WO2004018127A1 - 薄板用溶鋼の連続鋳造方法 - Google Patents

薄板用溶鋼の連続鋳造方法 Download PDF

Info

Publication number
WO2004018127A1
WO2004018127A1 PCT/JP2003/010673 JP0310673W WO2004018127A1 WO 2004018127 A1 WO2004018127 A1 WO 2004018127A1 JP 0310673 W JP0310673 W JP 0310673W WO 2004018127 A1 WO2004018127 A1 WO 2004018127A1
Authority
WO
WIPO (PCT)
Prior art keywords
mgo
clinker
cao
molten steel
steel
Prior art date
Application number
PCT/JP2003/010673
Other languages
English (en)
French (fr)
Inventor
Koji Ogata
Haruyoshi Kimura
Donald Bruce Hoover
Original Assignee
Krosakiharima Corporation
Lwb Refractories Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosakiharima Corporation, Lwb Refractories Company filed Critical Krosakiharima Corporation
Priority to BRPI0313620-5A priority Critical patent/BR0313620B1/pt
Priority to MXPA05002053A priority patent/MXPA05002053A/es
Priority to US10/524,620 priority patent/US20100038050A1/en
Priority to EP03792816A priority patent/EP1541260B1/en
Priority to AU2003257674A priority patent/AU2003257674A1/en
Priority to DE60324438T priority patent/DE60324438D1/de
Publication of WO2004018127A1 publication Critical patent/WO2004018127A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/02Linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/16Closures stopper-rod type, i.e. a stopper-rod being positioned downwardly through the vessel and the metal therein, for selective registry with the pouring opening
    • B22D41/18Stopper-rods therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • B22D41/28Plates therefor
    • B22D41/30Manufacturing or repairing thereof
    • B22D41/32Manufacturing or repairing thereof characterised by the materials used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/52Manufacturing or repairing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/52Manufacturing or repairing thereof
    • B22D41/54Manufacturing or repairing thereof characterised by the materials used therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/013Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics containing carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/06Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on oxide mixtures derived from dolomite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9676Resistance against chemicals, e.g. against molten glass or molten salts against molten metals such as steel or aluminium

