WO2004027909A1 - プロトン伝導性高分子膜およびその製造方法 - Google Patents

プロトン伝導性高分子膜およびその製造方法 Download PDF

Info

Publication number
WO2004027909A1
WO2004027909A1 PCT/JP2003/011322 JP0311322W WO2004027909A1 WO 2004027909 A1 WO2004027909 A1 WO 2004027909A1 JP 0311322 W JP0311322 W JP 0311322W WO 2004027909 A1 WO2004027909 A1 WO 2004027909A1
Authority
WO
WIPO (PCT)
Prior art keywords
proton
conductive polymer
polymer membrane
membrane
proton conductive
Prior art date
Application number
PCT/JP2003/011322
Other languages
English (en)
French (fr)
Inventor
Hidekazu Kuromatsu
Tomokazu Yamane
Kiyoyuki Namura
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to CA002496372A priority Critical patent/CA2496372A1/en
Priority to JP2004568908A priority patent/JP4794170B2/ja
Priority to US10/528,368 priority patent/US20050244696A1/en
Priority to EP03797550A priority patent/EP1542299A1/en
Priority to AU2003261944A priority patent/AU2003261944A1/en
Publication of WO2004027909A1 publication Critical patent/WO2004027909A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04197Preventing means for fuel crossover
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/04Polysulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a proton conductive polymer membrane and a method for producing the same.
  • a proton conductive polymer membrane is a main constituent material of electrochemical devices such as a polymer electrolyte fuel cell, a humidity sensor, a gas sensor, and an electrochromic display device.
  • electrochemical devices such as a polymer electrolyte fuel cell, a humidity sensor, a gas sensor, and an electrochromic display device.
  • polymer electrolyte fuel cells are expected to be one of the pillars of future new energy technologies.
  • a polymer electrolyte fuel cell (PEFC or PEMFC), which uses a proton conductive polymer membrane made of a polymer conjugate as an electrolyte membrane, can operate at low temperatures and can be reduced in size and weight.
  • Applications to mobile objects such as automobiles, home cogeneration systems, and small portable devices for consumer use are being studied.
  • DMFCs direct methanol fuel cells
  • sulfonated polyimide for example, JP-A-2000-510
  • Sulfonated heat-resistant aromatic polymers have been proposed.
  • proton-conductive polymer membranes made of sulfonated SEBS (styrene- (ethylene-butylene) -styrene), which is inexpensive, mechanically and chemically stable (Table 10). No. 788) has been proposed. It is said that these sulfonated hydrocarbon polymer membranes are easy to manufacture and can be reduced in cost.
  • proton conductivity is insufficient for use as an electrolyte membrane for PEFC, which requires high proton conductivity.
  • polyphenylene sulfide is substantially insoluble in solvents, and is inferior in processability such as film-forming properties as compared with other solvent-soluble proton-conductive substances.
  • U.S. Pat. No. 4,110,265 discloses a method in which polyphenylene sulfide is reacted with fuming sulfuric acid to prepare sulfonated polyphenylene sulfide and used as a cation exchange material. Is disclosed.
  • this substance is a solvent-insoluble crosslinkable polymer, it is difficult to use it after further processing.
  • H11-151198 proposes a sulfonated polyphenylene sulfide that is soluble in an aprotic polar solvent. It discloses a method for preparing a polymer which can be easily processed into a film by imparting solubility to an aprotic polar solvent by modifying polyphenylene sulfide.
  • the methods disclosed herein include various processes such as denaturation (sulfonation) of polyethylene sulfide, recovery of denatured product by precipitation and drying, preparation of nonprotonic polar solvent solution, film formation and solvent removal. It goes through.
  • WO 02/0286896 pamphlet discloses a method for producing a sulfonated aromatic polymer membrane such as sulfonated polyphenylene sulfide.
  • a sulfonated aromatic polymer membrane such as sulfonated polyphenylene sulfide.
  • chlorosulfonic acid is used as a sulfonating agent and dichloromethane is used as a solvent.
  • the sulfonated polymer membrane obtained by this method also increases the permeation of methanol if the amount of proton-conducting substituents such as sulfonate groups is increased to obtain high proton conductivity. It is easily assumed.
  • the electrolyte membrane of the direct methanol fuel cell is required to suppress methanol permeation without lowering the proton conductivity.However, there is a trade-off between proton conductivity and methanol barrier property. Therefore, it is difficult to balance these characteristics.
  • the object of the present invention has been made in view of the above problems, and is useful as an electrolyte membrane for a polymer electrolyte fuel cell or a direct methanol fuel cell, a proton conductivity having both proton conductivity and methanol barrier property.
  • An object of the present invention is to provide a high-strength membrane and a manufacturing method thereof. That is, the proton conductive polymer membrane of the present invention has a proton conductivity [SZ cm] at 23 ° C. and a methanol barrier coefficient [(cm • day) Z zmo 1 for a predetermined concentration of aqueous methanol solution at 25 ° C. ] [(S ⁇ day) Z mo 1] is at least one of the following (A) or (B):
  • the present invention relates to those having an ion exchange capacity of 0.3 meq / g or more and having a crystalline phase.
  • the proton conductive polymer membrane contains a sulfonic acid group.
  • the proton conductive polymer membrane is preferably made of a hydrocarbon polymer compound, and more preferably a crystalline aromatic polymer compound. Even more preferred is polyphenylene sulfide.
  • the proton conductive polymer membrane preferably has a breaking extension of 10% or more as measured according to JIS K 7127.
  • the proton conductivity at 23 ° C of the proton conducting polymer membrane is at 1. 0X 10-3 S / cm or more, more preferably 1. OX 10- 2 SZcm more.
  • Methanol barrier coefficient at 64% by weight of methanol Ichiru aqueous solution 25 ° C in the proton-conducting polymer membrane, 3. 0X 10- 4 (cm ⁇ day) / mo is good preferable is 1 or more.
  • the proton conductive polymer membrane is preferably irradiated with at least one kind of radiation selected from the group consisting of an r-ray, an electron beam and an ion beam, and the irradiation amount of the radiation is 10 to: L 000 More preferably, it is kGy.
  • the present invention also relates to a membrane-electrode assembly using the proton conductive polymer membrane. At least one of the catalyst layers of the membrane-electrode assembly is made of a platinum and ruthenium catalyst.
  • the present invention also relates to a polymer electrolyte fuel cell using the proton conductive polymer membrane or the membrane-electrode assembly.
  • the present invention also provides a direct methanol fuel cell using the proton conductive polymer membrane or the membrane-electrode assembly.
  • the method for producing a proton-conductive high-molecular-weight membrane of the present invention comprises contacting a film made of a hydrocarbon-based polymer compound with a sulfonating agent so that the proton conductivity [S / cm] and the methanol cutoff coefficient [(cm * day) Zmo1] for a predetermined concentration of aqueous methanol solution at 25 ° C [(S.day) Zzmo1] is at least the following ( ⁇ ) or ( ⁇ ) And a method of obtaining one that satisfies either one of the above.
  • the film comprising the crystalline hydrocarbon-based polymer conjugate is brought into contact with a sulfonating agent so that the ion exchange capacity is 0.3.
  • the hydrocarbon-based polymer compound is a crystalline hydrocarbon-based polymer compound, and more preferably, polyphenylene sulfide. .
  • the sulfonating agent is at least one selected from the group consisting of chlorosulfonic acid, fuming sulfuric acid, sulfur trioxide, and concentrated sulfuric acid. It is preferable that the film and the sulfonating agent are brought into contact in the presence of a solvent, and it is more preferable that the solvent is a halide having 3 or more carbon atoms.
  • the solvent is 1-chloropropane, 1-bromopropane, 1-chlorobutane, 2-chlorobutane, 1-chloro-2-methylpropane, 1-bromobutane, 2-bromobutane, 1-bromo-2-methylpropane, 1_ It is preferably at least one member selected from the group consisting of chloropentane, 1-bromopentane, 1-chlorohexane, 1-bromohexane, chlorocyclohexane and bromomocyclohexane. More preferably, there is.
  • the sulfonating agent is sulfur trioxide, and relates to contacting a gas containing sulfur trioxide with a film made of a hydrocarbon polymer.
  • the irradiation amount of the radiation is 10 to 100 kGy.
  • FIG. 1 is a cross-sectional view of a main part of the membrane-electrode assembly of the present invention.
  • FIG. 2 is a cross-sectional view of a main part of a polymer electrolyte fuel cell (direct methanol fuel cell) of the present invention.
  • FIG. 3 is a sectional view of a main part of the direct methanol fuel cell of the present invention.
  • 1 is a proton conductive polymer membrane
  • 2 and 3 are binder layers
  • 4 and 5 are catalyst layers
  • 6 and 7 are diffusion layers
  • 8 and 9 are catalysts.
  • a supported gas diffusion electrode 10 is a membrane-electrode assembly
  • 11 and 12 are separators
  • 13 is a fuel flow path
  • 14 is an oxidizer flow path
  • 15 is a fuel tank
  • 1 represents 6 branches.
  • FIG. 4 is an X-ray diffraction chart of the proton conductive polymer membrane of Example 1.
  • FIG. 5 is an X-ray diffraction chart of the proton conductive polymer membrane of Example 2.
  • FIG. 6 is an X-ray diffraction chart of the proton conductive polymer membrane of Example 3.
  • FIG. 7 is an X-ray diffraction chart of the proton conductive polymer membrane of Example 17.
  • FIG. 8 is an X-ray diffraction chart of the proton conductive polymer membrane of Comparative Example 3.
  • FIG. 9 is an X-ray diffraction chart of the proton conductive polymer membrane of Comparative Example 4.
  • the proton-conducting polymer membrane of the present invention has a proton conductivity [S / cm] at 23 and a methanol blocking coefficient [(cm * day) / o 1 for an aqueous methanol solution having a predetermined concentration at 25 ° C.
  • the product [(S ⁇ day) Z mo 1] preferably satisfies at least one of the following (A) or (B).
  • the proton conductivity in the present invention indicates the ease of movement of protons ( ⁇ +) in the proton conductive polymer membrane.
  • the membrane resistance can be calculated by measuring the membrane resistance of the proton-conductive membrane by a known AC impedance method.
  • the methanol cutoff coefficient indicates the difficulty of permeating methanol through a proton conductive high ⁇ membrane.
  • the methanol permeability coefficient of the proton conductive polymer membrane is measured by a known method, and is defined by its reciprocal. For example, using a commercially available membrane permeation test apparatus, ion-exchanged water and a predetermined concentration of aqueous methanol solution are separated by a proton-conductive polymer membrane.
  • the amount of methanol permeated to the ion-exchanged water side is quantified by gas chromatography, and the methanol permeation coefficient is determined therefrom. Further, by taking the reciprocal of the methanol permeation coefficient, the methanol cutoff coefficient can be calculated. The flowchart for calculating these methanol cutoff coefficients is shown below.
  • the proton conductive polymer membrane of the present invention As an electrolyte membrane of a direct methanol fuel cell using an aqueous methanol solution as a fuel, not only high proton conductivity but also high proton conductivity is required. It is required to prevent cell characteristics from deteriorating due to permeation of methanol as a fuel, that is, to have high methanol barrier properties.
  • the proton-conducting polymer membrane of the present invention since the product of the proton conductivity and the methanol blocking coefficient is a specific value or more, the proton conductivity is too low or the methanol permeation is too large. As a result, it is possible to exhibit excellent performance as an electrolyte membrane for a direct methanol fuel cell without performance degradation. , 1322
  • the membrane of the present invention reduces fuel loss due to methanol permeation, so that a small amount of methanol is required to satisfy certain power generation characteristics.
  • the capacity of auxiliary equipment such as a fuel tank can be reduced, and the weight energy density and volume energy density of a direct methanol fuel cell can be improved. Further, performance degradation due to permeated methanol can be suppressed, which is preferable.
  • the proton conductive polymer membrane of the present invention is compared with a membrane having the same methanol barrier properties and a low proton conductivity and not satisfying the above ( ⁇ ) and ( ⁇ ),
  • the membrane of the present invention has excellent proton conductivity, so that it can exhibit excellent power generation characteristics.
  • the film area and the number of cells required to obtain the required characteristics can be reduced. This is preferable because the fuel cell main body can be reduced in size and weight, and the weight energy density and the volume energy density of the direct fuel cell can be directly improved.
  • the product of the proton conductivity for a 10% by weight aqueous methanol solution at 23 ° C. and the methanol cutoff coefficient for a 10% by weight aqueous methanol solution at 25 ° C. is 2.5.
  • X 1 0- 4 (S 'Dec) ⁇ ⁇ 1 more than is the upper limit value is not particularly, this product is 2. 5 X 1 0- 4 ( S ⁇ day) Zmmo 1 or more, 2. 5 X 1 0- 1 (S ⁇ day) Zzmo 1 or less is preferable.
  • the product of the proton conductivity for a 64% by weight aqueous methanol solution at 23 ° C and the methanol blocking coefficient for a 64% by weight aqueous methanol solution at 25 ° C is 4.5 X 1 0- 5 (S ⁇ day) ⁇ / ⁇ 1 more than is the upper limit value is not particularly, this product is 4. 5 X 1 0- 5 ( S ⁇ day) / zmo 1 or more, 4. 5 X 1 0- 2 (S ⁇ day) It is preferably 1 or less.
  • the proton conductive polymer membrane of the present invention preferably has an ion exchange capacity of 0.3 meq Zg or more and has a crystalline phase.
  • the proton conductive polymer membrane contains a sulfonic acid group as a proton conductive substituent, the proton conductive polymer membrane has a high crystallinity. A state in which a predetermined amount of sulfonic acid groups are mainly contained in an amorphous phase of a molecular compound, and a crystalline phase derived from the crystalline polymer conjugate remains in a form processed into a film shape. Refers to If the ion exchange capacity is lower than the above range, the proton conductivity of the proton conductive polymer membrane may be low.
  • Whether the proton-conductive polymer membrane of the present invention has a crystalline phase can be determined by a known method for measuring crystallinity.
  • the volumetric method density method
  • X-ray diffraction infrared absorption spectrum method
  • NMR nuclear magnetic resonance method
  • calorimetric method etc.
  • any material capable of confirming a crystalline peak in X-ray diffraction may be used.
  • the degree of crystallinity may be measured from the melting endotherm and the recrystallization exotherm that can be measured by differential scanning calorimetry (DSC) or differential thermal analysis (DTA) to confirm the presence or absence of a crystalline phase.
  • DSC differential scanning calorimetry
  • DTA differential thermal analysis
  • the crystallinity of the proton conductive polymer membrane of the present invention is not particularly limited, it is preferably about 5% of the saturated crystallinity specific to the crystalline carbon-containing polymer compound constituting the crystalline polymer membrane. Should just remain. Further, it is more preferable that 20% or more of the saturated crystallinity remains.
  • the crystallinity is less than 5% of the saturation crystallinity, the properties of the proton conductive polymer film, particularly, mechanical properties such as tensile elongation and metal barrier properties are desired. It may be lower than the value. For example, for polyphenylene sulfide, the saturation crystallinity is 60%. For other crystalline polymer compounds, the values described in publicly known documents and the like can be referred to.
  • a substituent and Z or a substance capable of conducting a proton be included in the membrane.
  • the substituent capable of conducting a proton include a phosphoric acid group, a carboxylic acid group, and a phenolic hydroxyl group, in addition to the above-mentioned sulfonic acid group.
  • a sulfonic acid group and a substituent containing Z or a sulfonic acid group are preferable in consideration of the ease of introduction of the substituent and the characteristics represented by the proton conductivity of the obtained membrane.
  • the sulfonic acid group means a sulfonic acid group represented by the following formula (1) or a substituent containing a sulfonic acid group represented by the following general formula (2).
  • R represents a divalent organic group comprising at least one kind of a bonding unit selected from the group consisting of alkylene, halogenated alkylene, arylene, and arylene halide, or an ether bond.
  • the proton conductive polymer compound of the present invention is preferably made of a hydrocarbon polymer in consideration of methanol barrier properties and the like.
  • the hydrocarbon polymer compound include polyacrylamide, polyacrylonitrile, polyarylethersulfone, poly (arylphenylether), polyethyleneoxide, polyetherethersulfone, polyetherketone, and polyetherketoneketone.
  • the hydrocarbon-based polymer compound is a crystalline aromatic compound such as syndiotactic polystyrene, polyphenylene sulfide, or polyetheretherketone. It is preferably a polymer conjugate. Further, polyphenylene sulfide is more preferable because of high proton conductivity, excellent mechanical properties, and high methanol barrier property.
  • the polyphenylene sulfide of the present invention comprises a repeating structural unit represented by the following formula (3).
  • Ar is a divalent aromatic unit represented by the following formulas (4) to (6), and n is an integer of 1 or more]
  • a part of Ar of the polyphenylene sulfide may contain the following structural unit as necessary.
  • the proton conductive polymer membrane of the present invention preferably has an elongation at break of 10% or more as measured according to JIS K 7127. It is more preferably at least 15%, and even more preferably at least 20%. If the elongation at break is less than 10%, for example, when used as an electrolyte in a solid polymer fuel cell or a direct fuel cell, the water contained in the fuel or oxidant or the water generated by the reaction If the film swells and undergoes dimensional deformation, it will not be able to follow up sufficiently and may be destroyed.
  • the types of the hydrocarbon-based high molecular compound and the crystalline aromatic high molecular compound, which are the components of the proton conductive polymer membrane It is necessary to appropriately set the ion exchange capacity necessary for developing the proton conductivity in consideration of the ion exchange capacity.
  • the elongation at break tends to decrease as the ion exchange capacity increases, so that a proton conductive polymer membrane with an optimized ion exchange capacity is manufactured to satisfy the desired proton conductivity and elongation at break. There is a need to.
  • the ion exchange capacity of the proton conductive polymer membrane of the present invention is preferably at least 0.3 meq Zg, more preferably at least 0.5 meq Zg, and still more preferably 1.0 meq Zg. That is all. If the ion exchange capacity is lower than 0.3 meq Zg, a desired proton conductivity may not be exhibited, which is not preferable. There is no particular upper limit for the ion exchange capacity of the proton conductive polymer membrane of the present invention. However, the ion exchange capacity is preferably not less than 0.3 meq Zg and not more than 5.0 meq Zg.
  • the proton conducting polymer membrane of the present invention, the proton conductivity at at 23, is favored properly is a 1.
  • OX 10_ 3 SZcm or more more preferably 1. 0X10- 2 S / cm That is all. If the proton conductivity is lower than 1. 0X 10- 3 S / cm, the use of the present light of the proton conducting polymer membrane as electrolytic membrane of a high fuel cell or direct methanol Ichiru fuel cell In such a case, sufficient power generation characteristics may not be exhibited. There is no particular upper limit for the proton conductivity at 23 ° C. of the proton conductive polymer membrane of the present invention. The proton conductivity at But 23, 1. OX 10- 3 S / cm or more, 1. is preferably OSZcm less, 1. 0 X 10_ 2 S / cm or more, 1. 0 SZ cm or less It is more preferred.
  • the types of the hydrocarbon-based polymer compound and the crystalline aromatic polymer compound, etc., which are components of the proton-conducting polymer membrane are considered. Then, the introduction amount of a proton conductive substituent such as a sulfonic acid group or the like may be controlled.
  • the methanol cutoff coefficient of the proton conducting polymer membrane of the present invention is not standardized by the methanol concentration, it depends on the concentration of the aqueous methanol solution used for the measurement.
  • aqueous solution at 25 is preferably 3. 0X 10- 4 (cm ⁇ day) / [io 1 or more, more preferably 5.
  • the main Tano Ichiru blockage factor is 3.
  • Methanol barrier coefficient at 64% by weight of the main Yunoichiru aqueous solution at 25 pro tons conducting polymer membrane of the present invention 3. 0X 1 0- 4 (cm- day) Bruno mo 1 or more is preferred, There is no particular upper limit. But as the methanol barrier coefficient at 64 wt% methanol aqueous solution at 25, 3. 0X 1 0- 4 ( cm * day) Znmo 1 or more, 3. 0X 10- 1 (cm ⁇ day) Z mo 1 below More preferably, there is.
  • the types of the hydrocarbon polymer compound and the crystalline aromatic polymer compound, which are the components of the proton conductive polymer membrane Ion exchange capacity required to develop desired proton conductivity, etc. It is necessary to set appropriately in consideration of. Basically, the higher the ion exchange capacity, the lower the methanol blocking coefficient tends to be.Therefore, proton conductive substituents such as sulfonic acid groups are required to satisfy the desired proton conductivity and methanol transmission coefficient. And the amount of proton-conducting substance introduced may be controlled.
  • the proton conductive polymer membrane of the present invention is preferably one that has been irradiated with at least one kind of radiation selected from the group consisting of an ⁇ -ray, an electron beam and an ion beam.
  • the proton conductivity tends to increase.
  • methanol barrier properties may be improved.
  • an electron beam is preferred from the viewpoints of radiation dose, permeability to the proton-conducting polymer membrane, and irradiation time (industrial continuous irradiation).
  • the radiation irradiation atmosphere can be selected from any of air, an oxygen-free atmosphere, and a vacuum atmosphere, but is preferably air in consideration of productivity.
  • an atmosphere in which irradiation of radiation does not cause deterioration of the proton conductive polymer membrane may be appropriately set.
  • the irradiation atmosphere or the membrane may be heated in order to efficiently modify the proton conductive polymer membrane by irradiation. At this time, conditions that do not cause deterioration of the proton conductive polymer membrane may be appropriately set.
  • the acceleration voltage of the radiation is preferably in the range of 0.01 to 5.0 OM eV. If the accelerating voltage is lower than 0.01 MeV, the permeability of radiation to the proton-conducting polymer membrane becomes low, and it tends to be difficult to obtain a uniform membrane even inside the membrane. In addition, long-time irradiation is required to secure the required irradiation dose, and productivity tends to decrease significantly. If it exceeds 5. OMeV, the apparatus tends to be unnecessarily large or the proton conductive polymer membrane tends to be inferior.
  • the irradiation dose of the radiation is preferably from 10 to: lOOOkGy.
  • the irradiation dose is smaller than 10 kGy, a sufficient irradiation effect does not tend to appear.
  • it exceeds 1000 kGy the irradiation effect tends to be saturated, the irradiation time becomes longer, and the proton conductive polymer film tends to deteriorate or deteriorate in characteristics.
  • the thickness of the proton-conducting polymer membrane of the present invention can be arbitrarily selected depending on the application. is there. In consideration of reducing the internal resistance of the membrane, if it is used for an electrolyte membrane of a polymer electrolyte fuel cell within the range of practical mechanical strength, the fuel and the fuel should be shut off. The thinner the better, the better. As for the characteristics as an electrolyte membrane, as long as the ion exchange capacity and the proton conductivity are equivalent, the thinner the thickness, the lower the resistance value as the membrane. Therefore, the thickness of the film is preferably 5 to 200 im, and more preferably 20 to 150 m. If the thickness is less than 5 m, pinholes and film cracks tend to occur during use.
  • the barrier properties against fuel and oxidizing agent become insufficient, which tends to cause performance degradation.
  • the barrier properties against methanol become insufficient, and the performance tends to decrease due to methanol permeation.
  • it exceeds 200 m the resistance of the proton-conducting polymer membrane tends to be large, which tends to cause a decrease in performance.
  • FIG. 1 is a cross-sectional view of a main part of a membrane-electrode assembly using the proton conductive polymer membrane of the present invention. This is because a proton conductive polymer membrane 1 and binder layers 2 and 3 are formed on both sides of the membrane 1 if necessary, and catalyst layers 4 and 5 and diffusion layers 6 and 7 are further provided on the outside thereof.
  • the medium-carrying gas diffusion electrodes 8 and 9 are arranged to constitute the membrane-electrode assembly 10. Examples of the catalyst-supporting gas diffusion electrodes 8 and 9 include, but are not limited to, a method using a commercially available catalyst-supporting gas diffusion electrode (manufactured by E-TEK, USA).
  • the proton conductive polymer membrane 1 of the present invention is used as the proton conductive polymer membrane 1.
  • the binder layers 2 and 3 may be the same or different, and may or may not be formed as needed.
  • perfluorocarboxylic acid sulfonic acid-based polymer compounds represented by naphthion and known solvent-soluble proton conductive polymers such as sulfonated polyetheretherketone, sulfonated polyestersulfone, and sulfonated polyimide High molecular compounds are used. These are used for bonding (adhering) the proton conductive polymer membrane 1 and the catalyst layer 4.5.
  • the catalyst layers 4 and 5 may be the same or different, and a catalyst having the ability to oxidize the fuel used (eg, ice, methanol, etc.) is used on one side.
  • the other uses a catalyst capable of reducing the oxidizing agent used (oxygen, air, etc.).
  • a catalyst capable of reducing the oxidizing agent used oxygen, air, etc.
  • a material in which a noble metal catalyst such as platinum is supported on a high surface area conductive material such as activated carbon, carbon nanohorn, or carbon nanotube is used.
  • a composite of platinum and ruthenium or an alloy catalyst is used instead of platinum to suppress poisoning of the catalyst.
  • the diffusion layers 6 and 7 may be the same or different, and a porous conductive material such as force-pone-force or force-pon-cross is used. These are water that is supplied or water that is generated by the electrochemical reaction.To prevent pores from being blocked, water-repellent treatment with a fluorine-based compound such as polytetrafluoroethylene is performed as necessary. Is also good.
  • the catalyst layers 4 and 5 are formed of perfluorocarbonsulfonic acid-based polymer compound represented by naphion, sulfonated polyester ether ketone, or sulfonated polyether.
  • a known solvent-soluble proton-conducting polymer compound such as ether sulfone or sulfonide polyimide is formed as a binder, and catalyst-supporting gas diffusion electrodes 8 and 9 are prepared and used.
  • the catalyst layers 4 and 5 is made of a platinum and ruthenium catalyst.
  • a material having high methanol barrier properties is used as the proton conductive polymer membrane 1
  • unreacted methanol in one catalyst layer 4 passes through the proton conductive polymer membrane 1
  • poisoning of the catalyst of the other catalyst layer 5 can be suppressed, which is preferable.
  • Known or arbitrary methods can be selected for the method for producing the membrane-electrode assembly 10 of the present invention.
  • an organic solvent solution of the constituent materials of the binders 2 and 3 is applied on the catalyst layers 4 and 5 of the catalyst-supporting gas diffusion electrodes 8 and 9, and then the solvent is removed. Place on both sides of membrane 1.
