JP2019129254A - 磁気センサ - Google Patents

磁気センサ Download PDF

Info

Publication number
JP2019129254A
JP2019129254A JP2018010616A JP2018010616A JP2019129254A JP 2019129254 A JP2019129254 A JP 2019129254A JP 2018010616 A JP2018010616 A JP 2018010616A JP 2018010616 A JP2018010616 A JP 2018010616A JP 2019129254 A JP2019129254 A JP 2019129254A
Authority
JP
Japan
Prior art keywords
linear pattern
pattern portion
magnetoresistive element
angle
magnetic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018010616A
Other languages
English (en)
Inventor
嘉彦 佐藤
Yoshihiko Sato
嘉彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Rika Co Ltd
Original Assignee
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rika Co Ltd filed Critical Tokai Rika Co Ltd
Priority to JP2018010616A priority Critical patent/JP2019129254A/ja
Publication of JP2019129254A publication Critical patent/JP2019129254A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】高い磁気抵抗変化率を得ることができる磁気センサを提供する。【解決手段】この磁気センサ1は、第1の直線パターン部20aと、第1の直線パターン部20aの一方端部200を基準に予め定められた角度θ、回転させて一方端部200と繋がる第2の直線パターン部20bと、第1の直線パターン部20aの他方端部201を基準に予め定められた角度θ、第2の直線パターン部20bと逆方向に回転させて他方端部201と繋がる第3の直線パターン部20cと、を含んで構成されて磁場50の方向に応じて磁気抵抗が変化する複数の感磁部20を有する磁気抵抗素子を備えて概略構成されている。【選択図】図1

Description

本発明は、磁気センサに関する。
従来の技術として、円弧形状を有する磁気抵抗効果素子を備えた回転角検出装置が知られている(例えば、特許文献1参照。)。
この回転角検出装置は、4つの磁気抵抗効果素子によってブリッジ回路が形成されている。磁気抵抗効果素子は、形状が中心を通る中心軸線に対して点対称となっている。よってこのブリッジ回路の2つの出力電圧の波形は、位相が異なるものの形状が同じとなり、オフセット電圧、2つの出力電圧の信号比などの諸特性が直線形状のものと比べて、有利となる。
特開2014−81314号公報
しかし従来の回転角検出装置は、湾曲することによって磁気抵抗変化率が、直線形状と比べて小さくなり、その結果出力電圧が小さくなる問題がある。
従って本発明の目的は、磁気抵抗変化率の低下を抑制しつつ検出精度を高めることができる磁気センサを提供することにある。
本発明の一態様は、第1の直線パターン部と、第1の直線パターン部の一方端部を基準に予め定められた角度、回転させて一方端部と繋がる第2の直線パターン部と、第1の直線パターン部の他方端部を基準に予め定められた角度、第2の直線パターン部と逆方向に回転させて他方端部と繋がる第3の直線パターン部と、を含んで構成されて磁場の方向に応じて磁気抵抗が変化する複数の感磁部を有する磁気抵抗素子、を備えた磁気センサを提供する。
本発明によれば、磁気抵抗変化率の低下を抑制しつつ検出精度を高めることができる。
図1(a)は、実施の形態に係る磁気センサの磁気抵抗素子が配置される領域の一例を説明するための概略図であり、図1(b)は、磁気センサの磁気抵抗素子の一例を示す概略図であり、図1(c)は、磁気センサの構成の一例を示す概略図である。 図2(a)は、実施の形態に係る磁気センサの感磁部の一例を示す概略図であり、図2(b)は、磁気センサの等価回路図の一例である。 図3(a)は、比較例1に係る感磁部を示す概略図であり、図3(b)は、比較例2に係る感磁部を示す概略図であり、図3(c)は、実施例、比較例3及び比較例4の感磁部の角度精度と角度θとの関係を示すグラフである。
(実施の形態の要約)
実施の形態に係る磁気センサは、第1の直線パターン部と、第1の直線パターン部の一方端部を基準に予め定められた角度、回転させて一方端部と繋がる第2の直線パターン部と、第1の直線パターン部の他方端部を基準に予め定められた角度、第2の直線パターン部と逆方向に回転させて他方端部と繋がる第3の直線パターン部と、を含んで構成されて磁場の方向に応じて磁気抵抗が変化する複数の感磁部を有する磁気抵抗素子、を備えて概略構成されている。
[実施の形態]
(磁気センサ1の概要)
図1(a)は、実施の形態に係る磁気センサの磁気抵抗素子が配置される領域の一例を説明するための概略図であり、図1(b)は、磁気センサの磁気抵抗素子の一例を示す概略図であり、図1(c)は、磁気センサの構成の一例を示す概略図である。図2(a)は、実施の形態に係る磁気センサの感磁部の一例を示す概略図であり、図2(b)は、磁気センサの等価回路図の一例である。図1(b)、図2(a)に示す点線は、第1の直線パターン部20a〜第3の直線パターン部20cを長方形として場合の仮想的な辺を示している。
なお、以下に記載する実施の形態に係る各図において、図形間の比率は、実際の比率とは異なる場合がある。また図2(b)では、主な信号や情報の流れを矢印で示している。さらに数値範囲を示す「A〜B」は、A以上B以下の意味で用いるものとする。
この磁気センサ1は、一例として、音楽再生装置の音量、空調装置の温度や風量などを設定する操作ノブなどの回転体の回転角を検出するセンサであるがこれに限定されない。
この磁気センサ1は、例えば、図1(a)〜図2(a)に示すように、第1の直線パターン部20aと、第1の直線パターン部20aの一方端部200を基準に予め定められた角度θ、回転させて一方端部200と繋がる第2の直線パターン部20bと、第1の直線パターン部20aの他方端部201を基準に予め定められた角度θ、第2の直線パターン部20bと逆方向に回転させて他方端部201と繋がる第3の直線パターン部20cと、を含んで構成されて磁場50の方向に応じて磁気抵抗が変化する複数の感磁部20を有する磁気抵抗素子を備えて概略構成されている。
この一方端部200の基準は、例えば、図2(a)に示す角部200aである。第2の直線パターン部20bは、角部200aを中心に時計回りに予め定められた角度θ回転したようなパターンとなる。また他方端部201の基準は、例えば、図2(a)に示す角部201aである。第3の直線パターン部20cは、角部201aを中心に反時計回りに角度θ回転したようなパターンとなる。
ここで磁気センサ1は、例えば、図2(b)に示すように、磁気抵抗素子21〜磁気抵抗素子28を備えている。磁気抵抗素子21〜磁気抵抗素子24は、第1のブリッジ回路11を構成している。磁気抵抗素子25〜磁気抵抗素子28は、第2のブリッジ回路12を構成している。なお磁気抵抗素子の数は、これに限定されない。
また磁気センサ1は、例えば、図2(a)に示すように、第2の直線パターン部20b及び第3の直線パターン部20cの長手方向の長さLが第1の直線パターン部20aの長手方向の長さL以上である。
第2の直線パターン部20b側の角度θとは、第1の直線パターン部20aの長手方向の辺を延長した直線と、第2の直線パターン部20bの長手方向の辺と、のなす角度である。第3の直線パターン部20c側の角度θとは、第1の直線パターン部20aの長手方向の辺を延長した直線と、第3の直線パターン部20cの長手方向の辺と、のなす角度である。
そして磁気抵抗素子21〜磁気抵抗素子28は、例えば、図1(a)に示すように、円を仮想的に等分割した扇形状の領域に配置される。本実施の形態では、円を8等分して8つの領域(第1の領域21a〜第8の領域28a)に磁気抵抗素子21〜磁気抵抗素子28が配置されているが、これに限定されない。
磁気センサ1は、例えば、図2(b)に示すように、センサ部2と、オペアンプOPと、オペアンプOPと、制御部15と、を備えて概略構成されている。なおセンサ部2は、基板10に形成された磁気抵抗素子21〜磁気抵抗素子28を示している。
第1のブリッジ回路11は、オペアンプOPに接続されている。第2のブリッジ回路12は、オペアンプOPに接続されている。このオペアンプOPが差動増幅して生成した出力信号Sと、オペアンプOPが差動増幅して生成した出力信号Sは、制御部15に出力される。
(センサ部2の構成)
センサ部2の磁気抵抗素子21〜磁気抵抗素子28は、例えば、図1(c)に示すように、基板10に形成されている。そして磁気抵抗素子21〜磁気抵抗素子28は、例えば、図1(b)に示すように、複数の感磁部20を備えて概略構成されている。この図1(b)では、扇形状を有する第8の領域28aに配置される感磁部20の一部が示されている。
従って感磁部20は、扇形状の領域に等間隔で配置されるので、円の径が大きくなるに従って周方向の長さが長くなるように形成されている。この感磁部20は、例えば、Ni、Feなどの強磁性金属を主成分とする合金の薄膜として形成されている。また感磁部20は、その間がアルミニウムなどの磁場50の方向の変化によって磁気抵抗が変化しない金属膜によって端部が交互に接続されている。
図1(a)では、第1のブリッジ回路11を構成する磁気抵抗素子21〜磁気抵抗素子24が配置される第1の領域21a〜第4の領域24aを幅の狭い斜線、第2のブリッジ回路12を構成する磁気抵抗素子25〜磁気抵抗素子28が配置される第5の領域25a〜第8の領域28aを幅の広い斜線で示している。また斜線は、感磁部20の配置が分かるように、感磁部20と平行となるように図示されている。
第1の領域21aは、例えば、図1(a)の紙面左上の領域であり、磁気抵抗素子21が配置されている。第2の領域22aは、例えば、図1(a)の紙面左下の領域であり、磁気抵抗素子22が配置されている。第3の領域23aは、例えば、図1(a)の紙面右上の領域であり、磁気抵抗素子23が配置されている。第4の領域24aは、例えば、図1(a)の紙面右下の領域であり、磁気抵抗素子24が配置されている。
磁気抵抗素子21〜磁気抵抗素子24は、円の中心Pを回転中心として90°ずつ回転させて対称となる形状を有している。
第5の領域25aは、例えば、図1(a)の紙面上の領域であり、磁気抵抗素子25が配置されている。第6の領域26aは、例えば、図1(a)の紙面左の領域であり、磁気抵抗素子26が配置されている。第7の領域27aは、例えば、図1(a)の紙面右の領域であり、磁気抵抗素子27が配置されている。第8の領域28aは、例えば、図1(a)の紙面下の領域であり、磁気抵抗素子28が配置されている。
磁気抵抗素子25〜磁気抵抗素子28は、円の中心Pを回転中心として90°ずつ回転させて対称となる形状を有している。つまり磁気抵抗素子21〜磁気抵抗素子28は、円の中心Pを回転中心として45°ずつ回転させて対称となる形状を有している。
ここで第1のブリッジ回路11は、上述のように、磁気抵抗素子21〜磁気抵抗素子24によって形成されている。磁気抵抗素子21と磁気抵抗素子23の接続点であるノード11aは、図2(b)に示すように、電源電圧VCCに電気的に接続される。磁気抵抗素子22と磁気抵抗素子24の接続点であるノード11cは、GNDと電気的に接続される。
磁気抵抗素子21と磁気抵抗素子22は、ハーフブリッジ回路を形成する。このハーフブリッジ回路は、磁気抵抗素子21と磁気抵抗素子22のノード11bにおける中点電位Vを出力する。この中点電位Vは、オペアンプOPの反転入力端子(−側)に入力する。
また磁気抵抗素子23と磁気抵抗素子24は、ハーフブリッジ回路を形成する。このハーフブリッジ回路は、磁気抵抗素子23と磁気抵抗素子24のノード11dにおける中点電位Vを出力する。この中点電位Vは、オペアンプOPの非反転入力端子(+側)に入力する。このオペアンプOPは、非反転入力端子に入力した中点電位Vと、反転入力端子に入力した中点電位Vと、を差動増幅した出力信号Sを制御部15に出力する。
第2のブリッジ回路12は、磁気抵抗素子25〜磁気抵抗素子28によって形成されている。磁気抵抗素子25と磁気抵抗素子27の接続点であるノード12aは、図2(b)に示すように、電源電圧VCCに電気的に接続される。磁気抵抗素子26と磁気抵抗素子28の接続点であるノード12cは、GNDと電気的に接続される。
磁気抵抗素子25と磁気抵抗素子26は、ハーフブリッジ回路を形成する。このハーフブリッジ回路は、磁気抵抗素子25と磁気抵抗素子26のノード12bにおける中点電位Vを出力する。この中点電位Vは、オペアンプOPの反転入力端子(−側)に入力する。
また磁気抵抗素子27と磁気抵抗素子28は、ハーフブリッジ回路を形成する。このハーフブリッジ回路は、磁気抵抗素子27と磁気抵抗素子28のノード12dにおける中点電位Vを出力する。この中点電位Vは、オペアンプOPの非反転入力端子(+側)に入力する。このオペアンプOPは、非反転入力端子に入力した中点電位Vと、反転入力端子に入力した中点電位Vと、を差動増幅した出力信号Sを制御部15に出力する。
(磁石5の構成)
磁石5は、例えば、操作ノブなどの回転体に取り付けられている。また磁石5は、例えば、取付先の回転体の回転操作に基づいて回転軸51の周りを時計回り、及び反時計回りに回転する。磁石5は、例えば、円柱形状を有し、円柱を回転軸51に沿って分割した一方がN極、他方がS極となるように着磁されている。
磁石5は、例えば、アルニコ磁石、フェライト磁石、ネオジム磁石などの永久磁石を所望の形状に成形したもの、又はフェライト系、ネオジム系、サマコバ系、サマリウム鉄窒素系などの磁性体材料と合成樹脂材料とを混合して所望の形状に成形したものである。本実施の形態の磁石5は、一例として、永久磁石である。なお磁石5は、電磁石であっても良い。
磁石5の磁場50は、N極から湧き出してS極に吸い込まれ、磁気センサ1の感磁部20に作用する。磁気センサ1は、作用する磁場50の方向に応じた検出情報Sを出力するように構成されている。
(制御部15の構成)
制御部15は、例えば、記憶されたプログラムに従って、取得したデータに演算、加工などを行うCPU(Central Processing Unit)、半導体メモリであるRAM(Random Access Memory)及びROM(Read Only Memory)などから構成されるマイクロコンピュータである。
制御部15は、例えば、第1のブリッジ回路11から出力された出力信号Sと第2のブリッジ回路12から出力された出力信号Sに基づいてtanαを算出し、さらにAtan(tan-1=−S/S)を算出して磁石5の回転角αを求める。そして制御部15は、算出した回転角αの情報を含む検出情報Sを生成して接続された電子機器に出力する。
(実施例、比較例1〜比較例4について)
図3(a)は、比較例1に係る感磁部を示す概略図であり、図3(b)は、比較例2に係る感磁部を示す概略図であり、図3(c)は、実施例、比較例3及び比較例4の感磁部の角度精度と角度θとの関係を示すグラフである。図3(c)は、縦軸が角度精度(deg)、横軸が予め定められた角度θ(deg)である。なお図3(c)において一点鎖線のグラフは、比較例3を示している。二点鎖線のグラフは、比較例4を示している。実線のグラフは、実施例を示している。
この角度精度は、実際の磁石5の回転角と検出された角度との差を示すもので、値が小さい方が検出精度が高い。なお実施例、比較例1〜比較例4の材料や全体の長さは、同じとしてMicrosoft社のExcel(登録商標)を用いてシミュレーションを行った。
実施例の感磁部20は、例えば、図2(b)に示すように、第1の直線パターン部20a〜第3の直線パターン部20cによって構成され、角度θが2°、L:L=3:7としてシミュレーションを行った。この感磁部20の磁気抵抗変化率は、約2.7%であった。
・比較例1について
比較例1の感磁部6は、例えば、図3(a)に示すように、直線パターン部のみで構成されている。そして比較例1では、この感磁部6における磁気抵抗変化率を求めた。この比較例1の磁気抵抗変化率は、約2.7%であった。
・比較例2について
比較例2の感磁部7は、例えば、図3(b)に示すように、円の周に沿って一定の曲率で湾曲した形状を有している。この比較例2の磁気抵抗変化率は、約2.4%であった。なお比較例2の磁気抵抗変化率は、比較例1(直線)と比較して約−0.3%であった。
続いて以下に示す実施例、比較例3及び比較例4では、第1の直線パターン部20a〜第3の直線パターン部20cの全体の長さを同一とし、長さL及び長さLの比と、角度θと、を変えて角度精度を求めた。
・比較例3について
比較例3は、第1の直線パターン部20aの長さLと第2の直線パターン部20b及び第3の直線パターン部20cの長さLとの比をL:L=9:1として角度θを0〜5°まで変化させている。なお角度θが0°である場合は、感磁部20が直線となる。
この比較例3では、図3(c)に示すように、直線(角度θ=0°)よりも角度精度が低下している。
・比較例4について
比較例4は、第1の直線パターン部20aの長さLと第2の直線パターン部20b及び第3の直線パターン部20cの長さLとの比をL:L=5:5として角度θを0〜5°まで変化させている。
この比較例4では、図3(c)に示すように、直線(角度θ=0°)よりも角度精度が向上している。特に角度θが2°と4°において角度精度が向上している。
・実施例について
一方実施例の感磁部20は、上述のように、第1の直線パターン部20aの長さLと第2の直線パターン部20b及び第3の直線パターン部20cの長さLとの比をL:L=3:7として角度θを0〜5°まで変化させている。
この感磁部20は、図3(c)に示すように、比較例3及び比較例4と比べて、角度精度が大きく向上している。特に、角度θが2°と4°において角度精度が向上している。
以上より、実施例の感磁部20は、形状が直線である場合とほぼ同等の磁気抵抗変化率を有している。そして実施例の感磁部20は、形状が直線である場合と比べて、大きく角度精度が向上する。従って実施例の磁気センサ1は、角度精度が向上すると共に、磁気抵抗変化率が直線とほぼ同等なので、出力信号S及び出力信号Sの振幅を大きく、つまり出力を大きくすることができる。
なお上述の結果より、第2の直線パターン部20b及び第3の直線パターン部20cの長さLは、少なくとも第1の直線パターン部20aの長さL以上である方が良い。また角度θは、少なくとも0°<θ≦5°である方が良い。
(実施の形態の効果)
本実施の形態に係る磁気センサ1は、磁気抵抗変化率の低下を抑制しつつ検出精度を高めることができる。具体的には、磁気センサ1は、感磁部20が第1の直線パターン部20aと、第1の直線パターン部20aと角度θ回転したようなパターンである第2の直線パターン部20b及び第3の直線パターン部20cによって構成されるので、湾曲した形状を有する場合と比べて、磁気抵抗変化率が直線パターンと同等となって低下が抑制されると共に直線パターンと比べて角度精度が高くなり、磁石5の回転角の検出精度が高い。従って磁気センサ1は、高い角度精度と高い磁気抵抗変化率が両立され、磁気抵抗変化率の低下を抑制しつつ検出精度を高めることができる。
磁気センサ1は、感磁部20が湾曲した形状を有する場合と比べて、直線パターンに近いのでレイアウトの自由度が高く、レイアウト時の無駄になるスペース(デッドスペース)が小さい。
以上、本発明の実施の形態を説明したが、この実施の形態は、一例に過ぎず、特許請求の範囲に係る発明を限定するものではない。この新規な実施の形態は、その他の様々な形態で実施されることが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。また、この実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない。さらに、この実施の形態は、発明の範囲及び要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…磁気センサ、2…センサ部、5…磁石、6,7…感磁部、10…基板、11…第1のブリッジ回路、11a〜11d…ノード、12…第2のブリッジ回路、12a〜12d…ノード、15…制御部、20…感磁部、20a〜20c…第1の直線パターン部〜第3の直線パターン部、21〜28…磁気抵抗素子、21a〜28a…第1の領域〜第8の領域、50…磁場、51…回転軸、200…一方端部、200a…角部、201…他方端部、201a…角部

Claims (3)

  1. 第1の直線パターン部と、
    前記第1の直線パターン部の一方端部を基準に予め定められた角度、回転させて前記一方端部と繋がる第2の直線パターン部と、
    前記第1の直線パターン部の他方端部を基準に前記予め定められた角度、前記第2の直線パターン部と逆方向に回転させて前記他方端部と繋がる第3の直線パターン部と、
    を含んで構成されて磁場の方向に応じて磁気抵抗が変化する複数の感磁部を有する磁気抵抗素子、
    を備えた磁気センサ。
  2. 前記第2の直線パターン部及び前記第3の直線パターン部の長手方向の長さは、前記第1の直線パターン部の長手方向の長さ以上である、
    請求項1に記載の磁気センサ。
  3. 前記磁気抵抗素子は、円を仮想的に等分割した扇形状の領域に配置される、
    請求項1又は2に記載の磁気センサ。
JP2018010616A 2018-01-25 2018-01-25 磁気センサ Pending JP2019129254A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018010616A JP2019129254A (ja) 2018-01-25 2018-01-25 磁気センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018010616A JP2019129254A (ja) 2018-01-25 2018-01-25 磁気センサ

Publications (1)

Publication Number Publication Date
JP2019129254A true JP2019129254A (ja) 2019-08-01

Family

ID=67472708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018010616A Pending JP2019129254A (ja) 2018-01-25 2018-01-25 磁気センサ

Country Status (1)

Country Link
JP (1) JP2019129254A (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0286079A2 (en) * 1987-04-09 1988-10-12 Fujitsu Limited Sensing devices utilizing magneto electric transducers
JPS63253264A (ja) * 1987-04-09 1988-10-20 Fujitsu Ltd 電流検出器
WO2004017086A1 (de) * 2002-07-26 2004-02-26 Robert Bosch Gmbh Gmr-sensorelement und dessen verwendung
US20060072249A1 (en) * 2004-09-28 2006-04-06 Yukio Wakui Magnetic sensor using giant magnetoresistive elements and method for manufacturing the same
JP2007064692A (ja) * 2005-08-29 2007-03-15 Yamaha Corp 巨大磁気抵抗効果素子を用いた磁気センサ及び同磁気センサの製造方法
WO2013059398A1 (en) * 2011-10-21 2013-04-25 University College Cork Dual-axis anisotropic magnetoresistive sensors
JP2015082633A (ja) * 2013-10-24 2015-04-27 日本電産サンキョー株式会社 磁気抵抗素子、磁気センサ装置および磁気抵抗素子の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0286079A2 (en) * 1987-04-09 1988-10-12 Fujitsu Limited Sensing devices utilizing magneto electric transducers
JPS63253264A (ja) * 1987-04-09 1988-10-20 Fujitsu Ltd 電流検出器
US5049809A (en) * 1987-04-09 1991-09-17 Fujitsu Limited Sensing device utilizing magneto electric transducers
WO2004017086A1 (de) * 2002-07-26 2004-02-26 Robert Bosch Gmbh Gmr-sensorelement und dessen verwendung
JP2005534199A (ja) * 2002-07-26 2005-11-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Gmrセンサエレメントおよびgmrセンサエレメントの使用
US20060103381A1 (en) * 2002-07-26 2006-05-18 Peter Schmollngruber Gmr sensor element and its use
US20060072249A1 (en) * 2004-09-28 2006-04-06 Yukio Wakui Magnetic sensor using giant magnetoresistive elements and method for manufacturing the same
JP2007064692A (ja) * 2005-08-29 2007-03-15 Yamaha Corp 巨大磁気抵抗効果素子を用いた磁気センサ及び同磁気センサの製造方法
WO2013059398A1 (en) * 2011-10-21 2013-04-25 University College Cork Dual-axis anisotropic magnetoresistive sensors
US20130099783A1 (en) * 2011-10-21 2013-04-25 Jan KUBIK Dual-axis anisotropic magnetoresistive sensors
JP2015082633A (ja) * 2013-10-24 2015-04-27 日本電産サンキョー株式会社 磁気抵抗素子、磁気センサ装置および磁気抵抗素子の製造方法

Similar Documents

Publication Publication Date Title
US7112962B2 (en) Angular position detection utilizing a plurality of rotary configured magnetic sensors
US6366079B1 (en) Rotation detector having two pairs of symmetrically positioned magnetoresistive element circuits
JP7056503B2 (ja) 回転検出装置
JP5721804B2 (ja) 磁気検出装置、およびこれを搭載した車両用回転検出装置
US9857438B2 (en) Magnetoresistive devices
JPWO2013171977A1 (ja) ブリッジ回路、及びこれを有する磁気センサ
CN108226818B (zh) 磁传感器
JP2019129254A (ja) 磁気センサ
CN111656208B (zh) 磁传感器
JP2000321014A (ja) 回転検出センサ
US8125217B2 (en) Magnetoresistive array design for improved sensor-to-magnet carrier tolerances
JP5128416B2 (ja) 磁気センサ装置
JP6065635B2 (ja) 磁気センサ装置
JP7186481B2 (ja) 磁気センサ装置
JP2018105621A (ja) 磁気センサ装置
JPH06147816A (ja) 角度センサ
US10551213B2 (en) Sickle-shaped magnet arrangement for angle detection
JP2019100848A (ja) 磁気センサ装置
JP2018100835A (ja) 回転角判定装置及び回転角判定方法
JP2021148546A (ja) 回転角度検出器
JP2017075827A (ja) 磁気検出装置
JP2016206012A (ja) 磁気検出装置
WO2019240005A1 (ja) 磁気センサ装置
JP4249053B2 (ja) 回転角検出装置
JP2017173087A (ja) 回転操作装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211124