WO2004025348A1 - 手振れ補正機能搭載ズームレンズ - Google Patents

手振れ補正機能搭載ズームレンズ Download PDF

Info

Publication number
WO2004025348A1
WO2004025348A1 PCT/JP2003/011463 JP0311463W WO2004025348A1 WO 2004025348 A1 WO2004025348 A1 WO 2004025348A1 JP 0311463 W JP0311463 W JP 0311463W WO 2004025348 A1 WO2004025348 A1 WO 2004025348A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
zoom
zoom lens
refractive power
Prior art date
Application number
PCT/JP2003/011463
Other languages
English (en)
French (fr)
Other versions
WO2004025348B1 (ja
Inventor
Katsu Yamada
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP03795317A priority Critical patent/EP1542050A1/en
Priority to JP2004535907A priority patent/JPWO2004025348A1/ja
Priority to US10/527,069 priority patent/US7126760B2/en
Priority to CA002498453A priority patent/CA2498453A1/en
Publication of WO2004025348A1 publication Critical patent/WO2004025348A1/ja
Publication of WO2004025348B1 publication Critical patent/WO2004025348B1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145121Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/15Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective compensation by means of only one movement or by means of only linearly related movements, e.g. optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B2003/0093Simple or compound lenses characterised by the shape

Definitions

  • the present invention relates to a high-magnification, high-quality zoom lens used for a video camera or the like and having a function of optically correcting image blur caused by camera shake, vibration, or the like.
  • a camera system such as a video camera has been required to have a shake prevention function for preventing vibrations such as camera shake, and various types of vibration proof optical systems have been proposed.
  • a two-lens optical system for camera shake correction is mounted on the front of a zoom lens, and one of them is positioned with respect to the optical axis.
  • a type is known in which the image is moved vertically to compensate for the image movement due to camera shake.
  • a zoom lens having a four-group configuration has a part of a third group composed of a plurality of lenses with respect to the optical axis.
  • the lens group for camera shake correction is small, the zoom ratio can be set sufficiently high, and the aberration can be corrected to a practically sufficient degree. With the goal.
  • the zoom lens according to the present invention has a first lens group fixed to the image plane, which has a positive refractive power as a whole, is arranged in order from the object side, and has a negative refractive power as a whole,
  • a second lens group that provides a zooming effect by moving on an axis, a stop fixed to the image plane, has a positive refractive power as a whole, and has an optical axis direction during zooming and focusing.
  • a third lens group which has a negative refractive power as a whole and is fixed to the image plane, and a fourth lens group which has a positive refractive power as a whole.
  • a fifth lens group movable on the optical axis so that an image plane that fluctuates due to movement on the optical axis and movement of the object is kept at a fixed position from the reference plane.
  • the entire third lens group is movable in a direction perpendicular to the optical axis in order to correct movement of an image due to camera shake. Satisfies the following conditions.
  • FIG. 1 is a side view showing a lens configuration of a camera shake correction zoom lens according to an embodiment of the present invention
  • 2A to 2E are aberration diagrams at the wide-angle end of the zoom lens according to the first embodiment of the present invention.
  • FIGS. 4A to 4E are aberration diagrams at a telephoto end of the zoom lens.
  • 5A to 5E are aberration diagrams at the wide-angle end of the zoom lens according to the second embodiment of the present invention.
  • FIGS. 7A to 7E are aberration diagrams at a telephoto end of the zoom lens.
  • FIGS. 8A to 8E are aberration diagrams at the wide-angle end of the third embodiment of the present invention
  • FIGS. 9A to 9E are aberration diagrams at a standard position of the zoom lens
  • FIGS. 10A to 10E are Aberration diagrams at the telephoto end of the zoom lens
  • FIGS. 11A to 11E are aberration diagrams at the wide-angle end according to the fourth embodiment of the present invention
  • FIGS. 12A to 12E are standard positions of the zoom lens.
  • 13A to 13E are aberration diagrams at the telephoto end of the zoom lens
  • FIGS. 14A to 14E are aberration diagrams at the wide-angle end according to the fifth embodiment of the present invention.
  • To 15E are aberration diagrams at the standard position of the zoom lens
  • FIGS. 10A to 10E are Aberration diagrams at the telephoto end of the zoom lens
  • FIGS. 11A to 11E are aberration diagrams at the wide-angle end according to the fourth embodiment of the present invention
  • FIG. 16A to 16E are aberration diagrams at the telephoto end of the zoom lens
  • FIG. 17 is a video using the zoom lens of the present invention.
  • FIG. 2 is a side view showing the configuration of the camera.
  • the zoom lens of the present invention having the above configuration, the third lens is used for camera shake correction. Since the lens group is movable, it is small and does not have a large burden on the actuator, and there is no problem in obtaining a sufficiently large zoom ratio. Furthermore, the conditional expression
  • the fifth lens group moves toward the object side as the object point approaches, and satisfies the following condition.
  • d45N Distance between the fourth and fifth lens units when the two units are at the same magnification
  • IM Image size
  • Equation (2) is a condition for obtaining good performance at telephoto. If the lower limit is exceeded, it becomes difficult to increase the zoom ratio. If the upper limit is exceeded, the magnification on the telephoto side will increase, and the aberration performance will easily deteriorate.In addition, the amount of movement of the fourth lens group will increase with changes in the object point. Sometimes the response is poor.
  • the fourth lens group satisfies the following condition.
  • Mt The formula (3) for the fourth lens group when the second lens group moves 0.1 mm during telephoto is the condition for manual focusing. If the upper limit is exceeded, the movement of the fourth lens group becomes too large, so the manual The 4th lens group cannot follow during focusing.
  • the second lens group satisfies the following condition.
  • Equation (4) is a condition for obtaining high performance at the telephoto side. Below the lower limit, aberration performance at the telephoto side can be corrected well, but high magnification cannot be achieved. Above the upper limit, magnification cannot be corrected satisfactorily because the magnification becomes large.
  • the first lens group includes, in order from the object side, four lenses: a lens having a negative refractive power, a lens having a positive refractive power, a lens having a positive refractive power, and a lens having a positive refractive power.
  • the incident angle and the exit angle to the lens closest to the object satisfy the following conditions.
  • Equation (5) If the lower limit is exceeded, barrel-shaped distortion will increase, and the chromatic difference of magnification will be insufficiently corrected.
  • the radius of curvature of the object side surface and the image side surface of the first lens unit satisfies the following condition.
  • ril radius of curvature of the object side surface of the i-th single lens from the object side of the first lens group
  • the second lens group includes at least three concave lenses and one convex lens. Thereby, a change in aberration at the time of zooming can be suppressed.
  • the third lens group includes at least one convex lens and a concave lens
  • the fourth lens group includes at least one convex lens and a concave lens.
  • the fifth lens group includes at least two convex lenses and at least one concave lens. This makes it possible to suppress fluctuations in aberrations, particularly coma, during focusing.
  • the second, third, and fourth lens groups include at least one aspheric surface.
  • the aspherical surface of the second lens unit is coma in the wide-angle range
  • the aspherical surface of the third lens unit is spherical aberration and the astigmatism and coma generated during camera shake correction
  • the aspherical surface of the fourth lens unit is Variations in aberrations during focusing can be corrected well.
  • the second lens group to the fifth lens group include at least one lens having the same amount of sag on both surfaces, and more preferably include at least one aspheric surface having the same amount of sag on both surfaces. Includes only aspheric surfaces with equal sag on both sides. As a result, it is possible to assemble the lens without discriminating between the front and the back, thereby shortening the tact time and improving the yield.
