WO2004023633A1 - Dc−dc変換器 - Google Patents

Dc−dc変換器 Download PDF

Info

Publication number
WO2004023633A1
WO2004023633A1 PCT/JP2003/010634 JP0310634W WO2004023633A1 WO 2004023633 A1 WO2004023633 A1 WO 2004023633A1 JP 0310634 W JP0310634 W JP 0310634W WO 2004023633 A1 WO2004023633 A1 WO 2004023633A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
voltage
circuit
output
pulse
Prior art date
Application number
PCT/JP2003/010634
Other languages
English (en)
French (fr)
Inventor
Tomoyasu Yamada
Original Assignee
Sanken Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co., Ltd. filed Critical Sanken Electric Co., Ltd.
Priority to JP2004534106A priority Critical patent/JP4096201B2/ja
Publication of WO2004023633A1 publication Critical patent/WO2004023633A1/ja
Priority to US11/071,559 priority patent/US6972970B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop

Definitions

  • the present invention relates to a DC-DC converter having a function of controlling a switch in an intermittent mode at a light load.
  • a typical DC-DC converter or DC-DC converter includes a switch connected between a pair of DC power supply terminals via a primary winding of a transformer, a control circuit for controlling on / off of the switch, A first rectifying / smoothing circuit connected between the secondary winding of the transformer and the load, and a second rectifying / smoothing circuit connected between the tertiary winding of the transformer and the power supply terminal of the control circuit. Consists of The first rectifying and smoothing circuit is used to supply DC power to the load. The second rectifying and smoothing circuit is used to supply DC power to the control circuit.
  • a method of intermittently turning on and off the switch at light load is known.
  • a period T off in which the supply of the switch control pulse is stopped is intermittently arranged as schematically shown in a period t 3 to t 4 in FIG.
  • the supply period T on of the control pulse to the switch is also intermittently arranged.
  • the switch is driven intermittently.
  • the switch is intermittently driven in this way, the number of times the switch is turned on and off per unit time, that is, the number of times of switching, is smaller than the number of times of switching when the switch is continuously turned on and off. Dramatically reduced, switching loss per unit time is reduced, and DC-DC converter efficiency at light load is improved.
  • the voltage of the smoothing capacitor of the second rectifying / smoothing circuit for the switch control circuit is usually constant even when the load is extremely light. It drops almost in the same way as for the load. Therefore, when the load is extremely light, the speed of the voltage drop of the smoothing capacitor of the second rectifying and smoothing circuit for the switch control circuit depends on the speed of the smoothing capacitor of the first rectifying and smoothing circuit to which the load is connected. Greater than the rate of voltage drop.
  • the switch on / off control by the switch control circuit becomes impossible, and the operation of the switch control circuit is disabled. Stops. Once the operation of the switch control circuit is temporarily stopped, a restart time of several 100 ms generally elapses, and the switch control circuit enters a restart operation state. Since the smoothing capacitors of the first and second rectifying / smoothing circuits are not charged during the restart time, this voltage further decreases, and it becomes impossible or difficult to supply the desired power to the load.
  • an object of the present invention is to provide a DC-DC converter that can ensure normal operation of a switch control circuit and improve efficiency.
  • a DC-DC converter according to the present invention is connected between a pair of DC input terminals 4 and 5, a transformer 6, and the pair of DC input terminals 4 and 5 via the transformer.
  • the switch control circuit 2 or 2a has a first function of continuously turning on and off the switch 7 when the load 15 is larger than a predetermined value, and the load 15 is smaller than the predetermined value. A second function of intermittently stopping the on / off control of the switch 7 sometimes is provided.
  • the DC-DC converter further includes: a determination unit configured to determine whether an output voltage of the second rectification smoothing circuit 10 is lower than a predetermined value; and the second rectification obtained from the determination unit.
  • Intermittent operation preventing means for preventing intermittent stop operation of the switch on / off control according to the second function in response to a signal indicating that the output voltage of the smoothing circuit 10 is lower than the predetermined value. Have.
  • the predetermined value is a lower voltage than the rated output voltage of the second rectifying / smoothing circuit 10 and a minimum allowable voltage that can maintain the operation of the switch control circuit 2 or 2a or a value higher than this. It is desirable.
  • the switch control circuit 2 or 2 a includes an output voltage detection circuit 17 for detecting a DC output voltage of the first rectifying and smoothing circuit 9, and the first voltage in response to an output of the output voltage detection circuit 17.
  • the switch control pulse generating circuit 18 or 18a which forms a pulse for controlling the output voltage of the rectifying / smoothing circuit 9 to be constant and is sent to the control terminal of the switch 7 and the load 15 are smaller than predetermined values. Is smaller than An intermittent command generation circuit 19 for generating a command to prohibit supply of a pulse for turning on and off the switch 7 to the switch 7 when the load 15 is smaller than the predetermined value. It is desirable to have.
  • the intermittent operation preventing means is a logic circuit 53 for invalidating the intermittent command output from the intermittent command generation circuit 19.
  • the switch control pulse generating circuit 18 includes a ramp voltage generating means 8 or 60 for generating a ramp voltage in synchronization with an ON period of the switch, and a voltage in response to an output of the output voltage detecting circuit 17.
  • Voltage feedback signal forming means for forming a feedback signal; a comparator connected to the voltage feedback signal forming means and the ramp voltage generating means 8 or 60, for comparing an output of the ramp voltage generating means with the voltage feedback signal.
  • RS having an oscillator 35 for generating a pulse at a predetermined period, a first input terminal connected to the oscillator 35, and a second input terminal connected to the comparator 42.
  • the switch control pulse generating circuit 2a includes a ramp voltage generating means 8 or 60 for generating a ramp voltage in synchronization with the ON period of the switch, and a voltage feedback signal in response to an output of the output voltage detecting circuit 17. And a comparator 42 connected to the voltage return signal forming means and the ramp voltage generating means for comparing the output of the ramp voltage generating means with the voltage feedback signal.
  • An oscillator 35 that generates a pulse at a predetermined cycle; and an output of the oscillator 35 when the output of the intermittent command generation circuit 19 indicates that the passage of a pulse for turning on and off the switch 7 is prohibited.
  • a logic circuit 37 having one input terminal connected to the oscillator 35 for inhibiting passage of a pulse and the other input terminal connected to the intermittent command generation circuit 19; Connected to the logic circuit 37
  • the first RS flip-flop 36 having a first input terminal and a second input terminal connected to the comparator 42, and driving means 3 for driving the switch 7 based on the output of the RS flip-flop 36. 8 and can be configured.
  • the determination means includes voltage detection means 26 for detecting the output voltage of the second rectifying and smoothing circuit 10, a reference voltage source 52 for providing a predetermined voltage reference (V52), and the voltage detection means 2
  • the first input terminal connected to the voltage detection means 26 and the reference voltage source 52 are connected to determine whether the output of the reference voltage source 6 is lower than the predetermined voltage reference (V52).
  • a comparator 51 having the second input terminal described above.
  • the intermittent operation preventing means 53 responds to a signal indicating that the output of the voltage detecting means 26 is lower than the predetermined voltage reference (V 52).
  • V 52 the predetermined voltage reference
  • the output voltage of the second rectifying and smoothing circuit 10 functioning as a control power supply connected to the power supply terminals 16a and 16b of the switch control circuit 2 or 2a is a predetermined value. Intermittent operation of switch 7 is prevented when: Therefore, a continuous ON / OFF operation of the switch 7 occurs, and the voltage of the second rectifying / smoothing circuit 10 returns to or near a normal value. As a result, even if the switch is driven intermittently to improve the efficiency at light load, the operation is not stopped due to the power supply voltage drop of the switch control circuit, and the DC_DC converter can be driven stably. .
  • the power supply voltage of the switch control circuit does not become lower than the minimum allowable voltage. Accordingly, when the load is smaller than a predetermined value, the on / off driving period T on of the switch 7 and the on / off driving of the switch 7 in a mode in which the on / off control of the switch 7 is intermittently stopped.
  • the ratio to the stop period T off so as to obtain high efficiency, the efficiency of the DC-DC converter can be increased.
  • FIG. 1 is a circuit diagram showing a DC-DC converter according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing the switch control circuit of FIG. 1 in detail.
  • FIG. 3 is a waveform diagram showing the state of each part in FIGS. 1 and 2 at the time of rated load
  • FIG. 4 is a waveform diagram showing the state of each part in FIGS. 1 and 2 immediately before the intermittent operation.
  • FIG. 5 is a waveform chart showing the state of each part in FIG. 2 in the three switch control modes.
  • FIG. 6 is a circuit diagram showing a DC-DC converter according to the second embodiment.
  • FIG. 7 is a circuit diagram showing a switch control circuit according to the third embodiment, similarly to FIG.
  • FIG. 8 is a circuit diagram showing a part of a switch control circuit according to a modification.
  • FIG. 9 is a waveform diagram showing the state of each part in FIG. BEST MODE FOR CARRYING OUT THE INVENTION First Embodiment
  • the fly-pack type DC-DC converter according to the first embodiment shown in FIG. 1 is roughly composed of a DC-DC converter 1 and a switch controller 2.
  • the DC-DC conversion circuit 1 includes a pair of DC input terminals 4 and 5 connected to a DC power supply 3, a transformer 6, a switch 7, a current detection resistor 8, and first and second rectifying and smoothing. It has circuits 9, 10; a pair of DC output terminals 11, 12, and a starting resistor 13;
  • the DC power supply 3 is composed of a rectifying / smoothing circuit or a storage battery connected to the AC power supply, and supplies a predetermined DC voltage to the pair of DC input terminals 4 and 5.
  • Transformer 6 is core 1 It has primary, secondary and tertiary windings N l, N 2, N 3 wound around 4 and mutually electromagnetically coupled.
  • the switch 7 is a controllable semiconductor switch such as a field-effect transistor, and is connected between the pair of DC input terminals 4 and 5 via the primary winding N 1.
  • a current detection resistor 8 as a current detector is connected between the switch 7 and the ground-side DC input terminal 5.
  • a current detection signal V i consisting of a voltage proportional to the current flowing through the primary winding N 1 and the switch 7 between both terminals of the current detection resistor 8 is obtained.
  • a first rectifying and smoothing circuit 9 for the load 15 is connected to the secondary winding N 2 of the transformer 6.
  • the first rectifying and smoothing circuit 9 includes a first diode D 1 and a first smoothing capacitor C 1.
  • the first smoothing capacitor C 1 is connected in parallel to the secondary winding N 2 via the first diode D 1 and to the pair of DC output terminals 11 and 12.
  • a load 15 connected between the pair of DC output terminals 11 and 12 is a variable load that takes a normal load state and a light load state.
  • the second rectifying / smoothing circuit 10 as a power supply of the switch control circuit 2 includes a second diode D 2 and a second smoothing capacitor C 2.
  • the second smoothing capacitor C 2 is connected in parallel to the tertiary winding N 3 of the transformer 6 via a second diode D 2.
  • One end of the second smoothing capacitor C 2 is connected to one DC input terminal 4 via a starting resistor 13 and to the positive power supply terminal 16 a of the switch control circuit 2.
  • the other end of the second smoothing capacitor C 2 and the ground terminal 16 b of the switch control circuit 2 are connected to the ground-side DC input terminal 5.
  • the switch control circuit 2 is roughly composed of an output voltage detection circuit 17, a switch control pulse generation circuit 18, an intermittent command generation circuit 19, and an intermittent command prevention circuit 20, and the load 15 is higher than a predetermined value. Intermittently controls the on / off control of the switch 7 when the load 15 is smaller than the predetermined value, and the first function of continuously controlling the switch 7 to turn on and off when the load is large.
  • the second rectifying / smoothing circuit 10 determines whether or not the output voltage of the second rectifying / smoothing circuit 10 is lower than a predetermined voltage value. In response to the determination result indicating that the power is lower than the threshold, the switch 7 according to the second function is turned on and off. A third function of preventing an intermittent stop operation of the power control.
  • the output voltage detection circuit 17 is connected to the pair of DC output terminals 11 and 12 by lines 21 and 22. The details will be described later.
  • the switch control pulse generating circuit 18 is optically coupled to the output voltage detecting circuit 17 and connected to the current detecting resistor 8 by the line 23 and to the control terminal of the switch 7 by the line 24. To form a switch control pulse for turning on and off.
  • the current detection resistor 8 is shown outside the switch control pulse generation circuit 18 in FIG. 1, the current detection resistor 8 can be considered as a part of the switch control pulse generation circuit 18. The details of the switch control pulse generation circuit 18 will be described later.
  • the intermittent command generation circuit 19 is connected to the switch control pulse generation circuit 18 by a line 25, and a voltage feedback signal including the information on the magnitude of the DC output voltage contained in the switch control pulse generation circuit 18 is provided. Based on V f, it is determined whether or not the load 15 is a light load, and an intermittent command for generating a switch control pulse intermittently at a light load is formed. The details of the intermittent command generation circuit 19 will be described later.
  • the intermittent command prevention circuit 20 is connected to the control power supply terminal 16a by the line 26 and connected between the intermittent command generation circuit 19 and the switch control pulse generation circuit 18 by the lines 27 and 28. Have been.
  • the intermittent command blocking circuit 20 determines whether or not the voltage of the control power terminal 16a has become a predetermined value or less, and determines that the voltage of the control power terminal 16a has become a predetermined value or less.
  • An intermittent operation preventing means for preventing transmission of the intermittent command when the determination result shown is obtained. It should be noted that the intermittent command blocking circuit 20 can be arranged outside the switch control circuit 2. The details of the intermittent command blocking circuit 20 will be described later.
  • Fig. 3 shows the state of each part in Fig. 1 and Fig. 2 at the time of rated load, that is, normal load state.
  • Fig. 4 shows the state of each part in Fig. 1 and Fig. 2 immediately before starting the intermittent operation.
  • Figures 1 and 2 show the state of each part during normal load, intermittent operation, and intermittent operation prevention.
  • the output voltage detection circuit 17 includes a series circuit of first and second voltage-dividing resistors 29 and 30 connected between the pair of output voltage detection lines 21 and 22, and a first and a second circuit.
  • An npn-type transistor 31 having a base connected to the interconnection point of the voltage-dividing resistors 29 and 30 connected to the emitter of the transistor 31 and the line 22
