WO2004017086A1 - Gmr-sensorelement und dessen verwendung - Google Patents

Gmr-sensorelement und dessen verwendung Download PDF

Info

Publication number
WO2004017086A1
WO2004017086A1 PCT/DE2003/002145 DE0302145W WO2004017086A1 WO 2004017086 A1 WO2004017086 A1 WO 2004017086A1 DE 0302145 W DE0302145 W DE 0302145W WO 2004017086 A1 WO2004017086 A1 WO 2004017086A1
Authority
WO
WIPO (PCT)
Prior art keywords
gmr
sensor element
bridge
resistance elements
element according
Prior art date
Application number
PCT/DE2003/002145
Other languages
English (en)
French (fr)
Inventor
Peter Schmollngruber
Ingo Herrmann
Henrik Siegle
Hartmut Kittel
Paul Farber
Ulrich May
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10257253A external-priority patent/DE10257253A1/de
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US10/523,252 priority Critical patent/US7312609B2/en
Priority to AU2003250275A priority patent/AU2003250275B2/en
Priority to EP03787612A priority patent/EP1527352A1/de
Priority to JP2005502011A priority patent/JP2005534199A/ja
Publication of WO2004017086A1 publication Critical patent/WO2004017086A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/04Sensors
    • F01L2820/041Camshafts position or phase sensors

Definitions

  • the invention relates to a GMR sensor element according to the main claim and its use.
  • the giant magneto-resistive effect can be used in the form of so-called spin-nalve structures (spin valves or "spin valves”) for angle sensing. This is described, for example, in WO 00/79298 or in EP 0 905 523 A2.
  • GMR spin valves consist essentially of two ferromagnetic thin films with a resulting magnetization nii or m 2 , which are separated by a non-magnetic thin film in between.
  • the electrical resistance R ( ⁇ ) of such a layer system then shows a cosine dependence on the angle ⁇ between the direction of the magnetization mi and the direction of the magnetization m of the type:
  • R () R - 0.5 • AR GMR ⁇ cos ( ⁇ ).
  • the maximum relative change in resistance ⁇ R GMR / R denotes the GMR effect and is typically 5% to 15%.
  • GMR spin valve layer systems are usually deposited by means of cathode sputtering of the respective materials and then structured using conventional photolithography processes and etching techniques.
  • What is essential for the intended spin valve function is a rigid, at least approximately unchangeable direction of the magnetization with the first ferromagnetic layer, by a magnetic field acting on the layer system from the outside, which is to be detected in particular with regard to its direction and / or strength So-called reference layer (RL) or reference layer, and a direction of magnetization m 2 of the second ferromagnetic layer, the so-called free layer (FL) or detection layer, which is slightly oriented at least approximately parallel to the external magnetic field.
  • RL reference layer
  • FL free layer
  • the two ferromagnetic layers are magnetically decoupled by a sufficient thickness of the non-magnetic intermediate layer, the so-called non-magnetic layer (NML), typically of a few nanometers, and the magnetization of the reference layer (RL), for example by an additional, directly adjacent antiferromagnetic layer, a so-called natural antiferromagnet (AF), and their mutual magnetic coupling fixed (“pinned”) by exchange interaction.
  • NML non-magnetic layer
  • RL magnetization of the reference layer
  • AF natural antiferromagnet
  • FIG. 1 a This is shown schematically in FIG. 1 a, where the GMR layer system or GMR sensor element is under the influence of a magnetic field of a transmitter magnet.
  • this SAF consists of two ferromagnetic layers which are strongly antiferromagnetically coupled via a non-magnetic intermediate layer.
  • the one of these two ferromagnetic layers which lies directly next to or on the natural antiferromagnet AF is referred to as the pinned layer (PL) since its magnetization Mp is fixed (“pinned") as a result of the coupling to the natural antiferromagnet (AF).
  • the second ferromagnetic layer of the SAF whose magnetization M R is oriented opposite to that of the pinned layer (PL) due to the antiferromagnetic coupling, serves as a reference layer (RL) for the GMR spin valve layer system already described above.
  • spin valve resistance elements are used, for example, in a GMR sensor element according to the prior art.
  • B. by means of aluminum thin-film conductor spans to a Wheatstone bridge Circuit (Wheatstone full bridge) interconnected.
  • the maximum signal amplitude is obtained in accordance with Figure 2 oppositely oriented reference magnetization M R of the bridge resistors within the half-bridges and the same reference magnetizations oriented M R of the diagonally lying in the full bridge resistors.
  • a GMR angle sensor generally also has a second full bridge made of GMR resistors, the reference directions of which, as shown in FIG. 2, are rotated by 90 ° relative to those of the first full bridge.
  • n is phase-shifted by 90 ° relative to the signal of the first full bridge U cos .
  • the two cosine or sinusoidal bridge signals U s ; n , U cos which determines the unique angle ⁇ to the direction of an external magnetic field B over a full 360 ° revolution.
  • the different reference magnetization directions according to FIG. 2 are e.g. realized in that the individual GMR bridge resistances locally to a temperature T above the blocking temperature (Neel temperature) of the antiferromagnetic layer (AF) but below the Curie temperature of the ferromagnetic layers (PL, RL) according to FIG. Ib are heated so that the antiferromagnetic spin order in the antiferromagnetic layer is canceled, and then cooled in an external magnetic field of suitable field direction. When the antiferromagnetic order is formed again, the spin configuration resulting from the exchange interaction at the interface of the antiferromagnetic layer (AF) and the adjacent ferromagnetic layer (PL) is frozen.
  • Local heating of the GMR bridge resistors can e.g. by means of a short laser or current pulse.
  • the current pulse can be driven directly through the GMR conductor structure and / or an additional heating conductor.
  • the reference magnetization M R of the individual bridge resistances is either parallel or perpendicular to the direction of the strip structured GMR resistance elements selected. This serves to keep the influence of the shape anisotropy low.
  • the strip-shaped structured GMR resistance elements within a full bridge according to FIG. 2 are preferably aligned in parallel. This serves to suppress a signal contribution due to a superimposed anisotropic magnetoresistive effect (AMR effect).
  • AMR effect anisotropic magnetoresistive effect
  • the AMR signal contribution is based on a dependence of the electrical resistance on the angle ⁇ between the current and the magnetization direction of the shape:
  • R ⁇ ß) R + 0.5 - ⁇ ⁇ - cos (2 - ⁇ «)
  • the GMR resistors are implemented within a half-bridge with their GMR strips oriented orthogonally, as is the case, for example, in FIG. 10 in WO 00/79298, the AMR signal contribution is even favored to the maximum. This has a worsening effect on the angular accuracy of the GMR angle sensor.
  • known GMR angle sensors therefore have no rotationally symmetrical arrangement of the bridge resistances. Rather, both full bridges are usually arranged laterally next to one another. As a result of the lack of rotational symmetry, this results in an increased sensitivity of known sensors with regard to the directional inhomogeneity of the encoder field, i.e. of the magnetic field acting from outside, as well as regarding temperature gradients.
  • rotational symmetry in the sensor design is very advantageous, so as not to obtain additional direction-dependent angle error contributions due to an asymmetry in the arrangement of the individual GMR resistance elements. Due to the rotationally symmetrical arrangement of the GMR resistance elements in the two Wheatstone bridges according to the invention, a reduced sensitivity to field direction and temperature inhomogeneities is therefore achieved, and an undesirable AMR signal contribution is suppressed, and the shape anisotropy influence on the pinning behavior and the angle sensor accuracy speed of the GMR sensor element is reduced.
  • each individual GMR bridge resistance element is divided into two equal halves or partial bridge resistances with orthogonally oriented GMR strip directions.
  • this also leads to an increase in the angular measurement accuracy.
  • the direction of the strip-shaped structured GMR resistance elements (“GMR strip direction”) is chosen to be parallel for one of the two partial bridge resistances and perpendicular to the pinning or reference direction for the other partial bridge resistance. sets an average of the influence of pinning directions parallel and perpendicular to the strip direction within each of the GMR bridge resistance elements.
  • the pinning behavior is then identical for all two-part GMR bridge resistance elements (averaging over both parts).
  • the two bridge output signals Ui, U 2 also advantageously have a 45 ° phase shift with respect to one another.
  • the GMR resistance elements have a pinning or reference direction that is selected at least approximately at 45 ° to the direction of the strip-shaped structured GMR resistance elements, this advantageously leads to identical pinning behavior of the individual GMR resistance elements, ie in particular to improved signal stability and long-term stability of the GMR sensor element.
  • the two bridge output signals J ⁇ , U 2 also have a 45 ° phase shift with respect to one another.
  • Bridge output signals Ui, U 2 which are phase-shifted with respect to one another by any angle ⁇ , where ⁇ is preferably 45 ° or is 45 °, can finally be advantageously mapped to orthogonal signals with a 90 ° phase shift by means of a coordinate transformation.
  • the angle ⁇ to the direction of the external magnetic field B can then be determined from the latter by arc tangent formation or a corresponding algorithm, for example the CORDIC algorithm.
  • the coordinate transformation also offers the advantage that fluctuations in the phase difference of the two bridge external signals Ui, U 2 caused by production can be compensated for when mapping to the orthogonal signals.
  • FIG. 1 a shows a simplified GMR spinvalve layer structure with two ferromagnetic layers RL and FL with the magnetizations mi and m 2 , a non-magnetic intermediate layer NML and an antiferromagnetic layer AF. The latter is used for fixing (pinning) the reference magnetization mi.
  • a transmitter magnet for generating an external magnetic field B is provided.
  • FIG. 1b shows a GMR spinvalve layer system with a natural antiferromagnet AF and an additional synthetic antiferromagnet SAF as well as a further non-magnetic intermediate layer NML and a ferromagnetic free layer FL.
  • FIG. 2 shows an equivalent circuit diagram for an angle sensor element based on the GMR effect with two full bridges (Wheatstone bridge circuits), the reference magnetizations M R being oriented in opposite directions within the two bridges and being rotated 90 ° to one another from bridge to bridge.
  • the direction of the reference magnetization M R is further parallel or perpendicular to the direction of the individual GMR resistance elements structured in strips, which are constructed, for example, according to FIG. 1a or FIG. 1b.
  • This “stripe direction” is represented by the indicated streak family within the individual GMR resistance elements.
  • the direction of an external magnetic field B is indicated in Figure 2, which includes the angle ⁇ to be measured with the GMR sensor element with a reference direction.
  • the reference or zero direction is defined by the choice of the reference magnetization directions in the two full bridges, one of which is designed as a sin full bridge and one as a cos full bridge.
  • FIG. 3 shows a rotationally symmetrical arrangement of meandering, nested GMR bridge resistance elements 1/1 to 1/4 (bridge I) and ⁇ / 1 to ⁇ / 4 (bridge II).
  • the directions of the reference magnetization (see arrows in FIG. 3) in bridge I are each oriented at 45 ° to the direction of the individual, strip-shaped structured GMR resistance elements, and the reference magnetization directions in bridge II are each rotated by 45 ° with respect to those in bridge I.
  • the direction of an external magnetic field B is indicated in FIG. 3, which includes the angle ⁇ to be measured with the GMR sensor element with a reference direction.
  • the reference or zero direction is defined by the choice of the reference magnetization directions in bridge I and bridge II, bridge I being intended to deliver a cosine-shaped signal curve over the angle ⁇ .
  • FIG. 4 shows an equivalent circuit diagram to the layout of the GMR sensor element according to FIG. 3.
  • the pinning or reference magnetization direction M R is in each case at 45 ° to the GMR strip direction, which is again analogous to that shown in FIG. 2 by the individual GMR resistance elements
  • Strip coulter is indicated, oriented, and additionally rotated in bridge II by 45 ° with respect to that in bridge I.
  • FIG. 5a shows GMR sensor output signals Ui and U 2 with a 45 ° phase difference according to a pinning or reference magnetization direction M R at 45 ° to the strip direction corresponding to FIGS. 3 and 4.
  • FIG. 5b shows correspondingly transformed, mutually orthogonal GMR sensor signals U. cos and U sin with 90 ° phase difference.
  • the AMR signal contribution is not shown in FIG. 5a and FIG. 5b.
  • On the x axis the direction of the external magnetic field B in degrees, ie the angle ⁇ , is plotted in FIG. 5a and FIG. 5b, while the GMR sensor output signal in mVolt / volt is shown on the y axis in FIG. 5a and the transformed GMR in FIG. Sensor signal is plotted in mVolt / volt.
  • FIG. 6 shows a rotationally symmetrical, at least approximately circular or octagonal, nested arrangement of meandering GMR bridge resistance elements, the AMR signal contribution being suppressed by dividing each of the individual bridge resistance elements into two equal halves with mutually orthogonal stripe directions.
  • FIG. 7 shows an equivalent circuit diagram for the layout of the GMR resistance elements according to FIG. 6. Suppression of the AMR signal contribution is here divided by dividing each bridge resistance element 1 / 1.1 / 2 to H 4 into halves a and b with mutually orthogonal GMR elements. Strip directions reached. The respective pinning or reference magnetization M R is oriented at 45 ° to the respective GMR strip direction. The latter is indicated by the family of strips drawn within the individual GMR resistance elements.
  • FIG. 8 shows an equivalent circuit diagram for the layout of the GMR resistance elements according to FIG. 6 with pinning or reference magnetization directions M R alternative to FIG. 7 at 0 ° and 90 ° to the GMR strip direction for each of the individual bridge resistors 1/1, 1/2 to 1/4.
  • the influence of the pinning direction is averaged here by the direction of the pinning or reference magnetization, which is both parallel and perpendicular to the GMR strip direction, within each two-part bridge resistance 1/1, 1/2 to 1/4.
  • FIG. 3 shows a possible rotationally symmetrical arrangement of a total of eight bridge resistance elements of two full bridges (Wheatstone bridges).
  • the reference direction is defined by the direction of the magnetization of the reference layer (RL) in the GMR angle sensor.
  • the pinning or reference direction can be chosen arbitrarily, but in order to obtain the same pinning behavior for all bridge resistance elements, an orientation of the pinning or reference direction at 45 ° to the strip direction is selected here. This is further illustrated in FIG. 4, where, in addition to the stripe direction (streak family within the resistance symbols), the direction of the reference magnetization M R is also given.
  • the two bridge output signals Ui and U 2 according to FIG. 5a do not have the usual phase shift of 90 °, but only a 45 ° phase shift.
  • these signals U b U 2 can be easily transformed to the orthogonal, cosine and sinusoidal signals according to FIG. 5b.
  • the following transformation is carried out in a sensor evaluation electronics:
  • denotes the phase shift of the second bridge signal relative to the first bridge signal.
  • this phase shift can be chosen arbitrarily, but a phase shift of 45 ° is preferably set.
  • the resistor arrangement shown in FIG. 3 favors the AMR signal contribution, since the GMR stripe directions of the two bridge resistances of each half-bridge are orthogonal to one another.
  • This disadvantage can be avoided by, according to the preferred, likewise rotationally symmetrical arrangement according to FIG. 6, assembling each bridge resistor from two identical halves with GMR strip directions perpendicular to one another.
  • the series connection of the two partial resistors, each with identical reference magnetization M R of the AMR portion is then filtered out, while the GMR signal component remains unchanged due to identical in both partial resistors direction of the reference magnetization M R. This situation is illustrated by the following relationship for a two-part GMR bridge resistance element:
  • R (a) • (R - 0.5 • AR GMR ⁇ cos ( «) + 0.5 • ⁇ R ⁇ • cos (25)) l.
  • denotes the angle between the field or magnetization direction of the free ferromagnetic layer (FL) and the reference magnetization direction
  • & denotes the angle between the field or magnetization direction of the free layer (FL) and the GMR strip direction of the first partial resistor.
  • the strip direction of the second partial resistor is rotated by -90 ° to that of the first partial resistor.
  • FIG. 7 illustrates the division of the bridge resistances into two halves with mutually orthogonal stripe directions but identical reference magnetization direction M R.
  • the pinning direction or the direction of the reference magnetization M R can be chosen arbitrarily. However, an angle of 45 ° to the respective strip direction is preferred, since this achieves identical pinning behavior for all partial resistors.
  • a pinning direction or a direction of the reference magnetization M R can also be set, which is oriented parallel to the stripe direction for one of the two partial resistors and perpendicular to the stripe direction for the other partial resistance. This results in a different pinning behavior for the individual partial resistors, but for each of the bridge resistance elements in the form of a series connection of the two partial resistors, an identical pinning behavior.
  • This choice of the pinning or reference magnetization direction offers the advantage over known sensors that the average of each bridge resistance element is averaged over the different pinning behavior from parallel and perpendicular alignment of the pinning or reference magnetization direction to the GMR strip direction.
  • the 360 ° GMR angle sensor described is particularly suitable for detecting the absolute position of the camshaft or the crankshaft in a motor vehicle, in particular in the case of a camshaft-free engine with electrical or electro-hydraulic valve control, an engine position of an electrically commutated engine or a detection of a windshield wiper position, or in the steering angle sensor system in motor vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Es wird ein GMR-Sensorelement mit einer rotationssymmetrischen Anordnung von insbesondere acht GMR-Widerstandselementen vorgeschlagen, die zu zwei Wheatston'schen Vollbrücken miteinander verschaltet sind. Dieses GMR-Sensorelement eignet sich besonders zum Einsatz in einem Winkelsensor zur Detektion der Absolutposition der Nockenwelle oder der Kurbelwelle in einem Kraftfahrzeug, insbesondere bei einem nockenwellenfreien Motor mit elektrischer oder elektrohyraulischer Ventilsteuerung, einer Motorlage eines elektrisch kommutierten Motors oder einer Detektion einer Scheibenwischerstellung, oder in der Lenkwinkelsensorik in Kraftfahrzeugen.

Description

GMR-Sensorelement und dessen Verwendung
Die Erfindung betrifft ein GMR-Sensorelement nach dem Hauptanspruch sowie dessen Verwendung.
Stand der Technik
Der Giant Magneto-Resistive Effekt (GMR-Effekt) lässt sich in Form sogenannter Spin- Nalve-Strukturen (Spin- Ventile oder "Spin-Valves") für die Winkelsensierung nutzen. Dies ist beispielsweise in WO 00/79298 oder in EP 0 905 523 A2 beschrieben.
GMR-Spin-Valves bestehen im Kern aus zwei ferromagnetischen Dünnschichten mit einer resultierenden Magnetisierung nii bzw. m2, die durch eine dazwischen liegende, nicht magnetische Dünnschicht voneinander getrennt sind. Der elektrische Widerstand R(α) eines solchen Schichtsystems zeigt dann cosinusförmige Abhängigkeit von dem Winkel α zwischen der Richtung der Magnetisierung mi und der Richtung der Magnetisierung m der Art:
R( ) = R - 0,5 • ARGMR cos(α) .
Die maximale relative Widerstandsänderung ΔRGMR/ R bezeichnet dabei GMR-Effekt und beträgt typischerweise 5 % bis 15%.
GMR-Spin-Valve-Schichtsysteme werden im Übrigen meist mittels Kathodenzerstäubung der jeweiligen Materialien abgeschieden, und dann mittels üblicher Photolithographieverfahren und Ätztechniken strukturiert. Wesentlich für die beabsichtigte Spin-Valve-Funktion ist eine starre, durch ein von Außen auf das Schichtsystem einwirkendes Magnetfeld, das insbesondere hinsichtlich seiner Richtung und/oder Stärke detektiert werden soll, zumindest näherungsweise nicht veränderbare Richtung der Magnetisierung mi der ersten ferromagnetischen Schicht, des sog. Reference Layer (RL) oder Referenzschicht, und eine sich leicht zumindest näherungsweise parallel zu dem äußeren Magnetfeld orientierende Richtung der Magnetisierung m2 der zweiten ferromagnetischen Schicht, des sog. Free Layer (FL) oder Detekti- onsschicht. Um beides zu erreichen, werden zum einen die beiden ferromagnetischen Schichten durch eine ausreichende Dicke der nichtmagnetischen Zwischenschicht, des sogenannten Non-Magnetic Layer (NML), von typischerweise einigen Nanometern magnetisch entkoppelt, und die Magnetisierung der Referenzschicht (RL) z.B. durch eine zusätzliche, direkt benachbarte antiferromagnetische Schicht, einen sogenannten natürlichen Antiferromagneten (AF), und deren gegenseitige magnetische Kopplung durch Austauschwechselwirkung fixiert ("gepinnt").
Dies ist schematisch in Figur la dargestellt, wo das GMR-Schichtsystem oder GMR-Sensorelement unter dem Einfluss eines Magnetfeldes eines Gebermagneten steht.
Eine weiter verbesserte Stabilisierung der Referenzmagnetisierung erzielt man durch Hinzufügen eines zusätzlichen sogenannten synthetischen oder "künstlichen" Antiferromagneten (SAF). Dieser SAF besteht entsprechend Figur lb aus zwei ferromagnetischen, über eine nichtmagnetische Zwischenschicht stark antiferromagnetisch gekoppelten Schichten. Diejenige dieser beiden ferromagnetischen Schichten, die direkt neben bzw. auf dem natürlichen Antiferromagneten AF liegt, wird als Pinned Layer (PL) bezeichnet, da ihre Magnetisierung Mp infolge der Kopplung an den natürlichen Antiferromagnet (AF) fixiert ("gepinnt") wird. Die zweite ferromagnetische Schicht des SAF, deren Magnetisierung MR derjenigen des Pinned Layer (PL) infolge der antiferromagnetischen Kopplung entgegengesetzt orientiert ist, dient als Referenzschicht (RL) für das oben bereits beschriebene GMR-Spin-Valve-Schichtsystem.
Um das winkelabhängige Nutzsignal zu extrahieren, werden bei einem GMR- Sensorelement gemäß dem Stand der Technik vier Spin- Valve- Widerstandselemente z. B. mittels Aluminium-Dünnschichtleiterbannen zu einer Wheatstone'schen Brücken- Schaltung (Wheatstone-Vollbrücke) zusammengeschaltet. Die maximale Signalamplitude erhält man bei entsprechend Figur 2 entgegengesetzt orientierten Referenzmagnetisierungen MR der Brückenwiderstände innerhalb der Halbbrücken und gleich orientierten Referenzmagnetisierungen MR der in der Vollbrücke diagonal liegenden Widerstände.
Ein GMR- Winkelsensor besitzt in der Regel noch eine zweite Vollbrücke aus GMR- Widerständen, deren Referenzrichtungen, wie in Figur 2 gezeigt, relativ zu denen der ersten Vollbrücke um 90° verdreht sind. Das von der zweiten Vollbrücke bereitgestellte Signal Us;n ist dadurch relativ zu dem Signal der ersten Vollbrücke Ucos um 90° phasenverschoben.
Durch Arcustangensbildung bzw. dementsprechende Algorithmen (z.B. CORDIC- Algorithmus) wird dann aus den beiden cosinus- bzw. sinusförmigen Brückensignalen Us;n, Ucos der über eine volle 360°-Umdrehung eindeutige Winkel α zu der Richtung eines äußeren Magnetfeldes B bestimmt.
Die unterschiedlichen Referenz-Magnetisierungsrichtungen gemäß Figur 2 werden z.B. dadurch realisiert, dass die einzelnen GMR-Brückenwiderstände lokal auf eine Temperatur T oberhalb der Blockingtemperatur (Neel-Temperatur) der antiferromagnetischen Schicht (AF) jedoch unterhalb der Curie-Temperatur der ferromagnetischen Schichten (PL, RL) gemäß Fig. la bzw. Fig. lb erhitzt werden, so dass die antiferromagnetische Spin-Ordnung in der antiferromagnetischen Schicht aufgehoben wird, und danach in einem äußeren Magnetfeld geeigneter Feldrichtung abgekühlt werden. Bei dem dabei erfolgenden erneuten Ausbilden der antiferromagnetischen Ordnung wird die aus der Austauschwechselwirkung an der Grenzfläche von antiferromagnetischer Schicht (AF) und benachbarter ferromagnetischer Schicht (PL) resultierende Spin-Konfiguration eingefroren. Folglich wird die Richtung der Magnetisierung der benachbarten ferromagnetischen Schicht (Pinned Layer PL) fixiert. Das lokale Aufheizen der GMR-Brückenwiderstände kann z.B. mittels eines kurzen Laser- oder Strompulses erfolgen. Der Strompuls kann dabei direkt durch die GMR-Leiterstruktur oder/und einen zusätzlichen Heizleiter getrieben werden.
Bei bekannten GMR- Winkelsensoren wird die Referenzmagnetisierung MR der einzelnen Brückenwiderstände entweder parallel oder senkrecht zu der Richtung der streifenförmig strukturierten GMR- Widerstandselemente gewählt. Dies dient dazu, den Einfluss der Formanisotropie gering zu halten. Weiterhin werden die streifenförmig strukturierten GMR- Widerstandselemente innerhalb einer Vollbrücke gemäß Fig. 2 bevorzugt parallel ausgerichtet. Dies dient der Unterdrückung eines Signalbeitrags aufgrund eines überlagerten Anisotrop-Magnetoresistiven Effekts (AMR-Effekt). Der AMR-Signalbeitrag beruht dabei auf einer Abhängigkeit des elektrischen Widerstands von dem Winkel a zwischen der Strom- und der Magnetisierungsrichtung der Form:
R{ß) = R + 0,5 - ^Ä - cos(2 - ώ«)
Werden dagegen die GMR- Widerstände innerhalb einer Halbbrücke mit orthogonaler Ausrichtung ihrer GMR-Streifen realisiert, wie dies beispielsweise in Figur 10 in WO 00/79298 der Fall ist, dann wird der AMR-Signalbeitrag sogar maximal begünstigt. Das wirkt sich verschlechternd auf die Winkelgenauigkeit des GMR- Winkelsensors aus.
Vorteile der Erfindung
Aus den genannten Gründen weisen daher bekannte GMR- Winkelsensoren keine rotationssymmetrische Annordnung der Brückenwiderstände auf. Beide Vollbrücken sind vielmehr üblicherweise lateral nebeneinander angeordnet. Dadurch ergibt sich als Folge der fehlenden Rotationssymmetrie eine erhöhte Empfindlichkeit bekannter Sensoren bezüglich der Richtungsinhomogenität des Geberfeldes, d.h. des von Außen einwirkenden Magnetfeldes, sowie bezüglich Temperaturgradienten.
Dadurch, dass bei bekannten GMR- Winkelsensoren die Pinning- bzw. Referenzrichtung innerhalb eines Brückenwiderstandes stets einen festen Winkel zur Streifenrichtung aufweist, bieten diese Sensoren weiter nicht die Möglichkeit, formanisotropiebedingte Einflüsse auf das Pinningverhalten und diesbezügliche Nachteile auf die Winkelsensie- rungsgenauigkeit auszugleichen.
Für einen 360° erfassenden Winkelsensor ist eine Rotationssymmetrie im Sensordesign hingegen sehr vorteilhaft, um nicht bereits durch eine Unsymmetrie in der Anordnung der einzelnen GMR- Widerstandselemente zusätzliche richtungsabhängige Winkelfehlerbeiträge zu erhalten. Durch die erfindungsgemäße, rotationssymmetrische Anordnung der GMR- Widerstandselemente in den beiden Wheatstone-Brücken wird daher sowohl eine reduzierte Empfindlichkeit gegenüber Feldrichtungs- und Temperaturinhomogenitäten erreicht, als auch ein unerwünschter AMR-Signalbeitrag unterdrückt und weiterhin der Formanisotropie-Einfluss auf das Pinningverhalten und die Winkelsensierungsgenauig- keit des GMR-Sensorelementes reduziert.
Besonders vorteilhaft ist weiter, wenn neben der rotationssymmetrischen Anordnung der GMR- Widerstandselemente in den beiden Wheatstone-Brücken eine ineinander verschachtelte Anordnung dieser Widerstände gewählt wird. Dies führt zu einer weiter reduzierten Empfindlichkeit gegenüber Feldrichtungs- und Temperaturinhomogenitäten.
Die Unterdrückung des störenden AMR-Signalbeitrags wird durch eine zusätzliche Aufteilung eines jeden einzelnen GMR-Brückenwiderstandselementes in zwei gleiche Hälften oder Teilbrückenwiderstände mit orthogonal zu einander orientierten GMR- Streifenrichtungen erreicht. Dies führt insbesondere auch zu einer Erhöhung der Winkelmessgenauigkeit. Vorteilhaft ist in diesem Zusammenhang weiter, dass sich dadurch, dass die Richtung der streifenförmig strukturierten GMR- Widerstandselemente ("GMR- Streifenrichtung") bei jeweils einem der beiden Teilbrückenwiderstände parallel und bei dem jeweils anderen Teilbrückenwiderstand senkrecht zur Pinning- bzw. Referenzrichtung gewählt wird, eine Mittelung des Einflusses von zur Streifenrichtung paralleler und senkrechter Pinningrichtungen innerhalb eines jeden der GMR-Brücken- widerstandselemente einstellt. Das Pinningverhalten ist dann wiederum für alle zweiteiligen GMR-Brückenwiderstandselemente identisch (Mittelung über jeweils beide Teile). In diesem Fall weisen die beiden Brückenausgangssignale Ui, U2 zudem vorteilhaft zueinander eine 45°-Phasenverschiebung auf.
Falls die GMR- Widerstandselemente eine Pinning- bzw. Referenzrichtung aufweisen, die zumindest näherungsweise unter 45° zu der Richtung der streifenförmig strukturierten GMR- Widerstandselemente gewählt ist, führt dies vorteilhaft zu einem identischen Pinningverhalten der einzelnen GMR- Widerstandselemente, d.h. insbesondere zu einer verbesserten Signalstabilität und Langzeitstabilität des GMR-Sensorelementes. In diesem Fall besitzen die beiden Brückenausgangssignale Jχ, U2 zudem zueinander eine 45°- Phasenverschiebung.
Um einen beliebigen Winkel φ gegeneinander phasenverschobenen Brückenausgangssignale Ui, U2, wobei φ bevorzugt 45° ist oder um 45° liegt, können schließlich vorteilhaft durch eine Koordinatentransformation auf orthogonale Signale mit 90°-Phasenver- schiebung abgebildet werden. Aus letzteren kann dann durch Arcustangensbildung bzw. einen entsprechenden Algorithmus, beispielsweise den CORDIC-Algorithmus, der gesuchte Winkel α zu der Richtung des äußeren Magnetfeldes B bestimmt werden.
Die Koordinatentransformation bietet darüber hinaus den Vorteil, dass herstellungsbedingte Schwankungen der Phasendifferenz der beiden Brückenaussignale Ui, U2 bei der Abbildung auf die orthogonalen Signale kompensierbar sind.
Zeichnungen
Es zeigt Figur la einen vereinfachten GMR-Spinvalve-Schichtaufbau mit zwei ferromagnetischen Schichten RL und FL mit den Magnetisierungen mi und m2, einer nichtmagnetischen Zwischenschicht NML sowie einer antiferromagnetischen Schicht AF. Letztere dient zum Fixieren (Pinnen) der Referenzmagnetisierung mi. Daneben ist ein Gebermagnet zur Erzeugung eines äußeren Magnetfeldes B vorgesehen. Der Winkel «bezeichnet den Winkel zwischen Feld- bzw. Magnetisierungsrichtung der freien ferromagnetischen Schicht (FL) und damit auch der Richtung des äußeren Magnetfeldes B in der Ebene des GMR-Sensorelementes und der Referenzmagnetisierungsrichtung.
Die Figur lb zeigt ein GMR-Spinvalve-Schichtsystem mit einem natürlichen Antiferromagneten AF und einem zusätzlichen synthetischen Antiferromagneten SAF sowie einer weiteren nichtmagnetischen Zwischenschicht NML und einer ferromagnetischen freien Schicht FL.
Die Figur 2 zeigt ein Ersatzschaltbild für ein Winkelsensorelement auf der Grundlage des GMR-Effektes mit zwei Vollbrücken (Wheatstone'schen Brückenschaltungen), wobei die Referenzmagnetisierungen MR innerhalb der beiden Brücken paarweise entgegengesetzt orientiert und von Brücke zu Brücke um 90° gegeneinander verdreht sind. Die Richtung der Referenzmagnetisierung MR ist weiter parallel oder senkrecht zu der Richttmg der einzelnen, streifenförmig strukturierten GMR- Widerstandselemente, die beispielsweise gemäß Figur la oder Figur lb aufgebaut sind. Diese "Streifenrichtung" wird durch die angedeutete Streifenschar innerhalb der einzelnen GMR- Widerstandselemente repräsentiert. Daneben ist in Figur 2 die Richtung eines äußeren Magnetfeldes B angegeben, das mit einer Referenzrichtung den mit dem GMR-Sensorelement zu messenden Winkel α einschließt. Die Referenz- oder Nullrichtung wird dabei durch die Wahl der Referenzmagnetisierungsrichtungen in den beiden Vollbrücken definiert, von denen eine als sin- Vollbrücke und eine als cos-Vollbrücke ausgebildet ist.
Die Figur 3 zeigt eine rotationssymmetrische Anordnung mäandrierender, ineinander verschachtelter GMR-Brückenwiderstandselemente 1/1 bis 1/4 (Brücke I) und π/1 bis π/4 (Brücke II). Dabei sind die Richtungen der Referenzmagnetisierung (siehe eingetragene Pfeile in Figur 3) in Brücke I jeweils unter 45° zur Richtung der einzelnen, streifenförmig strukturierten GMR- Widerstandselemente orientiert, und die Referenzmagnetisierungsrichtungen in Brücke II jeweils um 45° gegenüber denjenigen in Brücke I gedreht. Daneben ist in Figur 3 die Richtung eines äußeren Magnetfeldes B angegeben, das mit einer Referenzrichtung den mit dem GMR-Sensorelement zu messenden Winkel α einschließt. Die Referenz- oder Nullrichtung ist dabei durch die Wahl der Referenzmagnetisierungsrichtungen in Brücke I und Brücke II definiert, wobei die Brücke I einen cosinus- förmigen Signalverlauf über den Winkel α liefern soll.
Die Figur 4 zeigt ein Ersatzschaltbild zu dem Layout des GMR-Sensorelement gemäß Figur 3. Die Pinning- bzw. Referenzmagnetisierungsrichtung MR ist dabei jeweils unter 45° zur GMR-Streifenrichtung, die erneut analog Figur 2 durch die innerhalb der einzelnen GMR- Widerstandselemente eingezeichnete Streifenschar angegeben ist, orientiert, und in Brücke II zusätzlich um 45° gegenüber derjenigen in Brücke I gedreht. Es ergibt sich eine Verstärkung des AMR-Signalbeitrags infolge zueinander orthogonaler Streifenrichtungen der Widerstände jeder Halbbrücke.
Die Figur 5a zeigt GMR-Sensorausgangssignale Ui und U2 mit 45°-Phasenunterschied gemäß einer Pinning- bzw. Referenzmagnetisierungsrichtung MR unter 45° zur Streifenrichtung entsprechend Figur 3 bzw. 4. Die Figur 5b zeigt entsprechend transformierte, zueinander orthogonale GMR-Sensorsignale Ucos und Usin mit 90°-Phasenunterschied. Der AMR-Signalbeitrag ist in Figur 5a und Figur 5b nicht dargestellt. Auf der x- Achse ist in Figur 5a bzw. Figur 5b jeweils die Richtung des äußeren Magnetfeldes B in Grad, d.h. der Winkel α, aufgetragen, während auf der y- Achse bei Figur 5a das GMR- Sensorausgangssignal in mVolt/Volt und bei Figur 5b das transformierte GMR- Sensorsignal in mVolt/Volt aufgetragen ist.
Die Figur 6 zeigt eine rotationssymmetrische, zumindest näherungsweise kreisförmige o- der achteckige, ineinander verschachtelte Anordnung mäandrierender GMR-Brücken- widerstandselemente, wobei eine Unterdrückung des AMR-Signalbeitrags durch Aufteilung eines jeden der einzelnen Brückenwiderstandselemente in zwei gleiche Hälften mit zueinander orthogonaler Streifenrichtungen vorgenommen wurde.
Die Figur 7 zeigt ein Ersatzschaltbild zu dem Layout der GMR- Widerstandselemente gemäß Figur 6. Eine Unterdrückung des AMR-Signalbeitrags wird hier durch Aufteilung jedes Brückenwiderstandselementes 1/1,1/2 bis H 4 in zwei Hälften a und b mit zueinander orthogonalen GMR-Streifenrichtungen erreicht. Die jeweilige Pinning- bzw. Referenzmagnetisierung MR ist unter 45° zur jeweiligen GMR-Streifenrichtung orientiert. Letztere wird durch die innerhalb der einzelnen GMR- Widerstandselemente eingezeichnete Streifenschar angegeben.
Die Figur 8 zeigt ein Ersatzschaltbild zu dem Layout der GMR- Widerstandselemente gemäß Figur 6 mit zu Figur 7 alternativen Pinning- bzw. Referenzmagnetisierungsrichtungen MR unter 0° und 90° zur GMR-Streifenrichtung bei jedem der einzelnen Brückenwiderstände 1/1, 1/2 bis 1/4. Eine Mittelung des Einflusses der Pinningrichtung erfolgt hier durch zur GMR-Streifenrichtung sowohl parallele als auch senkrechte Pinning- bzw. Referenzmagnetisierungsrichtung innerhalb jedes zweiteiligen Brückenwiderstandes 1/1, 1/2 bis 1/4.
Ausführungsbeispiele
a.) rotationssymmetrische Anordnung
Die Figur 3 zeigt eine mögliche rotationssymmetrische Anordnung von insgesamt acht Brückenwiderstandselementen zweier Vollbrücken (Wheatstone-Brücken). Im Gegensatz zu AMR-Sensoren, bei denen die Referenzrichtung durch die Stromrichtung, die durch die Streifenrichtung definiert wird, gegeben ist, wird bei dem GMR- Winkelsensor die Referenzrichtung durch die Richtung der Magnetisierung der Referenzschicht (RL) definiert. Prinzipiell kann die Pinning- bzw. Referenzrichtung dabei beliebig gewählt werden, um jedoch bei allen Brückenwiderstandselementen das selbe Pinningverhalten zu erhalten, wird hier eine Orientierung der Pinning- bzw. Referenzrichtung unter 45° zur Streifenrichtung gewählt. Verdeutlicht wird dies weiter in Figur 4, wo neben der Streifenrichtung (Streifenschar innerhalb der Widerstandssymbole) auch die Richtung der Referenzmagnetisierung MR angegeben ist.
b.) Abbildung auf orthogonale Signale
Im Fall einer Pinningrichtung oder Richtung der Referenzmagnetisierung unter 45° zur GMR-Streifenrichtung weisen die beiden Brückenausgangssignale Ui und U2 gemäß Figur 5a nicht die übliche Phasenverschiebung von 90°, sondern nur eine 45°- Phasenverschiebnung auf. Diese Signale Ub U2 können jedoch auf einfache Weise auf die orthogonalen, cosinus- und sinusförmigen Signale gemäß Figur 5b transformiert werden. Hierzu wird in einer Sensor-Auswertelektronik folgende Transformation durchgeführt:
Figure imgf000011_0001
Hierbei bezeichnet φ die Phasenverschiebung des zweiten Brückensignals relativ zu dem ersten Brückensignal. Diese Phasenverschiebung kann prinzipiell beliebig gewählt werden, es wird jedoch bevorzugt eine Phasenverschiebung von 45° eingestellt.
Aus den mittels dieser Transformation erhaltenen cosinus- und sinusförmigen Signalen gemäß Figur 5b kann durch Arcustangens-Bildung bzw. durch Anwendung eines entsprechenden Algorithmus wie z.B. des CORDIC-Algorithmus in der Sensor- Auswerteelektronik der Winkel α bestimmt werden:
U. a„ = arctan! ^cos J Die Implementation dieser Koordinatentransformation bietet weiter den wichtigen Vorteil, dass herstellungsbedingte Schwankungen der Phasenverschiebung der beiden Brückensignale Ui, U2 sensorspezifisch bei der Abbildung auf orthogonale Signale (90°- Phasenverschiebung) erfasst und kompensiert werden können. Dazu wird beispielsweise bei einem Offset- und Amplitudenabgleich der Signale Ui, U2 am Ende einer Produktionslinie auch diese Phasenverschiebung φ beispielsweise mittels Fourieranalyse der beiden Brückensignale Ui, U2 bestimmt, und in der Sensor-Auswerteelektronik gespeichert.
c.) rotationssymmetrische Anordnung mit Unterdrückung des AMR-Signalbeitrags
Die in Figur 3 dargestellte Widerstandsanordnung begünstigt den AMR-Signalbeitrag, da die GMR-Streifenrichtungen der beiden Brückenwiderstände einer jeden Halbbrücke orthogonal zu einander stehen. Dieser Nachteil kann vermieden werden, indem man gemäß der bevorzugten, ebenfalls rotationssymmetrischen Anordnung gemäß Figur 6 jeden Brückenwiderstand aus zwei gleichen Hälften mit senkrecht zueinander stehenden GMR- Streifenrichtungen zusammensetzt. Durch die Reihenschaltung der beiden Teilwiderstände mit jeweils identischer Referenzmagnetisierung MR wird dann der AMR- Anteil herausgefiltert, während der GMR-Signalanteil infolge bei beiden Teilwiderständen identischer Richtung der Referenzmagnetisierung MR unverändert bleibt. Verdeutlicht wird dieser Sachverhalt durch folgende Beziehung für ein zweiteiliges GMR-Brückenwider- standselement:
R(a) = • (R - 0,5 ARGMR cos(«)+ 0,5 • ΔR^ • cos(25)) l. Teilwiders tan d
+ ~ (R - 0,5 - ARGMR . cos(α)+ 0,5 - XMR • cos(2(, - 90°)))
2. Teilwiders tan d
= R - 0,5 - ARGm - cos( )
Hierbei bezeichnet α den Winkel zwischen Feld- bzw. Magnetisierungsrichtung der freien ferromagnetischen Schicht (FL) und der Referenzmagnetisierungsrichtung; & bezeichnet den Winkel zwischen Feld- bzw. Magnetisierungsrichtung der freien Schicht (FL) und der GMR-Streifenrichtung des ersten Teilwiderstands. Die Streifenrichtung des zweiten Teilwiderstands ist um -90° zu der des ersten Teilwiderstands gedreht.
d.) Pinningverhalten
Die Figur 7 verdeutlicht die Aufteilung der Brückenwiderstände in jeweils zwei Hälften mit zueinander orthogonalen Streifenrichtungen jedoch identischer Referenzmagnetisierungsrichtung MR. Prinzipiell kann die Pinningrichtung bzw. die Richtung der Referenzmagnetisierung MR beliebig gewählt werden. Bevorzugt ist jedoch ein Winkel von 45° zur jeweiligen Streifenrichtung, denn dadurch wird für alle Teilwiderstände ein identisches Pinningverhalten erreicht.
Alternativ kann auch eine Pinningrichtung oder eine Richtung der Referenzmagnetisierung MR eingestellt werden, die bei jeweils einem der beiden Teilwiderstände parallel zur Streifenrichtung und bei dem jeweils anderen Teilwiderstand senkrecht zur Streifenrichtung orientiert ist. Dadurch wird zwar bei den einzelnen Teilwiderständen ein unterschiedliches, jedoch bei jedem der Brückenwiderstandselemente in Form einer Reihenschaltung der beiden Teilwiderstände insgesamt wiederum ein identisches Pinningverhalten erreicht.
Diese Wahl der Pinning- bzw. Referenzmagnetisierungsrichtung bietet gegenüber bekannten Sensoren den Vorteil, das innerhalb eines jeden Brückenwiderstandselementes über das unterschiedliche Pinningverhalten von paralleler und senkrechter Ausrichtung der Pinning- bzw. Referenzmagnetisierungsrichtung zur GMR-Streifenrichtung gemittelt wird.
Der beschriebene 360° GMR- Winkelsensor eignet sich besonders zur Detektion der Absolutposition der Nockenwelle oder der Kurbelwelle in einem Kraftfahrzeug, insbesondere bei einem nockenwellenfreien Motor mit elektrischer oder elektrohyraulischer Ventilsteuerung, einer Motorlage eines elektrisch kommutierten Motors oder einer Detektion einer Scheibenwischerstellung, oder in der Lenkwinkelsensorik in Kraftfahrzeugen.

Claims

Patentansprüche
1. GMR-Sensorelement mit einer rotationssymmetrischen Anordnung von insbesondere acht GMR- Widerstandselementen, die zu zwei Wheatston'schen Vollbrücken miteinander verschaltet sind.
2. GMR-Sensorelement nach Anspruch 1, dadurch gekennzeichnet, dass die GMR- Widerstandselemente ineinander verschachtelt sind.
3. GMR-Sensorelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die GMR- Widerstandselemente streifenförmig strukturiert sind.
4. GMR-Sensorelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass jedes GMR- Widerstandselement der Wheatston'schen Vollbrücken in zwei gleich aufgebaute Hälften mit orthogonal zu einander orientierten Richtungen der streifenförmig strukturierten GMR- Widerstandselemente unterteilt ist.
5. GMR-Sensorelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass damit eine eindeutige Messung eines Winkels (α) eines äußeren Magnetfeldes (B) gegenüber einer Richtung der Magnetisierung einer Referenzschicht (RL) über 360° durchführbar ist.
6. GMR-Sensorelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die GMR- Widerstandselemente zumindest näherungsweise kreisförmig oder achteck- förmig angeordnet sind.
7. Verwendung eines GMR-Sensorelementes nach einem der vorangehenden Ansprüche in einem Winkelsensor zur Detektion der Absolutposition einer Nockenwelle oder einer Kur- belwelle in einem Kraftfahrzeug, insbesondere bei einem nockenwellenfreien Motor mit elektrischer oder elektrohyraulischer Ventilsteuerung, einer Motorlage eines elektrisch kommutierten Motors oder einer Detektion einer Scheibenwischerstellung, oder in der Lenkwinkelsenso- rik in Kraftfahrzeugen.
PCT/DE2003/002145 2002-07-26 2003-06-27 Gmr-sensorelement und dessen verwendung WO2004017086A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/523,252 US7312609B2 (en) 2002-07-26 2003-06-27 GMR sensor element and its use
AU2003250275A AU2003250275B2 (en) 2002-07-26 2003-06-27 GMR sensor element and use thereof
EP03787612A EP1527352A1 (de) 2002-07-26 2003-06-27 Gmr-sensorelement und dessen verwendung
JP2005502011A JP2005534199A (ja) 2002-07-26 2003-06-27 Gmrセンサエレメントおよびgmrセンサエレメントの使用

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10234347 2002-07-26
DE10234347.0 2002-07-26
DE10257253A DE10257253A1 (de) 2002-07-26 2002-12-07 GMR-Sensorelement und dessen Verwendung
DE10257253.4 2002-12-07

Publications (1)

Publication Number Publication Date
WO2004017086A1 true WO2004017086A1 (de) 2004-02-26

Family

ID=31889084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002145 WO2004017086A1 (de) 2002-07-26 2003-06-27 Gmr-sensorelement und dessen verwendung

Country Status (6)

Country Link
US (1) US7312609B2 (de)
EP (1) EP1527352A1 (de)
JP (1) JP2005534199A (de)
AU (1) AU2003250275B2 (de)
RU (1) RU2328015C2 (de)
WO (1) WO2004017086A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220507A (ja) * 2007-05-02 2014-11-20 マグアイシーテクノロジーズ インコーポレイテッドMagIC Technologies, Inc. 磁場角センサおよび磁気トンネル接合素子
JP2019129254A (ja) * 2018-01-25 2019-08-01 株式会社東海理化電機製作所 磁気センサ

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4259937B2 (ja) * 2003-06-30 2009-04-30 アルプス電気株式会社 角度検出センサ
WO2006131134A1 (en) * 2005-06-08 2006-12-14 Ecolab Inc. Oval gear meter
CN101223453A (zh) * 2005-07-21 2008-07-16 皇家飞利浦电子股份有限公司 包含磁阻系统的装置
JP5161433B2 (ja) * 2006-05-16 2013-03-13 株式会社東海理化電機製作所 センサ装置
DE102006061928A1 (de) * 2006-12-21 2008-06-26 Siemens Ag Pollagemesseinrichtung für ein Magnetschwebefahrzeug einer Magnetschwebebahn und Verfahren zu deren Betrieb
US7915886B2 (en) * 2007-01-29 2011-03-29 Honeywell International Inc. Magnetic speed, direction, and/or movement extent sensor
US7394247B1 (en) * 2007-07-26 2008-07-01 Magic Technologies, Inc. Magnetic field angle sensor with GMR or MTJ elements
US8715776B2 (en) * 2007-09-28 2014-05-06 Headway Technologies, Inc. Method for providing AFM exchange pinning fields in multiple directions on same substrate
US20090115405A1 (en) * 2007-11-01 2009-05-07 Magic Technologies, Inc. Magnetic field angular sensor with a full angle detection
JP5014968B2 (ja) * 2007-12-07 2012-08-29 株式会社東海理化電機製作所 ポジションセンサ
JP4780117B2 (ja) * 2008-01-30 2011-09-28 日立金属株式会社 角度センサ、その製造方法及びそれを用いた角度検知装置
US8519703B2 (en) * 2008-03-20 2013-08-27 Infineon Technologies Ag Magnetic sensor device and method of determining resistance values
WO2009129633A1 (de) * 2008-04-23 2009-10-29 Orgapack Gmbh Umreifungsvorrichtung mit einer getriebeeinrichtung
US9254932B2 (en) 2008-04-23 2016-02-09 Signode Industrial Group Llc Strapping device with an electrical drive
US10518914B2 (en) 2008-04-23 2019-12-31 Signode Industrial Group Llc Strapping device
WO2009129634A1 (de) 2008-04-23 2009-10-29 Orgapack Gmbh Mobile umreifungsvorrichtung
JP2011518087A (ja) 2008-04-23 2011-06-23 オルガパック ゲゼルシャフト ミット ベシュレンクテル ハフツング エネルギ貯蔵手段を有するバンド掛け装置
CN102026875B (zh) 2008-04-23 2016-01-20 信诺国际Ip控股有限责任公司 带有拉紧装置的捆扎设备
US11999516B2 (en) 2008-04-23 2024-06-04 Signode Industrial Group Llc Strapping device
US8024956B2 (en) * 2008-09-02 2011-09-27 Infineon Technologies Ag Angle measurement system
US20100097051A1 (en) * 2008-10-22 2010-04-22 Honeywell International Inc. Incremental position, speed and direction detection apparatus and method for rotating targets utilizing magnetoresistive sensor
US8405385B2 (en) * 2009-03-10 2013-03-26 The Board Of Trustees Of The Leland Stanford Junior University Temperature and drift compensation in magnetoresistive sensors
JP5387583B2 (ja) * 2009-03-30 2014-01-15 日立金属株式会社 回転角度検出装置
US8451003B2 (en) 2009-07-29 2013-05-28 Tdk Corporation Magnetic sensor having magneto-resistive elements on a substrate
JP2011038855A (ja) * 2009-08-07 2011-02-24 Tdk Corp 磁気センサ
US8390283B2 (en) * 2009-09-25 2013-03-05 Everspin Technologies, Inc. Three axis magnetic field sensor
US8901921B2 (en) * 2009-11-25 2014-12-02 Infineon Technologies Ag Angle measurement system for determining an angular position of a rotating shaft
US8518734B2 (en) 2010-03-31 2013-08-27 Everspin Technologies, Inc. Process integration of a single chip three axis magnetic field sensor
JP5544466B2 (ja) * 2010-12-02 2014-07-09 アルプス・グリーンデバイス株式会社 電流センサ
US8975889B2 (en) * 2011-01-24 2015-03-10 Infineon Technologies Ag Current difference sensors, systems and methods
US9000763B2 (en) * 2011-02-28 2015-04-07 Infineon Technologies Ag 3-D magnetic sensor
RU2447527C1 (ru) * 2011-04-27 2012-04-10 Учреждение Российской академии наук Институт проблем проектирования в микроэлектронике РАН Способ и устройство для создания магнитного поля, локализованного в нанометровой области пространства
JP5602682B2 (ja) * 2011-06-03 2014-10-08 株式会社東海理化電機製作所 磁気センサ、及び磁気センサ用パターン
JP5747759B2 (ja) * 2011-09-19 2015-07-15 株式会社デンソー 磁気センサ
CH705743A2 (de) 2011-11-14 2013-05-15 Illinois Tool Works Umreifungsvorrichtung.
US9817085B2 (en) * 2012-03-15 2017-11-14 Infineon Technologies Ag Frequency doubling of xMR signals
US9411024B2 (en) * 2012-04-20 2016-08-09 Infineon Technologies Ag Magnetic field sensor having XMR elements in a full bridge circuit having diagonal elements sharing a same shape anisotropy
JP6412003B2 (ja) 2012-09-24 2018-10-24 シグノード インターナショナル アイピー ホールディングス エルエルシー 旋回可能なロッカーを有する結束装置
CH708294A2 (de) 2013-05-05 2014-12-15 Orgapack Gmbh Umreifungsvorrichtung.
US10513358B2 (en) 2014-02-10 2019-12-24 Signode Industrial Group Llc Strapping apparatus
US9435662B2 (en) * 2014-04-08 2016-09-06 Infineon Technologies Ag Magneto-resistive angle sensor and sensor system using the same
EP2960666B1 (de) * 2014-06-25 2017-01-25 Nxp B.V. Sensorsystem mit Drei-Halbbrückenkonfiguration
DE102014119531B4 (de) * 2014-12-23 2019-06-27 Infineon Technologies Ag Sensorschaltung
US9625281B2 (en) * 2014-12-23 2017-04-18 Infineon Technologies Ag Fail-safe operation of an angle sensor with mixed bridges having separate power supplies
CN104776794B (zh) * 2015-04-16 2017-11-10 江苏多维科技有限公司 一种单封装的高强度磁场磁电阻角度传感器
JP2018109518A (ja) * 2015-05-22 2018-07-12 アルプス電気株式会社 回転検出器
US10782153B2 (en) 2016-03-08 2020-09-22 Analog Devices Global Multiturn sensor arrangement and readout
USD864688S1 (en) 2017-03-28 2019-10-29 Signode Industrial Group Llc Strapping device
CN106871778B (zh) * 2017-02-23 2019-11-22 江苏多维科技有限公司 一种单芯片双轴磁电阻角度传感器
US10782154B2 (en) * 2017-06-26 2020-09-22 Texas Instruments Incorporated Tilted segmented anisotropic magneto-resistive angular sensor
US10627459B2 (en) * 2017-07-17 2020-04-21 Texas Instruments Incorporated Anisotropic magneto-resistive (AMR) angle sensor die comprising a plurality of AMR angle sensors
JP2021055999A (ja) * 2018-01-15 2021-04-08 パナソニックIpマネジメント株式会社 磁気センサ
CN109752675A (zh) * 2019-01-10 2019-05-14 东南大学 一种正八边形薄膜磁阻传感器
US11460521B2 (en) 2019-03-18 2022-10-04 Analog Devices International Unlimited Company Multiturn sensor arrangement

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4317512A1 (de) * 1993-05-26 1994-12-01 Univ Schiller Jena Vorrichtung zur berührungslosen Nullpunkt-, Positions- und Drehwinkelmessung
US5602471A (en) 1994-03-10 1997-02-11 U.S. Philips Corporation Angle sensor including angularly spaced sensor units
DE19722834A1 (de) * 1997-05-30 1998-12-03 Inst Mikrostrukturtechnologie Magnetoresistives Gradiometer in Form einer Wheatstone-Brücke zur Messung von Magnetfeldgradienten
EP0905523A2 (de) 1997-09-24 1999-03-31 Siemens Aktiengesellschaft Sensoreinrichtung zur Richtungserfassung eines äusseren Magnetfeldes mittels eines magnetoresistiven Sensorelementes
WO2000079298A2 (en) 1999-06-18 2000-12-28 Koninklijke Philips Electronics N.V. Magnetic systems with irreversible characteristics and a method of manufacturing and repairing and operating such systems
US20020006017A1 (en) 2000-07-13 2002-01-17 Koninklijke Philips Electronics N.V. Magnetoresistive angle sensor having several sensing elements
US6373247B1 (en) 1998-09-22 2002-04-16 Robert Bosch Gmbh Magnetoresistive sensor element with selective magnetization direction of the bias layer
US20020149358A1 (en) * 2001-04-14 2002-10-17 Michael Doescher Angle sensor and method of increasing the anisotropic field strength of a sensor unit of an angle sensor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846268A (ja) * 1994-08-03 1996-02-16 Jeco Co Ltd 磁電変換装置
JPH10222817A (ja) * 1997-02-06 1998-08-21 Hitachi Ltd 磁気抵抗センサ
EP0927361A1 (de) * 1997-06-13 1999-07-07 Koninklijke Philips Electronics N.V. Sensor, ausgestattet mit einer wheatstone'schen brücke
EP1031038A1 (de) * 1998-06-22 2000-08-30 Koninklijke Philips Electronics N.V. Magnetischer positionsgeber
DE19835694A1 (de) * 1998-08-07 2000-02-10 Bosch Gmbh Robert Sensoranordnung zur Erfassung eines Drehwinkels und/oder eines Drehmoments
JP2000149225A (ja) * 1998-11-10 2000-05-30 Fujitsu Ltd 薄膜磁気ヘッドとその製造方法
US6566867B1 (en) * 1999-06-24 2003-05-20 Delphi Technologies, Inc. Binary encoded crankshaft target wheel with single VR sensor
DE19962241A1 (de) * 1999-12-22 2001-07-12 Ruf Electronics Gmbh Positionssensor
US6519549B1 (en) * 2000-07-31 2003-02-11 Delphi Technologies, Inc. Method and device for determining absolute angular position of a rotating body
DE10104116A1 (de) * 2001-01-31 2002-08-01 Philips Corp Intellectual Pty Anordnung zum Erfassen des Drehwinkels eines drehbaren Elements
US7005958B2 (en) * 2002-06-14 2006-02-28 Honeywell International Inc. Dual axis magnetic sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4317512A1 (de) * 1993-05-26 1994-12-01 Univ Schiller Jena Vorrichtung zur berührungslosen Nullpunkt-, Positions- und Drehwinkelmessung
US5602471A (en) 1994-03-10 1997-02-11 U.S. Philips Corporation Angle sensor including angularly spaced sensor units
DE19722834A1 (de) * 1997-05-30 1998-12-03 Inst Mikrostrukturtechnologie Magnetoresistives Gradiometer in Form einer Wheatstone-Brücke zur Messung von Magnetfeldgradienten
EP0905523A2 (de) 1997-09-24 1999-03-31 Siemens Aktiengesellschaft Sensoreinrichtung zur Richtungserfassung eines äusseren Magnetfeldes mittels eines magnetoresistiven Sensorelementes
US6373247B1 (en) 1998-09-22 2002-04-16 Robert Bosch Gmbh Magnetoresistive sensor element with selective magnetization direction of the bias layer
WO2000079298A2 (en) 1999-06-18 2000-12-28 Koninklijke Philips Electronics N.V. Magnetic systems with irreversible characteristics and a method of manufacturing and repairing and operating such systems
US20020006017A1 (en) 2000-07-13 2002-01-17 Koninklijke Philips Electronics N.V. Magnetoresistive angle sensor having several sensing elements
US20020149358A1 (en) * 2001-04-14 2002-10-17 Michael Doescher Angle sensor and method of increasing the anisotropic field strength of a sensor unit of an angle sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220507A (ja) * 2007-05-02 2014-11-20 マグアイシーテクノロジーズ インコーポレイテッドMagIC Technologies, Inc. 磁場角センサおよび磁気トンネル接合素子
JP2019129254A (ja) * 2018-01-25 2019-08-01 株式会社東海理化電機製作所 磁気センサ

Also Published As

Publication number Publication date
RU2328015C2 (ru) 2008-06-27
US20060103381A1 (en) 2006-05-18
RU2004115639A (ru) 2006-01-10
US7312609B2 (en) 2007-12-25
AU2003250275B2 (en) 2008-01-31
AU2003250275A1 (en) 2004-03-03
JP2005534199A (ja) 2005-11-10
EP1527352A1 (de) 2005-05-04

Similar Documents

Publication Publication Date Title
EP1527352A1 (de) Gmr-sensorelement und dessen verwendung
DE102009050427B4 (de) Magnetsensorsystem und Verfahren
DE19732616C2 (de) Magnetfeld-Messgerät zur Messung der Drehung eines sich drehenden Körpers
DE102006032277B4 (de) Magnetfeldsensorbauelement
EP2396666B1 (de) Anordnung zur messung mindestens einer komponente eines magnetfeldes
DE10342260B4 (de) Magnetoresistiver Sensor in Form einer Halb- oder Vollbrückenschaltung
DE102016102601B4 (de) Magnetsensor
DE4301704A1 (de) Vorrichtung zum Erfassen einer Winkelposition eines Objektes
WO1997013120A1 (de) Vorrichtung zur berührungslosen positionserfassung eines objektes und verwendung der vorrichtung
WO2000012957A1 (de) Anordnung zur drehwinkelerfassung eines drehbaren elements
WO2006136577A1 (de) Stromsensor zur galvanisch getrennten strommessung
DE102020200177A1 (de) Streufeldrobuster xmr-sensor mit senkrechter anisotropie
EP1567878B1 (de) Magnetoresistives sensorelement und verfahren zur reduktion des winkelfehlers eines magnetoresistiven sensorelements
EP1046047B1 (de) Magnetoresistives sensorelement mit wahlweiser magnetisierungsausrichtung der biasschicht
DE19532674C1 (de) Drehwinkelgeber unter Verwendung von Giant Magnetowiderstandsmaterialien
DE102019102152A1 (de) Magnetfelddrehmoment- und/oder winkelsensor
DE102016111256A1 (de) Magnetfeldgenerator, Magnetsensorsystem und Magnetsensor
DE102006010652B4 (de) Magnetfeldsensor
DE10128135A1 (de) Magnetoresistive Schichtanordnung und Gradiometer mit einer derartigen Schichtanordnung
DE102015106521A1 (de) Magnetfeldsensorvorrichtung
DE10257253A1 (de) GMR-Sensorelement und dessen Verwendung
DE19949714A1 (de) Magnetisch sensitives Bauteil, insbesondere Sensorelement, mit magnetoresistiven Schichtsystemen in Brückenschaltung
DE10042006A1 (de) Vorrichtung und Verfahren zur Winkelmessung
DE19712833C2 (de) Einrichtung zur berührungslosen Positionserfassung eines Objektes und Verwendung der Einrichtung
DE102020126871A1 (de) Ein Sensorsystem, ein System und ein Verfahren zum Bestimmen einer Position oder eines Drehwinkels

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2003787612

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003250275

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004115639

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2005502011

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003787612

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006103381

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10523252

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10523252

Country of ref document: US