WO2004044431A2 - Pompe a vide - Google Patents

Pompe a vide Download PDF

Info

Publication number
WO2004044431A2
WO2004044431A2 PCT/DE2003/003747 DE0303747W WO2004044431A2 WO 2004044431 A2 WO2004044431 A2 WO 2004044431A2 DE 0303747 W DE0303747 W DE 0303747W WO 2004044431 A2 WO2004044431 A2 WO 2004044431A2
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum pump
pump
wing
residual oil
bypass
Prior art date
Application number
PCT/DE2003/003747
Other languages
German (de)
English (en)
Other versions
WO2004044431A3 (fr
Inventor
Dieter Otto
Ulrich Hiltemann
Andreas Moje
Antonio Pace
Ulrich Pabst
Original Assignee
Luk Automobiltechnik Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luk Automobiltechnik Gmbh & Co. Kg filed Critical Luk Automobiltechnik Gmbh & Co. Kg
Priority to EP03779691A priority Critical patent/EP1563190A2/fr
Priority to DE10393279T priority patent/DE10393279D2/de
Priority to AU2003287863A priority patent/AU2003287863A1/en
Publication of WO2004044431A2 publication Critical patent/WO2004044431A2/fr
Publication of WO2004044431A3 publication Critical patent/WO2004044431A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/04Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for reversible pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/101Geometry of the inlet or outlet of the inlet

