WO2004011555A1 - 有機系色素、光電変換材料、半導体電極および光電変換素子 - Google Patents

有機系色素、光電変換材料、半導体電極および光電変換素子 Download PDF

Info

Publication number
WO2004011555A1
WO2004011555A1 PCT/JP2003/009408 JP0309408W WO2004011555A1 WO 2004011555 A1 WO2004011555 A1 WO 2004011555A1 JP 0309408 W JP0309408 W JP 0309408W WO 2004011555 A1 WO2004011555 A1 WO 2004011555A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
dye
general formula
heterocyclic residue
Prior art date
Application number
PCT/JP2003/009408
Other languages
English (en)
French (fr)
Inventor
Tamotsu Horiuchi
Hidetoshi Miura
Tatsuya Kodera
Original Assignee
Mitsubishi Paper Mills Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002220145A external-priority patent/JP4187476B2/ja
Priority claimed from JP2002280105A external-priority patent/JP4080288B2/ja
Priority claimed from JP2002300782A external-priority patent/JP4610158B2/ja
Priority claimed from JP2002368719A external-priority patent/JP4610160B2/ja
Priority claimed from JP2003023205A external-priority patent/JP2004235052A/ja
Priority to DE60333014T priority Critical patent/DE60333014D1/de
Priority to AT03771315T priority patent/ATE471356T1/de
Application filed by Mitsubishi Paper Mills Limited filed Critical Mitsubishi Paper Mills Limited
Priority to EP03771315A priority patent/EP1526159B1/en
Priority to US10/488,047 priority patent/US20040256002A1/en
Publication of WO2004011555A1 publication Critical patent/WO2004011555A1/ja
Priority to US11/984,198 priority patent/US7795529B2/en
Priority to US11/984,199 priority patent/US7615640B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0075Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of an heterocyclic ring
    • C09B23/0083Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of an heterocyclic ring the heteroring being rhodanine in the chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0091Methine or polymethine dyes, e.g. cyanine dyes having only one heterocyclic ring at one end of the methine chain, e.g. hemicyamines, hemioxonol
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/04Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups one >CH- group, e.g. cyanines, isocyanines, pseudocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/06Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups three >CH- groups, e.g. carbocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a novel organic dye, a photoelectric conversion material, a semiconductor electrode, and a photoelectric conversion element. More specifically, the present invention relates to a novel organic dye having good photoelectric conversion characteristics suitably used for a semiconductor electrode in a solar cell or the like, a photoelectric conversion material comprising the dye, a semiconductor electrode using the same, The present invention also relates to a photoelectric conversion element having the semiconductor electrode and having excellent photoelectric conversion efficiency.
  • the silicon used in these solar cells must have a very high purity, and the purification process is complicated, the number of processes is large, and the production cost is high.
  • the photovoltaic power generation using inorganic materials is disadvantageous in terms of cost and long payback to users, and there is a problem for its widespread use.
  • Organic solar cells include: a Schottky-type photoelectric conversion element that joins a type organic semiconductor and a metal with a small work function, a p-type organic semiconductor and an n-type inorganic semiconductor, or a p-type organic semiconductor and an electron-accepting organic compound.
  • a heterojunction type photoelectric conversion element or the like and an organic semiconductor used is a synthetic pigment or pigment such as chlorophyll or perylene, a conductive polymer material such as polyacetylene, or a composite material thereof. These are vacuum deposited, The battery material is made into a thin film by the casting method or the dive method.
  • Organic materials have advantages such as low cost and ease of use in large areas, but many have low conversion efficiencies of 1% or less and have poor durability.
  • This document also discloses materials and manufacturing techniques required for battery fabrication.
  • the proposed battery is called a Gretz-Lell type, and is a wet solar battery using a titanium oxide porous thin film spectrally sensitized with a ruthenium complex as a working electrode.
  • the advantage of this method is that it is not necessary to purify inexpensive oxide semiconductors such as titanium oxide to high purity. Therefore, it is inexpensive, and the available light extends over a wide visible light range. The ability to convert light into electricity effectively.
  • a first object of the present invention is to provide a novel organic compound that has excellent stability over time, has good photoelectric conversion characteristics, and is suitably used as a semiconductor electrode in a solar cell or the like.
