選別するのが好ましい。 また、 芳香族化合物の核水 素化に関する反応原料は、 石油系のものは深脱硫した極度低硫黄分の原料を選択 するのが好ましい。 石炭系の場合は、 チォフェンなどの硫黄化合物が大量に含有 されていることが多く、 本発明で使用しない方が好ましい。 固体触媒
本発明に用いる固体触媒としては、 水素化反応に使用されている公知の固体触 媒が使用できるが、 これらの中でも、 銅、 亜鉛、 ニッケル、 ルテニウム、 パラジ ゥム、 白金、 ロジウム及びこれらの酸化物からなる群から選ばれる少なくとも 1 種を担持した固体触媒が例示される。 また、 かかる固体触媒には、 助触媒として クロム、 モリブデン、 タングステン、 マグネシウム、 バリウム、 アルミニウム、 カルシウム、 ジルコニウム、 マンガン、 ニッケル、 ケィ素及びこれらの酸化物か らなる群から選ばれる少なくとも 1種の金属を更に担持させてもよい。
かかる固体触媒に使用する担体としては、シリカ、アルミナ、シリカアルミナ、 チタニア、 珪藻土、 白土、 活性炭、 カーボン、 グラフアイト、 ゼォライト、 モン モリロナイト等の粘土類、 珪酸アルカリ土類塩等の担体が例示される。
本発明で使用する固体触媒は、 それ自体いずれも公知の触媒である。 また、 こ れらの触媒は、 そのまま用いることもできるが、 使用する前に還元処理等の適当 な活性化処理をした後で反応に供することが好ましい。 還元処理等の活性化処理 は、 慣用されている方法で行うことができる。
く銅系触媒〉
銅系触媒としては、 銅、 銅一亜鉛、 銅一クロム、 銅—亜鉛—クロム及びこれら の酸化物から選ばれる 1種又は 2種以上の触媒、 並びにこれら銅系触媒に乇リブ デン、 タングステン、 マグネシウム、 バリウム、 アルミニウム、 力 ^/シゥム、 ジ ルコニゥム、 ゲイ素及びこれらの酸化物を添加した変性触媒を担持した固体触媒 が例示される。
具体的には、 銅酸化物、 銅—亜鉛—クロム酸化物、 銅—クロム—亜鉛—マグネ シゥム酸化物、 銅—亜鉛一クロム—バリウム酸化物、 銅—亜鉛酸化物、 銅一亜鉛 —マグネシウム酸化物、 銅一亜鉛—アルミニウム酸化物、 銅一クロム酸化物、 銅 —クロム一マグネシウム酸化物、 銅一クロム一マンガン酸化物、 銅一クロム一バ リウム酸化物、 銅—クロム一バリウム一マグネシウム酸化物、 銅—クロム一マン ガン一パリゥム酸化物、 銅一クロム—マンガン一マグネシウム酸化物等を担持し た固体触媒が例示される。
また、 銅—カルシウム—珪酸、 銅—マンガン一珪酸、 銅一バリウム一珪酸、 銅 —カルシウム—バリウムー珪酸、 銅—カルシウム一バリウム一マンガンー珪酸の 形で珪酸アル力リ土類金属に担持した固体触媒が例示される。
これらの銅系固体触媒は、 飽和又は不飽和脂肪酸エステルの飽和アルコールへ の還元反応に好適に用いることができる。
本明細書及び請求の範囲において、 上記銅—クロム酸化物等の 「M 1— M 2酸 化物」 なる表記は、 金属 M lの酸化物と金属 M 2の酸ィ匕物とを含む触媒を表す。 例えば、 「銅—クロム酸化物」は、銅酸化物とクロム酸化物を含む触媒を表す。同 様に、 銅—亜鉛—アルミニウム酸化物等の 「M 1— M 2— M 3酸化物」 なる表記 は、 金属 M 1の酸化物と金属 M 2の酸化物と金属 M 3の酸化物とを含む触媒を表 す。 例えば「銅—亜鉛—アルミニウム酸化物」 は、 酸化銅と酸化亜鉛とアルミ二 ゥム酸化物を含む触媒を表す。 他の類似の表現も同様である。
<亜鉛系触媒 >
亜鉛系触媒としては、 亜鉛一クロム酸化物、 亜鉛一アルミニウム酸化物、 亜鉛 一アルミニウム一クロム酸化物、 亜鉛一クロム—マンガン酸化物、 亜鉛—鉄酸化 物、亜鉛一鉄一アルミニウム酸化物等が例示される。これらの亜鉛系固体触媒は、 不飽和脂肪酸エステルを不飽和アルコールへの還元反応に好適に用いることがで きる。 くニッケル系触媒 >
ニッケル系触媒としては、 ニッケル一珪藻土、 ニッケル一クロム酸化物等が例 示できる。 これらのニッケル系固体触媒は、 二重結合の水素化反応や核水素化反 応に好適に用いることができる。
<貴金属系触媒 >
ルテニウム、 パラジウム、 白金、 ロジウム又はこれらの酸化物等を含有する貴 金属系固体触媒としては、 シリカ、 アルミナ、 .シリカ—アルミナ、 チタニア、 活 性炭、 カーボン、 グラフアイト等の担体に、 これら金属又は該金属の酸化物を担 持した固体触媒が例示される。 これらの貴金属系固体触媒は、 種々の水素化反応 に有効な触媒であり、 なかでも特に、 二重結合の水素化反応や核水素化反応に有 効である。
く触媒の形状〉
本発明に用いられる固体触媒の形状は、 円柱、 中空式円柱、 三葉柱、 四葉柱及 ぴ 3求形等であるのが好ましく、 異なる 2種以上の形状の固体触媒を使用してもよ い。
特に、 その最小長さが 1〜: L O mm程度の固体触媒が推奨される。 ここで、本 明細書及び請求の範囲において、 「最小長さ」 とは、例えば、直径 5 mmの球形触 媒であれば、 その直径 5 mmが最小長さであり、 また直径 3 mmx高さ 5 mmの 円柱形触媒であれば、 その直径 3 mmが最小長さである。 更に、 中空式円柱、 例 えば、 外径 3 mm (内径 2 mm) X高さ 5 mm中空式円柱の場合は、 その内径で はなぐその外径 3mmが最小長さである。三葉柱の場合は図 2に示すサイズ (R) が最小長さであり、四葉柱の場合は図 3に示すサイズ(L)が最小長さである(い ずれも高さ (軸線方向の長さ) の方が R又は Lよりも大きいものとする)。
最小長さが、 1 0 mmを越えると反応器中の固体触媒の触媒外形表面積が小さ くなるため生産性が低下する傾向にある。 1 mm未満では、 固体触媒が詰まりす ぎた状態となり、 圧力損失が大きくなるため灌液流を形成しにくくなる傾向があ る。
<触媒の製法 >
これらの固体触媒の製造法は、 特に限定されることはなく、 転動造粒法、 圧縮 成型法、 押し出し成形法、 溶融造粒法等の従来公知の方法が例示でき、 具体的に は、 粉末やペーストを打錠機、 造粒機、 押出成型器、 油中球状成型器等により容 易に製造することができる。
く触媒の強度〉
本発明の固体触媒は、 触媒 1個当たりの触媒強度が 1 . O k g以上の固体触媒 を充填使用することが必須条件である。
本発明における触媒強度とは、 最小圧壊強度を 1 0 0個の触媒について個々に 測定して、 その平均値 Aと標準偏差値 ( σ) を算出し、 式 Α—2 σにより求め られる強度である。 本発明では該触媒強度が 1 . 0 k g以上、 特に 1 . 5〜4. 0 k gであることが重要である。
本明細書において、 最小圧壊強度を測定するには、 J I S Z— 8 8 4 1— 1 9 9 3の 「3.1圧壌強度試験方法の方法」 に従って測定する。
本発明において、 「最小圧壌強度」 とは、 本発明で使用する円柱、 中空式円柱、 三葉柱、 四葉柱„の固体触媒を、 縦方向 (軸線方向) から圧縮して測定した圧壊強 度及び横方向 (半径方向、 即ち軸線方向と垂直な方向) から圧縮して測定した圧 壊強度のうち、 小さい方の圧壊強度を指す。 一般に圧壊強度が最も弱い方向は、 固体触媒が円柱、中空式円柱、三葉柱、四葉柱等の形状を有する場合は横方向(軸 線方向と垂直な方向) である。
なお、 球、 立方体等のように対称性の高い形状を有する固体触媒にあっては、 一般に圧縮方向によって圧壊強度の差はないので、 本明細書においては、 上記 J I S規格の方法により測定された圧壌強度を最小圧壌強度と呼ぶものとする。 上記触媒強度が、 1 . 0 k gより弱いと、 触媒の損傷による触媒流出や著しく は反応缶や接続配管が閉塞に至る傾向が認められる。 また、 平均値 (A) が高い 触媒であっても、 標準偏差値 ( σ ) が大きい場合、 即ち、 強度が小さい触媒の比 率が大きいとこれらの弱い触媒が損傷して、 触媒流失や装置閉塞に至る傾向があ り、 強度のバラツキまで加味した固体触媒が有効である。 本発明の範囲では、 こ のようなことは生起しない。
なお、 前記式 Α— 2 σにより求められる触媒強度は、 任意の 1 0 0個の触媒に おいて、 9 7. 5 %以上の固体触媒の最小圧壌強度が 1 k g以上であることを統 計的に表したものである。 水素化反応方法