Definitions

  • the invention relates to a vacuum pump, in particular for brake boosters for motor vehicles, the pump normally being driven by the motor vehicle internal combustion engine in one direction of rotation (“forward”).
  • the vacuum pumps accordingly have a fixed direction of rotation. Vacuum pumps of this type are known.
  • a vacuum pump in particular for brake boosters for motor vehicles, the pump normally being driven in one direction of rotation (“forward”) by the motor vehicle internal combustion engine, the vacuum pump having a device which serves to prevent damage when turning backwards Device an outlet valve for the residual oil to the cylinder head of the internal combustion engine.
  • An additional valve is provided which opens a path for the oil to the cylinder head when running in reverse. During normal operation of the pump, this check valve is closed and does not allow any air from the cylinder head into the air as external air
  • This pump is preferably combined with the pump outlet valve so that a spring plate valve has two tongues and is secured with a screw.
  • a vacuum pump in which the device has a bypass device for the residual oil is also preferred.
  • a bypass device preferably designed as a swivel wing, is installed in the pump housing. is positioned.
  • the swivel wing is in contact with the rotor, which can be caused by a pressure difference and / or a spring force.
  • the pressure in front of the wing causes the swivel wing to lift off, clearing the way for the residual oil, either to the cylinder head or to the other side of the wing.
  • the pivoting wing device is preferably used in a pump with a mono-wing without movable caps, because the mono-wing then always rests on the opposite side due to the centrifugal force and thus has no contact with the pivoting wing.
  • the swivel wing is preferably designed as a plastic part, but can also be designed as a sheet metal part and can be shown either pivotable or elastically deformable.
  • a vacuum pump is preferred in which the device has a bypass groove.
  • a bypass groove is preferably arranged in the housing and / or cover in the region of the air inlet opening, that is to say the suction port. This bypass enables the residual oil to flow back past the wing and in this way to avoid pressure peaks caused by residual oil being pushed back when running backwards.
  • a vacuum pump is also preferred in which the device has a storage volume for residual oil. Pressure peaks due to the residual oil can therefore be avoided by pushing the residual oil into the storage volume when the pump is turned backwards, so that the pump can rotate backwards without residual oil in front of the wing and thus without crushing oil.
  • This memory can be accommodated in the pump housing.
  • the suction hose of the pump or part of the suction hose can also be used as a storage volume.
  • the suction valve is not arranged in the suction port of the pump, but in the suction hose.
  • the volume between the suction valve and the pump chamber should preferably be designed so large that it is greater than the maximum residual oil volume that occurs.
  • Another pump according to the invention is characterized in that the device has a bypass in the cover.
  • a pressure-dependent bypass is integrated in the cover of the pump, which opens at an increased pressure upstream of the suction valve and allows oil to flow out of this area into the other pump chamber and / or to the inner rotor bore.
  • This bypass can be designed as a resilient sheet which lies on the inside of the cover and which can be at least partially pushed away into corresponding recesses in the cover when subjected to pressure.
  • the bypass can be designed as a piston in the cover.
  • a vacuum pump is preferred in which the rotor has a clamping roller freewheel which blocks the connection between the rotor and drive element, such as a clutch, in one direction of rotation (“forwards”), and clamps, and in the opposite direction of rotation (“backwards”). allows the drive element to run freely without the rotor taking part in the reverse rotation.
  • the freewheel can be pressed onto the rotor, the known sliding bearing between the rotor and the pump housing being replaced by the roller bearing of the pinch roller freewheel.
  • Figure 1 shows a pump with an outlet valve for the residual oil.
  • Figure 2 shows a bypass designed as a swivel wing for the residual oil.
  • Figure 3 shows a bypass groove in the housing for the residual oil.
  • a vacuum pump 1 is shown in perspective.
  • the vacuum pump has a housing 3, in which an eccentrically arranged rotor with a mono-wing is not visible here.
  • Such vacuum pumps are known in their construction and function and are therefore not to be explained further.
  • the direction of rotation of the rotor is shown on the housing by an arrow 5, so that it can be seen that in this direction of rotation the delivery volume increases in area 7 when the rotor rotates and thus leads to suction and in delivery area 9 the pump volume decreases and thus leads to the ejection of the funding.
  • the funding is therefore in area 7 via Suction nozzle 11 sucked in and then ejected via an outlet valve 13 when upper dead center is exceeded and the delivery volume in region 9 is reduced.
  • an additional valve 15 is therefore arranged, which opens when turning backwards towards the cylinder head and can drain the residual oil into this area, that is to say analogously to how the outlet valve 13 normally behaves in the normal delivery direction 5.
  • the outlet valve 15 remains closed for the residual oil, since negative pressure builds up in the region 7 and therefore the atmospheric pressure in the cylinder head keeps the tongue valve 15 closed.
  • the valve 15 for reverse running is combined with the pump outlet valve 13, so that a spring plate valve has two tongues and is secured with a screw 17.
  • FIG. 1b The corresponding individual parts of the valves are shown in the disassembled state in FIG. 1b.
  • the screw 17 fixes the hold-down device 19 and the spring tongue valve 23 of the pump outlet valve 13 as well as the hold-down device 21 and the spring tongue 25 of the reverse flow valve 15.
  • the spring tongue 23 of the pump outlet valve 13 closes the pump outlet opening 27 in the unpressurized state, while the spring tongue 25 of the reverse flow valve 15 closes the outlet opening 29 closes in the normal direction of rotation of the pump.
  • a very simple combination of the outlet valve 13 with the reverse flow valve 15 thus provides a reliable solution to the pump's reverse flow problems without the need for additional components. Only the hold-down device of the outlet valve has to be extended by the region 21 and the spring tongue 23 of the outlet valve by the region 25.
  • FIG. 2 shows a bypass device for the residual oil when turning backwards in the form of a swivel wing device.
  • a rotor 30, which simplifies here without the mono wing is shown, is arranged eccentrically in a housing 32.
  • the housing 32 has a bulge 34 in which a swivel wing device 36 is arranged.
  • the swivel wing device 36 lies in the area 38 in a sealing manner against the rotor.
  • the direction of rotation of the rotor in normal operation is indicated by arrow 40.
  • the swivel blade is in sealing contact with the rotor, the pressure zone of the vacuum pump being in area 48 and the suction zone of the vacuum pump in area 50.
  • the rotor and the housing can have approximately the same radius of curvature over an angular range ⁇ , here with the reference number 46 between the housing 32 and the rotor 30, so that a good sealing gap sealing is also possible is present when the swivel wing performs its actual safety function when reversing.
  • This narrow gap seal also prevents pressure peaks from causing the mono wing to lift off.
  • the suction area 50 suddenly becomes a pressure area, in which area a pressure peak can then build up as a result of the squeezed oil pressed backwards.
  • This pressure peak is then relieved by opening the swivel wing 36 in the area 42, which is connected to the cylinder head area.
  • region 42 the pressure in the cylinder head region normally prevails, which corresponds approximately to the atmospheric pressure.
  • a mono-wing without movable caps is used in a pump with this swivel-wing device, because the mono-wing then always rests on the opposite side due to the centrifugal force and thus has no contact with the swivel wing 36.
  • the swivel wing 36 itself can be pressed against the rotor 30 in a sealing manner both by a spring force 44 and by the pressure force of the pressure in the area 42.
  • a bypass groove 54 on the rear side 52 of the pump housing 3 is shown in FIG. 3 as a reverse run relief device.
  • the bypass groove 54 is arranged in the suction area of the pump and thus in the area of the suction nozzle 11.
  • the outlet opening 56 of the outlet valve is located opposite when the pump is rotated in the normal direction of rotation 40. If the pump runs the other way around when the internal combustion engine is turned backwards, the bypass groove 54 can push the pinch oil to the side past the wing to the rear, thereby avoiding the build-up of pressure peaks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Rotary Pumps (AREA)

