WO2004037903A2 - Absorbierende polymergebilde mit verbesserter retentionskapazität und permeabilität - Google Patents

Absorbierende polymergebilde mit verbesserter retentionskapazität und permeabilität Download PDF

Info

Publication number
WO2004037903A2
WO2004037903A2 PCT/EP2003/011828 EP0311828W WO2004037903A2 WO 2004037903 A2 WO2004037903 A2 WO 2004037903A2 EP 0311828 W EP0311828 W EP 0311828W WO 2004037903 A2 WO2004037903 A2 WO 2004037903A2
Authority
WO
WIPO (PCT)
Prior art keywords
absorbent polymer
polymer structure
aqueous solution
pul
inorganic compound
Prior art date
Application number
PCT/EP2003/011828
Other languages
English (en)
French (fr)
Other versions
WO2004037903A3 (de
Inventor
Jörg HARREN
Helmut Brehm
Andreas Kerkmann
Stephan Ramlow
Armin Reimann
Manfred Van Stiphoudt
Herbert Vorholt
Original Assignee
Stockhausen Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32178279&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004037903(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE2002149821 external-priority patent/DE10249821A1/de
Priority claimed from DE2002149822 external-priority patent/DE10249822A1/de
Application filed by Stockhausen Gmbh filed Critical Stockhausen Gmbh
Priority to AU2003296558A priority Critical patent/AU2003296558A1/en
Priority to EP03809325.8A priority patent/EP1563002B2/de
Priority to CN200380101982.3A priority patent/CN1708542B/zh
Priority to BR0315653-2A priority patent/BR0315653A/pt
Priority to JP2004545982A priority patent/JP4806191B2/ja
Priority to US10/532,280 priority patent/US7833624B2/en
Publication of WO2004037903A2 publication Critical patent/WO2004037903A2/de
Publication of WO2004037903A3 publication Critical patent/WO2004037903A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1806Stationary reactors having moving elements inside resulting in a turbulent flow of the reactants, such as in centrifugal-type reactors, or having a high Reynolds-number
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/51Methods thereof
    • B01F23/511Methods thereof characterised by the composition of the liquids or solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/53Mixing liquids with solids using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • B01F33/821Combinations of dissimilar mixers with consecutive receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/005Methods for mixing in batches
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/114Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/40Parts or components, e.g. receptacles, feeding or discharging means
    • B01F29/401Receptacles, e.g. provided with liners
    • B01F29/402Receptacles, e.g. provided with liners characterised by the relative disposition or configuration of the interior of the receptacles
    • B01F29/4022Configuration of the interior
    • B01F29/40221Configuration of the interior provided with baffles, plates or bars on the wall or the bottom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2996Glass particles or spheres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]