  • press machines such as hot press machine and roll press machine
  • the membrane-electrode assembly 10 can be prepared by hot pressing at a pressing temperature of about 120 to 250 ° C. If necessary, the membrane-electrode assembly 10 may be prepared without using the binders 2 and 3.
  • FIG. 2 is a sectional view of a main part of a solid polymer fuel cell (direct methanol fuel cell) using the proton conductive polymer membrane or the membrane-electrode assembly of the present invention.
  • the plates 11 and 12 are made of graphite-metal plates with conductivity and chemical stability, and have a barrier to fuel and oxidants. Further, these may be subjected to a water-repellent treatment or a corrosion-resistant treatment as necessary.
  • flow paths 13 and 14 for feeding fuel gas or liquid and oxidant are formed, and solid polymer fuel cells (direct methanol fuel cells) are formed. ) Is configured.
  • a gas or liquid containing hydrogen as a main component and a gas or liquid containing methanol as a main component are supplied to one flow path 13 as a fuel gas or liquid, and a gas containing oxygen as an oxidant (oxygen or air) Is supplied to the other flow paths 14, thereby operating the polymer electrolyte fuel cell. If methanol is used as the fuel at this time, it will be a direct methanol fuel cell.
  • the polymer electrolyte fuel cell (direct methanol fuel cell) of the present invention may be used alone or in a plurality of layers to form a stack and used, or a fuel cell system incorporating them may be used.
  • FIG. 3 is a cross-sectional view of a main part of a direct methanol fuel cell comprising the proton conductive polymer membrane 1 or the membrane-electrode assembly 10 of the present invention.
  • the membrane-electrode assembly 10 The required number is arranged in a plane on both sides of a fuel (methanol or methanol aqueous solution) tank 15 having a function of filling and supplying a methanol or methanol aqueous solution. Further, on the outside thereof, a support 16 having an oxidant flow path 14 formed thereon is disposed, and is sandwiched by these to constitute a cell or stack of a direct methanol fuel cell.
  • JP 2001-93561, JP 2001-102069, JP 2001-102070, JP 2001-283888, JP 2000-268835, JP 2000-268836 It can be used as an electrolyte membrane or a membrane-electrode assembly of a direct methanol fuel cell known in JP-A-2001-283892 and the like.
  • the method for producing a proton conductive polymer membrane of the present invention comprises the steps of: producing a proton conductive polymer [SZ cm] at 23 ° C. and a predetermined concentration of meta at 25 ° C.
  • the product of the methanol barrier coefficient [(cm ⁇ day) ZJLL dynamics [(S ⁇ day) / mo 1] for the aqueous solution of knol is at least one of the following (A) or (B):
  • a film made of a hydrocarbon-based polymer compound and a sulfonating agent are formed.
  • a method for producing a proton conductive polymer membrane having an ion exchange capacity of 0.3 meq Zg or more and having a crystalline phase comprising: a film comprising a crystalline hydrocarbon polymer compound; It is preferred to contact with a sulfonating agent.
  • a sulfonating agent Where the sulphate to the amorphous phase
  • the introduction of sulfonic acid groups does not mean that sulfonic acid groups are not introduced at all into the crystal phase of the film composed of the crystalline hydrocarbon-based high-conjugation product. Means that a crystal phase remains.
  • the thickness of the film made of the hydrocarbon polymer compound or the crystalline hydrocarbon polymer compound can be arbitrarily selected according to the intended use. In consideration of uniformly introducing sulfonic acid groups to the inside of the film and reducing the internal resistance of the proton conductive polymer membrane, the thinner the film, the better. On the other hand, considering the methanol barrier property and the handling property, it is not preferable that the film thickness is too thin. In consideration of these, the thickness of the film is preferably 1.2 to 350 im. If the thickness of the film is thinner than 1.2, it is difficult to manufacture, and at the time of processing, there is a tendency for stiffness or breakage to occur, and the eight-dling property tends to be deteriorated. It becomes difficult to uniformly sulfonate the inside, and the internal resistance of the obtained proton conductive polymer membrane also increases, which may lower the proton conductivity.
  • sulfonating agent known sulfonating agents such as chlorosulfonic acid, fuming sulfuric acid, sulfur trioxide, sulfur trioxide-triethyl phosphate, concentrated sulfuric acid, trimethylsilyl chlorosulfate, and trimethylbenzenesulfonic acid can be used.
  • chlorosulfonic acid fuming sulfuric acid, sulfur trioxide, sulfur trioxide-triethyl phosphate, concentrated sulfuric acid, trimethylsilyl chlorosulfate, and trimethylbenzenesulfonic acid
  • cyclic sulfur-containing compounds such as propane sultone and 1,4-butanesanoletone can be combined with a cyclic sulfur-containing compound in the presence of a catalyst such as aluminum chloride in accordance with the Friedel-Crafts reaction.
  • a method in which an aromatic unit in a system polymer compound is brought into contact to introduce a substituent containing a sulfonic acid group such as a sulfopropyl group or a sulfobutyl group can also be used.
  • the proton conductive polymer membrane of the present invention is preferably produced by bringing a film made of the above polymer compound into contact with a sulfonating agent in the presence of a solvent.
  • a halide having 3 or more carbon atoms have a higher boiling point and a higher volatility than those of halogenated compounds having 2 or less carbon atoms such as dichloromethane and 1,2-dichloroethane, which are generally used when sulfonating hydrocarbon compounds. Therefore, it is not necessary to provide any additional equipment for preventing the solvent from evaporating or recovering the evaporated solvent, so that the manufacturing cost of the additional equipment can be reduced.
  • the obtained proton conductive polymer membrane is less likely to have reduced methanol barrier property, and a proton conductive polymer membrane having both high proton conductivity and high methanol barrier property can be obtained.
  • halides having 3 or more carbon atoms that can be used in the present invention include, for example, when polyphenylene sulfide is used as a hydrocarbon-based polymer compound, dichloromethane or 1,2- Instead of low-carbon hydrocarbons such as dichloroethane, 1-chloropropane, 1-bromopropane, 1-chloropropane, 1-chlorobutane, 2-chlorobutane, 1-chloro-2-methylpropane, 1-bromobutane, 2-bromobutane, 1-bromo-2-methylpropane, 1-odobutane, 2-iodobutane, 1-odo-2-methylpropane, 1-clo mouth pentane, 1-bromopentane, 1-iodopentane, 1- Black hexane, 1-bromohexane, 1-horde hexane, chlorocyclohexane, bromocyclohexane, Hydrocyclo
  • 1-chloro-propane, 1-chlorobutane, 2-chlorobutane, 1-chloro-2-methylpropane, 1-chloro-mouth pentane, 1-chloro-hexane, and chlorocyclo-hexane Preferably, at least one selected from the group consisting of Among these solvents, from the viewpoint of industrial availability and the properties of the obtained proton conductive polymer membrane, 1-chlorobutane is preferred.
  • the amount of the sulfonating agent to be used is preferably 0.5 to 30 equivalents, more preferably 0.5 to 15 equivalents, based on the aromatic unit in the hydrocarbon polymer compound.
  • the use amount of the sulfonating agent is less than 0.5 equivalent, there is a tendency that the introduction amount of the sulfonic acid group decreases or the time required for introduction increases.
  • it exceeds 30 equivalents the polymer film is chemically degraded, the mechanical strength of the resulting proton-conductive polymer membrane is reduced, handling becomes difficult, and sulfonic acid group If the amount is too large, the practical properties of the proton conductive polymer membrane tend to be impaired, such as a decrease in methanol barrier properties.
  • the concentration of the sulfonating agent in the solvent may be appropriately set in consideration of the target amount of sulfonic acid group to be introduced and the reaction conditions (temperature and time). Specifically, it is preferably from 0.1 to 10% by weight, and more preferably from 0.2 to 5% by weight. If the amount is less than 0.1% by weight, the sulfonating agent and the aromatic unit in the polymer compound are hardly in contact with each other, and the desired sulfonate group cannot be introduced or takes too long to introduce. There is. On the other hand, if it exceeds 10% by weight, the introduction of sulfonic acid groups becomes non-uniform, and the mechanical properties of the obtained proton conductive polymer membrane tend to be impaired.
  • reaction temperature and the reaction time at the time of contact are not particularly limited, but may be 0 to 100, more preferably 10 to 30 ° C, 0.5 hours or more, and more preferably 2 to 100 hours. It is preferable to set the range. If the reaction temperature is lower than 0 ° C, measures such as cooling on the equipment are required, and the reaction tends to take longer than necessary.If the temperature exceeds 100 ° C, the reaction proceeds excessively. And tend to reduce the properties of the film by causing side reactions.
  • reaction time is shorter than 0.5 hour, the sulfonating agent and the polymer compound Insufficient contact with the aromatic unit tends to make it difficult to introduce the desired sulfonic acid group. If the reaction time exceeds 100 hours, the productivity tends to decrease significantly and the film There is a tendency that significant improvement in characteristics cannot be expected. In practice, it is possible to efficiently produce a proton-conducting polymer membrane having desired characteristics in consideration of the reaction system such as the sulfonating agent and the solvent to be used, the target production amount, and the like.
  • ⁇ washing is preferably performed to remove unreacted sulfonating agent and solvent.
  • continuous washing with water and drying under appropriate conditions can be performed to obtain a proton conductive polymer membrane. preferable.
  • washing instead of washing, after neutralizing and washing with sodium hydroxide solution
  • An acid treatment may be performed to obtain a proton conductive polymer membrane.
  • the sulfonating agent is sulfur trioxide
  • the gas is produced by contacting a gas containing sulfur trioxide with a film made of a hydrocarbon polymer compound.
  • the step of introducing a sulfonic acid group becomes a dry treatment, and the steps and costs relating to raw materials and regeneration treatment can be reduced without using a solvent for sulfonation.
  • the method for producing a proton conductive polymer membrane of the present invention may be performed continuously. That is, a film composed of a hydrocarbon polymer compound to be treated is continuously supplied to a reaction tank with a sulfonating agent, and a washing step and a drying step are continuously performed as necessary. It is not necessary to purify or recover the proton conductive polymer membrane in the middle of the process. By this method, the productivity of the proton conductive polymer membrane is improved.
  • a sulfonic acid group can be introduced in a film (membrane) shape by bringing the polymer film into contact with a sulfonating agent in a reaction vessel. Therefore, compared with a conventional method of synthesizing a sulfonated polymer in a homogeneous reaction system and then processing it into a membrane, steps such as recovery, purification, and drying of the reactant, dissolution of the sulfonated polymer in a solvent, Steps such as coating on the support and removing the solvent can be omitted. preferable. Furthermore, since the film is continuously supplied, the productivity is remarkably improved.
  • the conditions for removal and washing may be appropriately set in consideration of the type of the sulfonating agent and the hydrocarbon polymer compound to be used.However, the remaining sulfonating agent is inactivated by washing with water, or an alkali is used. And may be neutralized.
  • the proton conductive polymer membrane can be recovered in a practically usable form.
  • the drying conditions may be appropriately set in consideration of the type of the polymer film to be used and the characteristics of the obtained proton conductive polymer membrane. Since the sulfonic acid group has strong hydrophilicity, it may be significantly swelled due to water in the washing process. For this reason, it may shrink during drying and cause irregularities such as wrinkles and swelling. Therefore, when drying, it is preferable to apply an appropriate tension in the plane direction of the proton conductive polymer membrane and dry. Also, in order to suppress rapid drying, drying may be performed gradually under the control of humidity.
  • the sulfide unit (1 S—) in the polymer film is converted to the sulfoxide unit (1 SO—) ⁇ Oxidized to sulfone units (-S 0 2 —), sulfoxide units (one SO—) are oxidized to sulfone units (one S 0 2 —), and phenylene units of hydrogen May be substituted by a substituent such as 1C1.
  • a structural unit generated as a result of the side reaction may be included as long as the properties of the obtained proton conductive polymer membrane are not significantly reduced.
  • the method for producing a proton conductive polymer membrane of the present invention further comprises the step of adding at least one kind selected from the group consisting of a beam, an electron beam, and an ion beam to the proton conductive polymer membrane obtained by the method. It is preferable to irradiate the radiation, and the irradiation amount is preferably from 10 to: I000 kGy.
  • a plasticizer, an antioxidant, an antistatic agent, an antibacterial agent, a lubricant, a surfactant An appropriate amount of an additive such as a filler may be contained.
  • a proton conductive polymer membrane (about 10 mm x 40 mm) is immersed in 2 O mL of a saturated aqueous solution of sodium chloride at 25 ° C, and reacted in a water bath at 6 O: for 3 hours. Cool to 25 ° C, then wash the membrane thoroughly with ion-exchanged water and collect all saturated aqueous sodium chloride and washing water. To the recovered solution, a phenolphthalein solution is added as an indicator, and the solution is neutralized and titrated with a 0.01 N aqueous sodium hydroxide solution to calculate an ion exchange capacity.
  • a Vitrex membrane permeation test apparatus In an environment of 25 ° C, use a Vitrex membrane permeation test apparatus to separate ion-exchanged water and a predetermined concentration of aqueous methanol solution with a proton-conducting polymer membrane. After a lapse of a predetermined time, collect a solution containing methanol that has permeated to the ion-exchanged water side, and quantify the methanol content by gas chromatography. From this quantitative result, the methanol permeation rate is calculated, and the methanol permeation coefficient and the methanol cutoff coefficient are calculated.
  • MENOOL Permeability Coefficient and The noise cutoff coefficient is calculated according to the following equations (1) and (2).
  • the membrane is immersed in ion-exchanged water or a 64% by weight methanol aqueous solution for 2 hours in an environment of 25 ° C. Thereafter, the distance between the measurement points is measured, and the dimensional change ratio is calculated.
  • the X-ray diffraction measurement of the proton conductive polymer membrane is performed under the conditions of minutes.
  • A sharp peak can be confirmed by X-ray diffraction measurement.
  • Polyphenylene sulfide was used as the hydrocarbon polymer compound.
  • a chlorosulfonic acid solution 729 g of 1-chlorobutane and 3.65 g of chlorosulfonic acid were weighed to prepare a chlorosulfonic acid solution.
  • 1.69 g of a polyphenylene sulfide film (trade name: Torelina, thickness: 50 m, manufactured by Toray Industries, Inc.) was immersed in a chlorosulfonate solution, and allowed to stand at room temperature for 20 hours (with chlorosulfonic acid added). The amount is 2 equivalents based on the aromatic unit of polyphenylene sulfide). After standing at room temperature for 20 hours, the polyolefin sulfide film was collected and washed with ion-exchanged water until neutral.
  • the washed polyphenylene sulfide film is left in a thermo-hygrostat adjusted to 23 ° C for 30 minutes under a relative humidity of 98%, 80%, 60% and 50%, respectively.
  • the film is dried, and a sulfonic acid group-introduced polyphenylene sulfide membrane (hereinafter referred to as a sulfonated boriphenylene sulfide membrane) (8 OmmX 8 Omm, thickness: 51 m) is used as the proton conductive polymer membrane.
  • the procedure was performed in the same manner as in Example 1 except that the amount of 1-chlorobutane was changed to 721 g, the amount of chlorosulfonic acid was changed to 5.40 g, and the amount of the polyphenylene sulfide film was changed to 1.67 g. 3 equivalents per aromatic unit of lensulfide).
  • the obtained sulfonated polyphenylene sulfide membrane (80 mm ⁇ 80 mm, thickness: 53 m) maintained the membrane shape.
  • Example 2 The procedure was the same as in Example 1 except that the amount of 1-chlorobutane was 716 g, the amount of chlorosulfonic acid was 7.16 g, and the amount of polyphenylene sulfide film was 1.66 g. 4 equivalents to the aromatic unit of the fluoride).
  • the obtained sulfonated polyphenylene sulfide membrane (80 mm ⁇ 80 mm, thickness: 54 ⁇ m) maintained the membrane shape.
  • Tables 1, 2, and 5 and Fig. 6 show the results of the property evaluation of this film.
  • Example 1 The procedure was the same as in Example 1, except that the amount of monochlorobutane was 734 g, the amount of chlorosulfonic acid was 11.00 g, and the amount of polyphenylene sulfide film was 1.70 g. 6 equivalents to the aromatic unit of the sulfide).
  • the resulting sulfonated polyphenylene sulfide membrane (8 OmmX 8 Omm, thickness: 78 m) maintained the membrane shape.
  • Tables 1 to 3 show the results of the property evaluation of this film.
  • Example 1 The procedure was the same as in Example 1 except that the amount of chlorobutane was 746 g, the amount of chlorosulfonic acid was 14.93 g, and the amount of polyphenylene sulfide film was 1.73 g. 8 equivalents per aromatic unit of dilensulfide).
  • the obtained sulfonated polyphenylene sulfide membrane (80 mm ⁇ 80 mm, thickness: 93 zm) maintained the membrane shape.
  • Tables 1 to 3 show the results of the property evaluation of this film.
  • Example 2 The procedure was performed in the same manner as in Example 1 except that the amount of 1-chlorobutane was 712 g, the amount of chlorosulfonic acid was 17.80 g, and the amount of the polyphenylene sulfide film was 1.65 g. 10 equivalents to the aromatic unit of polyphenylene sulfide)).
  • the obtained sulfonated polyphenylene sulfide membrane (8 OmmX 8 Omm, thickness: 100 m) maintained the membrane shape. Tables 1 to 3 show the results of the property evaluation of this film.
  • Example 1 Examples except that the amount of monochlorobutane was 583 g, the amount of chlorosulfonic acid was 5.83 g, and the polyphenylene sulfide film (Toray Industries, Ltd., trade name: TORELINA, thickness: 25 zm) were 1.35 g.
  • the procedure was performed in the same manner as in Example 1 (the amount of chlorosulfonic acid added was 4 equivalents to the aromatic unit of polyphenylene sulfide).
  • the obtained sulfonated polyphenylene sulfide membrane (80 mm x 80 mm, thickness: 32 m) maintained the membrane shape.
  • Tables 1 and 2 show the results of the property evaluation of this film.
  • Tables 1 and 2 show the results of the property evaluation of this film.
  • the procedure was performed in the same manner as in Example 7 except that the amount of 1-chlorobutane was 578 g, the amount of chlorosulfonic acid was 8.67 g, and the amount of polyphenylene sulfide film was 1.34 g. 6 equivalents per aromatic unit of lensulfide).
  • the obtained sulfonated polyphenylene sulfide membrane (80 mm ⁇ 80 mm, thickness: 0 m) maintained the membrane shape.
  • Tables 1 to 3 show the results of the property evaluation of this film. (Example 10)
  • Example 7 The procedure was performed in the same manner as in Example 7 except that the amount of 1-chlorobutane was changed to 587 g, the amount of chlorosulfonic acid was set to 11.74 g, and the amount of the polyphenylene sulfide film was set to 1.36 g. 8 equivalents per aromatic unit of lensulfide).
  • the resulting sulfonated polyphenylene sulfide membrane (8 Omm x 8 Omm, thickness: 42 zm) maintained the membrane shape.
  • Tables 1 to 3 show the results of the property evaluation of this film.
  • the sulfonated polyphenylene sulfide membrane obtained according to Example 4 was irradiated with an electron beam having an acceleration voltage of 4.6 MeV, an irradiation dose of 500 kGy, and a current of 2 OmA.
  • the resulting sulfonated polyphenylene sulfide membrane (8 Omm ⁇ 8 Omm, thickness: 83) maintained the membrane shape.
  • Tables 1 and 2 show the results of the property evaluation of this film.
  • Example 11 Performed in the same manner as in Example 11 except that the sulfonated polyphenylene sulfide membrane obtained according to Example 5 was used instead of the sulfonated polyphenylene sulfide membrane obtained according to Example 4. did.
  • the obtained sulfonated polyphenylene sulfide membrane (8 Omm ⁇ 8 Omm, thickness: 93 m) maintained the membrane shape.
  • Tables 1 to 3 show the results of the characteristics Hffi of this film.
  • Example 11 was carried out in the same manner as in Example 11 except that the sulfonated polyphenylene sulfide membrane obtained according to Example 6 was used instead of the sulfonated polyphenylene sulfide membrane obtained according to Example 4. .
  • the obtained sulfonidani polyphenylene sulfide film (8 OmmX 8 Omm, thickness: 104 xm) maintained the film shape.
  • Example 11 was carried out in the same manner as in Example 11, except that the sulfonated polyphenylene sulfide membrane obtained according to Example 8 was used instead of the sulfonated polyphenylene sulfide membrane obtained according to Example 4.
  • the resulting sulfonated polyphenylene sulfide membrane (8 OmmX 8 Omm, thickness: 36 xm) maintained the membrane shape.
  • Tables 1 to 3 show the results of the property evaluation of this film.
  • Example 11 was carried out in the same manner as in Example 11 except that the sulfonated polyphenylene sulfide membrane obtained according to Example 9 was used instead of the sulfonated polyphenylene sulfide membrane obtained according to Example 4.
  • the obtained sulfonated bolifenylene sulfide membrane (8 Omm ⁇ 8 Omm, thickness: 41 zm) maintained the membrane shape.
  • Tables 1 to 3 show the results of the property evaluation of this film.
  • Example 11 The same as Example 11 except that the sulfonated polyphenylene sulfide membrane obtained according to Example 10 was used instead of the sulfonated polyphenylene sulfide membrane obtained according to Example 4. Carried out. The resulting sulfonated polyphenylene sulfide membrane (8 Omm ⁇ 8 Omm, thickness: 48 u) maintained the membrane shape.
  • Tables 1 to 3 show the results of the property evaluation of this film.
  • a polyphenylene sulfide film (trade name: Torelina, manufactured by Toray Industries, Inc., thickness: 50 / xm), and use a dropping funnel to add 1.5 g of the sulfur trioxide solution. It was dropped. The mixture was heated to 60 ° C in a water bath to evaporate sulfur trioxide and brought into contact with the polyphenylene sulfide film. After being left in this state for 30 minutes, it was washed with ion-exchanged water until neutral.
  • a polyphenylene sulfide film trade name: Torelina, manufactured by Toray Industries, Inc., thickness: 50 / xm
  • the washed polyphenylene sulfide film is left in a thermo-hygrostat controlled at 23 ° C for 30 minutes each under a relative humidity of 98%, 80%, 60% and 50% humidity control. Is dried, and the sulfonic acid group is introduced as a proton conductive polymer membrane.
  • the obtained polyphenylene sulfide membrane (hereinafter, sulfonated polyphenylene sulfide membrane) (5 OmmX 5 Omm, thickness: 70 ⁇ m) was obtained.
  • Tables 1, 2, and 5 and Fig. 7 show the results of the evaluation of the characteristics of this film.
  • Nafion 115 manufactured by DuPont was used as a sulfonic acid group-containing membrane made of a non-hydrocarbon polymer compound.
  • Tables 1, 2, and 4 show the evaluation results of the characteristics of this film.
  • 1,4-polyphenylene sulfide (Aldrich, number average molecular weight: 10,000) was dissolved in 30 OmL of chlorosulfonic acid. The mixture was cooled on ice and stirred at a reaction temperature of 5 ° C for 60 minutes. Then, the temperature of the reaction solution was adjusted to 20 ° C., 10 OmL of fuming sulfuric acid (15% SO s ) was added dropwise, and the mixture was stirred for 300 minutes to react 1,4-polyphenylene sulfide with fuming sulfuric acid. The reaction solution was added with stirring to a mixture of 2 kg of ice and 60 OmL of sulfuric acid (30% by weight).
  • a 20% by weight solution of the resulting sulfonated polyphenylene sulfide in 1 ⁇ -methyl-2-pyrrolidone was prepared, cast on a glass platform, and dried at 150 ° C under reduced pressure.
  • the membrane shape was not obtained, and the evaluation of characteristics other than the ion exchange capacity could not be performed.
  • Table 1 shows the results of the property evaluation of this film.
  • Tables 1 to 5 and FIG. 8 show the results of the property evaluation of this film.
  • Polyphenylene sulfide (Dai Nippon Ink Kogyo Co., Ltd., trade name: DIC-PPS FZ-2200-A5) 100 parts by weight of tricresyl phosphate (Daihachi Chemical Industry Co., Ltd., trade name: 2), and melt-mixed with a twin-screw extruder heated at 280 ° C to obtain pellets of a predetermined mixture. This was melt-extruded with an extruder at a screw temperature of 290 ° C and a T-die temperature of 320 ° C to obtain a film with a thickness of 50.
  • the washed polyphenylene sulfide film is left in a thermo-hygrostat adjusted to 23 ° C for 30 minutes under a relative humidity of 98%, 80%, 60% and 50% humidity control. Is dried to form a poly (ethylene sulfide) membrane into which sulfonic acid groups have been introduced (hereinafter, sulfonated poly (phenylene sulfide) Film) (8 OmmX 80 mm, thickness: 60 ⁇ ).
  • the proton conducting polymer membrane of the present invention is similar to a conventional proton conducting polymer membrane in the same order of protons. It was found to be conductive and useful as an electrolyte for polymer electrolyte fuel cells and direct fuel cells. In addition, the proton conductive polymer membrane of the present invention has a better methanol blocking coefficient than conventional proton conductive polymer membranes, and is clearly useful as an electrolyte for direct methanol fuel cells. It became.
  • the proton conductive polymer membrane of the present invention has a larger product of the proton conductivity and the methanol cutoff coefficient than the conventional proton conductive polymer membrane, and is characterized by a balance between the proton conductivity and the methanol cutoff property. It was shown to have. Therefore, it has been clarified that the proton conductive polymer membrane of the present invention is useful as an electrolyte for a direct methanol fuel cell.
  • the proton conducting polymer membrane of the present invention shows that the conventional proton Compared to conductive polymer membranes, they have superior rupture strength and rupture elongation, and have been proved to be useful as electrolytes in polymer electrolyte fuel cells and direct methanol fuel cells.
  • Example 1 in Table 4 the proton-conducting polymer membrane of the present invention was compared with the conventional proton-conducting polymer membrane by using ion-exchanged water and 64% by weight. It showed high dimensional stability to aqueous methanol solution and excellent handling properties. Therefore, it has been clarified that it is useful as an electrolyte for polymer electrolyte fuel cells and direct methanol fuel cells. From the results of the X-ray diffraction in FIGS. 4 to 9 and the evaluation of the crystallinity in Table 5, the proton conducting polymer membranes of Examples 1 to 3 and 17 of the present invention have a crystalline peak and a crystalline phase. It was clear that it remained.
  • the conventional proton conductive polymer membrane of Comparative Example 2 cannot obtain a self-supporting membrane and requires as much as 90 hours for its production.
  • the polymer membrane can be manufactured in about 24 hours, and the present invention is superior in productivity. That is, according to the production method of the present invention, a proton conductive polymer membrane having practical handling properties can be obtained by a simpler method.
  • a proton conductive polymer membrane in which the product of proton conductivity and methanol barrier coefficient is a specific value or more, or an ion exchange capacity of 0.3 meq Zg or more, and a crystalline phase
  • the proton-conducting polymer membrane having a high molecular weight makes it possible to exhibit excellent proton conductivity and high methanol barrier properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)

