EP1563190A2 - Vakuumpumpe - Google Patents

Vakuumpumpe

Info

Publication number
EP1563190A2
EP1563190A2 EP03779691A EP03779691A EP1563190A2 EP 1563190 A2 EP1563190 A2 EP 1563190A2 EP 03779691 A EP03779691 A EP 03779691A EP 03779691 A EP03779691 A EP 03779691A EP 1563190 A2 EP1563190 A2 EP 1563190A2
Authority
EP
European Patent Office
Prior art keywords
vacuum pump
pump
wing
residual oil
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03779691A
Other languages
English (en)
French (fr)
Inventor
Dieter Otto
Ulrich Hiltemann
Andreas Moje
Antonio Pace
Ulrich Pabst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magna Powertrain Hueckeswagen GmbH
Original Assignee
Ixetic Hueckeswagen GmbH
LuK Automobiltechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ixetic Hueckeswagen GmbH, LuK Automobiltechnik GmbH and Co KG filed Critical Ixetic Hueckeswagen GmbH
Priority to EP07022290A priority Critical patent/EP1890040B1/de
Publication of EP1563190A2 publication Critical patent/EP1563190A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/04Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for reversible pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/101Geometry of the inlet or outlet of the inlet

Definitions

  • the invention relates to a vacuum pump, in particular for brake boosters for motor vehicles, the pump normally being driven by the motor vehicle internal combustion engine in one direction of rotation (“forward”).
  • the vacuum pumps accordingly have a fixed direction of rotation. Vacuum pumps of this type are known.
  • a vacuum pump in particular for brake boosters for motor vehicles, the pump normally being driven in one direction of rotation (“forward”) by the motor vehicle internal combustion engine, the vacuum pump having a device which serves to prevent damage when turning backwards Device an outlet valve for the residual oil to the cylinder head of the internal combustion engine.
  • An additional valve is provided which opens a path for the oil to the cylinder head when running in reverse. During normal operation of the pump, this check valve is closed and does not allow any air from the cylinder head into the air as external air
  • This pump is preferably combined with the pump outlet valve so that a spring plate valve has two tongues and is secured with a screw.
  • a vacuum pump in which the device has a bypass device for the residual oil is also preferred.
  • a bypass device preferably designed as a swivel wing, is installed in the pump housing. is positioned.
  • the swivel wing is in contact with the rotor, which can be caused by a pressure difference and / or a spring force.
  • the pressure in front of the wing causes the swivel wing to lift off, clearing the way for the residual oil, either to the cylinder head or to the other side of the wing.
  • the pivoting wing device is preferably used in a pump with a mono-wing without movable caps, because the mono-wing then always rests on the opposite side due to the centrifugal force and thus has no contact with the pivoting wing.
  • the swivel wing is preferably designed as a plastic part, but can also be designed as a sheet metal part and can be shown either pivotable or elastically deformable.
  • a vacuum pump is preferred in which the device has a bypass groove.
  • a bypass groove is preferably arranged in the housing and / or cover in the region of the air inlet opening, that is to say the suction port. This bypass enables the residual oil to flow back past the wing and in this way to avoid pressure peaks caused by residual oil being pushed back when running backwards.
  • a vacuum pump is also preferred in which the device has a storage volume for residual oil. Pressure peaks due to the residual oil can therefore be avoided by pushing the residual oil into the storage volume when the pump is turned backwards, so that the pump can rotate backwards without residual oil in front of the wing and thus without crushing oil.
  • This memory can be accommodated in the pump housing.
  • the suction hose of the pump or part of the suction hose can also be used as a storage volume.
  • the suction valve is not arranged in the suction port of the pump, but in the suction hose.
  • the volume between the suction valve and the pump chamber should preferably be designed so large that it is greater than the maximum residual oil volume that occurs.
  • Another pump according to the invention is characterized in that the device has a bypass in the cover.
  • a pressure-dependent bypass is integrated in the cover of the pump, which opens at an increased pressure upstream of the suction valve and allows oil to flow out of this area into the other pump chamber and / or to the inner rotor bore.
  • This bypass can be designed as a resilient sheet which lies on the inside of the cover and which can be at least partially pushed away into corresponding recesses in the cover when subjected to pressure.
  • the bypass can be designed as a piston in the cover.
  • a vacuum pump is preferred in which the rotor has a clamping roller freewheel which blocks the connection between the rotor and drive element, such as a clutch, in one direction of rotation (“forwards”), and clamps, and in the opposite direction of rotation (“backwards”). allows the drive element to run freely without the rotor taking part in the reverse rotation.