  • a video camera including a zoom lens having any one of the above configurations and an imaging device that photoelectrically converts light transmitted through the zoom lens can be configured. As a result, it is possible to obtain a small and high-performance video camera with a camera shake correction function.
  • FIG. 1 shows a configuration of a zoom lens according to an embodiment of the present invention.
  • This zoom lens is composed of the first lens unit 1, the second lens unit Including lens group 2, aperture 6, third lens group 3, fourth lens group 4, and fifth lens group 5.
  • 7 is a prism
  • 8 is a crystal or the like
  • 9 is an image plane. Quartz or the like 8 means an optical member including a low-pass filter, an infrared filter, a cover glass of an image sensor, and the like.
  • the first lens group 1 has a positive refractive power as a whole and is fixed to the image plane.
  • the second lens group 2 has negative refractive power as a whole, and moves on the optical axis to provide a zooming effect.
  • the diaphragm 6 is fixed to the image plane.
  • the third lens group 3 has a positive refractive power as a whole, and is fixed in the optical axis direction during zooming and focusing.
  • the fourth lens group 4 has negative refractive power as a whole and is fixed to the image plane.
  • the fifth lens group 5 has a positive refractive power as a whole, and keeps an image plane, which fluctuates due to the movement of the second lens group 2 on the optical axis and the movement of an object, at a fixed position from the reference plane. Move on the optical axis.
  • the entire third lens group 3 is movable in a direction orthogonal to the optical axis.
  • the movement of the image is corrected by moving the third lens group 3 in a direction orthogonal to the optical axis.
  • This zoom lens satisfies the following conditions.
  • Table 1 shows numerical examples of the zoom lens according to the first embodiment.
  • r is the radius of curvature of the lens surface
  • d is the thickness of the lens or the air gap between the lenses
  • n is the refractive index of each lens for the d-line
  • is the Abbe number of each lens for the d-line. is there.
  • Table 2 shows the aspheric coefficients of this example.
  • SAG Distance from the top of the aspheric surface to a point on the aspheric surface at a height H from the optical axis
  • H Height from optical axis
  • R radius of curvature of aspherical vertex
  • Table 3 shows the values when the object point is at the infinite position, as the variable air spacing by zooming.
  • the standard position is the position where the magnification of the second group is 11 times.
  • f, FZN o, and ⁇ are the focal length, F-number, and half angle of incidence of the zoom lens at the wide-angle end, the standard position, and the telephoto end in Table 1, respectively.
  • d7 is the distance between lens group 1 and lens group 2
  • dl4 is the distance between lens group 2 and aperture 6
  • d22 is the distance between lens group 4 and lens group 5
  • d27 is the distance between lens group 5 and prism 7.
  • the configuration diagram of the zoom lens based on the data in Table 1 is as shown in FIG.
  • the first lens group 1 has a positive refractive power and is fixed with respect to the image plane during zooming and during focusing.
  • the second lens group 2 has a negative refractive power and performs a zooming action by moving on the optical axis.
  • the third lens group 3 includes a positive lens and a negative lens, and has a positive refractive power as a whole.
  • the fourth lens group 4 includes a negative lens and a positive lens, has a negative refractive power as a whole, and is fixed to the image plane during zooming and during focusing.
  • the fifth lens group 5 has a positive refractive power, and moves on the optical axis to simultaneously move an image by zooming and adjust focus.
  • the image blur is corrected by moving the third lens group 13 in a direction orthogonal to the optical axis.
  • FIGS. 2A to 2E show aberration diagrams at the wide-angle end of the zoom lens based on the data in Table 1, respectively.
  • FIGS. 3A to 3E show the standard aberration diagrams.
  • Figures 4A to 4E show the aberration diagrams at the telephoto end.
  • FIGS. 2A, 3A, and 4A are diagrams of spherical aberration, and the solid line indicates a value for the d-line.
  • 2B, 3B, and 4B are diagrams of astigmatism.
  • the solid line indicates sagittal field curvature, and the broken line indicates meridional field curvature.
  • FIG. 2C, FIG. 3C, and FIG. 4C are diagrams showing distortion.
  • Figures 2D, 3D, and 4D are on-axis It is a diagram of chromatic aberration.
  • the solid line shows the value for the d line
  • the broken line shows the value for the F line
  • the dashed line shows the value for the C line.
  • FIGS. 2E, 3E, and 4E are diagrams of the chromatic aberration of magnification.
  • the broken line indicates the value for the F line
  • the dashed line indicates the value for the C line.
  • the zoom lens according to the first embodiment has sufficient aberration correction capability to achieve high resolution. Have.
  • Table 4 shows numerical examples of the zoom lens according to the second embodiment, and Table 5 shows the aspherical coefficients at that time.
  • Table 6 shows the values when the object point is at the infinite position as the variable air spacing by zooming.
  • FIGS. 5A to 5E show aberration diagrams at the wide-angle end of the zoom lens based on the data in Table 4, respectively.
  • Figures 6A to 6E show the aberration diagrams in the standard, respectively.
  • Figures 7A to 7E show the aberration diagrams at the telephoto end.
  • the zoom lens of the second embodiment has sufficient aberration correction to achieve high resolution. Have the ability.
  • Table 7 shows a numerical example of the zoom lens according to the third embodiment, and Table 8 shows an aspheric coefficient at that time.
  • Table 9 shows the values when the object point is at the infinite position, as the variable air spacing by zooming. ⁇
  • FIGS. 8A to 8E show aberration diagrams at the wide-angle end of the zoom lens based on the data in Table 7, respectively. Each aberration diagram in the standard is shown in FIGS. The aberration diagrams at the telephoto end are shown in FIGS. 10A to 10E, respectively.
  • the zoom lens of the third embodiment has sufficient aberration correction to achieve high resolution. Have the ability.
  • Table 10 shows a numerical example of the zoom lens according to the fourth embodiment, and Table 11 shows the aspheric coefficients at that time.
  • Table 12 shows the values when the object point is at the infinite position as the variable air spacing by zooming. [Table 10]
  • FIGS. 11A to 1 IE show aberration diagrams at the wide-angle end of the zoom lens based on the data in Table 10, respectively.
  • the standard aberration diagrams are shown in Figs.
  • Figures 13A to 13E show the aberration diagrams at the telephoto end.
  • the zoom lens according to the fourth embodiment is not enough to realize high resolution. It has aberration correction ability.
  • Table 13 shows numerical examples of the zoom lens of the fifth embodiment, and Table 14 shows the aspheric coefficients at that time.
  • Table 15 shows the values when the object point is at the infinite position as the variable air spacing by zooming.
  • Figures 14A to 14E show aberration diagrams at the wide-angle end of the zoom lens based on the data shown in Table 13 respectively. Each aberration diagram in the standard is shown in Fig. 158-15 £. Figures 16A to 16E show the aberration diagrams at the telephoto end.
  • the zoom lens of the fifth embodiment has sufficient aberration correction to achieve high resolution. Have the ability.
  • FIG. 17 shows a configuration of a three-panel video camera using a zoom lens having a camera shake correction function in the above embodiment.
  • reference numeral 10 denotes a zoom lens according to the first embodiment.
  • 1 1 is a low-pass filter, 1 2 a ⁇
  • 1 2c is a color separation prism. Rear surface of color separation prism 1 2 a to 12 c Image sensors 13a to 13c are arranged in P-picture 003/011463, respectively. Outputs of the imaging elements 13 a to 13 c are input to a signal processing circuit 14. The output of the signal processing circuit 14 is supplied to the viewfinder 15. Further, a sensor 16 for detecting camera shake is arranged, and the lens is driven by an actuator 17 based on the output.
  • zoom lenses of Embodiments 2 to 5 may be employed instead of the zoom lens of Embodiment 1 shown in FIG.
  • the camera shake is corrected by shifting the lens group having a positive refractive power.
  • the same effect can be obtained by shifting the lens group having a negative refractive power. Is obtained.
  • a high-quality, high-magnification 3CCD zoom lens capable of performing a camera shake correction function by shifting the third lens group can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