Abstract

本発明の目的は、プロトン伝導性に加え、優れた機械的特性、高いメタノール遮断性を有し、固体高分子形燃料電池および直接アルコール形燃料電池の電解質として有用なプロトン伝導性高分子膜を提供することである。本発明は、23℃でのプロトン伝導度と25℃での所定濃度のメタノール水溶液に対するメタノール遮断係数の積が、所定値以上のプロトン伝導性高分子膜である。また本発明は、イオン交換容量が0.3ミリ当量/g以上であり、かつ、結晶相を有するプロトン伝導性高分子膜である。

Description

明細書
プロトン伝導性高分子膜およびその製造方法
腿分野
本発明は、 プロトン伝導性高分子膜およびその製造方法に関する。
背景擁
プロトン伝導性高分子膜は、 固体高分子形燃料電池、 湿度センサ一、 ガスサンサー 、 エレクトクロミック表示素子などの電気化学素子の主要な構成材料である。 これら 電気ィ匕学素子のなかでも、 固体高分子形燃料電池は、 将来の新エネルギー技術の柱の 一つとして期待されている。 高分子ィ匕合物からなるプロトン伝導性高分子膜を電解質 膜として使用する固体高分子形燃料電池 (P E F Cまたは P EMF C) は、 低温にお ける作動、 小型軽量化が可能などの特徴から、 自動車などの移動体、 家庭用コージェ ネレーションシステム、 および民生用小型携帯機器などへの適用が検討されている。 とくに、 P E F Cを搭載した燃料電池自動車は、 エネルギー効率が高く、 炭酸ガス排 出量が少ないなどの特徴を有し、 究極のエコロジ一カーとして社会的な関心が高まつ てきている。 さらに、 メタノールを燃料とする直接メタノ -ル形燃料電池 (DMF C ) は、 単純な構造と燃料供給やメンテナンスの容易さ、 さらには高エネルギー密度な どの特徴を有し、 リチウムイオン二次電池代替として、 携帯電話やノート型パソコン などの民生用小型携帯機器への応用が期待されている。
プロトン伝導性高分子膜としては、 1 9 5 0年代に開発された、 スチレン系の陽ィ オン交換膜がある。 しかし、 このスチレン系の陽イオン交謹は、 燃料電池動作環境 下における安定性に乏しく、 充分な寿命を有する燃料電池を製造するにはいたつてい ない。 実用的な安定性を有するプロトン伝導性膜として、 ナフイオン (N a f i o n , デュポン社の登録商標。 以下同様) に代表されるパ一フルォロカ一ポンスルホン酸 膜が開発され、 P E F Cをはじめとする多くの電気化学素子への応用が提案されてい る。 パーフルォロカ一ポンスルホン酸膜は、 高いプロトン伝導度を有し、 耐酸性、 耐 酸化性などの化学的安定性に優れている。 しかし、 製造が困難で、 非常に高価である という欠点がある。 さらに、 民生用携帯機器に搭載される燃料電池の燃料として有望 視されているメ夕ノールなどの水素含有液体などの透過 (クロスォ一バ一ともいう) が大きく、 いわゆる化学ショート反応が起こる。 これにより、 力ソード電位が低下す るだけでなく、 燃料効率の低下が起こり、 セル特性低下の主要因となっている。 従つ て、 このようなパ一フルォロカ一ポンスルホン酸膜を直接メタノール形燃料電池の電 解質膜として用いるには課題が多い。 また、 含フッ素化合物は合成時および廃棄時の 環境への負荷が大きく、 環境問題を考慮した燃料電池などの構成材料として必ずしも 望ましいものではない。
このような背景から、 製造が容易で、 より安価なプロトン伝導性高分子膜として、 芳香族系高分子化合物のスルホン化物などからなる非パーフルォロカ一ボンスルホン 酸型プロトン伝導性高分子膜が種々提案されている。 その代表的なものとして、 スル ホン化ポリエーテルエーテルケトン (たとえば、 特開平 6— 9 3 1 1 4号公報を参照 のこと) 、 スルホン化ポリエーテルスルホン (たとえば、 特開平 1 0—4 5 9 1 3号 公報を参照のこと) 、 スルホン化ポリスルホン (たとえば、 特開平 9— 2 4 5 8 1 8 号公報を参照のこと) 、 スルホン化ポリイミド (たとえば、 特表 2 0 0 0 - 5 1 0 5 1 1号公報を参照のこと) などの耐熱芳香族高分子のスルホン化物などが提案されて いる。 また、 安価で、 機械的、 化学的に安定とされる S E B S 〔スチレン一 (ェチレ ン一ブチレン) 一スチレン〕 のスルホン化体からなるプロトン伝導性高分子膜 (特表 平 1 0— 5 0 3 7 8 8号公報を参照のこと) が提案されている。 これらのスルホン化 炭化水素系高分子膜は製造が容易であり、 かつ低コスト化が可能であるとされている 。 しかし、 高いプロトン伝導度が要求される P E F Cの電解質膜として使用するには 、 プロトン伝導度が不充分である。 また、 それを改善するために、 スルホン酸基など のプロトン伝導性置換基の導入量を増やすと、 機械的特性の低下 (強度低下、 伸び低 下) や、 水溶性になったり、 膜の吸水率が上昇して著しく膨潤するなどハンドリング 性が著しく損なわれる。 また、 小型携帯機器用燃料電池の燃料として有望なメタノー ルに対しても、 これと同様の傾向を示し、 その使用が制限される恐れがある。 化学的 ·熱的安定性を有する炭化水素系高分子化合物のスルホンィ匕物として、 さら に、 ポリフエ二レンサルフアイドをベースとしたプロトン伝導性物質が提案されてい る。 しかしながら、 ポリフエ二レンサルファイドは実質的に溶媒不溶性であり、 他の 溶媒溶解性のプロトン伝導性物質と比較して、 製膜性等の加工性が劣る。 例えば、 米 国特許第 4 , 1 1 0, 2 6 5号公報には、 ポリフエ二レンサルファイドを発煙硫酸と 反応させてスルホンィ匕ポリフエ二レンサルフアイドを調製し、 カチオン交換物質とし て使用する方法が開示されている。 しかし、 この物質は溶媒不溶性の架橋性ポリマー であることから、 さらに加工して使用するのは困難である。 また、 特表平 1 1一 5 1 0 1 9 8号公報には、 非プロトン性極性溶媒に可溶なスルホン化ポリフエ二レンサル ファイドが提案されている。 これはポリフエ二レンサルファイドを変性することによ り、 非プロトン性極性溶媒への溶解性を付与し、 容易にフィルムに加工できるポリマ 一の調製方法が開示されている。 しかし、 ここに開示されている方法は、 ポリフエ二 レンサルファイドの変性 (スルホン化) 、 沈殿 ·乾燥による変性物の回収、 非プロト ン性極性溶媒溶液調製、 製膜 ·溶媒除去、 など種々の工程を経るものである。
さらに、 国際公開第 0 2 Z 0 6 2 8 9 6号パンフレツトには、 スルホン化ポリフエ 二レンサルフアイドなどのスルホン化芳香族系高分子膜の製造方法が開示されている 。 このスルホン化芳香族高分子膜の製造方法において、 スルホン化剤としてクロロス ルホン酸、 溶媒としてジクロロメタンを使用することが記載されている。 しかし、 こ の製造方法で得られたスルホン化高分子膜も、 高いプロトン伝導度を得るためにスル ホン酸基などのプロトン伝導性置換基の導入量を増やすと、 メタノールの透過が大き くなることが容易に想定される。 このように、 直接メタノール形燃料電池の電解質膜 には、 プロトン伝導度を低下させずにメタノ一ル透過を抑制することが要求されてい るが、 プロトン伝導度とメタノール遮断性がトレードオフの関係にあり、 これらの特 性を両立させることは困難である。
また、 このジクロロメタンなどの低炭素数のハロゲン化炭化水素は、 その沸点が低 いことから、 スルホン化高分子膜を得るまでに、 溶媒の揮発防止や揮発した溶媒の回 収のためなどの付帯設備が必要になり、 製造コストが大きくなることが容易に想定さ れる。 発明の開示
本発明の目的は、 上記問題を鑑みてなされたものであり、 固体高分子形燃料電池や 直接メタノール形燃料電池の電解質膜として有用な、 プロトン伝導度とメタノール遮 断性が両立したプロトン伝導性高^?膜およびその製造方法を提供することである。 すなわち本発明のプロトン伝導性高分子膜は、 23 °Cでのプロトン伝導度 [ S Z c m] と 25°Cでの所定濃度のメタノ一ル水溶液に対するメタノール遮断係数 [ (cm •日) Z zmo 1] の積 [ (S ·日) Z mo 1] が、 少なくとも下記 (A) または (B) のいずれか一方をみたすものに関する。
(A) 10重量%メ夕ノール水溶液に対する値が、 2. 5X 10— 4 (S '日) Z m o 1以上
(B) 64重量%メタノール水溶液に対する値が、 4. 5X 10—5 (S ·日) Z am 01以上
また、 イオン交換容量が 0. 3ミリ当量/ g以上であり、 かつ、 結晶相を有するも のに関する。
前記プロトン伝導性高分子膜が、 スルホン酸基を含有するものである。
前記プロトン伝導性高分子膜が、 炭化水素系高分子化合物からなるものが好ましく 、 さらに結晶性芳香族高分子化合物からなることが好ましい。 さらにより好ましくは ポリフエ二レンサルファイドである。
前記プロトン伝導性高分子膜は、 J I S K 7127に準じて測定される破断伸 びが 10%以上であることが好ましい。
また、 前記プロトン伝導性高分子膜の 23 °Cでのプロトン伝導度が 1. 0X 10-3 S/cm以上であり、 より好ましくは、 1. OX 10— 2SZcm以上である。
前記プロトン伝導性高分子膜の 25°Cでの 64重量%のメタノ一ル水溶液における メタノール遮断係数が、 3. 0X 10— 4 (cm ·日) / mo 1以上であることが好 ましい。 また、 前記プロトン伝導性高分子膜は、 r線、 電子線およびイオンビ一ムからなる 群から選択させる少なくとも 1種の放射線を照射したものが好ましく、 前記放射線の 照射量が、 10〜: L 000 kGyであることがより好ましい。
本発明はまた、 前記プロトン伝導性高分子膜を使用した膜—電極接合体に関する。 前記膜一電極接合体の少なくとも一方の触媒層が、 白金およびルテニウム触媒から なるものである。
本発明はまた、 前記プロトン伝導性高分子膜、 あるいは、 前記膜—電極接合体、 を 使用した固体高分子形燃料電池に関する。
本発明はまた、 前記プロトン伝導性高分子膜、 あるいは、 前記膜—電極接合体、 を 使用した直接メ夕ノール形燃料電池。
さらに、 本発明のプロトン伝導性高^?膜の製造方法は、 炭化水素系高分子化合物 からなるフィルムと、 スルホン化剤とを接触させることによって、 23°Cでのプロト ン伝導度 [S/cm] と 25 °Cでの所定濃度のメ夕ノール水溶液に対するメタノール 遮断係数 [ (cm*日) Z mo 1] の積 [ (S。 日) Zzmo 1] が、 少なくとも 下記 (Α) または (Β) のいずれか一方をみたすものを得る方法に関する。
(A) 10重量%メタノール水溶液に対する値が、 2. 5X 10_4 (S '日) Z m 01以上
(B) 64重量%メタノ一ル水溶液に対する値が、 4. 5X10—5 (S ·日) Z^rn 01以上
また、 本発明のプロトン伝導性高分子膜の製造方法は、 結晶性炭化水素系高分子ィ匕 合物からなるフィルムと、 スルホン化剤とを接触させることによって、 イオン交換容 量が 0. 3ミリ当量 Zg以上であり、 かつ、 結晶相を有するものを得る方法に関する 前記炭化水素系高分子化合物が、 結晶性炭化水素系高分子化合物であり、 さらに好 ましくはポリフエ二レンサルフアイドである。
前記スルホン化剤が、 クロロスルホン酸, 発煙硫酸, 三酸化硫黄, 濃硫酸からなる 群から選択される少なくとも 1種である。 また、 前記フィルムと、 スルホン化剤とを溶媒存在下で接触させることが好ましく 、 前記溶媒が炭素数 3以上のハロゲン化物であることがより好ましい。
さらに前記溶媒が、 1—クロ口プロパン、 1—プロモプロパン、 1—クロロブタン 、 2—クロロブタン、 1—クロロー 2—メチルプロパン、 1一ブロモブタン、 2—ブ ロモブタン、 1ーブロモー 2—メチルプロパン、 1 _クロ口ペンタン、 1ーブロモぺ ンタン、 1一クロ口へキサン、 1ーブロモへキサン、 クロロシクロへキサンおよびブ 口モシクロへキサンからなる群から選択される少なくとも 1種であることが好ましく 、 1一クロロブタンであることがより好ましい。
前記スルホン化剤が三酸化硫黄であつて、 三酸化硫黄を含むガスと炭化水素系高分 子化合物からなるフィルムとを接触させることに関する。
さらにァ線、 電子線およびイオンビームからなる群から選択される少なくとも 1種 の放射線を照射することが好ましく、 前記放射線の照射量が、 1 0〜1 0 0 0 k Gy であることがより好ましい。 図面の簡単な説明
図 1は、 本発明の膜—電極接合体の要部断面図である。
図 2は、 本発明の固体高分子形燃料電池 (直接メタノール形燃料電池) の要部断面図 である。
図 3は、 本発明の直接メタノール形燃料電池の要部断面図である。
なお図 1〜図 3中、 1はプロトン伝導性高分子膜を、 2及び 3は結着剤層を、 4及 び 5は触媒層を、 6及び 7は拡散層を、 8及び 9は触媒担持ガス拡散電極を、 1 0は 膜一電極接合体を、 1 1及び 1 2はセパレータ一を、 1 3は燃料流路を、 1 4は酸化 剤流路を、 1 5は燃料タンクを、 1 6支離を、 それぞれ表す。
図 4は、 実施例 1のプロトン伝導性高分子膜の X線回折チヤ一トである。
図 5は、 実施例 2のプロトン伝導性高分子膜の X線回折チヤ一トである。
図 6は、 実施例 3のプロトン伝導性高分子膜の X線回折チヤ一トである。
図 7は、 実施例 1 7のプロトン伝導性高分子膜の X線回折チヤ一トである。 図 8は、 比較例 3のプロトン伝導性高分子膜の X線回折チヤ一トである。
図 9は、 比較例 4のプロトン伝導性高分子膜の X線回折チャートである。 発明を実施するための最良の形態
本発明のプロトン伝導性高分子膜は、 2 3 でのプロトン伝導度 [S/ c m] と 2 5 °Cでの所定濃度のメタノール水溶液に対するメタノ一ル遮断係数 [ ( c m *日) / o 1 ] の積 [ (S ·日) Z m o 1 ] が、 少なくとも下記 (A) または (B) の いずれか一方をみたすことが好ましい。
(A) 1 0重量%メタノール水溶液に対する値が、 2. 5 X 1 0一4 (S ·日) Znm o l以上
(B) 6 4重量%メタノール水溶液に対する値が、 4. 5 X 1 0— 5 (S '日) Ζ ΠΙ ο 1以上
本発明におけるプロトン伝導度とは、 プロトン伝導性高分子膜中のプロトン (Η+ ) の移動のし易さを示すものである。 一般的には、 公知の交流インピーダンス法によ り、 プロトン伝導性高好膜の膜抵抗を測定して、 算出することができる。 一方、 メ タノ一ル遮断係数は、 プロトン伝導性高^^膜中のメタノール透過のし難さを示すも のである。 公知の方法で、 プロトン伝導性高分子膜のメタノール透過係数を測定し、 その逆数により定義されるものである。 一例をあげると、 市販の膜透過実験装置を用 いて、 イオン交換水と所定濃度のメタノール水溶液をプロトン伝導性高分子膜で隔離 する。 所定時間経過後にイオン交換水側に透過したメタノール量をガスクロマトダラ フで定量し、 これからメタノ一ル透過係数を求める。 さらに、 このメタノール透過係 数の逆数をとり、 メタノール遮断係数を算出することができる。 これらのメタノール 遮断係数を算出する際のフロ一チヤ一トを以下に示す。
ここでメタノール遮断係数は、 使用するメタノール水溶液の濃度に依存して代わる ため、 実際に使用するメタノ一ル水溶液の濃度において、 所望の値を有することが必 要である。 メタノール遮断係数の算出
Figure imgf000009_0001
本発明のプロトン伝導性高分子膜を、 メタノール水溶液を燃料とする直接メタノ一 ル形燃料電池の電解質膜に使用して優れた発電特性を得るためには、 高いプロトン伝 導度のみでなく、 燃料であるメタノールの透過によるセル特性の低下を防ぐこと、 す なわち高いメタノール遮断性が要求される。 ここで、 本発明のプロトン伝導性高分子 膜は、 これらのプロトン伝導度とメタノール遮断係数の積が、 特定の値以上であるた め、 プロトン伝導度が低すぎたり、 メタノール透過が多すぎたりして、 性能が低下す ることなく、 直接メタノール形燃料電池の電解質膜として、 優れた性能を発現するこ とが可能である。 , 1322
9 例えば、 本発明のプロトン伝導性高分子膜と、 これと同等のプロトン伝導度であつ て、 メタノール遮断性が低く、 前記 (Α) および (Β) を満たさない膜とを比較した ±易合、 本発明の膜はメタノール透過による燃料ロスが少なくなるため、 一定の発電特 性を満たすのに必要なメタノール供給量が少なくてすむ。 また、 これに伴って、 燃料 タンクなどの付帯設備を低容量化することができ、 直接メ夕ノール形燃料電池の重量 エネルギー密度や体積エネルギー密度を向上させることができる。 さらに、 透過した メタノールによる性能低下も抑制でき、 好ましい。
また、 本発明のプロトン伝導性高分子膜と、 これと同等のメタノール遮断性であつ て、 プロトン伝導度が低く、 前記 (Α) および (Β) を満たさない膜とを比較した場 合、 同量のメタノールを供給した場合、 本発明の膜はプロトン伝導度が優れるため、 優れた発電特性を発現しうる。 これに伴って、 必要な特性を得るのに必要な、 膜面積 やセル数を減らすことができる。 これによつて、 燃料電池本体を小型'軽量化するこ とができ、 直接メ夕ノ一ル形燃料電池の重量エネルギー密度や体積エネルギー密度を 向上させることができ、 好ましい。
なお、 本発明において、 2 3 °Cでの 1 0重量%メタノール水溶液に対するプロトン 伝導度と 2 5 での 1 0重量%メタノ一ル水溶液に対するメ夕ノ一ル遮断係数の積は 、 2. 5 X 1 0— 4 (S '日) Ζ ΙΏΟ 1以上であり上限値は特にないが、 この積は 2 . 5 X 1 0— 4 (S ·日) Zmmo 1以上、 2. 5 X 1 0— 1 (S ·日) Zzmo 1以下 であることが好ましい。
また、 本発明において、 2 3 °Cでの 64重量%メタノール水溶液に対するプロトン 伝導度と 2 5°Cでの 64重量%メタノ一ル水溶液に対するメ夕ノール遮断係数の積は 、 4. 5 X 1 0— 5 (S ·日) Ζ/ιτηο 1以上であり上限値は特にないが、 この積は 4 . 5 X 1 0— 5 (S ·日) / zmo 1以上、 4. 5 X 1 0— 2 (S ·日) 1以下 であることが好ましい。
また、 本発明のプロトン伝導性高分子膜は、 イオン交換容量が 0. 3ミリ当量 Zg 以上であり、 かつ、 結晶相を有することが好ましい。 このプロトン伝導性高分子膜は 、 例えば、 プロトン伝導性置換基としてスルホン酸基を含有する場合には、 結晶性高 分子化合物の主に非晶相に所定量のスルホン酸基を有し、 膜形状に加工された形態に おいて、 前記結晶性高分子ィ匕合物に由来する結晶相が残存している状態のものを指す 。 イオン交換容量が前記範囲よりも低い場合、 プロ卜ン伝導性高分子膜のプロトン伝 導度が低くなる恐れがある。 本発明のプロトン伝導性高分子膜が、 結晶相を有するか どうかは、 公知の結晶化度の測定方法を使用することができる。 たとえば、 非容法 ( 密度法) 、 X線回折、 赤外吸収スぺクトル法、 核磁気共鳴法 (NMR) 、 熱量測定法 などを使用できる。 本発明においては、 X線回折において、 結晶性ピークが確認でき るものであればよい。 また、 示差走査熱量測定 (D S C) や示差熱分析 (D TA) で 測定可能な融解吸熱量や再結晶発熱量から、 結晶化度を測定し、 結晶相の有無を確認 してもよい。