Definitions

  • the invention relates to a method for producing an absorbent polymer structure, an absorbent polymer structure obtainable by this method, an absorbent polymer structure, a composite, a method for producing a composite, a composite obtainable from this method, chemical products containing the absorbent polymer structure or the composite, the use of the absorbent polymer structure or the composite in chemical products, an aqueous solution, a method for producing the aqueous solution, an aqueous solution obtainable by the method and the use of the aqueous solution for treating the outside of an absorbent polymer structure.
  • Superabsorbers are water-insoluble, crosslinked polymers which are able to absorb large amounts of aqueous liquids, in particular body fluids, preferably urine or blood, with the swelling and formation of hydrogels and to retain them under a certain pressure. Due to these characteristic properties, these polymers are mainly used for incorporation into sanitary articles, such as baby diapers, incontinence products or sanitary napkins.
  • the superabsorbers currently commercially available are essentially crosslinked polyacrylic acids or crosslinked starch-acrylic acid graft polymers in which the carboxyl groups are partially neutralized with sodium hydroxide solution or potassium hydroxide solution.
  • the superabsorbent has further tasks with regard to the transport and distribution of liquid, which can be summarized as permeability properties.
  • permeability means the ability to transport added liquids in the swollen state and to distribute them three-dimensionally. This process takes place in the swollen superabsorbent gel via capillary transport through spaces between the gel particles. Liquid transport by swollen superabsorbent particles themselves follows the laws of diffusion and is a very slow process, which plays no role in the distribution of the liquid in the use situation of the sanitary article.
  • superabsorbent materials which cannot achieve capillary transport due to a lack of gel stability, embedding these materials in a fiber matrix ensured separation of the particles from one another while avoiding the gel blocking phenomenon.
  • the superabsorbers used here must therefore have a sufficiently high stability in the swollen state so that the swollen gel still has a sufficient amount of capillary spaces through which liquid can be transported.
  • EP-A-0 450 923, EP-A-0 450 922, DE-A-35 23 617, US 5,140,076 and US 4,734,478 describe the treatment of the surface of absorbent polymers by bringing the surface into contact with inorganic compounds, such as, for example, with finely divided silica, during or after the post-crosslinking of the surface.
  • inorganic compounds such as, for example, with finely divided silica
  • this type of surface treatment also increases the permeability of the absorbent polymers.
  • DE 35 03 458 describes a process for producing an improved absorbent resin, in which a water-absorbent resin, which contains units of a monomer with a carboxyl group in the form of the free acid or a salt as a constituent component thereof, in the presence of a powder of a finely divided metal oxide allows a crosslinking agent and water to be absorbed and the resulting mixture is heated with stirring to effect crosslinking of the resin and removal of water.
  • absorbent resins with a good water absorption capacity are obtained, which at the same time have a good absorption rate.
  • No. 4,535,098 describes a process for increasing the gel strength of non-post-crosslinked superabsorbers by swelling absorbent polymers in the presence of a colloidally disperse, inorganic compound, such as a silica sol, or by producing an absorbent polymer in the presence of a colloidally disperse, inorganic compound.
  • DE 198 05 447 discloses a process for the post-crosslinking of polyacrylonitrile hydrolyzates with bifunctional compounds and a simultaneous immobilization of silica in the surface structure of the superabsorbent polymer. The silica was brought into contact with the surface together with the crosslinking agent in a water / alcohol mixture. Immobilization of the silica is said to improve absorption under load and reduce gel blocking.
  • No. 5,147,921 discloses the addition of a silica sol as an inert filler that can be dispersed in the monomer solution to be polymerized.
  • JP 1994-16822 describes the aftertreatment of the surface of absorbent polymers with an inorganic sol.
  • an organic solvent component is additionally added.
  • Mono- and dimethyl ethers of diols or diols themselves are mentioned as organic solvent components.
  • the absorbent polymers should have a higher gel stability, a lower tendency to gel blocking and an improved permeability for water in simple tests without pressure loading of the superabsorbers.
  • the invention is based on the object of overcoming the disadvantages arising from the prior art.
  • a further object of the invention is superabsorbent
  • these polymers should contain the smallest possible amounts of toxic monomers, such as acrylamide or acrylonitrile, which wash out when the superabsorbent polymers come into contact with body fluids and, for example when the superabsorbent polymers are used in diapers, in this way in contact with the skin of the diaper wearer can kick.
  • toxic monomers such as acrylamide or acrylonitrile
  • a further object on which the present invention is based was to provide hygiene articles, such as, for example, diapers, which, in comparison with the hygiene articles known from the prior art, are better able to retain absorbed body fluids, absorb liquids under pressure and when absorbing liquids distribute them as quickly and evenly as possible in the hygiene article.
  • Another object of the invention is to provide a method with which such absorbent polymers can be produced in a simple, continuous manner as small as possible amounts of organic solvents.
  • added inorganic auxiliaries should detach from the superabsorbent polymer in small amounts at most, which do not adversely affect the polymer properties.
  • the solution used in this process for treating the surface of the absorbent polymer should be able to be handled like a single-phase system and should be able to be metered uniformly.
  • the coated superabsorbent should only form agglomerates to a minor extent in the course of the process and should be able to be fed to a continuously operating annealing step in a simple manner.
  • Steps bringing the outer area of the untreated absorbent polymer structure (Pul) into contact with an aqueous solution containing at least one chemical crosslinker and at least one inorganic compound in colloidally dispersed form;
  • Inner area is more crosslinked and the inorganic compound is at least partially immobilized in the outer area of the absorbent polymer structure.
  • Absorbent polymer structures (Pa) according to the invention are fibers, foams or particles, fibers and particles being preferred and particles being particularly preferred. Absorbent polymer structures (Pa) in these forms are obtained by using fibers, foams or particles in a corresponding manner as the absorbent polymer structures (Pul) or (Pu2).
  • Absorbent polymer fibers preferred according to the invention are dimensioned such that they can be incorporated in or as a game for textiles and also directly in textiles. It is preferred according to the invention that the absorbent polymer fibers have a length in the range from 1 to 500, preferably 2 to 500 and particularly preferably 5 to 100 mm and a diameter in the range from 1 to 200, preferably 3 to 100 and particularly preferably 5 to 60 denier have.
  • Absorbent polymer particles which are particularly preferred according to the invention are dimensioned such that they have an average particle size according to ERT 420.1-99 in the range from 10 to 3000, preferably 20 to 2000 and particularly preferably 150 to 850 ⁇ m.
  • the absorbent polymer structure (Pul) or (Pu2) used in the process according to the invention is preferably a polymer structure which is based on ( ⁇ l) 20-99.999% by weight, preferably 55 to 98.99% by weight and particularly preferably 70 to 98, 79% by weight of polymerized, ethylenically unsaturated, acid group-containing monomers or their salts or polymerized, ethylenically unsaturated monomers containing a protonated or quaternized nitrogen, or mixtures thereof, mixtures containing at least ethylenically unsaturated, acid group-containing monomers, preferably acrylic acid, being particularly preferred, ( ⁇ 2) 0-80% by weight, preferably 0-44.99% by weight and particularly preferably 0.1-44.89% by weight of polymerized, monoethylenically unsaturated monomers copolymerizable with ( ⁇ l), ( ⁇ 3) 0.001-5% by weight, preferably 0.01-3% by weight and particularly preferred
  • crosslinkers 0.01-2.5% by weight of one or more crosslinkers, ( ⁇ 4) 0-30% by weight, preferably 0-5% by weight and particularly preferably 0.1-5
  • Wt .-% of a water-soluble polymer and ( ⁇ 5) 0-20 wt .-%, preferably 0 to 10 wt .-% and particularly preferably 0.1-
  • Amounts by weight ( ⁇ l) to ( ⁇ 5) is 100% by weight.
  • the monoethylenically unsaturated monomers ( ⁇ l) containing acid groups can be partially or completely, preferably partially, neutralized.
  • the monoethylenically unsaturated monomers containing acid groups are preferably neutralized to at least 25 mol%, particularly preferably to at least 50 mol% and moreover preferably to 50-80 mol%.
  • Some or all of the neutralization can also be carried out after the polymerization. Neutralization with alkali metal hydroxides,
  • Alkaline earth metal hydroxides, ammonia and carbonates and bicarbonates any other base is conceivable that forms a water-soluble salt with the acid.
  • Mixed neutralization with different bases is also conceivable. Neutralization with ammonia and
  • Alkali metal hydroxides particularly preferably with sodium hydroxide and with
  • the free acid groups can also predominate in a polymer, so that this polymer has a pH value in the acidic range.
  • This acidic water-absorbing polymer can be at least partially neutralized by a polymer with free basic groups, preferably amine groups, which is basic in comparison to the acidic polymer.
  • MIEA polymers Glassed Bed Ion Exchange Absorbent Polymers
  • WO 99/34843 The disclosure of WO 99/34843 is hereby introduced as a reference and applies thus as part of the revelation.
  • MBIEA polymers are a composition which contains, on the one hand, basic polymers which are able to exchange anions and, on the other hand, a polymer which is acidic in comparison with the basic polymer and which is able to exchange cations.
  • the basic polymer has basic groups and is typically obtained by polymerizing monomers that carry basic groups or groups that can be converted to basic groups. These monomers are, above all, those which have primary, secondary or tertiary amines or the corresponding phosphines or at least two of the above functional groups.
  • This group of monomers includes in particular ethylene amine, allylamine, diallylamine, 4-aminobutene, alkyloxycyclines, vinylformamide, 5-aminopentene, carbodiimide, formaldacin, melamine and the like, and also their secondary or tertiary amine derivatives.
  • the monoethylenically unsaturated monomers ( ⁇ l) containing acid groups can be partially or completely, preferably partially, neutralized.
  • the monoethylenically unsaturated monomers containing acid groups are preferably neutralized to at least 25 mol%, particularly preferably to at least 50 mol% and moreover preferably to 50-90 mol%.
  • the monomers ( ⁇ l) can also be neutralized before the polymerization.
  • Neutralization can also be carried out using alkali metal hydroxides, alkaline earth metal hydroxides, ammonia and carbonates and bicarbonates. In addition, any other base is conceivable that forms a water-soluble salt with the acid. Mixed neutralization with different bases is also conceivable. Neutralization with ammonia or with alkali metal hydroxides is preferred, particularly preferably with sodium hydroxide or with ammonia.
  • Preferred monoethylenically unsaturated monomers ( ⁇ l) containing acid groups are acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, ⁇ -
  • Cyanoacrylic acid ß-methyl acrylic acid (crotonic acid), ⁇ -phenylacrylic acid, ß- Acryloxypropionic acid, sorbic acid, ⁇ -chlorosorbic acid, 2'-
  • ethylenically unsaturated sulfonic acid monomers or ethylenically unsaturated phosphonic acid monomers are also preferred as monoethylenically unsaturated, acid group-containing monomers ( ⁇ l).
  • Ethylenically unsaturated sulfonic acid monomers are preferred allylsulfonic acid or aliphatic or aromatic vinylsulfonic acids or acrylic or methacrylic sulfonic acids.
  • Vinyl sulfonic acid, 4-vinylbenzyl sulfonic acid, vinyl toluenesulfonic acid and styrene sulfonic acid are preferred as aliphatic or aromatic vinyl sulfonic acids.
  • Preferred acrylic or methacrylic sulfonic acids are sulfoethyl (meth) acrylate, sulfopropyl (meth) acrylate, 2-hydroxy-3-methacryloxypropyl sulfonic acid and 2-acrylamido-2-methylpropane sulfonic acid.
  • ethylenically unsaturated phosphonic acid monomers such as vinylphosphonic acid, allylphosphonic acid, vinylbenzylphosphonic acid,
  • Preferred ethylenically unsaturated monomers ( ⁇ l) containing a protonated nitrogen are dialkylaminoalkyl (meth) acrylates in protonated form, for example dimethylaminoethyl (meth) acrylate hydrochloride or dimethylaminoethyl (meth) acrylate hydrosulfate, and dialkylaminoalkyl (meth) acrylamides in protonated form Form, for example dimethylaminoethyl (meth) acrylamide hydrochloride or dimethylaminoethyl (meth) acrylamide hydrosulfate is preferred.
  • Dialkylammoniumalkyl (meth) acrylates in quaternized form for example trimethylammoniumethyl (meth) acrylate methosulfate or dimethylethylammoniumethyl (meth) acrylate ethosulfate and (meth) acrylamidoalkyl dialkylamines in quaternized form are dialkylammonium alkyl (meth) acrylates as ethylenically unsaturated monomers ( ⁇ l) containing a quaternized nitrogen , for example
  • component ( ⁇ l) consists of at least 50% by weight, preferably at least 70% by weight and moreover preferably at least 90% by weight of monomers containing carboxylate groups. It is particularly preferred according to the invention that component ( ⁇ l) consists of at least 50% by weight, preferably at least 70% by weight, of acrylic acid, which preferably neutralizes at least 20 mol%, particularly preferably at least 50 mol% is.
  • Acrylamides and methacrylamides are preferred as monoethylenically unsaturated monomers ( ⁇ 2) copolymerizable with ( ⁇ l).
  • (meth) acrylamides are alkyl-substituted (meth) acrylamides or aminoalkyl-substituted derivatives of (meth) acrylamide, such as N-methylol (meth) acrylamide, N, N-dimethylamino (meth) acrylamide, dimethyl (meth ) acrylamide or diethyl (meth) acrylamide.
  • Possible vinylamides are, for example, N-vinylamides, N-vinylformamides, N-vinyl acetamides, N-vinyl-N-methylacetamides, N-vinyl-N-methylformamides, vinyl pyrrolidone.
  • Acrylamide is particularly preferred among these monomers.
  • preferred monoethylenically unsaturated monomers ( ⁇ 2) which are copolymerizable with ( ⁇ 1) are water-dispersible monomers.
  • water-dispersible monomers are acrylic acid esters and methacrylic acid esters, such as thyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate or butyl (meth) acrylate, as well as methyl polyethylene glycol (meth) acrylate,
  • Methyl polyethylene glycol allyl ether, vinyl acetate, styrene and isobutylene are preferred.
  • the compounds of crosslinking class I crosslink the polymers by radical polymerization of the ethylenically unsaturated groups of the crosslinking molecule with the monoethylenically unsaturated monomers ( ⁇ l) or ( ⁇ 2), while in the case of compounds of crosslinking class II and the polyvalent metal cations of crosslinking class IV crosslinking of the polymers is achieved by the condensation reaction of the functional groups (crosslinking class II) or by electrostatic interaction of the polyvalent metal cation (crosslinking class IV) with the functional groups of the monomers ( ⁇ l) or ( ⁇ 2).
  • the polymer is accordingly crosslinked both by radical polymerization of the ethylenically unsaturated group and by a condensation reaction between the functional group of the crosslinking agent and the functional groups of the monomers ( ⁇ l) or ( ⁇ 2).
  • Preferred compounds of crosslinking class I are poly (meth) acrylic esters or poly (meth) acrylamides, which, for example, by the reaction of a polyol, such as ethylene glycol, propylene glycol, trimethylol propane, 1,6-hexanediol, glycerol, pentaerythritol, polyethylene glycol or polypropylene glycol, of an amino alcohol , a polyalkylene polyamine, such as diethylenetriamine or triethylenetetraamine, or an alkoxylated polyol with acrylic acid or methacrylic acid.
  • a polyol such as ethylene glycol, propylene glycol, trimethylol propane, 1,6-hexanediol, glycerol, pentaerythritol, polyethylene glycol or polypropylene glycol
  • a polyalkylene polyamine such as diethylenetriamine or triethylenetetraamine
  • Polyvinyl compounds, poly (mefh) allyl compounds, (meth) acrylic acid esters of a monovinyl compound or (meth) acrylic acid esters of a mono (meth) allyl compound, preferably the mono (meth) allyl compounds of a polyol or an amino alcohol, are further preferred as compounds of crosslinking class I.
  • alkylene di (mefh) acrylates for example ethylene glycol di (meth) acrylate, 1,3-propylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, 1,3- Butylene glycol di (mefh) acrylate, 1, 6-hexanediol di (meth) acrylate, 1, 10-decanediol di (meth) acrylate, 1, 12-dodecanediol di (meth) acrylate, 1, 18-octadecanediol di (meth) acrylate, cyclopen tandiol di (meth) acrylate, neopentyl glycol di (meth) acrylate, methylene di (meth) acrylate or pentaerythritol di (meth) acrylate, alkenyldi (meth) acrylamides,
  • Di (meth) allyl compounds for example di (meth) allyl phthalate or di (meth) allyl succinate, homo- and copolymers of
  • These functional groups of the compounds of crosslinker class II are preferably alcohol, amine, aldehyde, glycidyl, isocyanate, carbonate or epichloride functions.
  • Examples of compounds of crosslinking class II include polyols, for example ethylene glycol, polyethylene glycols such as diethylene glycol, triefylene glycol and tetraethylene glycol, propylene glycol, polypropylene glycols such as dipropylene glycol, tripropylene glycol or tetrapropylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-butanediol Pentanediol, 2,4-pentanediol, 1,6-hexanediol, 2,5-hexanediol, glycerin, polyglycerin, trimethylolpropane, polyoxypropylene, oxyethylene-oxypropylene block copolymers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, pentaerythritol, polyvinyl alcohol and sorbitol, for example,
  • Hexamethylene diisocyanate polyaziridine compounds such as 2,2-bishydroxy-methylbutanol-tris [3- (l-aziridinyl) propionate], 1,6-hexamethylenediefhylene urea and diphenylmethane-bis-4,4'-N, N'-diethylene urea, Halogenepoxides, for example epichlorohydric and epibromohydrin and ⁇ -methylepichlorohydrin, alkylene carbonates such as 1,3-dioxolan-2-one (ethylene carbonate), 4-methyl-1,3-dioxolan-2-one (propylene carbonate), 4,5-dimethyl -l, 3-dioxolan-2-one, 4,4-dimethyl-l, 3- dioxolan-2-one, 4-ethyl-l, 3-dioxolan-2-one, 4-hydroxymethyl-l, 3-dioxolan-2-one, l, 3-dio
  • crosslinker class II Other compounds of crosslinker class II are polyoxazolines such as 1,2-ethylenebisoxazoline, crosslinkers with silane groups such as ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -aminopropyltrimethoxysilane, oxazolidinones such as 2-oxazolidinone, bis- and poly-2-oxazolidinones and digly preferred ,
  • Class III compounds include hydroxyl- or amino group-containing esters of (meth) acrylic acid, such as 2-hydroxyethyl (meth) acrylate, as well as hydroxyl- or amino group-containing (meth) acrylamides, or
  • the polyvalent metal cations of crosslinking class IV are preferably derived from mono- or polyvalent cations, the monovalent in particular from alkali metals such as potassium, sodium, lithium, lithium being preferred.
  • Preferred divalent cations are derived from zinc, beryllium, alkaline earth metals, such as magnesium, calcium, strontium, magnesium being preferred.
  • Other higher-value cations which can be used according to the invention are cations of aluminum, iron, chromium, manganese, titanium, zirconium and other transition metals, and also double salts of such cations or mixtures of the salts mentioned.
  • Aluminum salts and alums and their different hydrates such as, for. B.
  • Al 2 (SO 4 ) 3 and its hydrates are particularly preferably used as crosslinking agents of crosslinking class IV.
  • Preferred absorbent polymer structures are polymer structures which are crosslinked by crosslinkers of the following crosslinking classes or by crosslinkers of the following combinations of crosslinking classes: I, II, III, IV, I II, I III, I IN, I II III, I II IV, I III IV, II III IV, II IV or III IN.
  • the above combinations of crosslinking classes each represent a preferred embodiment of crosslinking a polymer.
  • absorbent polymer structures are polymer structures which are crosslinked by any of the aforementioned crosslinkers of crosslinking classes I.
  • crosslinkers of crosslinking classes I.
  • water-soluble crosslinkers are preferred.
  • ⁇ , ⁇ '-mefhylenebisacrylamide, polyethylene glycol di (meth) acrylates, triallylmethylammonium chloride, tetraallylammonium chloride and allylnonaethylene glycol acrylate prepared with 9 moles of ethylene oxide per mole of acrylic acid are particularly preferred.
  • water-soluble polymers such as partially or fully hydrolyzed polyvinyl alcohol, polyvinylpyrrolidone, starch or starch derivatives, polyglycols or polyacrylic acid can preferably be copolymerized in the absorbent polymer structures (Pul) or (Pu2) according to the invention.
  • the molecular weight of these polymers is not critical as long as they are water soluble.
  • Preferred water-soluble polymers are starch or starch derivatives or polyvinyl alcohol.
  • the water-soluble polymers, preferably synthetic such as polyvinyl alcohol can also serve as a graft base for the monomers to be polymerized.
  • Auxiliaries ( ⁇ 5) in the absorbent polymer structures (Pul) or (Pu2) used in the process according to the invention may preferably contain adjusting agents, surface-active agents, odor binders, fillers or antioxidants.
  • the absorbent polymer structure (Pul) or (Pu2) is a crosslinked polyacrylate in particulate form, which by polymerizing an acrylic acid and optionally one of the The aforementioned crosslinking agent in aqueous solution, comprising the acrylic acid in an amount in a range from 5 to 80% by weight, preferably 10 to 70% by weight and particularly preferably 20 to 50% by weight, based on the weight of the aqueous Solution, and then comminuting the polymer gel obtained, drying the comminuted gel and optionally further grinding the dried polymer gel was obtained.
  • the absorbent polymer structures obtained in this way are preferably characterized by a water content of 0.5 to 25% by weight, preferably 1 to 10% by weight.
  • the absorbent polymer structures (Pul) or (Pu2) are based on acrylic acid, which is at least 50% by weight, preferably at least 75% by weight and moreover preferably at least 90% by weight is preferably neutralized to at least 20 mol%, particularly preferably to at least 50 mol%.
  • the absorbent polymer structure (Pul) or (Pu2) is not based on polyacrylonitrile emulsions. It is preferred that the absorbent polymer structures (Pul) or (Pu2) less than 37 mol%, particularly preferably less than 20 mol%, more preferably less than 10 mol% and furthermore even more preferably less than 5 mol% based on acrylamide and / or acrylonitrile monomers.
  • the absorbent polymer structure (Pul) or (Pu2) has a proportion of soluble monomers or polymers based on acrylonitrile and / or acrylamide monomers of less than 1,000 ppm, particularly preferably less than 500 ppm, moreover preferably have less than 100 ppm and, moreover, more preferably less than 10 ppm.
  • the absorbent polymer structure (Pul) or (Pu2) can be obtained from the aforementioned monomers and crosslinkers by various polymerization methods produce.
  • bulk polymerization which preferably takes place in kneading reactors such as extruders, solution polymerization, spray polymerization, inverse emulsion polymerization and inverse suspension polymerization.
  • the solution polymerization is preferably carried out in water as the solvent.
  • the solution polymerization can be carried out continuously or batchwise.
  • reaction conditions such as temperatures, type and amount of the initiators and also of the reaction solution can be found in the prior art.
  • absorbent polymer structures Pul or (Pu2)
  • Another possibility for producing the absorbent polymer structures (Pul) or (Pu2) is to first produce uncrosslinked, in particular linear, polymers, preferably by radical means, from the aforementioned monoethylenically unsaturated monomers ( ⁇ l) or ( ⁇ 2) and then crosslinking them Reagents ( ⁇ 3), preferably those of classes II and IV to implement.
  • This variant is preferably used when the polymer structures are first to be processed in shaping processes, for example into fibers, foils or other flat structures, such as woven fabrics, knitted fabrics, spunbond or nonwovens, and are to be crosslinked in this form.
  • the polymerization is initiated as usual by an initiator. All initiators which form free radicals under the polymerization conditions and are customarily used in the production of superabsorbents can be used as initiators for initiating the polymerization. It is also possible to initiate the polymerization by the action of electron beams on the polymerizable, aqueous mixture. However, the polymerization can also be carried out in the absence of initiators of the type mentioned above Exposure to high-energy radiation can be triggered in the presence of photoinitiators. Polymerization initiators can be dissolved or dispersed in a solution of monomers according to the invention. All radical-decomposing compounds known to those skilled in the art are suitable as initiators.
  • Suitable organic peroxides are preferably acetylacetone peroxide,
  • azo compounds such as 2,2'-azobis- (2-amidinopropane) dihydrochloride, azo-bis-amidinopropane dihydrochloride, 2,2'-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride , 2- (carbamoylazo) isobutyronitrile and 4,4'-azobis (4-cyanovaleric acid).
  • the compounds mentioned are used in customary amounts, preferably in a range from 0.01 to 5, preferably from 0.1 to 2 mol%, in each case based on the amount of the monomers to be polymerized.
  • the redox catalysts contain at least one of the above-mentioned per compounds as the oxidic component and preferably ascorbic acid, glucose, sorbose, mannose, ammonium or alkali metal hydrogen sulfite, sulfate, thiosulfate, hyposulfite or sulfide, metal salts such as iron II as the reducing component -ions or silver ions or sodium hydroxymethyl sulfoxylate. Ascorbic acid or sodium pyrosulfite is preferred as the reducing component of the redox catalyst used.
  • Relative to the employed in the polymerization amount of monomers is l lO "5 and 1 mol% of the reducing component of the redox catalyst and lxlO" used 5 to 5 mol% of the oxidizing component of the redox catalyst.
  • l lO 5 and 1 mol% of the reducing component of the redox catalyst
  • lxlO used 5 to 5 mol% of the oxidizing component of the redox catalyst.
  • one or more, preferably water-soluble, azo compounds can be used.
  • photoinitiators are usually used as initiators. These can be, for example, so-called ⁇ -splitters, H-abstracting systems or also azides.
  • initiators are benzophenone derivatives such as Michler's ketone, phenanthrene derivatives, fluorene derivatives, anthraquinone derivatives, thioxanone derivatives, coumarin derivatives, benzoin ethers and their derivatives, azo compounds such as the radical formers mentioned above, substituted Hexaarylbisimidazole or acylphosphine oxides.
  • azides examples include: 2- (N, N-dimethylamino) ethyl 4-azidocinnamate, 2- (N, N-dimethylamino) ethyl-4-azidonaphthyl ketone, 2- (N, N-dimethylamino) ethyl-4 -azidobenzoate, 5-azido-1-naphthyl-2 '- (N, N-dimethylamino) ethylsulfone, N- (4-sulfonylazidophenyl) maleinimide, N-acetyl-4-sulfonylazidoaniline, 4-sulfonylazidoaniline, 4-azido aniline, 4-azidophenacyl bromide, p-azidobenzoic acid, 2,6-bis (p-azidobenzylidene) cyclohexanone and 2,6-bis (p-azi
  • a redox system consisting of hydrogen peroxide, sodium peroxodisulfate and ascorbic acid is preferably used according to the invention.
  • azo compounds according to the invention are preferred as initiators, with azo-bis-amidinopropane dihydrochloride being particularly preferred.
  • the polymerization is initiated with the initiators in a temperature range from 30 to 90 ° C.
  • the polymer gel is dried up to a water content of 0.5 to 25% by weight, preferably 1 to 10% by weight, at temperatures which are usually in the range from 100 to 200.degree.
  • 440.1-99 is in a range from at least 10 to 1000, preferably from
  • the proportion extractable according to ERT 470.1-99 with 0.9% by weight of aqueous NaCl solution is less than 30, preferably less than 20 and particularly preferably less than 10% by weight, based on the absorbent polymer structure ( Pul) or (Pu2),
  • the bulk density according to ERT 460.1-99 is in the range from 300 to 1000, preferably 310 to 800 and particularly preferably 320 to 700 g / 1,
  • the CRC value according to ERT 441.1-99 is in the range from 10 to 100, preferably 15 to 80 and particularly preferably 20 to 60 g / g.
  • the contacting of the absorbent polymer structure (Pul) or (Pu2) with the aqueous solution is preferably carried out in the process according to the invention by thorough mixing of the aqueous solution with the absorbent polymer structure (Pul) or (Pu2).
  • the aqueous solution is preferably essentially free of organic solvents, in particular free of polyhydric alcohols and polyalkylene glycol ethers, particularly preferably free of diethylene glycol monomethyl ether and 1,3-butanediol.
  • an aqueous solution is understood to mean a solution which is at least 50% by weight, particularly preferably at least 60% by weight, moreover preferably at least 70% by weight and beyond more preferably at least 90% by weight, based on the total amount of all components present in the aqueous solution which are liquid at room temperature, based on water.
  • the chemical crosslinker can be contained in the aqueous solution containing the inorganic compound in colloidal form from the outset.
  • the chemical crosslinker and the colloidally disperse, inorganic compound can be separated, but preferably brought into contact with the absorbent polymer structure (Pul) or (Pu2) at the same time.
  • two separate solutions one of which contains the chemical crosslinker and the other the inorganic compound in a colloidally disperse form, are preferably mixed simultaneously with the absorbent polymer structure (Pul) or (Pu2), but with a homogeneous distribution of the chemical crosslinker and the inorganic compound must be guaranteed in colloidal form.
  • Suitable mixing units for applying the components are e.g. B. the Patterson-Kelley mixer, DRAIS turbulence mixer, Lödigem mixer, Ruberg Mixers, screw mixers, plate mixers and fluidized bed mixers as well as continuously operating vertical mixers, in which the polymer structure is mixed at high frequency by means of rotating knives (Schugi mixer).
  • the absorbent polymer structure (Pul) or (Pu2) is preferably in the process according to the invention preferably at most 20% by weight, particularly preferably at most 15% by weight, more preferably at most 10% by weight, and even more preferably brought into contact with at most 5% by weight of water and most preferably with less than 3% by weight, in each case based on the weight of the absorbent polymer structure (Pul) or (Pu2).
  • absorbent polymer structures (Pul) or (Pu2) are used in the form of preferably spherical particles, it is further preferred according to the invention that this is brought into contact in such a way that only the outer area, but not the inner area, of the particle-shaped absorbent polymer structure with the inorganic compound in colloidal dispersed form are brought into contact.
  • the outer region of the polymer structures is preferably understood to be that region which is characterized in that the distance of each spatial point lying in this region from the center of the particle is at least 50%, particularly preferably at least 75%, more preferably at least 90% and above more preferably at least 95% of the radius of the particulate absorbent polymer structures.
  • the inhomogeneous immobilization of the colloidally disperse inorganic compound on the polymer structures achieved in this way is achieved according to the invention in that dry polymer structures are brought into contact with the aqueous solution and, in addition, only small amounts of water are used such that it is only in the outer region of the absorbent polymer structures absorption of the aqueous liquid. It is further preferred in the process according to the invention that at least 30% by weight, particularly preferably at least 60% by weight and moreover preferably at least 90% by weight of the colloidally disperse inorganic compound have a particle size in the range from 1 to 100, preferably from 5 to 80 and more preferably from 6 to 50 nm.
  • the inorganic compound is preferably used in an amount of 0.001 to 10% by weight, particularly preferably 0.01 to 5% by weight and moreover preferably 0.05 to 1.5% by weight, based on the absorbent polymer structure (Pul) or (Pu2), brought into contact with the absorbent polymer structure (Pul) or (Pu2).
  • All inorganic compounds which are insoluble in water and from which stable, colloidally disperse, preferably single-phase, aqueous solutions can be obtained which can be obtained at 20 ° C. and normal pressure over a period of at least 6h, preferably at least 24h and particularly preferably at least 72h to can be used as the inorganic compound show no phase separation for 6 months, such as the settling of a solid, inorganic precipitate.
  • a colloidally disperse solution is preferably understood to mean a solution which contains particles with a particle diameter in a range from 100-1000 A (10 " to 10 " cm). These solutions have the property of scattering a light beam sent through the solution in all directions so that the path of the light beam through the colloidally dispersed solution can be followed (Tyndall effect, see also Hollemann-Wiberg, Textbook of inorganic chemistry, 91.-100 Edition, de Gruyter Verlag, page 765).
  • Particles containing polysilicic acid are used as a particularly preferred colloidally disperse inorganic compound.
  • a colloidally disperse solution containing such particles can be obtained, for example, by careful acidification of sodium silicate solutions which react alkaline as a result of hydrolysis, or by dissolving molecular silica in water and possibly subsequently stabilizing the resulting colloidally disperse solution.
  • the exact production of such silica sols is known to the person skilled in the art and is described, for example, in Jander-Blasius,, Yearbook of Analytical and Preparative Inorganic Chemistry,, S. Hirzel Verlag, Stuttgart.
  • iron (III) oxide hydrate brine In addition to the colloidally disperse silicic acid, iron (III) oxide hydrate brine, tin (IV) oxide hydrate brine or on are also according to the invention.
  • Silver halides, in particular silver chloride, based sols are particularly preferred as colloidally disperse inorganic compounds.
  • Chemical crosslinkers which are contained in the aqueous solution in the process according to the invention are preferably understood to mean compounds which have at least two functional groups which have functional groups
  • Ring opening reaction can react or polyvalent metal cations by electrostatic interaction between the polyvalent
  • Post-crosslinking agents are preferred in the process according to the invention to those which, in connection with the crosslinking agents ( ⁇ 3), are the crosslinking agents
  • post-crosslinking agents are particularly preferred
  • Condensation crosslinking agents such as, for example, diethylene glycol, triethylene glycol, polyethylene glycol, glycerin, polyglycerol, propylene glycol, diethanolamine,
  • Ethylene carbonate is particularly preferably used as postcrosslinker.
  • the postcrosslinker is preferably used in the process according to the invention in an amount in the range from 0.01 to 30, particularly preferably 0.1 to 20 and moreover preferably from 0.3 to 5% by weight, based on the absorbent polymer structure (pul) or (Pu2) used.
  • the post-crosslinking reaction takes place in the process according to the invention by heating the absorbent polymer structure to temperatures in the range from 40 to 300 ° C. preferably from 80 to 250 ° C and particularly preferably from 150 to 220 ° C.
  • the optimal duration of the reheating can easily be determined for the individual types of crosslinkers and colloidally disperse inorganic compounds. It is limited when the desired property profile of the super absorber is destroyed again as a result of heat damage.
  • the thermal treatment can be carried out in conventional dryers or ovens, examples being rotary tube ovens, fluidized bed dryers, plate dryers, paddle dryers or infrared dryers.
  • the outer region of the absorbent polymer structure is more cross-linked than that
  • the inorganic External connection is at least partially immobilized.
  • the radius of the outer region is smaller than three times the value of the radius of the inner region.
  • the outer region of the absorbent polymer structures is brought into contact with a compound containing Al 3+ ions before or after, preferably after, contacting the aqueous solution containing the chemical crosslinker and the inorganic compound in colloidally disperse form brought.
  • the compound containing Al ions in an amount in a range from 0.01 to 30 wt .-%, particularly preferably in an amount in a range from 0.1 to 20 wt .-% and beyond preferably in an amount in a range from 0.3 to 5% by weight, in each case based on the weight of the absorbent polymer structures, is brought into contact with the polymer structures.
  • the contacting of the outer region of the absorbent polymer structure with the compound containing Al ions preferably takes place by mixing the absorbent polymer structure (Pa) with the compound under dry conditions or by comprising the absorbent polymer structure (Pa) with a fluid a solvent, preferably water, water-miscible organic solvents such as methanol or ethanol or mixtures of at least two of them, and the compound containing Al 3+ ions are brought into contact, the contacting preferably by spraying the polymer particles with the fluid and mixing takes place.
  • a solvent preferably water, water-miscible organic solvents such as methanol or ethanol or mixtures of at least two of them
  • the compound containing Al 3+ ions are brought into contact
  • the contacting preferably by spraying the polymer particles with the fluid and mixing takes place.
  • the contacting of the absorbent polymer structure (Pa) with the fluid containing the Al 3+ ion-containing compound takes place in a two-stage process.
  • the two-stage process comprises a first mixing process, in which a multiplicity of absorbent polymer structures are mixed with the fluid, and a second mixing process, in which the fluid is homogenized inside the polymer particles, the polymer particles being mixed in the first mixing process at a rate such that the kinetic energy of the individual polymer particles is on average greater than the adhesive energy between the individual polymer particles, and the polymer particles in the second mixing process are at a lower rate than mixed in the first mixing process.
  • absorbent polymer structures (Pa) By treating the absorbent polymer structures (Pa) with the fluid containing the Al 3+ ion-containing compound by the two-step process described above, absorbent polymer structures with improved absorption properties can be obtained.
  • the compound containing Al 3+ ions is preferably in each case without consideration of water of crystallization in an amount in a range from 0.1 to 50% by weight, particularly preferably in an amount in a range from 1 to 30% by weight based on the total weight of the fluid contained in the fluid. It is further preferred that the fluid in an amount in a range from 0.01 to 15 wt .-%, particularly preferably in an amount in a range from 0.05 to 6 wt .-%, each based on the weight of the absorbent polymer structure (Pa), is brought into contact with the absorbent polymer structure (Pa).
  • the present invention further relates to absorbent polymer structures (Pa) which can be obtained by the inventive method described above.
  • the invention also relates to an absorbent polymer structure (Pa) comprising an inner region and an outer region surrounding the inner region, wherein the outer area is more cross-linked than the inner area, in the outer area, preferably only in the outer area and not in the inner area, an inorganic compound is at least partially immobilized and wherein the absorbent polymer structure (Pa) has at least one of the following properties:
  • Embodiments of the absorbent polymer structure (Pa) according to the invention are preferred in each case Embodiments of the absorbent polymer structure (Pa) according to the invention. Also particularly preferred as embodiments according to the invention is an absorbent polymer structure (Pa) which shows the properties or combinations of properties shown below as letters or combinations of letters: ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6, ⁇ 7 , with ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5 and ⁇ 6 being particularly preferred.
  • the absorbent polymer structure (Pa) has an absorbance against pressure (AAP) according to ERT 442.1-99 at a pressure of 50 g / cm of at least 18 g / g, particularly preferably at least 20 g / g and beyond particularly preferably of at least 22 g / g.
  • AAP absorbance against pressure
  • the radius of the outer region is smaller than twice the value of the radius of the inner region.
  • the outer region of the polymer structures is preferably understood to be that region which is characterized in that the distance of each spatial point in this region from the center of the particle is at least 50%, particularly preferably at least 75% , moreover preferably at least 90% and even more preferably at least 95% of the radius of the particulate absorbent polymer structures.
  • the inorganic compound, which is at least partially immobilized in the outer region of the absorbent polymer structure (Pa) according to the invention can be any water-insoluble, inorganic compound from which stable, colloidally disperse aqueous solutions can be obtained.
  • a particularly preferred inorganic compound which is at least partially immobilized in the outer region of the absorbent polymer structure (Pa) according to the invention is a condensate of polysilicic acids.
  • the values of features according to the invention given only with a lower limit have an upper limit which is 20 times, preferably 10 times and particularly preferably 5th -fold the most preferred value of the lower limit.
  • the invention further relates to a composite comprising a previously defined absorbent polymer structure (Pa) and a substrate.
  • the polymer structure (Pa) according to the invention and the substrate are preferably firmly connected to one another.
  • Films made of polymers, such as polyethylene, polypropylene or polyamide, metals, nonwovens, fluff, tissues, fabrics, natural or synthetic fibers, or other foams, are preferred as substrates.
  • sealing materials, cables, absorbent cores and diapers and hygiene articles containing them are preferred as the composite.
  • the sealing materials are preferably water-absorbent films, in which the absorbent polymer structure (Pa) is incorporated as a substrate in a polymer matrix or fiber matrix. This is preferably done in that the absorbent polymer structure (Pa) is mixed with a polymer (Pm) forming the polymer or fiber matrix and then connected by optionally thermal treatment.
  • the absorbent structure is used as a fiber, games can be obtained from it, which are spun with other fibers made of a different material as a substrate and then connected to one another, for example, by weaving or knitting, or directly, ie without being spun with other fibers , Typical procedures for this are in H.
  • the absorbent polymer structure (Pa) can be used as particles directly, preferably under the insulation of the cable.
  • the absorbent polymer structure (Pa) can be used in the form of swellable, tensile strength games.
  • the absorbent polymer structure (Pa) can be used as a swellable film.
  • the absorbent can be used as a swellable film.
  • Polymer structures (Pa) can be used as a moisture-absorbing core in the middle of the cable.
  • the substrate forms all components of the cable which do not contain an absorbent polymer structure (Pa).
  • the absorbent polymer structure (Pa) is incorporated into a substrate.
  • This substrate is preferably fiber materials.
  • Fiber materials in the present Invention can be used include naturally occurring fibers (modified or unmodified) as well as synthetic fibers. Examples of suitable unmodified and modified naturally occurring fibers include cotton, esparto grass, sugar cane, awn hair, flax, silk, wool, pulp, chemically modified pulp, jute, rayon, ethyl cellulose and cellulose acetate.
  • Suitable synthetic fibers can be made from polyvinyl chloride, polyvinyl fluoride, polytetrafluoroethylene, polyvinylidene chloride, polyacrylate such as Orion ®, polyvinyl acetate, polyethylvinyl acetate, non-soluble or soluble polyvinyl alcohol, polyolefins such as polyethylene (e.g., PULPEX ®) and polypropylene, polyamides such as nylon, polyesters such as DACRON ® or Kodel, polyurethanes, polystyrene and the like can be produced.
  • the fibers used can include only naturally occurring fibers, only synthetic fibers, or any compatible combination of naturally occurring and synthetic fibers.
  • the fibers used in the present invention can be hydrophilic or hydrophobic, or they can consist of a combination of hydrophilic and hydrophobic fibers.
  • hydrophilic as used herein describes fibers or surfaces of fibers that are wettable by aqueous liquids (e.g. aqueous body fluids) deposited on these fibers. Hydrophilicity and wettability are typically defined in terms of the contact angle and surface tension of the liquids and solids involved. This is discussed in detail in a publication by the American Chemical Society entitled “Contact Angle, Wettability and Adhesion", published by Robert F. Gould (Copyright 1964). A fiber or the surface of a fiber is wetted by a liquid (i.e.
  • a fiber or the surface of a fiber is considered to be hydrophobic if the Contact angle is greater than 90 ° and the liquid does not spontaneously spread on the surface of the fiber.
  • Fibers preferred according to the invention are hydrophilic fibers.
  • Suitable hydrophilic fibers include cellulose fibers, modified cellulose fibers, rayon, polyester fibers such as polyethylene terephthalate (e.g. DACRON ® ), hydrophilic nylon (HYDROFIL ® ) and the like.
  • Suitable hydrophilic fibers can also be obtained by hydrophilizing hydrophobic fibers, such as surface-treated or silica-treated thermoplastic fibers based, for example, on polyolefins such as polyethylene or polypropylene or on polyacrylates, polyamides, polystyrene, polyurethanes and the like.
  • Cellulose fibers, particularly cellulose fibers are preferred for use in the present invention for reasons of availability and cost.
  • hydrophilic fibers for use in the present invention are chemically stiffened cellulose fibers.
  • the term "chemically stiffened cellulose fibers” here means cellulose fibers which are stiffened by means of chemical agents in order to increase the stiffness of the fibers under both dry and aqueous conditions.
  • Such agents can be chemical stiffeners which, for example, cover and / or impregnate the fibers
  • they can also be those chemical stiffeners which stiffen by changing the chemical structure of the fibers, for example caused by the crosslinking of polymer chains
  • polymer stiffeners which can cover or impregnate the cellulose fibers include: cationic starches which are nitrogen containing Grappen (for example, amino groups) such as they, NJ, USA are available from the National Starch and Chemical Corp., Bridgewater, latexes, wet strength resins such as polyamide epichlorohydrin resin (eg, Kymene ® 557H, Hercules, Inc., Wilmington, Delaware, USA ), Polya crylamide resins, as described, for example, in US Pat.
  • polyacrylamides such as Parez® 631 NZ from American Cyanamid Co., Stanfort, CT, USA, urea formaldehydes and melamine formaldehyde resins.
  • Fibers that have been stiffened by crosslinking bonds in individual forms are described, for example, in US Pat. Nos. 3,224,926, 3,440,135, 3,932,209 and 4,035,147.
  • Preferred crosslinking agents are glutaraldehyde, glyoxal, formaldehyde, glyoxalic acid, oxydisuccinic acid and citric acid.
  • the stiffened cellulose fibers obtained by crosslinking or coating, impregnation or crosslinking can be twisted or crimped, preferably the fibers are twisted and additionally crimped.
  • the core can also contain thermoplastic materials.
  • thermoplastic materials typically caused by the capillary gradients, travels between the fibers to the intersections of the fibers. These crossings become connection points for the thermoplastic material.
  • the thermoplastic material solidifies at these intersections to form junctions that hold the matrix or fabric of the fibers together in each of the respective layers.
  • the thermoplastic materials can be in various forms, such as particles, fibers or combinations of particles and fibers.
  • thermoplastic polymers selected from polyolefins, such as polyethylene (for example PULPEX®) and polypropylene, polyester, copolyester, polyvinyl acetate, polyethyl vinyl acetate, polyvinyl chloride, polyvinylidene chloride, polyacrylate, polyamide, copolyamide, polystyrene, polyurethane and copolymers of the preceding substances.
  • polyolefins such as polyethylene (for example PULPEX®) and polypropylene
  • polyester, copolyester polyvinyl acetate, polyethyl vinyl acetate, polyvinyl chloride, polyvinylidene chloride, polyacrylate, polyamide, copolyamide, polystyrene, polyurethane and copolymers of the preceding substances.
  • vinyl chloride / vinyl acetate and the like preferably fibrous materials consisting predominantly of cellulose come into consideration as the substrate.
  • the core in addition to the substrate and the absorbent polymer structure (Pa), it comprises further powdery substances, such as, for example, odor-binding substances such as cyclodextrins, zeolites, inorganic or organic salts and similar materials.
  • powdery substances such as, for example, odor-binding substances such as cyclodextrins, zeolites, inorganic or organic salts and similar materials.
  • the absorbent polymer structure (Pa) is incorporated in an amount in the range from 10 to 90, preferably from 20 to 80 and particularly preferably from 40 to 70,% by weight, based on the core.
  • the absorbent polymer structure (Pa) is incorporated into the core as particles.
  • the absorbent polymer structures (Pa) can be homogeneously distributed in the fiber materials, they can be inserted in layers between the fiber material or the concentration of the absorbent polymer structures (Pa) can have a gradient within the fiber material.
  • the absorbent polymer structure (Pa) is incorporated into the core as a fiber.
  • absorbent polymer particles which differ, for example, in the suction speed, permeability, storage capacity, absorption against pressure, grain distribution or also the chemical composition, can also be used simultaneously.
  • These different polymer particles can be mixed into the suction pad or placed locally differentiated in the core. Such a differentiated placement can take place in the direction of the thickness of the core or the length or width of the core.
  • the core can be produced by conventional processes known to the person skilled in the art, as are known to the person skilled in the art in general under the term "drum forming", for example with the aid of shaped wheels, pockets and product forms and correspondingly adapted metering devices for the raw materials.
  • established processes such as the so-called airlaid process (e.g. EP 850 615, US 4,640,810) with all forms of metering, depositing the fibers and consolidation such as hydrogen bonding (e.g. DE 197 50 890), thermobonding, latex bonding (e.g. EP 850 615) and hybrid bonding, the so-called wetlaid Processes (e.g.
  • this in addition to the substrate and the absorbent polymer structure (Pa) incorporated into the substrate, which together serve as a storage layer for the body fluids, this includes a receiving layer, which is preferably used for the rapid absorption and distribution of the liquid in the core.
  • the receiving layer can be arranged directly above the storage layer, but it is also possible for the receiving layer to be separated from the storage layer by a preferably liquid-stable intermediate layer.
  • This intermediate layer then primarily serves as a support substrate for the receiving layer and the storage layer.
  • Preferred materials for this intermediate layer are polyester spunbonded nonwovens or nonwovens made of polypropylene, polyethylene or nylon.
  • the receiving layer is free of the absorbent polymer.
  • the receiving layer can be of any suitable size and does not have to extend over the entire length or width of the storage layer.
  • the receiving layer can, for example, be in the form of a strip or stain.
  • the entire receiving layer is preferably hydrophilic, but it can also have hydrophobic components.
  • the receiving layer can be a woven material, a non-woven material or one other suitable type of material.
  • the receiving layer is preferably based on hydrophobic polyethylene terephthalate fibers (PET fibers), chemically stiffened cellulose fibers or from mixtures of these fibers.
  • PET fibers polyethylene terephthalate fibers
  • Other suitable materials are polypropylene, polyethylene, nylon or biological fibers.
  • the receiving layer comprises a nonwoven material
  • it can be made by a variety of different methods. These include wet laying, airflow application, melt application, spunbond formation, carding (this includes thermal bonding, solvent bonding, or melt spinning bonding).
  • the latter processes are preferred when it is desired to align the fibers in the take-up layer because in such processes it is easier to align the fibers in a single direction.
  • a particularly preferred material for the receiving layer is a PET spunbond.
  • the constituents of the diaper which differ from the absorbent polymer structure (Pa), constitute the substrate of the composite.
  • the diaper contains a previously described core.
  • the constituent parts of the diaper, which are different from the core constitute the substrate of the composite.
  • a composite used as a diaper comprises a water-impermeable lower layer, a water-permeable, preferably hydrophobic, upper layer and a layer containing the absorbent polymer structure (Pa), between the lower layer and the upper layer is arranged.
  • This layer containing the absorbent polymer structure (Pa) is preferably a previously described core.
  • the lower layer can have all the materials known to the person skilled in the art, with polyethylene or polypropylene being preferred.
  • the top layer can likewise contain all suitable materials known to the person skilled in the art, polyester, polyolefins, viscose and the like being preferred which result in a layer which is so porous that there is sufficient liquid passage of the top layer is ensured.
  • the invention relates to a method for producing a composite, an absorbent polymer structure according to the invention and a substrate and possibly a suitable auxiliary being brought into contact with one another.
  • the contacting is preferably carried out by wetlaid and airlaid processes, compacting, extruding or mixing.
  • the invention relates to a composite that can be obtained by the above method.
  • the invention further relates to chemical products, in particular foams, moldings, fibers, foils, films, cables, sealing materials, liquid-absorbing hygiene articles, carriers for plant or fungal growth regulators or crop protection agents, additives for building materials, packaging materials or soil additives which comprise the absorbent polymer structure according to the invention (Pa ) or the substrate described above.
  • the invention relates to the use of the absorbent polymer structure (Pa) according to the invention or the substrate described above in chemical products, in particular in foams, moldings, fibers, foils, films, cables, sealing materials, and liquid-absorbing materials
  • Hygiene articles carriers for plant or fungal growth regulators or crop protection agents, additives for building materials, packaging materials or soil additives.
  • a carrier for plant or fungal growth regulating agents or crop protection agents it is preferred that the plant or fungal growth regulating agents or crop protection agents can be released over a period controlled by the carrier.
  • the invention further relates to an aqueous solution containing at least one chemical crosslinker and at least one inorganic compound in colloidally dispersed form, the chemical crosslinker and the inorganic compound corresponding to those chemical crosslinkers or inorganic compounds which have already been described in connection with the inventive method described at the outset Production of absorbent polymer structures (Pa) were called.
  • the chemical crosslinking agent in the aqueous solution according to the invention is preferably in an amount of 5 to 70% by weight, particularly preferably 20 to 60% by weight and moreover preferably 30 to 50% by weight, based on the amount of Water, in the aqueous solution.
  • the inorganic compound in the aqueous solution according to the invention is preferably present in an amount of from 1 to 40% by weight, particularly preferably from 1.5 to 35% by weight and moreover preferably from 2.5 to 32% by weight on the amount of water in the aqueous solution.
  • the present invention also relates to a method for producing this aqueous solution, an aqueous solution comprising at least one inorganic compound in colloidally disperse form being mixed with at least one chemical crosslinker.
  • the chemical crosslinker as such or in the form of an aqueous solution can be mixed with the aqueous solution containing the inorganic compound in colloidally dispersed form.
  • the invention also relates to an aqueous solution which can be obtained by the above process.
  • the invention further relates to the use of an aqueous solution containing at least one chemical crosslinker and at least one inorganic compound in colloidally dispersed form or the use of an aqueous solution which can be obtained by the above process for the preparation of an aqueous solution for treating the outer region of an absorbent polymer structure (Pul) or (Pu2).
  • the treatment is carried out in the manner already described at the beginning in connection with the method according to the invention for treating the outer area of an absorbent polymer structure (Pul) or (Pu2).
  • the absorbent polymer structure (Pul) or (Pu2) corresponds to that absorbent polymer structure (Pul) or (Pu2), which has also already been described in connection with the method according to the invention for treating the outer region of an absorbent polymer structure (Pul) or (Pu2).
  • the invention relates to the use of an aqueous solution containing at least one chemical crosslinker and at least one inorganic compound in colloidally disperse form or the use of an aqueous solution which is obtainable by the above process for the preparation of an aqueous solution for adjusting at least one of the following properties in one absorbent polymer structures (Pul) or (Pu2): ( ⁇ l) Saline Flow Conductivity (SFC), ( ⁇ 2) Centrifugation Retention Capacity (CRC) or
  • Combinations of properties of two or more of these properties each represent preferred forms of use of the aqueous solution according to the invention. Furthermore, as inventive Embodiments are particularly preferred to use the aqueous solution to adjust the following properties or
  • a monomer solution consisting of 280 g of acrylic acid, 70 mol% of which was neutralized with sodium hydroxide solution, 466.8 g of water, 1.4 g of polyethylene glycol 300 diacrylate and 1.68 g of allyloxypolyethylene glycol acrylic acid ester is freed from the dissolved oxygen by flushing with nitrogen and dissolved the start temperature cooled from 4 ° C.
  • the initiator solution (0.1 g of 2,2'-azobis-2-amidinepropane dihydrochloride in 10 g of H 2 O, 0.3 g of sodium peroxydisulfate in 10 g of H 2 O, 0.07 g of 30% ge Hydrogen peroxide solution in 1 g H 2 O and 0.015 g ascorbic acid in 2 g HO) added.
  • the resulting gel was crushed and dried at 150 ° C for 90 minutes. The dried polymer was roughly crushed, ground and sieved onto a powder with a particle size of 150 to 850 ⁇ m.
  • Powder A has a retention capacity of 28.8 g / g.
  • a monomer solution consisting of 280 g of acrylic acid, 70% of which was neutralized with sodium hydroxide solution, 467.6 g of water, 0.98 g of polyethylene glycol 300 diacrylate and 1.26 g of allyloxypolyethylene glycol acrylic acid ester is freed from the dissolved oxygen by flushing with nitrogen and dissolved the start temperature cooled from 4 ° C.
  • the initiator solution (0.1 g of 2,2'-azobis-2-amidinepropane dihydrochloride in 10 g of H 2 O, 0.3 g of sodium peroxydi sulfate in 10 g H 2 O, 0.07 g 30% ge hydrogen peroxide solution in 1 g H 2 O and 0.015 g ascorbic acid in 2 g H 2 O) added.
  • the resulting gel was crushed and dried at 150 ° C for 90 minutes. The dried polymer was roughly crushed, ground and sieved onto a powder with a particle size of 150 to 850 ⁇ m.
  • Powder B has a retention capacity of 31.2 g / g.
  • a monomer solution consisting of 280 g of acrylic acid, 70 mol% of which was neutralized with sodium hydroxide solution, 468.6 g of water, 0.42 g of polyethylene glycol 300 diacrylate and 0.84 g of allyloxypolyethylene glycol acrylic acid ester is freed from the dissolved oxygen by flushing with nitrogen and dissolved the start temperature cooled from 4 ° C.
  • the initiator solution (0.1 g of 2,2'-azobis-2-amidinepropane dihydrochloride in 10 g of H 2 O, 0.3 g of sodium peroxydisulfate in 10 g of H 2 O, 0.07 g of 30 % ge hydrogen peroxide solution in 1 g H 2 O and 0.015 g ascorbic acid in 2 g H 2 O) added.
  • the resulting gel was crushed and dried at 150 ° C for 90 minutes. The dried polymer was roughly crushed, ground and sieved onto a powder with a particle size of 150 to 850 ⁇ m.
  • Powder C has a retention capacity of 37.1 g / g.
  • 50 g of powder A is below by means of a Krups cake mixer with a solution of 0.5 g of ethylene carbonate, 0.84 g silica sol (Levasil ® 200 product of Bayer AG, solids content: about 30 wt .-%) and 0.66 g of water mixed vigorously and then for 30 min. heated in an oven heated to 180 ° C.
  • Example 3
  • 50 g powder B is mixed with a solution of 0.5 g using a Krups kitchen mixer
  • 50 g powder B is mixed with a Krups kitchen mixer with a solution of 0.5 g ethylene carbonate, 0.84 g silica sol (product Levasil ® 200 from Bayer AG, solids content approx. 30% by weight) and 0.66 g water mixed vigorously and then for 30 min. heated in an oven heated to 180 ° C.
  • 50 g powder A is mixed using a Krups kitchen mixer with a solution of 0.5 g ethylene carbonate and 1.5 g water with vigorous stirring and then for 30 min. heated in an oven heated to 180 ° C.
  • 50 g powder B is mixed with a Kraps kitchen mixer with a solution of 0.5 g ethylene carbonate and 1.5 g water with vigorous stirring and then for 30 min. heated in an oven heated to 180 ° C.
  • 50 g powder B is mixed using a Krups kitchen mixer with a solution of 0.5 g ethylene carbonate, 0.125 g Aerosil ® (pyrogenic silica sol from Degussa AG) and 2 g water with vigorous stirring and then for 30 min. heated in an oven heated to 180 ° C. Increased amounts of water were required to produce the suspension of Aerosil ® in water. However, no easily metered suspension could be obtained, since the aerosil introduced settled back very quickly and homogeneous metering onto powder B was not possible. The coated polymer tends to form lumps and is inhomogeneous.
  • 50 g powder B is mixed with a Kraps kitchen mixer with a solution of 0.25 g 1,3-butanediol, 0.25 g silica sol (product Levasil ® 200 from Bayer AG, solids content approx. 30% by weight) and 1. 25 g of water mixed with vigorous stirring and then for 3 min. heated in an oven heated to 120 ° C.
  • This treatment corresponds to the treatment according to Example 2 of JP 1994/16822.
  • the absorbent polymer structures produced according to the invention show a significant increase in permeability (SFC) with constant or even increased retention compared to products whose outer region has been crosslinked in the absence of a silica sol (Examples 1 to 4, Comparative Examples 1 and 2). Aftertreatment of the already crosslinked polymer structures with silica sol does not lead to the desired result regardless of the subsequent thermal treatment (comparative examples 3, 4 and 6).
  • Aerosil 200 ® in the post-crosslinking does not lead to comparably good superabsorber characteristics (comparative example 5). Furthermore, increased amounts of Aerosil 200 can no longer be dispersed in an acceptable amount of water and are therefore no longer dispersible.
  • Comparative examples 7 and 8 show that in the examples according to the invention of the unexamined JP 1994/16822 it is not possible to achieve good performance of the polymers with regard to their permeability and retention.
  • Table 1 INFLUENCE OF THE TREATMENT OF THE EXTERIOR OF THE UNTREATED ABSORBENT POLYMER FABRICS (Pul) ON THE AGGLOMERATION TENDENCY OF THE POLYMER FIELDS.
  • 50 g powder B is mixed with a solution of 0.5 g ethylene carbonate and 1.5 g water with vigorous stirring using a Kraps kitchen mixer. A pressure is then produced from the absorbent polymer structure brought into contact with the aqueous solution and its density and the pressure to be used to destroy the compact are determined.
  • the swollen gel layer is covered during the measurement with a special sieve cylinder, which ensures an even distribution of the 0.118 M NaCl solution above the gel and constant conditions (measuring temperature 20-25 ° C) during the measurement with regard to the gel bed properties.
  • the pressure acting on the swollen superabsorbent is still 20 g / cm.
  • the SFC value (K) was given in cm 3 -sg " 'and calculated as follows:
  • L 0 is the thickness of the gel layer in cm
  • r the density of the NaCl solution (1,003 g / cm 3 )
  • A is the area of the top of the gel layer in the measuring cylinder
  • the tendency of liquid-coated superabsorbents to form agglomerates is determined using an indicator from J.R. Johanson Inc.
  • the superabsorbent is coated with the postcrosslinker solution to be investigated and then 50 g of the powder are fed to the investigation.
  • the device produces a compact with a height of approximately 2 cm with a defined pressure of 160,000 pascals using a press ram in a hollow metal cylinder with an inner diameter of 5.23 cm. This compact is then destroyed again by passing a second cylinder, which has a diameter of 4.2 cm, the force being used for this being measured.