  • it comprises a reference voltage source 32 composed of a Zener diode, and a light emitting diode 34 as a light emitting element connected between the line 21 and the collector of the transistor 31 via a current limiting resistor 33.
  • the transistor 31 functions as an error amplifier, and a current having a value corresponding to a difference between a detection value obtained by dividing the DC output voltage between the paired lines 21 and 22 and the reference voltage of the reference voltage source 32.
  • the light emitting diode 34 Through the light emitting diode 34. Therefore, the light emitting diode 34 generates an optical output signal whose intensity is proportional to the DC output voltage between the paired lines 21 and 22.
  • the switch control pulse generation circuit 18 is composed of an oscillator 35, an RS flip-flop 36, an AND gate 37, a drive circuit 38, a phototransistor 39 as a light receiving element, a resistor 40, a DC power supply 41, and a first power supply. And a comparator 42. As described above, the current detection resistor 8 can be included in the switch control pulse generation circuit 18.
  • the oscillator 35 generates a high-frequency clock pulse of, for example, 20 to 100 kHz, as shown in FIGS. 3 (B) and 4 (B), which is set in the RS flip-flop 36. Input terminal S.
  • the RS flip-flop 36 has a set input terminal S connected to the oscillator 35 as the first input terminal and a reset input terminal S connected to the first comparator 42 as the second input terminal. And a reset state supplied in response to the clock pulse supplied from the oscillator 35 shown in FIG. 3 (B), and the reset signal supplied from the first comparator 42. In response, the device enters the reset state and outputs the square-wave pulse shown in Fig. 3 (C) and Fig. 4 (C). Note that FIG. 5 (A) also shows the output pulse of the RS flip-flop 36. Here, the output pulse of the RS flip-flop 36 is schematically shown by a vertically extending line.
  • the AND gate 37 serving as a logic circuit for selectively inhibiting the control pulse is provided with a first input terminal connected to the output terminal Q of the RS flip-flop 36 and a second input terminal connected to the intermittent command line 28. Input terminal and the signal of line 28 Depending on the state, the transmission of the output pulse train of the RS flip-flop 36 is controlled so that the continuous pulse train shown in the section before tl in Fig. 5 (B) or the section from tl to t6 in Fig. 5 (B).
  • the output V37 consists of the intermittent pulse train shown in the figure, and the pulse train in which the intermittent operation is prohibited shown in the section from t6 to t7 in Fig. 5B.
  • the output terminal of the AND gate 37 is connected to the control terminal of the switch 7 in FIG. 1 via a well-known drive circuit 38 and a line 24. Accordingly, the output V37 of the AND gate 37 indicates the ON / OFF control pulse of the switch 7.
  • the supply of the control pulse to the switch 7 is provided between the control terminal, ie the gate and the source.
  • the connection between the drive circuit 38 and the source of the switch 7 is omitted for simplification of the drawing.
  • the phototransistor 39 is optically coupled to the light emitting diode 34 of the output voltage detection circuit 17. Phototransistor 39 is connected to bias DC voltage source 41 via resistor 40.
  • a voltage feedback signal Vf having an inversely proportional relationship with the voltage between the DC output terminals 11 and 12 is obtained between both terminals of the phototransistor 39.
  • the negative input terminal of the output voltage detecting circuit 1 7 and the phototransistor 3 9 and the resistor 4 0 and Paiasu DC voltage source 4 1 and the voltage feedback signal forming circuit first c configured comparator 4 2 resistors The positive input terminal is connected to the connection point between the current detection resistor 8 and the switch 7 as the ramp voltage generating means shown in Fig. 1 by the line 23 and the connection point 43 between the connection point 40 and the phototransistor 39. c are connected Accordingly, as shown in FIG.
  • the first comparator 4 3 and the current detection signal Vi consisting ramp voltage synchronized with the on-the Rusui pitch 7 obtained in the line 2 3 Compare the voltage feedback signal Vf at the connection point 4 3 and generate a high-level output when the current detection signal Vi is equal to or higher than the voltage feedback signal Vf, which is the reset signal of the RS flip-flop 36. It becomes. Therefore, the RS flip-flop 36 is reset at the time t2 after being set at the time tl as shown in FIGS. 3 (C) and 4 (C). Since the oscillator 35 repeatedly generates a clock pulse with the period 8, the RS flip-flop 36 is set at the time t 3 in FIG. 3, and the same operation as the period t 1 to t 3 is performed. Repetition occurs.
  • the DC output voltage increases as the load 15 decreases. Therefore, as the load 15 approaches from the rated load, that is, the normal load state, to the lighter load state, which is lighter than this, Therefore, the voltage feedback signal Vf at the connection point 43 becomes low.
  • the current detection signal Vi changes in a sawtooth or triangular waveform due to the inductance of the primary winding N1. It reaches the voltage feedback signal Vf in a shorter time than 3 (E). Therefore, as the load 15 becomes lighter, the width of the output pulse of the RS flip-flop 36 becomes narrower, and the control pulse shown in FIGS. 3 (D) and 4 (D) for controlling the switch 7 to turn on and off The width and duty ratio are reduced. As a result, when the DC output voltage rises, an operation of decreasing the DC output voltage occurs, and the DC output voltage is stabilized.
  • the intermittent command generation circuit 19 includes a second comparator 44 and a reference voltage generation circuit 45, and generates an intermittent command signal shown in FIG. 5D based on the voltage feedback signal Vf.
  • the positive input terminal of the second comparator 44 is connected to the connection point 43 by a line 25, and the negative input terminal is connected to the reference voltage generation circuit 45.
  • the reference voltage generation circuit 45 includes a first reference voltage source 46 for generating the first reference voltage VI for the hysteresis operation of the second comparator 44, and a second reference for generating the second reference voltage V2. It has a voltage source 47, first and second selection switches 48 and 49, and a phase inversion circuit 50.
  • the first and second reference voltage sources 46 and 47 generate the first and second reference voltages VI and V2 shown in FIG. 5C, and the first and second reference voltage sources 46 and 47 generate the first and second reference voltages. It is connected to the negative input terminal of the second comparator 44 via the selection switch 4 8, 4 9.
  • the control terminal of the first selection switch 48 is connected to the output terminal of the second comparator 44, and the first selection switch 48 is turned on in response to the high level output of the second comparator 44. become. Since the control terminal of the second selection switch 49 is connected to the output terminal of the second comparator 44 via the inverting circuit 50, the second selection switch 49 is connected to the low terminal of the second comparator 44. Turns on in response to level output.
  • the voltage feedback signal Vf at the connection point 43 is always kept higher than the first and second reference voltages VI and V2. I'm dripping. Therefore, in the rated load state, the output of the second comparator 44 is always at a high level as shown in the section before tl in FIG. 5 (D), and the first selection switch 48 is turned on. Is kept. Also, the output of the second comparator 44 is Since the output V44 is continuously at a high level, the output panel of the RS flip-flop 36 shown schematically in FIG.
  • the voltage feedback signal Vf at the connection point 43 becomes lower than the section before t1, as shown in the section from t1 to t6 in FIG.
  • the output V44 of the second comparator 44 is at a high level, and the intermittent command blocking circuit 20 blocks the output V44 of the second comparator 44.
  • the output of the RS flip-flop 36 in FIG. 5 (A) passes through the AND gate 37, and the output consisting of the control pulse shown in FIG. 5 (B) from the AND gate 37. V 37 is obtained. Therefore, the switch 7 in FIG.
  • the second comparator 44 compares the voltage feedback signal Vf with the second reference voltage V2. This causes a hysteresis operation, and the output V44 of the second comparator 44 is kept at a low level until time t4.
  • switch 7 When switch 7 is turned off, the voltages of the first and second smoothing capacitors Cl and C2 gradually decrease, and the voltage feedback signal Vf gradually increases.
  • the second reference voltage V 2 is reached.
  • the output V 44 of the second comparator 44 changes to a high level.
  • the second selection switch 49 is turned off, the first selection switch 48 is turned on, the output V44 of the second comparator 44 is kept at a high level, and the same operation as in the period from t2 to t3 is performed. Occurs during the period from t4 to t5.
  • the high-level period of the output V44 of the second comparator 44 in FIG. The on / off drive period Ton is shown, and the low level period is the on / off stop period Toff of the switch 7. Therefore, the output V44 of the second comparator 44 can be called an intermittent command signal.
  • the intermittent command blocking circuit 20 of FIG. 2 provided in accordance with the present invention includes a third comparator 51 having a well-known hysteresis characteristic, a reference voltage source 52, and an OR gate 53.
  • the negative input terminal of the third comparator 51 as a judging means is connected to the second smoothing capacitor C2 in FIG.
  • the reference voltage V52 of the reference voltage 52 is set to an allowable minimum value of the power supply voltage Vcc of the switch control circuit 2, or a value between the allowable minimum value and a normal value. In other words, the value is set to a value higher than the maximum value of the voltage (stop voltage) at which the operation of the switch control circuit 2 cannot be maintained. As shown in the section before t6 in Fig.
  • Fig. 5 (F) shows As shown, the output V51 of the third comparator 51 is kept low. Therefore, the output V51 of the third comparator 51 does not prevent the output V44 of the second comparator 44 from passing through the OR gate 53.
  • the control pulse is continuously generated without waiting for the scheduled generation period t8 to t9 of the control pulse according to the intermittent control indicated by the dotted line in FIG. 5 (D).
  • the charging of the first and second smoothing capacitors C 1 and C 2 progresses rapidly, and the control power supply voltage V cc increases from the time t6 and becomes lower than the allowable minimum voltage V min. And the operation stop of the switch control circuit 2 can be prevented.
  • the third comparator 51 desirably has a hysteresis characteristic. However, the effect according to the present invention can be obtained without having the hysteresis characteristic.In other words, the control power supply voltage Vcc is lower than the reference voltage V52. Since the third comparator 51 continues to generate a high-level output during the shut down, the intermittent command is prevented during this under-shot period, and the control pulse is output in the same manner as the period from t 6 to t 7 in FIG. Can be sent to Switch 7.
  • the switch 7 when the switch 7 is operated intermittently to improve the efficiency at light load, if the control power supply voltage Vcc decreases, the intermittent operation is automatically prevented. Then, the on / off control of the switch 7 is started, and the control power supply voltage Vcc returns to a normal value or a value close to the normal value. As a result, even if the number of times of switching per unit time is reduced to improve the efficiency at light load, the operation of the switch control circuit 2 does not stop, and the DC-DC converter can be driven stably. Become. Further, even if the control power supply voltage V cc decreases to some extent due to fluctuations in the DC input voltage, the operation of the switch control circuit 2 does not stop. Therefore, it is possible to provide a DC-DC converter that satisfies both the efficiency improvement and the operation stability. Second embodiment
  • the DC-DC converter according to the second embodiment shown in FIG. 6 omits the secondary winding N 2 of the transformer 6 of the DC-DC converter shown in FIG. 1, and connects a rectifying / smoothing circuit 9 in parallel with the switch 7.
  • a connected modified DC-DC conversion circuit 1a is provided, and the other configuration is the same as that of FIG.
  • the rectifier diode D 1 is in a reverse bias state during the ON period of the switch 7, so that Energy is stored in the primary winding N1 having a conductance, and the rectifying diode D1 is in a forward bias state during the off period of the switch 7, so that the stored energy in the primary winding N1 is released.
  • the first smoothing capacitor C1 is charged with the pressurized value of the voltage of the power supply 3 and the voltage of the primary winding N1.
  • the DC-DC converter of Fig. 6 operates as a step-up switching regulator.
  • the winding N3 in FIG. 6 is connected to a second rectifying / smoothing circuit 10 as a control power supply similarly to the tertiary winding N3 in FIG. Since the switch control circuit 2 of the DC-DC converter of FIG. 6 is substantially the same as that of the first embodiment, the same effects as those of the first embodiment can be obtained.
  • the DC-DC converter according to the third embodiment has a modified switch control circuit 2a shown in FIG. 7 instead of the switch control circuit 2 in FIG. 1, and the other configuration is the same as that in FIG. .
  • the switch control circuit 2a shown in FIG. 7 has a modified switch control pulse generation circuit 18a in place of the switch control pulse generation circuit 18 in the switch control circuit 2 shown in FIG. It was formed identically to 2.
  • the switch control pulse generating circuit 18a in FIG. 7 differs from FIG. 2 in that an AND gate 37 is connected between the oscillator 35 and the RS flip-flop 36, and the other points are the same as those in FIG. Is formed. That is, in FIG.
  • the oscillator 35 is connected to one input terminal of the AND gate 37, the OR gate 53 is connected to the other input terminal, and the output terminal is connected to the first terminal of the RS flip-flop 36. Is connected to the set input terminal S as the input terminal of.
  • the output terminal of the RS flip-prop 36 is connected to the drive circuit 38.
  • switch control pulse generation circuit 18a of FIG. 7 when the output pulse of the generator 35 is not blocked by the output of the OR gate 53 by the AND gate 37.
  • the output pulse of the generator 35 Used as set input signal for rip-flop 36.
  • the basic operation of the switch control pulse generation circuit 18a of FIG. 7 is the same as that of the switch control pulse generation circuit 18 of FIG.
  • the DC-DC conversion circuit 1 in FIG. 1 is a well-known forward-type DC-DC converter circuit, a half-bridge type DC-DC conversion circuit having a well-known pair of switches, or a modified half-bridge.
  • Type DC-DC conversion circuit, or a conversion circuit consisting of a prism type inverter circuit with four switches connected to the bridge and a rectifying and smoothing circuit connected to this output stage, or two switches It is possible to provide a conversion circuit composed of a combination of a push-pull type impeller composed of a combination with a transformer and a rectifying and smoothing circuit.
  • the DC-DC conversion circuit 1 can be replaced by any circuit that controls one or more switches on / off.
  • the on / off repetition frequency of the switch 7, that is, the switching frequency is not fixed, but can be changed according to the magnitude of the load.
  • the second comparator 44 of the intermittent command generation circuit 19 can be a comparator with a hysteresis characteristic, and the reference voltage source 45 can be a single reference voltage source.
  • the switch 7 can be another semiconductor switching element such as a bipolar transistor or an IGBT (insulated gate bipolar transistor).
  • the optical coupling between the light emitting diode 34 and the phototransistor 39 can be used as an electrical coupling circuit.
  • the output voltage detection circuit 17 forms a voltage feedback signal Vf that is inversely proportional to the voltage between the DC output terminals 11 and 12, and this voltage feedback signal Vf is used as a first comparator. 4 Feed to 2.
  • a current detection means using a magnetoelectric conversion device such as a Hall element can be provided.
  • the AND gate 37 and the OR gate can be another equivalent logic circuit.
  • the intermittent command generation circuit 19 can be modified to a circuit that detects whether or not the load is light based on whether or not the current detection signal Vi is lower than a predetermined value.
  • the DC-DC converter according to the present invention can be used for a DC power supply device.