本発明のプロトン伝導性高分子膜の結晶化度はとくに限定されないが、 好ましくは 、 結晶性高分子膜を構成する結晶性炭ィ匕水素系高分子化合物固有の飽和結晶化度の 5 %程度が残存していればよい。 さらに、 飽和結晶化度の 2 0 %以上残存していること がより好ましい範囲である。 この結晶化度が飽和結晶化度の 5 %未満であると、 プロ トン伝導性高分子膜の特性、 とりわけ、 引張伸びに代表される機械的特性や、 メ夕ノ —ル遮断性が所望の値よりも低下する恐れがある。 たとえば、 ポリフエ二レンサルフ アイドの場合、 飽和結晶化度は 6 0 %である。 他の結晶性高分子化合物についても、 公知の文献などに記載の値を参照することができる。
本発明のプロトン伝導性高分子膜は、 プロトンを伝導可能な、 置換基および Zまた は物質が膜中に含まれることが必須である。 プロトンを伝導可能な置換基としては、 前述のスルホン酸基以外にも、 リン酸基、 カルボン酸基、 フエノール性水酸基などが 挙げられる。 これらのなかでも、 置換基の導入の容易さや得られた膜のプロトン伝導 度に代表される特性を考慮すると、 スルホン酸基および Zまたはスルホン酸基を含む 置換基であることが好ましい。
本発明においてスルホン酸基とは、 下記式 ( 1 ) で表わされるスルホン酸基や下記 一般式 ( 2 ) で表わされるスルホン酸基を含む置換基をいう。
— S〇3H ( 1 )
Figure imgf000012_0001
[式中、 Rはアルキレン、 ハロゲン化アルキレン、 ァリーレン、 ハロゲン化ァリ一レ ンからなる群から選択される少なくとも 1種の結合単位からなる 2価の有機基、 また はエーテル結合を含んでいてもよい]
また、 プロトンを伝導可能な物質としては、 硫酸やリン酸などの強酸性溶液、 酸ィ匕 タングステン水和物 (W03 · n H20) 、 酸ィ匕モリブデン水和物 (M o〇3 · n H2〇 ) などの無機酸化物、 タンダストリン酸、 モリブドリン酸などの無機固体酸が挙げら れる。
本発明のプロトン伝導性高分子化合物は、 メタノール遮断性などを考慮すると、 炭 化水素系高分子からなることが好ましい。 炭化水素系高分子化合物としては、 例えば 、 ポリアクリルアミド、 ポリアクリロニトリル、 ポリアリ一ルエーテルスルホン、 ポ リ (ァリルフエニルエーテル) 、 ポリエチレンォキシド、 ポリエーテルエーテルスル ホン、 ポリエーテルケトン、 ポリエーテルケトンケトン、 ポリ塩化ビニル、 ポリ (ジ フエニルシロキサン) 、 ポリ (ジフエニルフォスファゼン) 、 ポリスルホン、 ポリパ ラフェニレン、 ポリビエルアルコール、 ポリ (フエニルダリシジルエーテル) 、 ポリ (フエニルメチルシロキサン) 、 ポリ (フエニルメチルフォスファゼン) 、 ポリフエ 二レンォキシド、 ポリフエ二レンスルホキシド、 ボリフエ二レンスルフィドスルホン 、 ポリフエ二レンスルホン、 ポリべンズイミダゾ一ル、 ボリベンゾォキサゾ一ル、 ポ リベンゾチアゾール、 ポリ ( α—メチルスチレン) 、 ポリスチレン、 スチレン一 (ェ チレン一ブチレン) スチレン共重合体、 スチレン一 (ポリイソプチレン) 一スチレン 共重合体、 ポリ 1 , 4—ビフエ二レンェ一テルエーテルスルホン、 ポリアリ一レンェ 一テルスルホン、 ポリエーテルイミド、 シアン酸エステル樹脂、 ポリエチレン、 ポリ プロピレン、 ポリアミド、 ポリアセタール、 ポリブチレンテレフ夕レート、 ポリェチ レンテレフ夕レー卜、 シンジオタクチックポリスチレン、 ポリフエ二レンサレフアイ ド、 ポリエーテルエーテルケトン、 ポリエーテル二トリルなどが例示できる。 中でも 、 スルホン酸基および Ζまたはスルホン酸基を含む置換基の導入のし易さ、 得られた 膜のプロトン伝導度、 機械的特性、 化学的安定性などの特性を考慮した場合、 ポリべ ンズイミダゾ一ル、 ポリべンゾォキサゾール、 ポリべンゾチアゾール、 ポリスルホン 、 ポリェ一テルエーテルスルホン、 ポリアリールエーテルスルホン、 ポリフエ二レン スルホン、 ポリフエ二レンォキシド、 ポリフエ二レンスルホキシド、 ポリフエ二レン スルフイドスルホン、 ポリパラフエ二レン、 ポリェ一テルケトン、 ポリエーテルケ卜 ンケトン、 シアン酸エステル樹脂、 ポリエチレン、 ポリプロピレン、 ポリアミド、 ポ リアセタ—リレ、 ポリブチレンテレフタレ一ト、 ポリエチレンテレフ夕レート、 シンジ オタクチックポリスチレン、 ポリフエ二レンサルファイド、 ポリエーテルエ一テルケ トン、 ポリェ一テルニトリルからなる群から選択される少なくとも 1種であることが 好ましい。 さらに、 本発明においては、 スルホン酸基および Zまたはスルホン酸基を 含む置換基の導入の容易さ、 得られた膜のプロトン伝導度、 機械的特性、 化学的安定 性、 水素、 メタノールなどの燃料遮断性、 酸素、 空気などの酸化剤遮断性などの特性 を考慮した場合、 炭化水素系高分子化合物が、 シンジオタクチックポリスチレン、 ポ リフエ二レンサルフアイド、 ポリエーテルエーテルケトンなどの結晶性芳香族高分子 ィ匕合物であることが好ましい。 さらに、 高いプロトン伝導度、 優れた機械的特性、 高 いメタノール遮断性を有することから、 ポリフエ二レンサルフアイドであることがよ り好ましい。
本発明のポリフエ二レンサルファイドは、 具体的には、 下記式 (3 ) で表される繰 り返し構造単位からなる。
- [A r - S ] n - ( 3 )
[式中、 A rは下記式 (4) 〜 (6 ) で表される 2価の芳香族単位、 nは 1以上の整 数]
Figure imgf000013_0001
(4) (5) (6) また前記ポリフエ二レンサルフアイドの A rの一部に、 必要に応じて以下の構造単 位を含有してもよい。
(1) 芳香族単位の水素原子の一部がアルキル基、 フエニル基、 アルコキシル基、 二 トロ基およびハロゲン基からなる群から選択される少なくとも 1つの置換基で置換さ れたもの。
(2) 3官能フエニルスルフイド単位。
(3)架橋または分岐単位。
本発明のプロトン伝導性高分子膜は、 J I S K 7127に準じて測定した破断 伸びが 10%以上であることが好ましい。 より好ましくは 15%以上であり、 さらに 好ましくは 20%以上である。 破断伸びが 10%よりも小さいと、 たとえば、 固体高 分子形燃料電池や直接メ夕ノ一ル形燃料電池の電解質として使用した場合に、 燃料や 酸化剤に含まれる水や反応で生成する水を吸収し、 膜が膨潤して寸法変形した場合に 充分に追従できなくなり、 破壊する恐れがある。 プロトン伝導性高分子膜の破断伸び を前記範囲に設定するには、 プロ卜ン伝導性高分子膜の構成成分である炭化水素系高 分子化合物や結晶性芳香族高分子化合物の種類、 所望のプロトン伝導度を発現させる ために必要なイオン交換容量、 などを考慮して適宜設定する必要がある。 基本的には 、 イオン交換容量が高くなるほど破断伸びは低下する傾向を生じるため、 所望のプロ トン伝導度と破断伸びを満たすように、 イオン交換容量を適正化したプロトン伝導性 高分子膜を製造する必要がある。
本発明のプロトン伝導性高分子膜のイオン交換容量は、 好ましくは 0. 3ミリ当量 Zg以上であり、 より好ましくは 0. 5ミリ当量 Zg以上であり、 さらに好ましくは .1. 0ミリ当量 Zg以上である。 イオン交換容量が、 0. 3ミリ当量 Zgよりも低い 場合には、 所望のプロトン伝導度を発現しない恐れがあり、 好ましくない。 本発明の プロトン伝導性高分子膜のイオン交換容量には上限値は特にない。 しかしイオン交換 容量は、 0. 3ミリ当量 Zg以上、 5. 0ミリ当量 Zg以下であることが好ましい。 本発明のプロトン伝導性高分子膜の、 23 でのにおけるプロトン伝導度は、 好ま しくは 1. OX 10_3SZcm以上であり、 より好ましくは 1. 0X10— 2S/cm 以上である。 プロトン伝導度が 1. 0X 10— 3S/cmよりも低い場合には、 本 明 のプロトン伝導性高分子膜を固体高 形燃料電池や直接メタノ一ル形燃料電池の電 解質膜として使用した場合に、 充分な発電特性を示さない恐れがある。 本発明のプロ トン伝導性高分子膜の 23 °Cでのプロトン伝導度には上限値は特にない。 しかし 23 ででのプロトン伝導度としては、 1. OX 10— 3S/cm以上、 1. OSZcm以下 であることが好ましく、 1. 0 X 10_2S/cm以上、 1. 0 SZ cm以下であるこ とがより好ましい。
プロトン伝導性高分子膜のプロトン伝導度を前記範囲に設定するには、 プロトン伝 導性高分子膜の構成成分である炭化水素系高分子化合物や結晶性芳香族高分子化合物 の種類などを考慮して、 スルホン酸基などのプロトン伝導性置換基やプロトン伝導性 物質の導入量を制御すればよい。
本発明のプロトン伝導性高分子膜のメ夕ノ一ル遮断係数は、 メタノ一ル濃度で規格 化していないため、 測定に使用するメタノール水溶液濃度によって異なる。 25でで の 64重量%のメタノール水溶液を使用した場合には、 好ましくは 3. 0X 10— 4 ( cm ·日) / [i o 1以上、 より好ましくは 5. 0 X 10 -4 (cm ·臼) Z mo 1 以上、 さらに好ましくは 1. 0 X 1 0—3 (cm ·日) Z mo 1以上である。 このメ タノ一ル遮断係数が、 3. OX 10一4 (cm '日) /im 1より小さいと、 前述し たように直接メ夕ノール形燃料電池の電解質膜として使用した場合に、 膜中のメ夕ノ ール透過に起因して生じる、 性能低下が起こりやすくなる傾向を示す。 本発明のプロ トン伝導性高分子膜の 25 での 64重量%のメ夕ノ一ル水溶液におけるメタノール 遮断係数は、 3. 0X 1 0— 4 (cm-日) ノ mo 1以上が好ましいが、 上限値は特 にない。 しかし 25 での 64重量%のメタノール水溶液におけるメタノール遮断係 数としては、 3. 0X 1 0— 4 (cm*日) Znmo 1以上、 3. 0X 10— 1 (cm · 日) Z mo 1以下であることがより好ましい。
プロトン伝導性高分子膜のメタノール透過係数を前記範囲に設定するには、 プロト ン伝導性高分子膜の構成成分である炭化水素系高分子化合物や結晶性芳香族高分子化 合物の種類、 所望のプロトン伝導度を発現させるために必要なイオン交換容量、 など を考慮して適宜設定する必要がある。 基本的には、 イオン交換容量が高くなるほどメ タノ一ル遮断係数が小さくなる傾向を生じるため、 所望のプロトン伝導度とメタノー ル透過係数を満たすように、 スルホン酸基などのプロトン伝導性置換基やプロトン伝 導性物質の導入量を制御すればよい。
本発明のプロトン伝導性高分子膜は、 ァ線、 電子線およびイオンビームからなる群 から選択される少なくとも 1種の放射線を照射したものであることが好ましい。 放射 線を照射し、 前記プロトン伝導性高分子膜を改質することによって、 プロトン伝導度 は向上する傾向を示す。 また、 メタノール遮断性も向上する場合がある。 特に、 放射 線量、 プロトン伝導性高分子膜への透過性、 照射時間 (工業的な連続照射) などの点 から、 電子線であることが好ましい。
前記放射線の照射雰囲気は、 空気中、 無酸素雰囲気、 真空雰囲気のいずれの場合も 選択可能であるが、 生産性を考慮すると空気中であることが好ましい。 本発明におい ては、 放射線照射により、 プロトン伝導性高分子膜の劣ィ匕が生じない雰囲気を適宜設 定すれば良い。 また、 放射線照射によるプロトン伝導性高分子膜の改質を効率的に実 施するため、 照射雰囲気や膜を加熱してもよい。 この際も、 プロトン伝導性高分子膜 の劣化が生じない条件を適宜設定すればよい。
前記放射線の加速電圧は、 0. 0 1〜5. O M e Vであることが好ましい。 加速電 圧が 0. 0 1 M e Vより低いと、 プロトン伝導性高分子膜への放射線の透過度が低く なり、 膜内部まで均質な膜を得るのが困難になる傾向がある。 また、 必要な照射線量 を確保するのに長時間の照射が必要となり、 生産性が著しく低下する傾向がある。 5 . O M e Vを越える場合は、 装置が必要以上に大がかりになったり、 プロトン伝導性 高分子膜の劣ィ匕を促進する傾向がある。
前記放射線の照射量は 1 0〜: l O O O k G yであることが好ましい。 1 0 k G yよ りも照射線量が少ない場合は、 充分な照射効果が発現しない傾向がある。 また、 1 0 0 0 k G yを越える場合は、 照射効果が飽和したり、 照射時間が長くなつたり、 プロ トン伝導性高分子膜の劣化や特性低下を導く傾向がある。
本発明のプロトン伝導性高分子膜の厚みは、 用途に応じて任意の厚みが選択可能で ある。 膜の内部抵抗を低減することを考慮した場合、 実用的な機械的強度を有する範 囲で、 固体高分子形燃料電池の電解質膜に使用する場合には、 燃料およぴ 化剤の遮 断性を有する範囲で、 それぞれ薄いほどよい。 電解質膜としての特性は、 イオン交換 容量やプロトン伝導度が同等であれば、 厚みが薄くなるほど、 膜としての抵抗値が低 くなる。 したがって、 膜の厚みは、 好ましくは 5〜2 0 0 imであり、 より好ましく は 2 0〜1 5 0 mである。 この厚みが、 5 mより薄い場合は、 使用時にピンホー ルの発生や膜割れが生じやすくなる傾向がある。 また、 固体高分子形燃料電池の電解 質膜として使用した場合に、 燃料や酸化剤の遮断性が不充分となり、 性能低下の要因 となる傾向がある。 さらに直接メタノール形燃料電池の電解質膜として使用した場合 には、 メタノール遮断性が不充分となり、 メタノール透過による性能低下の要因とな る傾向がある。 一方、 2 0 0 mを超える場合は、 プロトン伝導性高分子膜の抵抗が 大きくなり、 性能低下の要因となる傾向がある。
つぎに、 本発明の膜一電極接合体について、 一例として、 図面を引用して説明する 。 図 1は、 本発明のプロトン伝導性高分子膜を使用した膜一電極接合体の要部断面図 である。 これは、 プロトン伝導性高分子膜 1と、 1の両側に必要に応じて結着剤層 2 , 3が形成され、 さらにその外側に触媒層 4, 5、 拡散層 6 , 7をそれぞれ有する触 媒担持ガス拡散電極 8, 9が配置され、 膜一電極接合体 1 0が構成される。 触媒担持 ガス拡散電極 8 , 9としては、 市販の触媒担持ガス拡散電極 (米国 E— T E K社製、 など) を用いる方法が例示できるが、 これに限定されるものではない。
本発明において、 プロトン伝導性高分子膜 1は、 前記の本発明のプロトン伝導性高 分子膜が使用される。
結着剤層 2, 3は、 同一または異なっていてもよく、 必要の応じて形成されてもよ く、 また、 形成されなくてもよい。 一般的には、 ナフイオンに代表されるパーフルォ ロカ一ポンスルホン酸系高分子化合物や、 スルホン化ポリエーテルエーテルケトン、 スルホン化ポリエ一テルスルホン、 スルホン化ポリイミドなど溶媒溶解性の公知のプ 口トン伝導性高分子化合物が使用される。 これらは、 プロトン伝導性高分子膜 1と触 媒層 4. 5を接合 (接着) するために使用される。 これらの材料に対しては、 その異 03 011322
17 種材料に対する接合性に加え、 プロトン伝導性高分子膜と同様に、 プロトン伝導性や 化学的安定性などが要求される。
触媒層 4, 5は、 同一または異なっていてもよく、 片側には使用する燃料 冰素ゃ メタノールなど) の酸化能を有する触媒が使用される。 もう一方には、 使用する酸化 剤 (酸素や空気など) の還元能を有する触媒が使用される。 具体的には、 活性炭, 力 —ボンナノホーン, カーボンナノチューブなどの高表面積の導電性材料に、 白金など の貴金属触媒が担持されたものが使用される。 燃料に純水素以外のものを使用する場 合には、 触媒の被毒を抑制するため、 白金の代わりに、 白金とルテニウムからなる複 合あるいは合金触媒などが使用される。
拡散層 6, 7は、 同一または異なっていてもよく、 力一ポンぺ一パ一や力一ポンク ロスなどの多孔質の導電性材料が使用される。 これらは供給される水分や電気化学反 応によって生成した水で、 気孔が塞がれるのを抑制するため、 必要に応じて、 ポリテ トラフルォロエチレンなどのフッ素系化合物で撥水処理を施してもよい。 一般的には 、 これらの拡散層 6, 7上に、 前記触媒層 4 , 5がナフイオンに代表されるパーフル ォロカ一ボンスルホン酸系高分子化合物や、 スルホン化ポリェ一テルエーテルケトン 、 スルホン化ポリエーテルスルホン、 スルホンィ匕ポリイミドなど溶媒溶解性の公知の プロトン伝導性高分子化合物をバインダ一として形成され、 触媒担持ガス拡散電極 8 , 9が調製され使用される。
本発明の膜一電極接合体 1 0において、 触媒層 4 , 5の少なくとも一方は、 白金お よびルテニウム触媒からなることが好ましい。 本発明においては、 プロトン伝導性高 分子膜 1として、 メタノ一ル遮断性の高い材料を使用するため、 一方の触媒層 4で未 反応のメタノールが、 プロトン伝導性高分子膜 1を透過して、 もう一方の触媒層 5の 触媒を被毒するのを抑制することができ、 好ましい。
本発明の膜—電極接合体 1 0の製造方法は、 公知あるいは任意の方法が選択可能で ある。 一例をあげると、 触媒担持ガス拡散電極 8, 9の触媒層 4 , 5上に、 結着剤 2 , 3の構成材料の有機溶媒溶液を塗布した後、 溶媒を除去し、 プロトン伝導性高分子 膜 1の両面に配置する。 その後、 ホットプレス機やロールプレス機などのプレス機を 使用して、 一般的には 1 2 0〜2 5 0 °C程度のプレス温度でホットプレスし、 膜ー電 極接合体 1 0を調製することができる。 また必要に応じて、 結着剤 2, 3を使用せず に、 膜—電極接合体 1 0を調製しても構わない。
つぎに、 本発明のプロトン伝導性高分子膜あるいは膜—電極接合体を使用した固体 高分子形燃料電池 (直接メ夕ノ一ル形燃料電池) について、 一例として、 図面を引用 して説明する。
図 2は、 本発明のプロトン伝導性高分子膜あるいは膜一電極接合体を使用した固体 高分子形燃料電池 (直接メタノール形燃料電池) の要部断面図である。
これは、 本発明の膜一電極接合体 1 0と、 その外側〖こ配置されたセパレ一夕一 1 1 , 1 2に形成された燃料ガスまたは液体、 並びに、 酸化剤を送り込む流路 1 3, 1 4 、 の構成よりなるものである。 セパレ一夕一 1 1 , 1 2は、 導電性および化学的安定 性、 燃料や酸化剤の遮断性を有する力一ボングラファイトゃ金属のプレートが使用さ れる。 また、 これらは、 必要に応じて、 撥水処理や耐食処理が施されていてもよい。 セパレ一タ一 1 1, 1 3の表面には、 燃料ガスまたは液体、 並びに、 酸化剤を送り込 む流路 1 3, 1 4が形成され、 固体高分子形燃料電池 (直接メタノール形燃料電池) が構成される。 燃料ガスまたは液体として、 水素を主たる成分とするガスゃメタノ一 ルを主たる成分とするガスまたは液体を一方の流路 1 3に供給し、 酸化剤として、 酸 素を含むガス (酸素あるいは空気) をもう一方の流路 1 4にそれぞれ供給することに より、 該固体高分子形燃料電池は作動する。 このとき燃料としてメタノールを使用す る場合には、 直接メタノール形燃料電池となる。
本発明の固体高分子形燃料電池 (直接メタノール形燃料電池) を単独で、 あるいは 複数積層して、 スタックを形成し、 使用することや、 それらを組み込んだ燃料電池シ ステムとすることもできる。
さらに、 本発明のプロトン伝導性高分子膜を使用した直接メ夕ノール形燃料電池に ついて、 一例として、 図面を引用して説明する。