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines absorbierenden Polymergebildes (Pa) durch Behandeln des Aussenbereiches eines unbehandelten absorbierenden Polymergebildes (Pu1), umfassend die Schritte: -in Kontakt bringen des Aussenbereiches des unbehandelten, absorbierenden Polymergebildes (Pu1) mit einer wässrigen Lösung enthaltend mindestens einen chemischen Vernetzer und mindestens eine anorganische Verbindung in kolloiddisperser Form; - Erhitzen des absorbierenden Polymergebildes, dessen Aussenbereich mit der wässrigen Lösung in Kontakt gebracht wurde, auf eine Temperatur im Bereich von 40 bis 300°C, so dass der Aussenbereich des absorbierenden Polymergebildes im Vergleich zum Innenbereich stärker vernetzt ist und die anorganische Verbindung im Aussenbereich des absorbierenden Polymergebildes mindestens teilweise immobilisiert wird.

Description

ABSORBIERENDE POLYMERGEBILDE MIT VERBESSERTER
RETENTIONSKÄPAZITÄT UND PERMEABILITÄT
Die Erfindung betrifft ein Verfahren zur Herstellung eines absorbierenden Polymergebildes, ein durch dieses Verfahren erhältliches absorbierendes Polymergebilde, ein absorbierendes Polymergebilde, einen Verbund, ein Verfahren zur Herstellung eines Verbunds, ein Verbund erhältlich aus diesem Verfahren, chemische Produkte beinhaltend das absorbierende Polymergebilde oder den Verbund, die Verwendung des absorbierenden Polymergebildes oder des Verbunds in chemischen Produkten, eine wässrige Lösung, ein Verfahren zur Herstellung der wässrigen Lösung, eine wässrige Lösung erhältlich durch das Verfahren sowie die Verwendung der wässrigen Lösung zum Behandeln des Außenbereiches eines absorbierenden Polymergebildes.
Superabsorber sind wasserunlösliche, vernetzte Polymere, die in der Lage sind, unter Quellung und Ausbildung von Hydrogelen große Mengen an wässrigen Flüssigkeiten, insbesondere Körperflüssigkeiten, vorzugsweise Urin oder Blut, aufzunehmen und unter einem bestimmten Druck zurückzuhalten. Durch diese charakteristischen Eigenschaften finden diese Polymere hauptsächlich Anwendung bei der Einarbeitung in Sanitärartikeln, wie beispielsweise Babywindeln, Inkontinenzprodukten oder Damenbinden.
Bei den gegenwärtig kommerziell verfügbaren Superabsorbern handelt es sich im wesentlichen um vernetzte Polyacrylsäuren oder vernetzte Stärke-Acrylsäure- Pfropfpolymerisate, bei denen die Carboxylgruppen teilweise mit Natronlauge oder Kalilauge neutralisiert sind.
Aus ästhetische Gründen und aus Umweltaspekten besteht zunehmend die Tendenz, die Sanitärartikel immer kleiner und dünner zu gestalten. Um ein gleichbleibendes Gesamtretentionsvermögen der Sanitärartikel zu gewährleisten, kann dieser Anforderung nur durch Reduktion des Anteils an großvolumigen Fluff
BESTÄT6GUf\äGSKOPIE entsprochen werden. Hierdurch fallen dem Superabsorber weitere Aufgaben hinsichtlich Transport und Verteilung von Flüssigkeit zu, die sich als Permeabilitätseigenschaften zusammenfassen lassen.
Unter Permeabilität versteht man bei Superabsorbermaterialien die Fähigkeit, im gequollenen Zustand zugegebene Flüssigkeiten zu transportieren und dreidimensional zu verteilen. Dieser Prozess läuft im gequollenen Superabsorbergel über kapillaren Transport durch Zwischenräume zwischen den Gelpartikeln ab. Ein Flüssigkeitstransport durch gequollene Superabsorberpartikel selbst folgt den Gesetzen der Diffusion und ist ein sehr langsamer Prozess, der in der Nutzungssituation des Sanitärartikels keine Rolle bei der Verteilung der Flüssigkeit spielt. Bei Superabsorbermaterialien, die einen kapillaren Transport aufgrund mangelnder Gelstabilität nicht bewerkstelligen können, wurde durch Einbetten dieser Materialien in eine Fasermatrix eine Separation der Partikel voneinander unter Vermeidung des Gel-Blocking-Phänomens sichergestellt. In Windelkonstruktionen neuer Generation befindet sich in der Absorberschicht nur wenig oder überhaupt kein Fasermaterial zur Unterstützung des Flüssigkeitstransports. Die hier verwendeten Superabsorber müssen demnach eine ausreichend hohe Stabilität im gequollenen Zustand besitzen, damit das gequollene Gel noch eine ausreichende Menge an kapillaren Räumen besitzt, durch die Flüssigkeit transportiert werden kann.
Um Superabsorbermaterialien mit hoher Gelstabilität zu erhalten, kann einerseits der Grad der Vernetzung des Polymers angehoben werden, was zwangsläufig eine Verminderung der Quellfähigkeit und des Retentionsvermögens zur Folge hat. Eine optimierte Kombination von verschiedenen Vernetzern und Comonomeren, wie in DE 196 46 484 beschrieben, vermag die Permeabilitätseigenschaften zwar verbessern, nicht aber auf ein Niveau, das beispielsweise den Einbau einer gegebenenfalls nur aus Superabsorbern bestehende Schicht in eine Windelkonstruktion erlaubt. Weiterhin können Methoden zur Nachbehandlung der Oberfläche von Polymerpartikeln zur Verbesserung der Superabsorbereigenschaften zum Einsatz kommen. Als Oberflächenbehandlung sind beispielsweise Nachvernetzung des absorbierenden Polymergebildes an der Oberfläche, das in Kontakt bringen der Oberfläche mit anorganischen Verbindungen oder aber die Nachvernetzung der Oberfläche in Gegenwart anorganischer Verbindungen aus dem Stand der Technik bekannt.
So beschreiben EP-A- 0 450 923, EP-A-0 450 922, DE-A-35 23 617, US 5,140,076 und US 4,734,478 die Behandlung der Oberfläche absorbierender Polymere durch in Kontakt bringen der Oberfläche mit anorganischen Verbindungen, wie beispielsweise mit feinverteilter Kieselerde, während oder nach der Nachvernetzung der Oberfläche. Neben einer erhöhten Absorptionsgeschwindigkeit unter Druck wird auch eine erhöhte Permeabilität der absorbierenden Polymere durch diese Art der Oberflächenbehandlung erzielt.
Die DE 35 03 458 beschreibt ein Verfahren zur Herstellung eines verbesserten absorbierenden Harzes, bei dem ein wasserabsorbierendes Harz, das Einheiten eines Monomers mit einer Carboxylgruppe in Form der freien Säure oder eines Salzes als eine Aufbaukomponente desselben enthält, in Gegenwart eines Pulvers aus einem feinteiligen Metalloxid ein Vernetzungsmittel und Wasser absorbieren lässt und die resultierende Mischung unter Rühren erhitzt, um die Vernetzung des Harzes und die Entfernung von Wasser zu bewirken. Hier werden absorbierende Harze mit einem guten Wasserabsoptionsvermögen erhalten, die zugleich eine gute Absorptionsgeschwindigkeit aufweisen.
US 4,535,098 beschreibt ein Verfahren zur Erhöhung der Gelstärke von nicht nachvernetzten Superabsorbern durch Quellung von absorbierenden Polymeren in Gegenwart einer kolloiddispersen, anorganischen Verbindung, wie etwa einem Kieselsäuresol, oder aber durch Herstellung eines absorbierenden Polymers in Gegenwart einer kolloiddispersen, anorganischen Verbindung. DE 198 05 447 offenbart ein Verfahren zur Nachvemetzung von Polyacrylnitrilhydrolysaten mit bifunktionellen Verbindungen und eine gleichzeitige Immobilisierung von Kieselsäure in der Oberflächenstruktur der superabsorbierenden Polymers. Die Kieselsäure wurde dabei zusammen mit dem Vernetzungsmittel in einem Wasser/Alkohol-Gemisch in Kontakt mit der Oberfläche gebracht. Durch die Immobilisierung der Kieselsäure soll eine Verbesserung der Absorbency under Load sowie eine Verringerung des Gelblockings erreicht werden.
DE 198 54 575 beschreibt den Zusatz von Alkalisalzen der Kieselsäure vor, während oder nach der Polymerisation oder zur teilweisen Neutralisation des Superabsorbers. Durch diese Oberflächenbehandlung wird eine verbesserte Permeabilität erreicht, die jedoch hauptsächlich auf die durch nichtquellbaren Zusatz bedingte verringerte Rentention der Polymere zurückzuführen ist.
US 5,147,921 offenbart den Zusatz eines Kieselsäuresols als inertes Füllmittel, dass sich in der zu polymerisierenden Monomerlösung dispergieren lässt.
JP 1994-16822 beschreibt die Nachbehandlung der Oberfläche von absorbierenden Polymeren mit einem anorganischen Sol. Um eine verbesserte Verarbeitbarkeit des zur Bildung von Agglomeraten neigenden Gemisches zu ermöglichen, wird zusätzlich eine organische Lösungsmittelkomponente zugegeben. Als organische Lösungsmittelkomponente werden beispielsweise Mono- und Dimethylether von Diolen oder Diole selbst genannt. Nach der Trocknung sollen die absorbierenden Polymere eine höhere Gelstabilität, eine geringere Neigung zum Gelblocking und eine verbesserte Permeabilität für Wasser in einfachen Tests ohne Druckbelastung der Superabsorber aufweisen.
Der Stand der Technik beschreibt Verfahren, bei dem anorganische Partikel entweder trocken mit dem Superabsorber abgemischt werden oder mit Hilfe großer zum Teil organischer Lösungsmittelmengen in den Prozess der Nachvemetzung eingebracht werden, um eine Agglomeration der Superabsorberteilchen zu verhindern. Diese Verfahren weisen jedoch den Nachteil auf, dass entweder große Lösungsmittelmengen gehandhabt werden müssen, was sowohl aus ökonomischen als auch aus ökologischen Gründen unerwünscht ist. Zudem neigen superabsorbierende Polymere beim Mischen mit großen Flüssigkeitsmengen zur Agglomeration, was die Verarbeitbarkeit innerhalb eines kontinuierlichen Herstellungsprozesses stark beeinträchtigen kann. Eine einfache Abmischung mit anorganischen, feinteiligen Substanzen bringt hingegen Nachteile, wie etwa Entmischung oder Stauben, mit sich. Die Zugabe von anorganischen Additiven in wässrigen Lösungen zur Nachvemetzung selbst ist schwierig, da sich die anorganischen Partikel schnell wieder absetzen. Zudem lassen sich anorganische Dispersionen schlecht dosieren.
Bedingt durch die Anwesenheit der im Stand der Technik offenbarten feinteiligen, anorganischen Substanzen kommt es zu einer inhomogenen Verteilung des chemischen Nachvemetzers auf der Oberfläche der absorbierenden Polymere und demnach auch zu einer inhomogenen Nachvemetzung. Dies wiederum führt dazu, dass superabsorbierende Polymere mit einer unbefriedigenden Gesamtperformance vor allem hinsichtlich der Retention und der Permeabilität erhalten werden. Eine homogene Verteilung ist bei den im Stand der Technik beschriebenen Verfahren zur Oberflächenbehandlung allenfalls durch die Verwendung große Mengen einer wässrigen oder alkoholischen Lösung enthaltend den chemischen Vernetzer möglich.
Allgemein liegt der Erfindung die Aufgabe zugrunde, die sich aus dem Stand der Technik ergebenden Nachteile zu überwinden.
Femer besteht eine erfindungsgemäße Aufgabe darin, superabsorbierende
Polymere zur Verfügung zu stellen, die als Eigenschaftskombination nicht nur eine hohe Aufnahmekapazität unter Druck, sondern auch die üblicherweise gegenläufigen Eigenschaften eines hohen Retentionsvermögens und einer guten Permeabilität in sich vereinigen, um den Anforderungen modemer Hygieneartikeln, insbesondere Windeln, Inkontinentsprodukten oder Damenbinden, an absorbierende Polymere gerecht zu werden. Insbesondere sollen diese Polymere möglichst geringe Mengen an toxischen Monomeren, wie etwa Acrylamid oder Acrylnitril, beinhalten, die bei einem Kontakt der superabsorbierenden Polymere mit Körperflüssigkeiten ausgewaschen und, beispielsweise im Falle eines Einsatzes der superabsorbierenden Polymere in Windeln, auf diese Weise in Kontakt mit der Haut des Windelträgers treten können.
Eine weitere, der vorliegenden Erfindung zugrunde liegende Aufgabe bestand darin, Hygieneartikel wie beispielsweise Windeln bereitzustellen, die im Vergleich zu den aus dem Stand der Technik bekannten Hygieneartikeln besser in der Lage sind, aufgenommene Körperflüssigkeiten zurückzuhalten, unter Druck Flüssigkeiten aufzunehmen und bei der Aufhahme von Flüssigkeiten diese möglichst schnell und gleichmäßig im Hygieneartikel zu verteilen.
Zudem liegt eine andere erfindungsgemäße Aufgabe darin, ein Verfahren zu schaffen, mit dem solche absorbierenden Polymere in einfacher, kontinuierlicher Weise möglichst geringen Mengen organischer Lösungsmittel darstellbar sind. Bei diesem Herstellungsverfahren sollten sich zugesetzte anorganische Hilfsstoffe maximal in geringen Mengen vom superabsorbierenden Polymer ablösen, die die Polymereigenschaften nicht nachteilig beeinflussen. Die in diesem Verfahren zur Behandlung der Oberfläche des absorbierenden Polymers eingesetzte Lösung sollte wie ein Einphasensystem gehandhabt werden können und sich gleichmäßig dosieren lassen. Der beschichtete Superabsorber sollte im Verlaufe des Verfahrens in nur geringfügigen Umfang Agglomerate bilden und sollte in einfacher Weise einem kontinuierlich arbeitenden Temperungsschritt zugeführt werden können.
Die vorstehenden Aufgaben werden gelöst durch ein Verfahren zur Herstellung eines absorbierenden Polymergebildes (Pa) durch Behandeln des Aussenbereiches eines unbehandelten absorbierenden Polymergebildes (Pul), umfassend die
Schritte: in Kontakt bringen des Aussenbereiches des unbehandelten absorbierenden Polymergebildes (Pul) mit einer wässrigen Lösung enthaltend mindestens einen chemischen Vemetzer und mindestens eine anorganische Verbindung in kolloiddisperser Form;
Erhitzen des absorbierenden Polymergebildes, dessen Aussenbereich mit der wässrigen Lösung in Kontakt gebracht wurde, auf eine Temperatur im Bereich von 40 bis 300°C, so dass, vorzugsweise wodurch, der Aussenbereich des absorbierenden Polymergebildes im Vergleich zum
Innenbereich stärker vernetzt wird und die anorganischen Verbindung im Aussenbereich des absorbierenden Polymergebildes zumindest teilweise immobilisiert wird.
Die vorstehenden Aufgaben werden auch gelöst durch ein Verfahren zur
Herstellung eines absorbierenden Polymergebildes (Pa) durch Behandeln des
Aussenbereiches eines nicht mit einer anorganischen Verbindung in kolloiddisperser Form behandelten absorbierenden Polymergebildes (Pu2), umfassend die Schritte: - in Kontakt bringen des Aussenbereiches des absorbierenden
Polymergebildes (Pu2) mit einer wässrigen Lösung enthaltend mindestens einen chemischen Vemetzer und mindestens eine anorganische Verbindung in kolloiddisperser Form;
Erhitzen des absorbierenden Polymergebildes, dessen Aussenbereich mit der wässrigen Lösung in Kontakt gebracht wurde, auf eine Temperatur im
Bereich von 40 bis 300°C, so dass, vorzugsweise wodurch, der Aussenbereich des absorbierenden Polymergebildes im Vergleich zum Innenbereich stärker vernetzt wird und die anorganischen Verbindung im Aussenbereich des absorbierenden Polymergebildes zumindest teilweise immobilisiert wird. Erfindungsgemässe absorbierende Polymergebilde (Pa) sind Fasern, Schäume oder Teilchen, wobei Fasern und Teilchen bevorzugt und Teilchen besonders bevorzugt sind. Absorbierende Polymergebilde (Pa) in diesen Formen werden erhalten, in dem als absorbierende Polymergebilde (Pul) oder (Pu2) in entsprechender Weise Fasern, Schäume oder Teilchen eingesetzt werden.
Erfindungsgemäss bevorzugte absorbierende Polymerfasem sind so dimensioniert, dass sie in oder als Game für Textilien und auch direkt in Textilien eingearbeitet werden können. Es ist erfindungsgemäss bevorzugt, dass die absorbierenden Polymerfasem eine Länge im Bereich von 1 bis 500, bevorzugt 2 bis 500 und besonders bevorzugt 5 bis 100 mm und einen Durchmesser im Bereich von 1 bis 200, bevorzugt 3 bis 100 und besonders bevorzugt 5 bis 60 Denier besitzen.
Erfindungsgemäss besonders bevorzugte absorbierende Polymerteilchen sind so dimensioniert, dass sie eine mittlere Teilchengröße gemäss ERT 420.1-99 im Bereich von 10 bis 3000, vorzugsweise 20 bis 2000 und besonders bevorzugt 150 bis 850 μm aufweisen.
Das im erfindungsgemäßen Verfahren eingesetzte absorbierende Polymergebilde (Pul) bzw. (Pu2) ist bevorzugt ein Polymergebilde, welches auf (αl) 20-99,999 Gew.-%, bevorzugt 55 bis 98,99 Gew.-% und besonders bevorzugt 70 bis 98,79 Gew.-% polymerisierten, ethylenisch ungesättigten, säuregruppenhaltigen Monomeren oder deren Salze oder polymerisierten, ethylenisch ungesättigten, einen protonierten oder quarternierten Stickstoff beinhaltenden Monomeren, oder deren Mischungen, wobei mindestens ethylenisch ungesättigte, säuregruppenhaltige Monomere, vorzugsweise Acrylsäure, beinhaltende Mischungen besonders bevorzugt sind, (α2) 0-80 Gew.-%, vorzugsweise 0-44,99 Gew.-% und besonders bevorzugt 0,1- 44,89 Gew.-% polymerisierten, monoethylenisch ungesättigten, mit (αl) copolymerisierbaren Monomeren, (α3) 0,001-5 Gew.-%, vorzugsweise 0,01-3 Gew.-% und besonders bevorzugt
0,01-2,5 Gew.-% eines oder mehrerer Vemetzer, (α4) 0-30 Gew.-%, vorzugsweise 0-5 Gew.-% und besonders bevorzugt 0,1-5
Gew.-% eines wasserlöslichen Polymeren, sowie (α5) 0-20 Gew.-%, vorzugsweise 0 bis 10 Gew.-% und besonders bevorzugt 0,1-
8 Gew.-% eines oder mehrerer Hilfsmittel basiert, wobei die Summe der
Gewichtsmengen (αl) bis (α5) 100 Gew.-% beträgt.
Die monoethylenisch ungesättigten, säuregruppenhaltigen Monomere (αl) können teilweise oder vollständig, bevorzugt teilweise neutralisiert sein. Vorzugsweise sind die monoethylenisch ungesättigten, säuregruppenhaltigen Monomere zu mindestens 25 Mol%, besonders bevorzugt zu mindestens 50 Mol% und darüber hinaus bevorzugt zu 50-80 Mol% neutralisiert. In diesem Zusammenhang wird auf DE 195 29 348 verwiesen, deren Offenbarung hiermit als Referenz eingeführt wird. Die Neutralisation kann teilweise oder ganz auch nach der Polymerisation erfolgen. Femer kann die Neutralisation mit Alkalimetallhydroxiden,
Erdalkalimetallhydroxiden, Ammoniak sowie Carbonaten und Bicarbonaten erfolgen. Daneben ist jede weitere Base denkbar, die mit der Säure ein wasserlösliches Salz bildet. Auch eine Mischneutralisation mit verschiedenen Basen ist denkbar. Bevorzugt ist die Neutralisation mit Ammoniak und
Alkalimetallhydroxiden, besonders bevorzugt mit Natriumhydroxid und mit
Ammoniak.
Femer können bei einem Polymer die freien Säuregruppen überwiegen, so dass dieses Polymer einen im sauren Bereich liegenden pH-Wert aufweist. Dieses saure wasserabsorbierende Polymer kann durch ein Polymer mit freien basischen Gruppen, vorzugsweise Amingruppen, das im Vergleich zu dem sauren Polymer basisch ist, mindestens teilweise neutralisiert werden. Diese Polymere werden in der Literatur als ,Jtfixed-Bed Ion-Exchange Absorbent Polymers" (MBIEA- Polymere) bezeichnet und sind unter anderem in der WO 99/34843 offenbart. Die Offenbarung der WO 99/34843 wird hiermit als Referenz eingeführt und gilt somit als Teil der Offenbarung. In der Regel stellen MBIEA-Polymere eine Zusammensetzung dar, die zum einen basische Polymere, die in der Lage sind, Anionen auszutauschen, und andererseits ein im Vergleich zu dem basischen Polymer saures Polymer, das in der Lage ist, Kationen auszutauschen, beinhalten. Das basische Polymer weist basische Gruppen auf und wird typischerweise durch die Polymerisation von Monomeren erhalten, die basische Gruppen oder Gruppen tragen, die in basische Gruppen umgewandelt werden können. Bei diesen Monomeren handelt es sich vor allen Dingen um solche, die primäre, sekundäre oder tertiäre Amine oder die entsprechenden Phosphine oder mindestens zwei der vorstehenden funktioneilen Gruppen aufweisen. Zu dieser Gruppe von Monomeren gehören insbesondere Ethylenamin, Allylamin, Diallylamin, 4- Aminobuten, Alkyloxycycline, Vinylformamid, 5-Aminopenten, Carbodiimid, Formaldacin, Melamin und dergleichen, sowie deren sekundäre oder tertiäre Aminderivate.
Die monoethylenisch ungesättigten, säuregruppenhaltigen Monomere (αl) können teilweise oder vollständig, bevorzugt teilweise neutralisiert sein. Vorzugsweise sind die monoethylenisch ungesättigten, säuregruppenhaltigen Monomere zu mindestens 25 Mol%, besonders bevorzugt zu mindestens 50 Mol% und darüber hinaus bevorzugt zu 50-90 Mol% neutralisiert. Die Neutralisation der Monomere (αl) kann vor auch nach der Polymerisation erfolgen. Femer kann die Neutralisation mit Alkalimetallhydroxiden, Erdalkalimetallhydroxiden, Ammoniak sowie Carbonaten und Bicarbonaten erfolgen. Daneben ist jede weitere Base denkbar, die mit der Säure ein wasserlösliches Salz bildet. Auch eine Mischneutralisation mit verschiedenen Basen ist denkbar. Bevorzugt ist die Neutralisation mit Ammoniak oder mit Alkalimetallhydroxiden, besonders bevorzugt mit Natriumhydroxid oder mit Ammoniak.
Bevorzugte monoethylenisch ungesättigte, säuregruppenhaltige Monomere (αl) sind Acrylsäure, Methacrylsäure, Ethacrylsäure, α-Chloracrylsäure, α-
Cyanoacrylsäure, ß-Methylacrylsäure (Crotonsäure), α-Phenylacrylsäure, ß- Acryloxypropionsäure, Sorbinsäure, α-Chlorsorbinsäure, 2'-
Methylisocrotonsäure, Zimtsäure, p-Chlorzimtsäure, ß-Stearylsäure, Itaconsäure, Citraconsäure, Mesaconsäure, Glutaconsäure, Aconitsäure, Maleinsäure, Fumarsäure, Tricarboxyethylen und Maleinsäureanhydrid, wobei Acrylsäure sowie M thacryl säure hf.ςrmde.r<. nnH Acrylsäure. darüber hinaus bevorπigf sind
Neben diesen carboxylatgruppehhaltigen Monomeren sind als monoethylenisch ungesättigte, säuregruppenhal ige Monomere (αl) des Weiteren ethylenisch ungesättigte Sulfonsäuremonomere oder ethylenisch ungesättigte Phosphonsäuremonomere bevorzugt.
Ethylenisch ungesättigte Sulfonsäuremonomere sind Allylsulfonsäure oder aliphatische oder aromatische Vinylsulfonsäuren oder acrylische oder methacryli- sche Sulfonsäuren bevorzugt. Als aliphatische oder aromatische Vinylsulfonsäu- ren sind Vinylsulfonsäure, 4-Vinylbenzylsulfonsäure, Vinyltoluolsulfonsäure und Styrolsulfonsäure bevorzugt. Als Acryl- bzw. Methacrylsulfonsäuren sind Sul- foethyl(meth)acrylat, Sulfopropyl(meth)acrylat, 2-Hydroxy-3 -methacryloxypro- pylsulfonsäure und 2-Acrylamido-2-methylpropansulfonsäure bevorzugt.
Femer sind ethylenisch ungesättigte Phosphonsäuremonomere, wie Vi- nylphosphonsäure, Allylphosphonsäure, Vinylbenzylphosponsäure,
(Meth)acrylamidoalkylphosphonsäuren, Acrylamidoalkyldiphosphonsäuren, phosphonomethylierte Vinylamine und (Meth)acrylphosphonsäurederivate bevorzugt.
Als ethylenisch ungesättigte, einen protonierten Stickstoff enthaltende Monomere (αl) sind vorzugsweise Dialkylaminoalkyl(meth)acrylate in protonierter Form, beispielsweise Dimethylaminoethyl(meth)acrylat-Hydrochlorid oder Dimefhyla- minoethyl(meth)acrylat-Hydrosulfat, sowie Dialkylaminoalkyl(meth)acrylamide in protonierter Form, beispielsweise Dimethylaminoethyl(meth)acrylamid-Hydro- chlorid oder Dimethylaminoethyl(meth)acrylamid-Hydrosulfat bevorzugt. Als ethylenisch ungesättigte, einen quarternierten Stickstoff enthaltende Monomere (αl) sind Dialkylammoniumalkyl(meth)acrylate in quarternisierter Form, beispielsweise Trimethylammoniumethyl(meth)acrylat-Methosulfat oder Di- methylethylammoniumethyl(meth)acrylat-Ethosulfat sowie (Meth)acrylamido- alkyldialkylamine in quarternisierter Form, beispielsweise
(Meth)acrylamidopropyltrimethylammoniumchlorid und (Meth)acrylamidopro- pyltrimethylammoniumsulfat bevorzugt.
Es ist erfindungsgemäß bevorzugt, dass die Komponente (αl) zu mindestens 50 Gew.-%, vorzugsweise zu mindestens 70 Gew.-% und darüber hinaus bevorzugt zu mindestens 90 Gew.-% auf carboxylatgruppenhaltigen Monomeren besteht. Es ist erfindungsgemäß besonders bevorzugt, dass die Komponente (αl) zu mindestens 50 Gew.-%, vorzugsweise zu mindestens 70 Gew.-% aus Acrylsäure besteht, die vorzugsweise zu mindestens 20 Mol-%, besonders bevorzugt zu mindestens 50 Mol-% neutralisiert ist.
Als monoethylenisch ungesättigte, mit (αl) copolymerisierbare Monomere (α2) sind Acrylamide und Methacrylamide bevorzugt.
Mögliche (Meth)acrylamide sind neben Acrylamid und Methacrylamid alkyl- substituierte (Meth)acrylamide oder aminoalkylsubstituierte Derivate des (Meth)acrylamids, wie N-Methylol(meth)acrylamid, N,N-Dimethyla- mino(meth)acrylamid, Dimethyl(meth)acrylamid oder Diethyl(meth)acrylamid. Mögliche Vinylamide sind beispielsweise N-Vinylamide, N-Vinylformamide, N- Vinylacetamide, N-Vinyl-N-Methylacetamide, N-Vinyl-N-methylformamide, Vi- nylpyrrolidon. Unter diesen Monomeren besonders bevorzugt ist Acrylamid.
Des Weiteren sind als monoethylenisch ungesättigte, mit (αl) copolymerisierba- ren Monomere (α2) in Wasser dispergierbare Monomere bevorzugt. Als in Wasser dispergierbare Monomere sind Acrylsäureester und Methacrylsäureester, wie Me- thyl(meth)acrylat, Ethyl(meth)acrylat, Propyl(meth)acrylat oder Bu- tyl(meth)acrylat, sowie Methylpolyethylenglykol(meth)acrylat,
Methylpolyethylenglykolallylether, Vinylacetat, Styrol und Isobutylen bevorzugt.