Abstract

DC-DC変換器は、直流入力端子4、5間にトランス6の1次巻線N1を介して接続されたスイッチ7を有する。トランス6の2次巻線N2に第1の整流平滑回路9が接続され、トランス6の3次巻線N3に第2の整流平滑回路10が接続されている。一定の直流出力電圧を得るためにスイッチ制御パルス発生回路18がスイッチ7の制御端子に接続されている。軽負荷時にスイッチ7のオン・オフ制御を間欠的に停止するために間欠指令発生回路19がスイッチ制御パルス発生回路18に接続されている。間欠指令阻止回路20によって制御電源電圧Vccが所定値まで低下したか否かが判定される。制御電源電圧Vccが所定値まで低下した時に、間欠指令発生回路19の間欠指令を無効にされる。

Description

明 細 書
D C一 D C変換器 技術分野
本発明は軽負荷時に間欠モー ドでスィツチを制御する機能を有している D C一 D C変換器に関する。 背景技術
代表的な D C - D C変換器即ち D C— D Cコンバータは、 対の直流電源端 子間にトランスの 1次卷線を介して接続されたスィツチと、 このスィッチを オン · オフ制御する制御回路と、 トランスの 2次卷線と負荷との間に接続さ れた第 1の整流平滑回路と、 トランスの 3次卷線と制御回路の電源端子との 間に接続された第 2の整流平滑回路とから成る。 第 1の整流平滑回路は負荷 に直流電力を供給するために使用される。 第 2の整流平滑回路は制御回路に 直流電力を供給するために使用される。
上述のような D C— D Cコンバータにおいて軽負荷時の効率向上を図るた めに、 軽負荷時にスィツチを間欠的にオン ·オフ制御する方式が知られてい る。 この間欠的オン · オフ制御方式においては、 図 5 ( B )の t 3〜 t 4 期間に 概略的に示すようにスィツチの制御パルスの供給を停止する期間 T off が間 欠的に配置され、 且つスィツチに対する制御パルスの供給期間 T on も間欠的 に配置される。 この結果、 スィッチが間欠的に駆動される。 このようにスィ ツチが間欠的に駆動されると、 単位時間当りのスィ ッチのオン ' オフの回数 即ちスィツチング回数が、 スィツチが連続的にオン · オフ制御される場合の スィツチング回数に比べて大幅に少なくなり、 単位時間当りのスィツチング 損失が低減し、 軽負荷時の D C— D Cコンバータの効率が向上する。
しかし、 スィッチが間欠的にオン · オフ駆動される時には、 負荷に電力を供 給するための第 1の整流平滑回路の平滑コンデンサの電圧がスィツチのォ ン . オフ駆動期間に上昇し、 その後のスィッチのオン ' オフ駆動の停止期間 に徐々に低下する。 これと同時に、 制御回路のための第 2の整流平滑回路か ら得られる電源電圧もスィツチのオン · オフ駆動期間に上昇し、 その後のス イッチのオン · オフ駆動の停止期間に徐々に低下する。 ところで、 負荷が極 めて軽くなった場合、 負荷が接続されている第 1の整流平滑回路の平滑コン デンサの電圧低下の速度が遅くなる。 これに対し、 スィッチ制御回路の消費 電力は負荷の変化に応じてほとんど変化しないので、 負荷が極めて軽い場合 であってもスィツチ制御回路のための第 2の整流平滑回路の平滑コンデンサ の電圧は通常負荷の場合とほぼ同様に低下する。 従って、 負荷が極めて軽い 場合には、 スィツチ制御回路のための第 2の整流平滑回路の平滑コンデンサ の電圧の低下の速度が、 負荷が接続されている第 1の整流平滑回路の平滑コ ンデンサの電圧の低下の速度より も大きい。 スィツチ制御回路のための第 2 の整流平滑回路の平滑コンデンサの電圧が許容最低電圧より も低くなると、 スイツチ制御回路によるスィ ッチのオン · オフ制御が不能になり、 且つスィ ツチ制御回路の動作が停止する。 スィツチ制御回路の動作が一旦停止すると、 一般には数 1 0 0 m sの再起動時間を経過して再ぴ動作状態となる。 再起動 時間中には第 1及び第 2の整流平滑回路の平滑コンデンサに対する充電が行 われないので、 この電圧は更に低下し、 負荷に所望の電力を供給することが 不可能又は困難になる。
この種の問題を解決するためにスィツチ制御回路の電源を構成する トラン スの 3次卷線の卷数を増やし且つ第 2の整流平滑回路の平滑コンデンサの容 量を大きくすることが考えられる。 しかし、 このよ うに トランスの 3次卷線 の卷数を増やし且つ第 2の整流平滑回路の平滑コンデンサの容量を大きくす ると、 ここでの損失が大きくなり、 D C— D Cコンバータの総合効率が低下 する。 別の方法として間欠的動作におけるスィ ッチのオン ' オフ制御の停止 期間 T off を短く設定することが考えられる。 しかし、 停止期間 T off を短く すると、 単位時間当りのスイ ッチング回数の低減効率が少なくなり、 効率向 上を十分に図れない。 発明の開示 そこで、 本の目的は、 スィ ッチ制御回路の正常動作を確保して効率向上を 図ることができる D C— D C変換器を提供することにある。
上記課題を解決し、 上記目的を達成するための本発明を、 実施形態を示す 図面の符号を参照して次に説明する。 なお、 ここでの参照符号は、 本願発明 の理解を助けるために付されており、 本願発明を限定するものではない。 上記目的を達成するための本発明の DC— DC変換器は、対の直流入力端子 4, 5 と、 トランス 6 と、 前記対の直流入力端子 4 , 5間に前記トランスを介し て接続された少なく とも 1つのスィッチ 7と、 前記スィツチ 7をオン 'オフ 制御するために前記スィツチ 7の制御端子に接続されたスィツチ制御回路 2 又は 2 a と、 前記トランス 6 と負荷 1 5との間に接続された第 1の整流平滑 回路 9 と、 前記トランス 6 と前記スィツチ制御回路 2又は 2 aの電源端子 1 6 a , 1 6 b との間に接続された第 2の整流平滑回路 1 0 とを有している。 前記スィツチ制御回路 2又は 2 aは、 前記負荷 1 5が所定値より も大きい時 に前記スィツチ 7を連続的にオン · オフ制御する第 1 の機能及び前記負荷 1 5が前記所定値よりも小さい時に前記スィツチ 7のオン · オフ制御を間欠的 に停止する第 2の機能を有している。 前記 DC— DC変換器は、 更に、 前記第 2の整流平滑回路 1 0の出力電圧が所定値より も低いか否かを判定する判定 手段と、 前記判定手段から得られた前記第 2の整流平滑回路 1 0の出力電圧 が前記所定値より も低いことを示す信号に応答して前記第 2の機能に従う前 記スィツチのオン · オフ制御の間欠的停止動作を阻止する間欠動作阻止手段 とを有している。
前記所定値は、 前記第 2の整流平滑回路 1 0の定格出力電圧より も低く且 つ前記スィツチ制御回路 2又は 2 aの動作を維持することができる許容最低 電圧又はこれよりも高い値であることが望ましい。
前記スィツチ制御回路 2又は 2 aは、 前記第 1の整流平滑回路 9の直流出力 電圧を検出する出力電圧検出回路 1 7 と、 前記出力電圧検出回路 1 7の出力 に応答して前記第 1の整流平滑回路 9の出力電圧を一定に制御するためのパ ルスを形成して前記スィツチ 7の制御端子に送るスィツチ制御パルス発生回 路 1 8又は 1 8 a と、 前記負荷 1 5が所定値よりも小さいか否かを検出し、 前記負荷 1 5が前記所定値よりも小さい時に前記スィツチ 7をオン 'オフす るためのパルスを前記スィツチ 7に供給することを禁止するための指令を発 生する間欠指令発生回路 1 9とを有していることが望ましい。
前記間欠動作阻止手段は、 前記間欠指令発生回路 1 9から出力される間欠 指令を無効にする論理回路 5 3であることが望ましい。
前記スィツチ制御パルス発生回路 1 8は、 前記スィ ツチのオン期間に同期し て傾斜電圧を発生する傾斜電圧発生手段 8又は 6 0 と、 前記出力電圧検出回 路 1 7 の出力に応答して電圧帰還信号を形成する電圧帰還信号形成手段と、 前記電圧帰還信号形成手段と前記傾斜電圧発生手段 8又は 6 0とに接続され, 傾斜電圧発生手段の出力と前記電圧帰還信号とを比較する比較器 4 2と、 所 定の周期でパルスを発生する発振器 3 5 と、 前記発振器 3 5に接続された第 1 の入力端子と前記比較器 4 2に接続された第 2の入力端子とを有する R S フリ ップフ口ップ 3 6 と、 前記間欠指令発生回路 1 9 の出力が前記スィツチ 7をオン . オフするためのパルスの通過を禁止を示している時に前記 R Sフ リ ップフロップ 3 6の出力パルスの通過を禁止するために前記 R Sフリ ップ フロップ 3 6の出力端子に接続された一方の入力端子と前記間欠指令発生回 路 1 9に接続された他方 入力端子とを有している論理回路 3 7と、 前記論 理回路 3 7の出力に基づいて前記スィツチ 7を駆動する駆動手段 3 8 とから 成ることが望ましい。
前記スィツチ制御パルス発生回路 2 aは、 前記スィツチのオン期間に同期 して傾斜電圧を発生する傾斜電圧発生手段 8又は 6 0と、 前記出力電圧検出 回路 1 7 の出力に応答して電圧帰還信号を形成する電圧帰還信号形成手段と, 傾斜電圧発生手段の出力と前記電圧帰還信号とを比較するために前記電圧帰 還信号形成手段と前記傾斜電圧発生手段とに接続された比較器 4 2 と、 所定 の周期でパルスを発生する発振器 3 5と、 前記間欠指令発生回路 1 9 の出力 が前記スィッチ 7をオン ' オフするためのパルスの通過禁止を示している時 に前記発振器 3 5 の出力パルスの通過を禁止するために前記発振器 3 5に接 続された一方の入力端子と前記間欠指令発生回路 1 9に接続された他方の入 力端子とを有している論理回路 3 7と、 前記論理回路 3 7に接続された第 1 の入力端子と前記比較器 4 2に接続された第 2の入力端子とを有する R Sフ リ ップフロップ 3 6 と、 前記 R Sフリ ップフロップ 3 6の出力に基づいて前 記スィッチ 7を駆動する駆動手段 3 8とで構成することができる。