図 3は、 本発明のプロトン伝導性高分子膜 1あるいは膜一電極接合体 1 0からなる 直接メタノール形燃料電池の要部断面図である。 膜-電極接合体 1 0は、 燃料 (メタ ノールあるいはメタノール水溶液) を充填および供給する機能を有する燃料 (メタノ ールあるいはメタノール水溶液) タンク 15の両側に必要数が平面状に配置される。 さらにその外側には、 酸化剤流路 14が形成された支持体 16が配置され、 これらに 狭持されることによって、 直接メタノール形燃料電池のセル、 スタックが構成される 前記の例以外にも、 本発明のプロトン伝導性高分子膜および膜一電極接合体は、 特 開 2001— 313046号公報、 特開 2001— 313047号公報、 特開 200 1 -93551号公報、 特開 2001— 93558号公報、 特開 2001— 9356 1号公報、 特開 2001— 102069号公報、 特開 2001— 102070号公報 、 特開 2001-283888号公報、 特開 2000— 268835号公報、 特開 2 000-268836号公報、 特開 2001— 283892号公報などで公知になつ ている直接メタノール形燃料電池の電解質膜や膜一電極接合体として、 使用可能であ る。
つぎに、 本発明のプロトン伝導性高分子膜の製造方法について説明する。
本発明のプロトン伝導性高分子膜の製造方法は、 本発明のプロトン伝導性高分子膜 の製造方法は、 23 °Cでのプロトン伝導度 [SZ cm] と 25°Cでの所定濃度のメタ ノール水溶液に対するメタノール遮断係数 [ (cm ·日) ZJLL動 Π の積 [ (S · 日) / mo 1] が、 少なくとも下記 (A) または (B) のいずれか一方をみたすプ 口トン伝導性高分子膜の製造方法であって、 炭化水素系高分子化合物からなるフィル ムと、 スルホン化剤とを^させることが好ましい。
(A) 10重量%メタノール水溶液に対する値が、 2. 5X 10— 4 (S ·日) / o 1以上
(B) 64重量%メタノ一ル水溶液に対する値が、 4. 5X 10— 5 (S ·曰) /^ m o 1以上
また、 イオン交換容量が 0. 3ミリ当量 Zg以上であり、 かつ、 結晶相を有するプ 口トン伝導性高分子膜の製造方法であって、 結晶性炭化水素系高分子化合物からなる フィルムと、 スルホン化剤とを接触させることが好ましい。 ここで、 非晶相へのスル ホン酸基の導入は、 結晶性炭化水素系高^?ィ匕合物からなるフィルムの結晶相にスル ホン酸基がまったく導入されないということではなく、 スルホン酸基の導入後におい て、 フィルム中に結晶相が残存していることを意味するものである。
本発明において、 前記炭化水素系高分子化合物や結晶性炭化水素系高分子化合物か らなるフィルムの厚さは、 用途に応じて任意の厚さを選択することが可能である。 均 一にフィルム内部までスルホン酸基を導入することや、 プロトン伝導性高分子膜の内 部抵抗を低減することを考慮した場合、 フィルム厚みは薄い程良い。 一方、 メタノ一 ル遮断性ゃハンドリング性を考慮すると、 フィルム厚みは薄すぎると好ましくない。 これらを考慮すると、 フィルムの厚みは、 1 . 2〜3 5 0 i mであるのが好ましい。 前記フィルムの厚さが 1 . 2 より薄いと、 製造が困難であるとともに、 加工時に シヮになったり、 破損が生じるなど八ンドリング性がわるくなる傾向があり、 3 5 0 mをこえると、 内部まで均一にスルホン化するのが困難になるとともに、 得られた プロトン伝導性高分子膜の内部抵抗も大きくなり、 プロトン伝導度が低下する恐れが ある。
スルホン化剤としては、 クロロスルホン酸、 発煙硫酸、 三酸化硫黄、 三酸化硫黄一 トリェチルフォスフェート、 濃硫酸、 トリメチルシリルクロロサルフェート、 トリメ チルベンゼンスルホン酸などの公知のスルホン化剤などが使用できる。 工業的入手の 容易さ、 スルホン酸基の導入の容易さや得られるプロトン伝導性高分子膜の特性を考 慮すると、 クロロスルホン酸、 発煙硫酸、 三酸化硫黄、 濃硫酸からなる群から選択さ せる少なくとも 1種であることことが好ましい。 とくに本発明においては、 スルホン 酸基の導入の容易さや得られた膜の特性、 工業的入手の容易さなどから、 クロロスル ホン酸を使用するのがより好ましい。
また、 反応系を適正化することによって、 フリ一デル一クラフツ反応にしたがって 、 塩化アルミニウムなどの触媒存在下で、 プロパンサルトンや 1, 4一ブタンサノレト ンなどの環状含硫黄化合物と炭ィ匕水素系高分子化合物中の芳香族単位を接触させて、 スルホプロピル基やスルホブチル基などのスルホン酸基を含む置換基を導入する方法 なども使用することができる。 さらに、 本発明のプロトン伝導性高分子膜は、 前記高分子化合物からなるフィルム と、 スルホン化剤とを溶媒存在下で接触させて製造することが好ましい。 本発明にお いては、 炭素数 3以上のハロゲン化物を使用するのが好ましい。 これらは、 炭化水素 系化合物のスルホン化時に一般的に使用されている、 ジクロロメタンや 1 , 2—ジク ロロェタンなどの炭素数 2以下のハロゲン化物を使用するのと比較して、 沸点が高く 、 揮発しにくいため、 溶媒の揮発防止や揮発した溶媒の回収のためなどの付帯設備が 必要とならず、 付帯設備に係る製造コストを低減することが可能となる。 また、 得ら れたプロトン伝導性高分子膜のメタノール遮断性が低下しにくくなり、 高いプロトン 伝導度と高いメタノール遮断性が両立したプロトン伝導性高分子膜を得ることができ る。特に、 ポリフエ二レンサルファイドなどの結晶性高分子化合物からなるフィルム を使用した場合には、 製造過程おけるフィルムの劣化が生じにくく、 プロトン伝導度 ゃメタノール遮断性、 機械的特性が優れたプロトン伝導性高分子膜が得ることができ 、 好ましい。
本発明に使用可能な炭素数 3以上のハロゲン化物としては、 たとえば、 炭化水素系 高分子化合物として、 ポリフエ二レンサルファイドを使用する場合には、 従来から使 用されているジクロロメタンや 1, 2—ジクロロェタンなどの低炭素数のハ口ゲン化 炭化水素の代わりに、 1一クロ口プロパン、 1一ブロモプロパン、 1ーョ一ドプロノ ン、 1—クロロブタン、 2—クロロブタン、 1—クロロー 2—メチルプロパン、 1一 ブロモブタン、 2一ブロモブタン、 1—ブロモ— 2—メチルプロパン、 1—ョードブ タン、 2—ョードブタン、 1ーョードー 2 _メチルプロパン、 1—クロ口ペンタン、 1—ブロモペンタン、 1一ョードペンタン、 1—クロ口へキサン、 1—ブロモへキサ ン、 1ーョードへキサン、 クロロシクロへキサン、 ブロモシクロへキサン、 ョ一ドシ クロへキサンなどが例示できる。 特に使用する溶媒の扱いやすさ、 得られるプロトン 伝導性高分子膜の特性を考慮すると、 1—クロ口プロパン、 1—ブロモプロパン、 1 一クロロブタン、 2—クロロブタン、 1一クロ口一 2—メチルプロパン、 1一ブロモ ブタン、 2—ブロモブタン、 1ーブロモー 2—メチルプロパン、 1一クロ口ペンタン 、 1一ブロモペンタン、 1一クロ口へキサン、 1—ブロモへキサン、 クロロシクロへ キサンおよびプロモシクロへキサンからなる群から選択される少なくとも 1種である ことが好ましい。 更に工業的な入手のし易さから 1一クロ口プロパン、 1一クロロブ タン、 2 _クロロブタン、 1一クロロー 2—メチルプロパン、 1—クロ口ペンタン、 1一クロ口へキサン、 クロロシク口へキサンから選択される少なくとも 1種であるこ とが好ましい。 前記溶媒のなかでも、 工業的入手の容易さや得られるプロトン伝導性 高分子膜の特性などの点から、 1一クロロブタンが好ましい。
スルホン化剤の使用量としては、 炭化水素系高分子化合物中の芳香族単位に対して 、 0. 5〜3 0当量、 さらには 0. 5〜1 5当量であるのが好ましい。 スルホン化剤 の使用量が、 0 . 5当量よりも少ない場合には、 スルホン酸基の導入量が少なくなつ たり、 導入に要する時間が長くなるなどの傾向がある。 一方、 3 0当量を超える場合 には、 高分子フィルムが化学的に劣ィ匕し、 得られるプロトン伝導性高分子膜の機械的 強度が低下し、 ハンドリングが困難となったり、 スルホン酸基の導入量が多くなりす ぎて、 メタノール遮断性が低下するなど、 かえってプロトン伝導性高分子膜の実用的 な特性が損なわれる傾向がある。
溶媒中のスルホン化剤の濃度は、 スルホン酸基の目標とする導入量や反応条件 (温 度 ·時間) を勘案して適宜設定すればよい。 具体的には、 0. 1〜1 0重量%である ことが好ましく、 より好ましい範囲は、 0. 2〜5重量%である。 0 . 1重量%より 低いとスルホン化剤と高分子化合物中の芳香族単位とが接触しにくくなり、 所望のス ルホン酸基が導入できなかったり、 導入するのに時間がかかりすぎたりする傾向があ る。 一方、 1 0重量%をこえるとスルホン酸基の導入が不均一となったり、 得られた プロトン伝導性高分子膜の機械的特性が損なわれる傾向がある。
また、 接触させる際の反応温度、 反応時間についてはとくに限定はないが、 0〜1 0 0 、 さらには 1 0〜3 0 °C、 0. 5時間以上、 さらには 2〜1 0 0時間の範囲で 設定するのが好ましい。 反応温度が、 0 °Cより低い場合は、 設備上冷却等の措置が必 要になるとともに、 反応に必要以上の時間がかかる傾向があり、 1 0 0 °Cをこえると 反応が過度に進行したり、 副反応を生じたりして、 膜の特性を低下させる傾向がある 。 また、 反応時間が、 0. 5時間より短い場合は、 スルホン化剤と高分子化合物中の 芳香族単位との接触が不充分となり、 所望のスルホン酸基が導入しにくくなる傾向が あり、 反応時間が 1 0 0時間をこえる場合は、 生産性が著しく低下する傾向を示すと ともに、 膜特性の大きな向上は期待できなくなる傾向がある。 実際には、 使用するス ルホン化剤や溶媒などの反応系、 目標とする生産量などを考慮して、 所望の特性を有 するプロトン伝導性高分子膜を効率的に製造することができるように設定すればよい 本発明のプロトン伝導性高分子膜の製造方法は、 上記のスルホン酸基の導入工程の 後、 未反応のスルホン化剤や溶媒の除去を行うため、 τΚ洗することが好ましい。 この とき、 スルホン酸基の導入工程後のプロトン伝導性高分子膜を回収することなく、 連 続的に水洗を行い、 適切な条件で乾燥を実施し、 プロトン伝導性高分子膜を得ること が好ましい。 また、 ζΚ洗の代わりに、 水酸ィ匕ナトリウム水溶液などで中和洗浄した後
、 酸処理を行って、 プロトン伝導性高分子膜を得ても良い。
また、 本発明のプロトン伝導性高分子膜の製造方法は、 スルホン化剤が三酸化硫黄 であって、 三酸化硫黄を含むガスと炭化水素系高分子化合物からなるフィルムとを接 触させて製造することが好ましい。 この場合、 スルホン酸基の導入工程が、 乾式処理 となり、 スルホン化に溶媒を使用することなく、 原材料や再生処理に係る工程や費用 を低減できる。
本発明のプロトン伝導性高分子膜の製造方法は、 連続的に実施してもよい。 すなわ ち、 被処理物である炭化水素系高分子化合物からなるフィルムを連続的にスルホン化 剤との反応槽に供給し、 さらに必要に応じて、 洗浄工程や乾燥工程を連続的に実施し てもよく、 途中過程において、 プロトン伝導性高分子膜の精製や回収を実施する必要 はない。 この方法によって、 プロトン伝導性高分子膜の生産性が向上する。
本発明のプロトン伝導性高分子膜の製造方法は、 高分子フィルムを反応槽内でスル ホンィ匕剤と接触させることによって、 フィルム (膜) 形状のままスルホン酸基を導入 することができる。 したがって、 従来の均一反応系でスルホン化高分子を合成した後 、 膜形状に加工する方法と比較して、 反応物の回収'精製 '乾燥などの工程、 溶媒へ のスルホン化高分子の溶解や支持体への塗布、 溶媒除去などの工程が省略できるため 好ましい。 さらに、 フィルムを連続供給するため、 その生産性は著しく向上する。 また、 反応槽に浸漬したフィルムに付着および/または包含されたスルホン化剤を 除去 ·洗浄することを連続的に実施することにより、 スルホン化剤による周辺機器の 腐食の防止やフィルムのハンドリング性が改善する。 除去'洗浄の条件は、 使用する スルホン化剤や炭化水素系高分子化合物の種類を考慮して適宜設定すればよいが、 水 洗により、 残存したスルホン化剤を不活性化したり、 アルカリを使用して中和処理し てもよい。
さらに、 得られたプロトン伝導性高分子膜を連続して乾燥することによって、 プロ トン伝導性高分子膜を実際に使用可能な形態で回収することができる。 乾燥条件は、 使用する高分子フィルムの種類や得られるプロトン伝導性高分子膜の特性を考慮して 適宜設定すればよい。 スルホン酸基が強い親水性を示すため、 洗浄過程において、 含 水して著しく膨潤している恐れがある。 そのため、 乾燥時に収縮し、 皺や脹れなどの 凹凸が生じる恐れがある。 したがって、 乾燥時にはプロトン伝導性高分子膜の面方向 に適度なテンションをかけて乾燥することが好ましい。 また、 急激な乾燥を抑制する ため、 湿度の調節下で徐々に乾燥してもよい。
使用するスルホン化剤ゃスルホン化の反応条件によっては、 例えば、 炭化水素系高 分子化合物として、 ポリフエ二レンサルファイドを使用した場合、 高分子フィルム中 のスルフィド単位 (一 S—) がスルホキシド単位 (一 S O—) ゃスルホン単位 (- S 02— ) に酸化されたり、 また、 スルホキシド単位 (一S O—) がスルホン単位 (一 S 02—) に酸化されたり、 また、 フエ二レン単位の水素が一 C 1などの置換基で置換さ れる副反応が生じる可能性がある。 しかし、 得られたプロトン伝導性高分子膜の特性 を著しく低下させるものでなけば、 前記副反応の結果生じた構造単位が含まれていて も構わない。
さらに、 本発明のプロトン伝導性高分子膜の製造方法は、 前記方法で得られたプロ トン伝導性高分子膜に、 ァ線、 電子線およびイオンビームからなる群から選択される 少なくとも 1種の放射線を照射することが好ましく、 その照射量は 1 0〜: I 0 0 0 k G yであることが好ましい。 また、 本発明の製造方法により製造されるプロトン伝導性高分子膜を製造する際に 、 その高分子膜に、 可塑剤、 酸化防止剤、 帯電防止剤、 抗菌剤、 滑剤、 表面活性剤、 各種フィラーなどの添加剤を適量含有させてもよい。 〔実施例〕
以下、 実施例により本発明をさらに具体的に説明するが、 本発明はこれらの実施例 によって何ら限定されるものではなく、 その要旨を変更しない範囲において適宜変更 可能である。
くイオン交換容量の測定方法 >
プロトン伝導性高分子膜 (約 1 0 mm X 4 0 mm) を 2 5 °Cでの塩化ナトリウム飽 和水溶液 2 O mLに浸漬し、 ウォーターバス中で 6 O :、 3時間反応させる。 2 5 °C まで冷却し、 次いで膜をイオン交換水で充分に洗浄し、 塩化ナトリウム飽和水溶液お よび洗浄水をすベて回収する。 この回収した溶液に、 指示薬としてフエノ一ルフタレ ィン溶液加え、 0. 0 1 Nの水酸化ナトリゥム水溶液で中和滴定し、 イオン交換容量 を算出する。
くプロトン伝導度の測定方法 >
イオン交換水中に保管したプロトン伝導性高分子膜 l 0 mmX 4 0 mm) を取 り出し、 膜表面の水をろ紙で拭き取る。 2極非密閉系のテフロン (登録商標) 製のセ ルに膜を設置し、 さらに白金電極を電極間距離 3 O mmとなるように、 膜表面 洞一 側) に設置した。 2 3 °Cでの膜抵抗を、 交流インピ一ダンス法 (周波数: 4 2 H z〜 5 MH z , 印可電圧: 0. 2 V) により測定し、 プロトン伝導度を算出する。
<メタノール遮断性の測定方法 >
2 5 °Cの環境下で、 ビ一ドレックス社製膜透過実験装置を使用して、 プロトン伝導 性高分子膜でイオン交換水と所定濃度のメタノ一ル水溶液を隔離する。 所定時間経過 後にイオン交換水側に透過したメタノールを含む溶液を採取し、 ガスクロマトグラフ でメタノール含有量を定量する。 この定量結果から、 メタノール透過速度を求め、 メ 夕ノール透過係数およびメ夕ノ一ル遮断係数を算出する。 メ夕ノール透過係数および メ夕ノ一ル遮断係数は、 以下の数式 1及 Π¾式 2にしたがつて算出する。
1〕
メタノ一 ½im徽 mo \/ (cm-日) 〕
=メタノ一 JMi* ( mo 1) xmm (cm) / (MIX (cm2) x¾ 時間(日)〕 〔数式 2〕
メタノーリ WSrac〔 (cm ·日) Zmio 1〕
=1/ 〔メタノール透過係数 ( mo l/ (cm.日)〕
<機械的特性 (破断強度および破断伸び) の測定方法 >
J I S K 7127の方法に準じてプロトン伝導性高分子膜の破断強度および破 断伸びを測定方法する。 プロトン伝導性高分子膜 (幅:約 10mm) を用いて、 チヤ ック間距離 30mm、 引張速度: 2 OmmZ分の条件で n=5測定する。 破断伸びに ついては、 平均値と最大値を記録する。
く寸法安定性〉
プロトン伝導性高分子膜 (約 40 mm X 10 mm) の中央部分に約 20 mi i間隔の 測定点をマ一キングする。 その膜を、 25°Cの環境下でイオン交換水または 64重量 %メタノール水溶液中に 2時間浸漬する。 その後、 測定点間の距離を測定し、 寸法変 ィ匕率を算出する。
<X線回折の測定方法 >
(株) 島津製作所製 X線回折装置を使用して、 使用 X線が Cu · Κθ!線、 X線強度 が 30 kV、 100mA、 角度域が 20 = 5〜50° 、 走査速度が 2° Z分の条件で 、 プロトン伝導性高分子膜の X線回折測定を実施する。
<結晶性>
前記 X線回折測定により得られた X線回折パターンから、 以下の基準によって結晶 性の有無を確認する。
〇: X線回折測定によりシャープなピークが確認できる。
X: X線回折測定によりシャープなピークが確認できない。 (実施例 1)
炭化水素系高分子化合物として、 ポリフエ二レンサルフアイドを使用した。
ガラス容器に、 1一クロロブタン 729 g、 クロロスルホン酸 3. 65 gを秤量し 、 クロロスルホン酸溶液を調製した。 ポリフエ二レンサルファイドフィルム (東レ株 式会社製、 商品名: トレリナ、 厚み: 50 m) を 1. 69 g秤量し、 クロロスルホ ン酸溶液に浸漬し、 室温で 20時間、 放置した (クロロスルホン酸添加量は、 ポリフ ェニレンサルファイドの芳香族単位に対して 2当量) 。 室温で 20時間放置後に、 ポ リフエ二レンサルフアイドフィルムを回収し、 イオン交換水で中性になるまで洗浄し た。
洗浄後のポリフエニレンサルファィドフィルムを 23 °Cに調温した恒温恒湿器内で 、 相対湿度 98%、 80%、 60%および 50 %の湿度調節下で、 それぞれ 30分間 放置してフィルムを乾燥し、 プロトン伝導性高分子膜として、 スルホン酸基が導入さ れたポリフエ二レンサルフアイド膜 (以下、 スルホン化ボリフエ二レンサルフアイド 膜) (8 OmmX 8 Omm、 厚み: 51 m) を得た。
このプロトン伝導性高分子膜の各種特性を上述の方法で測定した。
この膜の特性評価の結果を表 1〜 5および図 4に示す。
(実施例 2)
1—クロロブタン量を 721 g、 クロロスルホン酸量を 5. 40 g、 ポリフエニレ ンサルファイドフィルムを 1. 67 gとした以外は、 実施例 1と同様に実施した (ク ロロスルホン酸添加量は、 ポリフエ二レンサルフアイドの芳香族単位に対して 3当量 ) 。 得られたスルホン化ポリフエ二レンサルファイド膜 (80mmX 80mm、 厚み : 53^m) は、 膜形状を維持していた。
この膜の特性評価の結果を表 1〜 3 , 5および図 5に示す。 (実施例 3)
1—クロロブタン量を 716 g、 クロロスルホン酸量を 7. 16g、 ポリフエニレ ンサルファイドフィルムを 1. 66 gとした以外は、 実施例 1と同様に実施した (ク ロロスルホン酸添加量は、 ポリフエ二レンサルフアイドの芳香族単位に対して 4当量 ) 。 得られたスルホン化ポリフエ二レンサルファイド膜 (80mmX80mm、 厚み : 54 xm) は、 膜形状を維持していた。