本発明の不均一系触媒水素化反応方法は、 上記の触媒の存在下、 嫌 S被水素化 物質を原料として用いて、 灌液流条件下で、 水素ガスと被水素化物質とを上方か ら並流で流下させる方法であり、 以下にその詳細を述べる。
本発明の灌液流とは、 液相 (即ち、 液状の被水素化物質) が固体触媒上を重力 の作用で膜状に流下し、 固体触媒粒子表面を流下する膜状の液相と水平方向の隣 接する固体触媒粒子上を流下する膜状の液相との間の空間を水素ガスが連続流と なって、 該液相と並流で下方に流れる状態を示す。
その一例を図 1に示す。 図 1において、 液相 1 0 0は固体触媒粒子 1 0 2の表 面に沿って膜状に流れ、 その下の固体触媒 i子 1 0 3の表面に沿って膜状に流下 し、 更に固体触媒粒子 1 0 3の下の固体触媒粒子 1 0 4 (及びそれに続く固体触 媒粒子) の表面に沿って膜状に流下する。 同様に、 液相 1 0 0は、 固体触媒粒子 1 0 2に隣接する固体触媒粒子 1 1 0の表面に沿って膜状に流れ、 その下の固体 触媒粒子 1 1 1 (及びそれに続く固体触媒粒子)の表面に沿って膜状に流下する。 このように固体触媒粒子 1 0 2、 1 0 3、 1 0 4 (およびそれに続く固体触媒 粒子) の表面に沿って流下する膜状の液相と、 これら固体触媒粒子 1 0 2 , 1 0 3 , 1 0 4 (およびそれに続く固体触媒粒子) に隣接する固体触媒粒子 1 1 0、 1 1 1 (およびそれに続く固体触媒粒子) の表面に沿って流下する膜状の液相と の間の空間 Sを、 水素ガスが連続流として流下する。 図 1においては、 球形の固 体触媒を使用した例を示しているが、 他の形状の固体触媒の場合も、 上記説明が 同様に当てはまる。
このような灌液流条件は、 管直径、 原料供給速度と水素ガス供給速度、 水素ガ ス圧力、 触媒の寸法な; ifによって変化する。
本発明の固体触媒を使用した場合、 通常、 反応塔断面積 l m2当たりの原料供 給速度が、 反応条件下、 0. 4〜4 0 m3Zh程度 (好ましくは l〜3 0 m3Zh程 度、より好ましくは 2〜3 0 m3/h程^、反応塔断面積 l m2当たりの水素ガス 供給速度が、 反応条件下、 4〜 4 0 0 0 m3/7!!程度 (好ましくは 1 0〜 2 0 0 0 m3/h程度、より好ましくは 40〜1000m3/h程 の範囲内で灌液流が得 られる。
水素ガス供給速度がこれより大きいと、 液相 (被水素化物質) の一部が液滴と なって流れる噴霧流となり本発明の高生産性が得られない。 原料供給量がこれよ り大きいと、 脈動流となる。 脈動流が生じると、 圧損失が大きくなる現象と固体 触媒が流動化する現象により、 固体触媒相互が衝突して破砕する為、 本発明の不 均一系触媒水素化反応方法にとって好ましくない。 さらに、 原料供給量が増加す ると、 原料が連続相となり、 ガスが分散して気泡となって流れる気泡流となり、 本発明の高生産性が得られない。
上記の灌液流条件を採用することに加えて、 本発明では、 単位触 形表面積 当たりの動的液相保持量が、 水素化反応が定常状態となった時点以降において、 反応条件下において、 0. 005X 10— 3 〜0. 14X 10— 3 m3/m2程度、 好ましくは 0. 05X 10-3 〜0. 12X 10—3 m3Zm2程度であることが重 要である。触媒外形表面積当たりの動的液相保持量が、 0. 14X10—3 mV m2より大きいと液相保持量の多すぎる部分と液相保持量の少ない部分が交互に 流れる脈動流となる傾向があり、 一方、 0. 005X 10— 3 m3Zm2より少な いと原料供給速度が少なすぎて原理的に高生産性が得られないか、 ガス流量が大 きすぎて前述の噴霧流を形成してしまう。
単位触媒外形表面積当たりの動的液相保持量を、 0. 005X 10— 3 〜0. 14X 10-3 m3Zm2程度の範囲に調整するには、 上記灌液流条件を採用する ことに加えて、 更に、 充填する固体触媒の大きさ (最小長さ) 及び形状等を調整 することにより行うことができる。
本発明の 「触媒外形表面積」 とは、 固体触媒の外形の表面積であり、 巨視的に みた場合の固体触媒粒子の表面積である。 具体的には、 触媒外形表面積は、 例え ば半径が rで高さが]!の円筒形の触媒の場合は上下の円の部分の面積 2 π r 2と 側面積 27 r hの合計であり、 また、 例えば半径 rの球形の場合 4 Ttr 2である。 微視的に見た触媒の細孔を含む表面積と区別する為に、 上記の用語を使用するこ ととする。従って、 「単位触媒外形表面積当たり」 とは、 反応塔に充填されている 複数の触媒の触媒外形表面積の合計 1 m2当たりという意味である。 また、 本発明における 「動的液相保持量」 とは、 全ホールドアップ量から、 静 的保持量を減じたものである。
実際の反応塔内において、 固体触媒同士が接触し合う触媒点近傍の反応液は、 下降並流する水素ガスに対して、 固体触媒の陰になることや、 表面張力などの因 子によって、 ほとんど静止している状態であり、 生産への寄与は少なく、 これを 考慮に入れない。 これを静的保持量と称する。
例えば、 図 1において、 液相 (被水素化物質) 1 0 0は、 固体触媒 1 0 2と固 体触媒 1 0 3との間の空間においては、 固体触媒 1 0 2の陰になることや、 表面 張力などの因子によって、 固体触媒 1 0 2と固体触媒 1 0 3との間の空間に滞留 してほとんど静止している。 このような滞留してほとんど静止している液相の量 を静的液相保持量という。
本発明の触媒外形表面積当たりの動的液相保持量とは、 下降する水素ガスと並 流で各触媒の表面に沿って膜状に流下していく液相の合計量を示す。 従って、 上 記静的液相保持量と動的液相保持量との合計が、 全ホールドアップ量である。 実際には、 反応条件下で、 水素ガスの供給は継続したまま、 液相の供給を停止 した時に、反応塔の下部より排出されてくる液重量 (W)を計測することにより、 動的液相保持量を測定できる。 即ち、 Wが動的液相保持量である。
更に、本発明では、上記のように触媒外形表面積当たりの動的液相保持量が 0. 0 0 5 X 1 0— 3 〜0. 1 4 X 1 0—3 m3Zm2であって、且つ、液相中の溶存水 素濃度が 0 . 0 1〜5. 0 kmo I Zm3、 特に 0 . 3 ~ 5 · O kmo l Zm3で あるのが好ましい。 更に、 本発明では、 水素化反応が定常状態となった時点以降 において、 液相中の溶存水素濃度を、 反応塔内の触媒層の最高地点から l m下の 地点において、 液相の飽和水素濃度の 1 0〜1 0 0 %に調整するのが好ましい。 特に反応が激しい製造方法、 例えば、 (1)翻旨、 油脂由来の飽和又は不飽和脂肪 酸、 該飽和又は不飽和脂肪酸のアルキルエステル、 (2)不飽和脂肪酸又はそのアル キルエステル、 (6)炭素—炭素二重結合を含有する化合物 (不飽和脂肪酸、 不飽和 アルコ一ル等) 等の二重結合の水素化反応のように大量の二重結合を水素化する プロセス、(7)芳香族化合物の水素化反応のような核水素化プロセス、(1)油脂、油 脂由来の飽和脂肪酸、該飽和脂肪酸のアルキルエステル、 (2)不飽和脂肪酸又はそ のアルキルエステル、 (3)脂肪族ジカルポン酸ジアルキルエステル、脂肪族ジカル ボン酸と脂肪族ジオールとの反応生成物 (オリゴマー)、 (4)脂環族ジカルボン酸 ジアルキルエステル等の水素化反応のような、 カルボン酸エステルからの飽和ァ ルコールの製造プロセス等においては、 液相中の溶存水素濃度を、 反応塔内の触 媒層の最高地点から 1 m下の地点において、 液相の飽和水素濃度の 1 0〜 6 0 % に調整するのが好ましい。
また、(1)不飽和カルボン酸エステルからの不飽和アルコールの製造プロセスの ように反応選択性を保持するために低い反応活性の触媒を選択するプロセス;共 役ジェン化合物を原料として、 共役ジェンをモノエンに水素化し、 共役ジェン化 合物を含有しない不飽和アルコールを製造するプロセスのようにマイルドな反応 条件を選択するプロセス;炭素数 8〜2 2の飽和アルコール中にわずかに残存す る炭素—炭素二重結合を水素化してョゥ素価を低減して、 品位の高い飽和アルコ ールを製造するプロセスのように反応量が非常に少ないプロセスなどの場合にお いては、 液相中の溶存水素濃度を、 反応塔内の触媒層の最高地点から l m下の地 点において、 液相の飽和水素濃度の 5 0 - 1 0 0 %に調整するのが好ましい。 ここで、 上記溶存水素濃度及び飽和水素濃度は、 それぞれ、 当該水素化反応の温 度及び圧力における濃度を指す。