前記判定手段は、 前記第 2の整流平滑回路 1 0の出力電圧検出する電圧検出 手段 2 6 と、 所定の電圧基準 (V 5 2 ) を与える基準電圧源 5 2と、 前記電 圧検出手段 2 6の出力が前記所定の電圧基準 (V 5 2 ) より も低いか否かを 判定するために前記電圧検出手段 2 6に接続された第 1の入力端子と前記基 準電圧源 5 2に接続された第 2の入力端子とを有する比較器 5 1 とで構成す ることができる。
間欠動作阻止手段 5 3は、 前記電圧検出手段 2 6の出力が前記所定の電圧 基準 (V 5 2 ) よりも低いことを示す信号に応答して前記間欠指令発生回路 1 9の前記スィツチ 7のオン · オフ制御の間欠的停止を示す信号の伝送を阻 止するために前記比較器 5 1に接続された第 1の入力端子と前記間欠指令発 生回路 1 9に接続された第 2の入力端子とを有する論理回路手段 5 3である ことが望ましい。
本発明によれば、 前記スィツチ制御回路 2又は 2 a の電源端子 1 6 a , 1 6 bに接続された制御電源と して機能する第 2の整流平滑回路 1 0の出力電 圧が所定値以下になった時にスィツチ 7の間欠的動作が阻止される。 このた め、 スィ ッチ 7の連続的オン ' オフ動作が生じ、 第 2の整流平滑回路 1 0の 電圧が正常値又はこの近くに戻る。 この結果、 軽負荷時の効率改善のために スィツチが間欠的に駆動されてもスィツチ制御回路の電源電圧低下に基づく 動作停止が発生せず、 D C _ D C変換器の安定的駆動が可能になる。
また、 たとえ前記スィツチ 7のオン ·オフ制御を間欠的に停止する期間が長 くなつたとしても、 スィツチ制御回路の電源電圧が許容最低電圧よりも低く なることがない。 従って、 負荷が所定値より も小さい時に前記スィ ッチ 7の オン · オフ制御を間欠的に停止するモードにおける前記スィツチ 7のオン · オフ駆動期間 T on と前記スィ ッチ 7のオン · オフ駆動停止期間 T off との比 率を高効率が得られるように決定し、 D C— D C変換器の効率を高めること ができる。 図面の簡単な説明
図 1は本発明の第 1の実施形態に従う D C— D Cコンバータを示す回路で ある。
図 2は図 1 のスィツチ制御回路を詳しく示すプロック図である。
図 3は定格負荷時における図 1及ぴ図 2の各部の状態を示す波形図である, 図 4は間欠動作直前における図 1及ぴ図 2の各部の状態を示す波形図であ る。
図 5は 3つのスィツチ制御モードにおける図 2の各部の状態を示す波形図 である。
図 6は第 2の実施形態の D C— D Cコンバータを示す回路図である。
図 7は第 3の実施形態のスィツチ制御回路を図 2と同様に示す回路図であ る。
図 8は変形例のスィツチ制御回路の一部を示す回路図である。
図 9は図 8の各部の状態を示す波形図である。 発明を実施するための最良の形態 第 1 の実施形態
次に、 図 1〜図 5を参照して本発明の第 1の実施形態の D C— D C変換装 置を説明する。
図 1に示す第 1の実施形態のフライパック型 D C— D C変換器は、 大別し て D C— D C変換回路 1 とスィ ッチ制御回路 2とから成る。
D C— D C変換回路 1は、 直流電源 3に接続された対の直流入力端子 4、 5 と、 トランス 6 と、 スィ ッチ 7 と、 電流検出抵抗 8 と、 第 1及び第 2の整 流平滑回路 9、 1 0と、 対の直流出力端子 1 1、 1 2と、 起動抵抗 1 3とを 有する。
直流電源 3は、 交流電源に接続された整流平滑回路又は蓄電池から成り、 対の直流入力端子 4、 5に所定の直流電圧を供給する。 トランス 6はコア 1 4に卷き回され且つ相互に電磁結合された 1次、 2次及ぴ 3次卷線 N l 、 N 2 、 N 3 を有する。 スィ ッチ 7は電界効果トランジスタ等の制御可能な半導体ス イッチであって、 1次卷線 N 1 を介して対の直流入力端子 4、 5間に接続さ れている。 電流検出器としての電流検出抵抗 8はスィ ッチ 7とグランド側直 流入力端子 5との間に接続されている。 この電流検出抵抗 8の両端子間に 1 次卷線 N 1 及ぴスィ ッチ 7を流れる電流に比例した電圧から成る電流検出信 号 V i が得られる。
負荷 1 5のための第 1 の整流平滑回路 9はトランス 6の 2次卷線 N 2 に接続 されている。 この第 1 の整流平滑回路 9は第 1 のダイオード D 1 と第 1 の平 滑コンデンサ C 1 とから成る。 第 1の平滑コンデンサ C 1 は第 1のダイォー ド D 1 を介して 2次卷線 N 2 に並列に接続されていると共に対の直流出力端 子 1 1 、 1 2に接続されている。 対の直流出力端子 1 1、 1 2間に接続され た負荷 1 5は、 通常負荷状態と軽負荷状態とをとる変動負荷である。
スィツチ制御回路 2の電源としての第 2の整流平滑回路 1 0は、 第 2のダ ィオード D 2 と第 2の平滑コンデンサ C 2 とから成る。 第 2の平滑コンデン サ C 2 は第 2のダイオード D 2 を介してトランス 6の 3次卷線 N 3 に並列に 接続されている。 第 2の平滑コンデンサ C 2 の一端は起動抵抗 1 3を介して 一方の直流入力端子 4に接続されていると共にスィ ッチ制御回路 2の正側電 源端子 1 6 aに接続されている。 第 2の平滑コンデンサ C 2 の他端及ぴスィ ツチ制御回路 2のグランド端子 1 6 bはグランド側直流入力端子 5に接続さ れている。
スィツチ制御回路 2は、 大別して出力電圧検出回路 1 7 と、 スィツチ制御 パルス発生回路 1 8 と、 間欠指令発生回路 1 9と、 間欠指令阻止回路 2 0と から成り、 負荷 1 5が所定値よりも大きい通常負荷状態の時にスィツチ 7を 連続的にオン · オフ制御する第 1の機能と、 負荷 1 5が前記所定値よりも小 さい軽負荷状態の時にスィツチ 7のオン 'オフ制御を間欠的に停止する第 2 の機能と、 第 2の整流平滑回路 1 0の出力電圧が所定電圧値より も低いか否 かを判定し、 第 2の整流平滑回路 1 0'の出力電圧が所定電圧値より も低いこ とを示す判定結果に応答して、 前記第 2の機能に従うスィ ッチ 7のオン 'ォ フ制御の間欠的停止動作を阻止する第 3の機能とを有する。
出力電圧検出回路 1 7はライン 2 1、 2 2によって対の直流出力端子 1 1、 1 2に接続されている。 この詳細は追って説明する。
スィツチ制御パルス発生回路 1 8は出力電圧検出回路 1 7に光結合され且 つ電流検出抵抗 8にライン 2 3によって接続され且つライン 2 4によってス イッチ 7の制御端子に接続され、 スィ ッチ 7をオン ' オフ制御するためのス イッチ制御パルスを形成する。 なお、 電流検出抵抗 8が図 1において、 スィ ツチ制御パルス発生回路 1 8 の外側に示されているが、 電流検出抵抗 8 をス ィッチ制御パルス発生回路 1 8の一部と考えることもできる。 スイツチ制御 パルス発生回路 1 8 の詳細は後述する。
間欠指令発生回路 1 9はライン 2 5によってスィツチ制御パルス発生回路 1 8に接続され、 スイ ツチ制御パルス発生回路 1 8 の中に含まれている直流 出力電圧の大きさの情報を含む電圧帰還信号 V f に基づいて負荷 1 5が軽負 荷か否かを判定し、 軽負荷の時にスィツチ制御パルスを間欠的に発生させる ための間欠指令を形成する。 この間欠指令発生回路 1 9の詳細は後述する。 間欠指令阻止回路 2 0はライン 2 6によって制御電源端子 1 6 aに接続さ れ且つライン 2 7及ぴ 2 8によって間欠指令発生回路 1 9とスィツチ制御パ ルス発生回路 1 8 との間に接続されている。 この間欠指令阻止回路 2 0は、 制御電源端子 1 6 a の電圧が所定値以下になったか否かを判定する判定手段, 及び制御電源端子 1 6 a の電圧が所定値以下になったことを示す判定結果が 得られた時に間欠指令の伝送を阻止する間欠動作阻止手段を有する。 なお、 この間欠指令阻止回路 2 0をスィツチ制御回路 2の外側に配置することがで きる。 この間欠指令阻止回路 2 0の詳細は後述する。
次に、 スィ ッチ制御回路 2 の詳細を図 2の回路図、 及ぴ図 4〜図 5 の波形 図を参照して説明する。
なお、 図 3は定格負荷即ち通常負荷状態時の図 1及び図 2の各部の状態を 示し、 図 4は間欠動作を開始する直前の図 1及び図 2の各部の状態を示し、 図 5は正常負荷状態時、 間欠動作時,及び間欠動作阻止時における図 1及び図 2の各部の状態を示す。 出力電圧検出回路 1 7は、 対の出力電圧検出ライン 2 1、 2 2間に接続さ れた第 1及ぴ第 2の分圧用抵抗 2 9、 3 0の直列回路と、 第 1及ぴ第 2の分 圧用抵抗 2 9、 3 0の相互接続点に接続されたべ スを有する n p n型のト ランジスタ 3 1 と、 この トランジスタ 3 1 のェミ ッタとライン 2 2 との間に 接続された例えばツエナーダイォードから成る基準電圧源 3 2と、 ライン 2 1 と トランジスタ 3 1のコレクタとの間に電流制限抵抗 3 3を介して接続さ れた発光素子としての発光ダイォード 3 4とから成る。 トランジスタ 3 1は 誤差増幅器として機能し、 対のライン 2 1、 2 2間の直流出力電圧を分圧し て得た検出値と基準電圧源 3 2の基準電圧との差に対応する値を有する電流 を発光ダイォード 3 4に流す。 従って、 発光ダイォード 3 4は対のライン 2 1、 2 2間の直流出力電圧に比例した強さの光出力信号を発生する。
スィツチ制御パルス発生回路 1 8は、 発振器 3 5 と R Sフリ ップフロップ 3 6 と A N Dゲート 3 7 と駆動回路 3 8 と受光素子としてのホト トランジス タ 3 9 と抵抗 4 0と直流電源 4 1 と第 1の比較器 4 2とから成る。 なお、 既 に説明したように、 電流検出抵抗 8をスィツチ制御パルス発生回路 1 8に含 めることができる。 発振器 3 5は図 3 ( B ) 及ぴ図 4 ( B ) に示すように例 えば 2 0〜 1 0 0 k H zの高い周波数のクロ ックパルスを発生し、 これを R Sフリ ップフロップ 3 6のセッ ト入力端子 Sに供給する。