  • An object of the present invention is to provide a system dye and a photoelectric conversion material comprising the dye.
  • a second object is to provide a semiconductor electrode using the above-mentioned organic dye and a photoelectric conversion element having excellent photoelectric conversion efficiency. Disclosure of the invention
  • the present inventors have conducted intensive studies in order to achieve the above object, and as a result, have found that an organic dye having a characteristic structure can achieve the object, and based on this finding, the present invention has It was completed. That is, the present invention
  • R 1 represents an alkyl group, an aralkyl group, an alkenyl group, an aryl group, or a heterocyclic residue, and may have a substituent.
  • R 1 is a benzene ring and a cyclic group.
  • R 2 and R 3 may be a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, a mono-substituted amino group, a di-substituted amino group, an aralkyl group, an alkenyl group, an aryl group, or a heterocyclic residue.
  • R 2 and R 3 may be bonded directly or via a linking group to form a cyclic structure
  • R 4 is a substituent having an acidic group
  • X represents a methylene, oxygen atom, sulfur atom, amino group, or substituted amino group
  • n represents an integer of 0 or 1.
  • An organic dye (hereinafter referred to as an organic dye) having a structure represented by the following formula: , Dye I.),
  • a semiconductor electrode comprising a substrate having a conductive surface on its surface, a semiconductor layer coated on the conductive surface, and a dye adsorbed on the surface of the semiconductor layer, the dye is as described in the above item (1).
  • a semiconductor electrode comprising the organic dye according to the above,
  • R 5 represents an alkyl group, an aralkyl group, an alkenyl group, an aryl group, or a heterocyclic residue, and may have a substituent.
  • R 6 represents an alkyl group or an alkoxy group.
  • R 7 represents a halogen atom, and may have a substituent.
  • Reference numeral 8 represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, or a heterocyclic residue, which may have a substituent.
  • R 9 represents a substituent having an oxygen group.
  • X 1 represents a linking group which forms a cyclic structure together with Amino groups.
  • m indicates 0 or 1.
  • the carbon-carbon double bond may be either E-type or Z-type.
  • dye ⁇ A merocyanine dye (hereinafter, referred to as dye ⁇ ) having a structure represented by
  • a semiconductor electrode comprising a substrate having a conductive surface, a semiconductor layer coated on the conductive surface, and a dye adsorbed on the surface of the semiconductor layer, the dye described in (5) above.
  • a semiconductor electrode comprising the merocyanine dye according to the description,
  • R 13 represents an arylene group or a heterocyclic residue and may have a substituent.
  • R 14 represents a hydrogen atom, an alkyl group, an alkoxy group, or a halogen atom.
  • 15 , R 16 are a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, a mono-substituted amino group, a di-substituted amino group, an aralkyl group, an alkenyl group, A reel group and a heterocyclic residue, each of which may have a substituent;
  • R 17 represents a substituent having an acidic group.
  • R 18 and R 19 each represent a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic residue, and may have a substituent. Further, R 18 and R 19 may be bonded directly or via a linking group.
  • R z R 21 and R 22 each represent a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or a heterocyclic residue.
  • X 5 represents a linking group which forms a cyclic structure together with the amino group.
  • p represents an integer of 0 to 2
  • q represents an integer of 0 to 2.
  • the carbon-carbon double bond may be either E-type or Z-type.
  • a merocyanine dye hereinafter referred to as dye III
  • a semiconductor electrode comprising a substrate having a conductive surface, a semiconductor layer coated on the conductive surface, and a dye adsorbed on the surface of the semiconductor layer, wherein the dye is as described in the above item (9).
  • a semiconductor electrode comprising a merocyanine dye of
  • R 24 represents an alkyl group, an aralkyl group, an alkaryl group, an aryl group, or a heterocyclic residue, and may have a substituent.
  • R 25 is an alkyl group, an alkoxy group.
  • R 26 and R 27 each represent a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, or a heterocyclic residue.
  • R 28 represents a quaternary ammonium salt of an acidic group, a metal salt of an acidic group, a substituent containing an amide group or an ester group, and
  • X 8 represents a cyclic structure together with an amino group.
  • B represents 0 or 1.