本発明において、 「液相の飽和水素濃度」とは、反応基質自身に溶解し得る最大 水素濃度を示しており、 設定する反応条件下において、 触媒の無い状態で、 水素 ガスと液相を十分に接触させて得られる飽和水素濃度である。
本発明の溶存水素濃度は、 ガス相の水素分子が液相中に溶解した結果として、 被水素化物質と共に固体触媒に接触する液相中の水素濃度である。 詳しくは、 動 的な因子によって支配され、 水素ガスの液への溶解速度、 液相の中で固体触媒表 面に拡散していく速度、 固体触媒表面で水素ガスから活性状態になる速度、 活性 状態の水素が反応基質と反応する速度等々の複雑な因子が組み合わさった結果、 液相中に 「溶存」 した水素分子として検知される。
本発明においては、 溶存水素濃度は飽和水素濃度に対して、 1 0〜1 0 0 %と することが好適である。 常に溶存水素濃度が飽和水素濃度の 1 0 0 %である条件 が好ましぐ反応塔下部においては実際に 1 0 0 %を示している。これに対して、 反応上部においては、 反応基質と水素分子との反応量が非常に大きぐ 溶存水素 濃度が低くなりがちである。 本発明者の研究によると、 反応塔上部 l m地点にお いて、 液相中の溶存水素濃度 1 0 %以上を保持することが高生産性を得るのに有 利であることが判った。
上記のように、溶存水素濃度を 0. 0 1〜5. 0 kmo l /m3に調整すること、 並びに、 液相中の溶存水素濃度を、 反応塔内の触媒層の最高地点から l m下の地 点において、 液相の飽和水素濃度の 1 0〜1 0 0 %に調整するには、 次のように して行うことができる。
溶存水素濃度範囲、 及び、 溶存水素濃度と飽和水素濃度との比率は、 極めて多 くの要因の影響を受けるために、 種々の方法を採用でき、 例えば、 次のようなフ アクターを考慮して容易に行うことができる。 即ち、 固体触媒に関しては、 低活 性触媒の選択、 触媒の活性種濃度低減、 触 形表面積低減、 動的液相保持量低 減は、 水素濃度を高める傾向がある。 水素ガス供給方法に関しては、 水素圧力上 昇、 水素流量増大は、 溶存水素濃度を高める傾向がある。 被水素化物質供給方法 に関しては、 反応基質濃度低減、 反応原料供給量低減は溶存水素濃度を高める傾 向がある。 従って、 設定する反応条件下で、 これらのファクターと、 上記溶存水 素濃度 (更には、 溶存水素濃度と飽和水素濃度との比率) との間にどのような関 係があるかを予め調べておき、 生成物の種類に応じて、 これらの条件を適宜選択 することにより容易に行うことができる。
<反応温度、 反応圧力、 反応溶媒など >
水素化反応の反応温度及び反応圧力は、 水素化反応が完結できる条件であれば 特に限定されないが、 実用的な反応速度が得られる条件として、 反応温度として は、 通常、 5 0〜3 5 0 程度、 好ましくは 5 0〜3 0 0 程度の範囲であり、 反応圧力としては、 通常、 常圧〜 3 5 MP a程度、 好ましくは 0. 9〜3 0 MP a程度の範囲が推奨される。
上記の水素化反応は、 通常、 無溶媒で実施されるが、 原料及び Z又は反応生成 物の融点が高く取り扱いが困難な場合や、 反応性や選択性の向上及び反応熱の効 率的な除去等を目的として溶媒を使用することができる。
反応原料の融点が高ぐ 反応生成物の融点が低い場合には、 溶媒として、 反応 生成物そのものを使用することも有効な方法である。 また、 反応熱が非常に大き い核水素化反応の場合、 溶媒や反応生成物そのもので希釈して供給する方法も採 用できる。
溶媒としては、 通常、 水素化反応に対して反応不活性であり、 原料及び反応生 成物と反応しない溶媒の中から適宜選択することができる。 具体的には、 水、 炭 素数 1〜1 0のアルコール類、 エチレングリコール、 プロピレングリコールなど のジオール類、 ジグライム、 トリグライムなどのエーテル系溶媒、 メチルプロピ レングリコール、 ブチルセ口ソルブ等のエーテルアルコール、 炭素数 5〜 1 0の パラフィン、 シクロパラフィン炭化水素類等が使用でき、 核水素化反応以外の場 合は、 トルエン、 キシレン等の芳香族炭化水素類等も使用できる。
溶媒の使用量は、 特に制限はないが、 重量基準で、 原料である被水素化物質 1 重量部に対して 0. 0 5〜: L 0 0重量部の範囲、 好ましくは 0. 1〜5 0重量部 の範囲である。
く反応塔〉
本発明に用いられる反応塔としては、 固体触媒を充填した場合に均一な灌液流 を形成する任意の形状のものが使用できる。 かかる均一な灌液流を形成するため には、 例えば、 上部にパカレキャップ式分散板などの供給液を均一に固体触媒に 供給する設備を設置すればよい。 さらに、 偏流を防止する目的で、 分散板付きの 比較的短い塔を直列に接続するか、 または再分散装置を設置した長い反応塔を採 用することが好ましい。
反応装置の長さ及び It径は、 原料の種類、 反応のタイプ、 生産量、 装置の建造 コストゃ操作性等に応じて適宜選択すればよいが、 一般には直径が 2〜 2 0 0 c m程度、 特に 3〜1 0 0 c m程度、 触媒層の長さが 2〜 2 0 m程度、 特に 3〜1 5 m程度の反応器を使用するのが好ましい。
また、 反応装置としてマルチチューブ型反応器を使用することもでき、 その場 合は、 直径が 2〜2 O c m程度、 好ましくは 2〜: L 0 c m程度、 触媒層の長さが 2〜 2 0 m程度、 好ましくは 3〜 1 5 m程度のチューブ型反応器を 1 0〜: L 0 0 0本、 好ましくは 2 0〜 5 0 0本使用したマルチチューブ型反応器を使用するの が好ましい。 また、 反応熱を除熱する目的で、 反応塔の途中に冷却用の水素ガスを導入する 配管を接続するプロセスとするか、 または、 最も反応の激しい時期の除熱を行う 熱交換器を直列に接続するプロセスを選択することが好ましい。 実施例
以下に、 実施例及び比較例を掲げて本発明を詳しく説明するが、 本発明はこれ ら実施例に限定されるものでない。
各実施例及び比較例において、 「%」 は特に断らない限り 「重量%」 を指す。
1 ) 装置
図 4に示すような装置を用いる。 即ち、 直径 4 0 c mの触媒充填高さ l mの反 応器 1、 直径 4 0 c mの触媒充填高さ 3 mの反応器 2、 3及び 4を高圧気液分離 器 5、 7及び 8を経由して直列に接続した。 各々の反応塔の上部にバブルキヤッ プ式の分散板 (図示せず) を水平に設置した。
下記の実施例及び比較例においては、 次の操作を行った。 予め、 水素気流中で 活性化した触媒が充填されている反応塔 1 , 2, 3 , 4に、 水素ガス圧縮機 2 0 及び水素ガス循環機 1 6を用いて、 所定圧力に加圧した水素ガスを所定流量で流 しておく。 昇温を開始し、 所定の反応温度より 2 0〜5 0 低い温度に達したと きに原料供給を開始し、 昇温を継続する。 水素化生成物を高圧気液分離器 9に接 続している水素ィ匕生成物取り出し用配管 cから連続的に抜き出し、 反応粗物夕ン ク 9 0に収容する。 所定温度に達した時点を反応開始時間とする。 水素化反応に よつて消費された量に相当する水素ガスを新たに連続的に供給して所定圧力を維 持する。 通常 1 0時間程度で定常状態に達する。
なお、 下記の実施例では、 触媒充填高さ l mの反応器 1を使用しているので、 反応塔の触媒層最高点から 1 m下の地点における溶存水素濃度を測定することが できる装置となっているが、 工業的に実施する場合は、 再分散装置を設置した一 体型の反応塔としてもよい。
2 ) 反応率の測定
反応器 1、 2、 3及び 4からなる反応塔 (触媒充填層 1 1〜: L 4の高さの合計 1 0 m) の最終部 (即ち、 反応塔 4) に連結されている高圧気液分離器 9より採 取される反応最終粗物の反応率を測定した。
エステル還元による飽和又は不飽和アルコールの製造の場合は、 鹼化価 ( J I S K一 0 0 7 0 )、 ヨウ素価( J I S K- 0 0 7 0 )の測定結果に基づき反応 率を求めた。 また、 核水素ィ匕反応については、 GL C測定結果に基づき反応率を 求めた。