この膜の特性評価の結果を表 1, 2, 5および図 6に示す。
(実施例 4)
1一クロロブタン量を 734g、 クロロスルホン酸量を 11. 00g、 ポリフエ二 レンサルフアイドフィルムを 1. 70 gとした以外は、 実施例 1と同様にした (クロ ロスルホン酸添加量は、 ポリフエ二レンサルフアイドの芳香族単位に対して 6当量) 。 得られたスルホン化ポリフエ二レンサルフアイド膜 (8 OmmX 8 Omm、 厚み: 78 m) は、 膜形状を維持していた。
この膜の特性評価の結果を表 1〜 3に示す。
(実施例 5)
1一クロロブタン量を 746 g、 クロロスルホン酸量を 14. 93g、 ポリフエ二 レンサルフアイドフィルムを 1. 73 gとした以外は、 実施例 1と同様に実施した ( クロロスルホン酸添加量は、 ポリフエ二レンサルフアイドの芳香族単位に対して 8当 量) 。 得られたスルホン化ポリフエ二レンサルフアイド膜 (80mmX80mm、 厚 み: 93 zm) は、 膜形状を維持していた。
この膜の特性評価の結果を表 1〜 3に示す。
(実施例 6)
1—クロロブタン量を 712 g、 クロロスルホン酸量を 17. 80 g、 ポリフエ二 レンサルフアイドフィルムを 1. 65 gとした以外は、 実施例 1と同様に実施した ( クロロスルホン酸添加量は、 ポリフエ二レンサルフアイドの芳香族単位に対して 10 当量) 。 得られたスルホン化ポリフエニレンサルファィド膜 (8 OmmX 8 Omm、 厚み: 100 m) は、 膜形状を維持していた。 この膜の特性評価の結果を表 1〜 3に示す。
(実施例 7)
1一クロロブタン量を 583 g、 クロロスルホン酸量を 5. 83 g、 ポリフエニレ ンサルファイドフィルム (東レ株式会社製、 商品名: トレリナ、 厚み: 25 zm) を 1. 35 gとした以外は、 実施例 1と同様に実施した (クロロスルホン酸添加量は、 ポリフエ二レンサルファイドの芳香族単位に対して 4当量) 。 得られたスルホン化ポ リフエ二レンサルファイド膜 (80mmX 80mm、 厚み: 32 m) は、 膜形状を 維持していた。
この膜の特性評価の結果を表 1, 2に示す。
(実施例 8)
1一クロロブタン量を 595 g、 クロロスルホン酸量を 7. 44g、 ポリフエニレ ンサルファイドフィルムを 1. 38 gとした以外は、 実施例 7と同様に実施した (ク ロロスルホン酸添加量は、 ポリフエ二レンサルフアイドの芳香族単位に対して 5当量 ) 。 得られたスルホン化ポリフエ二レンサルファイド膜 (80mmX 80mm、 厚み : 35 rn) は、 膜形状を維持していた。
この膜の特性評価の結果を表 1 , 2に示す。
(実施例 9)
1—クロロブタン量を 578 g、 クロロスルホン酸量を 8. 67 g、 ポリフエニレ ンサルファイドフィルムを 1. 34 gとした以外は、 実施例 7と同様に実施した (ク ロロスルホン酸添加量は、 ポリフエ二レンサルフアイドの芳香族単位に対して 6当量 ) 。 得られたスルホン化ポリフエ二レンサルファイド膜 (80mmX 80mm、 厚み : 0 m) は、 膜形状を維持していた。
この膜の特性評価の結果を表 1〜 3に示す。 (実施例 10)
1—クロロブタン量を 587 g、 クロロスルホン酸量を 11. 74g、 ポリフエ二 レンサルファイドフィルムを 1. 36 gとした以外は、 実施例 7と同様に実施した ( クロロスルホン酸添加量は、 ポリフエ二レンサルフアイドの芳香族単位に対して 8当 量) 。 得られたスルホン化ポリフエ二レンサルフアイド膜 (8 OmmX 8 Omm、 厚 み: 42 zm) は、 膜形状を維持していた。
この膜の特性評価の結果を表 1〜 3に示す。
(実施例 11)
実施例 4に従って得られたスルホン化ポリフエ二レンサルフアイド膜に、 加速電圧 4. 6MeV、 照射線量 500 kGy、 電流 2 OmAの電子線を照射した。 得られた スルホン化ポリフエ二レンサルフアイド膜 (8 OmmX 8 Omm、 厚み: 83 ) は、 膜形状を維持していた。
この膜の特性評価の結果を表 1 , 2に示す。
(実施例 12)
実施例 4に従つて得られたスルホン化ポリフエニレンサルファィド膜の代わりに、 実施例 5に従って得られたスルホン化ポリフエ二レンサルフアイド膜を使用した以外 は、 実施例 11と同様に実施した。 得られたスルホン化ポリフエ二レンサルフアイド 膜 (8 OmmX 8 Omm、 厚み: 93 m) は、 膜形状を維持していた。
この膜の特性 Hffiの結果を表 1〜 3に示す。
(実施例 13)
実施例 4に従って得られたスルホン化ポリフエ二レンサルフアイド膜の代わりに、 実施例 6に従つて得られたスルホンィ匕ポリフエニレンサルフアイド膜を使用した以外 は、 実施例 11と同様に実施した。 得られたスルホンィ匕ポリフエ二レンサルフアイド 膜 (8 OmmX 8 Omm、 厚み: 104 xm) は、 膜形状を維持していた。
この膜の特性評価の結果を表 1, 2に示す。 (実施例 14)
実施例 4に従って得られたスルホン化ポリフエ二レンサルフアイド膜の代わりに、 実施例 8に従って得られたスルホン化ポリフエ二レンサルフアイド膜を使用した以外 は、 実施例 1 1と同様に実施した。 得られたスルホン化ポリフエ二レンサルファイド 膜 (8 OmmX 8 Omm、 厚み: 36 xm) は、 膜形状を維持していた。
この膜の特性評価の結果を表 1〜 3に示す。
(実施例 1 5)
実施例 4に従って得られたスルホン化ポリフエ二レンサルフアイド膜の代わりに、 実施例 9に従って得られたスルホン化ポリフエ二レンサルフアイド膜を使用した以外 は、 実施例 1 1と同様に実施した。 得られたスルホン化ボリフエ二レンサルフアイド 膜 (8 OmmX 8 Omm、 厚み: 41 zm) は、 膜形状を維持していた。
この膜の特性評価の結果を表 1〜 3に示す。
(実施例 1 6)
実施例 4に従つて得られたスルホン化ポリフエニレンサルフアイド膜の代わりに、 実施例 10に従って得られたスルホン化ポリフエ二レンサルフアイド膜を使用した以 外は、 実施例 1 1と同様に実施した。 得られたスルホン化ポリフエ二レンサルフアイ ド膜 (8 OmmX 8 Omm、 厚み: 48 u ) は、 膜形状を維持していた。
この膜の特性評価の結果を表 1〜 3に示す。
(実施例 17)
50 OmLのガラス容器に、 ポリフエ二レンサルファイドフィルム (東レ株式会社 製、 商品名: トレリナ、 厚み: 50 /xm) を 1. O g抨量し、 滴下漏斗で三酸化硫黄 溶液を 1. 5 g滴下した。 ウォーターバスで 60°Cに加温し、 三酸化硫黄を気化させ て、 ポリフエ二レンサルファイドフィルムと接触させた。 この状態で 30分放置した 後、 イオン交換水で中性になるまで洗浄した。
洗浄後のポリフエ二レンサルフアイドフィルムを 23 °Cに調温した恒温恒湿器内で 、 相対湿度 98 %、 80%、 60 %および 50 %の湿度調節下で、 それぞれ 30分間 放置してフィルムを乾燥し、 プロトン伝導性高分子膜として、 スルホン酸基が導入さ れたポリフエ二レンサルファイド膜 (以下、 スルホン化ポリフエ二レンサルファイド 膜) ( 5 OmmX 5 Omm、 厚み: 70 ^m) を得た。
この膜の特性評価の結果を表 1, 2, 5および図 7に示す。
(比較例 1)
非炭化水素系高分子化合物からなるスルホン酸基含有膜として、 デュポン社製ナフ イオン 115を使用した。
この膜の特性評価結果を表 1, 2, 4に示す。
(比較例 2)
50 OmLのセパラブルフラスコ中で、 158の1, 4一ポリフエ二レンサルファ イド (アルドリッチ社製、 数平均分子量: 10, 000) を 30 OmLのクロロスル ホン酸に溶解させた。 氷冷して、 反応温度 5 °Cで 60分間撹拌した。 ついで、 反応液 を 20°Cにして、発煙硫酸 (15%SOs) を 10 OmL滴下し、 300分間撹拌して 、 1, 4一ポリフエ二レンサルファイドと発煙硫酸とを反応させた。 この反応溶液を 、 2 kgの氷と 60 OmLの硫酸 (30重量%) の混合物中に攪拌しながら添加した 。 沈殿物を煮沸したイオン交換水中で洗浄水が中性になるまで、 イオン交換水を交換 しながら洗浄 (イオン交換水の交換 10回、 のべ洗浄時間 80時間) し、 沈殿物をろ 過により回収した。 80°Cで 3時間乾燥し、 スルホン化ポリフエ二レンサルファイド を得た。
得られたスルホン化ポリフエ二レンサルフアイドの 20重量%の1^—メチルー 2— ピロリドン溶液を調製し、 ガラスシャレー上に流延させて、 150°Cで減圧乾燥した が、 自己支持性のある膜形状とはならず、 イオン交換容量以外の特性評価は実施でき なかった。
この膜の特性評価の結果を表 1に示す。
(比較例 3)
90 OmLのマヨネーズ瓶に、 ジクロロメタン 945 g、 クロロスルホン酸 4. 7 2 gを秤量し、 クロロスルホン酸溶液を調製した。 ポリフエ二レンサルファイドフィ ルム (東レ株式会社製、 商品名: トレリナ、 厚み: 50 im) を 2. 21 g秤量し、 クロロスルホン酸溶液に浸漬接触させ、 室温で 20時間放置した (クロロスルホン酸 添加量は、 ポリフエ二レンサルファイドの芳香族単位に対して 2当量) 。 室温で 20 時間放置後に、 ポリフエ二レンサルファイドフィルムを回収し、 イオン交換水で中性 になる.まで洗浄した。
洗浄後のポリフエ二レンサルフアイドフィルムを 23。Cに調温した恒温恒湿器内で 、 相対湿度 98 %、 80%、 60 %および 50 %の湿度調節下で、 それぞれ 30分間 放置してフィルムを乾燥し、 プロトン伝導性高分子膜として、 スルホン酸基が導入さ れたポリフエ二レンサルファイド膜 (以下、 スルホン化ポリフエ二レンサルフアイド 膜) ( 5 OmmX 5 Omm、 厚み: 110 m) を得た。
この膜の特性評価の結果を表 1〜 5および図 8に示す。
(比較例 4)
ポリフエ二レンサルファイド (大日本インキ工業株式会社製、 商品名: D I C— P PS FZ- 2200-A5) 100重量部に対し、 可塑剤として、 トリクレジルフ ォスフェート (大八化学工業株式会社製、 商品名: TCP) を 2重量部添加し、 28 0°Cで加熱した二軸押出機で溶融混合し、 所定の混合物のペレットを得た。 これをス クリュ一温度 290°C、 Tダイ温度 320°Cの押出機で溶融押出し、 厚み 50 の フィルムを得た。
90 OmLのマヨネーズ瓶に、 ジクロロメタン 945 g、 クロロスルホン酸 4. 7 2 gを秤量し、 クロロスルホン酸溶液を調製した。 前記の方法で得られたポリフエ二 レンサルファイドからなるフィルムを 2. 21 g秤量し、 クロロスルホン酸溶液に浸 ?貴接触させ、 室温で 20時間放置した (クロロスルホン酸添加量は、 ポリフエ二レン サルファイドの芳香族単位に対して 2当量) 。 室温で 20時間放置後に、 ポリフエ二 レンサルフアイドフィルムを回収し、 イオン交換水で中性になるまで洗浄した。 洗浄後のポリフエ二レンサルフアイドフィルムを 23 °Cに調温した恒温恒湿器内で 、 相対湿度 98%、 80%、 60 %および 50 %の湿度調節下で、 それぞれ 30分間 放置してフィルムを乾燥し、 プロトン伝導性高分子膜として、 スルホン酸基が導入さ れたポリフエ二レンサルファイド膜 (以下、 スルホン化ポリフエ二レンサルファイド 膜) (8 OmmX 80mm、 厚み: 60 βπύ を得た。
この膜の特性評価結果を表 1〜 5および図 9に示す。
表 1 プロトン伝導性高分子膜のイオン交 !¾ 量お上7 プロ卜ン 導 イオン父換谷直 ( リ当 a:/g プロトン fe導度 (S/cm) 実施例 1 0.5 2.8 X 10一2 実施例 2 1.0 2.4 X 10 " 実施例 3 1.1 3.7 X 10—2 実施例 4 1.3 4.5x10一2 実施例 5 1.5 3.6 10~2 実施例 6 1.8 7.0X 10—2 実施例フ 1.2 1JX 10~2 実施例 8 1.2 2.8X10一2 実施例 9 1.5 4.8X10一2 実施例 10 1.6 5.3X10—2 実施例 11 1.4 2/7 X 10-2 実施例 12 1.8 5.0 X 10一2 実施例 13 2.1 7.2X10-2 実施例 14 1.7 3JX10— 2 実施例 15 1.8 4.9x10一2 実施例 16 2.0 6.2 X 10-2 実施例 17 0.9 2.5 X10"2 比較例 1 0.9 5.8X10—2 比較例 2 1.6
比較例 3 1.5 7JX10— 2 比較例 4 1.5 6.5 X 10-2 表 2 プロトン伝導性高分子膜のメタノール遮断係数およびプロトン伝導度とメタノール遮断係数の積
メタノール遮断 f系数 ((cm '曰) / mol) プロトン伝導度とメタノール遮断係数の積 ( '日)/ mol) UWt/o m 1 >10 >2.8 10 〉2,8 10 実施例 2 一 ― 一 ― >10"1 一 ― ― ― 〉2.4X10— 3 実施例 3 ― 一 ― ― 1.6x10—2 一 ― 一 一 5.9X10一4 実施例 4 1.3x10— 1 2.6 X10"2 2.5 X 10"2 1.1 X 10一2 5.4 X10"3 5.9X 10—3 1.2X 10—3 1,1 X 10—3 5.0X 10-4 2.4 X10"4 実施例 5 3,2X10—2 8.9X10—3 7.3X10一3 3.6X10—3 8.4X10— 4 1.2X 10— 3 3.2X10-4 2.6X10一4 1.3X10—4 3.0X10—5 実施例 6 ― 5.2x10一3 ― 8.9 X10"4 一 3.6X10—4 ― 一 6.2X10—5 実施例 7 一 ― ― 2.3X10—2 ― 一 ― 3.9 X10"4 実施例 8 3.4 X 10一2 7.4x 10"3 9.5 x 10~4 2.1 10"4 実施例 9 2.5 X 10"2 7.6 X 10~3 5.7 X 10一3 3.6 X 10一3 1.1 X 10— 3 3.6 X 10— 4 2.7 X 10— 4 1.7 X 10一4 5.3 10"5 実施例 10 8.6 X 10一4 4.6 X10"5 実施例 11 1 1Π"2 Q π X 1 π"2 π X 1 n~2 1 1 π"2 Q X 1 Π— 3 1 Q 1 Q 1 X 1 Π— 4 X 1 Π— 4 3ク X 1 Ω— 4 78 10~5 施例 12 1.9 X 10一2 7.4X10—3 5.3x10一3 3.3 X10"3 1.1 xio"3 9.5X10—4 3.7x10一4 2.7X10一4 1JX10— 4 5.5 X10"5 実施例 13 1.2 X 10一2 3.9 X 10— 3 3.6X10一3 1.4 X10"3 6.6 X10"4 8.6 X 10— 4 2.8 X 10— 4 2.6X10—4 1.0x10—4 4.8x10—5 実施例 14 4.3X 10—2 2.2X 10一2 1.4X 10"2 8.0 X 10— 3 3.0 10"3 1.6 X 10"3 8.1 X 10一4 5.2 X10"4 3.0X 10—4 1.1 x 10— 4 実施例 15 3.2X 10"2 1.4 X 10-2 1.0X 10一2 4.8X10—3 1.8X10一3 1.6X 10— 3 6.9X10一4 4.9X 10—4 2.4X 10— 4 8.8X10一5 実施例" 16 1.7X10—2 6.7X10一3 3.9 X 10"3 2.3 X 10"3 8.2 X 10"4 1.1 X 10— 3 4.2x10一4 2.4X 10— 4 1.4X 10—4 5.1 xlO"5 比較例 1 9.2X 10—3 2.3 X 10一3 1.4X10一3 7.4 X 10"4 2.4X 10— 4 5.3 X 10"4 1.3X10—4 8.7 10"5 4.3x10一5 1.4 X10"5 比較例 3 2.6 X 10一3 3.8 X 10一4 2.0x10—4 2.9x10—5 比較例 4 3.7 X10"3 5.2X10— 4 2.4X10一4 4.1 X10"5
ロ ン の 的 性
Figure imgf000037_0001
表 4 プロトン伝導性高分子膜の寸法変化率 寸法変化率(%) イオン交換水 64重量%メタノール 実施例 1 0 0.4 比較例 1 12 44 比較例 3 10 20 比較例 4 9 22 5 プロトン伝導性高分子膜の結晶性
Figure imgf000038_0001
表 1〜表 5の実施例 1〜 1 7と比較例 1、 3、 4の比較から、 本発明のプロトン伝 導性高分子膜は、 従来のプロトン伝導性高分子膜と、 同オーダーのプロトン伝導性を 有し、 固体高分子形燃料電池や直接メ夕ノ一ル形燃料電池の電解質として有用である ことが明らかとなった。 また、 本発明のプロトン伝導性高分子膜は、 従来のプロトン 伝導性高分子膜よりも優れたメタノ一ル遮断係数を有し、 直接メ夕ノール形燃料電池 の電解質として有用であることが明らかとなった。 さらに、 本発明のプロトン伝導性 高分子膜は、 従来のプロトン伝導性高分子膜と比較して、 プロトン伝導度とメタノー ル遮断係数の積が大きく、 プロトン伝導度とメタノール遮断性が両立した特性を有す ることが示された。 よって、 本発明のプロトン伝導性高分子膜は、 直接メタノール形 燃料電池の電解質として有用であることが明らかとなった。
表 3の実施例 1、 2、 4〜6、 9、 1 0、 1 2、 1 4〜1 6と比較例 3、 4の比較 から、 本発明のプロトン伝導性高分子膜は、 従来のプロトン伝導性高分子膜と比較し て、 優れた破断強度および破断伸びを有し、 固体高分子形燃料電池や直接メタノール 形燃料電池の電解質として有用であることが明らかとなった。
表 4の実施例 1と比較例 1、 3、 4の比較から、 本発明のプロトン伝導性高分子膜 は、 従来のプロトン伝導性高分子膜と比較して、 イオン交換水および 6 4重量%メ夕 ノール水溶液に対する寸法安定性が高く、 ハンドリング性に優れることが示された。 よって、 固体高分子形燃料電池や直接メ夕ノ一ル形燃料電池の電解質として有用であ ることが明らかとなった。 図 4〜図 9の X線回折および表 5の結晶性評価の結果から、 実施例 1〜 3および 1 7の本発明のプロトン伝導性高分子膜は、 結晶性ピークを有し、 結晶相が残存してい ることが明らかとなった。 これらに対して、 図 8および図 9の X線回折の測定結果か ら、 比較例 3および 4の従来のプロトン伝導性高分子膜は、 結晶性ピークが観察され ず、 結晶相がほとんど残存していないことが明らかとなった。
さらに、 比較例 2の従来のプロトン伝導性高分子膜は、 自己支持性のある膜が取得 できないと共に、 その製造に 9 0時間もの時間を要するが、 実施例 1の本発明のプロ トン伝導性高分子膜は、 約 2 4時間で製造可能であり、 本発明は生産性の面からも優 れている。 すなわち、 本発明の製造方法は、 より簡便な方法で、 実用的なハンドリン グ性を有するプロトン伝導性高分子膜を得ることができる。 産業上の利用可能性
本発明によれば、 プロトン伝導度とメタノール遮断係数の積が特定値以上であるプ 口トン伝導性高分子膜、 あるいは、 イオン交換容量が 0. 3ミリ当量 Zg以上であり 、 かつ、 結晶相を有するプロトン伝導性高分子膜によって、 優れたプロトン伝導度と 高いメタノール遮断性を発現することが可能となった。
これらは、 優れたプロトン伝導度、 高いメタノール遮断性、 優れた機械的特性など を有し、 固体高分子形燃料電池や直接メタノール形燃料電池の電解質として有用であ る。