  • the freewheel can be pressed onto the rotor, the known sliding bearing between the rotor and the pump housing being replaced by the roller bearing of the pinch roller freewheel.
  • Figure 1 shows a pump with an outlet valve for the residual oil.
  • Figure 2 shows a bypass designed as a swivel wing for the residual oil.
  • Figure 3 shows a bypass groove in the housing for the residual oil.
  • a vacuum pump 1 is shown in perspective.
  • the vacuum pump has a housing 3, in which an eccentrically arranged rotor with a mono-wing is not visible here.
  • Such vacuum pumps are known in their construction and function and are therefore not to be explained further.
  • the direction of rotation of the rotor is shown on the housing by an arrow 5, so that it can be seen that in this direction of rotation the delivery volume increases in area 7 when the rotor rotates and thus leads to suction and in delivery area 9 the pump volume decreases and thus leads to the ejection of the funding.
  • the funding is therefore in area 7 via Suction nozzle 11 sucked in and then ejected via an outlet valve 13 when upper dead center is exceeded and the delivery volume in region 9 is reduced.
  • an additional valve 15 is therefore arranged, which opens when turning backwards towards the cylinder head and can drain the residual oil into this area, that is to say analogously to how the outlet valve 13 normally behaves in the normal delivery direction 5.
  • the outlet valve 15 remains closed for the residual oil, since negative pressure builds up in the region 7 and therefore the atmospheric pressure in the cylinder head keeps the tongue valve 15 closed.
  • the valve 15 for reverse running is combined with the pump outlet valve 13, so that a spring plate valve has two tongues and is secured with a screw 17.
  • FIG. 1b The corresponding individual parts of the valves are shown in the disassembled state in FIG. 1b.
  • the screw 17 fixes the hold-down device 19 and the spring tongue valve 23 of the pump outlet valve 13 as well as the hold-down device 21 and the spring tongue 25 of the reverse flow valve 15.
  • the spring tongue 23 of the pump outlet valve 13 closes the pump outlet opening 27 in the unpressurized state, while the spring tongue 25 of the reverse flow valve 15 closes the outlet opening 29 closes in the normal direction of rotation of the pump.
  • a very simple combination of the outlet valve 13 with the reverse flow valve 15 thus provides a reliable solution to the pump's reverse flow problems without the need for additional components. Only the hold-down device of the outlet valve has to be extended by the region 21 and the spring tongue 23 of the outlet valve by the region 25.
  • FIG. 2 shows a bypass device for the residual oil when turning backwards in the form of a swivel wing device.
  • a rotor 30, which simplifies here without the mono wing is shown, is arranged eccentrically in a housing 32.
  • the housing 32 has a bulge 34 in which a swivel wing device 36 is arranged.
  • the swivel wing device 36 lies in the area 38 in a sealing manner against the rotor.
  • the direction of rotation of the rotor in normal operation is indicated by arrow 40.
  • the swivel blade is in sealing contact with the rotor, the pressure zone of the vacuum pump being in area 48 and the suction zone of the vacuum pump in area 50.
  • the rotor and the housing can have approximately the same radius of curvature over an angular range ⁇ , here with the reference number 46 between the housing 32 and the rotor 30, so that a good sealing gap sealing is also possible is present when the swivel wing performs its actual safety function when reversing.
  • This narrow gap seal also prevents pressure peaks from causing the mono wing to lift off.
  • the suction area 50 suddenly becomes a pressure area, in which area a pressure peak can then build up as a result of the squeezed oil pressed backwards.
  • This pressure peak is then relieved by opening the swivel wing 36 in the area 42, which is connected to the cylinder head area.
  • region 42 the pressure in the cylinder head region normally prevails, which corresponds approximately to the atmospheric pressure.
  • a mono-wing without movable caps is used in a pump with this swivel-wing device, because the mono-wing then always rests on the opposite side due to the centrifugal force and thus has no contact with the swivel wing 36.
  • the swivel wing 36 itself can be pressed against the rotor 30 in a sealing manner both by a spring force 44 and by the pressure force of the pressure in the area 42.
  • a bypass groove 54 on the rear side 52 of the pump housing 3 is shown in FIG. 3 as a reverse run relief device.
  • the bypass groove 54 is arranged in the suction area of the pump and thus in the area of the suction nozzle 11.
  • the outlet opening 56 of the outlet valve is located opposite when the pump is rotated in the normal direction of rotation 40. If the pump runs the other way around when the internal combustion engine is turned backwards, the bypass groove 54 can push the pinch oil to the side past the wing to the rear, thereby avoiding the build-up of pressure peaks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Rotary Pumps (AREA)

Abstract

Vakuumpumpe, insbesondere für Bremskraftverstärker für Kraftfahrzeuge, wobei die Pumpe normalerweise von einem Kraftfahrzeugverbrennungsmotor in einer Drehrichtung ('vorwärts') angetrieben wird, wobei die Pumpe eine Vorrichtung zur Vermeidung von Beschädigungen beim Rückwärtsdrehen aufweist.