Abstract

La présente invention concerne une pompe à vide destinée en particulier à des amplificateurs de force de freinage de véhicules automobiles, la pompe étant normalement entraînée par un moteur à combustion interne du véhicule, dans un sens de rotation ('avant'), la pompe présentant un dispositif pour limiter les dommages qui résultent des rotations en sens inverse.
PCT/DE2003/003747 2002-11-13 2003-11-12 Pompe a vide WO2004044431A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03779691A EP1563190A2 (fr) 2002-11-13 2003-11-12 Pompe a vide
DE10393279T DE10393279D2 (de) 2002-11-13 2003-11-12 Vakuumpumpe
AU2003287863A AU2003287863A1 (en) 2002-11-13 2003-11-12 Vacuum pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10252769 2002-11-13
DE10252769.5 2002-11-13

Publications (2)

Publication Number Publication Date
WO2004044431A2 true WO2004044431A2 (fr) 2004-05-27
WO2004044431A3 WO2004044431A3 (fr) 2004-09-16

Family

ID=32308526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/003747 WO2004044431A2 (fr) 2002-11-13 2003-11-12 Pompe a vide

Country Status (4)

Country Link
EP (2) EP1890040B1 (fr)
AU (1) AU2003287863A1 (fr)
DE (1) DE10393279D2 (fr)
WO (1) WO2004044431A2 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006005384A1 (fr) * 2004-07-09 2006-01-19 Joma-Hydromechanic Gmbh Pompe a vide a une ailette
WO2006005383A1 (fr) * 2004-07-09 2006-01-19 Joma-Hydromechanic Gmbh Pompe a vide a une ailette
WO2006122515A1 (fr) * 2005-05-19 2006-11-23 Ixetic Hückeswagen Gmbh Pompe comportant un accouplement a friction a roue libre
DE102007010729B3 (de) * 2007-01-04 2008-04-24 Joma-Polytec Kunststofftechnik Gmbh Vakuumpumpe
WO2008125155A1 (fr) * 2007-04-12 2008-10-23 Joma-Hydromechanic Gmbh Pompe à vide
DE102010026032A1 (de) * 2010-07-03 2012-01-05 Mahle International Gmbh Flatterventil und Drehschieberpumpe
US8469684B2 (en) 2005-07-07 2013-06-25 Oerlikon Leybold Vacuum Gmbh Rotary vacuum pump with a discharge compensating channel
EP2249041A3 (fr) * 2009-05-01 2014-08-13 Wabco Automotive UK Limited Pompe à vide à palettes avec une soupape d'évacuation d'huile
DE112007001540B4 (de) * 2006-07-21 2016-05-12 Magna Powertrain Hückeswagen GmbH Vakuumpumpe
DE102017123695A1 (de) * 2017-10-11 2019-04-11 Schwäbische Hüttenwerke Automotive GmbH Rotationspumpe
CN109882414A (zh) * 2017-12-06 2019-06-14 悦马塑料技术有限公司 真空泵
US20210332820A1 (en) * 2020-04-24 2021-10-28 Schwäbische Hüttenwerke Automotive GmbH Vacuum pump