3 ) 単位触媒外形表面積当たりの動的液相保持量の測定
触媒充填高さ 1 mの反応器 1に接続している高圧気液分離器 5の底部に低圧気 液分離器 6を設置し、 高圧気液分離器 5から次反応器 1 2への移動を一次的に停 止して、 反応器中の触媒に保持されている液体量の全量を低圧気液分離器 6に捕 捉することにより、 灌液流条件下の単位触媒外形表面積当たりの動的液相保持量 を測定した。
なお、 触媒外径表面積は、 使用する触媒 1 0個の寸法 (直径及び高さ) を測定 し、 寸法の平均値を求め、 該平均値から計算により求めた。
4) 反応塔上部の触媒層の最高地点から l m下の地点における液相中の溶存水 素濃度の測定
触媒充填高さ 1 mの反応器 1に接続している高圧気液分離器 5の底部に低圧気 液分離器 6を設置し、 密封した状態で反応液 (液相) を一定量抜き出した。 装着 している圧力計の指針変化によって高圧時に溶存していた水素ガスの量を測定し て、 溶存モル数を算出した。
即ち、 高圧気液分離器 5内の反応液 (液相) において、 溶存水素濃度は反応器 1 (即ち、 触媒層の最高地点から l mの地点) での反応状況に応じた濃虔となつ ている。 この反応器 1内の液相を、 低圧気液分離器 6に移送すると、 該液相中に 溶解していた水素分子がガス状態となつて放出され、 装着している圧力計 6 1の 指針変化 (圧力増) として現れる。 低圧気液分離器 6の空間体積と圧力増から、 高圧気液分離器 5中の液相の溶存水素濃度を算出した。
以下、 「反応塔上部の触媒層の最高地点から l m下の地点」 を、 「反応塔上部 1 m地点」 と略記する。
5 ) 液相の飽和水素濃度の測定
上記 4 ) の方法で採取した触媒を含有しない反応液を、 攪拌機付きバッチ式ォー トクレーブに入れて、 撹拌しながら水素ガスを供給し、 当該温度、 当該圧力にお ける液相の飽和水素濃度を測定した。
6 ) 触媒強度の測定
木屋式デジタル硬度計(木星製作所製、 商品名 「KHT— 2 0型」) を用いて、 J I S Z 8 8 4 1—1 9 9 3の 「3. 1圧壌強度試験方法」 に記載の方法に従つ て、 各実施例で使用する円柱形の固体触媒の縦方向 (軸線方向) から圧縮して測 定された圧壊強度と横方向 (軸線方向に垂直な方向) から圧縮して測定された圧 壌強度を比較した。
上記圧壌強度の測定原理は、 静止している直径 2 5 mmの試料台の上に、 被測 定物質である固体触媒粒子 1個を置き、 可動式の直径 5 mmの加圧面を上部から 1 mmZ秒の速度で加工させ、 被測定物質に押しつけて破壊するときの強度を測 定するものである。 測定装置の仕様は、 次の通りであった。 破壌強度検出機構 = 静電容量式シングルボイントロードセル、 読み取り限度- 0. 0 5 k g f。
各実施例で使用した固体触媒については、 横方向から圧縮して測定した圧壌強度 が、 縦方向から圧縮して測定した圧壌強度よりも小さかったので、 横方向から圧 縮して測定した圧壊強度を 「最小圧壊強度」 とした。
固体触媒の最小圧壌強度を 1 0 0個の固体触媒について測定し、 その平均値 A と標準偏差ひを算出した。以下の式により算出した値を触媒強度(k g)とした: 触媒強度 (k g) =Α- 2 σ
上記式中、 Αは最小圧壌強度の平均値を示し、 σは最小圧壊強度の標準偏差値を 示す。
また、 下記の実施例及び比較例において、 原料供給速度、 水素ガス速度及び動 的液相保持量の値は、 反応条件下での値である。
実施例 1 :飽和脂肪酸エステルから飽和アルコールへの水素化反応
反応器 1、 2、 3及び 4に、 直径 3 mmX高さ 3 mmの打錠成型器で製造した 円柱形の銅—クロム酸化物触媒 (嵩比重 1 . 1 k g/リットル) を充填した。 該触媒を活性化するために、 事前に水素化処理を施した。 より詳しくは、 反応 器中を窒素ガス置換した後、窒素気流中で 1 5 0 °Cに昇温した。 1 0時間かけて、 徐々に水素ガス 1 0 0 %になるように、段階的に水素ガス濃度を増加させながら、 窒素—水素混合ガスを流した。 水素ガス 100 %になった後、 220 まで昇温 した。 水素ガス循環機 16を作動させて、 原料の供給を開始直前の時点で、 水素 ガス供給速度を下記所定速度と同一とした。
パーム核油由来のラウリン酸メチル (硫^^有量 0. 05ppm、 塩素含有量 0. 20 ppm) を、 原料タンク Tに入れ、 反応塔断面積 lm2当たりの原料供 給速度 1 δπι3 ^で、反応塔断面積 lm2当たりの水素ガス速度 80 OmV , 温度 220 、 圧力 18MPaで、 反応器 1、 2、 3及び 4へと順次、 高圧気液 分離器 5、 7及び 8を経由して原料及び水素ガスを供給し、 灌液流条件下で 50 0時間運転し、 水素化生成物としてラウリルアルコール粗物を得た。
反応成績は、 表 1の通りであった。
表 1
Figure imgf000032_0001
なお、 鹼化価反応率は、 反応粗物の鹼化価 (SVx) と原料の鹼化価 (SV0) から下記式 (1) に従って測定した (以下の表においても同じ)。
鹼化価反応率 (モル%) = [(SV。一 SVx) /SVo] XI 00 (1) 反応開始後 10時間で、定常状態に達していたことが確認された。その時点で、 反応塔上部 1 m地点の高圧気液分離器 5に設置した低圧気液分離器 6に一定量の 反応粗物液相を採取して動的液相保持量と溶存水素濃度を測定した。
単位触媒外形表面積当たりの動的液相保持量は、 0. 09X 10—3 mVm2 であった。 溶存水素濃度は、 0. 8 kmo IZm3であった。
ここで得た反応粗物液相 500mlを別途の 1000 m 1パッチ式ォ一トクレ ーブに入れて、 撹拌下、 水素ガスを供給し、 220 に加熱し、 18 MP aでの 飽和水素濃度を測定したところ、 1. 5kmo 1/m3であった。即ち、反応塔上 部 lm地点における溶存水素濃度は、 液相の飽和水素濃度の 53%であった。 充填した触媒強度が最も弱い方向は横強度であり、 最小圧壌強度の平均値 A= 6. lkg, ひ =2. 0であり、 (A— 2σ) =2. 1 kgであった。 500時間 運転した後の固体触媒の破砕は見られず、 圧力損失の変動も観測されなかった。 比較例 1
反応塔断面積 lm2当たり、 水素ガス速度 5000m3Zhにおいて、 原料供給 速度を脈動流が生起する流量である反応塔断面積 lm2当たり 5 Om3 ^とし た以外は、 実施例 1と同様に操作した。
単位触媒外形表面積当たりの動的液相保持量は、 0. 1 5X 10—3 mVm2 であった。 50時間で反応器 4の高圧気液分離器 9の圧力が低下し、 逆に、 反応 器 1に供給する水素ガス配管の圧力が上昇してきた。 反応を停止して、 反応塔を 開放し、 触媒を検査したところ、 各々の反応塔底部の触媒が破碎されて、 底部配 管が閉塞寸前であった。
比較例 2
直径 3 mmx高さ 3 mmの円柱形の銅ークロム酸化物触媒を、 反応器 1〜 4に 充填した。 充填した触媒の強度の最も弱い方向は横強度であり、 最小圧壊強度の 平均値 A=5. 2 kg, σ = 2. 5であり、 (Α—2 σ) =0. 2kgであった。 この触媒を使用した以外は実施例 1と同様に反応したところ、 200時間で反 応器 4の高圧気液分離器 9の圧力が低下し、 逆に、 反応器 1に供給する水素ガス 配管の圧力が上昇してきた。 反応を停止して、 反応塔を開放し、 触媒を検査した ところ、 各々の反応塔底部の触媒が破碎されて、 底部配管が閉塞寸前であった。
比較例 3
直径 3 mm X高さ 3 mmの円柱形の銅—クロム酸化物触媒を反応器 1〜 4に 充填した。 充填した触媒の強度が最も弱い方向は横強度であり、 最小圧壌強度の 平均値 A=8. l kg, σ = 4. 0であり、 (A— 2ひ) =0. I k であった。 この触媒を使用した以外は実施例 1と同様に運転したところ、 100時間で反 応器 4の高圧気液分離器 9の圧力が低下し、 逆に、 反応器 1に供給する水素ガス 配管の圧力が上昇してきた。 反応を停止して、 反応塔を開放し、 触媒を検査した ところ、 各々の反応塔底部の触媒が一部破碎されて、 底部配管が閉塞寸前であつ た。
実施例 2:不飽和脂肪酸アルキルエステルから飽和アルコールへの水素化反応 パーム油を加水分解した脂肪酸を蒸留し、 冷却固体分別して得た不飽和脂肪酸 (ヨウ素価 98. 3、 g l c組成 C14: 0. 6%、 C16: 5. 0 %、 C18F0: 1. 8%、 C18F1:74. 5 %、 C18F2:18. 0 %、 C20F 1:0. 1%;ここ で、 Fl、 F2等の表記 (Fn) は、 不飽和脂肪酸が二重結合を n個有すること を示す。 以下の記載においても同じ) をメチルアルコールと p—トルエンスルホ ン酸でエステルイ匕し、 τ洗したメチルエステル (硫^"有量 0. 5ppm、 塩素 含有量 0. 7ppm) を原料として使用した。
該原料を使用し、 反応塔断面積 lm2当たりの水素ガス速度を 400m3Zhと する以外は実施例 1と同様にして、 灌液流条件下で 500時間連続して運転を行 い、水素ィ匕生成物としてパームアルコール粗物を得た。反応は異常なく進行した。 反応結果を、 表 2に示す。
表 2
Figure imgf000034_0001
反応開始後 10時間で、定常状態に達していたことが確認された。その時点で、 反応塔上部 1 m地点の高圧気液分離器 5に設置した低圧気液分離器 6に一定量の 反応粗物液相を採取して動的液相保持量と溶存水素濃度を測定した。
単位触媒外形表面積当たりの動的液相保持量は、 0. 10X10— 3 m3Zm2 であった。 液相中の溶存水素濃度は、 0. 7 kmo lZm3であった。
ここで得た反応粗物液相 500mlを、 1000mlバッチ式ォートクレーブ に入れて、 撹拌下、 水素ガスを供給し、 220°Cに加熱し、 18 MP aでの飽和 水素濃度を測定したところ、 1. 5kmo 1/m3であった。即ち、反応塔上部 1 m地点における液相中の溶存水素濃度は、液相の飽和水素濃度の 47 %であった。 充填した触媒の強度が最も弱い方向は横強度であり、 最小圧壌強度の平均値 A =6. lkg, σ = 2. 0であり、 (Α— 2cr) =2. 1kgであった。 500時 間運転した後の固体触媒の破砕は見られず、圧力損失の変動も観測されなかった。 実施例 3 牛脂 Z豚脂混合油脂を加水^!した脂肪酸 (ヨウ素価 57. 0、 g 1 cMC 12: 0. 1%、 C14: 2. 2%、 C16F0: 22. 6%、 C16F1 : 4. 8%、 C 18F0: 13. Ί%、 C18Fi:46. 3 %、 Cl8F2:5. 1 %、 C18F3:0. 6 %、 C20F2: 0. 4 %、 CI 5の脂肪酸、 C 17の脂肪酸及び C 19の脂肪酸の合計 4. 2%) をメチルアルコールと p—トルエンスルホン酸でエステル化し、 τΚ洗 したメチルエステル (硫黄含有量 2. 5ppm、 塩素含有量 1. 0 p pm) を原 料として使用した。
該原料を使用し、 反応塔断面積 lm2当たりの原料供給速度を 1 Om3ノ h、 反 応塔断面積 lm2当たりの水素ガス速度 100 Om3/hとした以外は実施例 1 と同様にして灌液流条件下で 500時間連続して運転を行い、 牛豚混脂アルコ一 ル粗物を製造した。 反応結果を表 3に示す。
表 3
Figure imgf000035_0001
反応開始後 10時間で、定常状態に達していたことが確認された。その時点で、 反応塔上部 1 m地点の高圧気液分離器 5に設置した低圧気液分離器 6に一定量の 反応粗物液相を採取して動的液相保持量と溶存水素濃度を測定した。
単位触媒外形表面積当たりの動的液相保持量は、 0. 08X 10—3 mVm2 であつた。 液相中の溶存水素濃度は、 1. 1 k m o 1 Zm3であった。
ここで得た反応粗物液相 500 m 1を、 1000 m 1バッチ式ォ一トクレ一ブ に入れて、 撹拌下、 水素ガスを供給し、 220°Cに加熱し、 18 MP aでの飽和 水素濃度を測定したところ、 1. 5 kmo 1/m3であった。即ち、反応塔上部 1 m地点における液相体積当たりの溶存水素濃度は、 液相の飽和水素濃度の 73% であった。
充填した触媒の強度が最も弱い方向は横強度であり、 最小圧壌強度の平均値 A =6. l kg、 σ = 2. 0であり、 (Α— 2 σ) =2. 1 kgであった。 500時 間運転した後の固体触媒の破砕は見られず、圧力損失の変動も観測されなかつた。 実施例 4
植物二号油 (ヨウ素価 119. 5、 g 1 ct C : 0. 4%, C16: 12. 0%、 C16F1: 0. Ί%、 C18: 4. 3 %、 C18F1: 40. 8 %、 C 18 F2: 34. 1%、 C18F3: 7. 3 %、 C20Fl:0. 4%) をメチルアルコールと水酸 化ナトリウムでエステル交換し、 10%塩酸で中和し、 水洗して得たメチルエス テル (硫黄含有量 3. 3ppm、 塩素含有量 4. 2ppm) を原料として使用し た。
該原料を使用した以外は実施例 1と同様にして灌液流条件下で 500時間連続 して運転を行い、 植物油還元アルコール粗物を製造した。
反応結果を下記表 4に示す。 表 4から判るように、 硫 有量、 塩素含有量が 高いので、 長時間運転すると、 触媒活性が低下する。 ただし、 反応初期はよい結 果が得られる。
表 4
Figure imgf000036_0001
反応開始後 10時間で、定常状態に達していたことが確認された。その時点で、 反応塔上部 1 m地点の高圧気液分離器 5に設置した低圧気液分離器 6に一定量の 反応粗物液相を採取して動的液相保持量と溶存水素濃度を測定した。
単位触媒外形表面積当たりの動的液相保持量は、 0. 09X10—3 mVm2 であった。 液相中の溶存水素濃度は、 0. 8kmo 1/m3であった。
ここで得た反応粗物液相 500mlを、 1000mlパッチ式ォ一卜クレーブ に入れて、 撹拌下、 水素ガスを供給し、 22 O に加熱し、 18MPaでの飽和 水素濃度を測定したところ、 1. 5kmo lZm3であった。即ち、反応塔上部 1 m地点における液相体積当たりの溶存水素濃度は、 液相の飽和水素濃度の 53 % であった。
充填した触媒の強度が最も弱い方向は横強度であり、 最小圧壌強度の平均値 A =6. lkg, σ = 2. 0であり、 (A— 2ひ) =2. lkgであった。 500時 間反応した後の固体触媒の破砕は見られず、圧力損失の変動も観測されなかつた。
実施例 5:飽和アルコールへの水素化
各々の反応塔に、 直径 3mmx高さ 3mmの打錠成型器で製造した夕ブレツト 型銅酸化物ー珪酸カルシウム触媒 (嵩比重 1. 5kg/l) を充填した。
パーム核油をメチルアルコールと水酸ィヒナトリゥムでエステル交換し、 蒸留し て得た飽和脂肪酸メチル(g 1 c組成 C 12: 75%、 C 14: 25%) (硫黄 含有量 0. 2ppm、 塩素含有量 0. 5 ppm) を、 反応塔断面積 lm2当たり の原料供給速度 15mVh,反応塔断面積 lm2当たりの水素ガス速度 800m 3/h、 温度 19 Ot、 圧力 2 OMP aとした以外は実施例 1と同様にして灌液 流条件下で 500時間連続して運転を行い、 水素化生成物として分留パーム核油 アルコール粗物を得た。 反応結果を表 5に示す。
表 5
Figure imgf000037_0001
反応開始後、 10時間では定常状態に達していたことが確認された。 その時点 で反応塔上部 1 m地点の高圧気液分離器 5に設置した低圧気液分離器 6に一定量 の反応粗物液相を採取して動的液相保持量と溶存水素濃度を測定した。
単位触媒外形表面積当たりの動的液相保持量は、 0. 09X10-3 mVm2 であつた。 液相体積当たりの溶存水素濃度が、 0. 8 k m o 1 Zm3であつた。 ここで得た反応粗物液相 500mlを別途の 1000 m 1ゾ ッチ式ォ一トクレ —ブに入れて、 190 に加熱し、 20 MP aでの飽和水素濃度を測定したとこ ろ、 1. 6 kmo IZm3であった。 即ち、 反応塔上部 1 m地点における液相体 積当たりの溶存水素濃度は、 液相の飽和水素濃度の 50%であった。
充填した触媒強度が最も弱い方向は、 横強度であり、 最小圧壌強度の平均値 A =10. 3kg、 び =3. 5であり、 (A— 2 σ) =3. 3 kgであった。 500 時間反応した後の固体触媒の破砕は見られず、 圧力損失の変動も観測されなかつ た。
実施例 6 :飽和アルコールへの水素化
各々の反応塔に、 直径 3mmx高さ 3mmの打錠成型器で製造したタブレツト 型銅一亜鉛—アルミニウム酸化物触媒 (嵩比重 1. 6kg/l) を充填した。 パーム核油をメチルアルコールと水酸化ナトリウムでエステル交換し、 蒸留し て得た飽和脂肪酸メチル(g 1 c組成 C 12: 75 %、 C 14: 25 %) (硫黄 含有量 0. 2ppm、 塩素含有量 0. 5p m) を、 反応塔断面積 lm2当たり の原料供給速度 15m3Zh、 反応塔断面積 lm2当たりの水素ガス速度 800m 3Zh、 温度 230Τλ 圧力 20 MP aとした以外は実施例 1と同様にして灌液 流条件下で 500時間連続して運転を行い、 水素化生成物として分留パ一ム核油 アルコール粗物を得た。 反応結果を表 6に示す。
表 6
Figure imgf000038_0001
反応開始後、 10時間では定常状態に達していた事が確認された。 その時点で 反応塔上部 1 m地点の高圧気液分離器 5に設置した低圧気液分離器 6に一定量の 反応粗物液相を採取して動的液相保持量と溶存水素濃度を測定した。
単位触媒外形表面積当たりの動的液相保持量は、 0. 09X 10一3 mVm2 であった。 液相体積当たりの溶存水素濃度が、 0. 8kmo lZm3であった。 ここで得た反応粗物液相 50 Omlを別途の 1000mlパッチ式ォ一トクレ —ブに入れて、 230 に加熱し、 20 MP aでの飽和水素濃度を測定したとこ ろ、 1. 6 kmo IZm3であった。 即ち、 反応塔上部 1 m地点における液相体 積当たりの溶存水素濃度は、 液相の飽和水素濃度の 50%であった。
充填した触媒強度が最も弱い方向は、 横強度であり、 最小圧壌強度の平均値 A =6. 6kg, σ = 2. 5であり、 (A— 2ひ) =1. 6kgであった。 500時 間反応した後の固体触媒の破碎は見られず、圧力損失の変動も観測されなかつた。 実施例 7 :ジカルボン酸ジエステルからジオールへの水素化反応 セパチン酸ジメチル(硫難有量 0. 05ppm、塩素含有量 0. 05ppm) を供給した以外は、 実施例 1と同様にして、 灌液流条件下で 500時間連続して 反応を行い、 対応するジオールである 1, 10—デカンジオール粗物を得た。 反 応結果を下記表 7に示す。 表 7から、 反応は、 異常なく進行し、 優れた効果を発 揮することが判る。
表 7
Figure imgf000039_0001
反応開始後、 10時間で、 定常状態に達していたことが確認された。 その時点 で、 反応塔上部 1 m地点の高圧気液分離器 5に設置した低圧気液分離器 6に一定 量の反応粗物液相を採取して液相保持量と溶存水素濃度を測定した。
単位触媒外形表面積当たりの動的液相保持量は、 0. 09X 10 3 mVm2 であった。 液相中の溶存水素濃度は、 0. 6kmo IZm3であった。
ここで得た反応粗物液相 500 m 1を、 1000 m 1ノ、ッチ式ォ一トクレーブ に入れて、 撹拌下、 水素ガスを供給し、 22 O :にカロ熱し、 18 MP aでの飽和 水素濃度を測定したところ、 1. 4kmo IZm3であった。即ち、反応塔上部 1 m地点における液相中の溶存水素濃度は、液相の飽和水素濃度の 43 %であった。 充填した触媒の強度が最も弱い方向は横強度であり、 最小圧壌強度の平均値 A =6. lkg, σ = 2. 0であり、 (A— 2ひ) =2. 1 kgであった。 500時 間反応した後の固体触媒の破砕は見られず、圧力損失の変動も観測されなかった。
実施例 8
反応器 1〜4に、 直径 5mmX高さ 5 mmの打錠成型器で製造した円柱形の亜 鉛一クロム酸化物触媒 (嵩比重 1. 4kg/l) を充填した。
パームカーネル油を加水分解した脂肪酸を蒸留し、 冷却固体分別して得た不飽 和脂肪酸 (ヨウ素価 93. 4、 g 1 c«C12: 0. 6%、 C14: 0. 6 % C 16: 5. 5%、 018:1. 4%、 C18F1:78. 5%、 C18F2:11. 8%、 C 18F3:0. 5%、 C20F2:0. 3%) (商品名: P ALMAC 750:アシッドケ ム社) をメチルアルコールと無触媒でエステル化したメチルエステル (硫龄有 量 0. 05ppm、 塩素含有量 0. 05ppm) を原料として使用した。
該原料を使用し、 反応塔断面積 lm2当たりの供給速度 2. lmVh,反応塔 断面積 lm2当たりの水素ガス供給速度 8 OmVh, 温度 270°C、 圧力 25M P aにて、 灌液流条件下で 500時間反応し、 水素化生成物としてパーム核不飽 和アルコール粗物を得た。 反応成績を下記表 8に示す。
表 8
Figure imgf000040_0001
反応開始後 10時間で定常状態に達していたことを確認した。 その時点で、 反 応塔上部 1 m地点の高圧気液分離器 5に設置した低圧気液分離器 6に一定量の反 応耝物液相を採取して液相保持量と溶存水素濃度を測定した。
単位触媒外形表面積当たりの動的液相保持量は、 0. 07X10一3 mVm2 であった。 液相中の溶存水素濃度は 1. 5 kmo IZm3であった。
ここで得た反応粗物液相 500 m 1を、 1000 m 1バッチ式ォ一トクレーブ に入れて、 撹拌下、 7K素ガスを供給し、 270°Cに加熱し、 25MPaでの飽和 水素濃度を測定したところ、 1. 5 kmo lZm3であった。即ち、反応塔上部 1 m地点における液相中の溶存水素濃度は、 液相の飽和水素濃度の 100%であつ た。
充填した触媒の強度が最も弱い方向は横強度であり、 最小圧壊強度の平均値 A =9. 4 kg, ひ =3. 2であり、 (A— 2σ) =3. 0kgであった。 500時 間反応した後の固体触媒の破砕は見られず、圧力損失の変動も観測されなかった。
実施例 9
反応器 1〜 4に、 直径 3 mmX長さ 3 mmの打錠成形機で製造した円柱形の 0. 5重量%ルテニウム一アルミナ触媒を充填した。
メチレンジァニリンの 50重量%ジグライム溶液 (硫^^有量 0. 01 ppm 以下(検出限界以下)、塩素含有量 0. 01 pm以下(検出限界以下)を使用し、 反応塔断面積 lm2当たりの原料供給速度 15mV , 反応塔断面積 lm2当た りの水素ガス速度 60m3/h、温度 130 :、圧力 1 OMP aで、灌液流条件下 で 500時間反応し、 核水素化生成物としてビス (4一アミノシクロへキシル) メタン粗物を得た。 反応成績を下記表 9に示す。 表 9
Figure imgf000041_0001
反応開始後、 10時間では定常状態に達していた。 その時点で、 反応塔上部 1 m地点の高圧気液分離器 5に設置した低圧気液分離器 6に一定量の反応粗物液相 を採取して液相保持量と溶存水素濃度を測定した。
単位触媒外形表面積当たりの動的液相保持量は、 0. 09 X 10— 3 mVm2 であった。 液相中の溶存水素濃度は、 0. 5kmo IZm3であった。
ここで得た反応粗物液相 500mlを、 1000mlバッチ式ォ一トクレーブ に入れて、 撹拌下、 水素ガスを供給し、 220°Cに加熱し、 25 MP aでの飽和 水素濃度を測定したところ、 2. Okmo IZm3であった。即ち、反応塔上部 1 m地点における液相中の溶存水素濃度は、液相の飽和水素濃度の 25 %であった。 充填した触媒の強度が最も弱い方向は横強度であり、 最小圧壊強度の平均値 A =9. 4kg, σ = 3. 2であり、 (Α— 2 σ) =3. 0kgであった。 500時 間運転した後の固体触媒の破碎は見られず、圧力損失の変動も観測されなかった。 産業上の利用可能性
本発明より飽和又は不飽和脂肪酸アルキルエステルの飽和アルコールへの還元 反応、 不飽和脂肪酸アルキルエステルの不飽和アルコールへの還元反応、 脂肪族 又は脂環族ジカルボン酸ジアルキルエステルの脂肪族又は脂環族ジオールへの還 元反応、 ジカルボン酸無水物のラクトン系化合物への還元反応、 ラクトン系化合 物の脂!^ジオールへの還元反応、 炭素一炭素二重結合の水素化反応、 芳香族化 合物の核水素化反応、 二トリル化合物のァミンへの水素化反応、 酸アミド化合物 のアミンへの水素化反応、 酸ィミド化合物のァミンへの水素化反応等の不均一系 触媒水素化反応を長期間安定した、 高い生産性を有する方法として実施すること ができる。

Claims

04/048297
42
請 求 の 範 囲
1 水素ガスと被水素化物質を含む液相とを上方から並流で流下させる固体 触媒充填式反応塔を用い、灌液流条件下で該被水素化物質を水素化する不均一系 触媒水素化反応方法であって、 該反応塔に充填されている単位触麟形表面積当 たりの動的液相保持量が反応条件下において 0. 0 0 5 X 1 0— 3 〜0. 1 4 X 1 0 -3 m3/m2であり、 下記式
触媒強度 =A - 2 σ
[式中、 Αは、上記触媒 1 0 0個について J I S Z 8 8 4 1— 1 9 9 3の「圧 壌強度試験方法」に記載の方法に従って測定された最小圧壌強度の平均値を示し、 σは標準偏差値を示す。]
により求められる触媒強度が 1 . 0 k g以上であることを特徴とする不均一系触 媒水素化反応方法。 2 被水素化物質が、 エステル基、 炭素一炭素二重結合、 芳香族環、 二トリル 基、 酸アミド基及ぴ ィミド基からなる群から選択される少なくとも一つの基を 含有する有機化合物である請求項 1に記載の不均一系触媒水素化反応方法。
3 水素ィ匕反応が、 飽和又は不飽和脂肪酸アルキルエステルの飽和アルコール への還元反応、不飽和脂肪酸アルキルエステルの不飽和アルコールへの還元反応、 脂肪族又は脂環族ジカルポン酸ジアルキルエステルの脂肪族又は脂環族ジオール への還元反応、 ジカルボン酸無水物のラクトン系化合物への還元反応、 又はラク トン系化合物の脂肪族ジオールへの還元反応である請求項 1に記載の不均一系触 媒水素化反応方法。
4 水素化反応が、 飽和又は不飽和脂肪酸アルキルエステルの飽和アルコール への還元反応、不飽和脂肪酸アルキルエステルの不飽和アルコールへの還元反応、 又は脂肪族又は脂環族ジカルボン酸ジアルキルエステルの脂肪族又は脂環族ジォ ールへの還元反応である請求項 1に記載の不均一系触媒水素化反応方法。 5 水素化反応が、 炭素一炭素二重結合の水素化反応、 芳香族化合物の核水素 化反応、 二トリル化合物のァミンへの水素化反応、 酸アミド化合物のァミンへの 水素化反応、 又は酸イミド化合物のァミンへの水素化反応である請求項 1に記載 の不均一系触媒水素化反応方法。
6 水素化反応に供する被水素化物質中に含有される塩素原子と硫黄原子の合 計含有量が 5 p pm以下である請求項 1に記載の不均一系触媒水素化反応方法。 7 固体触媒が、 銅、 亜鉛、 ニッケル、 ルテニウム、 パラジウム、 白金、 ロジ ゥム及びこれらの酸化物からなる群から選ばれる少なくとも 1種を担持した固体 触媒である請求項 1に記載の不均一系触媒水素化反応方法。
8 固体触媒が、 銅、 亜鉛、 ニッケル、 ルテニウム、 パラジウム、 白金、 ロジ ゥム及びこれらの酸化物からなる群から選ばれる少なくとも 1種、 並びにこれら にクロム、モリブデン、タングステン、マグネシウム、バリウム、アルミニウム、 カルシウム、 ジルコニウム、 マンガン、 ニッケル、 ケィ素及びこれらの酸化物か らなる群から選ばれる少なくとも 1種を添加した変性触媒を担持した固体触媒で ある請求項 1に記載の不均一系触媒水素ィ匕反応方法。
9 固体触媒が、 銅、 クロム、 亜鉛、 ニッケル、 ルテニウム及びこれらの酸化 物からなる群から選ばれる少なくとも 1種を担持した固体触媒である請求項 1に 記載の不均一系触媒水素化反応方法。 1 0 固体触媒の形状が、 円柱、 中空式円柱、 三葉柱、 四葉柱式及び 3求形から なる群から選ばれる少なくとも 1種であり、 その最小長さが 1〜 1 0 mmである 請求項 1に記載の不均一系触媒水素化反応方法。 ·
1 1 反応塔内の液相中の溶存水素濃度が、 0. 0 1〜5. O kmo l Zm3 である請求項 1に記載の不均一系触媒水素化反応方法。
1 2 水素化反応の定常状態において、 液相中の溶存水素濃度が、 反応塔内の 触媒層の最高地点から 1 m下の地点において、 液相の飽和水素濃度の 1 0〜 1 0 0 %に調整されている請求項 1に記載の不均一系触媒水素ィ匕反応方法。
1 3 水素化反応が、
(a) (1)油脂、油脂由来の飽和又は不飽和脂肪酸、該飽和又は不飽和脂肪酸のァ ルキルエステル、(2)不飽和脂肪酸又はそのアルキルエステル、(6)炭素炭素二重 結合を含有する化合物 (特に、 不飽和脂肪酸、 不飽和アルコ一ル) 中の二重結 合の水素化反応、
(b) (7)芳香族化合物の核水素化反応、 又は
(c) (1)油脂、 油脂由来の飽和脂肪酸、 該飽和脂肪酸のアルキルエステル、 (2) 不飽和脂肪酸又はそのアルキルエステル、(3)脂脑ジカルボン酸ジアルキル工 ステル、 脂肪族ジカルボン酸と脂肪族ジオールとの反応生成物 (オリゴマー)、 (4)脂環族ジカルポン酸ジアルキルエステルから選ばれるカルボン酸エステル から飽和アルコールへの水素化反応
であり、 液相中の溶存水素濃度が、 反応塔内の触媒層の最高地点から l m下の 地点において、 液相の飽和水素濃度の 1 0〜 6 0 %に調整されている請求項 1 に記載の不均一系触媒水素化反応方法。
1 4 水素化反応が、
(i) (1)不飽和カルボン酸エステルから不飽和アルコールへの水素化反応、
(ii) 共役ジェン化合物を原料として、共役ジェンをモノエンに水素化し、共役 ジェン化合物を含有しない不飽和アルコールを製造するための水素化反応、 又 は
(iii) 炭素数 8〜 2 2の飽和アルコール中にわずかに残存する炭素一炭素二重 結合を水素化してヨウ素価を低減して、 品位の高い飽和アルコ一ルを製造する ための水素化反応 であって、 液相中の溶存水素濃度が、 反応塔内の触媒層の最高地点から l m下 の地点において、 液相の飽和水素濃度の 5 0〜1 0 0 %に調整されている請求 項 1に記載の不均一系触媒水素化反応方法。
PCT/JP2003/015134 2002-11-27 2003-11-27 水素化反応方法 WO2004048297A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004555059A JP4802497B2 (ja) 2002-11-27 2003-11-27 水素化反応方法
EP03811941.8A EP1566372B1 (en) 2002-11-27 2003-11-27 Method of hydrogenation reaction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002344520 2002-11-27
JP2002-344520 2002-11-27

Publications (1)

Publication Number Publication Date
WO2004048297A1 true WO2004048297A1 (ja) 2004-06-10

Family

ID=32375954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015134 WO2004048297A1 (ja) 2002-11-27 2003-11-27 水素化反応方法

Country Status (3)