Description

Vakuumpumpe
Die Erfindung betrifft eine Vakuumpumpe, insbesondere für Bremskraftverstarker für Kraftfahrzeuge, wobei die Pumpe normalerweise vom Kraftfahrzeugverbrennungsmotor in einer Drehrichtung („vorwärts") angetrieben wird. Die Vakuumpumpen haben also dementsprechend eine fest definierte Drehrichtung. Derartige Vakuumpumpen sind bekannt.
Es gibt allerdings Situationen, in denen der Motor rückwärts dreht. Dabei ist z. B. der Motor ausgeschaltet, ein Vorwärtsgang eingekuppelt, und der Wagen wird rückwärts bewegt. In diesen Situationen dreht sich der Motor und damit auch die Vakuumpumpe entgegen der normalen Drehrichtung. Üblicherweise ist die Pumpe für diese Drehrichtung nicht ausgelegt, und dementsprechend können Einzelteile der Pumpe stark belastet werden und zur Beschädigung oder sogar zur Zerstörung der Pumpe führen.
Es ist daher Aufgabe der Erfindung, eine Vakuumpumpe darzustellen, die diese Probleme nicht aufweist.
Die Aufgabe wird gelöst durch eine Vakuumpumpe, insbesondere für Bremskraftverstarker für Kraftfahrzeuge, wobei die Pumpe normalerweise vom Kraftfahrzeugverbrennungsmotor in einer Drehrichtung („vorwärts") angetrieben wird, wobei die Vakuumpumpe eine Vorrichtung aufweist, welche zur Vermeidung von Beschädigungen beim Rückwärtsdrehen dient. Bevorzugt weist die Vorrichtung ein Austrittsventil für das Restöl zum Zylinderkopf des Verbrennungsmotors auf. Dabei ist ein zusätzliches Ventil vorgesehen, das bei Rückwärtslauf einen Weg für das Öl zum Zylinderkopf hin öffnet. Bei Normalbetrieb der Pumpe ist dieses Rückschlagventil geschlossen und lässt keine Luft vom Zylinderkopf als Fremdluft in die Pumpe strömen. Vorzugsweise wird dieses Ventil mit dem Pumpenaustrittsventil kombiniert, so dass ein Federblechventil zwei Zungen aufweist und mit einer Schraube gesichert wird.
Bevorzugt wird auch eine Vakuumpumpe, bei welcher die Vorrichtung eine Bypass- vorrichtung für das Restöl aufweist. Dabei ist im Pumpengehäuse eine Bypassvorrich- tung, vorzugsweise als Schwenkflügel ausgeführt, angebracht, welche im Bereich ei- nes Schmiegespaltes positioniert ist. Im Normalbetrieb liegt der Schwenkflügel am Rotor an, was durch eine Druckdifferenz und/oder eine Federkraft verursacht werden kann. Bei Rückwärtsdrehung der Pumpe führt der Druck vor dem Flügel zum Abheben des Schwenkflügels und gibt damit den Weg für das Restöl frei, entweder zum Zylinderkopf oder auf die andere Flügelseite. Vorzugsweise gibt es noch einen Winkelbereich α, in dem Rotor und Gehäuse einen annähernd gleichen Krümmungsradius aufweisen, so dass eine gute Schmiegespaltdichtung zusätzlich zum Schwenkflügel vorhanden ist. Vorzugsweise wird die Schwenkfügelvorrichtung bei einer Pumpe mit einem Monoflügel ohne bewegliche Kappen eingesetzt, weil der Monoflügel dann immer durch die Fliehkraft auf der gegenüberliegenden Seite anliegt und somit keinen Kontakt zum Schwenkflügel aufweist. Der Schwenkflügel ist vorzugsweise als Kunststoffteil ausgeführt, kann aber auch als Blechteil ausgeführt sein und kann entweder schwenkbar oder elastisch verformbar dargestellt werden.
Weiterhin wird eine Vakuumpumpe bevorzugt, bei welcher die Vorrichtung eine By- passnut aufweist. Vorzugsweise wird im Bereich der Lufteintrittsöffnung, also des Saugstutzens, eine Bypassnut im Gehäuse und/oder Deckel angeordnet. Dieser By- pass ermöglicht, dass das Restöl am Flügel vorbei zurückströmt und dass auf diese Weise Druckspitzen durch beim Rückwärtslauf zurückgedrängtes Restöl vermieden werden.