R Sフリ ップフロップ 3 6は、 発振器 3 5に接続された第 1の入力端子と してのセッ ト入力端子 Sと第 1の比較器 4 2に接続された第 2の入力端子と してのリセッ ト入力端子 Rとを有し、 図 3 ( B ) に示す発振器 3 5から供給 されたクロックパルスに応答してセッ ト状態になり、 第 1の比較器 4 2から 供給されたリセッ ト信号に応答してリセッ ト状態となり、 図 3 ( C ) 及ぴ図 4 ( C ) に示す方形波パルスを出力する。 なお、 図 5 ( A ) も R Sフリ ップ フロ ップ 3 6の出力パルスを示すが、 ここでは R Sフリ ップフロ ップ 3 6の 出力パルスが垂直に延びる線で概略的に示されている。
制御パルスを選択的に禁止するための論理回路としての A N Dゲート 3 7 は R Sフリ ップフロップ 3 6の出力端子 Qに接続された第 1 の入力端子と間 欠指令ライン 2 8に接続された第 2の入力端子とを有し、 ライン 2 8の信号 状態によって R Sフリ ップフ口ップ 3 6の出力パルス列の伝送を制御して図 5 (B) の t l よりも前の区間に示す連続的パルス列、 又は図 5 (B) の t l 〜 t 6 区間に示す間欠的パルス列、 図 5 (B ) の t 6〜 t 7区間に示す間欠 動作を禁止したパルス列から成る出力 V37 を送出する。 ANDグート 3 7の 出力端子は周知の駆動回路 3 8 とライン 2 4とを介して図 1のスィッチ 7の 制御端子に接続される。 従って、 ANDゲート 3 7の出力 V37 はスィッチ 7 のオン · オフ制御パルスを示している。 スィツチ 7に対する制御パルスの供 給は制御端子即ちゲートとソースとの間に供給される。 なお、 図示を簡略化 するために駆動回路 3 8 とスィッチ 7のソースとの接続は省略されている。 ホ ト トランジスタ 3 9は出力電圧検出回路 1 7の発光ダイオード 3 4に光 結合されている。 ホト トランジスタ 3 9は抵抗 4 0を介してバイアス直流電 圧源 4 1に接続されている。 ホト トランジスタ 3 9の両端子間には直流出力 端子 1 1、 1 2間の電圧に対して反比例的関係を有する電圧帰還信号 Vfが得 られる。従って, 出力電圧検出回路 1 7とホト トランジスタ 3 9と抵抗 4 0と パイァス直流電圧源 4 1 とによって電圧帰還信号形成回路が構成されている c 第 1の比較器 4 2の負入力端子は抵抗 4 0 とホト トランジスタ 3 9 との接 続点 4 3に接続され、 その正入力端子はライン 2 3によって図 1の傾斜電圧 発生手段としての電流検出抵抗 8とスィ ッチ 7 との接続点に接続されている c 従って、 図 3 (E) に示すように、 第 1 の比較器 4 3はライン 2 3に得られ るスィ ッチ 7のオンに同期した傾斜電圧から成る電流検出信号 Vi と接続点 4 3の電圧帰還信号 Vf とを比較し、 電流検出信号 Vi が電圧帰還信号 Vf と 同一又はこれよりも高くなった時に高レベル出力を発生し、 これが R Sフリ ップフロップ 3 6のリセッ ト信号となる。 従って、 R Sフリ ップフロップ 3 6は、 図 3 ( C ) 及ぴ図 4 (C) に示すように t l 時点でセッ トされた後に t 2 時点でリセッ トされる。 発振器 3 5は周期丁8 を有してクロックパルス を繰返して発生するので、 図 3の t 3 時点で再ぴ R Sフリ ップフロップ 3 6 はセッ トされ、 t 1 〜 t 3 期間と同様な動作の繰返しが生じる。
直流出力電圧は負荷 1 5が軽くなるに従って高くなる。 このため、 負荷 1 5が定格負荷即ち通常負荷状態からこれより も軽い軽負荷状態に近づくに従 つて接続点 4 3の電圧帰還信号 Vfが低くなる。 図 4 (E) に示すように電圧 帰還信号 Vf が図 3 (E) に比べて低くなると、 1次卷線 N1 のインダクタ ンスのために鋸波状又は三角波状に変化する電流検出信号 Vi が図 3 (E) に 比べて短い時間で電圧帰還信号 Vf に達する。 従って、 負荷 1 5が軽くなるに 従って R Sフリ ップフロ ップ 3 6の出力パルスの幅が狭くなり、 スィッチ 7 をオン · オフ制御する図 3 (D) 及ぴ図 4 (D) の制御パルスの幅及ぴデュ 一ティ比が小さく なる。 これにより、 直流出力電圧が上昇した時にはこれを 下げる動作が生じ、 直流出力電圧が安定化する。
間欠指令発生回路 1 9は、 第 2の比較器 44と参照電圧発生回路 4 5 とか ら成り、 電圧帰還信号 Vfに基づいて図 5 (D) に示す間欠指令信号を発生す る。 第 2の比較器 44の正入力端子はライン 2 5によって接続点 4 3に接続 され、 負入力端子は参照電圧発生回路 4 5に接続されている。
参照電圧発生回路 4 5は第 2の比較器 44のヒステリシス動作のために第 1の参照電圧 VI を発生する第 1の参照電圧源 46 と、 第 2の参照電圧 V2 を発生する第 2の参照電圧源 4 7 と、 第 1及び第 2の選択スィッチ 4 8、 4 9 と、 位相反転回路 5 0とを有する。 第 1及ぴ第 2の参照電圧源 4 6、 4 7 は図 5 (C) に示す第 1及ぴ第 2の参照電圧 VI 、 V2 を発生するものであ つて、 第 1及ぴ第 2の選択スィッチ 4 8、 4 9を介して第 2の比較器 44の 負入力端子に接続されている。 第 1の選択スィツチ 4 8の制御端子は第 2の 比較器 44の出力端子に接続されており、 第 1の選択スィツチ 4 8は第 2の 比較器 44の高レベル出力に応答してオン状態になる。 第 2の選択スィツチ 4 9の制御端子は反転回路 5 0を介して第 2の比較器 44の出力端子に接続 されているので、 第 2の選択スィツチ 4 9は第 2の比較器 44の低レベル出 力に応答してオン状態になる。
図 5 (C) の t lよりも前に示すように、 負荷 1 5が定格負荷の時には接 続点 4 3の電圧帰還信号 Vf が常に第 1及び第 2の参照電圧 VI 、 V2 より も高く保たれている。 従って、 定格負荷状態では図 5 (D) の t l よりも前 の区間に示すように第 2の比較器 44の出力が常に高レベルであり、 第 1の 選択スィ ッチ 4 8がオン状態に保たれている。 また、 第 2の比較器 44の出 力 V44が連続的に高レベルであるので、 図 5 (A) に概略的に示す R Sフリ ップフロップ 3 6の出力パノレスが A N Dゲート 3 7で制限されずにスィッチ 7に送られ、 ANDゲート 3 7から図 5 (B) の t l より も前の区間に示す 連続的パルス列からなる出力 V37が得られる。 この結果、スィッチ 7はオン · オフ動作を連続的に繰り返す
負荷 15が軽負荷状態になると、 接続点 4 3の電圧帰還信号 V f が図 5の t 1〜 t 6区間に示すように t 1 よりも前の区間よりも低くなる。 図 5(C)の t 2 〜 t 3 期間に示すように第 2の比較器 44の出力 V44 が高レベルであり、 且 つ間欠指令阻止回路 20が第 2の比較器 44の出力 V44 を阻止していない時 には、 図 5 ( A) の R Sフリ ップフロップ 3 6の出力が ANDゲ一 ト 3 7を通 過し、 ANDゲー ト 3 7から図 5 (B ) に示す制御パルスから成る出力 V 37 が得られる。 従って、 図 1 のスィッチ 7がオン 'オフ動作し、 第 1及ぴ第 2 の平滑コンデンサ Cl、 C2 が充電され、 この電圧が徐々に高くなる。 この結 果、 t 2〜 t 3 期間には電圧帰還信号 V f が徐々に低くなる。 t 3 時点で電圧 帰還信号 V f が第 1の参照電圧 VIに達すると、 第 2の比較器 44の出力 V44 が高レベルから低レベルに転換する。 この結果、 R Sフリ ップフロップ 3 6 の出力が ANDゲート 3 7を通過することが禁止され、 スィッチ 7のオン · オフ動作が停止する。 t 3時点で第 2の比較器 44の出力 V 44が低レベルに なると、 第 1の選択スィッチ 48がオフになり、 代って第 2の選択スィ ッチ 4 9がオンになる。 この結果、 第 2の比較器 44は電圧帰還信号 V f と第 2 の参照電圧 V 2とを比較する。 これにより、 ヒステリシス動作が生じ、 第 2の 比較器 44の出力 V44 は t 4 時点まで低レベルに保たれる。 スィッチ 7のォ ン . オフが停止していると、 第 1及ぴ第 2の平滑コンデンサ Cl、 C2 の電圧 が徐々に低下し、 電圧帰還信号 V f が徐々に高くなり、 図 5の t 4時点で第 2 の参照電圧 V 2 に達する。 この結果、 第 2の比較器 44の出力 V 44 が高レべ ルに転換する。 同時に第 2の選択スィッチ 4 9がオフ、 第 1の選択スィッチ 4 8がオンになり、 第 2の比較器 44の出力 V44 が高レベルに保たれ、 t 2 〜 t 3期間と同様な動作が t 4〜 t 5期間に生じる。
図 5 (D) の第 2の比較器 44の出力 V44の高レベル期間はスィッチ 7の オン ·オフ駆動期間 Ton を示し、 その低レベル期間はスィツチ 7のオン · ォ フ停止期間 Toff を示す。 従って、 第 2の比較器 44の出力 V44を間欠指令信 号と呼ぶこともできる