正の屈折力を有し像面に対して固定された第1レンズ群(1)と、負の屈折力を有し光軸上を移動することにより変倍作用をもたらす第2レンズ群(2)と、像面に対して固定された絞り(6)と、正の屈折力を有し変倍及び合焦時に光軸方向に対して固定される第3レンズ群(3)と、負の屈折力を有し像面に対して固定された第4レンズ群(4)と、正の屈折力を有し、第2レンズ群の光軸上での移動及び物体の移動によって変動する像面を基準面から一定の位置に保つように光軸上を移動可能な第5レンズ群(5)とが、物体側より順に配置される。第3レンズ群は、光軸に対して垂直方向に全体が移動可能である。条件式、0.035<|βw・βt/Z|<0.075を満足する。βw:広角端での第2レンズ群の倍率、βt:望遠端での第2レンズ群の倍率、Z:ズーム比。

Description

明 細 手振れ補正機能搭載ズームレンズ 技術分野
本発明は、 ビデオカメラなどに用いられ、 手振れ、 振動等によって生 じる像の振れを光学的に補正する機能を有する、 高倍率、 高画質のズー ムレンズに関するものである。 背景技術
従来よりビデオカメラ等の撮影系には、 手振れなどの振動を防ぐ振れ 防止機能は必須となっており、 様々なタイプの防振光学系が提案されて いる。
例えば、 特開平 8— 2 9 7 3 7号公報に記載のように、 ズームレンズ の前面に 2枚構成の手振れ補正用の光学系を装着し、 そのうちのいずれ か 1枚を光軸に対して垂直に移動させることにより、 手振れによる像の 移動を補正するタイプが知られている。
また、 特開平 7— 1 2 8 6 1 9号公報に記載のように、 4群構成のズ —ムレンズで、 複数枚のレンズで構成されている第 3群の一部を光軸に 対して垂直に移動させることによって手振れによる像の移動を補正する タイプも知られている。
しかしながら、 特開平 8— 2 9 7 3 7号公報に記載のタイプでは、 ズ ームレンズの前面に手振れ補正用の光学系を装着するために、 手振れ補 正用の光学系のレンズ径が大きくなる。 また、 それに伴い装置全体も大 きくなり、 駆動系への負担も大きくなる。 そのため、 小型、 軽量、 省電 力化に不利であった。 特開平 7— 1 2 8 6 1 9号公報に記載のタイプでは、 手振れによる像 の揺れを補正するために、 像面に対して固定である 3群の一部を光軸に 対して垂直に可動としているので、 ズームレンズ前面に手振れ補正用の 光学系を装着するタイプと比較して、 大きさ的には有利である。 但し、 手振れ補正用のレンズ群が 3枚で構成されているので、 ァクチユエ一夕 の負担が大きく、 ズ一ム比も 1 0倍程度と小さかった。 発明の開示
本発明は、 5群ズームレンズにおいて、 手振れ補正用のレンズ群が小 型で、 ズーム比も十分に大きくとることが可能であり、 しかも実用的に 十分な程度に収差の補正を可能とすることを目的とする。
本発明のズームレンズは、 物体側より順に配置された、 全体として正 の屈折力を有し、 像面に対して固定された第 1レンズ群と、 全体として 負の屈折力を有し、 光軸上を移動することにより変倍作用をもたらす第 2レンズ群と、 像面に対して固定された絞りと、 全体として正の屈折力 を有し、変倍及び合焦時に光軸方向に対して固定される第 3レンズ群と、 全体として負の屈折力を有し、像面に対して固定された第 4レンズ群と、 全体として正の屈折力を有し、 前記第 2レンズ群の光軸上での移動及び 物体の移動によって変動する像面を基準面から一定の位置に保つように 光軸上を移動可能な第 5レンズ群とを備える。 前記第 3レンズ群は、 手 振れによる像の移動を補正するために光軸に対して垂直方向に全体が移 動可能である。 下記の条件を満足する。
0.035 < I iS w j3 t/Z I < 0.075 ( 1 )
j3 w:広角端での第 2レンズ群の倍率
3 t:望遠端での第 2レンズ群の倍率
Z :ズーム比 図面の簡単な説明
図 1は、 本発明の一実施の形態における手振れ補正用ズームレンズの レンズ構成を示す側面図、
図 2 A〜2 Eは、 本発明の実施例 1のズームレンズの広角端における 収差図、
図 3 A〜 3 Eは、 同ズームレンズの標準位置における収差図、 図 4 A〜 4Eは、 同ズームレンズの望遠端における収差図、
図 5 A〜 5 Eは、 本発明の実施例 2のズームレンズの広角端における 収差図、
図 6 A〜 6 Eは、 同ズームレンズの標準位置における収差図、 図 7 A〜 7 Eは、 同ズームレンズの望遠端における収差図、
図 8 A〜 8 Eは、 本発明の第 3の実施例の広角端における収差図、 図 9 A〜 9 Eは、 同ズームレンズの標準位置における収差図、 図 1 0 A〜10 Eは、 同ズームレンズの望遠端における収差図、 図 1 1 A〜1 1 Eは、本発明の第 4の実施例の広角端における収差図、 図 1 2 A〜12 Eは、 同ズームレンズの標準位置における収差図、 図 1 3 A〜13 Eは、 同ズームレンズの望遠端における収差図、 図 14 A〜 14 Eは、本発明の第 5の実施例の広角端における収差図、 図 1 5 A〜1 5 Eは、 同ズ一ムレンズの標準位置における収差図、 図 1 6 A〜16 Eは、 同ズームレンズの望遠端における収差図、 図 1 7は、 本発明のズームレンズを用いたビデオカメラの構成を示す 側面図である。 発明を実施するための最良の形態
上記構成の本発明のズームレンズによれば、 手振れ補正のために第 3 レンズ群を可動とするので、 小型でァクチユエ一夕への負担が小さく、 また、 ズーム比を十分に大きくとる上での支障もない。 さらに、 条件式
( 1 ) を満足することにより、 全ズーム域おいて良好に収差を補正する ことが可能である。 下限を越えると収差の性能は良好に補正できるが、 レンズ系全体が大きくなる。 上限を越えると、 レンズ系を小さくできる が、 使用する倍率が大きくなるため、 特に画角の大きい高倍率ズームレ ンズは収差の劣化が大きくなる。
本発明のズームレンズにおいて望ましくは、 第 5レンズ群は、 物点が 近づくに従い物体側に移動し、 下記の条件を満足する。
0 < (d45T-d45N) / (IM-Z) < 0.04 ( 2 )
d45T:望遠時における第 4レンズ群と第 5レンズ群の間隔
d45N: 2群が等倍時における第 4レンズ群と第 5レンズ群の間隔 IM :イメージサイズ
Z :ズーム比
式 (2 ) は、 望遠時に良好な性能を得るための条件である。 下限を越 えるとズーム比を大きく取ることが困難になる。 上限を越えると望遠側 での倍率が大きくなるために、 収差性能が劣化しやすくなり、 また、 物 点の変化に伴い第 4レンズ群の移動量が大きくなるため、 例えば、 マ二 ュアルフォーカス時に応答性が悪くなる。
また望ましくは、 第 2レンズ群が等倍位置にあるとき、 または望遠端 にあるときに、 第 4レンズ群が下記条件を満足する。
MK 1.1 ( 3 )
Mt :望遠時に第 2レンズ群が 0.1mm移動したときの第 4レンズ群の移 式 (3 ) はマニュアルフォーカスを行うための条件である。 上限を越 えると、 第 4レンズ群の移動が大きくなりすぎるため、 マニュアルでの フォーカス時に第 4レンズ群が追従出来なくなる。
また望ましくは、 第 2レンズ群が下記の条件を満足する。
0.4く I Iく 0.9 (4)
式 (4) は、 望遠側で高性能を得るための条件である。 下限を越える と、 望遠側での収差性能は良好に補正できるが高倍率に出来ない。 上限 を越えると、 倍率が大きくなるために、 収差を良好に補正できない。 また望ましくは、第 1レンズ群は物体側から順に負の屈折力のレンズ、 正の屈折力のレンズ、 正の屈折力のレンズ、 正の屈折力のレンズの 4枚 のレンズにより構成される。 それにより、 画角が大きくても、 1群内で それぞれのレンズ面において光線の角度を小さくできるため、 非点収差 や歪曲収差を良好に補正できる。
また望ましくは、 最も物体側のレンズへの入射角と射出角が下記の条 件を満足する。
1.7< ω 1ο/ω 1ρ<2.2 (5)
ωΐο:最も物体側レンズへの入射角
ω lp:最も物体側レンズからの射出角
式 (5) 下限を越えると樽型の歪曲収差が大きくなり、 かつ倍率色収 差が補正不足となり、上限を越えると糸巻き型の歪曲収差が大きくなり、 かつ倍率色収差が補正過剰となる。
また望ましくは、 第 1レンズ群の物体側面と像側面の曲率半径が下記 の条件を満足する。
— 0.1く ril/ri2<0.45 (6)
ril:第 1レンズ群の物体側から i番目の単レンズの物体側面の曲率半 径
ri2:第 1レンズ群の物体側から i番目の単レンズの像側面の曲率半径 式 (6) の下限を越えると物体側面の屈折力が大きくなるために非点 収差が補正過剰になる。 上限を越えると非点収差が補正不足となる。 また望ましくは、 第 2レンズ群は少なくとも 3枚の凹レンズと 1枚の 凸レンズを含む。 それにより、 変倍時の収差の変化を抑制できる。
また望ましくは、 第 3レンズ群は少なくとも 1枚の凸レンズと凹レン ズを含み、第 4レンズ群は少なくとも 1枚の凸レンズと凹レンズを含む。 それにより、 手ぶれ補正時に発生する色収差を抑制できる。
また望ましくは、 第 5レンズ群は少なくとも 2枚の凸レンズと少なく とも 1枚の凹レンズを含む。 それにより、 合焦時の収差、 特にコマ収差 の変動を抑制できる。
また望ましくは、 第 2、 第 3、 第 4レンズ群は、 少なくとも 1面の非 球面を含む。 第 2レンズ群の非球面は、 広角域でのコマ収差、 第 3レン ズ群の非球面は、 球面収差と手ぶれ補正時に発生する非点、 コマ収差、 第 4レンズ群の非球面は、 合焦時の収差の変動を良好に補正できる。 また望ましくは、 第 2レンズ群〜第 5レンズ群は、 少なくとも 1枚の 両面のサグ量が等しいレンズを含み、 さらに望ましくは、 少なくとも 1 枚の両面のサグ量が等しい非球面を含み、 さらに望ましくは、 両面のサ グ量が等しい非球面のみを含む。 それにより、 レンズの裏表を判別する ことなく組めるため、 タクトの短縮、 及び歩留まりを向上できる。
上記いずれかの構成を有するズームレンズと、 そのズームレンズを通 した光を光電変換する撮像素子とを備えたビデオカメラを構成すること ができる。 それにより、 小型で高性能な手振れ補正機能付きビデオカメ ラを得ることができる。
以下に、 本発明の実施の形態における手振れ補正機能搭載ズームレン ズついて、 図面を参照して具体的に説明する。
図 1は、 本発明の一実施の形態におけるズームレンズの構成を示す。 このズームレンズは、 物体側から像面に向かって第 1レンズ群 1、 第 2 レンズ群 2、 絞り 6、 第 3レンズ群 3、 第 4レンズ群 4、 および第 5レ ンズ群 5を含む。 7はプリズム、 8は水晶等、 9は像面である。 水晶等 8は、 ローパスフィルタ、 赤外フィルタ、 撮像素子のカバ一ガラス等を 含む光学部材を意味する。
第 1レンズ群 1は、 全体として正の屈折力を有し、 像面に対して固定 されている。 第 2レンズ群 2は、 全体として負の屈折力を有し、 光軸上 を移動することにより変倍作用をもたらす。 絞り 6は、 像面に対して固 定されている。 第 3レンズ群 3は、 全体として正の屈折力を有し、 変倍 及び合焦時に光軸方向に対して固定される。 第 4レンズ群 4は、 全体と して負の屈折力を有し、 像面に対して固定される。 第 5レンズ群 5は、 全体として正の屈折力を有し、 第 2レンズ群 2の光軸上での移動及び物 体の移動によって変動する像面を、 基準面から一定の位置に保つように 光軸上を移動する。
第 3レンズ群 3は、 光軸に対して直交する方向に全体が移動可能であ る。 手振れ発生時には、 第 3レンズ群 3を光軸に対して直交する方向に 移動させることにより、 像の移動を補正する。
このズームレンズは、 下記の条件を満足する。
0.035く I j3 w ΐ/Ζ I く 0.075 - - · ( 1 )
j3 w:広角端での第 2レンズ群の倍率
:望遠端での第 2レンズ群の倍率
Z :ズーム比
以下に、本発明のズームレンズの具体的な実施例における数値を示す。 各実施例におけるレンズ群の基本的な構成は、 図 1に示したとおりであ る。 個々の各レンズは、 実施例によっては図 1に示したものと相違する が、 特に図示せず、 図 1のレンズ群の構成に対応させて説明する。
(実施例 1 ) 実施例 1のズームレンズの数値例を表 1に示す。なお、表 1において、 rはレンズ面の曲率半径、 dはレンズの肉厚又はレンズ間の空気間隔、 nは各レンズの d線に対する屈折率、 レは各レンズの d線に対するアツ ベ数である。 また、 この例の非球面係数を表 2に示す。
なお、 ここで言う非球面は、 下記式によって決められる。
Figure imgf000010_0001
SAG:光軸からの高さ Hにおける非球面上の点の非球面頂点からの距 離
H :光軸からの高さ
R:非球面頂点の曲率半径
K :円錐常数
D, E, F:非球面係数
また、 ズーミングにより可変な空気間隔として、 物点が無限位置の時 の値を表 3に示す。 表 3において、 標準位置は 2群倍率が一 1倍になる 位置である。 f 、 F Z N o、 ωはそれぞれ、 表 1のズームレンズの広角 端、 標準位置及び望遠端における焦点距離、 Fナンバー、 入射半画角で ある。 d7はレンズ群 1とレンズ群 2の間隔、 dl4はレンズ群 2と絞り 6 の間隔、 d22はレンズ群 4とレンズ群 5の間隔、 d27はレンズ群 5とプリ ズム 7の間隔を示す。
00+300000Ό 80- -3 21089- so- -3099692 οο+3εο62ει-
ΟΟ+300000'Ο 80- -3S οε·9 SO- -30SS69"2- οο+3εο6ζε·ト zz
00+300000,0 80- 90- -3l£ZZVl LI
ΟΟ+300000'Ο 80- -3l9LZVi- 90- -3l£ZZYl- ZO— 3t^(U /8— 91
0l-3S89S9'9- .0- -318.6ΓΙ- SO- -38Z000 - 00+38
0L-39899S'9 乙 0- -318 6に L 90- -382000 00+38 01 d 3 α m
Figure imgf000011_0001
urn
£9 U0/£Q0Zdr/lDd 【表 3】
Figure imgf000012_0001
表 1のデータに基づくズームレンズの構成図は、 図 1に図示されると おりである。 表 1のデータに基づくズームレンズにおいて、 第 1レンズ 群 1は正の屈折力を有し、 変倍時及び合焦時において像面に対して固定 されている。 第 2レンズ群 2は負の屈折力を有し、 光軸上を移動するこ とにより、 変倍作用を行う。 第 3レンズ群 3は、 正のレンズと負のレン ズから構成され、 全体として正の屈折力を有する。 第 4レンズ群 4は、 負のレンズと正のレンズから構成され、 全体として負の屈折力を有し、 変倍時及び合焦時において像面に対して固定されている。 第 5レンズ群 5は正の屈折力を有し、 光軸上を移動することにより、 変倍による像の 移動とフォーカスの調整を同時に行う。 手振れ発生時には、 第 3レンズ 群 1 3を光軸に対して直交する方向に移動させることにより、 像の振れ を補正する。
表 1のデータに基づくズームレンズの広角端における各収差図をそれ ぞれ、 図 2 A〜2 Eに示す。 標準における各収差図をそれぞれ、 図 3 A 〜3 Eに示す。 望遠端における各収差図をそれぞれ、 図 4 A〜4 Eに示 す。 図 2 A、 図 3 A、 図 4 Aは球面収差の図であり、 実線は d線に対す る値を示す。 図 2 B、 図 3 B、 図 4 Bは非点収差の図であり、 実線はサ ジタル像面湾曲、 破線はメリディォナル像面湾曲を示す。 図 2 C、 図 3 C、 図 4 Cは歪曲収差を示す図である。 図 2 D、 図 3 D、 図 4 Dは軸上 色収差の図であり、 実線は d線、 破線は F線、 一点鎖線は C線に対する 値を示す。 図 2 E、 図 3 E、 図 4Eは倍率色収差の図であり、 破線は F 線、 一点鎖線は C線に対する値を示す。 表及び図の説明は、 以下の実施 例の場合も同様である。
上述の条件式 (1) 〜 (6) に対応する値は、 下記のとおりである。
Figure imgf000013_0001
(d45T-d45N)/(IM-Z) =0.031
Mt = 0.089
Figure imgf000013_0002
ω1ο/ω1ρ = 2.09
rll/rl2=-0.13
r21/r22 = 0.36
図 2A〜2 E、 図 3A〜3 E、 図 4 A〜図 4 Eに示す収差図から明ら かなように、 実施例 1のズームレンズは、 高解像度を実現する十分な収 差補正能力を有する。
(実施例 2)
実施例 2のズームレンズの数値例を表 4に示し、 そのときの非球面係 数を表 5に示す。 また、 ズーミングにより可変な空気間隔として、 物点 が無限位置の時の値を表 6に示す。
00+ョ ΟΟΟΟΟΌ 80- -ョ 69乙 ·8- S0- -3ε κτε 00+39S80fr'l- LZ
00+ョ οοοοο'ο 80- -3 69 8 90- 00+39S80t - 92
00+300000Ό 80- -3200^8' 1 90- -3SZ99S'L ιο-ョ ΐδοζε ι- LI
00+3000000 80- -ョ ZOO 8·1- S0- -ョ εζ99ε·ι- 10-31802C'1- 91
01-3S0Z.C8"S LO- -3013621- 90- -35928εε- 00+3Z9S6 L 11 οι-3εοζ.ε8-9- LO- -30 6 90- -39928εε 00+3Z9S6に L 01 d 3 α m
【s拏】
Figure imgf000014_0001
【 拏】
£9PU0/£00Zdr/13d 【表 6】
Figure imgf000015_0002
表 4のデータに基づくズームレンズの広角端における各収差図をそれ ぞれ、 図 5A〜5 Eに示す。 標準における各収差図をそれぞれ、 図 6 A 〜6 Eに示す。 望遠端における各収差図をそれぞれ、 図 7A〜7 Eに示 す。
上述の条件式 (1) 〜 (6) に対応する値は、 下記のとおりである。
Figure imgf000015_0001
(d45T-d45N)/(IM-Z) =0.011
Mt = 0.034
I i3t/V"Z I =0.56
ω lo/ ω lp = 2.13
rll/rl2=-0.13
r21/r22 = 0.38
図 5 A〜5 E、 図 6 A〜6 E、 図 7 A〜図 7 Eに示す収差図から明ら かなように、 実施例 2のズームレンズは、 高解像度を実現する十分な収 差補正能力を有する。
(実施例 3)
実施例 3のズームレンズの数値例を表 7に示し、 そのときの非球面係 数を表 8に示す。 また、 ズーミングにより可変な空気間隔として、 物点 が無限位置の時の値を表 9に示す。 ι
Figure imgf000016_0001
IS 7 【表 9】
Figure imgf000017_0003
表 7のデータに基づくズームレンズの広角端における各収差図をそれ ぞれ、 図 8 A〜8 Eに示す。 標準における各収差図をそれぞれ、 図 9 A 〜9 Eに示す。 望遠端における各収差図をそれぞれ、 図 1 0 A〜 1 0 E に示す。
上述の条件式 (1 ) 〜 (6) に対応する値は、 下記のとおりである。
Figure imgf000017_0001
(d45T-d45N)/(lM-Z) =0.034
Mt = 1.037
Figure imgf000017_0002
ω lo/ ω lp = 1.80
rll/rl2 = 0.10
r21/r22 = 0.33
図 8 A〜8 E、 図 9 A〜9 E、 図 1 0 A〜図 1 0 Eに示す収差図から 明らかなように、 実施例 3のズームレンズは、 高解像度を実現する十分 な収差補正能力を有する。
(実施例 4)
実施例 4のズームレンズの数値例を表 1 0に示し、 そのときの非球面 係数を表 1 1に示す。 また、 ズーミングにより可変な空気間隔として、 物点が無限位置の時の値を表 1 2に示す。 【表 1 0】
Figure imgf000018_0001
【表 1 1,】
面 K D E F
10 2.22626E-01 2.85535E- -05 7.24352E- -09 -2.88411E - 10
11 2.22626E-01 -2.85535E- -05 -7.24352E- -09 2.88411E-10
16 -2.40678E - 01 -1.50534E- -05 -1.36330E- -08 0.00000E+00
17 -2.40678E-01 1.50534E- -05 1.36330E- -08 0.00000E+00
26 -1.40484E+00 -3.05492E- -05 8.59011E- -08 0.00000E+00
27 -1.40484E+00 3.05492E- -05 -8.59011E- -08 0.00000E+00 【表 1 2】
Figure imgf000019_0002
表 1 0のデータに基づくズームレンズの広角端における各収差図をそ れぞれ、 図 1 1 A〜1 I Eに示す。 標準における各収差図をそれぞれ、 図12八〜 12 £に示す。 望遠端における各収差図をそれぞれ、 図 1 3 A〜 1 3 Eに示す。
上述の条件式 (1) 〜 (6) に対応する値は、 下記のとおりである。
Figure imgf000019_0001
(d45T— d45N)/(IM'Z) =0.003
Mt = 0.014
I &tZfZ I =0.45
ω lo/ ω lp=1.80
rll/rl2 = 0.100
r21/r22 = 0.32
図 1 1 A〜: L I E、 図 1 2A〜12 E、 図 1 3 A〜図 1 3 Eに示す収 差図から明らかなように、 実施例 4のズームレンズは、 高解像度を実現 する十分な収差補正能力を有する。
(実施例 5 )
実施例 5のズームレンズの数値例を表 1 3に示し、 そのときの非球面 係数を表 14に示す。 また、 ズーミングにより可変な空気間隔として、 物点が無限位置の時の値を表 1 5に示す。 n
Figure imgf000020_0001
【表 15】
Figure imgf000021_0001
表 13のデ一夕に基づくズームレンズの広角端における各収差図をそ れぞれ、 図 14A〜14 Eに示す。 標準における各収差図をそれぞれ、 図1 5八〜 1 5 £に示す。 望遠端における各収差図をそれぞれ、 図 1 6 A〜 16 Eに示す。
上述の条件式 (1) 〜 (6) に対応する値は、 下記のとおりである。
I j3w /3t/Z I =0.05
(d45T-d45N)/(IM-Z) =0.018
Mt = 0.057
I &t/ Z I =0.60
ω lo/ ω lp=1.80
rll/rl2 = 0.10
r21/r22 = 0.33
図 14A〜14E、 図 1 5A〜 1 5 E、 図 1 6 A〜図 1 6 Eに示す収 差図から明らかなように、 実施例 5のズームレンズは、 高解像度を実現 する十分な収差補正能力を有する。
図 1 7は、 上記実施の形態における手振れ補正機能を有するズ一ムレ ンズを用いた、 3板式ビデオカメラの構成を示す。 同図において、 10 は実施例 1のズームレンズである。 1 1はローパスフィルタ、 1 2 a〜
1 2 cは色分解プリズムである。 色分解プリズム 1 2 a〜 12 cの後面 P 画 003/011463 にそれぞれ、 撮像素子 1 3 a〜 l 3 cが配置されている。 撮像素子 1 3 a〜 1 3 cの出力は、 信号処理回路 1 4に入力される。 ビューファイン ダー 1 5には、 信号処理回路 1 4の出力が供給される。 さらに、 手振れ を検知するためのセンサー 1 6が配置され、 その出力に基づき、 ァクチ ユエ一ター 1 7によりレンズが駆動される。
このように、 本発明の実施の形態のズームレンズ 1 0を用いることに より、 手振れ補正のできる高性能なビデオ力メラを実現できる。
なお、図示しないが、図 1に示した実施例 1のズームレンズに代えて、 実施例.2〜 5のズームレンズを採用してもよい。
また、 本発明の実施例では正の屈折力を持ったレンズ群をシフトさせ ることによって手ぶれの補正を行っているが、 負の屈折力を持ったレン ズ群をシフトさせても同様の効果が得られる。 産業上の利用の可能性
本発明によれば、 第 · 3レンズ群をシフトさせることにより手振れ補正 機能が可能な、 高画質、 高倍率 3 C C D用ズームレンズを実現できる。

Claims

請 求 の 範 囲
1. 物体側より順に配置された、 全体として正の屈折力を有し、 像面 に対して固定された第 1レンズ群と、
全体として負の屈折力を有し、 光軸上を移動することにより変倍作用 をもたらす第 2レンズ群と、
像面に対して固定された絞りと、
全体として正の屈折力を有し、 変倍及び合焦時に光軸方向に対して固 定される第 3レンズ群と、
全体として負の屈折力を有し、 像面に対して固定された第 4レンズ群 と、
全体として正の屈折力を有し、 前記第 2レンズ群の光軸上での移動及 び物体の移動によって変動する像面を基準面から一定の位置に保つよう に光軸上を移動可能な第 5レンズ群とを備え、
前記第 3レンズ群は、 手振れによる像の移動を補正するために光軸に 対して垂直方向に全体が移動可能であり、
下記の条件を満足することを特徴とするズームレンズ。
0.035< I |3w |3t/Z | <0.075 (1)
iSw :広角端での第 2レンズ群の倍率
ΐ:望遠端での第 2レンズ群の倍率
Ζ :ズーム比
2. 前記第 5レンズ群は、 物点が近づくに従い物体側にし、 下記の条 件を満足する請求項 1記載のズームレンズ。
0< (d45T-d45N)/(lM-Z) <0.04 (2)
d45T:望遠時における第 4レンズ群と第 5レンズ群の間隔 d45N 2群が等倍時における第 4レンズ群と第 5レンズ群の間隔
IM ィメ一ジサイズ
Z ズーム比 3. 第 2レンズ群が等倍位置にあるとき、または望遠端にあるときに、 第 4レンズ群が下記条件を満足する請求項 1または 2に記載のズームレ ンズ。
Mt<l.l
(3)
Mt:望遠時に第 2レンズ群が 0.1mm移動したときの第 4レンズ群の移 動量
4. 第 2レンズ群が下記の条件を満足する請求項 1〜 3のいずれかに 記載のズームレンズ。
0.4< I I <0.9 (4)
5. 第 1レンズ群は、物体側から順に配置された負の屈折力のレンズ、 正の屈折力のレンズ、 正の屈折力のレンズ、 および正の屈折力のレンズ の 4枚のレンズにより構成された請求項 1〜4のいずれかに記載のズー ムレンズ。
6. 最も物体側のレンズへの入射角と射出角が下記の条件を満足する 請求項 1〜 5のいずれかに記載のズームレンズ。
1.7< ω1ο/ω1ρ<2.2 (5)
ωΐο:最も物体側レンズへの入射角
ωΐρ:最も物体側レンズからの射出角
7. 第 1レンズ群の物体側面と像側面の曲率半径が下記の条件を満足 する請求項 1〜 6のいずれかに記載のズームレンズ。
-0.1<ril/ri2<0.45 (6)
ril:第 1レンズ群の物体側から i番目の単レンズの物体側面の曲率半 径
ri2:第 1レンズ群の物体側から i番目の単レンズの像側面の曲率半径
8. 第 2レンズ群は少なくとも 3枚の凹レンズと 1枚の凸レンズを含 む請求項 1〜 7のいずれかに記載のズームレンズ。
9. 第 3レンズ群は少なくとも 1枚の凸レンズと凹レンズを含む請求 項 1〜8のいずれかに記載のズームレンズ。
1 0. 第 4レンズ群は少なくとも 1枚の凸レンズと凹レンズを含む請 求項 1〜 9のいずれかに記載のズームレンズ。
1 1. 第 5レンズ群は少なくとも 2枚の凸レンズと少なくとも 1枚の 凹レンズを含む請求項 1〜 1 0のいずれかに記載のズームレンズ。
1 2. 第 2レンズ群は少なくとも 1面の非球面を含む請求項 1〜 1 1 のいずれかに記載のズームレンズ。
1 3. 第 3レンズ群は少なくとも 1面の非球面を含む請求項 1〜 1 2 のいずれかに記載のズームレンズ。
1 4. 第 4レンズ群は少なくとも 1面の非球面を含む請求項 1〜 1 3 のいずれかに記載のズームレンズ。
1 5. 第 2レンズ群〜第 5レンズ群は、 少なくとも 1枚の両面のサグ 量が等しいレンズを含む請求項 1〜 14のいずれかに記載のズームレン ズ。
1 6. 少なくとも 1枚の両面のサグ量が等しい非球面を含む請求項 1 〜 1 5のいずれかに記載のズームレンズ。
1 7. 両面のサグ量が等しい非球面のみを含む請求項 1〜 1 6のいず れかに記載のズ一、
1 8. 請求項 1〜 1 7のいずれかに記載のズームレンズと、 前記ズ一 ムレンズを通した光を光電変換する撮像素子とを備えたビデオカメラ。
PCT/JP2003/011463 2002-09-10 2003-09-08 手振れ補正機能搭載ズームレンズ WO2004025348A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03795317A EP1542050A1 (en) 2002-09-10 2003-09-08 Shaking correction function-mounted zoom lens
JP2004535907A JPWO2004025348A1 (ja) 2002-09-10 2003-09-08 手振れ補正機能搭載ズームレンズ
US10/527,069 US7126760B2 (en) 2002-09-10 2003-09-08 Image stabilizing zoom lens
CA002498453A CA2498453A1 (en) 2002-09-10 2003-09-08 Shaking correction function-mounted zoom lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-263796 2002-09-10
JP2002263796 2002-09-10

Publications (2)

Publication Number Publication Date
WO2004025348A1 true WO2004025348A1 (ja) 2004-03-25
WO2004025348B1 WO2004025348B1 (ja) 2004-06-24

Family

ID=31986470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011463 WO2004025348A1 (ja) 2002-09-10 2003-09-08 手振れ補正機能搭載ズームレンズ

Country Status (8)

Country Link
US (1) US7126760B2 (ja)
EP (1) EP1542050A1 (ja)
JP (1) JPWO2004025348A1 (ja)
KR (1) KR20050035541A (ja)
CN (1) CN1332232C (ja)
CA (1) CA2498453A1 (ja)
TW (1) TWI275829B (ja)
WO (1) WO2004025348A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047771A (ja) * 2004-08-05 2006-02-16 Canon Inc ズームレンズおよびそれを用いた撮像装置
JP2007148340A (ja) * 2005-10-31 2007-06-14 Fujinon Corp ズームレンズ
JP2008152049A (ja) * 2006-12-18 2008-07-03 Nikon Corp ズームレンズ、撮像装置、ズームレンズの防振方法、ズームレンズの変倍方法
CN100405112C (zh) * 2005-01-06 2008-07-23 佳能株式会社 变焦透镜系统和包括该变焦透镜系统的图像拾取设备
JP2009294387A (ja) * 2008-06-04 2009-12-17 Tamron Co Ltd 高倍率小型ズームレンズ
CN1877387B (zh) * 2005-06-02 2010-05-26 佳能株式会社 变焦透镜及包含变焦透镜的摄像设备
JP2010266505A (ja) * 2009-05-12 2010-11-25 Fujifilm Corp ズームレンズおよび撮像装置
JP2010277082A (ja) * 2009-05-29 2010-12-09 Samsung Techwin Co Ltd ズームレンズ
JP2011028144A (ja) * 2009-07-29 2011-02-10 Fujifilm Corp ズームレンズ
WO2013151153A1 (ja) * 2012-04-06 2013-10-10 コニカミノルタ株式会社 撮像レンズ、撮像レンズユニット及び撮像装置
JP2014089299A (ja) * 2012-10-30 2014-05-15 Canon Inc ズームレンズ及びそれを有する撮像装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI273305B (en) * 2005-05-06 2007-02-11 Asia Optical Co Inc Micro image capturing lens
JP2007233045A (ja) * 2006-03-01 2007-09-13 Sony Corp ズームレンズ及び撮像装置
JP4674567B2 (ja) * 2006-05-01 2011-04-20 株式会社ニコン ズームレンズとこれを具備する光学装置
JP4944499B2 (ja) * 2006-05-31 2012-05-30 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
US20080297901A1 (en) 2007-05-29 2008-12-04 Nikon Corporation Zoom lens system, optical apparatus, and method for forming an image
JP2009009104A (ja) * 2007-05-29 2009-01-15 Nikon Corp ズームレンズと、光学機器
KR101430963B1 (ko) * 2007-12-06 2014-09-23 삼성전자주식회사 손떨림 보정장치를 구비한 촬영장치 및 광학계
US8194317B2 (en) * 2008-04-02 2012-06-05 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
JP4869288B2 (ja) * 2008-05-23 2012-02-08 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
US7965452B2 (en) * 2008-06-04 2011-06-21 Tamron Co., Ltd. High magnification compact zoom lens
CN101988986B (zh) * 2009-07-29 2014-03-12 富士胶片株式会社 变焦透镜
EP2360504B1 (en) * 2010-02-24 2016-04-06 Nikon Corporation Zoom lens system, optical apparatus and method for manufacturing zoom lens system
JP6045443B2 (ja) * 2013-06-13 2016-12-14 富士フイルム株式会社 ズームレンズおよび撮像装置
US10139595B1 (en) 2014-03-16 2018-11-27 Navitar Industries, Llc Optical assembly for a compact wide field of view digital camera with low first lens diameter to image diagonal ratio
US9995910B1 (en) 2014-03-16 2018-06-12 Navitar Industries, Llc Optical assembly for a compact wide field of view digital camera with high MTF
US9316808B1 (en) 2014-03-16 2016-04-19 Hyperion Development, LLC Optical assembly for a wide field of view point action camera with a low sag aspheric lens element
US10545314B1 (en) 2014-03-16 2020-01-28 Navitar Industries, Llc Optical assembly for a compact wide field of view digital camera with low lateral chromatic aberration
US9494772B1 (en) 2014-03-16 2016-11-15 Hyperion Development, LLC Optical assembly for a wide field of view point action camera with low field curvature
US10386604B1 (en) * 2014-03-16 2019-08-20 Navitar Industries, Llc Compact wide field of view digital camera with stray light impact suppression
US9726859B1 (en) 2014-03-16 2017-08-08 Navitar Industries, Llc Optical assembly for a wide field of view camera with low TV distortion
US11320633B2 (en) 2014-11-04 2022-05-03 Navitar Industries, Llc Optical assembly for a compact wide field of view digital camera with low first lens diameter to image diagonal ratio
KR102314437B1 (ko) * 2015-11-23 2021-10-19 삼성전기주식회사 카메라 모듈
KR101829600B1 (ko) 2015-11-23 2018-02-19 삼성전기주식회사 카메라 모듈
KR102368759B1 (ko) * 2016-05-11 2022-03-02 삼성전기주식회사 촬상 광학계
JP6797774B2 (ja) * 2017-09-25 2020-12-09 富士フイルム株式会社 撮像レンズ及び撮像装置
KR102423973B1 (ko) * 2018-02-08 2022-07-22 삼성전기주식회사 촬상 광학계
CN110119023A (zh) * 2019-06-16 2019-08-13 福建福光股份有限公司 六百万高分辨率变焦镜头

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232420A (ja) * 1997-02-20 1998-09-02 Matsushita Electric Ind Co Ltd ズームレンズ
EP1103834A1 (en) * 1998-06-01 2001-05-30 Matsushita Electric Industrial Co., Ltd. Zoom lens and video camera comprising the same
JP2002107623A (ja) * 2000-09-29 2002-04-10 Tamron Co Ltd 防振機能付きズームレンズ
JP2002169087A (ja) * 2000-11-30 2002-06-14 Canon Inc ズームレンズ及びそれを用いた光学機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3359131B2 (ja) 1993-11-04 2002-12-24 キヤノン株式会社 防振機能を有した変倍光学系
US6124972A (en) * 1994-03-18 2000-09-26 Canon Kabushiki Kaisha Zoom lens having an image stabilizing function
JP3569965B2 (ja) 1994-07-12 2004-09-29 ソニー株式会社 像ブレ補正変倍光学系及びこれを用いたカメラ
JP2000298235A (ja) * 1999-04-15 2000-10-24 Matsushita Electric Ind Co Ltd ズームレンズ及びそれを用いたビデオカメラ
US6392816B1 (en) * 1999-10-29 2002-05-21 Canon Kabushiki Kaisha Variable magnification optical system and optical apparatus having the same
JP4138324B2 (ja) * 2001-11-28 2008-08-27 松下電器産業株式会社 ズームレンズ及びそれを用いたビデオカメラ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232420A (ja) * 1997-02-20 1998-09-02 Matsushita Electric Ind Co Ltd ズームレンズ
EP1103834A1 (en) * 1998-06-01 2001-05-30 Matsushita Electric Industrial Co., Ltd. Zoom lens and video camera comprising the same
JP2002107623A (ja) * 2000-09-29 2002-04-10 Tamron Co Ltd 防振機能付きズームレンズ
JP2002169087A (ja) * 2000-11-30 2002-06-14 Canon Inc ズームレンズ及びそれを用いた光学機器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047771A (ja) * 2004-08-05 2006-02-16 Canon Inc ズームレンズおよびそれを用いた撮像装置
JP4677210B2 (ja) * 2004-08-05 2011-04-27 キヤノン株式会社 ズームレンズおよびそれを用いた撮像装置
CN100405112C (zh) * 2005-01-06 2008-07-23 佳能株式会社 变焦透镜系统和包括该变焦透镜系统的图像拾取设备
CN1877387B (zh) * 2005-06-02 2010-05-26 佳能株式会社 变焦透镜及包含变焦透镜的摄像设备
JP2007148340A (ja) * 2005-10-31 2007-06-14 Fujinon Corp ズームレンズ
JP2008152049A (ja) * 2006-12-18 2008-07-03 Nikon Corp ズームレンズ、撮像装置、ズームレンズの防振方法、ズームレンズの変倍方法
JP2009294387A (ja) * 2008-06-04 2009-12-17 Tamron Co Ltd 高倍率小型ズームレンズ
JP2010266505A (ja) * 2009-05-12 2010-11-25 Fujifilm Corp ズームレンズおよび撮像装置
JP2010277082A (ja) * 2009-05-29 2010-12-09 Samsung Techwin Co Ltd ズームレンズ
JP2011028144A (ja) * 2009-07-29 2011-02-10 Fujifilm Corp ズームレンズ
WO2013151153A1 (ja) * 2012-04-06 2013-10-10 コニカミノルタ株式会社 撮像レンズ、撮像レンズユニット及び撮像装置
JP2014089299A (ja) * 2012-10-30 2014-05-15 Canon Inc ズームレンズ及びそれを有する撮像装置

Also Published As

Publication number Publication date
US20060072200A1 (en) 2006-04-06
US7126760B2 (en) 2006-10-24
JPWO2004025348A1 (ja) 2006-01-12
WO2004025348B1 (ja) 2004-06-24
CN1682141A (zh) 2005-10-12
KR20050035541A (ko) 2005-04-18
TWI275829B (en) 2007-03-11
CA2498453A1 (en) 2004-03-25
TW200409957A (en) 2004-06-16
CN1332232C (zh) 2007-08-15
EP1542050A1 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
WO2004025348A1 (ja) 手振れ補正機能搭載ズームレンズ
JP4138324B2 (ja) ズームレンズ及びそれを用いたビデオカメラ
JP5694508B2 (ja) 変倍光学系および撮像装置
JP6045443B2 (ja) ズームレンズおよび撮像装置
JP5836654B2 (ja) ズームレンズ及びそれを有する撮像装置
JP2007226142A (ja) ズームレンズ及びそれを有する撮像装置
JP2005128186A (ja) ズームレンズ、並びにそれを用いたビデオカメラ及びデジタルスチルカメラ
JP2007121611A (ja) ズームレンズ及び撮像装置
JP2013003240A5 (ja)
JP5767335B2 (ja) ズームレンズおよび撮像装置
JP2016164629A (ja) ズームレンズおよび撮像装置
WO2013031180A1 (ja) ズームレンズおよび撮像装置
JP5841675B2 (ja) ズームレンズおよび撮像装置
JP6164894B2 (ja) ズームレンズ及びそれを有する撮像装置
WO2013031110A1 (ja) ズームレンズおよび撮像装置
JP2014202806A5 (ja)
JPH11344669A (ja) ズームレンズ及びこれを用いたビデオカメラ
JP2002365540A (ja) 手振れ補正機能搭載ズームレンズと手振れ補正機能搭載ビデオカメラ及び光学機器と光学装置
JPH11101941A (ja) リヤーフォーカス式のズームレンズ
WO2013031185A1 (ja) ズームレンズおよび撮像装置
WO2013031184A1 (ja) ズームレンズおよび撮像装置
WO2014041785A1 (ja) ズームレンズおよび撮像装置
WO2013031186A1 (ja) ズームレンズおよび撮像装置
WO2013031179A1 (ja) ズームレンズおよび撮像装置
WO2013031183A1 (ja) ズームレンズおよび撮像装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
B Later publication of amended claims

Effective date: 20040312

WWE Wipo information: entry into national phase

Ref document number: 2004535907

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006072200

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2498453

Country of ref document: CA

Ref document number: 10527069

Country of ref document: US

Ref document number: 1020057004044

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003821492X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003795317

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057004044

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003795317

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10527069

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003795317

Country of ref document: EP