Auch wird eine Vakuumpumpe bevorzugt, bei welcher die Vorrichtung ein Speichervolumen für Restöl aufweist. Druckspitzen durch das Restöl können also vermieden werden, indem bei Rückwärtsdrehen der Pumpe das Restöl in das Speichervolumen geschoben wird, so dass die Pumpe ohne Restöl vor dem Flügel und damit ohne Quetschöl rückwärts rotieren kann. Dieser Speicher kann im Pumpengehäuse untergebracht werden. Alternativ dazu kann auch der Saugschlauch der Pumpe bzw. ein Teil des Saugschlauches als Speichervolumen genutzt werden. Dazu wird das Saugventil nicht im Ansaugstutzen der Pumpe, sondern im Saugschlauch angeordnet. Vorzugsweise ist das Volumen zwischen Saugventil und Pumpenkammer dabei so groß auszulegen, dass es größer als das maximal auftretende Restölvolumen ist. Eine weitere erfindungsgemäße Pumpe zeichnet sich dadurch aus, dass die Vorrichtung einen Bypass im Deckel aufweist. Dazu ist im Deckel der Pumpe ein druckabhängiger Bypass integriert, der bei erhöhtem Druck vor dem Ansaugventil öffnet und Öl aus diesem Bereich in die andere Pumpenkammer und/oder zur Rotorinnenbohrung abströmen lässt. Dieser Bypass kann als federndes Blech ausgeführt sein, das auf der Innenseite des Deckels liegt und das bei Druckbelastung zumindest partiell in entsprechende Vertiefungen des Deckels weggedrückt werden kann. Alternativ kann der Bypass als Kolben im Deckel ausgeführt sein.
Weiterhin wird eine Vakuumpumpe bevorzugt, bei welcher der Rotor einen Klemmrollenfreilauf aufweist, welcher in einer Drehrichtung („vorwärts") die Verbindung zwischen Rotor und Antriebselement, wie beispielsweise einer Kupplung, blockiert, also klemmt, und in der entgegengesetzten Drehrichtung („rückwärts") das Antriebselement freilaufen lässt, ohne dass der Rotor die Rückwärtsdrehung mitmacht. Der Freilauf kann auf den Rotor aufgepresst werden, wobei die bekannte Gleitlagerung zwischen Rotor und Pumpengehäuse durch das Rollenlager des Klemmrollenfreilaufs ersetzt wird.
Die Erfindung wird nun anhand der Figuren beschrieben.
Figur 1 zeigt eine Pumpe mit einem Austrittsventil für das Restöl.
Figur 2 zeigt einen als Schwenkflügel ausgeführten Bypass für das Restöl.
Figur 3 zeigt eine Bypassnut im Gehäuse für das Restöl.
In Figur 1a ist in perspektivischer Darstellung eine Vakuumpumpe 1 dargestellt. Die Vakuumpumpe besitzt ein Gehäuse 3, in welchem hier nicht sichtbar ein exzentrisch angeordneter Rotor mit einem Monoflügel angeordnet ist. Derartige Vakuumpumpen sind in ihrer Konstruktion und Funktion bekannt und sollen deswegen nicht weiter erläutert werden. Auf dem Gehäuse ist die Drehrichtung des Rotors durch einen Pfeil 5 dargestellt, so dass erkennbar ist, dass in dieser Drehrichtung sich im Bereich 7 das Fördervolumen bei Umdrehung des Rotors vergrößert und somit zum Ansaugen führt und im Bereich 9 der Pumpe sich das Fördervolumen verkleinert und somit zum Ausstoßen des Fördermittels führt. Das Fördermittel wird also im Bereich 7 über einen Saugstutzen 11 angesaugt und danach bei Überschreiten des oberen Totpunkts und dem Verkleinem des Fördervolumens im Bereich 9 über ein Austrittsventil 13 ausgestoßen. Wird nun durch Rückwärtsdrehen einer derartigen Vakuumpumpe im Bereich 7 das Fördervolumen verkleinert und der Flügel zurückgedrückt, so kann das dabei zurückgedrängte Restöl, welches nur in den Ansaugstutzen entweichen kann, zu Beschädigungen oder gar zur Zerstörung der Pumpe führen, da im Ansaugstutzen ein Rückschlagventil in dieser Richtung sperrt und das Restöl dadurch zu hohen Druckspitzen führen kann.
Erfindungsgemäß wird deshalb ein zusätzliches Ventil 15 angeordnet, welches beim Rückwärtsdrehen zum Zylinderkopf hin öffnet und dabei das Restöl in diesen Bereich ablassen kann, also analog, wie sich normalerweise das Austrittsventil 13 bei normaler Förderrichtung 5 verhält. Bei normaler Drehrichtung bleibt das Austrittsventil 15 für das Restöl geschlossen, da sich im Bereich 7 Unterdruck aufbaut und deswegen der Atmosphärendruck im Zylinderkopf das Zungenventil 15 geschlossen hält. Vorzugsweise ist das Ventil 15 für den Rückwärtslauf mit dem Pumpenaustrittsventil 13 kombiniert, so dass ein Federblechventil zwei Zungen aufweist und mit einer Schraube 17 gesichert ist.