  • the carbon-carbon double bond may be any of E-form or Z-form. It may be. )
  • dye IV A merocyanine dye (hereinafter, referred to as dye IV), which has a structure represented by
  • a photoelectric conversion material comprising the merocyanine dye described in the above (13), and
  • a semiconductor electrode comprising a substrate having a conductive surface on its surface, a semiconductor layer coated on the conductive surface, and a dye adsorbed on the surface of the semiconductor layer, wherein the dye is as defined in the above item (13).
  • a semiconductor electrode comprising the merocyanine dye described in claim 1;
  • FIG. 1 to 13 are UV absorption spectrum diagrams of the dyes obtained in Examples W_1 to W-13, respectively.
  • FIG. 14 and FIG. 15 are characteristic diagrams of cyclic bonoretanmetry of the dyes used in Test Example W-1 and Comparative Test Example W-1, respectively.
  • the dyes of the present invention include dye I, dye II, dye III, and dye IV, and each dye will be described.
  • the dye I of the present invention has a general formula (I)
  • R 1 represents an alkyl group, an aralkyl group, an alkenyl group, an aryl group, or a heterocyclic residue, and may have a substituent.
  • R 1 is a benzene ring and a cyclic ring.
  • R 2 and R 3 may be hydrogen, alkyl, alkoxy, alkylthio, mono-substituted amino, di-substituted amino, aralkyl Group, alkenyl group, aryl group, and heterocyclic residue, each of which may have a substituent.
  • R 2 and R 3 may be bonded directly or via a linking group to form a cyclic structure.
  • R 4 represents a substituent having an acidic group.
  • X represents methylene, oxygen atom, sulfur atom, amino group, or substituted amino group.
  • n represents an integer of 0 or 1.
  • R 1 examples include an alkyl group such as a methyl group, an ethyl group, and an isopropyl group; an aralkyl group such as a benzyl group and a 1-naphthylmethyl group; an alkyl group such as a butyl group and a cyclohexyl group; And heteroaryl residues such as aryl groups such as phenyl, naphthyl, etc., furyl, che / e, and indolyl groups.
  • an alkyl group such as a methyl group, an ethyl group, and an isopropyl group
  • an aralkyl group such as a benzyl group and a 1-naphthylmethyl group
  • an alkyl group such as a butyl group and a cyclohexyl group
  • heteroaryl residues such as aryl groups such as phenyl, naphthyl, etc., furyl
  • R 1 may have a substituent, and specific examples of the substituent include the above-mentioned alkoxy groups such as an anoalkyl group, a methoxy group, an ethoxy group, an n-hexyloxy group, a methylthio group, and a —Alkylthio groups such as hexylthio group, phenyloxy group, aryloxy group such as 1-naphthyloxy group, arylthio group such as phenylthio group, halogen atoms such as chlorine and bromine, and diamine such as dimethylamino group and diphenylamino group.
  • alkoxy groups such as an anoalkyl group, a methoxy group, an ethoxy group, an n-hexyloxy group, a methylthio group
  • a —Alkylthio groups such as hexylthio group, phenyloxy group, aryloxy group such as
  • Examples thereof include an electron-withdrawing group such as an acidic group, a cyano group, a nitro group, and a trifluoromethyl group.
  • R 1 may be bonded to a benzene ring to form a cyclic structure, and specific examples thereof include (1) to
  • R 2 and R 3 include a hydrogen atom, the above-mentioned alkyl group, the above-mentioned alkoxy group, the above-mentioned alkylthio group, a mono-substituted amino group such as a methylamino group and an avalino group, the above-mentioned di-substituted amino group,
  • R 2 may have a substituent.
  • substituents include the above-mentioned alkyl group, methoxy group, ethoxy group, alkoxy group such as n-hexyloxy group, methylthio group, alkylthio groups such as n-hexylthio group, phenoxy group,
  • aryloxy groups such as naphthyloxy group, arylthio groups such as phenylthio group, halogen atoms such as chlorine and bromine, disubstituted amino groups such as dimethylamino group and diphenylamino group, aryl groups described above, and hetero groups described above.
  • Ring residue, carboxyl group force Carboxyalkyl groups such as lipoxymethinole groups, sulfonylalkyl groups such as sulfolpropyl groups, acid groups such as phosphoric acid groups and hydroxamic acid groups, and electron-withdrawing groups such as cyano groups, nitro groups and trifluoromethyl groups.