本発明に従って設けられた図 2の間欠指令阻止回路 2 0は、 周知のヒステ リシス特性を有する第 3の比較器 5 1 と基準電圧源 5 2と ORゲート 5 3 と から成り、 第 2の整流平滑回路 1 0の出力電圧が所定値より も低いか否かを 判定する機能と、 この判定によって得られた第 2の整流平滑回路 1 0の出力 電圧が前記所定値よりも低いことを示す信号に応答して前記間欠指令信号に 従うスィッチ 7のオン ' オフ制御の間欠的停止動作を阻止する機能とを有す る。 判定手段としての第 3の比較器 5 1の負入力端子は制御電源端子 1 6 a を介して図 1の第 2の平滑コンデンサ C 2に接続され、正入力端子は基準電圧 源 5 2に接続されている。 間欠的停止動作を阻止する手段と しての O R ゲ一 ト 5 3の一方の入力端子は第 2の比較器 44の出力端子に接続され、 他 方の入力端子は第 3の比較器 5 1の出力端子に接続されている。 基準電圧 5 2の基準電圧 V52 はスィツチ制御回路 2の電源電圧 V c cの許容最低値、 又 はこの許容最低値と正常値との間の値に設定されている。 換言すれば、 スィ ツチ制御回路 2の動作を維持することができない電圧(停止電圧)の最大値よ りも高い値に設定されている。 図 5 (D) の t 6よりも前の区間に示すように 制御電源電圧 V c cがヒステリシス動作の L T P (下側トリ ップボイント)と しての基準電圧 V52 よりも高い時には図 5 (F) に示すように第 3の比較器 5 1の出力 V 51 は低レベルに保たれている。 このため、 第 3の比較器 5 1の 出力 V 51は第 2の比較器 44の出力 V 44の ORゲート 5 3の通過を阻止しな い。 これに対し、 図 5 (E) の t 6時点で、 制御電源電圧 V c cが基準電圧 V 52まで低下すると、 第 3の比較器 5 1の出力 V51が高レベルになり、 この高 レベルが第 3の比較器 5 1のヒステリシス特性に従って制御電源電圧 V c c が UT P (上側トリ ップポイント) に達する t 7 まで維持される。 この結果、 ORゲート 5 3の出力は第 2の比較器 44の出力 V 44が低レベルであるにも 拘らず、 高レベルになり、 R Sフリ ップフロップ 3 6の出力パルスが AND ゲート 3 7を通過することが可能になり、 図 5 (B ) の t 6〜 t 7 区間に示す ように A N Dゲート 3 7の出力端子に制御パルスが連続的に発生する。 即ち、 図 5 ( D ) で点線で示す間欠制御に従う制御パルスの発生予定期間 t 8〜 t 9 を待たずに制御パルスが連続的に発生する。 これにより、 第 1及ぴ第 2の平 滑用コンデンサ C 1、 C 2 の充電が急速に進み、 制御電源電圧 V c cが t 6時 点から上昇し、 許容最低電圧 V min よりも低くなることが阻止され、 スイツ チ制御回路 2の動作停止を防ぐことができる。
なお、 第 3の比較器 5 1はヒステリシス特性を有することが望ましいが、 ヒステリシス特性を有していなく とも本発明に従う効果を得ることができる 即ち、 制御電源電圧 V c cが基準電圧 V 52 をアンダーシユートしている間は 第 3の比較器 5 1は高レベル出力を発生し続けるので、 このアンダーシユ ー ト期間に間欠指令を阻止して図 5の t 6〜 t 7期間と同様に制御パルスをスィ ツチ 7に送ることができる。
上述から明らかなように本実施形態によれば、 軽負荷時に効率向上のため にスィツチ 7を間欠動作させている時に、 制御電源電圧 V c c の低下が生じ ると、 自動的に間欠動作が阻止され、 スィツチ 7のオン ·オフ制御が開始し、 制御電源電圧 V c cが正常値又はこの近くの値に戻る。 この結果、 軽負荷時 の効率改善のために単位時間当りのスィツチング回数を低下させても、 スィ ツチ制御回路 2の動作停止が発生せず、 D C - D Cコンバ—タの安定的駆動が 可能になる。 また、 直流入力電圧の変動等によって制御電源電圧 V c cの低 下がある程度生じてもスィツチ制御回路 2の動作停止が生じない。 従って、 効率向上と動作の安定性との両方を満足した D C - D Cコンバ一タを提供する ことができる。 第 2の実施形態
図 6に示す第 2の実施形態の D C— D Cコンパ一タは、 図 1の D C— D C コンバータの トランス 6の 2次卷線 N 2を省き、整流平滑回路 9をスィッチ 7 に対して並列に接続した変形 D C— D C変換回路 1 aを設け、 この他は図 1 と同一に構成したものである。 図 6の D C— D Cコンバータにおいて、 スィ ツチ 7のオン期間において整流ダイォ一ド D 1 が逆バイアス状態となってィ ンダクタンスを有する 1次卷線 N1に対するエネルギの蓄積動作が生じ、スィ ツチ 7のオフ期間において整流ダイォー ド D1 が順バイアス状態となって 1 次卷線 N1の蓄積エネルギの放出動作が生じる。 これにより、 第 1の平滑コン デンサ C 1は電源 3の電圧と 1次卷線 N1の電圧との加圧値で充電される。 要 するに、 図 6の D C— D Cコンパ一タは昇圧タイプのスィ ツチングレギユレ ータとして動作する。図 6の卷線 N3は図 1の 3次卷線 N 3と同様に制御電源 としての第 2の整流平滑回路 1 0に接続されている。 図 6の D C— D Cコン バータのスィツチ制御回路 2は第 1の実施形態と実質的に同一であるので、 第 1の実施形態と同一の効果を得ることができる。 第 3の実施形態
第 3の実施形態の D C - D Cコンバータは、 図 1のスィッチ制御回路 2の 代りに図 7に示す変形されたスィツチ制御回路 2 aを設け、 この他は図 1 と 同一に構成したものである。 図 7のスィッチ制御回路 2 aは、 図 2のスイツ チ制御回路 2の中のスィツチ制御パルス発生回路 1 8の代りに変形されたス ィッチ制御パルス発生回路 1 8 aを設け、 この他は図 2と同一に形成したも のである。 図 7のスィツチ制御パルス発生回路 1 8 aは、 ANDゲート 3 7 が発振器 3 5 と R Sフリ ップフロップ 3 6 との間に接続された点において図 2 と相違し、 この他は図 2と同一に形成されている。 即ち、 図 7では AND ゲート 3 7の一方の入力端子に発振器 3 5が接続され、 その他方の入力端子 に O Rゲート 5 3が接続され、 その出力端子が R Sフリ ップフロ ップ 3 6の 第 1の入力端子としてのセッ ト入力端子 Sに接続されている。 また、 R Sフ リ ッププロップ 3 6の出力端子は駆動回路 3 8に接続されている。
図 7のスィツチ制御パルス発生回路 1 8 aでは、 O Rゲート 5 3の出力に よって発生器 3 5の出力パルスが ANDゲート 3 7で阻止されていない時に. 発生器 3 5の出力パルスが R Sフ リ ップフロップ 3 6のセッ ト入力信号とな る。 図 7のスィッチ制御パルス発生回路 1 8 aの基本的動作は図 2のスイツ チ制御パルス発生回路 1 8 と同一である。
図 7のスィツチ制御パルス発生回路 1 8 aにおいて、 もしノイズのため又 は比較器 44、 5 1のヒステリシスが小さいため等の原因で、 比較器 44、 5 1の出力にチヤタリング即ち異常振動が生じても、 スィッチ 7の制御パル スに振動が生じない。 即ち、 発振器 3 5がパルスを発生している間に ORゲ ー ト 5 3の出力が振動し、 ANDゲー ト 3 7の出力即ち R Sフリ ップフロ ッ プ 3 6のセッ ト入力が振動しても R Sフリ ップフロップ 3 6のセッ ト状態が 保持される。 これにより、 スィ ッチ 7の安定的制御が達成される。 なお、 図 2の場合には ORゲート 5 3の出力の振動によってスィツチ 7の制御パルス の異常振動が生じる恐れがある。 変形例
本発明は上述の実施形態に限定されるものではなく、 例えば次の変形が可 能なものである。
( 1 ) 図 1の D C— D C変換回路 1は、 周知のフォワード型 D C— D Cコ ンパータ回路、 周知の対のスィツチを有するハ—フブリ ッジ型 D C— D C変 換回路、 又は変形ハーフブリ ッジ型 D C— D C変換回路、 又は 4個のスイツ チをプリ ッジに接続したプリ ッジ型ィンパ一タ回路とこの出力段に接続した 整流平滑回路とから成る変換回路、 又は 2個のスィッチと トランスとの組み 合せから成るプッシュプル型ィンパータと整流平滑回路との組み合せから成 る変換回路とすることができる。 要するに、 DC— D C変換回路 1は、 1つ 又は複数のスィツチをオン · オフ制御する形式のあらゆる回路に置き変える ことができる。
( 2 ) スィッチ 7のオンオフ繰返し周波数即ちスィツチング周波数を一定 としないで、 負荷の大きさに応じて変えることができる。
(3) 電流検出抵抗 8の電圧から図 3 (E)、 図 4 (E) の鋸波状の電流検 出信号 V i を得る代りに、 図 8に示すようにコンデンサ Cとこの充電用抵抗 Rと放電用スィツチ SWとから成る傾斜電圧発生手段 6 0を設けことができ る。 図 8において、 直流電源端子 +Vの電圧によって抵抗 Rを介してコンデ ンサ Cが充電され、 コンデンサ Cから図 9 (B) に示す傾斜電圧 V cがスィ ツチ 7のオンに同期して得られる。 この場合、 図 9 (B ) に示す傾斜電圧 V cが電圧帰還信号 V f に達した時に、 R Sフリップフリ ップ 3 6が図 9 (C) に示す第 1の比較器 4 2の出力 V 42でリセッ トされ、 R Sフリ ップフリ ップ 3 6の反転出力によってスィッチ SWがオンになり、 コンデンサ Cが放電す る。
( 4) 間欠指令発生回路 1 9の第 2の比較器 4 4をヒステリシス特性付き 比較器として、 基準電圧源 4 5を単一の基準電圧源とすることができる。
( 5 ) スィ ッチ 7をパイポーラ トランジスタ、 I G B T (絶縁ゲー ト型バ ィポーラ トランジスタ) 等の別の半導体スィツチング素子にすることができ る。
( 6 ) 発光ダイオー ド 3 4とホト トランジスタ 3 9 との光結合の部分を電 気的結合回路とすることができる。 この場合には出力電圧検出回路 1 7で直 流出力端子 1 1、 1 2間の電圧に対して反比例的関係を有する電圧帰還信号 Vf を形成し、 この電圧帰還信号 Vf を第 1の比較器 4 2に供給する。
( 7 ) 電流検出抵抗 4の代りにホール素子等の磁電変換装置による電流検 出手段を設けることができる。
( 8 ) ANDゲー ト 3 7、 及び O Rゲー トをこれと等価な別の論理回路と することができる。
( 9 ) 間欠指令発生回路 1 9を電流検出信号 V i が所定値より も低いか否 かの検出に基づいて軽負荷状態か否かを検出する回路に変形することができ る。 産業上の利用の可能性
上述から明らかなように、 本発明に係わる D C— D C変換器は直流電源装 置に利用することが可能である。