Claims

請求の範囲
1. 23 °Cでのプロトン伝導度 [ S / c m] と 25 °Cでの所定濃度のメタノール水 溶液に対するメタノール遮断係数 [ (cm*日) Ζ ΠΙΟ 1] の積 [ (S ·日) Z i mo 1] が、 少なくとも下記 (A) または (B) のいずれか一方をみたすプロトン伝 導性高分子膜。
(A) 10重量%メタノール水溶液に対する値が、 2. 5X 10— 4 (S '日) Z tm o 1以上
(B) 64重量%メタノール水溶液に対する値が、 4. 5X 10— 5 (S ·日) Z zrn o l以上
2. イオン交換容量が 0. 3ミリ当量/ g以上であり、 かつ、 結晶相を有するプロ トン伝導性高分子膜。
3. プロ卜ン伝導性高分子膜が、 スルホン酸基を含有する請求の範囲第 1項または 第 2項に記載のプロトン伝導性高分子膜。
4. プロトン伝導性高分子膜が、 炭化水素系高分子化合物からなる請求の範囲第 1 項〜第 3項のいずれか一項に記載のプロトン伝導性高分子膜。
5. 炭化水素系高分子ィヒ合物が、 結晶性芳香族高分子化合物からなる請求の範囲第 4項に記載のプロトン伝導性高分子膜。 ,
6. 結晶性芳香族高分子化合物が、 ポリフエ二レンサルファイドである請求の範囲 第 5項に記載のプロトン伝導性高分子膜。
7. J I S K 7127に準じて測定される破断伸びが 10%以上である請求の 範囲第 1項〜第 6項のいずれか一項に記載のプロトン伝導性高分子膜。
8. 23 °Cでのプロトン伝導度が 1. OX 10— 3SZcm以上である請求の範囲第 1項〜第 7項のいずれか一項に記載のプロトン伝導性高分子膜。
9. 23 °Cでのプロトン伝導度が、 1. OX 10 -2 S/c m以上である請求の範囲 第 8項に記載のプロトン伝導性高分子膜。
10. 2 5 °Cでの 64重量%のメタノール水溶液におけるメタノール遮断係数が、 3. 0X 1 0—4 (cm ·日) / mo 1以上である請求の範囲第 1項〜第 9項のいず れか一項に記載のプロトン伝導性高分子膜。
1 1. ァ線、 電子線およびイオンビームからなる群から選択させる少なくとも 1種 の放射線を照射した請求の範囲第 1項〜第 1 0項のいずれか一項に記載のプロトン伝 導性高分子膜。
12. 放射線の照射量が、 1 0〜; 1 000 k G yである請求の範囲第 1 1項に記載 のプロトン伝導性高分子膜。
13. 請求の範囲第 1項〜第 12項のいずれか一項に記載のプロトン伝導性高分子 膜を使用した膜—電極接合体。
14. 膜一電極接合体の少なくとも一方の触媒層が、 白金およびルテニウム触媒か らなる請求の範囲第 1 3項に記載の膜一電極接合体。
15. 請求の範囲第 1項〜第 1 2項のいずれか一項に記載のプロトン伝導性高分子 膜、 あるいは、 請求の範囲第 1 3項または第 14項に記載の膜一電極接合体、 を使用 した固体高分子形燃料電池。
16. 請求の範囲第 1項〜第 12項のいずれか一項に記載のプロトン伝導性高分子 膜、 あるいは、 請求の範囲第 1 3項または第 14項に記載の膜一電極接合体、 を使用 した直接メ夕ノ一ル形燃料電池。
17. 23 °Cでのプロトン伝導度 [S/cm] と 25。Cでの所定濃度のメタノ一ル 水溶液に対するメタノール遮断係数 [ (cm '日) 1] の積 [ (S ·日) / limo 1] が、 少なくとも下記 (A) または (B) のいずれか一方をみたすプロトン 伝導性高分子膜の製造方法であつて、 炭化水素系高分子化合物からなるフィルムと、 スルホン化剤とを接触させることによるプロトン伝導性高分子膜の製造方法。
(A) 10重量%メタノール水溶液に対する値が、 2. 5X 1 0— 4 (S '日) Z m 0 1以上
(B) 64重量%メタノール水溶液に対する値が、 4. 5X 1 0—5 (S ·日) Z m 0 1以上
1 8. イオン交換容量が 0 . 3ミリ当量/ g以上であり、 かつ、 結晶相を有するプ 口トン伝導性高分子膜の製造方法であって、 結晶性炭化水素系高分子化合物からなる フィルムと、 スルホン化剤とを接触させることによるプロトン伝導性高分子膜の製造 方法。
1 9. 炭化水素系高分子化合物が、 結晶性炭化水素系高分子化合物である請求の範 囲第 1 7項に記載のプロトン伝導性高分子膜の製造方法。
2 0. 炭化水素系高分子化合物が、 ポリフエ二レンサルファイドである請求の範囲 第 1 7項〜第 1 9項のいずれか一項に記載のプロトン伝導性高分子膜の製造方法。
2 1 . スルホン化剤が、 クロロスルホン酸, 発煙硫酸, 三酸化硫黄, 濃硫酸からな る群から選択される少なくとも 1種である請求の範囲第 1 7項〜第 2 0項のいずれか 一項に記載のプロトン伝導性高分子膜の製造方法。
2 2. フィルムと、 スルホンィヒ剤とを溶媒存在下で接触させる請求の範囲第 1 7項
〜第 2 1項のいずれか一項に記載のプロトン伝導性高分子膜の製造方法。
2 3. 溶媒が、 炭素数 3以上のハロゲン化物である請求の範囲第 2 2項に記載のプ ロトン伝導性高分子膜の製造方法。
2 4. 溶媒が、 1一クロ口プロパン、 1一ブロモプロパン、 1—クロロブタン、 2 一クロロブタン、 1—クロ口— 2—メチルプロパン、 1一ブロモブタン、 2一ブロモ ブタン、 1ーブロモ— 2—メチルプロパン、 1一クロ口ペンタン、 1—プロモペン夕 ン、 1—クロ口へキサン、 1ーブロモへキサン、 クロロシクロへキサンおよびブロモ シクロへキサンからなる群から選択される少なくとも 1種である請求の範囲第 2 2項 または第 2 3項に記載のプロトン伝導性高分子膜の製造方法。
2 5. 溶媒が、 1一クロロブタンである請求の範囲第 2 2項〜第 2 4項のいずれか 一項に記載のプロトン伝導性高分子膜の製造方法。
2 6. スルホン化剤が三酸化硫黄であつて、 三酸化硫黄を含むガスと炭化水素系高 分子化合物からなるフィルムとを接触させる請求の範囲第 1 7項〜第 2 1項のいずれ か一項に記載のプロトン伝導性高分子膜の製造方法。
27. さらにァ線、 電子線およびイオンビ一ムからなる群から選択される少なくと も 1種の放射線を照射する前記請求の範囲第 17項〜第 26項のいずれか一項に記載 のプロトン伝導性高分子膜の製造方法。
28. 放射線の照射量が、 10〜: L 000 kGyである請求の範囲第 27項に記載 のプロトン伝導性高分子膜の製造方法。
PCT/JP2003/011322 2002-09-20 2003-09-04 プロトン伝導性高分子膜およびその製造方法 WO2004027909A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002496372A CA2496372A1 (en) 2002-09-20 2003-09-04 Proton conducting polymer film and method for production thereof
JP2004568908A JP4794170B2 (ja) 2002-09-20 2003-09-04 プロトン伝導性高分子膜、それを用いた膜−電極接合体およびこれらを用いた燃料電池
US10/528,368 US20050244696A1 (en) 2002-09-20 2003-09-04 Proton conducting polymer film and method for production thereof
EP03797550A EP1542299A1 (en) 2002-09-20 2003-09-04 Proton conducting polymer film and method for production thereof
AU2003261944A AU2003261944A1 (en) 2002-09-20 2003-09-04 Proton conducting polymer film and method for production thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002275478 2002-09-20
JP2002/275478 2002-09-20
JP2003/103237 2003-04-07
JP2003103237 2003-04-07