In Figur 1b sind die entsprechenden Einzelteile der Ventile im demontierten Zustand dargestellt. Die Schraube 17 befestigt den Niederhalter 19 und das Federzungenventil 23 des Pumpenaustrittventils 13 sowie den Niederhalter 21 und die Federzunge 25 des Rückwärtslaufventiles 15. Die Federzunge 23 des Pumpenaustrittventils 13 verschließt im drucklosen Zustand die Pumpenaustrittsöffnung 27, während die Federzunge 25 des Rückwärtslaufventils 15 die Austrittsöffnung 29 bei normaler Drehrichtung der Pumpe verschließt. Somit ist durch eine sehr einfache Kombination des Austrittsventils 13 mit dem Rückwärtslaufventil 15 eine sichere Lösung für die Rückwärts- laufprobleme der Pumpe gegeben, ohne dass zusätzliche Bauteile benötigt werden. Es muss nur der Niederhalter des Austrittsventils um den Bereich 21 verlängert werden sowie die Federzunge 23 des Austrittsventils um den Bereich 25.
In Figur 2 ist eine Bypassvorrichtung für das Restöl beim Rückwärtsdrehen in Form einer Schwenkflügelvorrichtung dargestellt. Ein Rotor 30, der hier vereinfacht ohne den Monoflügel dargestellt ist, ist exzentrisch in einem Gehäuse 32 angeordnet. Das Gehäuse 32 hat eine Ausbuchtung 34, in welcher eine Schwenkflügelvorrichtung 36 angeordnet ist. Die Schwenkflügelvorrichtung 36 liegt im Bereich 38 dichtend am Rotor an. Die Drehrichtung des Rotors im Normalbetrieb ist mit dem Pfeil 40 angedeutet. Im Normalbetrieb liegt also der Schwenkflügel dichtend am Rotor an, wobei sich im Bereich 48 die Druckzone der Vakuumpumpe und im Bereich 50 die Saugzone der Vakuumpumpe befindet. Zur sicheren Abdichtung im Schmiegespaltbereich zwischen dem Rotor 30 und dem Gehäuse 32 können über einen Winkelbereich α, hier mit der Bezugsziffer 46 zwischen Gehäuse 32 und Rotor 30 gekennzeichnet, der Rotor und das Gehäuse den annähernd gleichen Krümmungsradius aufweisen, so dass eine gute Schmiegespaltabdichtung auch dann vorhanden ist, wenn der Schwenkflügel bei Rückwärtslauf seine eigentliche Sicherheitsfunktion wahrnimmt. Diese Schmiegespaltabdichtung verhindert auch, dass Druckspitzen den Monoflügel zum Abheben bringen. Bei Rückwärtslauf wird also der Saugbereich 50 plötzlich zum Druckbereich, wobei sich in diesem Bereich dann durch das rückwärtsgedrückte Quetschöl eine Druckspitze aufbauen kann. Diese Druckspitze wird aber dann durch Öffnen des Schwenkflügels 36 in den Bereich 42, welcher mit dem Zylinderkopfbereich verbunden ist, entlastet. Im Bereich 42 herrscht normalerweise der Druck im Zylinderkopfbereich, welcher in etwa dem Atmosphärendruck entspricht. Vorzugsweise wird bei einer Pumpe mit dieser Schwenkflügeleinrichtung ein Monoflügel ohne bewegliche Kappen eingesetzt, weil der Monoflügel dann durch die Fliehkraft immer auf der gegenüberliegenden Seite anliegt und somit keinen Kontakt zum Schwenkflügel 36 aufweist. Der Schwenkflügel 36 selbst kann sowohl durch eine Federkraft 44 als auch durch die Druckkraft des Druckes im Bereich 42 dichtend gegen den Rotor 30 gepresst werden.
In Figur 3 ist als Rückwärtslauf-Entlastungsvorrichtung eine Bypassnut 54 auf der Rückseite 52 des Pumpengehäuses 3 dargestellt. Die Bypassnut 54 ist im Saugbereich der Pumpe und damit im Bereich des Saugstutzens 11 angeordnet. Gegenüberliegend befindet sich die Auslassöffnung 56 des Auslassventils, wenn die Pumpe in der normalen Drehrichtung 40 gedreht wird. Läuft die Pumpe beim Rückwärtsdrehen des Verbrennungsmotors anders herum, so kann durch die Bypassnut 54 das Quetschöl seitlich am Flügel vorbei nach hinten verdrängt werden und dadurch der Aufbau von Druckspitzen vermieden werden.

Claims

Patentansprüche
1. Vakuumpumpe 1 , insbesondere für Bremskraftverstarker für Kraftfahrzeuge, wobei die Pumpe normalerweise von einem Kraftfahrzeugverbrennungsmotor in einer Drehrichtung („vorwärts") angetrieben wird, gekennzeichnet durch eine Vorrichtung zur Vermeidung von Beschädigungen beim Rückwärtsdrehen.
2. Vakuumpumpe 1 nach Anspruch 1 , dadurch gekennzeichnet, dass die Vorrichtung ein Austrittsventil 15 für das Restöl aufweist.
3. Vakuumpumpe 1 nach Anspruch 1 , dadurch gekennzeichnet, dass die Vorrichtung eine Bypass-Verbindung für das Restöl aufweist.
4. Vakuumpumpe 1 nach Anspruch 1 , dadurch gekennzeichnet, dass die Vorrichtung eine Bypassnut 54 im Bereich der Lufteintrittsöffnung (Saugstutzen) aufweist, wobei die Nut im Gehäuse 3 und/oder Deckel angeordnet sein kann.
5. Vakuumpumpe 1 nach Anspruch 1 , dadurch gekennzeichnet, dass die Vorrichtung ein Speichervolumen für das Restöl aufweist.
6. Vakuumpumpe 1 nach Anspruch 1 , dadurch gekennzeichnet, dass die Vorrichtung einen druckabhängigen Bypass im Deckel der Pumpe aufweisen kann, wobei dieser Bypass als federndes Blech ausgeführt sein kann, welches auf der Innenseite des Deckels liegt und das bei Druckbelastung zumindest partiell in entsprechende Vertiefungen des Deckels weggedrückt werden kann, oder als Kolben im Deckel ausgeführt sein kann.
7. Vakuumpumpe 1 nach Anspruch 1 , dadurch gekennzeichnet, dass die Vorrichtung durch einen Klemmrollenfreilauf an der Rotorlagerung dargestellt sein kann.
8. Vakuumpumpe 1 nach Anspruch 2, dadurch gekennzeichnet, dass das Austrittsventil 15 für das Restöl ein zusätzliches Ventil darstellt, welches mit dem Pumpenaustrittsventil 13 kombinierbar ist.
9. Vakuumpumpe 1 nach Anspruch 8, dadurch gekennzeichnet, dass ein Federblechventil zwei Zungen 23, 25 aufweist und mit einer Schraube 17 gesichert ist.
10. Vakuumpumpe 1 nach Anspruch 3, dadurch gekennzeichnet, dass der Bypass für das Restöl als Schwenkflügel 36 ausgeführt sein kann, welcher im Bereich eines Schmiegespaltes angeordnet ist.
11.Vakuumpumpe 1 nach Anspruch 10, dadurch gekennzeichnet, dass in einem Winkelbereich α der Rotor 30 und das Gehäuse 32 annähernd den gleichen Krümmungsradius aufweisen.
12. Vakuumpumpe 1 nach den Ansprüchen 3, 10 oder 11 , dadurch gekennzeichnet, dass bei Verwendung eines Bypass-Schwenkflügels 36 die Vakuumpumpe 1 einen Monoflügel ohne bewegliche Kappen aufweist.
13. Vakuumpumpe nach den Ansprüchen 3, 10 bis 12, dadurch gekennzeichnet, dass der Schwenkflügel 36 aus Kunststoff oder aus Blech dargestellt sein kann.
14. Vakuumpumpe 1 nach den Ansprüchen 3, 10 bis 13, dadurch gekennzeichnet, dass der Schwenkflügel 36 schwenkbar oder elastisch verformbar ist.
15. Vakuumpumpe 1 nach den Ansprüchen 3, 10 bis 14, dadurch gekennzeichnet, dass der Schwenkflügel 36 durch Federkraft und/oder durch Druckkraft an den Rotor 30 gepresst wird.
16. Vakuumpumpe 1 nach den Ansprüchen 3, 10 bis 15, dadurch gekennzeichnet, dass der Bereich 42 über dem Schwenkflügel 36 zum Rotorinnenraum oder zum Zylinderkopf oder zum Tank hin entlastbar ist.
17. Vakuumpumpe 1 nach Anspruch 5, dadurch gekennzeichnet, dass das Speichervolumen im Pumpengehäuse 3 angeordnet ist.
18. Vakuumpumpe 1 nach Anspruch 5, dadurch gekennzeichnet, dass das Speichervolumen im Saugschlauch angeordnet ist.
19. Vakuumpumpe 1 nach Anspruch 18, dadurch gekennzeichnet, dass ein Saugventil im Saugschlauch angeordnet ist.
20. Vakuumpumpe 1 nach den Ansprüchen 5, 17 bis 19, dadurch gekennzeichnet, dass das Speichervolumen zwischen Saugventil und Pumpenkammer größer als das maximal auftretende Restölvolumen ist.
EP03779691A 2002-11-13 2003-11-12 Vakuumpumpe Withdrawn EP1563190A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07022290A EP1890040B1 (de) 2002-11-13 2003-11-12 Vakuumpumpe