Claims

請 求 の 範 .囲
1. 対の直流入力端子 (4, 5 ) と、 トランス (6 ) と、 前記対の直流入 力端子 (4, 5) 間に前記トランスを介して接続された少なく とも 1つのス イ ッチ ( 7) と、 前記スィ ッチ ( 7) をオン · オフ制御するために前記スィ ツチ ( 7 ) の制御端子に接続されたスィツチ制御回路 ( 2又は 2 a ) と、 前 記トランス (6) と負荷 (1 5) との間に接続された第 1の整流平滑回路 ( 9 ) と、 前記トランス (6 ) と前記スィ ッチ制御回路 (2又は 2 a ) の電源端子
( 1 6 a , 1 6 b ) との間に接続された第 2の整流平滑回路 ( 1 0) とを有 し、 且つ前記スィツチ制御回路 ( 2又は 2 a ) が、 前記負荷 ( 1 5 ) が所定 値より も大きい時に前記スィ ッチ ( 7) を連続的にオン · オフ制御する第 1 の機能及び前記負荷( 1 5)が前記所定値よりも小さい時に前記スィツチ(7) のオン 'オフ制御を間欠的に停止する第 2の機能を有している DC— DC変換 器であって、
前記第 2の整流平滑回路 ( 1 0) の出力電圧が所定値よりも低いか否かを 判定する判定手段 (2 6、 5 1、 5 2) と、
前記判定手段から得られた前記第 2の整流平滑回路 ( 1 0) の出力電圧が 前記所定値より も低いことを示す信号に応答して、 前記第 2の機能に従う前 記スィツチのオン · オフ制御の間欠的停止動作を阻止する間欠動作阻止手段 ( 5 3) と
を有していることを特徴とする DC— DC変換器。
2. 前記所定値は、 前記第 2の整流平滑回路 ( 1 0) の定格出力電圧より も低く且つ前記スィ ッチ制御回路 (2) の動作を維持することができる許容 最低電圧又はこれより も高い値であることを特徴とする請求項 1に従う DC 一 DC変換器。
3. 前記スィ ッチ制御回路 (2又は 2 a) は、
前記第 1の整流平滑回路 ( 9) の直流出力電圧を検出する出力電圧検出回 路 ( 1 7 ) と、
前記出力電圧検出回路 ( 1 7) の出力に応答して前記第 1の整流平滑回路 ( 9 ) の出力電圧を一定に制御するためのパルスを形成して前記スィ ツチ ( 7 ) の制御端子に送るスィツチ制御パルス発生回路 ( 1 8又は 1 8 a ) と、 前記負荷 ( 1 5) が所定値よりも小さいか否かを検出し、 前記負荷 ( 1 5) が前記所定値よりも小さい時に前記スィッチ ( 7) をオン · オフするための パルスを前記スィッチ ( 7) に供給することを禁止するための指令を発生す る間欠指令発生回路 ( 1 9 ) とを有し、
前記間欠動作阻止手段は、 前記間欠指令発生回路 ( 1 9) から出力される 間欠指令を無効にする論理回路 ( 5 3) であることを特徴とする請求項 1に 従う DC— DC変換器。
4. 前記スィ ッチ制御パルス発生回路 ( 1 8) は、
前記スィツチのオン期間に同期して傾斜電圧を発生する傾斜電圧発生手段 ( 8又は 6 0 ) と、
前記出力電圧検出回路 ( 1 7) の出力に応答して電圧帰還信号を形成する 電圧帰還信号形成手段 ( 3 9, 40) と、
前記傾斜電圧発生手段の出力と前記電圧帰還信号とを比較するために前記 電圧帰還信号形成手段 ( 3 9, 40) と前記傾斜電圧発生手段 (8又は 6 0) とに接続された比較器 (4 2) と、
所定の周期でパルスを発生する発振器 ( 3 5) と、
前記発振器 ( 3 5 ) に接続された第 1の入力端子と前記比較器 (4 2) に 接続された第 2の入力端子とを有する R Sフ リ ップフロ ップ ( 3 6) と、 前記間欠指令発生回路 ( 1 9) の出力が前記スィ ッチ ( 7) をオン ' オフ するためのパルスの通過禁止を示している時に前記 R Sフリ ップフ口ップ (3 6 ) の出力パルスの通過を禁止するために前記 R Sフ リ ップフロ ップ (3 6 ) の出力端子に接続された一方の入力端子と前記間欠指令発生回路 ( 1 9) に接続された他方の入力端子とを有する論理回路 ( 3 7) と、
前記論理回路 ( 3 7) の出力に基づいて前記スィッチ ( 7) を駆動する駆 動手段 ( 3 8 ) と
から成ることを特徴とする請求項 3に従う D C— D C変換器。
5. 前記スィ ッチ制御パルス発生回路 (2 a ) は、
前記スィ ツチのオン期間に同期して傾斜電圧を発生する傾斜電圧発生手段 ( 8又は 6 0 ) と、
前記出力電圧検出回路 ( 1 7 ) の出力に応答して電圧帰還信号を形成する 電圧帰還信号形成手段 ( 3 9 , 4 0 ) と、
傾斜電圧発生手段の出力と前記電圧帰還信号とを比較するために前記電圧 帰還信号形成手段と前記傾斜電圧発生手段とに接続された比較器(4 2 ) と、 所定の周期でパルスを発生する発振器 (3 5 ) と、
前記間欠指令発生回路 ( 1 9) の出力が前記スィツチ ( 7 ) をオン · オフ するためのパルスの通過禁止を示している時に前記発振器 ( 3 5 ) の出力パ ルスの通過を禁止するために前記発振器 (3 5 ) に接続された一方の入力端 子と前記間欠指令発生回路 ( 1 9 ) に接続された他方の入力端子とを有して いる論理回路 ( 3 7 ) と、
前記論理回路 ( 3 7 ) に接続された第 1の入力端子と前記比較器 (4 2) に接続された第 2の入力端子とを有する R Sフリ ップフロ ップ ( 3 6 ) と、 前記 R Sフリ ップフロップ ( 3 6 ) の出力に基づいて前記スィッチ ( 7 ) を駆動する駆動手段 ( 3 8 ) と
から成ることを特徴とする請求項 3に従う D C— D C変換器。
6. 前記判定手段は、 前記第 2の整流平滑回路 ( 1 0 ) の出力電圧検出する 電圧検出手段 (2 6 ) と、 所定の電圧基準 (V 5 2) を与える基準電圧源 ( 5 2 ) と、 前記電圧検出手段 ( 2 6 ) の出力が前記所定の電圧基準 (V 5 2 ) より も低いか否かを判定するために前記電圧検出手段 ( 2 6 ) に接続された 第 1の入力端子と前記基準電圧源 ( 5 2 ) に接続された第 2の入力端子とを 有する比較器 ( 5 1 ) とから成り、
間欠動作阻止手段 ( 5 3 ) は、 前記電圧検出手段 ( 2 6 ) の出力が前記所 定の電圧基準 (V 5 2) よりも低いことを示す信号に応答して前記間欠指令 発生回路 ( 1 9 ) の前記スィツチ ( 7 ) のオン ·オフ制御の間欠的停止を示 す信号の伝送を阻止するために前記比較器 ( 5 1 ) に接続された第 1の入力 端子と前記間欠指令発生回路 ( 1 9) に接続された第 2の入力端子とを有す る論理回路手段 (5 3) であることを特徴とする請求項 4又は 5に従う DC— DC変換器。
PCT/JP2003/010634 2002-09-04 2003-08-22 Dc−dc変換器 WO2004023633A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004534106A JP4096201B2 (ja) 2002-09-04 2003-08-22 Dc−dc変換器
US11/071,559 US6972970B2 (en) 2002-09-04 2005-03-03 Dc-to-dc converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002259290 2002-09-04
JP2002-259290 2002-09-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/071,559 Continuation US6972970B2 (en) 2002-09-04 2005-03-03 Dc-to-dc converter