Erfindungsgemäß bevorzugte Vemetzer (α3) sind Verbindungen, die mindestens zwei ethylenisch ungesättigte Gruppen innerhalb eines Moleküls aufweisen (Vemetzerklasse I), Verbindungen, die mindestens zwei funktionelle Gruppen aufweisen, die mit funktioneilen Gruppen der Monomeren (αl) oder (α2) in einer Kondensationsreaktion (=Kondensafionsvernetzer), in einer Additionsreaktion oder in einer Ringöffnungsreaktion reagieren können (Vemetzerklasse II), Verbindungen, die mindestens eine ethylenisch ungesättigte Gruppe und mindestens eine funktionelle Gruppe, die mit funktionellen Gruppen der Monomeren (αl) oder (α2) in einer Kondensationsreaktion, in einer Additionsreaktion oder in einer Ringöffnungsreaktion reagieren kann (Vemetzerklasse III), aufweisen, oder polyvalente Metallkationen (Vemetzerklasse IV). Dabei wird durch die Verbindungen der Vemetzerklasse I eine Vernetzung der Polymere durch die radikalische Polymerisation der ethylenisch ungesättigten Gruppen des Vernetzermoleküls mit den monoethylenisch ungesättigten Monomeren (αl) oder (α2) erreicht, während bei den Verbindungen der Vemetzerklasse II und den polyvalenten Metallkationen der Vemetzerklasse IV eine Vernetzung der Polymere durch Kondensationsreaktion der funktionellen Gruppen (Vemetzerklasse II) bzw. durch elektrostatische Wechselwirkung des polyvalenten Metallkations (Vemetzerklasse IV) mit den funktionellen Gruppen der Monomere (αl) oder (α2) erreicht wird. Bei den Verbindungen der Vemetzerklasse III erfolgt dementsprechend eine Vernetzung des Polymers sowohl durch radikalische Polymerisation der ethylenisch ungesättigten Gruppe als auch durch Kondensationsreaktion zwischen der funktionellen Gruppe des Vernetzers und den funktionellen Gruppen der Monomeren (αl) oder (α2). Bevorzugte Verbindungen der Vemetzerklasse I sind Poly(meth)acrylsäureester oder Poly(meth)acrylamide, die beispielsweise durch die Umsetzung eines Polyols, wie beispielsweise Ethylenglykol, Propylenglykol, Trimethylolpropan, 1,6-Hexandiol, Glycerin, Pentaerythrit, Polyethylenglykol oder Polypropylenglykol, eines Aminoalkohols, eines Polyalkylenpolyamins, wie beispielsweise Diethylentriamin oder Triethylentetraamin, oder eines alkoxylierten Polyols mit Acrylsäure oder Methacrylsäure gewonnen werden. Als Verbindungen der Vemetzerklasse I sind des Weiteren Polyvinylverbindungen, Poly(mefh)allylverbindungen, (Meth)acrylsäureester einer Monovinylverbindung oder (Meth)acrylsäureester einer Mono(meth)allylverbindung, vorzugsweise der Mono(meth)allylverbindungen eines Polyols oder eines Aminoalkohols, bevorzugt. In diesem Zusammenhang wird auf DE 195 43 366 und DE 195 43 368 verwiesen. Die Offenbarungen werden hiermit als Referenz eingeführt und gelten somit als Teil der Offenbarung. Als Verbindungen der Vemetzerklasse I seien als Beispiel genannt Alke- nyldi(mefh)acrylate, beispielsweise Ethylenglykoldi(meth)acrylat, 1,3-Propy- lenglykoldi(meth)acrylat, 1 ,4-Butylenglykoldi(meth)acrylat, 1 ,3-Butylengly- koldi(mefh)acrylat, 1 ,6-Hexandioldi(meth)acrylat, 1 , 10-Decandioldi(meth)acrylat, 1 , 12-Dodecandioldi(meth)acrylat, 1 , 18-Octadecandioldi(meth)acrylat, Cyclopen- tandioldi(meth)acrylat, Neopentylglykoldi(meth)acrylat, Methylendi(meth)acrylat oder Pentaerythritdi(meth)acrylat, Alkenyldi(meth)acrylamide, beispielsweise N- Methyldi(meth) acrylamid, N,N'-3-Methylbutylidenbis(meth)acrylamid, N,N'- (1 ,2-Di-hydroxyethylen)bis(meth)acrylamid, N,N'-Hexamethylen- bis(meth)acrylamid oder N,N*-Methylenbis(meth)acrylamid, Polyalko- xydi(meth)acrylate, beispielsweise Diethylenglykoldi(meth)acrylat, Triethy- lenglykoldi(mefh)acrylat, Tetraethylenglykoldi(meth)acrylat, Dipropylengly- koldi(meth)acrylat, Tripropylenglykoldi(meth)acrylat oder Tetrapropylengly- koldi(meth)acrylat, Bisphenol-A-di(meth)acrylat, ethoxyliertes Bisphenol-A- di(meth)acrylat, Benzylidindi(meth)acrylat, 1 ,3-Di(meth)acryloyloxy-propanol-2, Hydrochinondi(meth)acrylat, Di(meth)acrylatester des vorzugsweise mit 1 bis 30 Mol Alkylenoxid pro Hydroxylgruppe oxyalkylierten, vorzugsweise ethoxylierten, Trimefhylolpropans, Thioethylenglykoldi(meth)acrylat,
Thiopropylenglykoldi(meth)acrylat, Thiopolyethylenglykoldi(meth)acrylat,
Thiopolypropylenglykoldi(meth)acrylat, Divinylether, beispielsweise 1 ,4- Butandioldivinylether, Divinylester, beispielsweise Divinyladipat, Alkandiene, beispielsweise Butadien oder 1,6-Hexadien, Divinylbenzol,
Di(meth)allylverbindungen, beispielsweise Di(meth)allylphthalat oder Di(meth)allylsuccinat, Homo- und Copolymere von
Di(meth)allyldimethylammoniumchlorid und Homo- und Copolymere von Diethyl(meth)allylaminomethyl(meth)acrylatammoniumchlorid, Vinyl- (meth)acryl-Verbindungen, beispielsweise Vinyl(meth)acrylat, (Meth)allyl- (meth)acryl- Verbindungen, beispielsweise (Meth)allyl(meth)acrylat, mit 1 bis 30 Mol Ethylenoxid pro Hydroxylgruppe ethoxyliertes (Meth)allyl(meth)acrylat, Di(meth)allylester von Polycarbonsäuren, beispielsweise Di(meth)allylmaleat, Di(meth)allylfumarat, Di(meth)allylsuccinat oder Di(meth)allylterephthalat, Ver- bindungen mit 3 oder mehr ethylenisch ungesättigten, radikalisch polymerisi erbaren Gruppen wie beispielsweise Glycerintri(meth)acrylat, (Meth)acrylatester des mit vorzugsweise 1 bis 30 Mol Ethylenoxid pro Hydroxylgruppe oxyethylierten Glycerins, Trimethylolpropantri(mefh)acrylat, Tri(meth)acrylatester des vorzugsweise mit 1 bis 30 Mol Alkylenoxid pro Hydroxylgruppe oxyalkylierten, vor- zugsweise ethoxylierten Trimethylolpropans, Trimethacrylamid,
(Meth)allylidendi(meth)acrylat, 3-Allyloxy- 1 ,2-propandioldi(meth)acrylat,
Tri(meth)allylcyanurat, Tri(meth)allylisocyanurat, Pentaerythrittetra(meth)acrylat, Pentaerythrittri(meth)acrylat, (Meth)acrylsäureester des mit vorzugsweise 1 bis 30 Mol Ethylenoxid pro Hydroxylgruppe oxyethylierten Pentaerythrits, Tris(2- hydroxyethyl)isocyanurattri(meth)acrylat, Trivinyltrimellitat, Tri(meth)allylamin, Di(meth)allylalkylamine, beispielsweise Di(meth)allylmethylamin,
Tri(meth)allylphosphat Tetra(meth)allylethylendiamin, Poly(meth)allylester, Tetra(meth)allyloxiethan oder Tetra(meth)allylammoniumhalide.
Als Verbindung der Vemetzerklasse II sind Verbindungen bevorzugt, die mindestens zwei funktionelle Gruppen aufweisen, die in einer Kondensationsreaktion (=Kondensationsvernetzer), in einer Additionsreaktion oder in einer Ringöffnungsreaktion mit den funktionellen Gruppen der Monomere (αl) oder (α2), bevorzugt mit Säuregruppen, der Monomeren (αl), reagieren können. Bei diesen funktionellen Gruppen der Verbindungen der Vemetzerklasse II handelt es sich vorzugsweise um Alkohol-, Amin-, Aldehyd-, Glycidyl-, Isocyanat-, Carbonat- oder Epichlorfunktionen.
Als Verbindung der Vemetzerklasse II seien als Beispiele genannt Polyole, beispielsweise Ethylenglykol, Polyethylenglykole wie Diethylenglykol, Triefhy- lenglykol und Tetraethylenglykol, Propylenglykol, Polypropylenglykole wie Dipropylenglykol, Tripropylenglykol oder Tetrapropylenglykol, 1,3-Butandiol, 1 ,4-Butandiol, 1,5-Pentandiol, 2,4-Pentandiol, 1 ,6-Hexandiol, 2,5-Hexandiol, Glycerin, Polyglycerin, Trimethylolpropan, Polyoxypropylen, Oxyethylen- Oxypropylen-Blockcopolymere, Sorbitanfettsäureester, Polyoxyethylensorbitan- fettsäureester, Pentaerythrit, Polyvinylalkohol und Sorbitol, Aminoalkohole, beispielsweise Ethanolamin, Diethanolamin, Triethanolamin oder Propanolamin, Polyaminverbindungen, beispielsweise Ethylendiamin, Diethylentriamin, Triethylentetraamin, Tetraethylenpentaamin oder Pentaethylenhexaamin, Polygly- cidylether-Verbindungen wie Ethylenglykoldiglycidylether, Polyethylenglykol- diglycidylether, Glycerindiglycidylether, Glycerinpolyglycidylether, Pentareritrit- polyglycidylether, Propylenglykoldiglycidylether, Polypropylenglykoldiglycidyl- ether, Neopentylglykoldiglycidylether, Hexandiolglycidylether, Trimethylolpro- panpolyglycidylether, Sorbitolpolyglycidylether, Phthalsäurediglycidylester, Adi- pinsäurediglycidylether, l,4-Phenylen-bis(2-oxazolin), Glycidol, Poiyisocyanate, vorzugsweise Diisocyanate wie 2,4-Toluoldiisocyanat und
Hexamethylendiisocyanat, Polyaziridin-Verbindungen wie 2,2-Bishydroxy- methylbutanol-tris[3-(l-aziridinyl)propionat], 1,6-Hexamefhylendiefhylen- hamstoff und Diphenylmethan-bis-4,4'-N,N'-diethylenhamstoff, Halogenepoxide beispielsweise Epichlor- und Epibromhydrin und α-Methylepichlorhydrin, Alkylencarbonate wie l,3-Dioxolan-2-on (Ethylencarbonat), 4-Methyl-l,3-dioxo- lan-2-on (Propylencarbonat), 4,5-Dimethyl-l,3-dioxolan-2-on, 4,4-Dimethyl-l,3- dioxolan-2-on, 4-Efhyl-l,3-dioxolan-2-on, 4-Hydroxymethyl-l,3-dioxolan-2-on, l,3-Dioxan-2-on, 4-Methyl-l,3-dioxan-2-on, 4,6-Dimethyl-l,3-dioxan-2-on, 1,3- Dioxolan-2-on, Poly-l,3-dioxolan-2-on, polyquartäre Amine wie Kondensationsprodukte von Dimethylaminen und Epichlorhydrin. Als Verbindungen der Ver- netzerklasse II sind des weiteren Polyoxazoline wie 1 ,2-Ethylenbisoxazolin, Vernetzer mit Silangruppen wie γ-Glycidoxypropyltrimethoxysilan und γ-Aminopro- pyltrimethoxysilan, Oxazolidinone wie 2-Oxazolidinon, Bis- und Poly-2- oxazolidinone und Diglykol Silikate bevorzugt.
Als Verbindungen der Klasse III sind hydroxyl- oder aminogruppenhaltige Ester der (Meth)acrylsäure, wie beispielsweise 2-Hydroxyethyl(meth)acrylat, sowie hydroxyl- oder aminogruppenhaltige (Meth)acrylamide, oder
Mono(meth)allylverbindungen von Diolen bevorzugt.
Die polyvalenten Metallkationen der Vemetzerklasse IV leiten sich vorzugsweise von ein- oder mehrwertigen Kationen ab, die einwertigen insbesondere von Alkalimetallen, wie Kalium, Natrium, Lithium, wobei Lithium bevorzugt wird. Bevorzugte zweiwertige Kationen leiten sich von Zink, Beryllium, Erdalkalimetallen, wie Magnesium, Calcium, Strontium ab, wobei Magnesium bevorzugt wird. Weiter erfindungsgemäß einsetzbare höherwertige Kationen sind Kationen von Aluminium, Eisen, Chrom, Mangan, Titan, Zirkonium und andere Übergangsmetalle sowie Doppelsalze solcher Kationen oder Mischungen der genannten Salze. Bevorzugt werden Aluminiumsalze und Alaune und deren unterschiedliche Hydrate wie z. B. A1C13 x 6H2O, NaAl(SO4)2 12 H2O, KAl(SO4)2 x 12 H2O oder Al2(SO4)3 χl4-18 H2O eingesetzt.
Besonders bevorzugt werden Al2(SO4)3 und seine Hydrate als Vemetzer der Vernetzungsklasse IV verwendet.
Bevorzugte absorbierende Polymergebilde (Pul) oder (Pu2) sind Polymergebilde, die durch Vemetzer der folgenden Vemetzerklassen bzw. durch Vemetzer der folgenden Kombinationen von Vemetzerklassen vernetzt sind: I, II, III, IV, I II, I III, I IN, I II III, I II IV, I III IV, II III IV, II IV oder III IN. Die vorstehenden Kombinationen von Vemetzerklassen stellen jeweils eine bevorzugte Ausführungsform von Vemetzem eines Polymer dar.
Weitere bevorzugte Ausführungsformen der absorbierenden Polymergebilde (Pul) oder (Pu2) sind Polymergebilde, die durch einen beliebigen der vorstehend genannten Vemetzer der Vemetzerklassen I vernetzt sind. Unter diesen sind wasserlösliche Vemetzer bevorzugt. In diesem Zusammenhang sind Ν,Ν'- Mefhylenbisacrylamid, Polyethylenglykoldi(meth)acrylate, Triallylmethylammonium chlorid, Tetraallylammoniumchlorid sowie mit 9 Mol Ethylenoxid pro Mol Acrylsäure hergestelltes Allylnonaethylenglykolacrylat besonders bevorzugt.
Als wasserlösliche Polymere (α4) können in den erfindungsgemäßen absorbierenden Polymergebilden (Pul) oder (Pu2) wasserlösliche Polymerisate, wie teil- oder vollverseifter Polyvinylalkohol, Polyvinylpyrrolidon, Stärke oder Stärkederivate, Polyglykole oder Polyacrylsäure enthalten, vorzugsweise einpolymerisiert sein. Das Molekulargewicht dieser Polymere ist unkritisch, solange sie wasserlöslich sind. Bevorzugte wasserlösliche Polymere sind Stärke oder Stärkederivate oder Polyvinylalkohol. Die wasserlöslichen Polymere, vorzugsweise synthetische wie Polyvinylalkohol, können auch als Pfropfgrundlage für die zu polymerisierenden Monomeren dienen.
Als Hilfsstoffe (α5) können in den im erfindungsgemäßen Verfahren eingesetzten absorbierenden Polymergebilden (Pul) oder (Pu2) vorzugsweise Stellmittel, oberflächenaktive Mittel, Geruchsbinder, Füllmittel oder Antioxidatien enthalten sein.
Es ist erfindungsgemäß besonders bevorzugt, dass das absorbierende Polymergebilde (Pul) oder (Pu2) ein vemetztes Polyacrylat in partikulärer Form ist, welches durch Polymerisa ion einer Acrylsäure und gegebenenfalls eines der vorstehend genannten Vemetzer in wässrige Lösung, beinhaltend die Acrylsäure in einer Menge in einem Bereich von 5 bis 80 Gew.-%, vorzugsweise 10 bis 70 Gew.-% und besonders bevorzugt 20 bis 50 Gew.-%, bezogen auf das Gewicht der wässrigen Lösung, und anschließendes Zerkleinem des erhaltenen Polymergeis, Trocknen des zerkleinerten Gels und gegebenenfalls weiteres Zermahlen des getrockneten Polymergeis erhalten wurde. Die auf diese Weise erhaltenen absorbierenden Polymergebilde sind vorzugsweise durch einen Wassergehalt von 0,5 bis 25 Gew.-%, vorzugsweise von 1 bis 10 Gew.-% gekennzeichnet.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens basieren die absorbierenden Polymergebilde (Pul) oder (Pu2) zu mindestens 50 Gew.-%, bevorzugt zu mindestens 75 Gew.-% und darüber hinaus bevorzugt zu mindestens 90 Gew.-% auf Acrylsäure basiert, die vorzugsweise zu mindestens 20 Mol-%, besonders bevorzugt zu mindestens 50 Mol-% neutralisiert ist.
Es ist weiterhin bevorzugt, dass das absorbierende Polymergebilde (Pul) oder (Pu2) nicht auf Polyacrylnitril-Emulsionen basiert. Dabei ist es bevorzugt, dass die absorbierenden Polymergebilde (Pul) oder (Pu2) weniger als 37 Mol-%, besonders bevorzugt zu weniger als 20 Mol-%, darüber hinaus bevorzugt zu weniger als 10 Mol-% und darüber hinaus noch mehr bevorzugt zu weniger als 5 Mol-% auf Acrylamid- und/oder Acrylnitril-Monomeren basieren. Es ist in diesem Zusammenhang weiterhin bevorzugt, dass das absorbierende Polymergebilde (Pul) oder (Pu2) einen Anteil an löslichen, auf Acrylnitril- und/oder Acrylamid-Monomeren basierenden Monomeren oder Polymeren von weniger als 1.000 ppm, besonders bevorzugt weniger als 500 ppm, darüber hinaus bevorzugt weniger als 100 ppm und darüber hinaus noch mehr bevorzugt von weniger als 10 ppm aufweisen.
Aus den vorgenannten Monomeren und Vemetzem lässt sich das absorbierende Polymergebilde (Pul) oder (Pu2) durch verschiedene Polymerisationsweisen herstellen. Beispielsweise sind in diesem Zusammenhang Massepolymerisation, die vorzugsweise in Knetreaktoren wie Extrudern erfolgt, Lösungspolymerisation, Spraypolymerisation, inverse Emulsionspolymerisation und inverse Suspensionspolymerisation zu nennen. Bevorzugt wird die Lösungspolymerisation in Wasser als Lösungsmittel durchgeführt. Die Lösungspolymerisation kann kontinuierlich oder diskontinuierlich erfolgen. Aus dem Stand der Technik ist ein breites Spektrum von Variationsmöglichkeiten hinsichtlich Reaktionsverhältnisse wie Temperaturen, Art und Menge der Initiatoren als auch der Reaktionslösung zu entnehmen. Typische Verfahren sind in den folgenden Patentschriften beschrieben: US 4,286,082, DE 27 06 135, US 4,076,663, DE 35 03 458, DE 40 20 780, DE 42 44 548, DE 43 23 001, DE 43 33 056, DE 44 18 818. Die Offenbarungen werden hiermit als Referenz eingeführt und gelten somit als Teil der Offenbarung.
Eine andere Möglichkeit zur Herstellung der absorbierenden Polymergebilde (Pul) oder (Pu2) besteht darin, zunächst unvemetzte, insbesondere lineare Polymere, vorzugsweise auf radikalischem Wege aus den vorgenannten monoethylenisch ungesättigten Monomeren (αl) bzw. (α2) herzustellen und diese dann mit vernetzend wirkenden Reagenzien (α3), vorzugsweise denen der Klassen II und IV, umzusetzen. Diese Variante wird vorzugsweise dann eingesetzt, wenn die Polymergebilde zunächst in formgebenden Verfahren, beispielsweise zu Fasern, Folien oder anderen Flächengebilden, wie Geweben, Gewirken, Gespinsten oder Vliesen verarbeitet und in dieser Form vernetzt werden sollen.
Die Polymerisation wird wie allgemein üblich durch einen Initiator ausgelöst. Als Initiatoren zur Initiierung der Polymerisation können alle unter den Polymerisationsbedingungen Radikale bildende Initiatoren verwendet werden, die üblicherweise bei der Herstellung von Superabsorbem eingesetzt werden. Auch eine Initiierung der Polymerisation durch Einwirkung von Elektronenstrahlen auf die polymerisierbare, wässrige Mischung ist möglich. Die Polymerisation kann allerdings auch in Abwesenheit von Initiatoren der obengenannten Art durch Einwirkung energiereicher Strahlung in Gegenwart von Photoinitiatoren ausgelöst werden. Polymerisationsinitiatoren können in einer Lösung erfindungsgemäßer Monomere gelöst oder dispergiert enthalten sein. Als Initiatoren kommen sämtliche dem Fachmann bekannte in Radikale zerfallende Verbindungen in Betracht. Hierunter fallen insbesondere Peroxide, Hydroperoxide, Wasserstoffperoxid, Persulfate, Azoverbindungen sowie die sogenannten Redoxkatalysatoren. Bevorzugt ist der Einsatz wasserlöslicher Katalysatoren. In manchen Fällen ist es vorteilhaft, Mischungen verschiedener Polymerisationsinitiatoren zu verwenden. Unter diesen Mischungen sind die aus Wasserstofφeroxid und Natrium- oder Kaliumperoxodisulfat bevorzugt, die in jedem denkbaren Mengenverhältnis eingesetzt werden können. Geeignete organische Peroxide sind vorzugsweise Acetylacetonperoxid,
Methylethylketonperoxid, t-Butylhydroperoxid, Cumolhydroperoxid, t- Amylperpivalat, t-Butylperpivalat, t-Butylpemeohexonat, t-Butylisobutyrat, t- Butylper-2-ethylhexenoat, t-Butylperisononanoat, t-Butylpermaleat, t- Butylperbenzoat, t-Butyl-3,5,5-tri-methylhexanoat und Amylperneodekanoat. Weiterhin sind als Polymerisationsinitiatoren bevorzugt: Azo- Verbindungen, wie 2,2 '-Azobis-(2-amidinopropan)dihydrochlorid, Azo-bis-amidinopropan- dihydrochlorid, 2,2 '- Azobis-(N,N-dimethylen)isobutyramidin-dihydrochlorid, 2- (Carbamoylazo)isobutyronitril und 4,4'-Azobis-(4-cyanovaleriansäure). Die genannten Verbindungen werden in üblichen Mengen eingesetzt, vorzugsweise in einem Bereich von 0,01 bis 5, bevorzugt von 0,1 bis 2 Mol-%, jeweils bezogen auf die Menge der zu polymerisierenden Monomere.
Die Redoxkatalysatoren enthalten als oxidische Komponente mindestens eine der oben angegebenen Perverbindungen und als reduzierende Komponente vorzugsweise Ascorbinsäure, Glukose, Sorbose, Mannose, Ammonium- oder Alkalimetall-hydrogensulfit, -sulfat, -thiosulfat, -hyposulfit oder -sulfid, Metallsalze, wie Eisen-II-ionen oder Silberionen oder Natriumhydroxymethylsulfoxylat. Vorzugsweise wird als reduzierende Komponente des Redoxkatalysators Ascorbinsäure oder Natriumpyrosulfit verwendet. Bezogen auf die bei der Polymerisation eingesetzte Menge an Monomeren wird l lO"5 bis 1 Mol-% der reduzierenden Komponente des Redoxkatalysators und lxlO"5 bis 5 Mol-% der oxidierenden Komponente des Redoxkatalysators eingesetzt. Anstelle der oxidierenden Komponente des Redoxkatalysators, oder in Ergänzung zu diesem, können ein oder mehrere, vorzugsweise wasserlösliche, Azoverbindungen verwendet werden.
Wenn man die Polymerisation durch Einwirkung energiereicher Strahlung auslöst, verwendet man üblicherweise als Initiator sogenannte Photoinitiatoren. Hierbei kann es sich beispielsweise um sogenannte α -Spalter, H-abstrahierende Systeme oder auch um Azide handeln. Beispiele für solche Initiatoren sind Benzophenon- Derivate wie Michlers-Keton, Phenanthren-Derivate, Fluoren-Derivate, Anthra- chinon-Derivate, Thioxanton-Derivate, Cumarin-Derivate, Benzoinether und deren Derivate, Azoverbindungen wie die oben genannten Radikalbildner, substitu- ierte Hexaarylbisimidazole oder Acylphosphinoxide. Beispiele für Azide sind: 2- (N,N-Dimethylamino)-ethyl-4-azidocinnamat, 2-(N,N-Dimethylamino)-efhyl-4- azidonaphthylketon, 2-(N,N-Dimethylamino)-ethyl-4-azidobenzoat, 5-Azido-l - naphthyl-2'-(N,N-dimethylamino)ethylsulfon, N-(4-Sulfonylazidophe- nyl)maleinimid, N-Acetyl-4-sulfonylazidoanilin, 4-Sulfonylazidoanilin, 4-Azido- anilin, 4-Azidophenacylbromid, p-Azidobenzoesäure, 2,6-Bis(p-azidobenzyli- den)cyclohexanon und 2,6-Bis-(p-azidobenzyliden)-4-methylcyclohexanon. Die Photoinitiatoren werden, falls sie eingesetzt werden, üblicherweise in Mengen von 0,01 bis 5 Gew.-%, bezogen auf die zu polymerisierenden Monomeren angewendet.
Bevorzugt wird erfindungsgemäß ein Redoxsystem bestehend aus Wasserstofφeroxid, Natriumperoxodisulfat und Ascorbinsäure eingesetzt. Allgemein sind erfmdungsgemäß Azoverbindungen als Initiatoren bevorzugt, wobei Azo-bis-amidinopropan-dihydrochlorid besonders bevorzugt ist. In der Regel wird die Polymerisation mit den Initiatoren in einem Temperaturbereich von 30 bis 90°C initiiert. Die Trocknung des Polymerisatgels erfolgt bis zu einem Wassergehalt von 0,5 bis 25 Gew.-%, vorzugsweise von 1 bis 10 Gew.-% bei Temperaturen, die üblicherweise im Bereich von 100 bis 200°C liegen.
In einer bevorzugten Ausführungsform zeigt das im erfindungsgemäßen
Verfahren eingesetzte, absorbierende Polymergebilde (Pul) oder (Pu2) mindestens eine der folgenden Eigenschaften (ERT = EDANA Recommended
Test): (A) die maximale Aufnahme von 0,9 Gew.-%er NaCl-Lösung gemäß ERT
440.1-99 liegt in einem Bereich von mindestens 10 bis 1000, bevorzugt von
15 bis 500 und besonders bevorzugt von 20 bis 300 g/g,
(B) der mit 0,9 Gew.-%er wässriger NaCl-Lösung extrahierbare Anteil gemäß ERT 470.1-99 beträgt weniger als 30, bevorzugt weniger als 20 und besonders bevorzugt weniger als 10 Gew.-%, bezogen auf das absorbierende Polymergebilde (Pul) oder (Pu2),
(C) die Schüttdichte gemäß ERT 460.1-99 liegt im Bereich von 300 bis 1000, bevorzugt 310 bis 800 und besonders bevorzugt 320 bis 700 g/1,
(D) der pH- Wert gemäß ERT 400.1-99 von 1 g des absorbierenden Polymergebildes (Pul) oder (Pu2) in 1 1 Wasser liegt im Bereich von 4 bis
10, bevorzugt von 5 bis 9 und besonders bevorzugt von 5,5 bis 7,5,
(E) der CRC- Wert nach ERT 441.1-99 liegt im Bereich von 10 bis 100, bevorzugt 15 bis 80 und besonders bevorzugt 20 bis 60 g/g.
Die sich aus den vorstehenden Eigenschaften ergebenden Eigenschaftskombinationen von zwei oder mehr dieser Eigenschaften stellen jeweils bevorzugte Ausführungsformen des erfindungsgemässen Verfahrens dar. Weiterhin als erfindungsgemässe Ausfuhrungsformen besonders bevorzugt sind Verfahren, in denen das absorbierende Polymergebilde (Pul) oder (Pu2) die nachfolgend als Buchstaben oder Buchstabenkombinationen dargestellten Eigenschaften oder Eigenschaftskombinationen zeigt: A, B, C, D, E, AB, AC, AD, AE, ABC, ABD, ABE, ACD, ACE, ADE, ABCD, ABCE, ABDE, ACDE, ABCDE.
Das in Kontakt bringen des absorbiererenden Polymergebildes (Pul) oder (Pu2) mit der wässrigen Lösung erfolgt im erfindungsgemäßen Verfahren vorzugsweise durch gutes Vermischen der wässrigen Lösung mit dem absorbierenden Polymergebilde (Pul) oder (Pu2). Die wässrige Lösung ist vorzugsweise im wesentlichen frei von organischen Lösungsmitteln, insbesondere frei von mehrwertigen Alkoholen und Polyalkylenglykolethern, besonders bevorzugt frei von Diethylenglycolmonomethylefher und 1,3-Butandiol. Es ist in diesem Zusammenhang besonders bevorzugt, dass unter einer wässrigen Lösung eine Lösung verstanden wird, die zu mindestens 50 Gew.-%, besonders bevorzugt zu mindestens 60 Gew.-%, darüber hinaus bevorzugt zu mindestens 70 Gew.-% und darüber hinaus noch mehr bevorzugt zu mindestens 90 Gew.-%, jeweils bezogen auf die Gesamtmenge aller in der wässrigen Lösung vorhandenen, bei Raumtemperatur flüssigen Komponenten, auf Wasser basiert.
Dabei kann der chemische Vemetzer von vornherein in der wässrigen Lösung enthaltend die anorganische Verbindung in kolloiddisperser Form enthalten sein. Es ist jedoch auch möglich, dass der chemische Vemetzer und die kolloiddisperse, anorganische Verbindung getrennt, vorzugsweise jedoch zeitgleich mit dem absorbierenden Polymergebilde (Pul) oder (Pu2) in Kontakt gebracht werden. In diesem Fall werden vorzugsweise zwei getrennte Lösungen, von denen die eine den chemischen Vemetzer und die andere die anorganische Verbindung in kolloiddisperser Form enthält, vorzugsweise gleichzeitig mit dem absorbierenden Polymergebilde (Pul) oder (Pu2) vermischt, wobei jedoch eine homogene Verteilung des chemischen Vemetzers und der anorganischen Verbindung in kolloiddisperser Form gewährleistet sein muss.
Geeignete Mischaggregate zum Aufbringen der Komponenten sind z. B. der Patterson-Kelley-Mischer, DRAIS-Turbulenzmischer, Lödigemischer, Ruberg- Mischer, Schneckenmischer, Tellermischer und Wirbelschichtmischer sowie kontinuierlich arbeitende senkrechte Mischer, in denen das Polymergebilde mittels rotierender Messer in schneller Frequenz gemischt wird (Schugi-Mischer). Das absorbierende Polymergebilde (Pul) oder (Pu2) wird in dem erfindungsgemäßen Verfahren vorzugsweise mit höchstens 20 Gew.-%, besonders bevorzugt mit höchstens 15 Gew.-%, darüber hinaus bevorzugt mit höchstens 10 Gew.-%, darüber hinaus noch mehr bevorzugt mit höchstens 5 Gew.-% Wasser und am allermeisten bevorzugt mit weniger als 3 Gew.-%, jeweils bezogen auf das Gewicht des absorbierenden Polymergebilde (Pul) oder (Pu2), in Kontakt gebracht.