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10252769 2002-11-13
DE10252769 2002-11-13
PCT/DE2003/003747 WO2004044431A2 (de) 2002-11-13 2003-11-12 Vakuumpumpe

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP07022290A Division EP1890040B1 (de) 2002-11-13 2003-11-12 Vakuumpumpe

Publications (1)

Publication Number Publication Date
EP1563190A2 true EP1563190A2 (de) 2005-08-17

Family

ID=32308526

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07022290A Expired - Lifetime EP1890040B1 (de) 2002-11-13 2003-11-12 Vakuumpumpe
EP03779691A Withdrawn EP1563190A2 (de) 2002-11-13 2003-11-12 Vakuumpumpe

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07022290A Expired - Lifetime EP1890040B1 (de) 2002-11-13 2003-11-12 Vakuumpumpe

Country Status (4)

Country Link
EP (2) EP1890040B1 (de)
AU (1) AU2003287863A1 (de)
DE (1) DE10393279D2 (de)
WO (1) WO2004044431A2 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004034922B4 (de) * 2004-07-09 2006-05-11 Joma-Hydromechanic Gmbh Einflügelvakuumpumpe
DE102004034926B3 (de) * 2004-07-09 2005-12-29 Joma-Hydromechanic Gmbh Einflügelvakuumpumpe
WO2006122515A1 (de) * 2005-05-19 2006-11-23 Ixetic Hückeswagen Gmbh Pumpe mit freilauf-rutschkupplung
DE102005031718A1 (de) 2005-07-07 2007-01-18 Leybold Vacuum Gmbh Vakuum-Drehschieberpumpe
DE112007001540B4 (de) * 2006-07-21 2016-05-12 Magna Powertrain Hückeswagen GmbH Vakuumpumpe
DE102007010729B3 (de) * 2007-01-04 2008-04-24 Joma-Polytec Kunststofftechnik Gmbh Vakuumpumpe
DE102007018247A1 (de) * 2007-04-12 2008-10-16 Joma-Hydromechanic Gmbh Vakuumpumpe
DE102009016048B4 (de) * 2009-04-02 2018-05-30 Bayerische Motoren Werke Aktiengesellschaft Pumpe für eine Kraftfahrzeug-Brennkraftmaschine sowie Kraftfahrzeug-Brennkraftmaschine mit Pumpe
GB0907607D0 (en) * 2009-05-01 2009-06-10 Wabco Automotive Uk Ltd Vacuum pump
DE102010026032A1 (de) * 2010-07-03 2012-01-05 Mahle International Gmbh Flatterventil und Drehschieberpumpe
ITTO20131083A1 (it) 2013-12-30 2015-07-01 Vhit Spa Pompa rotativa con valvola di sicurezza e metodo di funzionamento
DE102016202426A1 (de) * 2016-02-17 2017-08-17 Mahle International Gmbh Rückschlagventil für eine Vakuumpumpe
DE102016207123A1 (de) * 2016-04-27 2017-11-02 Mahle International Gmbh Rückschlagventil für eine Vakuumpumpe
DE102016207115A1 (de) * 2016-04-27 2017-11-02 Mahle International Gmbh Rückschlagventil für eine Vakuumpumpe
JP6534647B2 (ja) 2016-11-03 2019-06-26 大豊工業株式会社 ベーンポンプ
JP6613222B2 (ja) 2016-11-03 2019-11-27 大豊工業株式会社 ベーンポンプ
DE102016122903A1 (de) * 2016-11-28 2018-05-30 Schwäbische Hüttenwerke Automotive GmbH Gaspumpe mit Ölrückführung
DE102017123695A1 (de) * 2017-10-11 2019-04-11 Schwäbische Hüttenwerke Automotive GmbH Rotationspumpe
DE102017128972A1 (de) * 2017-12-06 2019-06-06 Joma-Polytec Gmbh Vakuumpumpe
DE102020111301A1 (de) * 2020-04-24 2021-10-28 Schwäbische Hüttenwerke Automotive GmbH Vakuumpumpe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749094A (ja) 1993-08-05 1995-02-21 Hitachi Ltd ベーン式真空ポンプ
JP2000205159A (ja) 1999-01-11 2000-07-25 Hitachi Ltd ベ―ン式真空ポンプ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1926797A1 (de) * 1969-05-24 1970-11-26 Gerspach Dr Phil Wolfram Vakuumrueckschlagventil,insbesondere fuer Bremskraftverstaerker 100000
CH553332A (de) * 1972-06-13 1974-08-30 Burckhardt Ag Maschf Einrichtung zur regulierung des arbeitsmitteldruckes in einer fluessigkeitsringpumpe.
DE2613472A1 (de) * 1976-03-30 1977-10-13 Hori Technical Lab Ltd Trockenlaufender verdichter
DE2629337C2 (de) * 1976-06-30 1986-08-07 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Flügelzellenvakuumpumpe
JPS61109975A (ja) * 1984-11-02 1986-05-28 Hitachi Koki Co Ltd 浮子式油逆流防止器
DE3618301A1 (de) * 1985-06-05 1986-12-18 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Vakuumpumpe
ES2019910B3 (es) * 1986-08-06 1991-07-16 Barmag Barmer Maschf Bomba de vacio por aletas
DE4019854B4 (de) * 1989-07-10 2004-09-16 Saurer Gmbh & Co. Kg Flügelzellen-Vakuumpumpe
DE4002771A1 (de) * 1990-01-31 1991-08-01 Vdo Schindling Unterdruckversorgungsanlage
DE59209433D1 (de) * 1991-05-29 1998-09-03 Luk Automobiltech Gmbh & Co Kg An einem Motorgehäuse eines Kraftfahrzeugmotors befestigte Flügelzellenvakuumpumpe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749094A (ja) 1993-08-05 1995-02-21 Hitachi Ltd ベーン式真空ポンプ
JP2000205159A (ja) 1999-01-11 2000-07-25 Hitachi Ltd ベ―ン式真空ポンプ