Publications (1)

Publication Number Publication Date
WO2004023633A1 true WO2004023633A1 (ja) 2004-03-18

Family

ID=31973070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010634 WO2004023633A1 (ja) 2002-09-04 2003-08-22 Dc−dc変換器

Country Status (6)

Country Link
US (1) US6972970B2 (ja)
JP (1) JP4096201B2 (ja)
KR (1) KR100667468B1 (ja)
CN (1) CN100359790C (ja)
TW (1) TWI221353B (ja)
WO (1) WO2004023633A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280138A (ja) * 2005-03-30 2006-10-12 Sanken Electric Co Ltd Dc−dcコンバータ
US8295062B2 (en) 2009-06-09 2012-10-23 Panasonic Corporation Switching power supply apparatus and semiconductor device
US20140126246A1 (en) * 2005-08-26 2014-05-08 Power Integrations, Inc. Method and apparatus for digital control of a switching regulator

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876181B1 (en) 1998-02-27 2005-04-05 Power Integrations, Inc. Off-line converter with digital control
WO2005069469A1 (ja) * 2004-01-14 2005-07-28 Sanken Electric Co., Ltd. Dc-dc変換器
JP4210850B2 (ja) * 2004-03-12 2009-01-21 サンケン電気株式会社 スイッチング電源装置
WO2006071806A2 (en) 2004-12-27 2006-07-06 Quantum Paper, Inc. Addressable and printable emissive display
CN101156304B (zh) * 2005-03-11 2011-10-05 Nxp股份有限公司 开关式电力转换器及其操作的方法
JP4682763B2 (ja) * 2005-09-14 2011-05-11 富士電機システムズ株式会社 Dc/dcコンバータ
US7446517B2 (en) * 2006-01-26 2008-11-04 Semiconductor Components Industries L.L.C. Power supply controller and method therefor
US7471530B2 (en) * 2006-10-04 2008-12-30 Power Integrations, Inc. Method and apparatus to reduce audio frequencies in a switching power supply
US9534772B2 (en) 2007-05-31 2017-01-03 Nthdegree Technologies Worldwide Inc Apparatus with light emitting diodes
US8877101B2 (en) 2007-05-31 2014-11-04 Nthdegree Technologies Worldwide Inc Method of manufacturing a light emitting, power generating or other electronic apparatus
US9425357B2 (en) 2007-05-31 2016-08-23 Nthdegree Technologies Worldwide Inc. Diode for a printable composition
US8415879B2 (en) 2007-05-31 2013-04-09 Nthdegree Technologies Worldwide Inc Diode for a printable composition
US8852467B2 (en) 2007-05-31 2014-10-07 Nthdegree Technologies Worldwide Inc Method of manufacturing a printable composition of a liquid or gel suspension of diodes
US8889216B2 (en) 2007-05-31 2014-11-18 Nthdegree Technologies Worldwide Inc Method of manufacturing addressable and static electronic displays
US9343593B2 (en) 2007-05-31 2016-05-17 Nthdegree Technologies Worldwide Inc Printable composition of a liquid or gel suspension of diodes
US9419179B2 (en) 2007-05-31 2016-08-16 Nthdegree Technologies Worldwide Inc Diode for a printable composition
US8384630B2 (en) 2007-05-31 2013-02-26 Nthdegree Technologies Worldwide Inc Light emitting, photovoltaic or other electronic apparatus and system
US9018833B2 (en) 2007-05-31 2015-04-28 Nthdegree Technologies Worldwide Inc Apparatus with light emitting or absorbing diodes
US8674593B2 (en) 2007-05-31 2014-03-18 Nthdegree Technologies Worldwide Inc Diode for a printable composition
US8809126B2 (en) 2007-05-31 2014-08-19 Nthdegree Technologies Worldwide Inc Printable composition of a liquid or gel suspension of diodes
US8846457B2 (en) 2007-05-31 2014-09-30 Nthdegree Technologies Worldwide Inc Printable composition of a liquid or gel suspension of diodes
US8031496B2 (en) * 2007-11-07 2011-10-04 Panasonic Corporation Driving circuit for power switching device, driving method thereof, and switching power supply apparatus
US20090284165A1 (en) * 2008-05-13 2009-11-19 Nthdegree Technologies Worldwide Inc. Apparatuses for Illumination of a Display Object
US8127477B2 (en) 2008-05-13 2012-03-06 Nthdegree Technologies Worldwide Inc Illuminating display systems
US7992332B2 (en) * 2008-05-13 2011-08-09 Nthdegree Technologies Worldwide Inc. Apparatuses for providing power for illumination of a display object
JP5799537B2 (ja) * 2011-03-18 2015-10-28 サンケン電気株式会社 スイッチング電源装置の制御回路及びスイッチング電源装置
US8693217B2 (en) 2011-09-23 2014-04-08 Power Integrations, Inc. Power supply controller with minimum-sum multi-cycle modulation
JP5910814B2 (ja) * 2011-12-26 2016-04-27 東芝ライテック株式会社 電力変換装置
JP5983172B2 (ja) * 2012-08-10 2016-08-31 富士電機株式会社 スイッチング電源装置及びスイッチング電源装置の制御回路
WO2014129126A1 (ja) * 2013-02-20 2014-08-28 パナソニック株式会社 スイッチング電源装置
US10320302B2 (en) * 2015-09-09 2019-06-11 Closed-Up Joint-Stock Company Drive Device for producing constant voltage (variants)
JP2017200386A (ja) * 2016-04-28 2017-11-02 エスアイアイ・セミコンダクタ株式会社 Dcdcコンバータ
DE102018100709A1 (de) 2018-01-15 2019-07-18 Infineon Technologies Austria Ag Leistungswandler-Steuerung, Leistungswandler und entsprechendes Verfahren
JP7404905B2 (ja) * 2020-02-04 2023-12-26 富士電機株式会社 スイッチング制御回路、及び電源回路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08103075A (ja) * 1994-09-30 1996-04-16 Matsushita Electron Corp 絶縁型スイッチング電源装置用半導体集積回路装置
JPH08126308A (ja) * 1994-10-27 1996-05-17 Fuji Electric Co Ltd スイッチング電源
US6366479B1 (en) * 1999-11-16 2002-04-02 Sanken Electric Co., Ltd. DC-DC converter with reduced energy loss under lowered load impedance
JP2002209380A (ja) * 2001-01-11 2002-07-26 Sony Corp スイッチング電源装置
JP2002218749A (ja) * 2001-01-19 2002-08-02 Sony Corp スイッチング電源装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455757A (en) * 1994-01-28 1995-10-03 Compaq Computer Corp. Power converter having regeneration circuit for reducing oscillations
JP2956681B2 (ja) * 1998-02-27 1999-10-04 富士電機株式会社 スイッチング電源の切換運転回路
CN1162956C (zh) * 2000-01-07 2004-08-18 三垦电气株式会社 开关电源装置
JP3391384B2 (ja) * 2000-12-04 2003-03-31 サンケン電気株式会社 Dc−dcコンバータ
JP3371962B2 (ja) * 2000-12-04 2003-01-27 サンケン電気株式会社 Dc−dcコンバ−タ
JP3652351B2 (ja) * 2002-12-20 2005-05-25 松下電器産業株式会社 スイッチング電源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08103075A (ja) * 1994-09-30 1996-04-16 Matsushita Electron Corp 絶縁型スイッチング電源装置用半導体集積回路装置
JPH08126308A (ja) * 1994-10-27 1996-05-17 Fuji Electric Co Ltd スイッチング電源
US6366479B1 (en) * 1999-11-16 2002-04-02 Sanken Electric Co., Ltd. DC-DC converter with reduced energy loss under lowered load impedance
JP2002209380A (ja) * 2001-01-11 2002-07-26 Sony Corp スイッチング電源装置
JP2002218749A (ja) * 2001-01-19 2002-08-02 Sony Corp スイッチング電源装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280138A (ja) * 2005-03-30 2006-10-12 Sanken Electric Co Ltd Dc−dcコンバータ
KR100971581B1 (ko) * 2005-03-30 2010-07-20 산켄덴키 가부시키가이샤 Dc-dc 컨버터
JP4687958B2 (ja) * 2005-03-30 2011-05-25 サンケン電気株式会社 Dc−dcコンバータ
US20140126246A1 (en) * 2005-08-26 2014-05-08 Power Integrations, Inc. Method and apparatus for digital control of a switching regulator
US9484824B2 (en) * 2005-08-26 2016-11-01 Power Integrations, Inc. Method and apparatus for digital control of a switching regulator
US10224820B2 (en) 2005-08-26 2019-03-05 Power Integrations, Inc. Method and apparatus for digital control of a switching regulator
US8295062B2 (en) 2009-06-09 2012-10-23 Panasonic Corporation Switching power supply apparatus and semiconductor device

Also Published As

Publication number Publication date
US6972970B2 (en) 2005-12-06
TW200406977A (en) 2004-05-01
CN1679225A (zh) 2005-10-05
JPWO2004023633A1 (ja) 2006-01-05
CN100359790C (zh) 2008-01-02
KR100667468B1 (ko) 2007-01-10
KR20050058377A (ko) 2005-06-16
TWI221353B (en) 2004-09-21
JP4096201B2 (ja) 2008-06-04
US20050146901A1 (en) 2005-07-07

Similar Documents

Publication Publication Date Title
WO2004023633A1 (ja) Dc−dc変換器
JP3553042B2 (ja) スイッチング電源装置及びその駆動方法
JP3578113B2 (ja) スイッチング電源装置
US6714425B2 (en) Power factor corrected SMPS with light and heavy load control modes
KR101030920B1 (ko) 스위칭 전원 장치
JP4156819B2 (ja) スイッチング・レギュレータにおいて可聴ノイズを低減する方法および装置
JP5212016B2 (ja) スイッチング電源制御回路
US6515876B2 (en) Dc-to-dc converter
JP2004503198A (ja) スイッチング・レギュレータの軽負荷時の効率を改善するための方法および装置
JP3236587B2 (ja) スイッチング電源装置
JP2003169469A (ja) Dc−dcコンバ−タ
JPWO2004059822A1 (ja) スイッチング電源装置及びスイッチング電源装置の制御方法
JP2005287261A (ja) スイッチング電源制御用半導体装置
US6285566B1 (en) RCC power supply with remote disabling of oscillation frequency control
JP5293016B2 (ja) Dc−dcコンバータ
JP4203768B2 (ja) Dc−dc変換器
JP2001238441A (ja) 半導体装置、および、この半導体装置を用いたスイッチング電源装置
JP2004153948A (ja) スイッチング電力電送装置
JP2004180385A (ja) スイッチング電源
JPH10337019A (ja) スイッチング電源
JP2001025246A (ja) Dc/dcコンバータの待機電力低減回路
JPH0513187A (ja) 電力変換装置
JP2004153871A (ja) スイッチングレギュレータ
JPH09308235A (ja) スイッチング電源装置
JP2000050650A (ja) 電源装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004534106

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057002839

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038207656

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11071559

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057002839

Country of ref document: KR

122 Ep: pct application non-entry in european phase