Publications (1)

Publication Number Publication Date
WO2004027909A1 true WO2004027909A1 (ja) 2004-04-01

Family

ID=32032888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011322 WO2004027909A1 (ja) 2002-09-20 2003-09-04 プロトン伝導性高分子膜およびその製造方法

Country Status (8)

Country Link
US (1) US20050244696A1 (ja)
EP (1) EP1542299A1 (ja)
JP (1) JP4794170B2 (ja)
KR (1) KR20050050091A (ja)
CN (1) CN1679192A (ja)
AU (1) AU2003261944A1 (ja)
CA (1) CA2496372A1 (ja)
WO (1) WO2004027909A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342610A (ja) * 2003-04-24 2004-12-02 Toray Ind Inc 高分子電解質材、高分子電解質膜、膜電極複合体およびそれを用いた燃料電池
JP2005276441A (ja) * 2004-02-27 2005-10-06 Toyobo Co Ltd イオン交換膜
JP2005310508A (ja) * 2004-04-21 2005-11-04 Kaneka Corp 高分子電解質膜およびそれを含む直接メタノール形燃料電池
JP2006049303A (ja) * 2004-07-05 2006-02-16 Toray Ind Inc 高分子電解質膜
JP2006073361A (ja) * 2004-09-02 2006-03-16 Toyota Motor Corp 燃料電池用電解質膜の製造方法
JP2006173111A (ja) * 2004-12-11 2006-06-29 Samsung Sdi Co Ltd 高分子電解質とその製造方法,および燃料電池
JP2006216447A (ja) * 2005-02-04 2006-08-17 Hitachi Ltd 燃料電池電源システム及びその運転方法
JP2007165077A (ja) * 2005-12-13 2007-06-28 Toyota Motor Corp 燃料電池用炭化水素系高分子電解質膜
JP2016540353A (ja) * 2013-12-03 2016-12-22 イオニツク・マテリアルズ・インコーポレーテツド 固体イオン伝導性高分子材料及び用途
US10553901B2 (en) 2015-06-04 2020-02-04 Ionic Materials, Inc. Lithium metal battery with solid polymer electrolyte
US10559827B2 (en) 2013-12-03 2020-02-11 Ionic Materials, Inc. Electrochemical cell having solid ionically conducting polymer material
US10741877B1 (en) 2012-04-11 2020-08-11 Ionic Materials, Inc. Solid electrolyte high energy battery
US11114655B2 (en) 2015-04-01 2021-09-07 Ionic Materials, Inc. Alkaline battery cathode with solid polymer electrolyte
US11145857B2 (en) 2012-04-11 2021-10-12 Ionic Materials, Inc. High capacity polymer cathode and high energy density rechargeable cell comprising the cathode
US11152657B2 (en) 2012-04-11 2021-10-19 Ionic Materials, Inc. Alkaline metal-air battery cathode
US11251455B2 (en) 2012-04-11 2022-02-15 Ionic Materials, Inc. Solid ionically conducting polymer material
US11319411B2 (en) 2012-04-11 2022-05-03 Ionic Materials, Inc. Solid ionically conducting polymer material
US11342559B2 (en) 2015-06-08 2022-05-24 Ionic Materials, Inc. Battery with polyvalent metal anode
US11605819B2 (en) 2015-06-08 2023-03-14 Ionic Materials, Inc. Battery having aluminum anode and solid polymer electrolyte
US11749833B2 (en) 2012-04-11 2023-09-05 Ionic Materials, Inc. Solid state bipolar battery
US12074274B2 (en) 2012-04-11 2024-08-27 Ionic Materials, Inc. Solid state bipolar battery

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100709553B1 (ko) 2005-10-29 2007-04-20 한국과학기술연구원 초임계 유체를 이용한 연료전지용 복합전해질막, 그제조방법, 상기 복합전해질막을 이용한 막-전극 결합체 및상기 막-전극 결합체를 이용한 연료전지
US8431275B2 (en) * 2005-11-23 2013-04-30 Gm Global Technology Operations Water management of PEM fuel cell stacks using surface active agents
KR100884959B1 (ko) * 2006-03-20 2009-02-23 주식회사 엘지화학 탄화수소계 고분자 전해질막 연료전지용 막-전극 접합체의제조방법
KR100829552B1 (ko) * 2006-11-22 2008-05-14 삼성에스디아이 주식회사 연료전지용 전극 첨가제, 이를 포함한 연료전지용 전극, 그제조방법 및 이를이용한 연료전지
TW201023421A (en) * 2008-12-08 2010-06-16 Ind Tech Res Inst Binder compositions for membrane electrode assemblies and membrane electrode assemblies employing the same
TWI418580B (zh) * 2008-12-31 2013-12-11 Ind Tech Res Inst 具高質子傳導率之質子交換膜組成物
US9459233B2 (en) 2012-06-25 2016-10-04 Steris Corporation Amperometric gas sensor
KR101691416B1 (ko) * 2015-04-01 2017-01-02 한국원자력연구원 이온교환수지의 제조방법 및 이에 따라 제조되는 이온교환수지
US10889848B2 (en) 2017-07-14 2021-01-12 American Sterilizer Company Process for determining viability of test microorganisms of biological indicator and sterilization detection device for determining same
US10900062B2 (en) 2017-07-14 2021-01-26 American Sterilizer Company Process for determining viability of test microorganisms of biological indicator and sterilization detection device for determining same
US10876144B2 (en) 2017-07-14 2020-12-29 American Sterilizer Company Process for determining viability of test microorganisms of biological indicator and sterilization detection device for determining same
JP7243030B2 (ja) * 2018-03-30 2023-03-22 凸版印刷株式会社 電極触媒層、膜電極接合体、および、固体高分子形燃料電池
CN110380091A (zh) * 2019-08-20 2019-10-25 上海纳米技术及应用国家工程研究中心有限公司 磷酸三钙改性磷酸掺杂聚苯并咪唑型质子交换膜的制备方法
CN111403785B (zh) * 2020-03-27 2022-11-01 长春工业大学 一种磺化聚芳醚酮砜复合膜及其制备方法
CN114006017B (zh) * 2021-10-29 2023-05-26 中汽创智科技有限公司 一种质子交换膜及其制备方法和应用
CN116203772B (zh) * 2023-02-16 2024-02-13 安徽精一门科技发展有限公司 基于质子传递的快速响应电致变色器件及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255133A (ja) * 1985-09-03 1987-03-10 三菱化学株式会社 導電性複合体
WO1997005191A1 (de) * 1995-07-27 1997-02-13 Hoechst Research & Technology Deutschland Gmbh & Co. Kg Polymerelektrolyte und verfahren zu deren herstellung
JPH11354140A (ja) * 1998-06-10 1999-12-24 Toyota Central Res & Dev Lab Inc 高強度薄膜電解質
EP0967674A1 (en) * 1998-05-20 1999-12-29 Honda Giken Kogyo Kabushiki Kaisha Solid polymer electrolytes
WO2000049069A1 (en) * 1999-02-16 2000-08-24 Mikael Paronen Polymer membrane and a process for the production thereof
WO2001006586A1 (fr) * 1999-07-21 2001-01-25 Asahi Glass Company, Limited Pile a combustible du type a polyelectrolyte solide et procede de fabrication y relatif
EP1085590A1 (en) * 1999-09-20 2001-03-21 Honda Giken Kogyo Kabushiki Kaisha Composite polymer membrane, method for producing the same and solid polymer electrolyte membrane
EP1085051A1 (en) * 1999-09-20 2001-03-21 Honda Giken Kogyo Kabushiki Kaisha Sulfonic acid group-containing polyvinyl alcohol, solid polymer electrolyte, composite polymer membrane, method for producing the same and electrode
JP2001216837A (ja) * 2000-02-01 2001-08-10 Toyota Motor Corp 固体高分子電解質膜および該固体高分子電解質膜の製造方法並びに燃料電池。
JP2002105200A (ja) * 2000-09-29 2002-04-10 Kanegafuchi Chem Ind Co Ltd 直接アルコール型燃料電池用プロトン伝導性膜およびそれを使用した直接アルコール型燃料電池。
JP2003068327A (ja) * 2001-08-28 2003-03-07 Kanegafuchi Chem Ind Co Ltd 燃料電池用膜
JP2003288916A (ja) * 2002-03-27 2003-10-10 Kanegafuchi Chem Ind Co Ltd 直接アルコール形燃料電池膜およびその製法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110265A (en) * 1977-03-01 1978-08-29 Ionics Inc. Ion exchange membranes based upon polyphenylene sulfide
JP2001302721A (ja) * 2000-04-24 2001-10-31 Toyota Central Res & Dev Lab Inc 高プロトン伝導性電解質
JP2002158016A (ja) * 2000-11-17 2002-05-31 Ueda Seni Kagaku Shinkokai 高分子電解質膜とその製造方法、及び高分子電解質膜を用いた固体燃料電池
CA2437135A1 (en) * 2001-02-05 2002-08-15 Kaneka Corporation Proton-conductive polymer film and process for producing the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255133A (ja) * 1985-09-03 1987-03-10 三菱化学株式会社 導電性複合体
WO1997005191A1 (de) * 1995-07-27 1997-02-13 Hoechst Research & Technology Deutschland Gmbh & Co. Kg Polymerelektrolyte und verfahren zu deren herstellung
EP0967674A1 (en) * 1998-05-20 1999-12-29 Honda Giken Kogyo Kabushiki Kaisha Solid polymer electrolytes
JPH11354140A (ja) * 1998-06-10 1999-12-24 Toyota Central Res & Dev Lab Inc 高強度薄膜電解質
WO2000049069A1 (en) * 1999-02-16 2000-08-24 Mikael Paronen Polymer membrane and a process for the production thereof
WO2001006586A1 (fr) * 1999-07-21 2001-01-25 Asahi Glass Company, Limited Pile a combustible du type a polyelectrolyte solide et procede de fabrication y relatif
EP1085590A1 (en) * 1999-09-20 2001-03-21 Honda Giken Kogyo Kabushiki Kaisha Composite polymer membrane, method for producing the same and solid polymer electrolyte membrane
EP1085051A1 (en) * 1999-09-20 2001-03-21 Honda Giken Kogyo Kabushiki Kaisha Sulfonic acid group-containing polyvinyl alcohol, solid polymer electrolyte, composite polymer membrane, method for producing the same and electrode
JP2001216837A (ja) * 2000-02-01 2001-08-10 Toyota Motor Corp 固体高分子電解質膜および該固体高分子電解質膜の製造方法並びに燃料電池。
JP2002105200A (ja) * 2000-09-29 2002-04-10 Kanegafuchi Chem Ind Co Ltd 直接アルコール型燃料電池用プロトン伝導性膜およびそれを使用した直接アルコール型燃料電池。
JP2003068327A (ja) * 2001-08-28 2003-03-07 Kanegafuchi Chem Ind Co Ltd 燃料電池用膜
JP2003288916A (ja) * 2002-03-27 2003-10-10 Kanegafuchi Chem Ind Co Ltd 直接アルコール形燃料電池膜およびその製法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IKKI IIDA, AKIHIKO TANIOKA: "Kesshosei polystyrene o mochiita kadenmaku no sakusei to bussei", POLYMER PREPRINTS, JAPAN, vol. 49, no. 3, 12 May 2000 (2000-05-12), pages 668, XP002975838 *
YOSHIHIKO NAKANO ET AL.: "Chokusetsu methanol-gata nenryo denchiyo proton dendomaku no kaihatsu (II)", POLYMER PREPRINTS, JAPAN, vol. 51, no. 11, 18 September 2002 (2002-09-18), pages 2794 - 2795, XP002975837 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342610A (ja) * 2003-04-24 2004-12-02 Toray Ind Inc 高分子電解質材、高分子電解質膜、膜電極複合体およびそれを用いた燃料電池
JP2005276441A (ja) * 2004-02-27 2005-10-06 Toyobo Co Ltd イオン交換膜
JP4729857B2 (ja) * 2004-02-27 2011-07-20 東洋紡績株式会社 イオン交換膜
JP2005310508A (ja) * 2004-04-21 2005-11-04 Kaneka Corp 高分子電解質膜およびそれを含む直接メタノール形燃料電池
JP2006049303A (ja) * 2004-07-05 2006-02-16 Toray Ind Inc 高分子電解質膜
JP2006073361A (ja) * 2004-09-02 2006-03-16 Toyota Motor Corp 燃料電池用電解質膜の製造方法
JP4687038B2 (ja) * 2004-09-02 2011-05-25 トヨタ自動車株式会社 燃料電池用電解質膜の製造方法
US7850873B2 (en) 2004-12-11 2010-12-14 Samsung Sdi Co., Ltd. Polymer electrolyte and fuel cell employing the same
US7648652B2 (en) 2004-12-11 2010-01-19 Samsung Sdi Co., Ltd. Polymer electrolyte and fuel cell employing the same
JP4727408B2 (ja) * 2004-12-11 2011-07-20 三星エスディアイ株式会社 高分子電解質とその製造方法,および燃料電池
JP2006173111A (ja) * 2004-12-11 2006-06-29 Samsung Sdi Co Ltd 高分子電解質とその製造方法,および燃料電池
JP2006216447A (ja) * 2005-02-04 2006-08-17 Hitachi Ltd 燃料電池電源システム及びその運転方法
JP2007165077A (ja) * 2005-12-13 2007-06-28 Toyota Motor Corp 燃料電池用炭化水素系高分子電解質膜
US11251455B2 (en) 2012-04-11 2022-02-15 Ionic Materials, Inc. Solid ionically conducting polymer material
US11319411B2 (en) 2012-04-11 2022-05-03 Ionic Materials, Inc. Solid ionically conducting polymer material
US12074274B2 (en) 2012-04-11 2024-08-27 Ionic Materials, Inc. Solid state bipolar battery
US10741877B1 (en) 2012-04-11 2020-08-11 Ionic Materials, Inc. Solid electrolyte high energy battery
US11949105B2 (en) 2012-04-11 2024-04-02 Ionic Materials, Inc. Electrochemical cell having solid ionically conducting polymer material
US11749833B2 (en) 2012-04-11 2023-09-05 Ionic Materials, Inc. Solid state bipolar battery
US11145857B2 (en) 2012-04-11 2021-10-12 Ionic Materials, Inc. High capacity polymer cathode and high energy density rechargeable cell comprising the cathode
US11152657B2 (en) 2012-04-11 2021-10-19 Ionic Materials, Inc. Alkaline metal-air battery cathode
US11611104B2 (en) 2012-04-11 2023-03-21 Ionic Materials, Inc. Solid electrolyte high energy battery
US10811688B2 (en) 2013-12-03 2020-10-20 Ionic Materials, Inc. Solid, ionically conducting polymer material, and methods and applications for same
JP2016540353A (ja) * 2013-12-03 2016-12-22 イオニツク・マテリアルズ・インコーポレーテツド 固体イオン伝導性高分子材料及び用途
US10559827B2 (en) 2013-12-03 2020-02-11 Ionic Materials, Inc. Electrochemical cell having solid ionically conducting polymer material
US11114655B2 (en) 2015-04-01 2021-09-07 Ionic Materials, Inc. Alkaline battery cathode with solid polymer electrolyte
US10553901B2 (en) 2015-06-04 2020-02-04 Ionic Materials, Inc. Lithium metal battery with solid polymer electrolyte
US11342559B2 (en) 2015-06-08 2022-05-24 Ionic Materials, Inc. Battery with polyvalent metal anode
US11605819B2 (en) 2015-06-08 2023-03-14 Ionic Materials, Inc. Battery having aluminum anode and solid polymer electrolyte

Also Published As

Publication number Publication date
JPWO2004027909A1 (ja) 2006-01-19
AU2003261944A1 (en) 2004-04-08
KR20050050091A (ko) 2005-05-27
CA2496372A1 (en) 2004-04-01
JP4794170B2 (ja) 2011-10-19
EP1542299A1 (en) 2005-06-15
CN1679192A (zh) 2005-10-05
US20050244696A1 (en) 2005-11-03

Similar Documents

Publication Publication Date Title
WO2004027909A1 (ja) プロトン伝導性高分子膜およびその製造方法
Harilal et al. Cross-linked polybenzimidazole membrane for PEM fuel cells
Feng et al. High-performance semicrystalline poly (ether ketone)-based proton exchange membrane
Bose et al. Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges
Han et al. Cross-linked sulfonated poly (ether ether ketone) membranes formed by poly (2, 5-benzimidazole)-grafted graphene oxide as a novel cross-linker for direct methanol fuel cell applications
Hu et al. Elucidating the role of alkyl chain in poly (aryl piperidinium) copolymers for anion exchange membrane fuel cells
Kim et al. Highly reinforced pore-filling membranes based on sulfonated poly (arylene ether sulfone) s for high-temperature/low-humidity polymer electrolyte membrane fuel cells
Pu Polymers for PEM fuel cells
EP2362472B1 (en) Production method for polymer electrolyte
Oh et al. Proton conductivity and fuel cell property of composite electrolyte consisting of Cs-substituted heteropoly acids and sulfonated poly (ether–ether ketone)
Tian et al. Cross-linked anion-exchange membranes with dipole-containing cross-linkers based on poly (terphenyl isatin piperidinium) copolymers
JP5905857B2 (ja) 高分子電解質、高分子電解質膜、燃料電池用触媒層バインダー、およびその利用
TW201703329A (zh) 複合高分子電解質膜以及使用其之附有觸媒層的電解質膜、膜電極複合物及固體高分子形燃料電池
Goo et al. Sulfonated poly (ether sulfone)-coated and-blended nafion membranes with enhanced conductivity and reduced hydrogen permeability
Kim et al. Sulfonated fluorinated block copolymer containing naphthalene unit/sulfonated polyvinylidene-co-hexafluoropropylene/functionalized silicon dioxide ternary composite membrane for low-humidity fuel cell applications
Li et al. Enhanced proton conductivity and relative selectivity of sulfonated poly (arylene ether ketone sulfone) proton exchange membranes by using triazole-grafted 3-Glycidyloxypropyltrimethoxysilane
JPWO2002062896A1 (ja) プロトン伝導性高分子膜およびその製造方法
Wang et al. Low water swelling polyaromatic proton exchange membranes
Huang et al. Poly-hydroxyethylidene-1, 1-diphosphonic acid (PHEDP) as a highly effective water-retentive and proton-conductive material for low-humidity proton exchange membranes
JP6353183B2 (ja) 燃料電池用触媒層
Marques et al. Nafion/sulfonated poly (indene) polyelectrolyte membranes for fuel cell application
Kyeong et al. Development of poly (arylene ether sulfone)-based blend membranes containing aliphatic moieties for the low-temperature decal transfer method
JP2004528683A (ja) 燃料電池
JP6327759B2 (ja) 高分子電解質膜及び燃料電池
JP4437663B2 (ja) プロトン伝導性高分子電解質、プロトン伝導性高分子電解質膜及び膜−電極接合体、並びに固体高分子形燃料電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004568908

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003797550

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2496372

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020057002797

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038201925

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10528368

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057002797

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003797550

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003797550

Country of ref document: EP