Bei einem Einsatz von absorbierenden Polymergebilden (Pul) oder (Pu2) in der Form von vorzugsweise kugelförmigen Teilchen ist es erfindungsgemäß weiterhin bevorzugt, dass das in Kontakt bringen derart erfolgt, dass lediglich der Aussenbereich, nicht jedoch der innere Bereich der teilchenfÖrmigen absorbierenden Polymergebilde mit der anorganischen Verbindung in kolloiddisperser Form in Kontakt gebracht werden. In diesem Zusammenhang wird als Aussenbereich der Polymergebilde vorzugsweise derjenige Bereich verstanden, der dadurch gekennzeichnet ist, dass der Abstand eines jeden in diesem Bereich liegenden Raumpunktes vom Mittelpunkt des Teilchens mindestens 50%, besonders bevorzugt mindestens 75%, darüber hinaus bevorzugt mindestens 90% und darüber hinaus noch mehr bevorzugt mindestens 95% des Radius der teilchenfÖrmigen absorbierenden Polymergebilde beträgt. Die auf diese Weise erzielte inhomogene Immobilisierung der kolloiddispersen anorganischen Verbindung auf den Polymergebilden wird erfindungsgemäß dadurch erreicht, dass trockene Polymergebilde mit der wässrigen Lösung in Kontakt gebracht werden und zudem nur so geringe Mengen an Wasser eingesetzt werden, dass es nur im Aussenbereich der absorbierenden Polymergebilde zu einer Absorption der wässrigen Flüssigkeit kommt. Es ist im erfϊndungsgemäßen Verfahren weiterhin bevorzugt, dass mindestens 30 Gew.-%, besonders bevorzugt mindestens 60 Gew.-% und darüber hinaus bevorzugt mindestens 90 Gew.-% der kolloiddispersen anorganischen Verbindung eine Partikelgröße im Bereich von 1 bis 100, vorzugsweise von 5 bis 80 und darüber hinaus bevorzugt von 6 bis 50 nm aufweist.
Die anorganische Verbindung wird gemäß dem erfindungsgemäßen Verfahren vorzugsweise in einer Menge von 0,001 bis 10 Gew.-%, besonders bevorzugt von 0,01 bis 5 Gew.-% und darüber hinaus bevorzugt von 0,05 bis 1,5 Gew.-%, bezogen auf das absorbierende Polymergebilde (Pul) oder (Pu2), mit dem absorbierenden Polymergebilde (Pul) oder (Pu2) in Kontakt gebracht.
Als anorganische Verbindung können alle wasserunlöslichen, anorganischen Verbindungen eingesetzt werden, aus denen stabile, kolloiddisperse, vorzugsweise einphasige, wässrige Lösungen erhalten werden können, die bei 20°C und Normaldruck über einen Zeitraum von mindestens 6h, bevorzugt mindestens 24h und besonders bevorzugt mindestens 72h bis hin zu 6 Monaten keine Phasentrennung, wie etwa das Absetzen eines festen, anorganischen Niederschlags, zeigen.
Unter einer kolloiddispersen Lösung wird vorzugsweise eine Lösung verstanden, die Partikel mit einem Partikeldurchmesser in einem Bereich von 100-1000 A (10" bis 10" cm) enthält. Diese Lösungen besitzen die Eigenschaft, einen durch die Lösung geschickten Lichtstrahl in alle Richtungen zu streuen, so dass der Gang des Lichtstrahls durch die kolloiddisperse Lösung verfolgt werden kann (Tyndall Effekt, siehe hierzu Hollemann-Wiberg, Lehrbuch der anorganischen Chemie, 91.-100. Auflage, de Gruyter- Verlag, Seite 765).
Als besonders bevorzugte kolloiddisperse anorganische Verbindung werden im erfindungsgemäßen Verfahren Polykieselsäure beinhaltende Partikel eingesetzt.
Eine kolloiddisperse Lösung enthaltend solche Partikel (Kieselsäuresol) kann beispielsweise durch vorsichtiges Ansäuern von infolge Hydrolyse alkalische reagierenden Natriumsilicatlösungen erhalten werden oder aber durch Lösen molekularer Kieselsäure in Wasser und eventueller anschließender Stabilisierung der entstehenden kolloiddispersen Lösung. Die genaue Herstellung derartiger Kieselsäuresole ist dem Fachmann bekannt und ist beispielsweise in Jander- Blasius, ,J ehrbuch der analytischen und präparativen anorganischen Chemie,, S. Hirzel Verlag, Stuttgart, beschrieben.
Neben der kolloiddispersen Kieselsäure sind erfindungsgemäß des weiteren Eisen(III)oxid-Hydrat-Sole, Zinn(IV)oxid-Hydrat-Sole oder auf
Silberhalogeniden, insbesondere Silberchlorid, basierende Sole als kolloiddisperse anorganische Verbindung besonders bevorzugt.
Unter chemischen Vemetzem, die im erfindungsgemäßen Verfahren in der wässrigen Lösung enthalten sind, werden vorzugsweise Verbindungen verstanden, die mindestens zwei funktionelle Gruppen aufweisen, die mit funktionellen
Gruppen eines Polymers in einer Kondensationsreaktion
(=Kondensationsvernetzer), in einer Additionsreaktion oder in einer
Ringöffnungsreaktion reagieren können oder aber polyvalente Metallkationen, die mittels elektrostatischer Wechselwirkung zwischen dem polyvalenten
Metallkation und den funktionellen Gruppen eines Polymers eine Vernetzung des
Polymers ermöglichen. Als chemischer Vemetzer zur Nachvemetzung des
Aussenbereiches des absorbierenden Polymergebildes (Pul) oder (Pu2) - auch
„Nachvernetzer" genannt - sind im erfindungsgemäßen Verfahren diejenigen bevorzugt, die im Zusammenhang mit den Vemetzem (α3) als Vemetzer der
Vemetzerklassen II und IV genannt wurden.
Unter diesen Verbindungen sind als Nachvernetzer besonders bevorzugt
Kondensationsvemetzer wie beispielsweise Diethylenglykol, Triethylenglykol, Polyethylenglykol, Glyzerin, Polyglyzerin, Propylenglykol, Diethanolamin,
Triethanolamin, Polyoxypropylen, Oxyefhylen-Oxypropylen-Blockcopolymere, Sorbitanfettsäureester, Polyoxyethylensorbitanfettsäureester, Trimefhylolpropan, Pentaerytrit, Polyvinylalkohol, Sorbitol, l,3-Dioxolan-2-on (Ethylencarbonat), 4- Methyl-1 ,3-dioxolan-2-on (Propylencarbonat), 4,5-Dimethyl-l ,3-dioxolan-2-on, 4,4-Dimethyl-l,3-dioxolan-2-on, 4-Ethyl-l,3-dioxolan-2-on, 4-Hydroxymethyl- l,3-dioxolan-2-on, l,3-Dioxan-2-on, 4-Methyl-l,3-dioxan-2-on, 4,6-Dimethyl- l,3-dioxan-2-on, l,3-Dioxolan-2-on, Poly-l,3-dioxolan-2-on.
Besonders bevorzugt wird Ethylencarbonat als Nachvernetzer eingesetzt.
Der Nachvernetzer wird im erfindungsgemäßen Verfahren vorzugsweise in einer Menge im Bereich von 0,01 bis 30, besonders bevorzugt 0,1 bis 20 und darüber hinaus bevorzugt von 0,3 bis 5 Gew.-%, bezogen auf das absorbierende Polymergebilde (Pul) oder (Pu2) eingesetzt.
Nachdem der chemische Vemetzer und die wässrige Lösung enthaltend die anorganische Verbindung mit dem absorbierenden Polymergebilde (Pul) oder (Pu2) in Kontakt gebracht wurden, erfolgt im erfindungsgemäßen Verfahren die Nachvemetzungsreaktion durch Erhitzen des absorbierenden Polymergebildes auf Temperaturen im Bereich von 40 bis 300°C, bevorzugt von 80 bis 250°C und besonders bevorzugt von 150 bis 220°C. Die optimale Zeitdauer der Nacherhitzung kann für die einzelnen Vernetzertypen und kolloiddispersen anorganischen Verbindungen leicht ermittelt werden. Sie wird dadurch begrenzt, wenn das gewünschte Eigenschaftsprofil des Superabsorbers infolge Hitzeschädigung wieder zerstört wird. Die thermische Behandlung kann in üblichen Trocknern oder Öfen durchgeführt werden, beispielhaft seien Drehrohröfen, Wirbelbetttrockner, Tellertrockner, Paddeltrockner oder Infrarottrockner genannt.
Es ist erfindungsgemäß bevorzugt, dass infolge der thermischen Behandlung der Aussenbereich des absorbierenden Polymergebildes stärker vernetzt ist als der
Innenbereich und dass durch die thermische Behandlung die anorganische Verbindung im Aussenbereich mindestens teilweise immobilisiert wird. Weiterhin ist in diesem Zusammenhang bevorzugt, dass der Radius des Aussenbereiches kleiner ist als der dreifache Wert des Radius des Innenbereiches.
In einer anderen Ausführungsform des erfindungsgemäßen Verfahrens wird der Aussenbereich der absorbierenden Polymergebilde vor oder nach, vorzugsweise nach, dem in Kontakt bringen mit der wässrigen Lösung beinhaltend den chemischen Vemetzer und die anorganischer Verbindung in kolloiddisperser Form mit einer Verbindung enthaltend Al3+-Ionen in Kontakt gebracht. Dabei ist es bevorzugt, dass die Verbindung enthaltend AI -Ionen in einer Menge in einem Bereich von 0,01 bis 30 Gew.-%, besonders bevorzugt in einer Menge in einem Bereich von 0,1 bis 20 Gew.-% und darüber hinaus bevorzugt in einer Menge in einem Bereich von 0,3 bis 5 Gew.-%, jeweils bezogen auf das Gewicht der absorbierenden Polymergebilde, mit den Polymergebilden in Kontakt gebracht wird.
Das in Kontakt bringen des Aussenbereiches der absorbierenden Polymergebilde mit der AI -Ionen enthaltenden Verbindung erfolgt vorzugsweise dadurch, dass das absorbierende Polymergebilde (Pa) mit der Verbindung unter trockenen Bedingungen vermischt wird oder aber dadurch, dass die absorbierenden Polymergebilde (Pa) mit einem Fluid umfassend ein Lösemittel, vorzugsweise Wasser, mit Wasser mischbare organische Lösemittel wie etwa Methanol oder Ethanol oder Mischungen aus mindestens zwei davon, sowie die Al3+-Ionen enthaltende Verbindung in Kontakt gebracht werden, wobei das in Kontakt bringen vorzugsweise durch Besprühen der Polymerteilchen mit dem Fluid und Vermischen erfolgt. In diesem Zusammenhang ist es weiterhin bevorzugt, dass das in Kontakt bringen der absorbierenden Polymergebilde (Pa) mit dem Fluid enthaltend die Al3+-Ionen enthaltende Verbindung in einem zweistufigen Verfahren erfolgt. Dabei umfasst das zweistufige Verfahren einen ersten Mischvorgang, bei dem eine Vielzahl von absorbierenden Polymergebilden mit dem Fluid vermischt wird, und einem zweiten Mischvorgang, bei dem das Fluid im Inneren der Polymerteilchen homogenisiert wird, wobei die Polymerteilchen in dem ersten Mischvorgang mit einer Geschwindigkeit gemischt werden, dass die Bewegungsenergie der einzelnen Polymerteilchen im Mittel größer ist als die Haftungsenergie zwischen den einzelnen Polymerteilchen, und die Polymerteilchen in dem zweiten Mischvorgang werden mit einer geringeren Geschwindigkeit als im ersten Mischvorgang durchmischt.
Durch die Behandlung der absorbierenden Polymergebilde (Pa) mit dem Fluid beinhaltend die Al3+-Ionen enthaltende Verbindung durch das vorstehend beschriebene, zweistufige Verfahren können absorbierende Polymergebilde mit verbesserten Absorptionseigenschaften erhalten werden.
Vorzugsweise ist dabei die Al3+-Ionen enthaltende Verbindung ohne Berücksichtigung von Kristallwasser in einer Menge in einem Bereich von 0,1 bis 50 Gew.-%, besonders bevorzugt in einer Menge in einem Bereich von 1 bis 30 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Fluids, in dem Fluid enthalten. Es ist weiterhin bevorzugt, dass das Fluid in einer Menge in einem Bereich von 0,01 bis 15 Gew.-%, besonders bevorzugt in einer Menge in einem Bereich von 0,05 bis 6 Gew.-%, jeweils bezogen auf das Gewicht der absorbierenden Polymergebilde (Pa), mit den absorbierenden Polymergebilden (Pa) in Kontakt gebracht wird.
Bevorzugt AI -Ionen enthaltenden Verbindungen sind A1C13 6H2O, NaAl(SO4)2 12 H2O, KAl(SO4)2 x 12 H2O oder Al2(SO4)3xl4-18 H2O.
Die vorliegenden Erfindung betrifft des Weiteren absorbierende Polymergebilde (Pa), die durch das vorstehend beschriebene erfindungsgemäße Verfahren erhältlich sind.
Zudem betrifft die Erfindung ein absorbierendes Polymergebilde (Pa) beinhaltend einen Innenbereich sowie einen den Innenbereich umgebenden Aussenbereich, wobei der Aussenbereich stärker vernetzt ist als der Innenbereich, im Aussenbereich, vorzugsweise nur im Aussenbereich und nicht im inneren Bereich, eine anorganische Verbindung mindestens teilweise immobilisiert ist und wobei das absorbierende Polymergebilde (Pa) mindestens eine der folgenden Eigenschaften aufweist:
(ßl) bei einer CRC nach ERT 441.1-99 <26 g/g eine SFC von mindestens
7 7
80T0" , bevorzugt von mindestens 100T0" und besonders bevorzugt
7 1 von mindestens 120-10" cm -s-g" , (ß2) bei einer CRC nach ERT 441.1-99 im Bereich >26 bis <27 g/g eine
7 7 SFC von mindestens 70-10" , bevorzugt von mindestens 90 10" und besonders bevorzugt von mindestens 110-10"7 cm3-s-g_1, (ß3) bei einer CRC nach ERT 441.1-99 im Bereich >27 bis <28 g/g eine SFC von mindestens 60- 10"7, bevorzugt von mindestens 80- 10"7 und besonders bevorzugt von mindestens 100-10"7 cm3-s g"1, (ß4) bei einer CRC nach ERT 441.1-99 im Bereich >28 bis <29 g/g eine
7 7
SFC von mindestens 45-10" , bevorzugt von mindestens 65-10" und
7 1 besonders bevorzugt von mindestens 85-10" cm -s-g" , (ß5) bei einer CRC nach ERT 441.1-99 im Bereich >29 bis <30 eine SFC von mindestens 30-10"7, bevorzugt von mindestens 50T0"7 und besonders bevorzugt von mindestens 70- 10"7 cm3 s-g"1,
(ß6) bei einer CRC nach ERT 441.1-99 im Bereich >30 bis <31 eine SFC von mindestens 20- 10"7, bevorzugt von mindestens 40- 10"7 und besonders bevorzugt von mindestens 60-10"7 cm3-s-g_1,
(ß7) bei einer CRC nach ERT 441.1-99 im Bereich >31 eine SFC von mindestens 10-10"7, bevorzugt von mindestens 20- 10"7 und besonders bevorzugt von mindestens 30- 10"7 cm3-s-g_1.
Die sich aus den vorstehenden Eigenschaften ergebenden Eigenschaftskombinationen von zwei oder mehr dieser Eigenschaften stellen jeweils bevorzugte Ausführungsformen des erfmdungsgemässen absorbierenden Polymergebildes (Pa) dar. Weiterhin als erfmdungsgemässe Ausführungsformen besonders bevorzugt ist ein absorbierendes Polymergebilde (Pa), welches die nachfolgend als Buchstaben oder Buchstabenkombinationen dargestellten Eigenschaften oder Eigenschaftskombinationen zeigt: ßl, ß2, ß3, ß4, ß5, ß6, ß7, wobei ß2, ß3, ß4, ß5 und ß6 besonders bevorzugt sind.
Es ist erfindungsgemäß weiterhin bevorzugt, dass das absorbierende Polymergebilde (Pa) eine Absorbency against Pressure (AAP) nach ERT 442.1- 99 bei einem Druck von 50 g/cm von mindestens 18 g/g, besonders bevorzugt mindestens 20 g/g und darüber hinaus besonders bevorzugt von mindestens 22 g/g aufweist.
Es ist bei dem erfmdungsgemässen absorbierenden Polymergebilde des Weiteren bevorzugt, dass der Radius des Aussenbereiches kleiner ist als der doppelte Wert des Radius des Innenbereiches.
In einer besonders bevorzugten Ausfuhrungsform der erfindungsgemäßen absorbierenden Polymergebilde (Pa) wird als Aussenbereich der Polymergebilde vorzugsweise derjenige Bereich verstanden, der dadurch gekennzeichnet ist, dass der Abstand eines jeden in diesem Bereich liegenden Raumpunktes vom Mittelpunkt des Teilchens mindestens 50%, besonders bevorzugt mindestens 75%, darüber hinaus bevorzugt mindestens 90% und darüber hinaus noch mehr bevorzugt mindestens 95% des Radius der teilchenfÖrmigen absorbierenden Polymergebilde beträgt.
Die anorganische Verbindung, die im Aussenbereich des erfindungsgemäßen absorbierenden Polymergebildes (Pa) mindestens teilweise immobilisiert ist, kann jede wasserunlösliche, anorganische Verbindung sein, aus der stabile, kolloiddisperse wässrige Lösungen erhalten werden können. Eine besonders bevorzugte anorganische Verbindung, die im Aussenbereich des erfindungsgemäßen absorbierenden Polymergebilde (Pa) mindestens teilweise immobilisiert ist, ist ein Kondensat von Polykieselsäuren.
Es ist weiterhin bevorzugt, dass die vorstehend genannten Merkmale der erfindungsgemäßen absorbierenden Polymergebilde (Pa) auch für die durch das eingangs genannte erfindungsgemäße Verfahren erhältlichen absorbierenden Polymergebilde (Pa) gelten.
Gemäß einer erfindungsgemäßen Ausführungsform des erfindungsgemäßen Verfahrens sowie der erfindungsgemäßen absorbierenden Polymergebilde (Pa) ist es bevorzugt, dass die nur mit einer Untergrenze angegebenen Werte von erfindungsgemäßen Merkmalen eine Obergrenze besitzen, die das 20-fache, vorzugsweise das 10-fache und besonders bevorzugt das 5-fache des am meisten bevorzugten Wertes der Untergrenze besitzen.
Weiterhin betrifft die Erfindung einen Verbund, beinhaltend ein zuvor definiertes absorbierendes Polymergebilde (Pa) und ein Substrat. Vorzugsweise sind das erfindungsgemäße Polymergebilde (Pa) und das Substrat fest miteinander verbunden. Als Substrate sind Folien aus Polymeren, wie beispielsweise aus Polyethylen, Polypropylen oder Polyamid, Metalle, Vliese, Fluff, Tissues, Gewebe, natürliche oder synthetische Fasern, oder andere Schäume bevorzugt.
Erfindungsgemäss sind als Verbund Dichtmaterialien, Kabel, absorbierende Cores sowie diese enthaltende Windeln und Hygieneartikel bevorzugt.
Bei den Dichtungsmaterialien handelt es sich vorzugsweise um wasserabsorbierende Filme, worin das absorbierende Polymergebilde (Pa) in einer Polymermatrix oder Fasermatrix als Substrat eingearbeitet ist. Dieses erfolgt vorzugsweise dadurch, dass das absorbierende Polymergebilde (Pa) mit einem die Polymer- oder Fasermatrix bildenden Polymer (Pm) gemischt und anschliessend durch gegebenenfalls thermische Behandlung verbunden wird. Für den Fall, dass das absorbierende Gebilde als Faser eingesetzt wird, können daraus Game gewonnen werden, die mit weiteren aus einem anderen Material bestehenden Fasern als Substrat versponnen und dann beispielsweise über Verweben oder Verstricken miteinander verbunden werden oder direkt, d. h. ohne mit weiteren Fasern versponnen zu werden, verbunden werden. Typische Verfahren hierzu sind bei H. Savano et al., International Wire & Cable Symposium Proceedings 40,333 bis 338 (1991); M. Fukuma et al., International Wire & Cable Symposium Proceedings, 36,350 bis 355 (1987) und in US 4,703,132 beschrieben. Diese Offenbarungen werden hiermit als Referenz eingeführt und gelten somit als Teil der Offenbarung.
In der Ausführungsform, in der der Verbund ein Kabel ist, kann das absorbierende Polymergebilde (Pa) als Teilchen direkt, vorzugsweise unter der Isolierung des Kabels eingesetzt werden. In einer anderen Ausführungsform des Kabels kann das absorbierende Polymergebilde (Pa) in Form von schwellbaren, zugfesten Gamen eingesetzt werden. Gemäss einer anderen Ausfuhrungsform des Kabels kann das absorbierende Polymergebilde (Pa) als quellbarer Film eingesetzt werden. Wiederum in einer anderen Ausführungsform des Kabels kann das absorbierende
Polymergebilde (Pa) als feuchtigkeitsabsorbierende Seele in der Mitte des Kabels eingesetzt werden. Das Substrat bildet im Fall des Kabels alle Bestandteile des Kabels, die kein absorbierendes Polymergebilde (Pa) enthalten. Hierunter fallen die in dem Kabel eingebauten Leiter, wie elektrische Leiter oder Lichtleiter, optische bzw. elektrische Isoliermittel sowie Bestandteile des Kabels, die die mechanische Beanspruchbarkeit des Kabels gewährleisten, wie Geflechte, Gewebe oder Gewirke aus zugfesten Materialien wie Kunststoffen und Isolierungen aus Gummi oder anderen Materialien, die die Zerstörung der Aussenhaut des Kabels verhindern.
Wenn der Verbund ein absorbierendes Core ist, ist das absorbierende Polymergebilde (Pa) in ein Substrat eingearbeitet. Bei diesem Substrat handelt es sich vorzugsweise um Fasermaterialien. Fasermaterialien, die in der vorliegenden Erfindung verwendet werden können, umfassen natürlich vorkommende Fasern (modifiziert oder nicht modifiziert) als auch synthetische Fasem. Beispiele geeigneter nicht modifizierter und modifizierter natürlich vorkommender Fasem umfassen Baumwolle, Espartogras, Zuckerrohr, Grannenhaar, Flachs, Seide, Wolle, Zellstoff, chemisch modifizierter Zellstoff, Jute, Reyon, Ethylzellulose und Zelluloseacetat. Geeignete synthetische Fasem können aus Polyvinylchlorid, Polyvinylfluorid, Polytetrafluorethylen, Polyvinylidenchlorid, Polyacrylat wie Orion®, Polyvinylacetat, Polyethylvinylacetat, nicht löslichem oder löslichem Polyvinylalkohol, Polyolefinen, wie Polyethylen (beispielsweise PULPEX®) und Polypropylenen, Polyamiden, wie Nylon, Polyestem wie DACRON® oder Kodel , Polyurethanen, Polystyrenen und dergleichen hergestellt werden. Die verwendeten Fasem können nur natürlich vorkommende Fasem, nur synthetische Fasem oder irgend eine kompatible Kombination aus natürlich vorkommenden und synthetischen Fasem umfassen.
Die in der vorliegenden Erfindung verwendeten Fasem können hydrophil oder hydrophob sein, oder sie können aus einer Kombination aus hydrophilen und hydrophoben Fasem bestehen. Der Ausdruck "hydrophil", wie er hier verwendet wird, beschreibt Fasem oder Oberflächen von Fasem, die durch wässrige Flüssigkeiten (beispielsweise wässrige Körperflüssigkeiten), die auf diesen Fasem abgesetzt sind, benetzbar sind. Hydrophilie und Benetzbarkeit werden typischerweise in Ausdrücken des Kontaktwinkels und der Oberflächenspannung der beteiligten Flüssigkeiten und Feststoffe definiert. Dies wird im Detail in einer Veröffentlichung der American Chemical Society mit dem Titel "Contact Angle, Wettability and Adhesion" , herausgegeben von Robert F. Gould (Copyright 1964) diskutiert. Eine Faser oder die Oberfläche einer Faser wird durch eine Flüssigkeit benetzt (das heißt sie ist hydrophil), wenn entweder der Kontaktwinkel zwischen der Flüssigkeit und der Faser oder dessen Oberfläche weniger als 90° beträgt, oder wenn die Flüssigkeit dazu neigt, sich spontan über der Oberfläche zu verteilen, wobei beide Bedingungen normalerweise gleichzeitig vorliegen. Umgekehrt wird eine Faser oder die Oberfläche einer Faser als hydrophob betrachtet, wenn der Kontaktwinkel größer als 90° ist und die Flüssigkeit sich nicht spontan auf der Oberfläche der Faser ausbreitet.
Erfindungsgemäß bevorzugte Fasern sind hydrophile Fasem. Geeignete hydrophile Fasem umfassen Zellulosefasern, modifizierte Zellulosefasem, Reyon, Polyesterfasern, wie Polyefhylenterephfhalat (beispielsweise DACRON®), hydrophiles Nylon (HYDROFIL®) und dergleichen. Geeignete hydrophile Fasem können auch durch das Hydrophilieren hydrophober Fasem, wie etwa mit einem oberflächenaktiven Stoff behandelten oder mit Silica behandelten thermoplastischen Fasem, die beispielsweise auf Polyolefinen wie Polyethylen oder Polypropylen oder auf Polyacrylaten, Polyamiden, Polystyrol, Polyurethanen und dergleichen basieren, erhalten werden. Aus Gründen der Verfügbarkeit und der Kosten werden Zellulosefasem, insbesondere Zellstoffasern, für die Verwendung in der vorliegenden Erfindung bevorzugt. Weiterhin bevorzugte hydrophile Fasem zur Verwendung in der vorliegenden Erfindung sind chemisch versteifte Zellulosefasem. Der Ausdruck „chemisch versteifte Zellulosefasem" bezeichnet dabei Zellulosefasem, die mittels chemischer Mittel versteift werden, um die Steifheit der Fasem sowohl unter trockenen als auch unter wässrigen Bedingungen zu erhöhen. Solche Mittel können chemischen Versteifungsmittel sein, die beispielsweise die Fasem bedecken und/oder imprägnieren. Es kann sich jedoch auch um solche chemischen Versteifungsmittel handeln, die durch Änderung der chemischen Struktur der Fasem, beispielweise hervorgerufen durch das Vernetzen von Polymerketten, eine Versteifung bewirken. Polymerversteifungsmittel, die die Zellulosefasem bedecken oder imprägnieren können, umfassen: kationische Stärken, die Stickstoff enthaltende Grappen (beispielsweise Aminogruppen) aufweisen, wie sie von der National Starch and Chemical Corp., Bridgewater, NJ, USA erhältlich sind, Latexe, nassfeste Harze, wie Polyamidepichlorhydrinharz (beispielsweise Kymene® 557H, Hercules, Inc., Wilmington, Delaware, USA), Polyacrylamidharze, wie sie beispielsweise in US 3,556,932 beschrieben sind, kommerziell erhältliche Polyacrylamide wie Parez® 631 NZ der American Cyanamid Co., Stanfort, CT, USA, Hamstofformaldehyde sowie Melaminformaldehydharze. Fasem, die durch Vernetzungsbindungen in individuellen Formen versteift wurden (das heißt die einzelnen versteiften Fase als auch die Verfahren für ihre Herstellung) sind beispielsweise beschrieben in US 3,224,926, US 3,440,135, US 3,932,209 sowie in US 4,035,147. Bevorzugte Vernetzungsmittel sind Glutaraldehyd, Glyoxal, Formaldehyd, Glyoxalsäure, Oxydisuccinsäure und Zitronensäure. Die durch Vernetzung oder Beschichtung, Imprägnierung oder Vernetzung erhaltenen versteiften Zellulosefasem können verdreht oder gekräuselt sein, vorzugsweise sind die Fasem verdreht und zusätzlich gekräuselt.
Neben den vorstehend genannten Fasermaterialien kann das Core auch thermoplastische Materialien erhalten. Beim Schmelzen wandert zumindest ein Teil dieses thermoplastischen Materials, typischerweise verursacht durch die Kapillargradienten, zwischen den Fasem hindurch zu den Kreuzungen der Fasem. Diese Kreuzungen werden zu Verbindungsstellen für das thermoplastische Material. Wenn das Element abgekühlt wird, so verfestigt sich das thermoplastische Material an diesen Kreuzungen, um Verbindungsstellen zu bilden, die die Matrix oder das Gewebe der Fasem in jeder der jeweiligen Schichten zusammen halten. Die thermoplastischen Materialien können in verschiedenen Formen, wie etwa Teilchen, Fasem oder Kombinationen aus Teilchen und Fasem, vorliegen. Diese Materialien können aus einer Vielzahl thermoplastischer Polymere, ausgewählt aus Polyolefinen, wie Polyethylen (beispielsweise PULPEX®) und Polypropylen, Polyestem, Copolyestem, Polyvinylacetaten, Polyethylvinylacetaten, Polyvinylchloriden, Polyvinylidenchloriden, Polyacrylaten, Polyamiden, Copolyamiden, Polystyrol, Polyurethanen und Copolymeren der vorangehenden Stoffe, wie Vinylchlorid/Ninylacetat und dergleichen, bestehen. Für Cores kommen als Substrat überwiegend aus Zellulose bestehende, vorzugsweise faserförmige Materialien in Betracht. In einer weiteren Ausführungsform des Cores umfasst dieses neben dem Substrat und dem absorbierenden Polymergebilde (Pa) weitere, pulverförmige Substanzen, wie zum Beispiel geruchsbindende Substanzen wie Cyclodextrine, Zeolithe, anorganische oder organische Salze und ähnliche Materialien.
In einer Ausführungsform des absorbierenden Cores ist das absorbierende Polymergebilde (Pa) in einer Menge im Bereich von 10 bis 90, bevorzugt von 20 bis 80 und besonders bevorzugt von 40 bis 70 Gew.%, bezogen auf das Core, eingearbeitet. In einer Ausfuhrungsform des Cores ist das absorbierende Polymergebilde (Pa) als Teilchen in das Core eingearbeitet. Dabei können die absorbierenden Polymergebilde (Pa) homogen in den Fasermaterialien verteilt sein, sie können lagig zwischen dem Fasermaterial eingebracht sein oder die Konzentration der absorbierenden Polymergebilde (Pa) kann innerhalb des Fasermaterials einen Gradienten aufweisen. In einer anderen Ausführungsform des Cores ist das absorbierende Polymergebilde (Pa) als Faser in das Core eingearbeitet.
Optional können auch mehrere verschiedene absorbierende Polymerteilchen, die sich zum Beispiel in der Sauggeschwindigkeit, der Permeabilität, der Speicherkapazität, der Absorption gegen Druck, der Komverteilung oder auch der chemischen Zusammensetzung unterscheiden, gleichzeitig eingesetzt werden. Diese verschiedenen Polymerteilchen können miteinander vermischt in das Saugkissen eingebracht werden oder aber lokal differenziert im Core plaziert werden. Eine solche differenzierte Plazierung kann in Richtung der- Dicke des Cores oder der Länge oder Breite des Cores erfolgen.
Das Core kann durch konventionelle, dem Fachmann bekannte Verfahren, wie sie dem Fachmann allgemein unter dem Begriff „Drumforming", beispielsweise mit Hilfe von Formrädern,- taschen und Produktformen und entsprechend angepassten Dosiereinrichtungen für die Rohstoffe bekannt sind, hergestellt werden. Daneben sind moderne, etablierte Verfahren wie das sogenannte Airlaid- Verfahren (z. B. EP 850 615, US 4,640,810) mit allen Formen der Dosierung, Ablage der Fasem und Verfestigung wie Hydrogenbonding (z. B- DE 197 50 890), Thermobonding, Latexbonding (z. B. EP 850 615) und Hybridbonding, das sogenannte Wetlaid- Verfahren (z. B. WO 99/49905), Carding-, Meltblown-, Spunblown-Prozesse sowie ähnliche Prozesse zur Herstellung von superabsorbierenden Non-Wovens (im Sinne der Definition der EDANA, Brüssel) auch in Kombinationen dieser Verfahren mit- und untereinander übliche Methoden zur Herstellung der Cores. Als weitere Verfahren kommen die Herstellung von Laminaten im weitesten Sinne sowie von extrudierten und coextrudierten, nass- und trocken- sowie nachträglich verfestigten Strukturen in Frage.
In einer weiteren Ausführungsfoim des absorbierenden Cores umfasst dieses neben dem Substrat und dem in das Substrat eingearbeiteten absorbierenden Polymergebilde (Pa), die zusammen als Speicherschicht für die Körperflüssigkeiten dienen, eine Aufiiahmeschicht, die vorzugsweise zur schnellen Aufnahme und Verteilung der Flüssigkeit im Core dient. Dabei kann die Aufhahmeschicht unmittelbar über der Speicherschicht angeordnet sein, ist es jedoch auch möglich, dass die Aufhahmeschicht durch eine vorzugsweise flüssigkeitsstabile Zwischenschicht von der Speicherschicht getrennt ist. Diese Zwischenschicht dient dann in erster Linie als Stützsubstrat für die Aufhahmeschicht und die Speicherschicht. Bevorzugte Materialien für diese Zwischenschicht sind Polyester-Spinnvliese, oder Vliese aus Polypropylen, Polyethylen oder Nylon.
In einer Ausführungsform des erfindungsgemäßen Cores ist die Aufhahmeschicht frei vom absorbierenden Polymer. Die Aufhahmeschicht kann jede geeignete Größe aufweisen und muss sich nicht über die gesamte Länge oder Breite der Speicherschicht erstrecken. Die Aufhahmeschicht kann beispielsweise in Form eines Streifens oder Fleckens ausgebildet sein. Die gesamte Aufhahmeschicht ist vorzugsweise hydrophil, aber sie kann auch hydrophobe Komponenten aufweisen. Die Aufhahmeschicht kann ein gewobenes Material, ein Vliesmaterial oder einen anderen geeigneten Typ eines Materials umfassen. Vorzugsweise basiert die Aufhahmeschicht auf hydrophoben Polye hylen-Terephfhalat-Fasern (PET- Fasem), chemisch versteiften Zellulosefasem oder aus Mischungen dieser Fasem. Weiter geeignete Materialien sind Polypropylen, Polyethylen, Nylon oder biologische Fasem. Wenn die Aufhahmeschicht ein Vliesmaterial umfasst, so kann sie durch eine Vielzahl unterschiedlicher Verfahren hergestellt werden. Diese umfassen Nassiegen, Aufbringen im Luftstrom, Aufbringen in der Schmelze, Ausbildung als Spinnvlies, Kardieren (dies umfasst thermisches Verbinden, Verbinden mit Lösungsmitteln oder Verbinden mit dem Schmelzspinnverfahren). Die letztgenannten Prozesse (Ausbildung als Spinnvlies und Kardieren) werden bevorzugt, wenn es gewünscht wird, die Fasem in der Aufhahmeschicht auszurichten, da es in solchen Prozessen leichter ist, die Fasem in einer einzigen Richtung auszurichten. Ein besonders bevorzugtes Material für die Aufhahmeschicht ist ein PET-Spinnvlies.
In der Ausführungsform, in der der Verbund eine Windel ist, stellen die Bestandteile der Windel, die von dem absorbierenden Polymergebilde (Pa) verschieden sind, das Substrat des Verbundes dar. In einer bevorzugten Ausführungsform enthält die Windel ein zuvor beschriebenes Core. In diesem Fall stellen die von dem Core unterschiedlichen Bestandteile der Windel das Substrat des Verbundes dar. Im allgemeinen umfasst ein als Windel eingesetzter Verbund eine wasserundurchlässige Unterschicht, eine wasserdurchlässige, vorzugsweise hydrophobe, Oberschicht und eine das absorbierende Polymergebilde (Pa) beinhaltende Schicht, die zwischen der Unterschicht und der Oberschicht angeordnet ist. Diese das absorbierende Polymergebilde (Pa) beinhaltende Schicht ist vorzugsweise ein zuvor beschriebenes Core. Die Unterschicht kann alle dem Fachmann bekannten Materialien aufweisen, wobei Polyethylen oder Polypropylen bevorzugt sind. Die Oberschicht kann gleichfalls alle dem Fachmann bekannten und geeigneten Materialien enthalten, wobei Polyester, Polyolefine, Viskose und dergleichen bevorzugt sind, die eine so poröse Schicht ergeben, dass ein ausreichender Flüssigkeitsdurchlass der Oberschicht sichergestellt ist. In diesem Zusammenhang wird auf die Offenbarung in US 5,061,295, US Re. 26,151, US 3,592,194, US 3,489,148 sowie US 3,860,003 verwiesen. Diese Offenbarungen werden hiermit als Referenz eingeführt und gelten somit als Teil der Offenbarung.
Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung eines Verbunds, wobei ein erfmdungsgemässes absorbierendes Polymergebilde und ein Substrat und ggf. ein geeignetes Hilfsmittel miteinander in Kontakt gebracht werden. Das in Kontakt bringen erfolgt vorzugsweise durch Wetlaid- und Airlaid- Verfahren, Kompaktieren, Extradieren oder Mischen.
Zudem betrifft die Erfindung ein Verbund, der durch das vorstehende Verfahren erhältlich ist.
Femer betrifft die Erfindung chemische Produkte, insbesondere Schäume, Formkörper, Fasem, Folien, Filme, Kabel, Dichtungsmaterialien, flüssigkeitsaufhehmende Hygieneartikel, Träger für pflanzen- oder pilzwachstumsregulierende Mittel oder Pflanzenschutzwirkstoffen, Zusätze für Baustoffe, Verpackungsmaterialien oder Bodenzusätze, die das erfindungsgemässe absorbierende Polymergebilde (Pa) oder das vorstehend beschriebene Substrat beinhalten.
Außerdem betrifft die Erfindung die Verwendung des erfmdungsgemässen absorbierenden Polymersgebildes (Pa) oder des zuvor beschriebenen Substrats in chemischen Produkten, insbesondere in Schäumen, Formkörpem, Fasem, Folien, Filmen, Kabeln, Dichtungsmaterialien, flüssigkeitsaufnehmenden
Hygieneartikeln, Trägem für pflanzen- oder pilzwachstumsregulierende Mittel oder Pflanzenschutzwirkstoffen, Zusätzen für Baustoffe, Verpackungsmaterialien oder Bodenzusätzen. Bei der Verwendung als Trägem für pflanzen- oder pilzwachstumsregulierende Mittel oder Pflanzenschutzwirkstoffen, ist es bevorzugt, dass die pflanzen- oder pilzwachstumsregulierende Mittel oder Pflanzenschutzwirkstoffe über einen durch den Träger kontrollierten Zeitraum abgegeben werden können.
Die Erfindung betrifft des Weiteren eine wässrige Lösung enthaltend mindestens einen chemischen Vemetzer und mindestens eine anorganische Verbindung in kolloiddisperser Form, wobei der chemische Vemetzer und die anorganische Verbindung denjenigen chemischen Vemetzem bzw. anorganischen Verbindungen entsprechen, die bereits im Zusammenhang mit dem eingangs beschriebenen erfindungsgemäßen Verfahren zur Herstellung absorbierender Polymergebilde (Pa) genannt wurden.
Der chemische Vemetzer liegt in der erfindungsgemäßen wässrigen Lösung vorzugsweise in einer Menge von 5 bis 70 Gew.-%, besonders bevorzugt von 20 bis 60 Gew.-% und darüber hinaus bevorzugt von 30 bis 50 Gew.-%, bezogen auf die Menge des Wassers, in der wässrigen Lösung vor.
Die anorganische Verbindung liegt in der erfindungsgemäßen wässrigen Lösung vorzugsweise in einer Menge von 1 bis 40 Gew.-%, besonders bevorzugt von 1 ,5 bis 35 Gew.-% und darüber hinaus bevorzugt von 2,5 bis 32 Gew.-%, bezogen auf die Menge des Wassers, in der wässrigen Lösung vor.
ie vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung dieser wässrigen Lösung, wobei eine wässrige Lösung enthaltend mindestens eine anorganische Verbindung in kolloiddisperser Form mit mindestens einem chemischen Vemetzer vermischt wird. Bei diesem erfindungsgemäßen Verfahren kann der chemische Vemetzer als solcher oder aber in Form einer wässrigen Lösung mit der wässrigen Lösung enthaltend die anorganische Verbindung in kolloiddisperser Form vermischt werden. Die Erfindung betrifft auch eine wässrige Lösung, die nach dem vorstehenden Verfahren erhältlich ist.
Die Erfindung betrifft des Weiteren die Verwendung einer wässrigen Lösung enthaltend mindestens einen chemischen Vemetzer und mindestens eine anorganische Verbindung in kolloiddisperser Form oder die Verwendung einer wässrigen Lösung, die nach dem vorstehenden Verfahren zur Herstellung einer wässrigen Lösung erhältlich ist, zur Behandlung des Aussenbereiches eines absorbierenden Polymergebildes (Pul) oder (Pu2). Das Behandeln erfolgt dabei in der bereits eingangs im Zusammenhang mit dem erfindungsgemäßen Verfahren zum Behandeln des Aussenbereiches eines absorbierenden Polymergebildes (Pul) oder (Pu2) dargelegten Art und Weise. Das absorbierende Polymergebilde (Pul) oder (Pu2) entspricht demjenigen absorbierenden Polymergebilde (Pul) oder (Pu2), welches ebenfalls bereits im Zusammenhang mit dem erfindungsgemäßen Verfahren zum Behandeln des Aussenbereiches eines absorbierenden Polymergebildes (Pul) oder (Pu2) beschrieben wurde.
Schließlich betrifft die Erfindung die Verwendung einer wässrigen Lösung enthaltend mindestens einen chemischen Vemetzer und mindestens eine anorganische Verbindung in kolloiddisperser Form oder die Verwendung einer wässrigen Lösung, die nach dem vorstehenden Verfahren zur Herstellung einer wässrigen Lösung erhältlich ist zum Einstellen mindestens einer der folgenden Eigenschaften in einem absorbierenden Polymergebilde (Pul) oder (Pu2): (γl) Saline Flow Conductivity (SFC), (γ2) Centrifugation Retention Capacity (CRC) oder
(γ3) Absorbency against Pressure (AAP).
Die sich aus den vorstehenden Eigenschaften ergebenden
Eigenschaftskombinationen von zwei oder mehr dieser Eigenschaften stellen jeweils bevorzugte Formen der erfindungsgemässen Verwendung der erfindungsgemässen wässrigen Lösung dar. Weiterhin als erfindungsgemässe Ausführungsformen besonders bevorzugt ist eine Verwendung der wässrigen Lösung zur Einstellung folgender Eigenschaften bzw.
Eigenschaftskombinationen: γl , γ2, γ3, γlγ2, γlγ3, γ2γ3, γlγ2γ3.
Die Erfindung wird nun anhand nicht limitierender Beispiele näher erläutert.
BEISPIELE
HERSTELLUNG DER UNBEHANDELTEN, ABSORBIERENDEN POLYMERGEBILDE (Pul)
Pulver A
Eine Monomerenlösung bestehend aus 280 g Acrylsäure, die zu 70 Mol% mit Natronlauge neutralisiert wurde, 466,8 g Wasser, 1,4 g Polyethylenglykol-300- diacrylat und 1,68 g Allyloxypolyethylenglykolacrylsäureester wird durch Spülen mit Stickstoff vom gelösten Sauerstoff befreit und auf die Starttemperatur von 4°C abgekühlt. Nach Erreichen der Starttemperatur wurde die Initiatorlösung (0,1 g 2,2'-Azobis-2-amidinpropan-dihydrochlorid in 10 g H2O, 0,3 g Natriumperoxydisulfat in 10 g H2O, 0,07 g 30%ge Wasserstofφeroxidlösung in 1 g H2O und 0,015 g Ascorbinsäure in 2 g H O) zugesetzt. Nachdem die Endtemperatur von ca. 100°C erreicht war, wurde das entstandene Gel zerkleinert und bei 150°C 90 Minuten lang getrocknet. Das getrocknete Polymerisat wurde grob zerstoßen, gemahlen und auf ein Pulver mit einer Partikelgröße von 150 bis 850 μm gesiebt.
Das Pulver A besitzt eine Retentionskapazität von 28,8 g/g.
Pulver B
Eine Monomerenlösung bestehend aus 280 g Acrylsäure, die zu 70 Mol% mit Natronlauge neutralisiert wurde, 467,6 g Wasser, 0,98 g Polyethylenglykol-300- diacrylat und 1 ,26 g Allyloxypolyethylenglykolacrylsäureester wird durch Spülen mit Stickstoff vom gelösten Sauerstoff befreit und auf die Starttemperatur von 4°C abgekühlt. Nach Erreichen der Starttemperatur wurde die Initiatorlösung (0,1 g 2,2'-Azobis-2-amidinpropan-dihydrochlorid in 10 g H2O, 0,3 g Natriumperoxydi- sulfat in 10 g H2O, 0,07 g 30%ge Wasserstofφeroxidlösung in 1 g H2O und 0,015 g Ascorbinsäure in 2 g H2O) zugesetzt. Nachdem die Endtemperatur von ca. 100°C erreicht war, wurde das entstandene Gel zerkleinert und bei 150°C 90 Minuten lang getrocknet. Das getrocknete Polymerisat wurde grob zerstoßen, gemahlen und auf ein Pulver mit einer Partikelgröße von 150 bis 850 μm gesiebt.
Das Pulver B besitzt eine Retentionskapazität von 31,2 g/g.
Pulver C
Eine Monomerenlösung bestehend aus 280 g Acrylsäure, die zu 70 Mol% mit Natronlauge neutralisiert wurde, 468,6 g Wasser, 0,42 g Polyethylenglykol-300- diacrylat und 0,84 g Allyloxypolyethylenglykolacrylsäureester wird durch Spülen mit Stickstoff vom gelösten Sauerstoff befreit und auf die Starttemperatur von 4°C abgekühlt. Nach Erreichen der Starttemperaτur wurde die Initiatorlösung (0,1 g 2,2'-Azobis-2-amidinpropan-dihydrochlorid in 10 g H2O, 0,3 g Natriumperoxydi- sulfat in 10 g H2O, 0,07 g 30%ge Wasserstofφeroxidlösung in 1 g H2O und 0,015 g Ascorbinsäure in 2 g H2O) zugesetzt. Nachdem die Endtemperatur von ca. 100°C erreicht war, wurde das entstandene Gel zerkleinert und bei 150°C 90 Minuten lang getrocknet. Das getrocknete Polymerisat wurde grob zerstoßen, gemahlen und auf ein Pulver mit einer Partikelgröße von 150 bis 850 μm gesiebt.
Das Pulver C besitzt eine Retentionskapazität von 37,1 g/g.
Die in den nachfolgenden Beispielen angegebenen Mengen, in denen die einzelnen Komponenten, wie beispielsweise der Nachvernetzer, das Wasser oder das Kieselsäuresol, bei der Behandlung des Aussenbereiches des unbehandelten, absorbierenden Polymergebildes (Pul) eingesetzt werden, sind als Mengen bezogen auf das Gewicht des unbehandelten, absorbierenden Polymergebildes (Pul) zu verstehen.
ElNFLUSS DER BEHANDLUNG DES AUSSENBEREICHES DER UNBEHANDELTEN ABSORBIERENDEN POLYMERGEBILDE (Pul) AUF DIE RETENTION, DIE PERMEABILITÄT UND DIE ABSORPTION UNTER DRUCK
Beispiel 1 :
50 g Pulver A wird mittels eines Krups-Küchenmixers mit einer Lösung aus 0,5 g Ethylencarbonat, 0,42 g Kieselsäuresol (Produkt Levasil® 200 der Bayer AG, Feststoffanteil ca. 30 Gew.-%) und 1,08 g Wasser unter kräftigem Rühren vermischt und anschließend für 30 min. in einem Ofen, der auf 180°C temperiert war, erhitzt.
Beispiel 2:
50 g Pulver A wird mittels eines Krups-Küchenmixers mit einer Lösung aus 0,5 g Ethylencarbonat, 0,84 g Kieselsäuresol (Produkt Levasil® 200 der Bayer AG, Feststoffanteil ca. 30 Gew.-%) und 0,66 g Wasser unter kräftigem Rühren vermischt und anschließend für 30 min. in einem Ofen, der auf 180°C temperiert war, erhitzt. Beispiel 3:
50 g Pulver B wird mittels eines Krups-Küchenmixers mit einer Lösung aus 0,5 g
Ethylencarbonat, 0,42 g Kieselsäuresol (Produkt Levasil® 200 der Bayer AG, Feststoffanteil ca. 30 Gew.-%) und 1,08 g Wasser unter kräftigem Rühren vermischt und anschließend für 30 min. in einem Ofen, der auf 180°C temperiert war, erhitzt.
Beispiel 4:
50 g Pulver B wird mittels eines Krups-Küchenmixers mit einer Lösung aus 0,5 g Ethylencarbonat, 0,84 g Kieselsäuresol (Produkt Levasil® 200 der Bayer AG, Feststoffanteil ca. 30 Gew.-%) und 0,66 g Wasser unter kräftigem Rühren vermischt und anschließend für 30 min. in einem Ofen, der auf 180°C temperiert war, erhitzt.
Beispiel 5:
50 g Pulver C wird mittels eines Krups-Küchenmixers mit einer Lösung aus 0,5 g Ethylencarbonat, 0,42 g Kieselsäuresol (Produkt Levasil® 200 der Bayer AG, Feststoffanteil ca. 30 Gew.-%) und 1,08 g Wasser unter kräftigem Rühren vermischt und anschließend für 30 min. in einem Ofen, der auf 180°C temperiert war, erhitzt.
Vergleichsbeispiel 1:
50 g Pulver A wird mittels eines Krups-Küchenmixers mit einer Lösung aus 0,5 g Ethylencarbonat und 1,5 g Wasser unter kräftigem Rühren vermischt und anschließend für 30 min. in einem Ofen, der auf 180°C temperiert war, erhitzt.
Vergleichsbeispiel 2:
50 g Pulver B wird mittels eines Kraps-Küchenmixers mit einer Lösung aus 0,5 g Ethylencarbonat und 1,5 g Wasser unter kräftigem Rühren vermischt und anschließend für 30 min. in einem Ofen, der auf 180°C temperiert war, erhitzt.
Vergleichsbeispiel 3:
Das in Vergleichsbeispiel 2 erhaltene nachvemetzte Polymergebilde wird mit 0,84 g Kieselsäuresol (Produkt Levasil® 200 der Bayer AG, Feststoffanteil ca. 30 Gew.-%) und 0,16 g Wasser unter kräftigem Rühren vermischt. Das Produkt wird anschließend keinem Temperungsschritt unterzogen.
Vergleichsbeispiel 4:
Das in Vergleichsbeispiel 2 erhaltene nachvemetzte Polymergebilde wird mit 0,84 g Kieselsäuresol (Produkt Levasil® 200 der Bayer AG, Feststoffanteil ca. 30 Gew.-%) und 0,16 g Wasser unter kräftigem Rühren vermischt und anschließend für 60 min. in einem Ofen, der auf 100°C temperiert war, erhitzt. Vergleichsbeispiel 5:
50 g Pulver B wird mittels eines Krups-Küchenmixers mit einer Lösung aus 0,5 g Ethylencarbonat, 0,125 g Aerosil® (pyrogene Kieselsäuresol der Degussa AG) und 2 g Wasser unter kräftigem Rühren vermischt und anschließend für 30 min. in einem Ofen, der auf 180°C temperiert war, erhitzt. Zur Herstellung der Suspension von Aerosil® in Wasser waren erhöhte Wassermengen erforderlich. Dennoch ließ sich keine gut dosierbare Suspension erhalten, da sich das eingetragene Aerosil sehr schnell wieder absetzt und eine homogene Dosierung auf das Pulver B nicht möglich ist. Das beschichtete Polymer neigt zur Klumpenbildung und ist inhomogen.
Vergleichsbeispiel 6:
50 g Pulver C wird mittels eines Kraps-Küchenmixers mit einer Lösung aus 0,5 g Ethylencarbonat und 1,5 g Wasser unter kräftigem Rühren vermischt und anschließend für 30 min. in einem Ofen, der auf 180°C temperiert war, erhitzt.
Vergleichsbeispiel 7:
50 g Pulver B wird mittels eines Kraps-Küchenmixers mit einer Lösung aus 0,25 g Diethylenglykolmonomethylether, 0,25 g Kieselsäuresol (Produkt Levasil® 200 der Bayer AG, Feststoffanteil ca. 30 Gew.-%) und 1,25 g Wasser unter kräftigem Rühren vermischt und anschließend für 3 min. in einem Ofen, der auf 120°C temperiert war, erhitzt. Diese Behandlung entspricht der Behandlung gemäß Beispiel 1 der JP 1994/16822. Vergleichsbeispiel 8:
50 g Pulver B wird mittels eines Kraps-Küchenmixers mit einer Lösung aus 0,25 g 1,3-Butandiol, 0,25 g Kieselsäuresol (Produkt Levasil® 200 der Bayer AG, Feststoffanteil ca. 30 Gew.-%) und 1,25 g Wasser unter kräftigem Rühren vermischt und anschließend für 3 min. in einem Ofen, der auf 120°C temperiert war, erhitzt. Diese Behandlung entspricht der Behandlung gemäß Beispiel 2 der JP 1994/16822.
Die Eigenschaften der in den Beispielen 1 bis 4 sowie in den Vergleichsbeispielen 1 bis 8 erhaltenen absorbierenden Polymergebilde sind in der folgenden Tabelle 1 zusammengestellt.
Die erfindungsgemäß hergestellten absorbierenden Polymergebilde zeigen eine signifikante Steigerung der Permeabilität (SFC) bei gleichbleibender oder sogar erhöhter Retention gegenüber Produkten, deren Aussenbereich in Abwesenheit eines Kieselsäuresols vernetzt wurde (Beispiel 1 bis 4, Vergleichsbeispiele 1 und 2). Eine Nachbehandlung der schon nachvemetzten Polymergebilde mit Kieslsäuresol führt unabhängig von der nachfolgenden thermischen Behandlung nicht zum gewünschten Ergebnis (Vergleichsbeispiel 3, 4 und 6).
Der Zusatz von Aerosil 200® bei der Nachvemetzung führt nicht zu vergleichbar guten Superabsorberkenndaten (Vergleichsbeispiel 5). Weiterhin sind erhöhte Mengen Aerosil 200 nicht mehr in einer akzeptablen Wassermenge zu dispergieren und sind somit nicht mehr dispergierbar.
Vergleichsbeispiele 7 und 8 zeigen, dass in den erfindungsgemäßen Beispielen der ungeprüften JP 1994/16822 keine gute Performance der Polymere hinsichtlich ihrer Permeabilität und Retention zu erzielen ist. Tabelle 1
Figure imgf000053_0001
EINFLUSS DER BEHANDLUNG DES AUSSENBEREICHES DER UNBEHANDELTEN ABSORBIERENDEN POLYMERGEBILDE (Pul) AUF DIE AGGLOMERATIONSNEIGUNG DER POLYMERGEBILDE.
Beispiel 6:
50 g Pulver B wird mittels eines Kraps-Küchenmixers mit einer Lösung aus 0,5 g Ethylencarbonat, 0,125 g Kieselsäuresol (Produkt Levasil® 200 der Bayer AG, Feststoffanteil ca. 30 Gew.-%) und 1,38 g Wasser unter kräftigem Rühren vermischt. Anschließend wird ein Pressung aus dem mit der wässrigen Lösung in Kontakt gebrachten absorbierenden Polymergebilde hergestellt und es werden dessen Dichte und der zur Zerstörang des Presslings aufzuwendende Drack bestimmt.
Beispiel 7:
50 g Pulver B wird mittels eines Kraps-Küchenmixers mit einer Lösung aus 0,5 g Ethylencarbonat, 0,125 g Kieselsäuresol (Produkt Levasil® 200 der Bayer AG, Feststoffanteil ca. 30 Gew.-%) und 1,25 g Wasser unter kräftigem Rühren vermischt. Anschließend wird ein Pressung aus dem mit der wässrigen Lösung in Kontakt gebrachten absorbierenden Polymergebilde hergestellt und es werden dessen Dichte und der zur Zerstörung des Presslings aufzuwendende Druck bestimmt. Vergleichsbeispiel 9:
50 g Pulver B wird mittels eines Kraps-Küchenmixers mit einer Lösung aus 0,5 g Ethylencarbonat und 1,5 g Wasser unter kräftigem Rühren vermischt. Anschließend wird ein Pressung aus dem mit der wässrigen Lösung in Kontakt gebrachten absorbierenden Polymergebilde hergestellt und es werden dessen Dichte und der zur Zerstörang des Presslings aufzuwendende Druck bestimmt.
Die Eigenschaften der in den Beispielen 5 und 6 sowie im Vergleichsbeispiel 9 mit der wässrigen Lösung in Kontakt gebrachten, absorbierenden Polymergebilde sind in der folgenden Tabelle 2 zusammengestellt:
Tabelle 2
Figure imgf000055_0001
Die Ergebnisse zeigen, dass die Bildung stabiler Agglomerate durch den Zusatz von Kieselsäuresol signifikant zurückgedrängt wird. Durch diesen Zusatz wird erreicht, dass das unbehandelte, absorbierende Polymergebilde (Pul) mit erhöhten Flüssigkeitsmengen beaufschlagt werden kann, ohne dass durch Verklumpen die Verarbeitbarkeit beeinträchtigt wird. TESTMETHODEN
PERMEABILITÄT IM GEQUOLLENEN ZUSTAND (SFC-TEST)
Die Bestimmung der Permeabilität im gequollenen Zustand (Saline Flow Conductivity = SFC) erfolgt nach einer in WO 95/22356 beschriebenen Methode. In einem Zylinder mit Siebboden werden ca. 0,9 g Superabsorbermaterial eingewogen und sorgfältig auf der Siebfläche verteilt. Das Superabsorbermaterial lässt man in JAYCO synthetischem Urin 1 Stunde lang gegen einen Drack von 20 g/cm2 quellen. Nach Erfassung der Quellhöhe des Superabsorbers lässt man bei konstantem hydrostatischem Druck 0,118 M NaCl-Lösung aus einem nivellierten Vorratsgefäß durch die gequollene Gelschicht laufen. Die gequollene Gelschicht ist während der Messung mit einem speziellen Siebzylinder abgedeckt, der eine gleichmässige Verteilung der 0,118 M NaCl-Lösung oberhalb des Gels und konstante Bedingungen (Messtemperatur 20-25°C) während der Messung bezüglich der Gelbett-Beschaffenheit gewährleistet. Der auf den gequollenen Superabsorber wirkende Druck ist weiterhin 20 g/cm . Mit Hilfe eines Computers und einer Waage wird die Flüssigkeitsmenge, die die Gelschicht als Funktion der Zeit passiert, in Intervallen von 20 Sekunden innerhalb einer Zeitperiode von 10 Minuten erfasst. Die Fliessrate g/s durch die gequollene Gelschicht wird mittels Regressionsanalyse mit Extrapolation der Steigung und Ermittlung des Mittelpunktes auf den Zeitpunkt t=0 der Fließmenge innerhalb der Minuten 2-10 ermittelt. Der SFC-Wert (K) wurde in cm3-s-g"' angegeben und wie folgt berechnet:
_ Fs(t = 0) -Lo ^ Fs(t = 0) - Lo
K r-A - AP 139506
wobei Fs(t=0) die Fließrate in g/s, L0 die Dicke der Gelschicht in cm, r die Dichte der NaCl-Lösung (1 ,003 g/cm3),
A die Fläche der Oberseite der Gelschicht im Messzylinder
(28,27 cm2), ΔP der hydrostatische Drack, der auf der Gelschicht lastet
(4.920 dyne/cm2), und K der SFC-Wert ist.
BESTIMMUNG DER AGGLOMERATIONSNEIGUNG
Die Neigung von flüssigkeitsbeschichteten Superabsorbem zur Bildung von Agglomeraten wird mit einem Indiciser der Firma J. R. Johanson Inc. bestimmt. Dazu wird der Superabsorber mit der zu untersuchenden Nachvemetzerlösung beschichtet und anschließend 50 g des Pulvers der Untersuchung zugeführt. Das Gerät fertigt mit einem definierten Druck von 160.000 Pascal mittels eines Pressstempels in einem Metallhohlzylinder, der einen Innendurchmesser von 5,23 cm aufweist, einen Preßling mit einer Höhe von etwa 2 cm an. Dieser Preßling wird anschließend durch das Hindurchführen eines zweiten Zylinders, der einen Durchmesser von 4,2 cm aufweist, wieder zerstört, wobei die dazu aufgewendete Kraft gemessen wird.