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009016048B4 (de) * 2009-04-02 2018-05-30 Bayerische Motoren Werke Aktiengesellschaft Pumpe für eine Kraftfahrzeug-Brennkraftmaschine sowie Kraftfahrzeug-Brennkraftmaschine mit Pumpe
ITTO20131083A1 (it) 2013-12-30 2015-07-01 Vhit Spa Pompa rotativa con valvola di sicurezza e metodo di funzionamento
DE102016202426A1 (de) * 2016-02-17 2017-08-17 Mahle International Gmbh Rückschlagventil für eine Vakuumpumpe
DE102016207115A1 (de) * 2016-04-27 2017-11-02 Mahle International Gmbh Rückschlagventil für eine Vakuumpumpe
DE102016207123A1 (de) * 2016-04-27 2017-11-02 Mahle International Gmbh Rückschlagventil für eine Vakuumpumpe
JP6613222B2 (ja) 2016-11-03 2019-11-27 大豊工業株式会社 ベーンポンプ
JP6534647B2 (ja) 2016-11-03 2019-06-26 大豊工業株式会社 ベーンポンプ
DE102016122903A1 (de) * 2016-11-28 2018-05-30 Schwäbische Hüttenwerke Automotive GmbH Gaspumpe mit Ölrückführung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH553332A (de) * 1972-06-13 1974-08-30 Burckhardt Ag Maschf Einrichtung zur regulierung des arbeitsmitteldruckes in einer fluessigkeitsringpumpe.
DE2613472A1 (de) * 1976-03-30 1977-10-13 Hori Technical Lab Ltd Trockenlaufender verdichter
EP0255920A2 (fr) * 1986-08-06 1988-02-17 B a r m a g AG Pompe à vide à palettes
DE4019854A1 (de) * 1989-07-10 1991-01-17 Barmag Barmer Maschf Fluegelzellen-vakuumpumpe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1926797A1 (de) * 1969-05-24 1970-11-26 Gerspach Dr Phil Wolfram Vakuumrueckschlagventil,insbesondere fuer Bremskraftverstaerker 100000
DE2629337C2 (de) * 1976-06-30 1986-08-07 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Flügelzellenvakuumpumpe
JPS61109975A (ja) * 1984-11-02 1986-05-28 Hitachi Koki Co Ltd 浮子式油逆流防止器
DE3618301A1 (de) * 1985-06-05 1986-12-18 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Vakuumpumpe
DE4002771A1 (de) * 1990-01-31 1991-08-01 Vdo Schindling Unterdruckversorgungsanlage
EP0515929B1 (fr) * 1991-05-29 1998-07-29 LuK Automobiltechnik GmbH & Co. KG Pompe à vide à palettes montée sur le boítier d'un moteur d'un véhicule à moteur
JP2891047B2 (ja) 1993-08-05 1999-05-17 株式会社日立製作所 ベーン式真空ポンプ
JP2000205159A (ja) 1999-01-11 2000-07-25 Hitachi Ltd ベ―ン式真空ポンプ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH553332A (de) * 1972-06-13 1974-08-30 Burckhardt Ag Maschf Einrichtung zur regulierung des arbeitsmitteldruckes in einer fluessigkeitsringpumpe.
DE2613472A1 (de) * 1976-03-30 1977-10-13 Hori Technical Lab Ltd Trockenlaufender verdichter
EP0255920A2 (fr) * 1986-08-06 1988-02-17 B a r m a g AG Pompe à vide à palettes
DE4019854A1 (de) * 1989-07-10 1991-01-17 Barmag Barmer Maschf Fluegelzellen-vakuumpumpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1563190A2 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101002022B (zh) * 2004-07-09 2012-06-06 约马液压机械有限公司 单叶片真空泵
WO2006005383A1 (fr) * 2004-07-09 2006-01-19 Joma-Hydromechanic Gmbh Pompe a vide a une ailette
WO2006005384A1 (fr) * 2004-07-09 2006-01-19 Joma-Hydromechanic Gmbh Pompe a vide a une ailette
WO2006122515A1 (fr) * 2005-05-19 2006-11-23 Ixetic Hückeswagen Gmbh Pompe comportant un accouplement a friction a roue libre
US8469684B2 (en) 2005-07-07 2013-06-25 Oerlikon Leybold Vacuum Gmbh Rotary vacuum pump with a discharge compensating channel
DE112007001540B4 (de) * 2006-07-21 2016-05-12 Magna Powertrain Hückeswagen GmbH Vakuumpumpe
DE102007010729B3 (de) * 2007-01-04 2008-04-24 Joma-Polytec Kunststofftechnik Gmbh Vakuumpumpe
WO2008125155A1 (fr) * 2007-04-12 2008-10-23 Joma-Hydromechanic Gmbh Pompe à vide
EP2249041A3 (fr) * 2009-05-01 2014-08-13 Wabco Automotive UK Limited Pompe à vide à palettes avec une soupape d'évacuation d'huile
EP2853747A1 (fr) * 2009-05-01 2015-04-01 Wabco Automotive UK Limited Pompe à vide
DE102010026032A1 (de) * 2010-07-03 2012-01-05 Mahle International Gmbh Flatterventil und Drehschieberpumpe
DE102017123695A1 (de) * 2017-10-11 2019-04-11 Schwäbische Hüttenwerke Automotive GmbH Rotationspumpe
CN109882414A (zh) * 2017-12-06 2019-06-14 悦马塑料技术有限公司 真空泵
US20210332820A1 (en) * 2020-04-24 2021-10-28 Schwäbische Hüttenwerke Automotive GmbH Vacuum pump
US11927190B2 (en) * 2020-04-24 2024-03-12 Schwäbische Hüttenwerke Automotive GmbH Vacuum pump