Definitions

  • the present invention relates to a method for continuously producing molten steel for a thin plate, and particularly to a refractory used for the method.
  • aluminum killed steel which is produced as high-grade steel such as thin steel sheets, when casting from a tundish into a mold.
  • aluminum killed steel which is produced as high-grade steel such as thin steel sheets, when casting from a tundish into a mold.
  • Much effort has been put into preventing alumina deposition on the fabrication nozzles used. Alumina adhering to the production nozzle is coalesced into large inclusions, which are taken into the piece together with the molten steel flow, causing defects in the piece and deteriorating the quality.
  • argon gas is blown into molten steel from the inner surface of a manufacturing nozzle to physically prevent alumina from adhering.
  • this method if the amount of argon gas blown is too large, bubbles are taken in the piece and become pinholes, resulting in defects. Therefore, it is not always possible to take sufficient measures because there are restrictions on the amount of gas injected.
  • No. 3 discloses a production nozzle using a refractory in which graphite is combined with a dolomite clinker whose main component is C 30 and] ⁇ 40.
  • An object of the present invention is to produce aluminum killed steel by applying a refractory containing CaO and MgO-based clinker having CaO as a mineral phase having an effect of preventing alumina adhesion to a nozzle for continuous production. ⁇ ⁇ ⁇ To significantly reduce the amount of large inclusions in the piece.
  • Figure 1 shows an electron micrograph of the Ca ⁇ MgO clinker.As shown in this electron micrograph, CaO and MgO do not form a compound, so CaO Inside the system clinker, MgO is independently dispersed as small particles of MgO crystals.
  • Fig. 2 shows an example of aluminum-killed steel fabrication using a refractory using a CaO-Mg-based clinker as shown in the electron micrograph of Fig. 1 as a refractory for aluminum-killed steel fabrication.
  • the figure shows the correlation between the average particle size of the MgO particles in the cleaning force and the size of the Mg0-based inclusions in the piece. From the figure, it was found that the size of the Mg ⁇ crystal particles and the size of the inclusions in the Clinic force had a positive correlation, and that the size of the MgO crystal particles and the size of the inclusions were similar.
  • the CaO and Mg-based clinker in the refractory is dispersed in the steel in contact with the molten steel.
  • the alumina reacts with the Ca in the clinker to produce a low melt of the A12O3 ⁇ Ca0 series, which flows out of the refractory surface by the molten steel flow.
  • MgO in clinker is less reactive than CaO, so it can easily flow out into molten steel with its particle size. Since MgO has a high melting point and is hard, if large particles are mixed into the piece, it causes scratches during rolling and causes a quality problem of the piece. In addition, MgO crystals in the CaO ⁇ Mg ⁇ -based clinker often flow out into molten steel with the particle size remaining, and as shown in Fig. 2 above, the size of the MgO crystal particles is small. Often the size of the MgO-based inclusions inside. Therefore, in order to reduce large inclusions in the piece, it is necessary to make the MgO crystal grains in the C a O • Mg ⁇ based clinker finer.
  • the present invention addresses the problem of inclusions containing MgO as a main component due to refractories containing CaO.Mg ⁇ -based clinker in the continuous formation of molten steel for thin plates in clinker particles.
  • a refractory containing not less than 20% by mass of CaO'MgO-based clinker that makes 60% or more of the contained MgO crystals have a particle size of 50zm or less. This has been solved by using it.
  • the inclusion of inclusions with a diameter of 50 m or more is preferably as small as possible in a thin plate, and the smaller the size of the MgO crystal in the Ca0 MgO-based clinker, the better. If there is, it will not be a problem in the construction of general aluminum-killed steel for thin plates. Therefore, the particle size of the MgO crystal in the CaO.MgO-based linker is preferably 50% or less and 60% or more. Good. In particular, for tin cans for beverage cans, there must be no inclusions with a diameter of 50 xm or more.
  • a clinker containing smaller MgO crystal particles for example, particles having an average particle size of MgO crystal of 20 m or less.
  • the particle size of the MgO crystals in the clinker is defined by the diameter when the electron micrograph of the clinker is separated into MgO crystal particles and CaO particles by an image analyzer, and the area of the MgO crystal particles is converted into a circle. It is a thing.
  • CaO / MgO clinkers There are three types of CaO / MgO clinkers, synthetic dolomite clinker, natural dolomite clinker, and electrofused Ca ⁇ * MgO clinker, depending on the method of preparation.
  • Synthetic dolomite crine is produced by firing particles of a mixture of Ca (OH) 2 and Mg (OH) 2 at a high temperature.
  • Natural Dolomite Cleaner is made by firing dolomite produced naturally at high temperature.
  • the electrofused C aO ⁇ MgO clinker is produced by arc-dissolving a raw material containing a C a 0 component and an MgO component, and cooling and solidifying the raw material.
  • the changing the size of the MgO crystal grains in the synthetic de port chromite clinker one is possible by changing the particle size of the starting material, material of Mg (OH) 2 particle By reducing the diameter and improving the dispersibility, it is possible to reduce the particle size of the MgO crystal particles in the cleaning power.
  • clinker may be prepared from a raw material in a production area where a required particle diameter is obtained. Furthermore, in the case of electrofused CaO / MgO clinker, the size of MgO crystal particles can be controlled by adjusting the cooling rate. Dolomite clinker produced from natural dolomite has a nearly constant mass ratio of chemical components of Ca0 and MgO of about 60:40. On the other hand, the composite dolomite clinker and the fused CaO / MgO clinker can be changed to any ratio.