Country Link
EP (1) EP1566372B1 (ja)
JP (1) JP4802497B2 (ja)
WO (1) WO2004048297A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289855A (ja) * 2006-04-25 2007-11-08 Sakai Chem Ind Co Ltd 水素化触媒とその利用とその製造方法
JP2009022938A (ja) * 2007-07-24 2009-02-05 Kao Corp 水素添加用触媒
JP2013128901A (ja) * 2011-12-22 2013-07-04 Tosoh Corp 水素化触媒組成物成型体、及びその製造方法
CN113403105A (zh) * 2021-06-10 2021-09-17 克拉玛依市先能科创重油开发有限公司 乙烯裂解焦油为原料的悬浮床加氢装置的开工进油方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008064280A1 (de) * 2008-12-20 2010-06-24 Bayer Technology Services Gmbh Verfahren zur Herstellung von Bis(Para-Aminocyclohexyl)Methan
CN103100392B (zh) * 2011-11-09 2014-12-31 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备方法
CN103100390B (zh) * 2011-11-09 2015-09-30 中国石油化工股份有限公司 一种加氢处理催化剂的制备方法
WO2013116029A1 (en) * 2012-02-01 2013-08-08 Invistad North America S.A R.L. Process for producing dodecane-1, 12-diol by reduction of lauryl lactone produced from the oxidation of cyclododecanone
DE102014013530A1 (de) 2014-09-12 2016-03-17 Clariant International Ltd. Extrudierter Cu-Al-Mn-Hydrierkatalysator
TWI534131B (zh) 2014-11-27 2016-05-21 財團法人工業技術研究院 氫化4,4’-二胺基二苯甲烷的觸媒與方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3334149A (en) * 1964-07-21 1967-08-01 Eastman Kodak Co Plural stage hydrogenation of dialkyl terephthalate using palladium and then copper chromite
EP0300346A2 (de) * 1987-07-22 1989-01-25 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Hydrierung von Fettsäuremethlyestern im Druckbereich von 20 bis 100 bar
EP0300347A2 (de) * 1987-07-22 1989-01-25 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Hydrierung von Fettsäuremethylestergemischen
JPH02738A (ja) * 1988-01-14 1990-01-05 Mobi Corp 4,4’‐ジアミノ‐ジフエニルメタンの接触的水素化による低いトランス‐トランス異性体含量を有する4,4’‐ジアミノ‐ジシクロヘキシルメタンの製造方法
JPH0242035A (ja) * 1988-04-18 1990-02-13 Mitsubishi Gas Chem Co Inc 飽和脂肪族または脂環族多価アルコールの製法
US5233099A (en) * 1990-12-27 1993-08-03 Kao Corporation Process for producing alcohol
WO1998000383A1 (fr) * 1996-06-28 1998-01-08 New Japan Chemical Co., Ltd. Procede de preparation de cyclohexanedimethanol
JPH1045646A (ja) * 1996-08-01 1998-02-17 New Japan Chem Co Ltd 1,4−シクロヘキサンジメタノールの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1042021A (en) * 1975-04-10 1978-11-07 Universite D'ottawa/ University Of Ottawa Method and apparatus for carrying out hydro-genation reactions
US4649226A (en) * 1986-03-27 1987-03-10 Union Carbide Corporation Hydrogenation of alkyl oxalates
DE3776997D1 (de) * 1986-07-23 1992-04-09 Henkel Kgaa Verfahren zur direkthydrierung von glyceridoelen.
GB8728156D0 (en) * 1987-12-02 1988-01-06 Davy Mckee Ltd Process
DE3809270A1 (de) * 1988-03-19 1989-09-28 Henkel Kgaa Verfahren zur katalytischen hydrierung von fluessigen fettsaeure-triglyceriden zur gleichzeitigen gewinnung von fettalkoholen und c(pfeil abwaerts)3(pfeil abwaerts)-diolen
DE4142899A1 (de) * 1991-12-23 1993-06-24 Sued Chemie Ag Verfahren zur herstellung von alkoholen durch katalytische hydrierung von carbonsaeurealkylestern
JP2001089403A (ja) * 1999-09-27 2001-04-03 New Japan Chem Co Ltd 不飽和アルコールの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3334149A (en) * 1964-07-21 1967-08-01 Eastman Kodak Co Plural stage hydrogenation of dialkyl terephthalate using palladium and then copper chromite
EP0300346A2 (de) * 1987-07-22 1989-01-25 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Hydrierung von Fettsäuremethlyestern im Druckbereich von 20 bis 100 bar
EP0300347A2 (de) * 1987-07-22 1989-01-25 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Hydrierung von Fettsäuremethylestergemischen
JPH02738A (ja) * 1988-01-14 1990-01-05 Mobi Corp 4,4’‐ジアミノ‐ジフエニルメタンの接触的水素化による低いトランス‐トランス異性体含量を有する4,4’‐ジアミノ‐ジシクロヘキシルメタンの製造方法
JPH0242035A (ja) * 1988-04-18 1990-02-13 Mitsubishi Gas Chem Co Inc 飽和脂肪族または脂環族多価アルコールの製法
US5233099A (en) * 1990-12-27 1993-08-03 Kao Corporation Process for producing alcohol
WO1998000383A1 (fr) * 1996-06-28 1998-01-08 New Japan Chemical Co., Ltd. Procede de preparation de cyclohexanedimethanol
JPH1045646A (ja) * 1996-08-01 1998-02-17 New Japan Chem Co Ltd 1,4−シクロヘキサンジメタノールの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1566372A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289855A (ja) * 2006-04-25 2007-11-08 Sakai Chem Ind Co Ltd 水素化触媒とその利用とその製造方法
JP4661676B2 (ja) * 2006-04-25 2011-03-30 堺化学工業株式会社 水素化触媒とその利用とその製造方法
JP2009022938A (ja) * 2007-07-24 2009-02-05 Kao Corp 水素添加用触媒
JP2013128901A (ja) * 2011-12-22 2013-07-04 Tosoh Corp 水素化触媒組成物成型体、及びその製造方法
CN113403105A (zh) * 2021-06-10 2021-09-17 克拉玛依市先能科创重油开发有限公司 乙烯裂解焦油为原料的悬浮床加氢装置的开工进油方法

Also Published As

Publication number Publication date
EP1566372A4 (en) 2007-03-21
EP1566372A1 (en) 2005-08-24
EP1566372B1 (en) 2018-01-10
JPWO2004048297A1 (ja) 2006-03-23
JP4802497B2 (ja) 2011-10-26

Similar Documents

Publication Publication Date Title
Hu et al. Catalytic hydrogenation of C [double bond, length as m-dash] C and C [double bond, length as m-dash] O in unsaturated fatty acid methyl esters
US7667059B2 (en) Process for producing glycerin and fatty alcohol via hydrogenation
WO2004048297A1 (ja) 水素化反応方法
CN102333591A (zh) 从丙三醇的氢化制备1,2-丙烷二醇的方法
EP0791041A1 (en) Hydrogenation of substrate and products manufactured according to the process
CN106518608A (zh) 环己烷二甲醇的连续制备方法及装置
Melfi et al. Supercritical CO2 as solvent for fatty acids esterification with ethanol catalyzed by Amberlyst-15
Müller et al. Evaluation of reactor concepts for the continuous production of fine chemicals using the selective hydrogenation of cinnamaldehyde over palladium catalysts
JPS62184100A (ja) 脂肪、脂肪酸および脂肪酸誘導体の連続水素化方法
US5962711A (en) Hydrogenation of substrate and products manufactured according to the process
EP3782976B1 (en) Sustainable process for producing muconic, hexenedioic and adipic acid (and their esters) from aldaric acids by heterogeneous catalysis
Pudi et al. Conversion of Glycerol into value-added products over Cu–Ni catalyst supported on γ-Al2O3 and activated carbon
US5606099A (en) Process for the preparation of succinic acid dialkyl esters
JPH10316592A (ja) 有機化合物の触媒反応法
Wang et al. Continuous hydrogenation of nitriles to primary amines with high selectivity in flow
Hiyoshi et al. Low temperature hydrogenation of tetralin over supported rhodium catalysts in supercritical carbon dioxide solvent
Ren et al. Catalytic conversion of glycerol to value-added chemicals in alcohol
CN101085718A (zh) 超临界脂肪酸甲酯加氢制备脂肪醇的方法
Aumo et al. Novel woven active carbon fiber catalyst in the hydrogenation of citral
CN1188467A (zh) 用于制造醇的方法
US7642386B2 (en) Method for producing alcohol
US5861521A (en) Process for the hydrogenation of esters of unsaturated fatty acids
US10683465B2 (en) Process for the selective hydrogenation of vegetable oils using egg-shell type catalysts
Zhilong Research on Hydrogenation of FAME to Fatty Alcohols at Supercritical Conditions
US7579508B2 (en) Process for producing alcohol

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): ID JP PH US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004555059

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003811941

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003811941

Country of ref document: EP