Claims

PATENTANSPRÜCHE
1. Verfahren zur Herstellung eines absorbierenden Polymergebildes (Pa) durch Behandeln des Aussenbereiches eines unbehandelten absorbierenden Polymergebildes (Pul), umfassend die Schritte: in Kontakt bringen des Aussenbereiches des unbehandelten, absorbierenden Polymergebildes (Pul) mit einer wässrigen Lösung enthaltend mindestens einen chemischen Vemetzer und mindestens eine anorganische Verbindung in kolloiddisperser Form; - Erhitzen des absorbierenden Polymergebildes, dessen Aussenbereich mit der wässrigen Lösung in Kontakt gebracht wurde, auf eine Temperatur im Bereich von 40 bis 300°C, so dass der Aussenbereich des absorbierenden Polymergebildes im Vergleich zum Innenbereich stärker vernetzt ist und die anorganische Verbindung im Aussenbereich des absorbierenden Polymergebildes mindestens teilweise immobilisiert wird.
2. Verfahren zur Herstellung eines absorbierenden Polymergebildes (Pa) durch Behandeln des Aussenbereiches eines nicht mit einer anorganischen Verbindung in kolloiddisperser Form behandelten absorbierenden
Polymergebildes (Pu2), umfassend die Schritte: in Kontakt bringen des Aussenbereiches des absorbierenden Polymergebildes (Pu2) mit einer wässrigen Lösung enthaltend mindestens einen chemischen Vemetzer und mindestens eine anorganische Verbindung in kolloiddisperser Form;
Erhitzen des absorbierenden Polymergebildes, dessen Aussenbereich mit der wässrigen Lösung in Kontakt gebracht wurde, auf eine Temperatur im Bereich von 40 bis 300°C, so dass der Aussenbereich des absorbierenden Polymergebildes im Vergleich zum Innenbereich stärker vernetzt ist und die anorganische Verbindung im Aussenbereich des absorbierenden Polymergebildes mindestens teilweise immobilisiert wird.
3. Verfahren nach Ansprach 1 oder 2, wobei das absorbierende Polymergebilde (Pul) oder (Pu2) auf:
(αl) 20-99,999 Gew.-% polymerisierten, ethylenisch ungesättigten, säuregruppenhaltigen Monomeren oder deren Salze oder polymerisierten, ethylenisch ungesättigten, einen protonierten oder quarternierten Stickstoff beinhaltenden Monomeren, oder deren Mischungen,
(α2) 0-80 Gew.-% polymerisierten, monoethylenisch ungesättigten, mit (αl) copolymerisierbaren Monomeren,
(α3) 0,001-5 Gew.-% eines oder mehrerer Vemetzer,
(α4) 0-30 Gew.-% eines wasserlöslichen Polymeren, sowie (α5) 0-20 Gew.-% eines oder mehrerer Hilfsmittel basiert, wobei die
Summe der Gewichtsmengen (αl) bis (α5) 100 Gew.-% beträgt.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das absorbierende Polymergebilde (Pul) oder - (Pu2) mindestens eine der folgenden Eigenschaften aufweist:
(A) die maximale Aufhahme von 0,9 Gew.-%er NaCl-Lösung liegt in einem Bereich von mindestens 10 bis 1000 g/g,
(B) der mit 0,9 Gew.-%er wässriger NaCl-Lösung extrahierbare Anteil beträgt weniger als 30 Gew.-%, bezogen auf das absorbierende Polymergebilde (Pul) oder (Pu2),
(C) die Schüttdichte liegt im Bereich von 300 bis 1000 g/1,
(D) der pH- Wert von 1 g des absorbierenden Polymergebildes (Pul) oder (Pu2) in 1 1 Wasser liegt im Bereich von 4 bis 10,
(E) der CRC-Wert liegt im Bereich von 10 bis 100 g/g.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das absorbierende Polymergebilde (Pul) oder (Pu2) mit höchstens 20 Gew.-% wässriger Lösung, bezogen auf das Gewicht des absorbierenden Polymergebildes (Pul) oder (Pu2), in Kontakt gebracht wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei zwei getrennte wässrige Lösungen, von denen die eine den chemischen Vemetzer und die andere die anorganische Verbindung in kolloiddisperser Form enthält, zeitgleich mit dem absorbierenden Polymergebilde (Pul) oder (Pu2) in Kontakt gebracht werden.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei mindestens 30 Gew.-% der anorganischen Verbindung in der wässrigen Lösung, mit welcher der Aussenbereich des absorbierenden Polymergebildes (Pul) oder (Pu2) in Kontakt gebracht wird, als Partikel mit einer Partikelgröße im Bereich von 1 bis 100 um vorliegen.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei die anorganische Verbindung in einer Menge von 0,001 bis 10 Gew.-%, bezogen auf das absorbierende Polymergebilde (Pul) oder (Pu2), zur Behandlung des Aussenbereiches des absorbierenden Polymergebildes
(Pul) oder (Pu2) eingesetzt wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, wobei als anorganische Verbindung Polykieselsäure beinhaltende Partikel eingesetzt werden.
10. Verfahren nach einem der vorhergehenden Ansprüche, wobei als chemischer Vernetzer ein Kondensationsvemetzer eingesetzt wird.
11. Absorbierendes Polymergebilde (Pa), erhältlich nach einem Verfahren gemäss einem der Ansprüche 1 bis 10.
12. Absorbierendes Polymergebilde (Pa) beinhaltend einen Innenbereich sowie einen den Innenbereich umgebenden Aussenbereich, wobei der Aussenbereich stärker vernetzt ist als der Innenbereich, im Aussenbereich eine anorganische Verbindung mindestens teilweise immobilisiert ist und wobei das absorbierende Polymergebilde (Pa) mindestens eine der folgenden Eigenschaften aufweist:
(ßl) bei einer CRC <26 g g eine SFC von mindestens 80-10"7cm3-s-g"1, (ß2) bei einer CRC im Bereich >26 bis <27 g/g eine SFC von mindestens 70-10"7 cm3-s-g"1,
(ß3) bei einer CRC im Bereich >27 bis <28 g/g eine SFC von mindestens
60-10"7 cm3-s-g"1, (ß4) bei einer CRC im Bereich >28 bis <29 g/g eine SFC von mindestens 45-10"7 cm3-s-g"1, (ß5) bei einer CRC im Bereich >29 bis <30 eine SFC von mindestens
30-10"7 cm3-s-g"1, (ß6) bei einer CRC im Bereich >30 bis <31 eine SFC von mindestens
20-10"7 cm3-s-g"1. (ß7) bei einer CRC im Bereich >31 eine SFC von mindestens 10-10"7 cm3-s-g_1.
13. Absorbierendes Polymergebilde (Pa) nach Ansprach 12, wobei das absorbierende Polymergebilde eine Absorbency against Pressure (AAP) bei einem Druck von 50 g/cm von mindestens 18 g/g besitzt.
14. Absorbierendes Polymergebilde (Pa) nach einem der Ansprüche 12 bis 13, wobei die anorganische Verbindung ein Kondensat von Polykieselsäuren ist.
15. Verbund, beinhaltend ein absorbierendes Polymergebilde (Pa) nach Ansprach 11 oder 12 und ein Substrat.
16. Verfahren zur Herstellung eines Verbundes, wobei ein absorbierendes Polymergebilde (Pa) nach Anspruch 11 oder 12 und ein Substrat und gegebenenfalls ein Hilfsmittel miteinander in Kontakt gebracht werden.
17. Verbund erhältlich nach einem Verfahren gemäß Ansprach 16.
18. Chemische Produkte, beinhaltend das absorbierende Polymergebilde (Pa) nach Ansprach 11 oder 12 oder den Verbund nach Anspruch 15 oder 17.
19. Verwendung des absorbierenden Polymergebildes (Pa) nach Anspruch 11 oder 12 oder des Verbundes nach Ansprach 15 oder 17 in chemischen Produkten.
20. Wässrige Lösung enthaltend mindestens einen chemischen Vemetzer und mindestens eine anorganische Verbindung in kolloiddisperser Form.
21. Verfahren zur Herstellung einer wässrigen Lösung nach Ansprach 20, wobei eine wässrige Lösung enthaltend mindestens eine anorganische Verbindung in kolloiddisperser Form mit mindestens einem chemischen Vemetzer vermischt wird.
22. Verfahren nach Ansprach 21, worin der chemische Vemetzer in Form einer wässrigen Lösung eingesetzt wird.
23. Eine wässrige Lösung erhältlich nach einem Verfahren gemäß Ansprach 21 oder 22.
24. Eine wässrige Lösung nach Ansprach 20 oder 23, wobei die anorganische Verbindung Polykieselsäure beinhaltende Partikel sind.
25. Verwendung der wässrigen Lösung nach Anspruch 20 oder 23 zum Behandeln des Außenbereiches eines unbehandelten, absorbierenden Polymergebildes (Pul).
26. Verwendung der wässrigen Lösung nach Ansprach 20 oder 23 zum Behandeln des Außenbereiches eines nicht mit einer anorganischen
Verbindung in kolloiddisperser Form behandelten absorbierenden Polymergebildes (Pu2).
27. Verwendung der wässrigen Lösung nach Ansprach 20 oder 23 zum Einstellen mindestens einer der folgenden Eigenschaften in einem unbehandelten, absorbierenden Polymergebilde (Pul): (γl) Saline Flow Conductivity (SFC), (γ2) Centrifugation Retention Capacity (CRC) oder (γ3) Absorbency against Pressure (AAP).
28. Verwendung der wässrigen Lösung nach Anspruch 20 oder 23 zum Einstellen mindestens einer der folgenden Eigenschaften in einem nicht mit einer anorganischen Verbindung in kolloiddisperser Form behandelten absorbierenden Polymergebilde (Pu2): (γl) Saline Flow Conductivity (SFC),
(γ2) Centrifugation Retention Capacity (CRC) oder (γ3) Absorbency against Pressure (AAP).
PCT/EP2003/011828 2002-10-25 2003-10-24 Absorbierende polymergebilde mit verbesserter retentionskapazität und permeabilität WO2004037903A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2003296558A AU2003296558A1 (en) 2002-10-25 2003-10-24 Absorbent polymer structure provided with an improved retention capacity and permeability
EP03809325.8A EP1563002B2 (de) 2002-10-25 2003-10-24 Absorbierende polymergebilde mit verbesserter retentionskapazität und permeabilität
CN200380101982.3A CN1708542B (zh) 2002-10-25 2003-10-24 具有提高的保持容量和渗透性的吸收性聚合物结构
BR0315653-2A BR0315653A (pt) 2002-10-25 2003-10-24 "processo para produzir uma estrutura de polìmero absorvente com aperfeiçoadas capacidade de retenção e permeabilidade, polìmeros e compósito obtido e seus usos"
JP2004545982A JP4806191B2 (ja) 2002-10-25 2003-10-24 吸水性ポリマー構造体及び吸水性ポリマー構造体の製造方法、複合体及び複合体の製造方法、化学製品、並びにその使用
US10/532,280 US7833624B2 (en) 2002-10-25 2003-10-24 Absorbent polymer structure with improved retention capacity and permeability

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2002149821 DE10249821A1 (de) 2002-10-25 2002-10-25 Absorbierende Polymergebilde mit verbesserter Rententionskapazität und Permeabilität
DE2002149822 DE10249822A1 (de) 2002-10-25 2002-10-25 Zweistufiges Mischverfahren zur Herstellung eines absorbierenden Polymers
DE10249822.9 2002-10-25
DE10249821.0 2002-10-25

Publications (2)

Publication Number Publication Date
WO2004037903A2 true WO2004037903A2 (de) 2004-05-06
WO2004037903A3 WO2004037903A3 (de) 2004-06-03

Family

ID=32178279

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2003/011830 WO2004037900A1 (de) 2002-10-25 2003-10-24 Zweistufiges mischverfahren zur herstellung eines absorbierenden polymers
PCT/EP2003/011828 WO2004037903A2 (de) 2002-10-25 2003-10-24 Absorbierende polymergebilde mit verbesserter retentionskapazität und permeabilität

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/011830 WO2004037900A1 (de) 2002-10-25 2003-10-24 Zweistufiges mischverfahren zur herstellung eines absorbierenden polymers

Country Status (6)

Country Link
US (2) US7833624B2 (de)
EP (1) EP1563002B2 (de)
AU (2) AU2003296558A1 (de)
BR (1) BR0315632A (de)
TW (2) TWI378955B (de)
WO (2) WO2004037900A1 (de)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005018924A1 (de) * 2005-04-22 2006-10-26 Stockhausen Gmbh Wasserabsorbierende Polymergebilde mit verbesserten Absorptionseigenschaften
DE102005018923A1 (de) * 2005-04-22 2006-10-26 Stockhausen Gmbh Wasserabsorbierende Polymergebilde mit verbesserten Absorptionseigenschaften
WO2006111404A2 (de) * 2005-04-22 2006-10-26 Evonik Stockhausen Gmbh Oberflächennachvernetzte superabsorber behandelt mit metallsalz und metalloxid
WO2006092271A3 (de) * 2005-02-28 2007-04-05 Stockhausen Chem Fab Gmbh Verfahren zur herstellung eines absorbierenden polymergebildes basierend auf acrylsäure, wobei das substrat für die acrylsäuresynthese teilweise durch enzymatische verfahren gewonnen wurde
WO2007121941A2 (de) * 2006-04-21 2007-11-01 Evonik Stockhausen Gmbh Oberflächennachvernetzte superabsorber behandelt mit organischen und anorganischen feinstteilchen
CN100348648C (zh) * 2005-06-14 2007-11-14 济南昊月树脂有限公司 聚丙烯酸钠吸水树脂表面改性方法
DE102007007203A1 (de) 2007-02-09 2008-08-14 Evonik Stockhausen Gmbh Wasserabsorbierendes Polymergebilde mit hoher Ammoniak-Bindekapazität
DE102007024080A1 (de) 2007-05-22 2008-11-27 Evonik Stockhausen Gmbh Verfahren zum schonenden Mischen und Beschichten von Superabsorbern
WO2007121937A3 (de) * 2006-04-21 2009-02-26 Evonik Stockhausen Gmbh Oberflächennachvernetzte superabsorber behandelt mit aluminiumlactat und optional aluminiumsulfat
DE102007045724A1 (de) 2007-09-24 2009-04-02 Evonik Stockhausen Gmbh Superabsorbierende Zusammensetzung mit Tanninen zur Geruchskontrolle
DE102007053619A1 (de) 2007-11-08 2009-05-20 Evonik Stockhausen Gmbh Wasserabsorbierende Polymergebilde mit verbesserter Farbstabilität
WO2010115671A1 (de) 2009-04-07 2010-10-14 Evonik Stockhausen Gmbh Verwendung von hohlkörpern zur herstellung wasserabsorbierender polymergebilde
WO2011029704A1 (de) 2009-09-11 2011-03-17 Evonik Stockhausen Gmbh Plasmamodifizierung wasserabsorbierender polymergebilde
DE102010008163A1 (de) 2010-02-16 2011-08-18 Evonik Stockhausen GmbH, 47805 Verfahren zur Rückführung von Polymerfeinteilchen
US8063118B2 (en) 2007-07-16 2011-11-22 Evonik Stockhausen, Llc Superabsorbent polymer compositions having color stability
US8252873B1 (en) 2010-03-30 2012-08-28 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
DE102011086522A1 (de) 2011-11-17 2013-05-23 Evonik Degussa Gmbh Superabsorbierende Polymere für hochgefüllte oder faserfreie Hygieneartikel
TWI405776B (zh) * 2005-04-22 2013-08-21 Evonik Stockhausen Gmbh 以聚陽離子表面處理之水份吸收聚合物結構
US8653320B2 (en) 2005-11-18 2014-02-18 Evonik Degussa Gmbh Deodorizing super-absorbent composition
US8686216B2 (en) 2008-03-05 2014-04-01 Evonik Degussa Gmbh Superabsorbent composition with metal salicylate for odor control
WO2014072130A1 (de) 2012-11-09 2014-05-15 Evonik Industries Ag Superabsorber für kabelanwendungen
US8829107B2 (en) 2006-02-28 2014-09-09 Evonik Degussa Gmbh Biodegradable superabsorbent polymer composition with good absorption and retention properties
US8906824B2 (en) 2006-12-18 2014-12-09 Evonik Degussa Gmbh Water-absorbing polymer structures produced using polymer dispersions
US10807067B2 (en) 2016-06-27 2020-10-20 Lg Chem, Ltd. Method for producing super absorbent polymer and super absorbent polymer

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541568A1 (de) * 2003-12-09 2005-06-15 Deutsches Wollforschungsinstitut an der Rheinisch-Westfälischen Technischen Hochschule Aachen e.V. Reaktive cyclische Carbonate und Harnstoffe zur Modifizierung von Biomolekülen, Polymeren und Oberflächen
CA2456482A1 (en) * 2004-02-03 2005-08-03 Bayer Inc. Method and apparatus for controlling a polymerization reaction
DE102004019264B4 (de) * 2004-04-21 2008-04-10 Stockhausen Gmbh Verfahren zur Herstellung eines absorbierenden Polymers mittels Spreittrocknung
DE102005010198A1 (de) * 2005-03-05 2006-09-07 Degussa Ag Hydrolysestabile, nachvernetzte Superabsorber
TW200720347A (en) * 2005-09-30 2007-06-01 Nippon Catalytic Chem Ind Water-absorbent agent composition and method for manufacturing the same
WO2007065840A1 (de) * 2005-12-07 2007-06-14 Basf Se Verfahren zum kontinuierlichen mischen von polymerpartikeln
US20070220856A1 (en) * 2006-03-23 2007-09-27 Fiber Tech Co., Ltd. Metal fiber media, filter for exhaust gas purifier using the same as filter member, and method for manufacturing the filter
DE102006039205A1 (de) * 2006-08-22 2008-03-20 Stockhausen Gmbh Auf nachwachsenden Rohstoffen basierende Acrylsäure und wasserabsorbierende Polymergebilde sowie Verfahren zu deren Herstellung mittels Dehydratisierung
US8734559B2 (en) 2006-09-07 2014-05-27 Biolargo Life Technologies, Inc. Moderation of animal environments
US8757253B2 (en) 2006-09-07 2014-06-24 Biolargo Life Technologies, Inc. Moderation of oil extraction waste environments
EP1967258A1 (de) * 2007-03-06 2008-09-10 Interglass Technology AG Verfahren zum Mischen einer Flüssigkeit mit mindestens einer weiteren Substanz und Entgasen des Gemisches und für die Abgabe des Gemisches
SA08290556B1 (ar) 2007-09-07 2012-05-16 نيبون شوكوباي كو. ، ليمتد طريقة لربط راتنجات ممتصة للماء
ATE500883T1 (de) * 2007-09-07 2011-03-15 Merck Patent Gmbh Verfahren zur herstellung einer homogenen flüssigen mischung
US20100063180A1 (en) * 2008-09-05 2010-03-11 Seungkoo Kang Fire protection and/or fire fighting additives, associated compositions, and associated methods
US8357766B2 (en) 2008-10-08 2013-01-22 Evonik Stockhausen Gmbh Continuous process for the production of a superabsorbent polymer
US8048942B2 (en) * 2008-10-08 2011-11-01 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
US8063121B2 (en) * 2008-10-08 2011-11-22 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
EP2404954B1 (de) 2009-03-04 2015-04-22 Nippon Shokubai Co., Ltd. Herstellungsverfahren für wasserabsorbierendes harz
WO2010133460A1 (de) 2009-05-18 2010-11-25 Basf Se Beschichtungsverfahren für wasserabsorbierende polymerpartikel
US9023951B2 (en) 2009-08-27 2015-05-05 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt)-type water absorbent resin and method for producing of same
US8292863B2 (en) 2009-10-21 2012-10-23 Donoho Christopher D Disposable diaper with pouches
US9901128B2 (en) * 2009-12-24 2018-02-27 David A. Gray Antimicrobial apparel and fabric and coverings
US10182946B2 (en) 2009-12-24 2019-01-22 Liberman Distributing And Manufacturing Co. Advanced fabric technology and filters
US9976001B2 (en) 2010-02-10 2018-05-22 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin powder
WO2011111855A1 (ja) 2010-03-12 2011-09-15 株式会社日本触媒 吸水性樹脂の製造方法
EP2550316B2 (de) * 2010-03-25 2018-11-14 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2012003435A2 (en) 2010-07-02 2012-01-05 Liberman Distributing And Manufacturing Co. Method and structure for nasal dilator
WO2012040024A1 (en) * 2010-09-22 2012-03-29 Dow Global Technologies Llc Treatment of polysaccarides with dialdehydes
DE102010043113A1 (de) 2010-10-29 2012-05-03 Evonik Stockhausen Gmbh Verfahren zur Herstellung von verbesserten absorbierenden Polymeren mittels kryogenem Mahlen
CN103347548B (zh) 2011-02-07 2017-09-19 巴斯夫欧洲公司 具有高溶胀速度的吸水性聚合物颗粒的制备方法
US9833769B2 (en) 2011-02-07 2017-12-05 Basf Se Process for producing water-absorbing polymer particles with high free swell rate
DE102011007723A1 (de) 2011-04-20 2012-10-25 Evonik Stockhausen Gmbh Verfahren zur Herstellung von wasserabsorbierenden Polymeren mit hoher Absorptionsgeschwindigkeit
US9265855B2 (en) * 2011-05-18 2016-02-23 The Procter & Gamble Company Feminine hygiene absorbent article comprising a superabsorbent foam of high swell rate
DE102011086516A1 (de) 2011-11-17 2013-05-23 Evonik Degussa Gmbh Superabsorbierende Polymere mit schnellen Absorptionseigenschaften sowieVerfahren zu dessen Herstellung
US9427945B2 (en) 2011-12-30 2016-08-30 Liberman Distributing And Manufacturing Co. Extendable self-supporting material composites and manufacture thereof
USH2276H1 (en) 2012-01-09 2013-06-04 The United States Of America, As Represented By The Secretary Of The Navy Branched amide polymeric superabsorbents
EP2615120B2 (de) 2012-01-12 2022-12-21 Evonik Superabsorber GmbH Verfahren zur kontinuierlichen Herstellung von wasserabsorbierenden Polymeren
WO2014064176A1 (de) 2012-10-24 2014-05-01 Evonik Degussa Gmbh Geruchs- und farbstabile wasserabsorbierende zusammensetzung
US9302248B2 (en) 2013-04-10 2016-04-05 Evonik Corporation Particulate superabsorbent polymer composition having improved stability
CN104684969B (zh) 2013-04-30 2016-03-23 株式会社Lg化学 高吸水树脂
EP3009474B1 (de) 2014-10-16 2017-09-13 Evonik Degussa GmbH Herstellverfahren für wasserlösliche Polymere
AT516414B1 (de) * 2014-10-28 2017-07-15 Chemiefaser Lenzing Ag Flüssigkeitsgetränkter Vliesstoff, enthaltend Zinkoxid-haltige Cellulosefasern
KR101857702B1 (ko) * 2015-12-23 2018-05-14 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR101750013B1 (ko) * 2016-02-19 2017-06-22 주식회사 엘지화학 고흡수성 수지
KR102075738B1 (ko) * 2016-03-11 2020-02-10 주식회사 엘지화학 고흡수성 수지
US11198768B2 (en) 2016-03-11 2021-12-14 Lg Chem, Ltd. Preparation method of super absorbent polymer
KR102075737B1 (ko) 2016-03-11 2020-02-10 주식회사 엘지화학 고흡수성 수지의 제조 방법, 및 고흡수성 수지
KR101863350B1 (ko) 2016-03-31 2018-06-01 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR102093352B1 (ko) 2016-12-19 2020-03-25 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR102157785B1 (ko) * 2017-02-10 2020-09-18 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR102568226B1 (ko) 2017-12-11 2023-08-18 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
EP3779048A4 (de) * 2018-03-27 2022-01-12 Sumitomo Seika Chemicals Co., Ltd. Sandsack und verfahren zur herstellung davon
KR102418591B1 (ko) 2018-11-13 2022-07-07 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076663A (en) 1975-03-27 1978-02-28 Sanyo Chemical Industries, Ltd. Water absorbing starch resins
DE2706135A1 (de) 1977-02-14 1978-08-17 Stockhausen & Cie Chem Fab Verdickungsmittel fuer ausgeschiedenen darminhalt und harn
US4286082A (en) 1979-04-06 1981-08-25 Nippon Shokubai Kagaku Kogyo & Co., Ltd. Absorbent resin composition and process for producing same
DE3503458A1 (de) 1984-02-04 1985-08-08 Arakawa Kagaku Kogyo K.K., Osaka Verfahren zur herstellung verbesserter wasser absorbierender harze
US4535098A (en) 1984-03-12 1985-08-13 The Dow Chemical Company Material for absorbing aqueous fluids
DE3523617A1 (de) 1984-07-02 1986-01-23 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Wasserabsorbierendes mittel
DE4020780C1 (de) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
EP0450922A2 (de) 1990-04-02 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Verfahren zur Herstellung von flüssigkeitsstabilem Aggregat
EP0450923A2 (de) 1990-04-02 1991-10-09 Nippon Shokubai Co., Ltd. Verfahren zur Oberflächenbehandlung absorbierender Harze
US5147921A (en) 1990-08-14 1992-09-15 Societe Francaise Hoechst Powdered superabsorbents, containing silica, their preparation process and their use
JPH0616822A (ja) 1992-06-30 1994-01-25 Sekisui Plastics Co Ltd 吸水性樹脂粒子の製造方法
DE4244548A1 (de) 1992-12-30 1994-07-07 Stockhausen Chem Fab Gmbh Pulverförmige, unter Belastung wäßrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung in textilen Konstruktionen für die Körperhygiene
DE4418818A1 (de) 1993-07-09 1995-01-12 Stockhausen Chem Fab Gmbh Pulverförmige, vernetzte, wäßrige Flüssigkeiten sowie Körperflüssigkeiten absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Anwendung
DE4333056A1 (de) 1993-09-29 1995-03-30 Stockhausen Chem Fab Gmbh Pulverförmige, wäßrige Flüssigkeiten absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung als Absorptionsmittel
WO1995022356A1 (en) 1994-02-17 1995-08-24 The Procter & Gamble Company Absorbent materials having improved absorbent property and methods for making the same
DE19529348A1 (de) 1995-08-09 1997-02-13 Stockhausen Chem Fab Gmbh Absorptionsmittel für Wasser und wässrige Flüssigkeiten sowie Verfahren zu ihrer Herstellung und Verwendung
DE19543366A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Mit ungesättigten Aminoalkoholen vernetzte, wasserquellbare Polymerisate, deren Herstellung und Verwendung
DE19646484A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
DE19543368A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
WO1999034843A1 (en) 1998-01-07 1999-07-15 The Procter & Gamble Company Absorbent polymer compositions having high sorption capacities under an applied pressure
DE19805447A1 (de) 1998-02-11 1999-08-12 Bayer Ag Modifizierte Superabsorber auf Basis von Polyacrylnitril-Emulsionen
DE19854575A1 (de) 1998-11-26 2000-05-31 Basf Ag Vernetzte quellfähige Polymere
WO2001013841A1 (de) 1999-08-20 2001-03-01 Stockhausen Gmbh & Co. Kg Wasserabsorbierende polymere mit hohlraumverbindungen, verfahren zu deren herstellung und deren verwendung
EP1211266A1 (de) 2000-11-30 2002-06-05 Bayer Ag Verfahren zur Herstellung von Superabsorbern aus Polyacrylnitril-Emulsionen unter adiabatischen Reaktionsbedingungen