  • aryloxy groups such as naphthyloxy group, arylthio groups such as phenylthio group, halogen atoms such as chlorine and bromine, disubstituted amino groups such as dimethylamino group and diphenylamino group, aryl groups described above, and
  • R 2 and R 3 may combine to form a cyclic structure, and specific examples thereof are given in (10) to (20).
  • Specific examples of R 4 include those shown in (21) to (46). However, these specific examples are not limited.
  • the dye II of the present invention has the general formula (II)
  • R 5 represents an alkyl group, an aralkyl group, an alkenyl group, an aryl group, or a heterocyclic residue, and may have a substituent.
  • R 6 represents an alkyl group, an alkoxy group, Represents a halogen atom and may have a substituent
  • R 7 and R 8 represent a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, or an aryl group; It represents a oxy group, an arylthio group, or a heterocyclic residue, and may have a substituent.
  • R 9 represents a substituent having an acidic group.
  • X 1 represents a linking group which forms a cyclic structure together with Amino groups.
  • m indicates 0 or 1.
  • the carbon-carbon double bond may be either E-type or Z-type.
  • the merocyanine dye represented by the general formula (II) includes the general formula (II-11)
  • R 5 represents an alkyl group, an aralkyl group, an alkenyl group, an aryl group, or a heterocyclic residue, and may have a substituent.
  • R 6 is an alkyl group. , an alkoxy group, a halogen atom, which may have a substituent.
  • R 1 0 is a divalent alkylene group, a divalent Ariren group may have a substituent.
  • X 1 Represents a linking group which forms a cyclic structure with an amino group
  • X 2 represents an oxygen atom, a sulfur atom
  • X 3 represents an oxygen atom, a sulfur atom, a disyanomethylene group
  • m represents 0 or 1.
  • the single carbon double bond may be either E-type or Z-type.
  • R 5 is an alkyl group, Ararukiru group, Aruke -. Group, Arinore group, a heterocyclic residue, which may have a substituent
  • R 6 is Anore Represents a kill group, an anoreoxy group, or a halogen atom, and may have a substituent.
  • X 4 represents a divalent alkylene group forming a 5- to 7-membered ring.
  • R 1. Represents a divalent alkylene group or a divalent arylene group, each of which may have a substituent.
  • m indicates 0 or 1.
  • the carbon-carbon double bond may be either E-type or Z-type. ) Are preferred.
  • R 5 examples include an alkyl group such as a methyl group, an ethyl group and an isopropyl group, an aralkyl group such as a benzyl group and a 1-naphthylmethyl group, a vinylinole group, and a cyclohexyl group. And heterocyclic residues such as aryl groups such as phenyl / nayl groups, phenyl groups, naphthyl groups, and the like. R 5 may have a substituent.
  • substituents include the above-mentioned alkyl group, methoxy group, ethoxy group, alkoxy group such as n-hexyloxy group, methylthio group, ⁇ —Alkylthio groups such as hexylthio group, phenyl groups, aryloxy groups such as 11-naphthyloxy group, arylthio groups such as phenylthio group, halogen atoms such as chlorine and bromine, dimethylamino group, diphenylamino group Di-substituted amino group, aryl group described above, heterocyclic residue described above, carboxyl group such as carboxyl group, sulfoxyalkyl group such as sulfoxymethyl group, sulfoalkyl group such as sulfonylpropyl group, phosphate group, Examples thereof include acidic groups such as a hydroxamic acid group, and electron-withdrawing groups such as a cyano
  • R 6 include the above-mentioned alkyl group, the above-mentioned alkoxy group, and the above-mentioned halogen atom. Further, R 6 may have a substituent, and specific examples thereof include the above-mentioned alkynole group, the above-mentioned anorecoxy group, the above-mentioned halogen atom, and the above-mentioned aryl group.
  • R 7 and R 8 include a hydrogen atom, the above-mentioned alkyl group, the above-mentioned alkoxy group, the above-mentioned alkylthio group, the above-mentioned aryl group, the above-mentioned aryloxy group, the above-mentioned arylthio group, and the above-mentioned heterocyclic residue. Represents a group.
  • R 7 and R 8 may have a substituent, and specific examples of the substituent include the above-mentioned alkyl group, the above-mentioned alkoxy group, the above-mentioned aryl group, the above-mentioned heterocyclic residue,
  • the halogen atoms described above can be exemplified.
  • a specific example of X 1 is (4 7)
  • R 9 include those shown in (64) to (91). However, these examples are not limited. 8
  • R 5 , R 6 and X 1 are the same as in the general formula (II).
  • Specific examples of X 2 oxygen atom, there may be mentioned sulfur atom, specific examples of X 3 may be mentioned acid atom, a sulfur atom, Jishianomechiren group.
  • Specific examples of R 1Q include a divalent alkylene group such as a methylene group and an ethylene group, and a divalent arylene group such as a 1,4-phenylene group and a 1,5-naphthylene group.
  • R 5 and R 6 are the same as those in the general formula (II).
  • R 10 is the same as in the general formula (11-1). Examples of X 4, may include those shown below (92) - (95). Specific examples of R 10 is above ⁇ Norekiren group, it can indicate Ariren group described above.
  • Compound (2) can be synthesized from compound (1) or compound (3), and then reacted with a compound having an acidic group or an acidic group precursor to obtain target compound (2).
  • R " substituent having an acidic group
  • an acylation reaction typified by the Friedel-Crafts reaction
  • a formylation reaction typified by the Vilsmeiyer reaction
  • a once-etrilylation reaction and a -tolyl group is converted to a carbonyl group
  • the reaction can be performed by any method as long as a carbonyl compound can be obtained.
  • formylation by the Vilsmeiyer reaction is most preferred.
  • this formylation reaction reported by Vilsmeiyer et al. Produced N, N-dimethylformamide, N-methylformaldehyde, etc. in the presence of phosphorus oxychloride, phosgene, thiol chloride, etc.
  • a formyl group It is widely used due to its simple operation and mild reaction conditions. Is what it is.
  • R is a methyl group
  • oxidation reaction with selenium dioxide, chromic acid, hypohalous acid, etc. oxidation reaction with dimethylsulfoxide, sodium nitroalkane, hexamethylenetetramine, etc. after conversion to methyl halide
  • R 1 is a halogen atom
  • a method of converting a Grignard reagent or an organolithium halogen atom to Mg or Li, followed by formylation using formate or formamide as a formylating agent, and the reaction with hydrogen under Pd catalyst A method of reacting with carbon oxide is given.
  • Examples of a method for condensing compound with a compound having an acid group or an acid group precursor to obtain the desired compound include aldol condensation, a reaction of a carbonyl compound such as knoevenagel with an active methylene, and a method of olefin synthesis by Wittig reaction. There is a method.
  • the condensation reaction between the active compound and the active methylene is carried out in the presence of a base or an acid catalyst.
  • a hydroxyl compound and an unsaturated compound generated by dehydration can be obtained, but the unsaturated compound can be preferentially obtained by controlling the base and acid used in the reaction and the reaction temperature.
  • the Wittig reaction is an excellent reaction for converting a carboxyl group to olefin. Normally, the reaction proceeds at moderate temperatures under alkaline conditions.
  • the target compound can be easily obtained by reacting the intermediate ⁇ ⁇ ⁇ having a carboxyl group with a phosphorous diester, phosphorane or phosphorus ylide having an acidic group or a precursor of the acidic group.
  • the dye III of the present invention has a general formula (IV)
  • R 13 represents an arylene group or a heterocyclic residue, which may have a substituent.
  • R 14 represents a hydrogen atom, an alkyl group, an alkoxy group, or a nitrogen atom.
  • R 15 and R 16 each represent a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, a mono-substituted amino group, a di-substituted amino group, an aralkyl group, an alkenyl group, an aryl group, or a heterocyclic residue.
  • R 17 represents a substituent having an acidic group
  • R 18 and R 19 represent a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic residue, and may have a substituent.
  • R 18 and R 19 may be bonded directly or via a linking group R 2 °
  • R 21 and R 22 represent a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or a heterocyclic residue
  • X 5 forms a cyclic structure with the amino group P represents an integer of 0 to 2
  • q represents an integer of 0 to 2.