Also Published As

Publication number Publication date
EP1890040A2 (de) 2008-02-20
DE10393279D2 (de) 2005-06-02
EP1890040B1 (de) 2012-06-27
EP1890040A3 (de) 2008-02-27
WO2004044431A2 (de) 2004-05-27
AU2003287863A8 (en) 2004-06-03
AU2003287863A1 (en) 2004-06-03
WO2004044431A3 (de) 2004-09-16

Similar Documents

Publication Publication Date Title
EP1890040B1 (de) Vakuumpumpe
EP0536159B1 (de) Aggregat zum fördern von kraftstoff vom vorratstank zur brennkraftmaschine eines kraftfahrzeuges
DE4442083C2 (de) Flügelzellenpumpe
EP1766239B1 (de) Einflügelvakuumpumpe
EP1899608B1 (de) Vakuum-drehschieberpumpe
EP0576415B1 (de) Ansaugregelventil
EP1461533B1 (de) Pumpe
EP2670983A1 (de) Innenzahnradpumpen für eine hydraulische fahrzeugbremsanlage
DE102007010729B3 (de) Vakuumpumpe
WO2009018906A1 (de) Vakuumpumpe
DE102006033337A1 (de) Verdrängerpumpe
DE2242435C3 (de) Radialkolbenpumpe
DE3444392C2 (de)
DE102013204616B4 (de) 2Innenzahnradpumpe
DE102006061706A1 (de) Flügelzellenpumpe
WO2010025799A2 (de) Vakuumpumpe
DE2504562B2 (de) Hydrostatische Axialkolbenpumpe
EP1026401B1 (de) Hydrostatische Pumpe
EP1658438B1 (de) Flüssigkeitspumpe
DE102012221492B4 (de) Membranpumpe mit Exzenterantrieb und integriertem Absperrventil
EP1106827B1 (de) Hydraulische Pumpeneinheit
DE2414941A1 (de) Druckabhaengige foerderstrom-verstelleinrichtung fuer hydraulische pumpen
DE102013201972A1 (de) Verdrängerpumpe mit variablem fördervolumen
WO1998026181A2 (de) Gerotorpumpe für flüssige medien
DE1553223C (de) Zahnradpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050613

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PABST, ULRICH

Inventor name: PACE, ANTONIO

Inventor name: MOJE, ANDREAS

Inventor name: HILTEMANN, ULRICH

Inventor name: OTTO, DIETER

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IXETIC HUECKESWAGEN GMBH

17Q First examination report despatched

Effective date: 20070720

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PABST, ULRICH

Inventor name: PACE, ANTONIO

Inventor name: MOJE, ANDREAS

Inventor name: HILTEMANN, ULRICH

Inventor name: OTTO, DIETER

R17C First examination report despatched (corrected)

Effective date: 20070718

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071129