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4703132A (en) * 1986-05-16 1987-10-27 Pirelli Cable Corporation Filling compound for multi-wire conductor of an electrical cable and cables including such compound
US4985251A (en) * 1987-04-01 1991-01-15 Lee County Mosquito Control District Flowable insecticidal delivery compositions and methods for controlling insect populations in an aquatic environment
US4983390A (en) * 1987-04-01 1991-01-08 Lee County Mosquito Control District Terrestrial delivery compositions and methods for controlling insect and habitat-associated pest populations in terrestrial environments
US4818534A (en) * 1987-04-01 1989-04-04 Lee County Mosquito Control District Insecticidal delivery compositions and methods for controlling a population of insects in an aquatic environment
US4983389A (en) 1987-04-01 1991-01-08 Lee County Mosquito Control District Herbicidal delivery compositions and methods for controlling plant populations in aquatic and wetland environments
EP0320594B2 (de) 1987-12-14 1998-04-15 Nippon Shokubai Co., Ltd. Wässrige härtbare Harzdispersionen, Verfahren zu deren Herstellung und deren Verwendung
US5326819A (en) * 1988-04-16 1994-07-05 Oosaka Yuuki Kagaku Kogyo Kabushiki Kaisha Water absorbent polymer keeping absorbed water therein in the form of independent grains
US5164428A (en) * 1988-04-16 1992-11-17 Mitsui Kensetsu Kabushiki Kaisha Method for the production of fine grain ice and dry clathrate water for manufacturing of concrete/mortar, a method for the production of concrete/mortar by using fine grain ice or dry clathrate water and concrete/mortar products manufactured thereby
JPH01264803A (ja) 1988-04-16 1989-10-23 Mitsui Constr Co Ltd コンクリート・モルタル製造用微粒状氷及びドライ状包接水の製造方法及び、それ等微粒状氷又はドライ状包接水を用いたコンクリート・モルタルの製造方法
CA1333439C (en) 1988-05-23 1994-12-06 Akito Yano Method for production of hydrophilic polymer
US5002986A (en) * 1989-02-28 1991-03-26 Hoechst Celanese Corporation Fluid absorbent compositions and process for their preparation
DE69030971T2 (de) * 1989-09-04 1997-12-11 Nippon Catalytic Chem Ind Verfahren zur herstellung eines wasserabsorbierenden harzes
JP2704311B2 (ja) 1989-10-03 1998-01-26 富士写真フイルム株式会社 写真印画紙用支持体
US5164459A (en) 1990-04-02 1992-11-17 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for treating the surface of an absorbent resin
US5369148A (en) 1990-04-27 1994-11-29 Nippon Shokubai Co., Ltd. Method for continuous agglomeration of an absorbent resin powder and apparatus therefor
DE4015085C2 (de) * 1990-05-11 1995-06-08 Stockhausen Chem Fab Gmbh Vernetztes, wasserabsorbierendes Polymer und Verwendung zur Herstellung von Hygieneartikeln, zur Bodenverbesserung und in Kabelummantelungen
JP2862357B2 (ja) 1990-09-11 1999-03-03 日本化薬株式会社 吸水剤及びその製造方法
US5416174A (en) 1992-05-22 1995-05-16 Shin-Etsu Chemical Co., Ltd. Scale preventive coating of pyrogallol-acetone resin and water soluble polymer
GB9322119D0 (en) 1993-10-27 1993-12-15 Allied Colloids Ltd Superabsorbent polymers and products containing them
DE4402187A1 (de) 1994-01-26 1995-07-27 Bayer Ag Trägervliese aus synthetischen Fasern und deren Herstellung
US5843575A (en) * 1994-02-17 1998-12-01 The Procter & Gamble Company Absorbent members comprising absorbent material having improved absorbent property
CN1141005A (zh) * 1994-02-17 1997-01-22 普罗克特和甘保尔公司 具有改性表面性能的吸收性材料及其制备方法
US5849405A (en) * 1994-08-31 1998-12-15 The Procter & Gamble Company Absorbent materials having improved absorbent property and methods for making the same
US5599335A (en) 1994-03-29 1997-02-04 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
JP3776480B2 (ja) 1995-06-01 2006-05-17 大日本印刷株式会社 保護層熱転写フィルム及び印画物
JP3103754B2 (ja) 1995-10-31 2000-10-30 三洋化成工業株式会社 改質された吸水性樹脂粒子およびその製法
JP3688418B2 (ja) 1995-12-27 2005-08-31 株式会社日本触媒 吸水剤並びに衛生材料
US6071976A (en) * 1995-12-27 2000-06-06 Nippon Shokubai Co., Ltd. Water absorbing agent, manufacturing method thereof, and manufacturing machine thereof
JPH09194598A (ja) 1996-01-18 1997-07-29 Mitsubishi Chem Corp 高吸水性樹脂の造粒法
CA2259476A1 (en) * 1996-07-06 1998-01-15 Stockhausen Gmbh & Co. Kg Absorbent inserts, method of producing them and their use
DE19645240A1 (de) 1996-07-06 1998-01-08 Stockhausen Chem Fab Gmbh Saugfähige Einlagen, Verfahren zu ihrer Herstellung und ihre Verwendung
US6232520B1 (en) * 1997-02-19 2001-05-15 The Procter & Gamble Company Absorbent polymer compositions having high sorption capacities under an applied pressure
KR20010012132A (ko) 1997-04-29 2001-02-15 그래햄 이. 테일러 레질리언스성의 초흡수성 조성물
EP0979250B1 (de) * 1997-04-29 2004-04-14 Dow Global Technologies Inc. Superabsorbierende polymere mit verbesserter verarbeitbarkeit
DE19748153A1 (de) 1997-10-31 1999-05-06 Stockhausen Chem Fab Gmbh Verfahren zur Herstellung kationischer Polyelektrolyte
JPH11349979A (ja) 1998-01-09 1999-12-21 Nof Corp 水性切削液、水性切削剤及びそれを用いる硬脆材料の切断方法
DE19813443A1 (de) 1998-03-26 1998-10-08 Stockhausen Chem Fab Gmbh Wasser- und wäßrige Flüssigkeiten absorbierende Polymerisatteilchen, Verfahren zu ihrer Herstellung und ihre Verwendung
US6056854A (en) 1998-03-27 2000-05-02 Basf Corporation Process to make a wet-laid absorbent structure
JPH11349625A (ja) 1998-06-10 1999-12-21 Sanyo Chem Ind Ltd 吸水剤の製造法および吸水剤
DE19846412A1 (de) 1998-10-08 2000-04-13 Basf Ag Hydrophile hochquellfähige Hydrogele sowie Verfahren zu ihrer Herstellung und Verwendung
JP4380873B2 (ja) 1999-02-15 2009-12-09 株式会社日本触媒 吸水性樹脂粉末およびその用途
US6562879B1 (en) * 1999-02-15 2003-05-13 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and use
DE19909653A1 (de) 1999-03-05 2000-09-07 Stockhausen Chem Fab Gmbh Pulverförmige, vernetzte, wässrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19909838A1 (de) 1999-03-05 2000-09-07 Stockhausen Chem Fab Gmbh Pulverförmige, vernetzte, wässrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung
JP3648125B2 (ja) 1999-06-25 2005-05-18 株式会社日本触媒 有機ハロゲン化合物の除去用触媒および有機ハロゲン化合物の除去方法
DE19941423A1 (de) 1999-08-30 2001-03-01 Stockhausen Chem Fab Gmbh Polymerzusammensetzung und ein Verfahren zu dessen Herstellung
DE19941072A1 (de) 1999-08-30 2001-03-01 Stockhausen Chem Fab Gmbh Polymerisatzusammensetzung und ein Verfahren zu dessen Herstellung
US6414214B1 (en) * 1999-10-04 2002-07-02 Basf Aktiengesellschaft Mechanically stable hydrogel-forming polymers
JP2001137704A (ja) 1999-11-18 2001-05-22 Toagosei Co Ltd 改質された高吸水性樹脂の製造方法
EP1265571A1 (de) 2000-03-06 2002-12-18 The Procter & Gamble Company Verfahren zur herstellung von absorbierenden strukturen mit einem absorbierenden polymer und einem agens zur erhaltung der permeabilität
DE10016041A1 (de) 2000-03-31 2001-10-04 Stockhausen Chem Fab Gmbh Pulverförmige an der Oberfläche vernetzte Polymerisate
DE10025304A1 (de) 2000-05-22 2001-11-29 Bayer Ag Mischungen wässriger Bindemittel
DE60143706D1 (de) * 2000-07-18 2011-02-03 Sanyo Chemical Ind Ltd Absorbens und verfahren zu dessen herstellung, absorbierbare artikel und syntheseprodukte
DE10043710B4 (de) 2000-09-04 2015-01-15 Evonik Degussa Gmbh Verwendung pulverförmiger an der Oberfläche nachvernetzter Polymerisate und Hygieneartikel
DE10043706A1 (de) 2000-09-04 2002-04-25 Stockhausen Chem Fab Gmbh Pulverförmige, vernetzte, wässrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung
US6800353B1 (en) 2000-09-08 2004-10-05 Ecolab Inc. Scratch-resistant strippable finish
DE10052966A1 (de) 2000-10-25 2002-05-02 Stockhausen Chem Fab Gmbh Hochquellbare Absorptionsmittel mit einer verminderten Tendenz zum Verbacken
JP4315680B2 (ja) 2000-12-29 2009-08-19 ビーエーエスエフ ソシエタス・ヨーロピア 吸収性組成物
DE50208214D1 (de) 2001-06-28 2006-11-02 Basf Ag Saure hochquellfähige hydrogele
US7101946B2 (en) * 2002-02-14 2006-09-05 Stockhausen Gmbh Water-absorbing polymers having interstitial compounds, a process for their production, and their use
WO2006033477A1 (en) 2004-09-24 2006-03-30 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent containing water-absorbent resin as a main component

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076663A (en) 1975-03-27 1978-02-28 Sanyo Chemical Industries, Ltd. Water absorbing starch resins
DE2706135A1 (de) 1977-02-14 1978-08-17 Stockhausen & Cie Chem Fab Verdickungsmittel fuer ausgeschiedenen darminhalt und harn
US4286082A (en) 1979-04-06 1981-08-25 Nippon Shokubai Kagaku Kogyo & Co., Ltd. Absorbent resin composition and process for producing same
DE3503458A1 (de) 1984-02-04 1985-08-08 Arakawa Kagaku Kogyo K.K., Osaka Verfahren zur herstellung verbesserter wasser absorbierender harze
US4535098A (en) 1984-03-12 1985-08-13 The Dow Chemical Company Material for absorbing aqueous fluids
DE3523617A1 (de) 1984-07-02 1986-01-23 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Wasserabsorbierendes mittel
US4734478A (en) 1984-07-02 1988-03-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Water absorbing agent
EP0450922A2 (de) 1990-04-02 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Verfahren zur Herstellung von flüssigkeitsstabilem Aggregat
EP0450923A2 (de) 1990-04-02 1991-10-09 Nippon Shokubai Co., Ltd. Verfahren zur Oberflächenbehandlung absorbierender Harze
US5140076A (en) 1990-04-02 1992-08-18 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method of treating the surface of an absorbent resin
DE4020780C1 (de) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
US5147921A (en) 1990-08-14 1992-09-15 Societe Francaise Hoechst Powdered superabsorbents, containing silica, their preparation process and their use
JPH0616822A (ja) 1992-06-30 1994-01-25 Sekisui Plastics Co Ltd 吸水性樹脂粒子の製造方法
DE4244548A1 (de) 1992-12-30 1994-07-07 Stockhausen Chem Fab Gmbh Pulverförmige, unter Belastung wäßrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung in textilen Konstruktionen für die Körperhygiene
DE4418818A1 (de) 1993-07-09 1995-01-12 Stockhausen Chem Fab Gmbh Pulverförmige, vernetzte, wäßrige Flüssigkeiten sowie Körperflüssigkeiten absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Anwendung
DE4333056A1 (de) 1993-09-29 1995-03-30 Stockhausen Chem Fab Gmbh Pulverförmige, wäßrige Flüssigkeiten absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung als Absorptionsmittel
WO1995022356A1 (en) 1994-02-17 1995-08-24 The Procter & Gamble Company Absorbent materials having improved absorbent property and methods for making the same
DE19529348A1 (de) 1995-08-09 1997-02-13 Stockhausen Chem Fab Gmbh Absorptionsmittel für Wasser und wässrige Flüssigkeiten sowie Verfahren zu ihrer Herstellung und Verwendung
DE19543366A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Mit ungesättigten Aminoalkoholen vernetzte, wasserquellbare Polymerisate, deren Herstellung und Verwendung
DE19646484A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
DE19543368A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
WO1999034843A1 (en) 1998-01-07 1999-07-15 The Procter & Gamble Company Absorbent polymer compositions having high sorption capacities under an applied pressure
DE19805447A1 (de) 1998-02-11 1999-08-12 Bayer Ag Modifizierte Superabsorber auf Basis von Polyacrylnitril-Emulsionen
DE19854575A1 (de) 1998-11-26 2000-05-31 Basf Ag Vernetzte quellfähige Polymere
WO2001013841A1 (de) 1999-08-20 2001-03-01 Stockhausen Gmbh & Co. Kg Wasserabsorbierende polymere mit hohlraumverbindungen, verfahren zu deren herstellung und deren verwendung
EP1211266A1 (de) 2000-11-30 2002-06-05 Bayer Ag Verfahren zur Herstellung von Superabsorbern aus Polyacrylnitril-Emulsionen unter adiabatischen Reaktionsbedingungen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HOLLEMANN-WIBERG: "Lehrbuch der anorganischen Chemie", DE GRUYTER-VERLAG, pages: 765
JANDER-BLASIUS: "lehrbuch der analytischen und präparativen anorganischen Chemie", S. HIRZEL VERLAG
See also references of EP1563002A2

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092271A3 (de) * 2005-02-28 2007-04-05 Stockhausen Chem Fab Gmbh Verfahren zur herstellung eines absorbierenden polymergebildes basierend auf acrylsäure, wobei das substrat für die acrylsäuresynthese teilweise durch enzymatische verfahren gewonnen wurde
US8703450B2 (en) 2005-02-28 2014-04-22 Evonik Degussa Gmbh Water-absorbent polymer structures based on renewable resources and method for producing said structures
WO2006111404A2 (de) * 2005-04-22 2006-10-26 Evonik Stockhausen Gmbh Oberflächennachvernetzte superabsorber behandelt mit metallsalz und metalloxid
DE102005018924A1 (de) * 2005-04-22 2006-10-26 Stockhausen Gmbh Wasserabsorbierende Polymergebilde mit verbesserten Absorptionseigenschaften
WO2006111402A2 (de) 2005-04-22 2006-10-26 Evonik Stockhausen Gmbh Oberflächennachvernetzte superabsorber behandelt mit metallsalz und metalloxid
WO2006111404A3 (de) * 2005-04-22 2007-05-10 Stockhausen Chem Fab Gmbh Oberflächennachvernetzte superabsorber behandelt mit metallsalz und metalloxid
WO2006111402A3 (de) * 2005-04-22 2007-06-14 Stockhausen Chem Fab Gmbh Oberflächennachvernetzte superabsorber behandelt mit metallsalz und metalloxid
US8247499B2 (en) 2005-04-22 2012-08-21 Evonik Stockhausen Gmbh Water-absorbing polymer structure with improved absorption properties
US8071202B2 (en) 2005-04-22 2011-12-06 Evonik Stockhausen Gmbh Water-absorbing polymer structures with improved absorption properties
DE102005018923A1 (de) * 2005-04-22 2006-10-26 Stockhausen Gmbh Wasserabsorbierende Polymergebilde mit verbesserten Absorptionseigenschaften
JP2008536987A (ja) * 2005-04-22 2008-09-11 エフォニック ストックハウゼン ゲーエムベーハー 高吸収性を有する吸水性ポリマー構造体
CN101175511B (zh) * 2005-04-22 2014-03-26 赢创德固赛有限公司 用金属盐和金属氧化物处理并在其表面后交联的超吸收体
TWI405776B (zh) * 2005-04-22 2013-08-21 Evonik Stockhausen Gmbh 以聚陽離子表面處理之水份吸收聚合物結構
CN100348648C (zh) * 2005-06-14 2007-11-14 济南昊月树脂有限公司 聚丙烯酸钠吸水树脂表面改性方法
US8653320B2 (en) 2005-11-18 2014-02-18 Evonik Degussa Gmbh Deodorizing super-absorbent composition
US8829107B2 (en) 2006-02-28 2014-09-09 Evonik Degussa Gmbh Biodegradable superabsorbent polymer composition with good absorption and retention properties
WO2007121937A3 (de) * 2006-04-21 2009-02-26 Evonik Stockhausen Gmbh Oberflächennachvernetzte superabsorber behandelt mit aluminiumlactat und optional aluminiumsulfat
WO2007121941A3 (de) * 2006-04-21 2009-01-15 Evonik Stockhausen Gmbh Oberflächennachvernetzte superabsorber behandelt mit organischen und anorganischen feinstteilchen
US9534095B2 (en) 2006-04-21 2017-01-03 Evonik Degussa Gmbh Water-absorbing polymer structure having improved permeability and absorption under pressure
US9133342B2 (en) 2006-04-21 2015-09-15 Evonik Degussa Gmbh Preparation of highly permeable, superabsorbent polymer structures
US8907017B2 (en) 2006-04-21 2014-12-09 Evonik Degussa Gmbh Water-absorbing polymer structure having improved permeability and absorption under pressure
WO2007121941A2 (de) * 2006-04-21 2007-11-01 Evonik Stockhausen Gmbh Oberflächennachvernetzte superabsorber behandelt mit organischen und anorganischen feinstteilchen
KR101407176B1 (ko) 2006-04-21 2014-06-12 에보니크 데구사 게엠베하 압력하에서 향상된 투과성과 흡수성을 가지는 수분-흡수성 중합체 구조
KR101389190B1 (ko) 2006-04-21 2014-04-25 에보니크 데구사 게엠베하 높은 투과성을 가지는 초흡수성 중합체 구조의 제조
US8906824B2 (en) 2006-12-18 2014-12-09 Evonik Degussa Gmbh Water-absorbing polymer structures produced using polymer dispersions
EP2114469B1 (de) 2007-02-09 2017-03-29 Evonik Degussa GmbH Wasserabsorbierendes polymergebilde mit hoher ammoniak-bindekapazität
DE102007007203A1 (de) 2007-02-09 2008-08-14 Evonik Stockhausen Gmbh Wasserabsorbierendes Polymergebilde mit hoher Ammoniak-Bindekapazität
DE102007024080A1 (de) 2007-05-22 2008-11-27 Evonik Stockhausen Gmbh Verfahren zum schonenden Mischen und Beschichten von Superabsorbern
US8349913B2 (en) 2007-05-22 2013-01-08 Evonik Stockhausen Gmbh Process for gentle mixing and coating of superabsorbers
US8236876B2 (en) 2007-07-16 2012-08-07 Evonik Stockhausen, Llc Superabsorbent polymer compositions having color stability
US8063118B2 (en) 2007-07-16 2011-11-22 Evonik Stockhausen, Llc Superabsorbent polymer compositions having color stability
EP2176325B1 (de) 2007-09-24 2021-12-08 Evonik Operations GmbH Superabsorbierende zusammensetzung mit tanninen zur geruchskontrolle
DE102007045724A1 (de) 2007-09-24 2009-04-02 Evonik Stockhausen Gmbh Superabsorbierende Zusammensetzung mit Tanninen zur Geruchskontrolle
US8658146B2 (en) 2007-09-24 2014-02-25 Evonik Degussa Gmbh Superabsorbent composition with tannins for odor control
USRE47104E1 (en) 2007-09-24 2018-10-30 Evonik Degussa Gmbh Superabsorbent composition with tannins for odor control
US8372920B2 (en) 2007-11-08 2013-02-12 Evonik Stockhausen Gmbh Water-absorbing polymer structure with improved color stability
DE102007053619A1 (de) 2007-11-08 2009-05-20 Evonik Stockhausen Gmbh Wasserabsorbierende Polymergebilde mit verbesserter Farbstabilität
US8686216B2 (en) 2008-03-05 2014-04-01 Evonik Degussa Gmbh Superabsorbent composition with metal salicylate for odor control
WO2010115671A1 (de) 2009-04-07 2010-10-14 Evonik Stockhausen Gmbh Verwendung von hohlkörpern zur herstellung wasserabsorbierender polymergebilde
DE102009016404A1 (de) 2009-04-07 2010-10-21 Evonik Stockhausen Gmbh Verwendung von Hohlkörpern zur Herstellung wasserabsorbierender Polymergebilde
DE102009040949A1 (de) 2009-09-11 2011-03-31 Evonik Stockhausen Gmbh Plasmamodifizierung wasserabsorbierender Polymergebilde
WO2011029704A1 (de) 2009-09-11 2011-03-17 Evonik Stockhausen Gmbh Plasmamodifizierung wasserabsorbierender polymergebilde
DE102010008163A1 (de) 2010-02-16 2011-08-18 Evonik Stockhausen GmbH, 47805 Verfahren zur Rückführung von Polymerfeinteilchen
WO2011101188A1 (de) 2010-02-16 2011-08-25 Evonik Stockhausen Gmbh Verfahren zur rückführung von polymerfeinteilchen
US8252873B1 (en) 2010-03-30 2012-08-28 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
US10391195B2 (en) 2011-11-17 2019-08-27 Evonik Degussa Gmbh Super-absorbing polymers with rapid absorption properties and method for producing the same
DE102011086522A1 (de) 2011-11-17 2013-05-23 Evonik Degussa Gmbh Superabsorbierende Polymere für hochgefüllte oder faserfreie Hygieneartikel
DE102012220400A1 (de) 2012-11-09 2014-05-15 Evonik Industries Ag Superabsorber für Kabelanwendungen
WO2014072130A1 (de) 2012-11-09 2014-05-15 Evonik Industries Ag Superabsorber für kabelanwendungen
US10807067B2 (en) 2016-06-27 2020-10-20 Lg Chem, Ltd. Method for producing super absorbent polymer and super absorbent polymer

Also Published As

Publication number Publication date
AU2003296558A8 (en) 2004-05-13
TWI378955B (en) 2012-12-11
EP1563002B1 (de) 2014-07-16
TW200412905A (en) 2004-08-01
US20060057389A1 (en) 2006-03-16
TW200422330A (en) 2004-11-01
BR0315632A (pt) 2005-08-23
EP1563002A2 (de) 2005-08-17
WO2004037903A3 (de) 2004-06-03
WO2004037900A1 (de) 2004-05-06
AU2003274077A1 (en) 2004-05-13
EP1563002B2 (de) 2017-12-13
AU2003296558A1 (en) 2004-05-13
TWI327062B (en) 2010-07-11
US7541395B2 (en) 2009-06-02
US20060029782A1 (en) 2006-02-09
US7833624B2 (en) 2010-11-16

Similar Documents

Publication Publication Date Title
WO2004037903A2 (de) Absorbierende polymergebilde mit verbesserter retentionskapazität und permeabilität
WO2002036663A1 (de) Absorbierendes gebilde mit verbesserten blockingeigenschaften
DE10043710B4 (de) Verwendung pulverförmiger an der Oberfläche nachvernetzter Polymerisate und Hygieneartikel
EP1537177B1 (de) Wasserabsorbierendes mittel und verfahren zu seiner herstellung
EP1888132B1 (de) Oberflächennachvernetzte superabsorber behandelt mit wasserlöslichem aluminiumsalz und zinkoxid
WO2007121941A2 (de) Oberflächennachvernetzte superabsorber behandelt mit organischen und anorganischen feinstteilchen
WO2006111403A1 (de) Mit polykationen oberflächenbehandeltes wasserabsorbierende polymergebilde
DE102005010198A1 (de) Hydrolysestabile, nachvernetzte Superabsorber
WO2007121937A2 (de) Oberflächennachvernetzte superabsorber behandelt mit aluminiumlactat und optional aluminiumsulfat
EP1335756B1 (de) Hochquellbare absorptionsmittel mit einer verminderten tendenz zum verbacken
WO2002020068A1 (de) Pulverförmige, vernetzte, wässrige flüssigkeiten sowie blut absorbierende polymere
WO2010115671A1 (de) Verwendung von hohlkörpern zur herstellung wasserabsorbierender polymergebilde
DE10204938A1 (de) Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
DE10204937A1 (de) Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit Harnstoffderivaten
EP1572782A1 (de) Zweistufiges mischverfahren zur herstellung eines absorbierenden polymers
DE10249821A1 (de) Absorbierende Polymergebilde mit verbesserter Rententionskapazität und Permeabilität
WO2004006971A2 (de) Wasserabsorbierende, schaumförmige polymergebilde
EP2475708A1 (de) Plasmamodifizierung wasserabsorbierender polymergebilde
DE60026764T2 (de) Wasserquellbares vernetztes Polymer, dessen Zusammensetzung, Verfahren zu dessen Herstellung und Anwendung
EP1453891A1 (de) Kompaktierte absorbierende polymere, deren herstellung und verwendung
EP1565599A1 (de) Gezogene absorbierende polymerfasern
EP1453454A1 (de) Absorbierende hygieneartikel mit einnäss-indikator
EP1487882B1 (de) Durch hydrierung gewonnenes basisches polymer
DE102005018923A1 (de) Wasserabsorbierende Polymergebilde mit verbesserten Absorptionseigenschaften
EP2012843A2 (de) Wasserabsorbierendes polymergebilde mit verbesserter permeabilität und absorption unter druck

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004545982

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038A19823

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003809325

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003809325

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006029782

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10532280

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10532280

Country of ref document: US