  • the content of MgO is preferably not more than 50% by mass.
  • a molded product obtained by adding an organic binder to a CaO ⁇ MgO-based clinker and uniformly kneading the mixture is molded at about 1,600. Baking or, for example, adding a mixture of CaO and MgO-based clinker with 10 to 40% of graphite and phenolic resin to form a uniformly kneaded compound, and reducing and firing the compact at about 1 000 ° C To be prepared.
  • a refractory having an alumina adhesion preventing function can be obtained.
  • Refractories that do not contain graphite are suitable for refractories with relatively small thermal shock applied during use, such as upper nozzles, sliding nozzles, lower nozzles, and stopper heads, while refractories containing graphite are immersion nozzles. It is suitable for refractories having a relatively large thermal shock such as a long nozzle and a mouth stopper, but it is not particularly limited, and it is important to appropriately adjust the amount of graphite according to the use conditions.
  • the present invention provides a CaO′MgO-based cleaner containing at least CaO as a mineral phase in an amount of 20% by mass or more from the viewpoint of the effect of preventing adhesion of alumina.
  • ZrO 2 clinker, Zr ⁇ 2 CaO clinker, MgO clinker or the like may be used in combination.
  • care must be taken in grain size so that clinker flows out into molten steel and does not affect quality.
  • the clinker one, F e 2 ⁇ 3, S I_ ⁇ 2, A l 2 ⁇ 3, Z R_ ⁇ although no problem to 2 and adding small amount, a large amount to the reduction or alumina deposition of corrosion additive If added, the content is preferably 10% by mass or less, because the prevention function may be reduced.
  • the refractory used in the production of the refractory of the present invention is a C aO.MgO-based refractory, which is a submersible nozzle, an upper nozzle, a lower nozzle, a sliding nozzle, a long nozzle, a stopper head, a long stopper, and other structural nozzles.
  • the effect can be exerted even if it is partially used for the object to be applied. In particular, it is more effective to apply the method to a part where alumina adheres frequently.
  • the function can be sufficiently exerted even if it is applied not only to the entire nozzle but at least to the inner hole that contacts the molten steel.
  • the composition according to the present invention When applied only to the inner hole, the composition according to the present invention may be arranged in the inner hole and molded simultaneously with the material of the outer body, or the refractory of the present invention may be molded into a sleeve-ring shape and fired. It may be post-interpolated. In the case of a stopper head or a long stopper, it may be applied only to the outer peripheral surface that comes into contact with molten steel.
  • the present invention is a refractory suitable for the construction of aluminum-killed steel, particularly aluminum-killed steel for thin sheets, but is effective even when applied to A 1 — Si-killed steel A 1 — Ti-killed steel, Ti-killed steel, etc. There is. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows an electron micrograph of a CaO.MgO-based clean solution.
  • FIG. 2 shows the correlation between the average particle size of MgO particles in the clinker and the size of the MgO-based inclusions in the piece.
  • M g ⁇ crystal ABCDEFGH 1 Average particle size: 4.000 8 1 5 3 1 4 2 ⁇ 5 0 6 1 6 9 7 8 8 8
  • a to E indicate clinkers applied to the present invention, and E indicates that 60% or more of the MgO crystal particles in the linker have a particle size of 50 m or less.
  • F to I are clinkers applied to Comparative Examples, in which 60% or more of the MgO crystal particles have a particle size of more than 50 m.
  • Table 2 shows the composition ratios of the materials produced by adding graphite and phenolic resin to each of the clinkers shown in Table 1, and the frequency of occurrence of scratches during rolling at each composition ratio by an index.
  • the immersion nozzle for the test was made by applying the compound shown in Table 2 to the body containing zirconia / graphite material in the powder line and the inner hole, and forming pressure of 1 000! ⁇ Ji! ! It was produced by IP molding with ⁇ and reduction firing at a maximum of 1000.
  • This immersion nozzle was applied to the construction of aluminum killed steel, and the quality of the obtained pieces was investigated.
  • the manufacturing conditions were as follows: pot capacity was 250 ton, TD capacity was 45 ton, and stripping speed was 1.0 to 1.3 mZ min.
  • the obtained piece was rolled to a thickness of 2 mm, and the frequency of flaws caused by MgO-based inclusions was investigated.
  • the occurrence frequency was indexed with the frequency of Example 1 being 100. The smaller the index, the better the quality of the piece. From these results, it was found that when 60% or more of the MgO crystal particles contained in the clinker had a particle size of 50 / im or less, the quality of each piece was lower than in the case where the average particle size exceeded 50. It turned out to be excellent.
  • Table 3 using the C aO-'MgO-based clinker A to I shown in Table 1, to obtain a homogeneously kneaded blend was breath molding the blend at a molding pressure of 1 200 k gZcm 2, 1 By firing at 600, an upper nozzle was prepared.
  • the upper nozzle was used for producing aluminum killed steel under the same conditions as in Example 1. As a result, it was found that when 60% or more of the MgO crystal particles contained in the clinker had a particle size of 50 or less, the quality of each piece was excellent.
  • the particle diameter of the MgO crystals existing as inclusions in the flakes obtained by the continuous manufacturing method of molten steel for a thin plate of the present invention becomes small, and even when the thin plate is rolled, Frequency of occurrence is reduced. Therefore, the quality defect rate of the manufactured thin plate is reduced, and the manufacturing cost is reduced.
  • the present invention is applicable to continuous production of molten steel for thin plates, particularly aluminum killed steel for thin plates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

アルミキルド鋼の鋳造に際して、粒子中に含まれるMgO結晶の60%以上が粒子径50μm以下であるCaO・MgO系クリンカーを20質量%以上含有するCaO・MgO系耐火物を、少なくとも溶鋼と接する箇所に用いることで、MgO結晶の粒子径が小さいため介在物となって圧延された状態においても傷発生の煩度が少なくなる。

Description

明 細 書 薄板用溶鋼の連続铸造方法 技術分野
本発明は、 薄板用溶鋼の連続铸造方法、 とくに、 それに用いる耐火物に 関する。 背景技術
近年、 鋼材品質の厳格化に伴い、 とくに、 薄板等の高級鋼として铸造さ れるアルミニウムで脱酸された鋼 (以下アルミキルド鋼と呼ぶ) の連続铸 造において、 タンディッシュからモールドに注入する際に使用する铸造用 ノズルへのアルミナ付着を防止することに多くの努力が払われている。 铸造用ノズルに付着したアルミナは合体して大型の介在物になり、 それ が溶鋼流と共に鍀片内に取り込まれて铸片の欠陥となり品質を低下させる。 その対策の一つとして、 铸造用ノズルの内面からアルゴンガスを溶鋼中 に吹き込んで物理的にアルミナの付着を防止する手法がある。 しかしなが ら、 この手法は、 アルゴンガスの吹き込み量が多すぎると気泡が铸片内に 取り込まれてピンホールとなり欠陥となる。 従って、 ガスの吹き込み量に は制約があるため必ずしも十分な対策とはなり得ない。
一方、 耐火材自身にアルミナ付着防止機能を持たせる手法もある。 これ は、 れんが中に C a Oを含有せしめて、 付着したアルミナと反応させて低 融物を生成させ、 アルミナの堆積を防止するもので、 例えば、 特表平 1 1 - 5 0 6 3 9 3号公報には、 黒鉛と主成分が C 3 0と]\4 0でぁるドロマ イトクリンカーを組み合わせた耐火物を使用した铸造用ノズルが開示され ている。
しかしながら、 アルミナ付着防止機能の効果を挙げるために、 この材質 を浸漬ノズルの内孔面に適用してアルミキルド鋼の铸造に適用した場合に は、 浸漬ノズルの内孔面へのアルミナ付着は確かに減少するが、 薄板用の 铸片内に大型の介在物が錡片内からしばしば検出され、 これが铸片を圧延 する際に傷の発生原因となり、 とくに、 厚みが薄い薄板用の铸片の場合に はその影響が大きい。 発明の開示
本発明の課題は、 アルミナ付着防止に効果を有する鉱物相としての C a Oを有する C aO · MgO系クリンカーを含有する耐火物を連続铸造用ノ ズルに適用して、 アルミキルド鋼を铸造したとき铸片内に存在する大型の 介在物の量を大幅に減少させることにある。
上記課題を解決するため、 アルミナ付着防止に効果を有する C aO · M gO系クリンカ一を含有する耐火物を連続铸造用ノズルとして適用した際 に铸片内から検出される介在物について調査を行った結果、 直径 50 m 以上の大型の介在物はマグネシアを主成分とすることが判り、 介在物とし てのマグネシアは、 使用した C aO · Mg O系クリンカ一を含有する耐火 物に起因するものと考えた。
C a O · MgO系クリンカ一中の MgOの存在状態と、 クリンカ一中の M g O粒子の大きさと铸片内に存在する M g O系介在物の大きさと関係は、 それぞれ図 1と図 2に示されている。
図 1は C a〇 · MgO系クリンカーの電子顕微鏡写真を示すもので、 こ の電子顕微鏡写真に示されているように、 C a Oと MgOは化合物を形成 しないために、 C a O · MgO系クリンカーの内部では、 MgOは MgO 結晶の小さな粒子として独立して分散している。
また、 図 2は、 アルミキルド鋼铸造用の耐火物として図 1の電子顕微鏡 写真に示されているような C a O · Mg〇系クリンカ一を用いた耐火物を 使用して、 アルミキルド鋼を铸造したときのクリン力一中の MgO粒子の 平均粒径と铸片内の Mg 0系介在物の大きさとの相関関係を示すものであ る。 同図から、 クリン力一中の Mg〇結晶粒子の大きさと介在物の大きさ には正の相関があり、 MgO結晶粒子の大きさと介在物の大きさは類似し ていることが判明した。 アルミキルド鋼铸造用の耐火物として C aO · MgO系クリンカーを含 有する耐火物を使用した際、 耐火物中の C aO · Mg〇系クリンカーは、 溶鋼と接触する面では鋼中に分散しているアルミナとクリンカ一中の C a 〇が反応して A 12 O 3 · C a 0系の低融物を生成し、 溶鋼流によって耐火 物の表面から流出する。
耐火物の表面から流出した A 12 O 3 · C a O系化合物は、 溶鋼中に分散 し易く大型の介在物になりにくいので、 鍀片の品質に悪影響を及ぼすこと が少ない。
また、 大型化しても比較的柔らかいため圧延時に薄く引き延ばされるため 比較的無害である。
一方、 クリンカー中の MgOは、 C a Oと比較して反応性が低いため、 粒子の大きさのまま溶鋼中に流出し易い。 そして、 MgOは融点が高く、 硬いため大型の粒子が铸片内に混入すると圧延時の傷の原因となり铸片の 品質上の問題となる。 しかも、 C aO · Mg〇系クリンカー中の MgO結 晶は、 粒子の大きさのまま溶鋼中に流出する場合が多く、 上述の図 2に示 すように、 MgO結晶粒子の大きさが铸片内の MgO系介在物の大きさと なる場合が多い。 従って、 铸片内の大型の介在物を減少させるには C a O • Mg〇系クリンカ一中の MgO結晶粒子を微細化する必要がある。
本発明は、 上記知見に基づいて、 薄板用溶鋼の連続铸造における C aO · Mg〇系クリンカーを含有する耐火物に起因する、 MgOを主成分とす る介在物の問題を、 クリンカー粒子中に含まれる MgO結晶の 60 %以上 を粒子径 50 zm以下とする C aO ' MgO系クリンカーを 20質量%以 上含有する耐火物を連続铸造に使用される耐火物の少なくとも溶鋼と接す る箇所に用いることにより解決したものである。
一般的に薄板では直径 50 m以上の介在物は極力少ない方がよく、 C a 0 · MgO系クリンカ一中の MgO結晶の大きさは小さいほど好ましい が粒径が 50 xm以下が 60%以上であれば、 一般的な薄板用アルミキル ド鋼の铸造においては問題とはならない。 従って、 C aO . MgO系クリ ンカ一中の MgO結晶の粒径は 50 以下が 60 %以上であることが好 ましい。 とくに、 飲料缶用のブリキ用の鋼材においては、 直径 50 xm以 上の介在物は皆無である必要がある。 飲料缶用ブリキ向けの溶鋼を铸造 する際には MgO結晶粒子がより小さなものを含むクリンカーを使用する ことがよく、 例えば、 MgO結晶の平均粒径が 20 m以下の粒子を用い るのがよい。 クリンカー中の MgO結晶の粒径は、 クリンカーの電子顕微 鏡写真を画像解析装置によって MgO結晶粒子と C a O粒子に分離し、 M gO結晶粒子の面積を円に換算した場合の直径によって規定するものであ る。
C a O · MgO系クリンカーは、 その作製法によって、 合成ドロマイト クリンカーと、 天然ドロマイトクリンカーと、 電融 C a〇 * MgO系クリ ンカーの 3種類がある。 合成ドロマイトクリン力一は C a (OH) 2と Mg (OH) 2を混合した粒子を高温で焼成して作製する。 天然ドロマイトクリ ンカ一は天然に産出するドロマイトを高温で焼成して作製する。 電融 C a O · MgO系クリンカ一は C a 0成分と MgO成分を含有する原料をァー ク溶解させて冷却固化させて作製するものである。 これらの C aO ' Mg 0系クリンカーにおいて、 MgO結晶粒子の大きさを変えるには、 合成ド 口マイトクリンカ一では出発原料の粒径の変更によって可能であり、 原料 の Mg (OH) 2の粒径を小さくかつ分散性を向上させることで、 クリン力 一中の MgO結晶粒子の粒径を小さくすることができる。
また、 天然ドロマイトクリンカーの場合は、 産出するドロマイト鉱物の状 態によって異なるので、 必要な粒子径が得られる産地の原料からクリンカ 一を作製すればよい。 さらに、 電融 C aO · MgO系クリンカーの場合は 冷却速度を調整することで M g O結晶粒子の粒径を制御することができる。 天然のドロマイトから製造したドロマイトクリンカーは C a 0と MgO の化学成分の質量比が約 6 0 : 40でほぼ一定である。 これに対して、 合 成ドロマイトクリンカ一と電融 C aO · MgO系クリンカーは任意の割合 に変更することが可能である。 ただし、 MgO成分を多くすると MgO結 晶粒同志が連結して巨大化するため好ましくない。 一例を示せば、 MgO の含有量は 5 0質量%を超えない方が好ましい。 C a O · MgO系クリンカ一を 20質量%以上含有する耐火物は、 C a O · MgO系クリンカーに有機バインダーを添加して均一に混練した配合 物を成形した成形体を 1 600で程度で焼成するか、 例えば、 C aO, M gO系クリンカーに黒鉛を 1 0〜40 %とフエノールレジンを添加して均 一に混練した配合物を成形し成形体を 1 000°C程度で還元焼成して調製 する。 これによつて、 アルミナ付着防止機能を有する耐火物が得られる。 黒鉛を含有しない耐火物は上ノズル、 スライディングノズル、 下部ノズ ル、 ストッパーへッドなど使用時に負荷される熱衝撃が比較的小さい耐火 物に好適であり、 黒鉛を含有する耐火物は浸漬ノズル、 ロングノズル、 口 ングストッパーなど比較的熱衝撃が大きい耐火物に好適であるが、 とくに、 限定されるものではなく、 使用条件によって適宜黒鉛量を調整することが 重要である。
本発明は、 アルミナ付着防止効果の点から少なくとも鉱物相としての C a Oを含む C aO ' MgO系クリン力一を 20質量%以上と、 炭素あるい はその他原料として、 例えば、 C a〇クリンカーや Z r 02クリンカー、 Z r〇2 · C aOクリンカー、 MgOクリンカ一などを併用しても構わない。 そして、 使用時に溶損が大きくなる部位に適用する場合は、 クリンカーが 溶鋼中に流出し、 品質に影響がないように、 粒度に注意する必要がある。 さらに、 クリンカ一中に、 F e 23、 S i〇2、 A l 23、 Z r〇2などを 微量添加することは問題ないが、 多量に添加すると耐食性の低下やアルミ ナ付着防止機能の低下をもたらす場合があるので、 添加する場合は 1 0質 量%以下であることが好ましい。
本発明の C a O · MgO系耐火物は、 浸漬ノズル、 上ノズル、 下部ノズ ル、 スライディングノズル、 ロングノズル、 ストッパーヘッド、 ロングス トッパー等の铸造用ノズルの他、 铸造に使用する耐火物の全てに適用でき るが、 適用対象物に対して、 部分的に使用しても効果を発揮できる。 とく に、 アルミナの付着が多い部位に適用するとより効果的で、 ノズルの場合 はノズル全体ではなく、 少なくとも溶鋼と接触する内孔にのみ適用しても 充分に機能が発揮できる。 内孔にのみ適用する場合は、 本発明に係る配合物を内孔に配置し外側の 本体の材質と同時成形しても良いし、 本発明の耐火物をスリーブゃリング 状に成形 ' 焼成した後内挿しても良い。 ストッパーヘッドや、 ロングスト ッパーの場合は溶鋼と接触する外周面にのみ適用しても良い。
本発明はアルミキルド鋼、 特に薄板用アルミキルド鋼の铸造に好適な耐 火物であるが、 A 1 — S iキルド鋼ゃ A 1 — T iキルド鋼、 T iキルド鋼 などへ適用しても効果がある。 図面の簡単な説明
図 1は、 C aO · MgO系クリン力一の電子顕微鏡写真を示す。
図 2は、 クリンカ一中の Mg O粒子の平均粒径と鎳片内の M g O系介在 物の大きさとの相関関係を示す。 発明を実施するための最良の形態
本発明の実施の形態を実施例によって説明する。
実施例 1
C aOが 5 8質量%、 MgOが 41質量%である化学組成を持つ電融 C a〇 · MgO系クリンカ一を冷却速度を変えることによって MgO結晶の 粒子の粒度が異なる試料を複数作成した。 表 1は、 作成したクリンカーの 平均粒径を mによって示す。 表 1
M g〇結晶 A B C D E F G H 1 平均粒子径 :!! 8 1 5 3 1 4 2 <5 0 6 1 6 9 7 8 8 8 表 1において、 A〜Eは本発明に適用するクリンカーであり、 Eはクリ ンカ一中の MgO結晶粒子の 60 %以上が粒径 50 m以下である。 F〜 Iは比較例に適用するクリンカーであり、 MgO結晶粒子の 60 %以上が 粒径 50 mを超えている。
表 2は、 表 1に示すそれぞれのクリンカ一に黒鉛とフエノ一ルレジンを 添加して作製した材質の配合割合と、 それぞれの配合割合における圧延時 の傷発生の頻度を指数によって示す。
表 2
Figure imgf000010_0001
* 実施例 1 = 100 数字が小さいほど鐯片の品質良好
供試のための浸漬ノズルは、 パウダーライン部にジルコニァ ·黒鉛材質、 内孔を含む本体に表 2の配合物を適用して成形圧 1 000!^ じ!!^で I P成形し、 最高 1000 で還元焼成して作製した。
この浸漬ノズルを、 アルミキルド鋼の铸造に適用して、 得られた鎳片の 品質を調査した。 铸造条件は、 鍋容量が 250 t o n、 TD容量が 45 t o n、 铸片の引き抜き速度は 1. 0〜1. 3mZ分であった。
得られた铸片を厚さ 2mmに圧延して、 MgO系介在物起因の傷の発生 頻度を調査した。 発生頻度は実施例 1の頻度を 10 0として指数化した。 指数が小さいほど良好な品質の錶片であることを表す。 この結果から、 ク リンカ一中に含まれる M g O結晶粒子の 60 %以上が粒径 50 /im以下の 場合、 平均粒径が 50 を越える場合と比較して、 铸片の品質が各段に 優れていることが分かった。
実施例 2
表 3は、 表 1に示す A〜 Iの C aO ' MgO系クリンカーを使用して、 均一に混練した配合物を得て、 この配合物を成形圧 1 200 k gZcm2で ブレス成形し、 1 600 で焼成して上ノズルを作製した。 この上ノズル を実施例 1の同様の条件でアルミキルド鋼の铸造に使用した。 その結果、 クリンカ一中に含まれる MgO結晶粒子の 60 %以上が粒径 50 以下 の場合、 铸片の品質が各段に優れていることが分かった。
表 3
Figure imgf000012_0001
* 実施例 6 = 1 00 数字が小さいほど铸片の品質良好
以上のとおり、 本発明の薄板用溶鋼の連続铸造方法によって得られた铸 片中に存在する介在物として存在する M g O結晶の粒子径が小さくなり、 薄板状に圧延された状態においても傷発生の頻度が少なくなる。 そのため、 製造された薄板の品質不良率が低下し、 製造コストの低減になる。 産業上の利用可能性
本発明は、 薄板用溶鋼、 とくに薄板用アルミキルド鋼の連続铸造に適用 可能である。

Claims

請 求 の 範 囲
1. C aO · MgO系クリンカーを含有する耐火物を使用する薄板用溶鋼 の連続铸造方法であって、
前記 C a O · MgO系クリンカーの粒子中に含まれる MgO結晶の 6 0 %以上が粒子径が 50 m以下であり、
前記耐火物中の前記 C aO ' MgO系クリンカーの含有量が 20質量% 以上であり、
前記 C a O · Mg O系クリンカ一を含有する耐火物は、 少なくとも溶鋼 と接する箇所に用いられる薄板用溶鋼の連続铸造方法。
PCT/JP2003/010673 2002-08-22 2003-08-22 薄板用溶鋼の連続鋳造方法 WO2004018127A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0313620-5A BR0313620B1 (pt) 2002-08-22 2003-08-22 material refratário contendo clìnquer a base de cao.mgo para lingotamento contìnuo de aço em fusão para chapas metálicas.
MXPA05002053A MXPA05002053A (es) 2002-08-22 2003-08-22 Vaciado continuo de acero fundido para hoja metalica.
US10/524,620 US20100038050A1 (en) 2002-08-22 2003-08-22 Continuous casting of molten steel for sheet metal
EP03792816A EP1541260B1 (en) 2002-08-22 2003-08-22 Method for continuous casting of molten steel for thin sheet
AU2003257674A AU2003257674A1 (en) 2002-08-22 2003-08-22 Method for continuous casting of molten steel for thin sheet
DE60324438T DE60324438D1 (de) 2002-08-22 2003-08-22 Verfahren zum stranggiessen von geschmolzenem stahl zu dünnblech

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-242731 2002-08-22
JP2002242731A JP4331924B2 (ja) 2002-08-22 2002-08-22 薄板用溶鋼の連続鋳造方法

Publications (1)

Publication Number Publication Date
WO2004018127A1 true WO2004018127A1 (ja) 2004-03-04

Family

ID=31944076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010673 WO2004018127A1 (ja) 2002-08-22 2003-08-22 薄板用溶鋼の連続鋳造方法

Country Status (10)

Country Link
US (1) US20100038050A1 (ja)
EP (1) EP1541260B1 (ja)
JP (1) JP4331924B2 (ja)
KR (1) KR100597932B1 (ja)
CN (1) CN1319676C (ja)
AU (1) AU2003257674A1 (ja)
BR (1) BR0313620B1 (ja)
DE (1) DE60324438D1 (ja)
MX (1) MXPA05002053A (ja)
WO (1) WO2004018127A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087406A1 (ja) 2004-03-15 2005-09-22 Krosakiharima Corporation 連続鋳造ノズル
CN100372633C (zh) * 2003-08-22 2008-03-05 黑崎播磨株式会社 钢的连续铸造用浸渍管及使用其的钢的连续铸造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519109B2 (ja) * 2006-06-26 2010-08-04 日新製鋼株式会社 ストッパー制御型浸漬ノズル
KR101057638B1 (ko) 2009-08-19 2011-08-19 (주)포스코켐텍 고내소화성 돌로마 클링커 및 그 제조방법
CN109759574B (zh) * 2019-03-27 2020-10-16 中天钢铁集团有限公司 一种低杨氏模量化的浸入式水口内衬材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475155A (en) * 1987-09-17 1989-03-20 Asahi Glass Co Ltd Block for tundish weir
JPH1025167A (ja) * 1996-07-08 1998-01-27 Kurosaki Refract Co Ltd マグネシア質粗粒を用いた流し込み施工用耐火物
JPH11285792A (ja) * 1998-03-31 1999-10-19 Akechi Ceramics Kk 連続鋳造用ノズル

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345191A (en) * 1964-03-25 1967-10-03 Jernkontoret The Swedish Ironm Dolomite sinter and a process of its production
JPS61141663A (ja) * 1984-12-11 1986-06-28 川崎製鉄株式会社 黒鉛質塩基性耐火物
JPS61256961A (ja) * 1985-05-02 1986-11-14 新日本化学工業株式会社 カルシア質クリンカ−とその製造方法
JPH01289549A (ja) * 1988-05-16 1989-11-21 Kawasaki Refract Co Ltd 鋼の連続鋳造用ノズル
FR2643631B1 (fr) * 1989-02-27 1993-02-12 Lorraine Laminage Revetement refractaire de repartiteur de coulee continue des metaux
JPH08103865A (ja) * 1994-10-03 1996-04-23 Sumitomo Metal Ind Ltd 溶融金属の注湯用ノズル
TW300861B (ja) * 1995-05-02 1997-03-21 Baker Refractories
AU760214B2 (en) * 1998-01-28 2003-05-08 Krosaki Corporation Alumina-magnesia-graphite type refractory
JP2000334550A (ja) * 1999-05-25 2000-12-05 Sumitomo Metal Ind Ltd 連続鋳造用浸漬ノズルのコーティング剤
CN2385820Y (zh) * 1999-07-29 2000-07-05 宝山钢铁(集团)公司 中间包过滤器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475155A (en) * 1987-09-17 1989-03-20 Asahi Glass Co Ltd Block for tundish weir
JPH1025167A (ja) * 1996-07-08 1998-01-27 Kurosaki Refract Co Ltd マグネシア質粗粒を用いた流し込み施工用耐火物
JPH11285792A (ja) * 1998-03-31 1999-10-19 Akechi Ceramics Kk 連続鋳造用ノズル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1541260A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372633C (zh) * 2003-08-22 2008-03-05 黑崎播磨株式会社 钢的连续铸造用浸渍管及使用其的钢的连续铸造方法
WO2005087406A1 (ja) 2004-03-15 2005-09-22 Krosakiharima Corporation 連続鋳造ノズル

Also Published As

Publication number Publication date
BR0313620A (pt) 2005-06-21
CN1678415A (zh) 2005-10-05
EP1541260B1 (en) 2008-10-29
JP2004082133A (ja) 2004-03-18
JP4331924B2 (ja) 2009-09-16
KR20050058336A (ko) 2005-06-16
EP1541260A4 (en) 2006-05-17
KR100597932B1 (ko) 2006-07-06
AU2003257674A8 (en) 2004-03-11
DE60324438D1 (de) 2008-12-11
BR0313620B1 (pt) 2011-08-23
EP1541260A1 (en) 2005-06-15
AU2003257674A1 (en) 2004-03-11
CN1319676C (zh) 2007-06-06
MXPA05002053A (es) 2005-09-12
US20100038050A1 (en) 2010-02-18

Similar Documents

Publication Publication Date Title
US6461991B1 (en) Alumina-magnesia-graphite refractory
JPH02207951A (ja) 連続鋳造用ノズルの製造方法
JPH0839214A (ja) 連続鋳造用ノズル
WO2004018127A1 (ja) 薄板用溶鋼の連続鋳造方法
CN111940715B (zh) 防堵塞浸入式水口
EP1671721A1 (en) Immersion nozzle for continuous casting of steel and meethod for continuous casting of steel using the immersion nozzle
JP2706201B2 (ja) 連続鋳造用ノズル内孔体
JP2004074242A (ja) 連続鋳造用耐火物およびそれを用いる連続鋳造方法
WO2004082868A1 (ja) 連続鋳造ノズル
JP4960574B2 (ja) 連続鋳造用ノズルに用いられるアルミナ付着を防止する耐火物
KR100244633B1 (ko) 턴디쉬내 용강중 개재물 흡수용 플럭스
JPH02180753A (ja) 連続鋳造用浸漬ノズルの製造方法
WO2003092929A1 (fr) Buse de moulage par coulee continue d&#39;un acier calme a l&#39;aluminium et procede de moulage par coulee continue
JPH026373A (ja) 流し込み不定形耐火物
JP3137939B2 (ja) 鋼の連続鋳造用浸漬ノズル
JP2003145265A (ja) 鋳造用浸漬ノズル
JP2937450B2 (ja) 連続鋳造用浸漬ノズル
WO2023286488A1 (ja) 鋼の連続鋳造方法
JP2000094099A (ja) 連続鋳造用ノズル
JP4477971B2 (ja) 低炭素鋼板、低炭素鋼鋳片およびその製造方法
JP2005060128A (ja) 耐火物
JPS5919071B2 (ja) 鋼の連続鋳造用浸漬ノズル
JPH04164869A (ja) 流し込み不定形耐火物
JP2501155B2 (ja) マグネシア・クロム質れんが
JPH07127978A (ja) 非リン酸系吹付補修材

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057002702

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/002053

Country of ref document: MX

Ref document number: 20038199610

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003792816

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 465/KOLNP/2005

Country of ref document: IN

Ref document number: 465/KOLPN/2005

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2003792816

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057002702

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10524620

Country of ref document: US