Also Published As

Publication number Publication date
EP1890040A3 (fr) 2008-02-27
EP1563190A2 (fr) 2005-08-17
AU2003287863A8 (en) 2004-06-03
WO2004044431A3 (fr) 2004-09-16
AU2003287863A1 (en) 2004-06-03
EP1890040A2 (fr) 2008-02-20
EP1890040B1 (fr) 2012-06-27
DE10393279D2 (de) 2005-06-02

Similar Documents

Publication Publication Date Title
EP1890040B1 (fr) Pompe à vide
EP0536159B1 (fr) Organe pour l'alimentation du moteur a combustion interne d'un vehicule a moteur avec du carburant provenant d'un reservoir
DE4442083C2 (de) Flügelzellenpumpe
EP1766239B1 (fr) Pompe a vide a une ailette
EP1899608B1 (fr) Pompe a vide a tiroirs rotatifs
EP0576415B1 (fr) Soupape de contrÔle de l'aspiration
DE102009047643A1 (de) Innenzahnradpumpen für eine hydraulische Fahrzeugbremsanlage
EP1461533B1 (fr) Pompe
DE102007010729B3 (de) Vakuumpumpe
WO2009018906A1 (fr) Pompe à vide
DE102006033337A1 (de) Verdrängerpumpe
EP2670983A1 (fr) Pompes à engrenages à denture intérieure pour un système de freinage hydraulique de véhicule
DE2242435C3 (de) Radialkolbenpumpe
DE3444392C2 (fr)
DE102013204616B4 (de) 2Innenzahnradpumpe
DE102006061706A1 (de) Flügelzellenpumpe
WO2010025799A2 (fr) Pompe à vide
DE2504562B2 (de) Hydrostatische Axialkolbenpumpe
EP1026401B1 (fr) Pompe hydrostatique
EP1658438B1 (fr) Pompe a liquides
DE4008522A1 (de) Fluegelzellenverdichter
DE102012221492B4 (de) Membranpumpe mit Exzenterantrieb und integriertem Absperrventil
EP1106827B1 (fr) Ensemble de pompage hydraulique
DE2936971C2 (fr)
DE2414941A1 (de) Druckabhaengige foerderstrom-verstelleinrichtung fuer hydraulische pumpen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003779691

Country of ref document: EP

REF Corresponds to

Ref document number: 10393279

Country of ref document: DE

Date of ref document: 20050602

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10393279

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2003779691

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP