WO2013031180A1 - ズームレンズおよび撮像装置 - Google Patents

ズームレンズおよび撮像装置 Download PDF

Info

Publication number
WO2013031180A1
WO2013031180A1 PCT/JP2012/005374 JP2012005374W WO2013031180A1 WO 2013031180 A1 WO2013031180 A1 WO 2013031180A1 JP 2012005374 W JP2012005374 W JP 2012005374W WO 2013031180 A1 WO2013031180 A1 WO 2013031180A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
conditional expression
refractive power
object side
Prior art date
Application number
PCT/JP2012/005374
Other languages
English (en)
French (fr)
Inventor
広樹 斉藤
長 倫生
伊藤 徹
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201280041656.7A priority Critical patent/CN103765281B/zh
Publication of WO2013031180A1 publication Critical patent/WO2013031180A1/ja
Priority to US14/173,409 priority patent/US9316818B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/142Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/142Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only
    • G02B15/1425Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only the first group being negative
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses

Definitions

  • the present invention relates to a zoom lens, and more particularly to a zoom lens that can be suitably used for a small video camera or the like.
  • the present invention also relates to an imaging apparatus provided with such a zoom lens.
  • a first lens group having a negative refractive power and a second lens group having a positive refractive power are arranged in order from the object side.
  • a two-group type zoom lens that performs zooming by moving the first lens group and the second lens group in the optical axis direction is known. This type of zoom lens is suitably used for small video cameras and the like.
  • Patent Document 1 discloses that the first lens group includes four lenses, that is, a negative lens (a lens having negative refractive power) arranged in order from the object side, a negative lens, a negative lens, and a positive lens (positive refractive power).
  • a zoom lens of a two-group type composed of a lens having a zoom lens (Example 2) is shown.
  • Patent Document 2 discloses a zoom lens of a two-group type in which the first lens group is composed of four lenses, that is, a negative lens, a positive lens, a negative lens, and a positive lens arranged in order from the object side. (Example 1).
  • the first lens group includes four lenses, that is, a negative lens, a negative lens, a negative lens, and a positive lens arranged in order from the object side
  • the second lens group also includes four lenses
  • a zoom lens of a two-group type composed of a positive lens, a positive lens, a negative lens, and a positive lens arranged in order from the object side is shown (Example 2).
  • Patent Document 4 also shows a zoom lens having a lens configuration similar to this (Example 4)
  • Patent Document 5 also shows a zoom lens having a lens configuration similar to this (implementation). Example 1).
  • the first lens group includes four lenses, that is, a negative lens, a positive lens, a negative lens, and a positive lens arranged in order from the object side
  • the second lens group also includes four lenses
  • a zoom lens of a two-group type including a positive lens, a positive lens, a negative lens, and a positive lens arranged in order from the object side is shown (Example 4).
  • JP 2008-116915 A Japanese Patent Laid-Open No. 2004-21223 JP 2006-91643 A JP 2008-65051 A JP 2004-317901 A Japanese Patent Laid-Open No. 11-223768
  • the zoom lens disclosed in Patent Document 1 has a wide angle but a small zoom ratio.
  • the zoom lens disclosed in Patent Document 2 has a wide angle but has a small zoom ratio and a large F value.
  • the zoom lens shown has a wide angle and a large zoom ratio but large distortion.
  • the zoom lenses disclosed in Patent Documents 4 and 5 have a wide angle and a large zoom ratio, but there is still room for improvement in terms of distortion.
  • the zoom lens disclosed in Patent Document 6 has a problem that the angle of view is narrow and the F value is large.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a zoom lens having a small F value and capable of correcting various aberrations satisfactorily.
  • the first zoom lens according to the present invention comprises: A first lens group having negative refractive power and a second lens group having positive refractive power are arranged in order from the object side. Zooming is performed by moving the first lens group and the second lens group; The first lens group is arranged in order from the object side, the first lens having a negative refractive power, the second lens, the third lens having a negative refractive power, and the fourth lens having a positive refractive power.
  • the focal length of the second lens from the object side of the first lens group is f G12
  • the focal length of the entire system at the wide-angle end is fw
  • the focal length of the first lens group is f 1
  • the second lens group when the focal length was set to f 2 the following conditional expression 0.00 ⁇ fw / f 2 ⁇ 0.50 ⁇ (1-1) -0.19 ⁇ f 1 / f G12 ⁇ 0.16 (2-1) It is characterized by satisfying.
  • substantially the first lens group and the second lens group are arranged means, in addition to these lens groups, lenses other than lenses having no power, lenses such as a diaphragm and a cover glass. This includes the case of having a mechanical part such as an optical element, a lens flange, a lens barrel, an imaging device, a camera shake correction mechanism, and the like.
  • a first lens having a negative refractive power in which the first lens group is arranged in order from the object side, a second lens, a third lens having a negative refractive power, and a positive refractive power.
  • a cemented lens may be used as a lens constituting each lens group.
  • the cemented lens is composed of n pieces of bonded lenses, it is counted as n lenses.
  • the description of “the zoom lens of the present invention” or “the zoom lens of the present invention” refers to the first zoom lens according to the present invention and the second and third zooms described later unless otherwise specified. It shall refer to all of the lenses.
  • the surface shape of the lens and the sign of the refractive power are considered in the paraxial region when an aspheric surface is included.
  • conditional expression 0.31 ⁇ fw / f 2 ⁇ 0.35 (1-3) in particular within the range defined by the conditional expression (1-1). It is even more desirable to satisfy.
  • the second zoom lens according to the present invention includes: A first lens group having negative refractive power and a second lens group having positive refractive power are arranged in order from the object side. Zooming is performed by moving the first lens group and the second lens group; The first lens group is arranged in order from the object side, the first lens having a negative refractive power, the second lens, the third lens having a negative refractive power, and the fourth lens having a positive refractive power.
  • the second lens group is substantially composed of four lenses;
  • the focal length of the second lens from the object side of the first lens group is f G12 , the focal length of the entire system at the wide-angle end is fw, the focal length of the first lens group is f 1 , and the second lens group when the focal length was set to f 2, the following conditional expression 0.00 ⁇ fw / f 2 ⁇ 0.43 ⁇ (1-4) -1.00 ⁇ f 1 / f G12 ⁇ 0.16 ⁇ (2-3) It is characterized by satisfying.
  • conditional expressions (1-4) and (2-3) the following conditional expression 0.31 ⁇ fw / f 2 ⁇ 0.35 (1-3) -0.15 ⁇ f 1 / f G12 ⁇ 0.10 ⁇ (2-2) It is more desirable to satisfy at least one of the above.
  • the third zoom lens according to the present invention is: A first lens group having negative refractive power and a second lens group having positive refractive power are arranged in order from the object side. Zooming is performed by moving the first lens group and the second lens group; The first lens group is arranged in order from the object side, the first lens having a negative refractive power, the second lens having a positive refractive power, the third lens having a negative refractive power, and a positive lens Consists of a fourth lens having refractive power, The second lens group is substantially composed of four lenses; The focal length of the second lens from the object side of the first lens group is f G12 , the focal length of the entire system at the wide-angle end is fw, the focal length of the first lens group is f 1 , and the second lens group when the focal length was set to f 2, the following conditional expression 0.27 ⁇ fw / f 2 ⁇ 0.43 ⁇ (1-5) -1.00 ⁇ f 1 / f G12 ⁇ 0.29 (2-
  • conditional expression (2-6) the following conditional expression: ⁇ 0.15 ⁇ f 1 / f G12 ⁇ 0.10 (2-2) It is more desirable to satisfy.
  • an imaging apparatus includes any one of the zoom lenses according to the present invention described above.
  • the first lens group includes four lenses, and the first lens having the negative refractive power, the second lens, and the third lens having the negative refractive power in order from the object side.
  • conditional expression (1-1) defines the relationship between the focal length of the entire system at the wide-angle end and the focal length of the second lens group. If the upper limit of conditional expression (1-1) is exceeded, the refractive power of the second lens group becomes too strong, and it is difficult to satisfactorily correct various aberrations in the entire zoom range. When the conditional expression (1-1) is satisfied, the above problems can be prevented and various aberrations can be corrected satisfactorily in the entire zoom range.
  • conditional expression (1-2) is satisfied within the range defined by the conditional expression (1-1). Further, the conditional expression (1-3) Is more prominent when is satisfied.
  • conditional expression (1-2) If the lower limit of conditional expression (1-2) is not reached, the refractive power of the second lens group becomes weak, the amount of movement of the second lens group during zooming increases, and the overall length of the entire optical system increases. Although it is not preferable because downsizing becomes difficult, when the conditional expression (1-2) is satisfied, the above-described problems can be prevented and downsizing of the entire optical system can be achieved. This is the same when the conditional expression (1-3) is satisfied.
  • the first zoom lens according to the present invention exhibits the following effects by satisfying the conditional expression (2-1).
  • Conditional expression (2-1) defines the relationship between the focal length of the first lens group and the focal length of the second lens of the first lens group.
  • the lower limit of conditional expression (2-1) When the lower limit of conditional expression (2-1) is not reached, the positive refractive power of the second lens becomes strong. To compensate for this, the refractive power of the lens having negative refractive power in the first lens group becomes small. This is not preferable because it becomes too strong and it becomes difficult to correct various aberrations.
  • conditional expression (2-1) if it exceeds the upper limit value of conditional expression (2-1), the negative refractive power of the second lens becomes too strong, and it becomes difficult to correct distortion.
  • conditional expression (2-2) is satisfied within the range defined by conditional expression (2-1).
  • the first lens group is configured by four lenses, and the first lens having the negative refractive power in order from the object side, the second lens,
  • the third lens having negative refracting power and the fourth lens having positive refracting power it is possible to suppress an increase in various aberrations accompanying widening of the angle while suppressing an increase in cost.
  • the second lens group is composed of four lenses, it is possible to suppress fluctuations in aberrations due to zooming while suppressing an increase in cost.
  • conditional expression (1-4) defines the relationship between the focal length of the entire system at the wide-angle end and the focal length of the second lens group, similarly to conditional expression (1-1). If the upper limit of conditional expression (1-4) is exceeded, the refractive power of the second lens group becomes too strong, and it is difficult to satisfactorily correct various aberrations in the entire zoom range, which is not preferable. When the conditional expression (1-4) is satisfied, the above problems can be prevented and various aberrations can be corrected well in the entire zooming range.
  • conditional expression (1-4) particularly when the conditional expression (1-2) is satisfied. Further, the conditional expression (1-3) Is more prominent when is satisfied.
  • conditional expression (1-2) If the lower limit of conditional expression (1-2) is not reached, the refractive power of the second lens group becomes weak, the amount of movement of the second lens group during zooming increases, and the overall length of the entire optical system increases. Although it is not preferable because downsizing becomes difficult, when the conditional expression (1-2) is satisfied, the above-described problems can be prevented and downsizing of the entire optical system can be achieved. This is the same when the conditional expression (1-3) is satisfied.
  • the second zoom lens according to the present invention exhibits the following effects by satisfying the conditional expression (2-3).
  • Conditional expression (2-3) defines the relationship between the focal length of the first lens group and the focal length of the second lens of the first lens group, similar to conditional expression (2-1).
  • conditional expression (2-3) defines the relationship between the focal length of the first lens group and the focal length of the second lens of the first lens group, similar to conditional expression (2-1).
  • the lower limit of conditional expression (2-3) is not reached, the positive refractive power of the second lens becomes stronger.
  • the refractive power of the lens having negative refractive power in the first lens group is increased. This is not preferable because it becomes too strong and it becomes difficult to correct various aberrations.
  • the value exceeds the upper limit value of the conditional expression (2-3) the negative refractive power of the second lens becomes too strong, and it becomes difficult to correct distortion.
  • conditional expression (2-3) The above effects become more prominent in the range specified by conditional expression (2-3), especially when conditional expression (2-4) is satisfied, and conditional expression (2-2) is also satisfied. If it is, it becomes more prominent.
  • the first lens group includes four lenses, and the first lens having the negative refractive power, the second lens, and the third lens having the negative refractive power in order from the object side.
  • a fourth lens having a positive refractive power it is possible to suppress an increase in various aberrations accompanying a wide angle while suppressing an increase in cost.
  • the second lens group is composed of four lenses, it is possible to suppress fluctuations in aberrations due to zooming while suppressing an increase in cost.
  • Conditional expression (1-5) defines the relationship between the focal length of the entire system at the wide-angle end and the focal length of the second lens group, similarly to conditional expression (1-1). If the lower limit of conditional expression (1-5) is not reached, the refractive power of the second lens group becomes weak, the amount of movement of the second lens group during zooming increases, and the overall length of the entire optical system becomes longer, resulting in a smaller size. It is not preferable because it becomes difficult to make it.
  • conditional expression (1-5) if the value exceeds the upper limit of conditional expression (1-5), the refractive power of the second lens unit becomes too strong, and it is difficult to satisfactorily correct various aberrations in the entire zoom range. .
  • conditional expression (1-5) is satisfied, the above-described problems can be prevented, the entire optical system can be reduced in size, and various aberrations can be corrected well in the entire zoom range.
  • conditional expression (1-3) is satisfied within the range defined by conditional expression (1-5).
  • the third zoom lens according to the present invention exhibits the following effects by satisfying the conditional expression (2-5).
  • Conditional expression (2-5) defines the relationship between the focal length of the first lens group and the focal length of the second lens of the first lens group, similar to conditional expression (2-1).
  • the lower limit of conditional expression (2-5) is not reached, the positive refractive power of the second lens becomes strong.
  • the refractive power of the lens having negative refractive power in the first lens group is increased. This is not preferable because it becomes too strong and it becomes difficult to correct various aberrations.
  • the conditional expression (2-5) if it exceeds the upper limit value of conditional expression (2-5), the negative refractive power of the second lens becomes too strong, and it becomes difficult to correct distortion.
  • conditional expression (2-5) is satisfied, and conditional expression (2-2) is also satisfied. If it is, it becomes more prominent.
  • the zoom lens of the present invention can have a sufficiently small F value, as specifically shown in the numerical examples described later.
  • the image pickup apparatus according to the present invention includes the zoom lens according to the present invention that exhibits the effects described above, it is possible to achieve downsizing while having good optical performance.
  • Sectional drawing which shows the lens structure of the zoom lens which concerns on Example 1 of this invention Sectional drawing which shows the lens structure of the zoom lens which concerns on Example 2 of this invention. Sectional drawing which shows the lens structure of the zoom lens which concerns on Example 3 of this invention. Sectional drawing which shows the lens structure of the zoom lens which concerns on Example 4 of this invention. Sectional drawing which shows the lens structure of the zoom lens which concerns on Example 5 of this invention. Sectional drawing which shows the lens structure of the zoom lens which concerns on Example 6 of this invention.
  • (A) to (H) are aberration diagrams of the zoom lens according to Example 1 of the present invention.
  • (A) to (H) are aberration diagrams of the zoom lens according to Example 2 of the present invention.
  • FIG. 1 is a schematic configuration diagram of an imaging apparatus according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view illustrating a configuration example of a zoom lens according to an embodiment of the present invention, and corresponds to a zoom lens of Example 1 described later.
  • 2 to 6 are cross-sectional views showing other configuration examples according to the embodiment of the present invention, and correspond to zoom lenses of Examples 2 to 6 described later, respectively.
  • the basic configurations of the examples shown in FIGS. 1 to 6 are the same as each other except for the differences, and the method of illustration is also the same.
  • a zoom lens according to an embodiment of the invention will be described.
  • FIG. 1 the left side is the object side, the right side is the image side, (A) is the infinitely focused state and the optical system arrangement at the wide angle end (shortest focal length state), and (B) is the infinitely focused state. And the arrangement of the optical system at the telephoto end (longest focal length state). This also applies to FIGS. 2 to 6 described later.
  • the zoom lens according to the embodiment of the present invention includes, in order from the object side, a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power arranged as a lens group.
  • a fixed aperture stop St that does not move during zooming is disposed between the first lens group G1 and the second lens group G2.
  • the aperture stop St shown here does not necessarily indicate the size or shape, but indicates the position on the optical axis Z.
  • FIG. 1 shows an example in which a parallel plate-shaped optical member PP is disposed between the second lens group G2 and the image plane Sim.
  • various filters such as a cover glass, an infrared cut filter, and a low-pass filter are arranged between the optical system and the image plane Sim according to the configuration of the camera on which the lens is mounted. It is preferable.
  • the optical member PP assumes such cover glass and various filters.
  • some image pickup apparatuses employ a 3CCD system that uses a CCD for each color in order to improve image quality.
  • a color separation optical system such as a color separation prism is used. It is inserted between the lens system and the image plane Sim. In that case, a color separation optical system may be arranged at the position of the optical member PP.
  • the first lens group G1 moves so as to draw a convex locus on the image plane Sim side, and the second lens group G2 monotonously moves toward the object side. Is configured to do.
  • the movement trajectories of the first lens group G1 and the second lens group G2 when zooming from the wide-angle end to the telephoto end are schematically shown by solid line arrows between (A) and (B). Is shown.
  • the first lens group G1 includes, in order from the object side, a first lens L11 having a negative refractive power, a second lens L12 having a positive refractive power, a third lens L13 having a negative refractive power, and a positive lens
  • the fourth lens L14 has a refractive power of 4 lenses.
  • the first lens L11 is a negative meniscus lens
  • the second lens L12 is an aspherical lens on both the object side surface and the image side surface
  • the third lens L13 is negative.
  • a meniscus lens may be used
  • the fourth lens L14 may be a positive meniscus lens.
  • a lens having negative refractive power is applied as the second lens L12.
  • the object side surface of the second lens L12 is an aspherical surface that is concave on the object side in the paraxial region. Further, at least one of the object side surface and the image side surface (both in the example of FIG. 1) of the second lens L12 is an aspherical surface having at least one inflection point on the surface from the center to the effective diameter. In particular, in Example 2, the object side surface of the second lens L12 is an aspheric surface that is convex on the object side in the paraxial region and has no inflection point on the surface from the center to the effective diameter.
  • the second lens group G2 includes, in order from the object side, a first lens L21 having a positive refractive power, a second lens L22 having a positive refractive power, a third lens L23 having a negative refractive power, And a fourth lens L24 having a positive refractive power.
  • the first lens L21 is an aspherical lens on both the object side and the image side
  • the second lens L22 is a biconvex lens
  • the third lens L23 is negative.
  • a meniscus lens may be used
  • the fourth lens L24 may be a biconvex lens.
  • the first lens group G1 is composed of four lenses, and in order from the object side, the first lens L11, the second lens L12, and the negative lens have negative refractive power.
  • the third lens L13 and the fourth lens L14 having a positive refractive power, an increase in various aberrations accompanying a wide angle is suppressed while suppressing an increase in cost.
  • the second lens L12 is a lens having a positive refractive power, so that distortion can be corrected well.
  • the second lens L12 of the first lens group G1 has an aspheric surface on the object side surface, distortion is favorably corrected, and the zoom lens is compared with the case where the first lens L11 is an aspheric surface. Costs are kept low. That is, before and after the first lens L11, the position where the on-axis ray passes and the position where the off-axis ray passes are largely separated. Therefore, the first lens L11 or the second lens L12 is not used to correct distortion well. Although it is desirable to use a spherical lens, normally the first lens L11 has a relatively large diameter. Therefore, if the second lens L12, which is generally smaller in diameter than the second lens L12, is an aspheric lens, As a result, the cost is reduced, and as a result, the cost of the zoom lens can be kept low.
  • the object side surface of the second lens L12 is an aspherical surface that is concave on the object side, particularly in the paraxial region, so that spherical aberration and distortion are corrected well. Is done.
  • At least one of the object side surface and the image side surface of the second lens L12 is an aspherical surface having at least one inflection point on the surface from the center to the effective diameter.
  • the second lens group G2 is composed of four lenses, fluctuations in aberration due to zooming are suppressed while suppressing an increase in cost.
  • the second lens group G2 includes a first lens L21 having a positive refractive power, a second lens L22 having a positive refractive power, and a third lens having a negative refractive power, which are arranged in order from the object side. Since the lens L23 and the fourth lens L24 having a positive refractive power are constituted by four lenses, aberration variation accompanying zooming can be suppressed. That is, if the first lens L21 and the second lens L22 of the second lens group G2 are positive lenses, the axial light rays that have been emitted from the first lens group G1 and greatly diverged are generated by the two positive lenses L21 and L22. Since they can be distributed and converged, high-order spherical aberration can be kept small, and aberration fluctuations accompanying zooming can be suppressed.
  • the first lens group G1 includes the first lens L11 having the negative refractive power, the second lens L12, the third lens L13 having the negative refractive power, and the positive lens in order from the object side.
  • the second lens L12 which is the second lens from the object side of the first lens group G1, has a focal length of f G12 , and is arranged at the wide angle end.
  • the focal length of the system fw, f 1 the focal length of the first lens group G1, the focal length of the second lens group G2 and the f 2
  • the conditional expression 0.00 ⁇ fw / f 2 ⁇ 0.50 described above ... (1-1) -0.19 ⁇ f 1 / f G12 ⁇ 0.16 (2-1) Are both satisfied.
  • Table 19 A numerical example of each condition defined by the above conditional expressions is shown in Table 19 for each example.
  • the value of fw / f 2 defined by the conditional expression (1-1) is in the row of “conditional expression (1)”, and the value of f 1 / f G12 defined in the conditional expression (2-1) is “conditional expression”. (2) ".
  • Table 19 also shows numerical examples of conditions defined by conditional expressions (3) to (9) described later.
  • Conditional expression (1-1) defines the relationship between the focal length of the entire system at the wide-angle end and the focal length of the second lens group G2. If the upper limit of conditional expression (1-1) is exceeded, the refractive power of the second lens group G2 becomes too strong, and it is difficult to satisfactorily correct various aberrations in the entire zoom range. . Since this zoom lens satisfies the conditional expression (1-1), the above-mentioned problems can be prevented and various aberrations can be corrected satisfactorily in the entire zoom range.
  • conditional expression 0.20 ⁇ fw / f 2 ⁇ 0.43 (1-2) is particularly satisfied within the range defined by the conditional expression (1-1). Is satisfied, the above-described effect becomes more prominent. Furthermore, conditional expression 0.31 ⁇ fw / f 2 ⁇ 0.35 (1-3) Therefore, the above-described effect becomes even more remarkable.
  • conditional expression (1-2) or conditional expression (1-3) If the lower limit of conditional expression (1-2) or conditional expression (1-3) is not reached, the refractive power of the second lens group G2 becomes weak, and the amount of movement of the second lens group G2 during zooming increases. This is not desirable because the entire length of the entire optical system becomes long and it becomes difficult to reduce the size, but this zoom lens satisfies both conditional expression (1-2) and conditional expression (1-3). It is possible to prevent defects and achieve downsizing of the entire optical system.
  • conditional expression (2-1) defines the relationship between the focal length of the first lens group G1 and the focal length of the second lens L12 of the first lens group G1. If the lower limit of conditional expression (2-1) is not reached, the positive refractive power of the second lens L12 becomes strong, and in order to compensate for this, a lens having a negative refractive power in the first lens group G1, that is, Since the refractive power of the first lens L11 and the third lens L13 becomes too strong and it becomes difficult to correct various aberrations, it is not preferable. On the contrary, if the value is equal to or greater than the upper limit value of the conditional expression (2-1), the negative refractive power of the second lens L12 becomes too strong, and it becomes difficult to correct distortion. Since this zoom lens satisfies the conditional expression (2-1), the above-described problems can be prevented and distortion and other various aberrations can be corrected satisfactorily.
  • the first lens group G1 includes the first lens L11 having the negative refractive power, the second lens L12, the third lens L13 having the negative refractive power, and the positive lens in order from the object side.
  • the fourth lens L14 having refractive power is arranged and the second lens group G2 is composed of four lenses, the conditional expression 0.00 ⁇ fw / f 2 ⁇ 0.43. ⁇ (1-4) -1.00 ⁇ f 1 / f G12 ⁇ 0.16 ⁇ (2-3) Are both satisfied.
  • Conditional expression (1-4) like conditional expression (1-1), defines the relationship between the focal length of the entire system at the wide-angle end and the focal length of the second lens group G2. If the upper limit of conditional expression (1-4) is exceeded, the refractive power of the second lens group G2 becomes too strong, and it is difficult to satisfactorily correct various aberrations in the entire zoom range. . Since this zoom lens satisfies the conditional expression (1-4), the above problems can be prevented and various aberrations can be corrected satisfactorily in the entire zoom range.
  • conditional expression (1-2) or conditional expression (1-3) If the lower limit of conditional expression (1-2) or conditional expression (1-3) is not reached, the refractive power of the second lens group G2 becomes weak, and the amount of movement of the second lens group G2 during zooming increases. This is not desirable because the entire length of the entire optical system becomes long and it becomes difficult to reduce the size, but this zoom lens satisfies both conditional expression (1-2) and conditional expression (1-3). It is possible to prevent defects and achieve downsizing of the entire optical system.
  • conditional expression (2-3) defines the relationship between the focal length of the first lens group G1 and the focal length of the second lens L12 of the first lens group G1, as in the conditional expression (2-1). Is. If the lower limit value of the conditional expression (2-3) is not reached, the positive refractive power of the second lens L12 becomes strong. To compensate for this, a lens having a negative refractive power in the first lens group G1, that is, Since the refractive power of the first lens L11 and the third lens L13 becomes too strong and it becomes difficult to correct various aberrations, it is not preferable.
  • conditional expression ⁇ 0.50 ⁇ f 1 / f G12 ⁇ 0.10 (2-4) is particularly satisfied within the range defined by the conditional expression (2-3). Is satisfied, the above-described effect becomes more prominent. Furthermore, since the conditional expression (2-2) is also satisfied, the above-described effect becomes even more remarkable.
  • the first lens group G1 includes the first lens L11 having the negative refractive power, the second lens L12, the third lens L13 having the negative refractive power, and the positive lens in order from the object side.
  • the lens is configured by being arranged with a fourth lens L14 having a refractive power, and the second lens group G2 is composed of four lenses. Then, the conditional expression 0.27 ⁇ fw / f 2 ⁇ 0.43. ⁇ (1-5) -1.00 ⁇ f 1 / f G12 ⁇ 0.29 (2-5) Are both satisfied.
  • Conditional expression (1-5) defines the relationship between the focal length of the entire system at the wide-angle end and the focal length of the second lens group G2, as in conditional expression (1-1). If the lower limit of conditional expression (1-5) is not reached, the refractive power of the second lens group G2 becomes weak, the amount of movement of the second lens group G2 during zooming increases, and the overall length of the entire optical system becomes longer. This is not preferable because downsizing becomes difficult. On the other hand, if the upper limit of conditional expression (1-5) is exceeded, the refractive power of the second lens group G2 becomes too strong, and it is difficult to satisfactorily correct various aberrations in the entire zoom range. Absent. Conditional expression (1-5) is satisfied with this zoom lens, so the above problems can be prevented, the entire optical system can be downsized, and various aberrations can be corrected well over the entire zoom range. Become.
  • conditional expression (2-5) defines the relationship between the focal length of the first lens group G1 and the focal length of the second lens L12 of the first lens group G1, as in conditional expression (2-1). Is. If the lower limit of the conditional expression (2-5) is not reached, the positive refractive power of the second lens L12 becomes strong. To compensate for this, a lens having a negative refractive power in the first lens group G1, that is, Since the refractive power of the first lens L11 and the third lens L13 becomes too strong and it becomes difficult to correct various aberrations, it is not preferable.
  • this conditional expression (3) defines the relationship between the focal length of the entire system at the wide-angle end and the focal length of the second lens L12 of the first lens group.
  • conditional expression (3) When the conditional expression (3) is less than or equal to the lower limit value, the refractive power of the second lens L12 is shifted to the negative side, and the refraction balance of the central light beam and the peripheral light beam passing through the second lens L12 is lost. It is not preferable because correction of distortion becomes difficult.
  • the upper limit of conditional expression (3) when the upper limit of conditional expression (3) is exceeded, the positive refractive power of the second lens L12 becomes too strong, the negative refractive power of the entire first lens group G1 is insufficient, and it is difficult to widen the angle. Become.
  • conditional expression (3) in particular, the following conditional expression: ⁇ 0.01 ⁇ fw / f G12 ⁇ 0.06 (3 ′) When the above is satisfied, the above effect becomes more remarkable.
  • the conditional expression (4) is obtained by defining the focal length f 1 of the first lens group G1 the relationship between the focal length f 2 of the second lens group G2. If the lower limit of conditional expression (4) is not reached, the refractive power of the second lens group G2 becomes weak, the amount of movement of the second lens group G2 during zooming increases, and the overall length of the entire optical system becomes longer and becomes smaller. It is not preferable because it becomes difficult to make it.
  • conditional expression (4) when the upper limit of conditional expression (4) is exceeded, the refractive power of the first lens group G1 is insufficient, and it is necessary to increase the diameter of the first lens L11 located closest to the object side in order to ensure the angle of view. This is not preferable because it is difficult to reduce the size.
  • conditional expression (4) when the conditional expression (4) is satisfied, the above problems can be prevented and the entire optical system can be easily downsized.
  • ⁇ 0.80 (4 ′) particularly within the range defined by conditional expression (4).
  • the conditional expression (5) is obtained by defining the focal length fw of the entire system at the wide angle end, the relationship between the focal length f 1 of the first lens group G1. If the upper limit of conditional expression (5) is exceeded, the negative refractive power of the first lens group G1 becomes too strong, and it becomes difficult to correct various aberrations off-axis. When the conditional expression (5) is satisfied, the above problems can be prevented and various off-axis aberrations can be easily corrected.
  • conditional expression (5) the following conditional expression in particular 0.20 ⁇
  • the above effect becomes more remarkable. If the value is less than or equal to the lower limit value of the conditional expression (5 ′), the negative refractive power of the first lens group G1 becomes weak and the entire optical system is enlarged. If it is satisfied, such a problem can be prevented and the entire optical system can be reduced in size.
  • the maximum effective radius of the object side surface of the second lens from the object side of the first lens group G1 is H G12F
  • the height H from the center of the object side surface of the second lens and the optical axis is H G12F.
  • the radius of curvature of the spherical surface passing through a point on the surface of G12F and having the center of the surface as the vertex is r′G12F
  • this conditional expression (6) defines the relationship between the maximum effective radius and the aspherical shape of the object side surface of the second lens L12 of the first lens group G1.
  • Distortion at the wide-angle end can be satisfactorily corrected by providing a difference in curvature within the range of conditional expression (6) between the vicinity of the center of the object side surface of the second lens L12 and the periphery. If the value is less than or equal to the lower limit value of the conditional expression (6), the correction is insufficient.
  • conditional expression (6) in particular, the following conditional expression 0.20 ⁇ H G12F ⁇ ⁇ (1 / r ′ G12F ) ⁇ (1 / r ′′ G12F ) ⁇ ⁇ 0.50 ( 6 ')
  • the paraxial radius of curvature of the object side surface of the second lens from the object side of the first lens group G1 is r G12F, and the image side surface of the second lens from the object side of the first lens group G1.
  • r G12R is the paraxial radius of curvature
  • conditional expression (7) In the range specified by the conditional expression (7), the following conditional expression 2.0 ⁇ (r G12F + r G12R ) / (r G12F ⁇ r G12R ) ⁇ 15.0 (7 ′) When the above is satisfied, the above effect becomes more remarkable.
  • the paraxial radius of curvature of the object side surface of the first lens from the object side of the first lens group G1 is r G11F, and the image side surface of the first lens from the object side of the first lens group G1.
  • r G11R is the paraxial radius of curvature
  • conditional expression (8) is less than or equal to the lower limit value, the curvature of field at the wide-angle end becomes insufficiently corrected, which is not preferable. On the other hand, if the value exceeds the upper limit, the field curvature at the wide-angle end becomes excessively corrected, which is not preferable.
  • conditional expression (8) is satisfied, it is possible to appropriately correct the curvature of field at the wide angle end side by preventing the above problems.
  • conditional expression (8) In the range defined by the conditional expression (8), the following conditional expression 2.8 ⁇ (r G11F + r G11R ) / (r G11F ⁇ r G11R ) ⁇ 4.0 (8 ′) When the above is satisfied, the above effect becomes more remarkable.
  • this conditional expression (9) defines the relationship between the focal lengths of the first lens L21 and the second lens L22 of the second lens group G2. If the value is less than or equal to the lower limit value of the conditional expression (9), the spherical aberration is insufficiently corrected.
  • FIG. 1 shows an example in which the optical member PP is disposed between the lens system and the imaging plane, but instead of disposing a low-pass filter, various filters that cut a specific wavelength range, etc. These various filters may be disposed between the lenses, or a coating having the same action as the various filters may be applied to the lens surface of any lens.
  • FIGS. 1 to 6 The lens sectional views of the zoom lenses of Examples 1 to 6 are shown in FIGS. 1 to 6, respectively.
  • Table 1 shows basic lens data of the zoom lens of Example 1
  • Table 2 shows data relating to zooming
  • Table 3 shows aspherical data
  • Tables 4 to 18 show basic lens data, zoom-related data, and aspherical data of the zoom lenses of Examples 2 to 6, respectively.
  • the meaning of the symbols in the table will be described using the example 1 as an example, but the same applies to the examples 2 to 6.
  • the i-th (i 1, 2, 3,...) That sequentially increases toward the image side with the object-side surface of the most object-side component as the first.
  • the surface number is indicated
  • the Ri column indicates the radius of curvature of the i-th surface
  • the Di column indicates the surface interval on the optical axis Z between the i-th surface and the i + 1-th surface.
  • the sign of the radius of curvature is positive when the surface shape is convex on the object side and negative when the surface shape is convex on the image side.
  • the basic lens data also includes the aperture stop St, and ⁇ (aperture stop) is described in the column of the radius of curvature of the surface corresponding to the aperture stop St.
  • D8, D9, and D17 in the basic lens data in Table 1 are surface intervals that change during zooming.
  • D8 is the distance between the first lens group G1 and the aperture stop St
  • D9 is the distance between the aperture stop St and the second lens group G2
  • D17 is the distance between the second lens group G2 and the optical member PP. .
  • the zoom-related data in Table 2 includes the focal length (f), F value (Fno.), Total angle of view (2 ⁇ ), and the distance between each surface that changes during zooming at the wide-angle end and the telephoto end. Is shown.
  • the surface number of the aspheric surface is marked with *, and the paraxial radius of curvature is shown as the radius of curvature of the aspheric surface.
  • the aspheric data in Table 3 shows the surface number of the aspheric surface and the aspheric coefficient for each aspheric surface.
  • the numerical value “E ⁇ n” (n: integer) of the aspheric surface data in Table 3 means “ ⁇ 10 ⁇ n ”.
  • Zd C ⁇ h 2 / ⁇ 1+ (1 ⁇ KA ⁇ C 2 ⁇ h 2 ) 1/2 ⁇ + ⁇ RAm ⁇ h m
  • Zd Depth of aspheric surface (length of a perpendicular line drawn from a point on the aspherical surface at height h to a plane perpendicular to the optical axis where the aspherical vertex contacts)
  • h Height (distance from the optical axis to the lens surface)
  • C Reciprocal KA of paraxial radius of curvature
  • values rounded to a predetermined digit are shown.
  • surface described below although the degree is used as a unit of angle and mm is used as a unit of length, an optical system can be used by proportional expansion or proportional reduction. Thus, other suitable units can be used.
  • Table 19 corresponds to conditional expressions (1-1) to (1-5), (2-1) to (2-6), and (3) to (9) of the zoom lenses of Examples 1 to 6. Indicates the value.
  • the value shown here is the value defined by each conditional expression, that is, the value of the character expression.
  • the “conditional expression (3)” line indicates the value of fw / f G12 .
  • the specified condition is common fw / f 2 , so that the conditional expression (1) is collectively displayed as fw / f 2. The value of is shown.
  • conditional expression (2) is collectively expressed as f 1 / f.
  • the value of G12 is shown. Note that the values in Table 19 relate to the d-line.
  • FIGS. 7A to 7D show spherical aberration, astigmatism, distortion (distortion aberration), and lateral chromatic aberration (chromatic aberration of magnification) at the wide angle end of the zoom lens of Example 1
  • 7E to 7H show spherical aberration, astigmatism, distortion (distortion aberration), and chromatic aberration of magnification (chromatic aberration of magnification), respectively.
  • Each aberration diagram is based on the d-line (wavelength 587.6 nm), but the spherical aberration diagram also shows aberrations related to the g-line (wavelength 435.8 nm) and the C-line (wavelength 656.3 nm), and the chromatic aberration diagram of magnification.
  • aberrations regarding the g-line and the C-line are shown.
  • the sagittal direction is indicated by a solid line
  • the tangential direction is indicated by a dotted line.
  • Fno Of spherical aberration diagram.
  • Means F value, and ⁇ in other aberration diagrams means half angle of view.
  • FIGS. 8A to 8H the aberration diagrams at the wide-angle end and the telephoto end of the zoom lens of Example 2 are shown in FIGS. 8A to 8H, and the aberration diagrams of Examples 3 to 6 are respectively the same in the same manner. It is shown in FIGS.
  • FIG. 13 shows a schematic configuration diagram of an imaging apparatus 10 using the zoom lens 1 of the embodiment of the present invention as an example of the imaging apparatus of the embodiment of the present invention.
  • the imaging device include a surveillance camera, a video camera, and an electronic still camera.
  • An image pickup apparatus 10 shown in FIG. 13 includes a zoom lens 1, an image pickup device 2 that is disposed on the image side of the zoom lens 1 and picks up an image of a subject formed by the zoom lens 1, and an output from the image pickup device 2.
  • a signal processing unit 4 that performs signal processing, a zooming control unit 5 for zooming the zoom lens 1, and a focus control unit 6 for performing focus adjustment are provided. Note that a filter or the like may be appropriately disposed between the zoom lens 1 and the image sensor 2.
  • the zoom lens 1 has a negative refractive power, a first lens group G1 that moves so as to draw a convex locus on the image plane side when zooming from the wide angle end to the telephoto end, and a positive refractive power. And a second lens group G2 that monotonously moves to the object side when zooming from the wide-angle end to the telephoto end, and a fixed aperture stop St.
  • FIG. 13 schematically shows each lens group.
  • the image pickup device 2 picks up an optical image formed by the zoom lens 1 and outputs an electric signal, and the image pickup surface thereof is disposed so as to coincide with the image surface of the zoom lens 1.
  • the image pickup element 2 for example, a CCD or CMOS can be used.
  • the imaging device 10 moves a lens having a positive refractive power that constitutes a part of the second lens group G2 in a direction perpendicular to the optical axis Z, for example, You may make it further provide the blurring correction mechanism which correct
  • the imaging apparatus 10 includes the zoom lens of the present invention that exhibits the effects as described above, it is possible to achieve downsizing, cost reduction, and wide angle with excellent optical performance. Become.
  • the present invention has been described with reference to the embodiments and examples. However, the present invention is not limited to the above-described embodiments and examples, and various modifications can be made.
  • the values of the radius of curvature, the surface interval, the refractive index, the Abbe number, the aspherical coefficient, etc. of each lens component are not limited to the values shown in the above numerical examples, and can take other values.

Abstract

【課題】2群構成のズームレンズにおいて、F値を小さくし、諸収差を良好に補正可能とする。 【解決手段】物体側から順に負の屈折力を有する第1レンズ群(G1)と、正の屈折力を有する第2レンズ群(G2)とが配列されてなり、第1レンズ群(G1)と第2レンズ群(G2)とを移動させることにより変倍を行うズームレンズにおいて、第1レンズ群(G1)を、物体側から順に配置された負の屈折力を有する第1レンズ(L11)、第2レンズ(L12)、負の屈折力を有する第3レンズ(L13)、および正の屈折力を有する第4レンズ(L14)から構成する。そして、上記第2レンズ(L12)の焦点距離をfG12、広角端における全系の焦点距離をfw、第1レンズ群(G1)の焦点距離をf、第2レンズ群(G2)の焦点距離をfとしたとき、以下の条件式を満足させる。 0.00<fw/f<0.50 ・・・(1-1) -0.19<f/fG12<0.16 ・・・(2-1)

Description

ズームレンズおよび撮像装置
 本発明はズームレンズ、特に、小型のビデオカメラ等に好適に使用可能なズームレンズに関するものである。
 また本発明は、そのようなズームレンズを備えた撮像装置に関するものである。
 従来、変倍比が2.5倍程度で広角なズームレンズの一つとして、物体側から順に負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群が配列されてなり、第1レンズ群および第2レンズ群を光軸方向に移動させて変倍を行う2群タイプのズームレンズが公知となっている。この種のズームレンズは、小型のビデオカメラ等に好適に用いられている。
 例えば特許文献1には、第1レンズ群が4枚のレンズすなわち、物体側から順に配置された負レンズ(負の屈折力を有するレンズ)、負レンズ、負レンズおよび正レンズ(正の屈折力を有するレンズ)から構成された2群タイプのズームレンズが示されている(実施例2)。
 また特許文献2には、第1レンズ群が4枚のレンズすなわち、物体側から順に配置された負レンズ、正レンズ、負レンズおよび正レンズから構成された2群タイプのズームレンズが示されている(実施例1)。
 また特許文献3には、第1レンズ群が4枚のレンズすなわち、物体側から順に配置された負レンズ、負レンズ、負レンズおよび正レンズから構成され、第2レンズ群も4枚のレンズすなわち、物体側から順に配置された正レンズ、正レンズ、負レンズおよび正レンズから構成された2群タイプのズームレンズが示されている(実施例2)。そして特許文献4にも、これと同様のレンズ構成を有するズームレンズが示され(実施例4)、さらに特許文献5にも、これと同様のレンズ構成を有するズームレンズが示されている(実施例1)。
 一方特許文献6には、第1レンズ群が4枚のレンズすなわち、物体側から順に配置された負レンズ、正レンズ、負レンズおよび正レンズから構成され、第2レンズ群も4枚のレンズすなわち、物体側から順に配置された正レンズ、正レンズ、負レンズおよび正レンズから構成された2群タイプのズームレンズが示されている(実施例4)。
特開2008-116915号公報 特開2004-21223号公報 特開2006-91643号公報 特開2008-65051号公報 特開2004-317901号公報 特開平11-223768号公報
 しかし、特許文献1に示されたズームレンズは広角であるが変倍比が小さい、特許文献2に示されたズームレンズは広角であるが変倍比が小さくF値も大きい、特許文献3に示されたズームレンズは広角で変倍比も大きいが歪曲収差が大きい、特許文献4、5に示されたズームレンズは広角で変倍比も大きいが、歪曲収差の点で改善の余地が残されている、特許文献6に示されたズームレンズは画角が狭くてF値も大きい、といった問題が認められている。
 本発明は上記の事情に鑑みてなされたものであり、F値が小さく、そして諸収差を良好に補正することができるズームレンズを提供することを目的とする。
 また本発明は、上述のようなズームレンズを用いることにより、良好な光学性能を備えた上で、小型化を達成できる撮像装置を提供することを目的とする。
 本発明による第1のズームレンズは、 
 実質的に、物体側から順に負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とが配列されてなり、
 前記第1レンズ群と前記第2レンズ群とを移動させることにより変倍を行い、
 前記第1レンズ群が実質的に、物体側から順に配置された負の屈折力を有する第1レンズ、第2レンズ、負の屈折力を有する第3レンズ、および正の屈折力を有する第4レンズから構成され、
 前記第1レンズ群の物体側から2枚目のレンズの焦点距離をfG12、広角端における全系の焦点距離をfw、前記第1レンズ群の焦点距離をf、前記第2レンズ群の焦点距離をfとしたとき、以下の条件式
   0.00<fw/f<0.50 ・・・(1-1)
   -0.19<f/fG12<0.16 ・・・(2-1)
を満たすことを特徴とするものである。
 ここで、「実質的に第1レンズ群と第2レンズ群とが配列されてなる」とは、それらのレンズ群以外に、実質的にパワーを有さないレンズ、絞りやカバーガラス等レンズ以外の光学要素、レンズフランジ、レンズバレル、撮像素子、手振れ補正機構等の機構部分等を持つ場合も含むものとする。この点は、「第1レンズ群が実質的に、物体側から順に配置された負の屈折力を有する第1レンズ、第2レンズ、負の屈折力を有する第3レンズ、および正の屈折力を有する第4レンズから構成され」との記載や、後述する第2のズームレンズに関する「第2レンズ群が実質的に4枚のレンズから構成され」との記載についても同様である。
 なお、本発明のズームレンズにおいて、各レンズ群を構成するレンズには接合レンズが用いられてもよいが、接合レンズはn枚の貼り合わせで構成されていれば、n枚のレンズとして数えるものとする。また、本明細書における「本発明のズームレンズ」あるいは「本発明によるズームレンズ」との記載は、特にことわりがなければ本発明による第1のズームレンズおよび、後述する第2および第3のズームレンズの全てを指すものとする。
 また、本発明のズームレンズにおけるレンズの面形状、屈折力の符号は、非球面が含まれているものについては近軸領域で考えるものとする。
 なお、本発明による第1のズームレンズにおいては、条件式(1-1)、(2-1)が規定する各範囲の中で特に以下の条件式
   0.20<fw/f<0.43 ・・・(1-2)
   -0.15<f/fG12<0.10 ・・・(2-2)
の少なくとも一方を満たすことが望ましい。
 さらには、上記条件式(1-1)が規定する範囲の中で特に以下の条件式
   0.31<fw/f<0.35 ・・・(1-3)
を満たすことがより一層望ましい。
 また、本発明による第2のズームレンズは、
 実質的に、物体側から順に負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とが配列されてなり、
 前記第1レンズ群と前記第2レンズ群とを移動させることにより変倍を行い、
 前記第1レンズ群が実質的に、物体側から順に配置された負の屈折力を有する第1レンズ、第2レンズ、負の屈折力を有する第3レンズ、および正の屈折力を有する第4レンズから構成され、
 前記第2レンズ群が実質的に4枚のレンズから構成され、
 前記第1レンズ群の物体側から2枚目のレンズの焦点距離をfG12、広角端における全系の焦点距離をfw、前記第1レンズ群の焦点距離をf、前記第2レンズ群の焦点距離をfとしたとき、以下の条件式
   0.00<fw/f<0.43 ・・・(1-4)
   -1.00<f/fG12<0.16 ・・・(2-3)
を満たすことを特徴とするものである。
 この本発明による第2のズームレンズにおいては、条件式(1-4)、(2-3)が規定する各範囲の中で以下の条件式
   0.20<fw/f<0.43 ・・・(1-2)
   -0.50<f/fG12<0.10 ・・・(2-4)
の少なくとも一方を満たすことが望ましい。
 さらには上記条件式(1-4)、(2-3)が規定する各範囲の中で以下の条件式
   0.31<fw/f<0.35 ・・・(1-3)
   -0.15<f/fG12<0.10 ・・・(2-2)
の少なくとも一方を満たすことがより望ましい。
 また、本発明による第3のズームレンズは、
 実質的に、物体側から順に負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とが配列されてなり、
 前記第1レンズ群と前記第2レンズ群とを移動させることにより変倍を行い、
 前記第1レンズ群が実質的に、物体側から順に配置された負の屈折力を有する第1レンズ、正の屈折力を有する第2レンズ、負の屈折力を有する第3レンズ、および正の屈折力を有する第4レンズから構成され、
 前記第2レンズ群が実質的に4枚のレンズから構成され、
 前記第1レンズ群の物体側から2枚目のレンズの焦点距離をfG12、広角端における全系の焦点距離をfw、前記第1レンズ群の焦点距離をf、前記第2レンズ群の焦点距離をfとしたとき、以下の条件式
   0.27<fw/f<0.43 ・・・(1-5)
   -1.00<f/fG12<0.29 ・・・(2-5)
を満たすことを特徴とするものである。
 この本発明による第3のズームレンズにおいては、条件式(1-5)、(2-5)が規定する各範囲の中で以下の条件式
   0.31<fw/f<0.35 ・・・(1-3)
   -0.50<f/fG12<0.29 ・・・(2-6)
の少なくとも一方を満たすことが望ましい。
 さらには、上記条件式(2-6)が規定する範囲の中で以下の条件式
   -0.15<f/fG12<0.10 ・・・(2-2)
を満たすことがより望ましい。
 他方、本発明による撮像装置は、以上説明した本発明によるズームレンズのいずれかを備えたことを特徴とするものである。
 本発明による第1のズームレンズは、第1レンズ群を4枚のレンズで構成し、物体側から順に負の屈折力を有する第1レンズ、第2レンズ、負の屈折力を有する第3レンズ、正の屈折力を有する第4レンズと配列したことにより、コストの上昇を抑えながら広角化に伴う諸収差の増大を抑制可能となる。
 また、本発明による第1のズームレンズは、前記条件式(1-1)を満たすことにより、以下の効果を奏するものとなる。条件式(1-1)は、広角端における全系の焦点距離と、第2レンズ群の焦点距離との関係を規定したものである。この条件式(1-1)の上限値以上になると、第2レンズ群の屈折力が強くなり過ぎてしまい、全変倍域で諸収差を良好に補正することが困難になるので好ましくない。条件式(1-1)が満たされている場合は、以上の不具合を防止して、全変倍域で諸収差を良好に補正可能となる。
 以上の効果は、条件式(1-1)が規定する範囲の中で特に前記条件式(1-2)が満足されている場合はより顕著なものとなり、さらに前記条件式(1-3)が満足されている場合はより一層顕著なものとなる。
 なお、条件式(1-2)の下限値以下になると、第2レンズ群の屈折力が弱くなり、変倍における第2レンズ群の移動量が増大し、光学系全体の全長が長くなって小型化が困難になるため好ましくないが、条件式(1-2)が満足されている場合は、以上の不具合を防止して、光学系全体の小型化を達成できる。これは条件式(1-3)が満足されている場合も同様である。
 また本発明による第1のズームレンズは、前記条件式(2-1)を満たすことにより、以下の効果を奏するものとなる。条件式(2-1)は、第1レンズ群の焦点距離と、第1レンズ群の第2レンズの焦点距離との関係を規定したものである。この条件式(2-1)の下限値以下になると、上記第2レンズの正の屈折力が強くなり、それを補うために第1レンズ群中の負の屈折力を持つレンズの屈折力が強くなり過ぎてしまい、諸収差の補正が困難になるので好ましくない。逆に条件式(2-1)の上限値以上になると、上記第2レンズの負の屈折力が強くなり過ぎてしまい、歪曲収差の補正が困難になるので好ましくない。条件式(2-1)が満たされている場合は、以上の不具合を防止して、歪曲収差並びにその他の諸収差を良好に補正可能となる。
 以上の効果は、条件式(2-1)が規定する範囲の中で特に条件式(2-2)が満足されている場合は、より顕著なものとなる。
 本発明による第2のズームレンズは、第1のズームレンズと同様に、第1レンズ群を4枚のレンズで構成し、物体側から順に負の屈折力を有する第1レンズ、第2レンズ、負の屈折力を有する第3レンズ、正の屈折力を有する第4レンズと配列したことにより、コストの上昇を抑えながら広角化に伴う諸収差の増大を抑制可能となる。さらに、第2レンズ群を4枚のレンズで構成したことにより、コストの上昇を抑えながら変倍による収差の変動を抑制できる。
 また、本発明による第2のズームレンズは、前記条件式(1-4)を満たすことにより、以下の効果を奏するものとなる。条件式(1-4)は条件式(1-1)と同様に、広角端における全系の焦点距離と、第2レンズ群の焦点距離との関係を規定したものである。この条件式(1-4)の上限値以上になると、第2レンズ群の屈折力が強くなり過ぎてしまい、全変倍域で諸収差を良好に補正することが困難になるので好ましくない。条件式(1-4)が満たされている場合は、以上の不具合を防止して、全変倍域で諸収差を良好に補正可能となる。
 以上の効果は、条件式(1-4)が規定する範囲の中で特に前記条件式(1-2)が満足されている場合はより顕著なものとなり、さらに前記条件式(1-3)が満足されている場合はより一層顕著なものとなる。
 なお、条件式(1-2)の下限値以下になると、第2レンズ群の屈折力が弱くなり、変倍における第2レンズ群の移動量が増大し、光学系全体の全長が長くなって小型化が困難になるため好ましくないが、条件式(1-2)が満足されている場合は、以上の不具合を防止して、光学系全体の小型化を達成できる。これは条件式(1-3)が満足されている場合も同様である。
 また本発明による第2のズームレンズは、前記条件式(2-3)を満たすことにより、以下の効果を奏するものとなる。条件式(2-3)は条件式(2-1)と同様に、第1レンズ群の焦点距離と、第1レンズ群の第2レンズの焦点距離との関係を規定したものである。この条件式(2-3)の下限値以下になると、上記第2レンズの正の屈折力が強くなり、それを補うために第1レンズ群中の負の屈折力を持つレンズの屈折力が強くなり過ぎてしまい、諸収差の補正が困難になるので好ましくない。逆に条件式(2-3)の上限値以上になると、上記第2レンズの負の屈折力が強くなり過ぎてしまい、歪曲収差の補正が困難になるので好ましくない。条件式(2-3)が満たされている場合は、以上の不具合を防止して、歪曲収差並びにその他の諸収差を良好に補正可能となる。
 以上の効果は、条件式(2-3)が規定する範囲の中で特に条件式(2-4)が満足されている場合はより顕著なものとなり、さらに条件式(2-2)が満足されている場合はより顕著なものとなる。
 本発明による第3のズームレンズは、第1レンズ群を4枚のレンズで構成し、物体側から順に負の屈折力を有する第1レンズ、第2レンズ、負の屈折力を有する第3レンズ、正の屈折力を有する第4レンズと配列したことにより、コストの上昇を抑えながら広角化に伴う諸収差の増大を抑制できる。さらに、第2レンズ群を4枚のレンズで構成したことにより、コストの上昇を抑えながら変倍による収差の変動を抑制できる。
 また本発明による第3のズームレンズは、前記条件式(1-5)を満たすことにより、以下の効果を奏するものとなる。条件式(1-5)は条件式(1-1)と同様に、広角端における全系の焦点距離と、第2レンズ群の焦点距離との関係を規定したものである。この条件式(1-5)の下限値以下になると、第2レンズ群の屈折力が弱くなり、変倍における第2レンズ群の移動量が増大し、光学系全体の全長が長くなって小型化が困難になるため好ましくない。逆に条件式(1-5)の上限値以上になると、第2レンズ群の屈折力が強くなり過ぎてしまい、全変倍域で諸収差を良好に補正することが困難になるので好ましくない。条件式(1-5)が満たされている場合は、以上の不具合を防止して、光学系全体の小型化を達成し、また全変倍域で諸収差を良好に補正可能となる。
 以上の効果は、条件式(1-5)が規定する範囲の中で特に条件式(1-3)が満足されている場合はより顕著なものとなる。
 また本発明による第3のズームレンズは、前記条件式(2-5)を満たすことにより、以下の効果を奏するものとなる。条件式(2-5)は条件式(2-1)と同様に、第1レンズ群の焦点距離と、第1レンズ群の第2レンズの焦点距離との関係を規定したものである。この条件式(2-5)の下限値以下になると、上記第2レンズの正の屈折力が強くなり、それを補うために第1レンズ群中の負の屈折力を持つレンズの屈折力が強くなり過ぎてしまい、諸収差の補正が困難になるので好ましくない。逆に条件式(2-5)の上限値以上になると、上記第2レンズの負の屈折力が強くなり過ぎてしまい、歪曲収差の補正が困難になるので好ましくない。条件式(2-5)が満たされている場合は、以上の不具合を防止して、歪曲収差並びにその他の諸収差を良好に補正可能となる。
 以上の効果は、条件式(2-5)が規定する範囲の中で特に条件式(2-6)が満足されている場合はより顕著なものとなり、さらに条件式(2-2)が満足されている場合はより顕著なものとなる。
 そして本発明のズームレンズは、後述する数値実施例に具体的に示す通り、F値も十分に小さいものとなり得る。
 他方、本発明による撮像装置は、以上説明した効果を奏する本発明のズームレンズを備えたものであるから、良好な光学性能を備えた上で、小型化を達成できるものとなる。
本発明の実施例1に係るズームレンズのレンズ構成を示す断面図 本発明の実施例2に係るズームレンズのレンズ構成を示す断面図 本発明の実施例3に係るズームレンズのレンズ構成を示す断面図 本発明の実施例4に係るズームレンズのレンズ構成を示す断面図 本発明の実施例5に係るズームレンズのレンズ構成を示す断面図 本発明の実施例6に係るズームレンズのレンズ構成を示す断面図 (A)~(H)は本発明の実施例1に係るズームレンズの各収差図 (A)~(H)は本発明の実施例2に係るズームレンズの各収差図 (A)~(H)は本発明の実施例3に係るズームレンズの各収差図 (A)~(H)は本発明の実施例4に係るズームレンズの各収差図 (A)~(H)は本発明の実施例5に係るズームレンズの各収差図 (A)~(H)は本発明の実施例6に係るズームレンズの各収差図 本発明の実施形態に係る撮像装置の概略構成図
 以下、本発明の実施形態について図面を参照して詳細に説明する。図1は、本発明の実施形態に係るズームレンズの構成例を示す断面図であり、後述する実施例1のズームレンズに対応している。また、図2~図6は、本発明の実施形態に係る別の構成例を示す断面図であり、それぞれ後述の実施例2~6のズームレンズに対応している。図1~図6に示す例の基本的な構成は、特に違いを述べている点を除いて互いに同様であり、図示方法も同様であるので、ここでは主に図1を参照しながら、本発明の実施形態に係るズームレンズについて説明する。
 図1では、左側が物体側、右側が像側として、(A)は無限遠合焦状態でかつ広角端(最短焦点距離状態)での光学系配置を、(B)は無限遠合焦状態でかつ望遠端(最長焦点距離状態)での光学系配置を示している。これは、後述する図2~図6においても同様である。
 本発明の実施形態に係るズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とがレンズ群として配列されてなる。また第1レンズ群G1と第2レンズ群G2との間には、変倍に際して移動することのない固定の開口絞りStが配設されている。ここに示す開口絞りStは必ずしも大きさや形状を表すものではなく、光軸Z上の位置を示すものである。
 なお図1には、第2レンズ群G2と像面Simとの間に、平行平板状の光学部材PPが配置された例を示している。ズームレンズを撮像装置に適用する際には、レンズを装着するカメラ側の構成に応じて、光学系と像面Simの間にカバーガラス、赤外線カットフィルタやローパスフィルタなどの各種フィルタ等を配置することが好ましい。光学部材PPは、これらカバーガラスや各種フィルタ等を想定したものである。また、近年の撮像装置は高画質化のために各色毎にCCDを用いる3CCD方式を採用しているものがあり、この3CCD方式に対応するためには、色分解プリズム等の色分解光学系をレンズ系と像面Simの間に挿入することになる。その場合には、光学部材PPの位置に色分解光学系を配置してもよい。
 このズームレンズは、広角端から望遠端に変倍する際に、第1レンズ群G1は像面Sim側に凸状の軌跡を描くように移動し、第2レンズ群G2は物体側に単調移動するように構成されている。図1には、広角端から望遠端へ変倍するときの第1レンズ群G1および第2レンズ群G2の移動軌跡を、(A)と(B)との間に付した実線の矢印で模式的に示している。
 第1レンズ群G1は、物体側から順に配置された、負の屈折力を有する第1レンズL11、正の屈折力を有する第2レンズL12、負の屈折力を有する第3レンズL13、および正の屈折力を有する第4レンズL14の4枚のレンズから構成されている。ここで、例えば図1に示す例のように、第1レンズL11は負メニスカス形状のレンズとし、第2レンズL12は物体側面および像側面が共に非球面形状のレンズとし、第3レンズL13は負メニスカス形状のレンズとし、第4レンズL14は正メニスカス形状のレンズとすることができる。なお、特に実施例4では、第2レンズL12として負の屈折力を有するものが適用されている。
 上記第2レンズL12の物体側面は、近軸領域で物体側に凹となった非球面とされている。またこの第2レンズL12の物体側面および像側面の少なくとも一方(図1の例では双方)は、中心から有効径までの面上に少なくとも1つの変曲点を持つ非球面とされている。なお、特に実施例2において、第2レンズL12の物体側面は、近軸領域で物体側に凸で、そして中心から有効径までの面上に変曲点は持たない非球面とされている。
 一方、第2レンズ群G2は、物体側から順に配置された、正の屈折力を有する第1レンズL21、正の屈折力を有する第2レンズL22、負の屈折力を有する第3レンズL23、および正の屈折力を有する第4レンズL24の4枚のレンズから構成されている。ここで、例えば図1に示す例のように、第1レンズL21は物体側面および像側面が共に非球面形状のレンズとし、第2レンズL22は両凸形状のレンズとし、第3レンズL23は負メニスカス形状のレンズとし、第4レンズL24は両凸形状のレンズとすることができる。
 以上説明のように本ズームレンズでは、第1レンズ群G1を4枚のレンズで構成し、物体側から順に負の屈折力を有する第1レンズL11、第2レンズL12、負の屈折力を有する第3レンズL13、正の屈折力を有する第4レンズL14と配列したことにより、コストの上昇を抑えながら広角化に伴う諸収差の増大が抑制されるようになる。また、実施例4以外の実施例では、特に第2レンズL12を正の屈折力を有するレンズとしたことにより、歪曲収差が良好に補正される。
 また、第1レンズ群G1の第2レンズL12が、物体側面に非球面を有していることにより歪曲収差が良好に補正され、そして第1レンズL11を非球面とする場合と比べてズームレンズのコストが低く抑えられる。すなわち、第1レンズL11の前後では通常、軸上光線の通る位置と軸外光線の通る位置とが大きく分かれるので、歪曲収差を良好に補正する上では第1レンズL11あるいは第2レンズL12を非球面レンズとするのが望ましいが、通常第1レンズL11は比較的大径とされるので、一般にそれよりも小径とされる第2レンズL12の方を非球面レンズとすれば、非球面レンズのコストが低くなり、ひいてはズームレンズのコストが低く抑えられるようになる。
 また、実施例2以外の実施例において、上記第2レンズL12の物体側面は、特に近軸領域で物体側に凹となった非球面とされているので、球面収差と歪曲収差が良好に補正される。
 さらに、実施例2以外の実施例では、上記第2レンズL12の物体側面および像側面の少なくとも一方が、中心から有効径までの面上に少なくとも1つの変曲点を持つ非球面とされたことにより、広角端における歪曲収差と像面湾曲が良好に補正されるようになる。
 他方、第2レンズ群G2が4枚のレンズで構成されたことにより、コストの上昇を抑えながら変倍による収差の変動が抑制されるようになる。
 また本ズームレンズでは、第2レンズ群G2が、物体側から順に配置された正の屈折力を有する第1レンズL21、正の屈折力を有する第2レンズL22、負の屈折力を有する第3レンズL23、正の屈折力を有する第4レンズL24の4枚のレンズから構成されたことにより、変倍に伴う収差変動が抑えられるようになる。すなわち、第2レンズ群G2の第1レンズL21および第2レンズL22を正レンズとすれば、第1レンズ群G1から出射して大きく発散した軸上光線をそれら2枚の正レンズL21、L22で分担して収れんさせることができるので、高次の球面収差が小さく抑えられ、変倍に伴う収差変動が抑えられるようになる。
 ここで本ズームレンズにおいては、前述した通り第1レンズ群G1が、物体側から順に負の屈折力を有する第1レンズL11、第2レンズL12、負の屈折力を有する第3レンズL13、正の屈折力を有する第4レンズL14と配列して構成された上で、第1レンズ群G1の物体側から2枚目のレンズである第2レンズL12の焦点距離をfG12、広角端における全系の焦点距離をfw、第1レンズ群G1の焦点距離をf、第2レンズ群G2の焦点距離をfとしたとき、前述した条件式
   0.00<fw/f<0.50 ・・・(1-1)
   -0.19<f/fG12<0.16 ・・・(2-1)
が共に満たされている。
 なお、以上の条件式で規定される各条件の数値例を、実施例毎にまとめて表19に示してある。条件式(1-1)が規定するfw/fの値は「条件式(1)」の行に、また条件式(2-1)が規定するf/fG12の値は「条件式(2)」の行に示してある。またこの表19には、後述する条件式(3)~(9)で規定される各条件の数値例も併せて示してある。
 以下、上記の条件式(1-1)および(2-1)で規定された構成による作用、効果について説明する。
 条件式(1-1)は、広角端における全系の焦点距離と、第2レンズ群G2の焦点距離との関係を規定したものである。この条件式(1-1)の上限値以上になると、第2レンズ群G2の屈折力が強くなり過ぎてしまい、全変倍域で諸収差を良好に補正することが困難になるので好ましくない。本ズームレンズでは条件式(1-1)が満たされているので、以上の不具合を防止して、全変倍域で諸収差を良好に補正可能となる。
 そして本ズームレンズでは、条件式(1-1)が規定する範囲の中で特に条件式
   0.20<fw/f<0.43 ・・・(1-2)
が満足されているので上述の効果がより顕著なものとなり、さらには条件式
   0.31<fw/f<0.35 ・・・(1-3)
も満足されているので上述の効果がより一層顕著なものとなる。
 なお、条件式(1-2)や条件式(1-3)の下限値以下になると、第2レンズ群G2の屈折力が弱くなり、変倍における第2レンズ群G2の移動量が増大し、光学系全体の全長が長くなって小型化が困難になるため好ましくないが、本ズームレンズでは条件式(1-2)もまた条件式(1-3)も満足されているので、以上の不具合を防止して、光学系全体の小型化を達成できる。
 一方条件式(2-1)は、第1レンズ群G1の焦点距離と、第1レンズ群G1の第2レンズL12の焦点距離との関係を規定したものである。この条件式(2-1)の下限値以下になると、上記第2レンズL12の正の屈折力が強くなり、それを補うために第1レンズ群G1中の負の屈折力を持つレンズ、つまり第1レンズL11や第3レンズL13の屈折力が強くなり過ぎてしまい、諸収差の補正が困難になるので好ましくない。逆に条件式(2-1)の上限値以上になると、上記第2レンズL12の負の屈折力が強くなり過ぎてしまい、歪曲収差の補正が困難になるので好ましくない。本ズームレンズでは条件式(2-1)が満たされているので、以上の不具合を防止して、歪曲収差並びにその他の諸収差を良好に補正可能となる。
 そして本ズームレンズでは、条件式(2-1)が規定する範囲の中で特に前記条件式
   -0.15<f/fG12<0.10 ・・・(2-2)
が満足されているので上述の効果がより顕著なものとなる。
 また本ズームレンズにおいては、前述した通り第1レンズ群G1が、物体側から順に負の屈折力を有する第1レンズL11、第2レンズL12、負の屈折力を有する第3レンズL13、正の屈折力を有する第4レンズL14と配列して構成され、また第2レンズ群G2が4枚のレンズから構成された上で、前記条件式
   0.00<fw/f<0.43 ・・・(1-4)
   -1.00<f/fG12<0.16 ・・・(2-3)
が共に満たされている。
 条件式(1-4)は条件式(1-1)と同様に、広角端における全系の焦点距離と、第2レンズ群G2の焦点距離との関係を規定したものである。この条件式(1-4)の上限値以上になると、第2レンズ群G2の屈折力が強くなり過ぎてしまい、全変倍域で諸収差を良好に補正することが困難になるので好ましくない。本ズームレンズでは条件式(1-4)が満たされているので、以上の不具合を防止して、全変倍域で諸収差を良好に補正可能となる。
 そして本ズームレンズでは、条件式(1-4)が規定する範囲の中で特に前記条件式(1-2)が満足されているので上述の効果がより顕著なものとなり、さらには前記条件式(1-3)も満足されているので上述の効果がより一層顕著なものとなる。
 なお、条件式(1-2)や条件式(1-3)の下限値以下になると、第2レンズ群G2の屈折力が弱くなり、変倍における第2レンズ群G2の移動量が増大し、光学系全体の全長が長くなって小型化が困難になるため好ましくないが、本ズームレンズでは条件式(1-2)もまた条件式(1-3)も満足されているので、以上の不具合を防止して、光学系全体の小型化を達成できる。
 一方、条件式(2-3)は条件式(2-1)と同様に、第1レンズ群G1の焦点距離と、第1レンズ群G1の第2レンズL12の焦点距離との関係を規定したものである。この条件式(2-3)の下限値以下になると、上記第2レンズL12の正の屈折力が強くなり、それを補うために第1レンズ群G1中の負の屈折力を持つレンズ、つまり第1レンズL11や第3レンズL13の屈折力が強くなり過ぎてしまい、諸収差の補正が困難になるので好ましくない。逆に条件式(2-3)の上限値以上になると、上記第2レンズL12の負の屈折力が強くなり過ぎてしまい、歪曲収差の補正が困難になるので好ましくない。本ズームレンズでは条件式(2-3)が満たされているので、以上の不具合を防止して、歪曲収差並びにその他の諸収差を良好に補正可能となる。
 そして本ズームレンズでは、条件式(2-3)が規定する範囲の中で特に前記条件式
   -0.50<f/fG12<0.10 ・・・(2-4)
が満足されているので上述の効果がより顕著なものとなり、さらには前記条件式(2-2)も満足されているので上述の効果がより一層顕著なものとなる。
 また本ズームレンズにおいては、前述した通り第1レンズ群G1が、物体側から順に負の屈折力を有する第1レンズL11、第2レンズL12、負の屈折力を有する第3レンズL13、正の屈折力を有する第4レンズL14と配列して構成され、また第2レンズ群G2が4枚のレンズから構成された上で、前記条件式
   0.27<fw/f<0.43 ・・・(1-5)
   -1.00<f/fG12<0.29 ・・・(2-5)
が共に満たされている。
 上記条件式(1-5)は条件式(1-1)と同様に、広角端における全系の焦点距離と、第2レンズ群G2の焦点距離との関係を規定したものである。この条件式(1-5)の下限値以下になると、第2レンズ群G2の屈折力が弱くなり、変倍における第2レンズ群G2の移動量が増大し、光学系全体の全長が長くなって小型化が困難になるため好ましくない。逆に条件式(1-5)の上限値以上になると、第2レンズ群G2の屈折力が強くなり過ぎてしまい、全変倍域で諸収差を良好に補正することが困難になるので好ましくない。本ズームレンズでは条件式(1-5)が満たされているので、以上の不具合を防止して、光学系全体の小型化を達成し、また全変倍域で諸収差を良好に補正可能となる。
 そして本ズームレンズでは、条件式(1-5)が規定する範囲の中で特に前記条件式(1-3)が満足されているので上述の効果がより顕著なものとなる。
 一方、条件式(2-5)は条件式(2-1)と同様に、第1レンズ群G1の焦点距離と、第1レンズ群G1の第2レンズL12の焦点距離との関係を規定したものである。この条件式(2-5)の下限値以下になると、上記第2レンズL12の正の屈折力が強くなり、それを補うために第1レンズ群G1中の負の屈折力を持つレンズ、つまり第1レンズL11や第3レンズL13の屈折力が強くなり過ぎてしまい、諸収差の補正が困難になるので好ましくない。逆に条件式(2-5)の上限値以上になると、上記第2レンズL12の負の屈折力が強くなり過ぎてしまい、歪曲収差の補正が困難になるので好ましくない。本ズームレンズでは条件式(2-5)が満たされているので、以上の不具合を防止して、歪曲収差並びにその他の諸収差を良好に補正可能となる。
 そして本ズームレンズでは、条件式(2-5)が規定する範囲の中で特に前記条件式
   -0.50<f/fG12<0.29 ・・・(2-6)
が満足されているので上述の効果がより顕著なものとなり、さらには前記条件式(2-2)も満足されているので上述の効果がより一層顕著なものとなる。
 また本ズームレンズでは、第1レンズ群G1の物体側から2枚目のレンズである第2レンズL12の焦点距離をfG12、広角端における全系の焦点距離をfwとしたとき、以下の条件式
   -0.11<fw/fG12<0.12 ・・・(3)
が満たされているので、下記の効果も得られる。すなわち、この条件式(3)は、広角端における全系の焦点距離と、第1レンズ群の第2レンズL12の焦点距離との関係を規定したものである。この条件式(3)の下限値以下になると第2レンズL12の屈折力が負側に寄ることになって、第2レンズL12を通る中心光束と周辺光束の屈折のバランスが崩れ、その結果、歪曲収差の補正が困難になるので好ましくない。逆に条件式(3)の上限値以上になると、第2レンズL12の正の屈折力が強くなり過ぎてしまい、第1レンズ群G1全体の負の屈折力が不足し、広角化が困難になる。この第1レンズ群G1全体の負の屈折力不足を補うために、第1レンズ群G1内の負レンズつまり第1レンズL11や第3レンズL13の屈折力を強くすることも考えられるが、そのようにすると諸収差の補正が困難になるので好ましくない。条件式(3)が満たされている場合は、以上の不具合を防止して、歪曲収差を良好に補正し、また容易に広角化することができる。
 なお、条件式(3)が規定する範囲内で特に下記の条件式
   -0.01<fw/fG12<0.06 ・・・(3’)
が満たされている場合は、上記の効果がより顕著なものとなる。
 また本ズームレンズでは、第1レンズ群G1の焦点距離をfとし、第2レンズ群G2の焦点距離をfとしたとき、以下の条件式
   0.56<|f/f|<1.04 ・・・(4)
が満たされているので、下記の効果も得られる。すなわち、この条件式(4)は、第1レンズ群G1の焦点距離fと第2レンズ群G2の焦点距離fとの関係を規定したものである。この条件式(4)の下限値以下になると、第2レンズ群G2の屈折力が弱くなり、変倍における第2レンズ群G2の移動量が増大し、光学系全体の全長が長くなって小型化が困難になるため好ましくない。逆に条件式(4)の上限値以上になると、第1レンズ群G1の屈折力が不足し、画角を確保するために最も物体側に位置する第1レンズL11の径を大きくする必要が生じ、小型化が困難になるので好ましくない。条件式(4)が満たされている場合は、以上の不具合を防止して、光学系全体を容易に小型化することができる。
 なお、条件式(4)が規定する範囲内で特に下記の条件式
   0.70<|f/f|<0.80 ・・・(4’)
が満たされている場合は、上記の効果がより顕著なものとなる。
 また本ズームレンズでは、広角端における全系の焦点距離をfwとし、第1レンズ群G1の焦点距離をfとしたとき、以下の条件式
   0.00<|fw/f|<0.63 ・・・(5)
が満たされているので、下記の効果も得られる。すなわち、この条件式(5)は、広角端における全系の焦点距離fwと、第1レンズ群G1の焦点距離fとの関係を規定したものである。この条件式(5)の上限値以上になると、第1レンズ群G1の負の屈折力が強くなり過ぎてしまい、軸外での諸収差の補正が困難になるので好ましくない。条件式(5)が満たされている場合は、以上の不具合を防止して、軸外での諸収差を容易に補正可能となる。
 なお、条件式(5)が規定する範囲内で特に下記の条件式
   0.20<|fw/f|<0.50 ・・・(5’)
が満たされている場合は、上記の効果がより顕著なものとなる。そして、この条件式(5’)の下限値以下になると、第1レンズ群G1の負の屈折力が弱くなり、光学系全体が大型化してしまうため好ましくないが、条件式(5’)が満たされている場合は、そのような不具合を防止して、光学系全体の小型化を達成できる。
 また本ズームレンズでは、第1レンズ群G1の物体側から2枚目のレンズの物体側面の最大有効半径をHG12Fとし、上記2枚目のレンズの物体側面の中心と光軸から高さHG12Fの面上の点とを通り、面の中心を頂点とする球面の曲率半径をr’G12Fとし、上記2枚目のレンズの物体側面の中心と光軸から高さHG12F×0.5の面上の点とを通り、面の中心を頂点とする球面の曲率半径をr”G12Fとしたとき、以下の条件式
   0.20<HG12F×{(1/r’G12F)-(1/r”G12F)} ・・・(6)
が満たされているので、下記の効果も得られる。すなわち、この条件式(6)は、第1レンズ群G1の第2レンズL12の物体側面について、その最大有効半径と非球面形状との関係を規定したものである。上記第2レンズL12の物体側面の中心近傍と周辺とで、曲率に条件式(6)の範囲で差を持たせることにより、広角端における歪曲収差を良好に補正可能となる。この条件式(6)の下限値以下になると補正不足になり、逆に上限値以上になると補正過剰となるので、いずれも好ましくない。
 なお、条件式(6)が規定する範囲内で特に下記の条件式
 0.20<HG12F×{(1/r’G12F)-(1/r”G12F)}<0.50・・・(6’)
が満たされている場合は、上記の効果がより顕著なものとなる。
 また本ズームレンズでは、第1レンズ群G1の物体側から2枚目のレンズの物体側面の近軸曲率半径をrG12Fとし、第1レンズ群G1の物体側から2枚目のレンズの像側面の近軸曲率半径をrG12Rとしたとき、以下の条件式
   2.0<(rG12F+rG12R)/(rG12F-rG12R)<30.0 ・・・(7)
が満たされているので、下記の効果も得られる。すなわち、この条件式(7)は、第1レンズ群G1の第2レンズL12の形状を規定したものである。この条件式(7)の下限値以下になると、広角端側での歪曲収差が補正不足となるので好ましくない。逆に上限値以上になると、望遠端側での球面収差を良好に補正することが困難になるので好ましくない。条件式(7)が満たされている場合は、以上の不具合を防止して、広角端側での歪曲収差および望遠端側での球面収差を良好に補正可能となる。
 なお、条件式(7)が規定する範囲内で特に下記の条件式
   2.0<(rG12F+rG12R)/(rG12F-rG12R)<15.0 ・・・(7’)
が満たされている場合は、上記の効果がより顕著なものとなる。
 また本ズームレンズでは、第1レンズ群G1の物体側から1枚目のレンズの物体側面の近軸曲率半径をrG11Fとし、第1レンズ群G1の物体側から1枚目のレンズの像側面の近軸曲率半径をrG11Rとしたとき、以下の条件式
   2.5<(rG11F+rG11R)/(rG11F-rG11R)<10.0 ・・・(8)
が満たされているので、下記の効果も得られる。すなわち、この条件式(8)は、第1レンズ群G1の第1レンズL11の形状を規定したものである。この条件式(8)の下限値以下になると、広角端側での像面湾曲が補正不足となるので好ましくない。逆に上限値以上になると、広角端側での像面湾曲が補正過剰となるので好ましくない。条件式(8)が満たされている場合は、以上の不具合を防止して、広角端側での像面湾曲を適切に補正可能となる。
 なお、条件式(8)が規定する範囲内で特に下記の条件式
   2.8<(rG11F+rG11R)/(rG11F-rG11R)<4.0 ・・・(8’)
が満たされている場合は、上記の効果がより顕著なものとなる。
 また本ズームレンズでは、第2レンズ群G2の物体側から1枚目のレンズの焦点距離をfG21とし、第2レンズ群G2の物体側から2枚目のレンズの焦点距離をfG22としたとき、以下の条件式
   1.3<fG21 /fG22 <3.0 ・・・(9)
が満たされているので、下記の効果も得られる。すなわち、この条件式(9)は、第2レンズ群G2の第1レンズL21と第2レンズL22について、互いの焦点距離の関係を規定したものである。この条件式(9)の下限値以下になると、球面収差が補正不足となるので好ましくない。逆に上限値以上になると、球面収差が補正過剰となるので好ましくない。条件式(9)が満たされている場合は、以上の不具合を防止して、全変倍域で球面収差を良好に補正可能となる。
 なお、条件式(9)が規定する範囲内で特に下記の条件式
   2.0<fG21 /fG22 <2.5 ・・・(9’)
が満たされている場合は、上記の効果がより顕著なものとなる。
 なお図1には、レンズ系と結像面との間に光学部材PPを配置した例を示したが、ローパスフィルタや特定の波長域をカットするような各種フィルタ等を配置する代わりに、各レンズの間にこれらの各種フィルタを配置してもよく、あるいは、いずれかのレンズのレンズ面に、各種フィルタと同様の作用を有するコートを施してもよい。
 次に、本発明のズームレンズの数値実施例について説明する。実施例1~6のズームレンズのレンズ断面図はそれぞれ図1~6に示したものである。
 そして、実施例1のズームレンズの基本レンズデータを表1に、ズームに関するデータを表2に、非球面データを表3に示す。同様に、実施例2~6のズームレンズの基本レンズデータ、ズームに関するデータ、非球面データを表4~表18に示す。以下では、表中の記号の意味について、実施例1のものを例に挙げて説明するが、実施例2~6のものについても基本的に同様である。
 表1の基本レンズデータにおいて、Siの欄には最も物体側の構成要素の物体側の面を1番目として像側に向かうに従い順次増加するi番目(i=1、2、3、…)の面番号を示し、Riの欄にはi番目の面の曲率半径を示し、Diの欄にはi番目の面とi+1番目の面との光軸Z上の面間隔を示している。なお、曲率半径の符号は、面形状が物体側に凸の場合を正、像側に凸の場合を負としている。
 また、基本レンズデータにおいて、Ndjの欄には最も物体側のレンズを1番目として像側に向かうに従い順次増加するj番目(j=1、2、3、…)の構成要素のd線(波長587.6nm)に対する屈折率を示し、νdjの欄にはj番目の構成要素のd線に対するアッベ数を示している。なお、基本レンズデータには、開口絞りStも含めて示しており、開口絞りStに相当する面の曲率半径の欄には、∞(開口絞り)と記載している。
 表1の基本レンズデータにおけるD8、D9、D17は、変倍時に変化する面間隔である。D8は第1レンズ群G1と開口絞りStとの間隔であり、D9は開口絞りStと第2レンズ群G2との間隔であり、D17は第2レンズ群G2と光学部材PPとの間隔である。
 表2のズームに関するデータには、広角端、望遠端それぞれにおける、全系の焦点距離(f)、F値(Fno.)、全画角(2ω)、変倍時に変化する各面間隔の値を示している。
 表1のレンズデータでは、非球面の面番号に*印を付しており、非球面の曲率半径として近軸の曲率半径の数値を示している。表3の非球面データには、非球面の面番号と、各非球面に関する非球面係数を示す。表3の非球面データの数値の「E-n」(n:整数)は、「×10-n」を意味する。なお、非球面係数は、下記非球面式における各係数KA、RAm(m=3、4、5、…16)の値である。
  Zd=C・h/{1+(1-KA・C・h1/2}+ΣRAm・h
ただし、
Zd:非球面深さ(高さhの非球面上の点から、非球面頂点が接する光軸に垂直な平面に下ろした垂線の長さ)
h:高さ(光軸からのレンズ面までの距離)
C:近軸曲率半径の逆数
KA、RAm:非球面係数(m=3、4、5、…16)
 以下に記載する表では、所定の桁で丸めた数値を記載している。また、以下に記載する表のデータにおいて、角度の単位としては度を用い、長さの単位としてはmmを用いているが、光学系は比例拡大又は比例縮小して使用することが可能であるので、他の適当な単位を用いることもできる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 また表19に、実施例1~6のズームレンズの条件式(1-1)~(1-5)、(2-1)~(2-6)、(3)~(9)に対応する値を示す。ここに示す値は、各条件式が規定している条件つまり文字式の部分の値であり、例えば「条件式(3)」の行にはfw/fG12の値を示している。また条件式(1-1)~(1-5)については、規定している条件は共通でfw/fであるので、まとめて「条件式(1)」とした行にfw/fの値を示してある。条件式(2-1)~(2-6)についても、規定している条件は共通でf/fG12であるので、まとめて「条件式(2)」とした行にf/fG12の値を示してある。なお、この表19の値はd線に関するものである。
Figure JPOXMLDOC01-appb-T000019
 ここで、実施例1のズームレンズの広角端における球面収差、非点収差、ディストーション(歪曲収差)、倍率色収差(倍率の色収差)をそれぞれ図7(A)~図7(D)に示し、望遠端における球面収差、非点収差、ディストーション(歪曲収差)、倍率色収差(倍率の色収差)をそれぞれ図7(E)~図7(H)に示す。
 各収差図はd線(波長587.6nm)を基準としたものであるが、球面収差図ではg線(波長435.8nm)およびC線(波長656.3nm)に関する収差も示し、倍率色収差図ではg線およびC線に関する収差を示す。非点収差図では、サジタル方向については実線で、タンジェンシャル方向については点線で示している。球面収差図のFno.はF値を意味し、その他の収差図のωは半画角を意味する。
 同様に、実施例2のズームレンズの広角端、望遠端における各収差図を図8(A)~図8(H)に示し、以下全く同様にして実施例3~6の各収差図をそれぞれ図9~図12に示す。
 次に、本発明の実施形態に係る撮像装置について説明する。図13に、本発明の実施形態の撮像装置の一例として、本発明の実施形態のズームレンズ1を用いた撮像装置10の概略構成図を示す。撮像装置としては、例えば監視カメラ、ビデオカメラ、電子スチルカメラ等を挙げることができる。
 図13に示す撮像装置10は、ズームレンズ1と、ズームレンズ1の像側に配置されて、ズームレンズ1により結像された被写体の像を撮像する撮像素子2と、撮像素子2からの出力信号を演算処理する信号処理部4と、ズームレンズ1の変倍を行うための変倍制御部5と、フォーカス調整を行うためのフォーカス制御部6とを備えている。なお、ズームレンズ1と撮像素子2との間に、適宜フィルタ等が配設されてもよい。
 ズームレンズ1は、負の屈折力を有して、広角端から望遠端に変倍する際に像面側に凸状の軌跡を描くように移動する第1レンズ群G1と、正の屈折力を有して、広角端から望遠端に変倍する際に物体側に単調移動する第2レンズ群G2と、固定の開口絞りStとを有している。なお、図13では各レンズ群を概略的に示している。
 撮像素子2は、ズームレンズ1により形成される光学像を撮像して電気信号を出力するものであり、その撮像面はズームレンズ1の像面に一致するように配置されている。撮像素子2としては例えばCCDやCMOS等からなるものを用いることができる。
 なお、図13では図示していないが、撮像装置10は、例えば第2レンズ群G2の一部を構成する正の屈折力を有するレンズを光軸Zに垂直な方向に移動させて、振動や手振れ時の撮影画像のぶれを補正するぶれ補正機構をさらに備えるようにしてもよい。
 この撮像装置10は、前述した通りの効果を奏する本発明のズームレンズを備えたものであるから、良好な光学性能を備えた上で、小型化、低コスト化および広角化を達成できるものとなる。
 以上、実施形態および実施例を挙げて本発明を説明したが、本発明は上記実施形態および実施例に限定されるものではなく、種々の変形が可能である。例えば、各レンズ成分の曲率半径、面間隔、屈折率、アッベ数、非球面係数等の値は、上記各数値実施例で示した値に限定されず、他の値をとり得るものである。

Claims (20)

  1.  実質的に、物体側から順に負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とが配列されてなり、
     前記第1レンズ群と前記第2レンズ群とを移動させることにより変倍を行い、
     前記第1レンズ群が実質的に、物体側から順に配置された負の屈折力を有する第1レンズ、第2レンズ、負の屈折力を有する第3レンズ、および正の屈折力を有する第4レンズから構成され、
     前記第1レンズ群の物体側から2枚目のレンズの焦点距離をfG12、広角端における全系の焦点距離をfw、前記第1レンズ群の焦点距離をf、前記第2レンズ群の焦点距離をfとしたとき、以下の条件式を満たすことを特徴とするズームレンズ。
       0.00<fw/f<0.50 ・・・(1-1)
       -0.19<f/fG12<0.16 ・・・(2-1)
  2.  前記焦点距離fG12、fw、fおよびfに関する以下の条件式の少なくとも一方を満たすことを特徴とする請求項1に記載のズームレンズ。
       0.20<fw/f<0.43 ・・・(1-2)
       -0.15<f/fG12<0.10 ・・・(2-2)
  3.  前記焦点距離fwおよびfに関して、以下の条件式を満たすことを特徴とする請求項1または2に記載のズームレンズ。
       0.31<fw/f<0.35 ・・・(1-3)
  4.  実質的に、物体側から順に負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とが配列されてなり、
     前記第1レンズ群と前記第2レンズ群とを移動させることにより変倍を行い、
     前記第1レンズ群が実質的に、物体側から順に配置された負の屈折力を有する第1レンズ、第2レンズ、負の屈折力を有する第3レンズ、および正の屈折力を有する第4レンズから構成され、
     前記第2レンズ群が実質的に4枚のレンズから構成され、
     前記第1レンズ群の物体側から2枚目のレンズの焦点距離をfG12、広角端における全系の焦点距離をfw、前記第1レンズ群の焦点距離をf、前記第2レンズ群の焦点距離をfとしたとき、以下の条件式を満たすことを特徴とするズームレンズ。
       0.00<fw/f<0.43 ・・・(1-4)
       -1.00<f/fG12<0.16 ・・・(2-3)
  5.  前記焦点距離fG12、fw、fおよびfに関する以下の条件式の少なくとも一方を満たすことを特徴とする請求項4に記載のズームレンズ。
       0.20<fw/f<0.43 ・・・(1-2)
       -0.50<f/fG12<0.10 ・・・(2-4)
  6.  前記焦点距離fG12、fw、fおよびfに関する以下の条件式の少なくとも一方を満たすことを特徴とする請求項4または5に記載のズームレンズ。
       0.31<fw/f<0.35 ・・・(1-3)
       -0.15<f/fG12<0.10 ・・・(2-2)
  7.  実質的に、物体側から順に負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とが配列されてなり、
     前記第1レンズ群と前記第2レンズ群とを移動させることにより変倍を行い、
     前記第1レンズ群が実質的に、物体側から順に配置された負の屈折力を有する第1レンズ、第2レンズ、負の屈折力を有する第3レンズ、および正の屈折力を有する第4レンズから構成され、
     前記第2レンズ群が実質的に4枚のレンズから構成され、
     前記第1レンズ群の物体側から2枚目のレンズの焦点距離をfG12、広角端における全系の焦点距離をfw、前記第1レンズ群の焦点距離をf、前記第2レンズ群の焦点距離をfとしたとき、以下の条件式を満たすことを特徴とするズームレンズ。
       0.27<fw/f<0.43 ・・・(1-5)
       -1.00<f/fG12<0.29 ・・・(2-5)
  8.  前記焦点距離fG12、fw、fおよびfに関する以下の条件式の少なくとも一方を満たすことを特徴とする請求項7に記載のズームレンズ。
       0.31<fw/f<0.35 ・・・(1-3)
       -0.50<f/fG12<0.29 ・・・(2-6)
  9.  前記焦点距離fG12およびfに関して、以下の条件式を満たすことを特徴とする請求項7または8に記載のズームレンズ。
       -0.15<f/fG12<0.10 ・・・(2-2)
  10.  第1レンズ群の物体側から2枚目のレンズの焦点距離をfG12、広角端における全系の焦点距離をfwとしたとき、以下の条件式を満たすことを特徴とする請求項1から9のいずれか1項に記載のズームレンズ。
       -0.11<fw/fG12<0.12 ・・・(3)
  11.  以下の条件式を満たすことを特徴とする請求項10に記載のズームレンズ。
       -0.01<fw/fG12<0.06 ・・・(3’)
  12.  第1レンズ群の焦点距離をfとし、第2レンズ群の焦点距離をfとしたとき、以下の条件式を満たすことを特徴とする請求項1から11のいずれか1項に記載のズームレンズ。
       0.56<|f/f|<1.04 ・・・(4)
  13.  以下の条件式を満たすことを特徴とする請求項12に記載のズームレンズ。
       0.70<|f/f|<0.80 ・・・(4’)
  14.  広角端における全系の焦点距離をfwとし、第1レンズ群の焦点距離をfとしたとき、以下の条件式を満たすことを特徴とする請求項1から13のいずれか1項に記載のズームレンズ。
       0.00<|fw/f|<0.63 ・・・(5)
  15.  以下の条件式を満たすことを特徴とする請求項14に記載のズームレンズ。
       0.20<|fw/f|<0.50 ・・・(5’)
  16.  第1レンズ群の物体側から2枚目のレンズの物体側面の最大有効半径をHG12Fとし、上記2枚目のレンズの物体側面の中心と光軸から高さHG12Fの面上の点とを通り、面の中心を頂点とする球面の曲率半径をr’G12Fとし、上記2枚目のレンズの物体側面の中心と光軸から高さHG12F×0.5の面上の点とを通り、面の中心を頂点とする球面の曲率半径をr”G12Fとしたとき、以下の条件式を満たすことを特徴とする請求項1から15のいずれか1項に記載のズームレンズ。
       0.20<HG12F×{(1/r’G12F)-(1/r”G12F)} ・・・(6)
  17.  第1レンズ群の物体側から2枚目のレンズの物体側面の近軸曲率半径をrG12Fとし、第1レンズ群の物体側から2枚目のレンズの像側面の近軸曲率半径をrG12Rとしたとき、以下の条件式を満たすことを特徴とする請求項1から16のいずれか1項に記載のズームレンズ。
       2.0<(rG12F+rG12R)/(rG12F-rG12R)<30.0 ・・・(7)
  18.  第1レンズ群の物体側から1枚目のレンズの物体側面の近軸曲率半径をrG11Fとし、第1レンズ群の物体側から1枚目のレンズの像側面の近軸曲率半径をrG11Rとしたとき、以下の条件式を満たすことを特徴とする請求項1から17のいずれか1項に記載のズームレンズ。
       2.5<(rG11F+rG11R)/(rG11F-rG11R)<10.0 ・・・(8)
  19.  第2レンズ群の物体側から1枚目のレンズの焦点距離をfG21とし、第2レンズ群の物体側から2枚目のレンズの焦点距離をfG22としたとき、以下の条件式を満たすことを特徴とする請求項1から18のいずれか1項に記載のズームレンズ。
       1.3<fG21 /fG22 <3.0 ・・・(9)
  20.  請求項1から19のいずれか1項に記載のズームレンズを備えたことを特徴とする撮像装置。
PCT/JP2012/005374 2011-08-29 2012-08-28 ズームレンズおよび撮像装置 WO2013031180A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280041656.7A CN103765281B (zh) 2011-08-29 2012-08-28 变焦镜头和成像设备
US14/173,409 US9316818B2 (en) 2011-08-29 2014-02-05 Zoom lens and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-185746 2011-08-29
JP2011185746 2011-08-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/173,409 Continuation US9316818B2 (en) 2011-08-29 2014-02-05 Zoom lens and imaging apparatus

Publications (1)

Publication Number Publication Date
WO2013031180A1 true WO2013031180A1 (ja) 2013-03-07

Family

ID=47755710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005374 WO2013031180A1 (ja) 2011-08-29 2012-08-28 ズームレンズおよび撮像装置

Country Status (4)

Country Link
US (1) US9316818B2 (ja)
JP (1) JPWO2013031180A1 (ja)
CN (1) CN103765281B (ja)
WO (1) WO2013031180A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031179A1 (ja) * 2011-08-29 2013-03-07 富士フイルム株式会社 ズームレンズおよび撮像装置
WO2013031187A1 (ja) * 2011-08-29 2013-03-07 富士フイルム株式会社 ズームレンズおよび撮像装置
JP5767331B2 (ja) * 2011-08-29 2015-08-19 富士フイルム株式会社 ズームレンズおよび撮像装置
CN103782220B (zh) * 2011-08-29 2016-08-17 富士胶片株式会社 变焦镜头和成像设备
US9971132B2 (en) * 2016-04-25 2018-05-15 Young Optics Inc. Zoom lens
US11061211B2 (en) * 2019-01-09 2021-07-13 Omnivision Technologies, Inc. Imaging system and bimodal zoom lens thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585707A (ja) * 1981-07-03 1983-01-13 Nippon Kogaku Kk <Nikon> 広角ズ−ムレンズ
JPH04163414A (ja) * 1990-10-26 1992-06-09 Canon Inc 広角ズームレンズ
JPH11223768A (ja) * 1998-02-05 1999-08-17 Asahi Optical Co Ltd ズームレンズ系
JP2002277737A (ja) * 2001-03-15 2002-09-25 Fuji Photo Optical Co Ltd 広角ズームレンズ
JP2005134887A (ja) * 2003-10-08 2005-05-26 Fujinon Corp ズームレンズ
JP2006091643A (ja) * 2004-09-27 2006-04-06 Fujinon Corp 変倍光学系
JP2009205055A (ja) * 2008-02-29 2009-09-10 Fujinon Corp 変倍光学系および撮像装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412487Y2 (ja) * 1988-09-08 1992-03-26
JP4259047B2 (ja) 2002-06-20 2009-04-30 株式会社ニコン 超広角ズームレンズ
JP4280538B2 (ja) 2003-04-18 2009-06-17 フジノン株式会社 ズームレンズ
US6989941B2 (en) * 2003-10-08 2006-01-24 Fujinon Corporation Two-group zoom lens
JP4103143B2 (ja) * 2004-10-14 2008-06-18 船井電機株式会社 投射用ズームレンズおよび画像投射装置
JP4905779B2 (ja) 2006-09-07 2012-03-28 富士フイルム株式会社 ズームレンズ
TWI317819B (en) * 2006-11-02 2009-12-01 Young Optics Inc Zoom lens
JP5046740B2 (ja) * 2007-05-14 2012-10-10 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2011112908A (ja) * 2009-11-27 2011-06-09 Fujifilm Corp 変倍光学系および撮像装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585707A (ja) * 1981-07-03 1983-01-13 Nippon Kogaku Kk <Nikon> 広角ズ−ムレンズ
JPH04163414A (ja) * 1990-10-26 1992-06-09 Canon Inc 広角ズームレンズ
JPH11223768A (ja) * 1998-02-05 1999-08-17 Asahi Optical Co Ltd ズームレンズ系
JP2002277737A (ja) * 2001-03-15 2002-09-25 Fuji Photo Optical Co Ltd 広角ズームレンズ
JP2005134887A (ja) * 2003-10-08 2005-05-26 Fujinon Corp ズームレンズ
JP2006091643A (ja) * 2004-09-27 2006-04-06 Fujinon Corp 変倍光学系
JP2009205055A (ja) * 2008-02-29 2009-09-10 Fujinon Corp 変倍光学系および撮像装置

Also Published As

Publication number Publication date
US9316818B2 (en) 2016-04-19
CN103765281A (zh) 2014-04-30
JPWO2013031180A1 (ja) 2015-03-23
CN103765281B (zh) 2016-03-23
US20140153106A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
US20140198394A1 (en) Zoom lens and imaging apparatus
JP5767335B2 (ja) ズームレンズおよび撮像装置
WO2013031180A1 (ja) ズームレンズおよび撮像装置
JP6173975B2 (ja) ズームレンズおよび撮像装置
JP5767330B2 (ja) ズームレンズおよび撮像装置
JP6164894B2 (ja) ズームレンズ及びそれを有する撮像装置
WO2014073187A1 (ja) ズームレンズおよび撮像装置
WO2012176389A1 (ja) ズームレンズおよび撮像装置
JP2014202806A5 (ja)
WO2013031184A1 (ja) ズームレンズおよび撮像装置
JP4817551B2 (ja) ズームレンズ
JP5767332B2 (ja) ズームレンズおよび撮像装置
JP5767710B2 (ja) ズームレンズおよび撮像装置
JP5767333B2 (ja) ズームレンズおよび撮像装置
JP5767334B2 (ja) ズームレンズおよび撮像装置
WO2013031185A1 (ja) ズームレンズおよび撮像装置
WO2013031182A1 (ja) ズームレンズおよび撮像装置
WO2013031179A1 (ja) ズームレンズおよび撮像装置
WO2013031178A1 (ja) ズームレンズおよび撮像装置
WO2013031108A1 (ja) ズームレンズおよび撮像装置
WO2013031183A1 (ja) ズームレンズおよび撮像装置
JP5767331B2 (ja) ズームレンズおよび撮像装置
JP5766810B2 (ja) ズームレンズおよび撮像装置
WO2013031189A1 (ja) ズームレンズおよび撮像装置
WO2012176470A1 (ja) ズームレンズおよび撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280041656.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531078

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827750

Country of ref document: EP

Kind code of ref document: A1