  • the carbon-carbon double bond may be any of E-type or Z-type.
  • the merocyanine dye represented by the general formula (IV) includes the general formula (IV-1) )
  • R 13 represents an arylene group or a heterocyclic residue, and may have a substituent.
  • R 14 represents a hydrogen atom, an alkyl group, an alkoxy group, or a nitrogen atom.
  • R 18 and R 19 each represent a hydrogen atom, an alkyl group, an aryl group or a heterocyclic residue, and may have a substituent, and R 18 and R 19 are bonded directly or via a linking group.
  • R 20 , R 21 , and R 22 represent a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or a heterocyclic residue
  • R 23 represents an alkylene group or an arylene group
  • X 5 represents amino
  • X 6 represents an oxygen atom, a sulfur atom
  • X 7 represents an oxygen atom, a sulfur atom, or a disiamethylene group
  • p is an integer of 0 to 2
  • q is 0 to Represents an integer of 2.
  • the carbon-carbon double bond may be either E-type or Z-type. Good.
  • R 13 are 1, 4-Hue - Ren group, 2, Ariren groups such as 6-Nafuchire down group, 2, can be mentioned heterocyclic residue to the like 5- Cheeren group .
  • R 13 may have a substituent.
  • the substituent include an alkyl group such as a methyl group, an ethyl group and an n-propyl group, a methoxy group, an ethoxy group and an n- Alkyl groups such as an alkoxy group such as a xyloxy group, alkylthio groups such as a methylthio group and an n-hexylthio group, aryloxy groups such as a phenoxy group and a 1-naphthyloxy group.
  • Arylyl groups such as xy and phenylthio groups, halogen atoms such as chlorine and bromine, disubstituted amino groups such as dimethylamino group and diphenylamino group, aryl groups such as phenyl group, 4-methylphenyl group and 2-naphthyl group , A heterocyclic residue such as a furinole group, a chain group, etc., a carboxyl group, a carpoxyalkyl group such as a carboxymethyl group, a sulfonylalkyl group such as a sulfonylpropyl group, a phosphate group, a hydroxamic acid group, etc.
  • R 14 include a hydrogen atom, the above-mentioned alkyl group, the above-mentioned alkoxy group, and the above-mentioned halogen atom.
  • R 15 and Ri 6 include a hydrogen atom, the above-mentioned alkyl group, the above-mentioned alkoxy group, the above-mentioned alkylthio group, a mono-substituted amino group such as a methylamino group and an anilino group, the above-mentioned di-substituted amino group, and benzyl
  • the group include an aralkyl group such as a group, an alkyl group such as a butyl group, the above-mentioned aryl group, and the above-mentioned heterocyclic residue.
  • R 21 and R 22 include a hydrogen atom, the above-mentioned alkyl group, the above-mentioned alkoxy group, the above-mentioned aryl group, and the above-mentioned heterocyclic residue.
  • X 5 is a linking group which forms a Amino groups and cyclic structures, and specific examples thereof include a (96) - (1 12).
  • R 17 is a substituent having an acidic group, and specific examples thereof include those shown in (113) to (140).
  • R 18 and R 19 include a hydrogen atom, the above-mentioned alkyl group, the above-mentioned aryl group and the above-mentioned heterocyclic residue, and specific examples thereof include (141) to (156). However, these specific examples are not limited.
  • the dye IV of the present invention has the general formula (V)
  • R 2 4 is an alkyl group, Ararukiru group, an alkenyl group, Ariru group, a heterocyclic residue, which may have a substituent.
  • R 2 5 is alkyl group, alkoxy group, a halogen atom, which may have a substituent.
  • R 2 6, R 2 7 is a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, Ariru group, Ariruokishi group, Ariruchio group, heterocyclic residue are shown, which may have a substituent
  • R 2 8 are quaternary ammonium of acidic groups -..
  • a substituent containing ⁇ beam salts, metal salts of acidic groups, amino de group, E ester group X 8 represents a linking group which forms a cyclic structure together with the amino group, b represents 0 or 1.
  • the carbon-carbon double bond may be any of E-type or Z-type.
  • R 2 4 is a methyl group, Echiru group, an alkyl group such as isopropyl group, a benzyl group, Ararukiru group such as 1 _ naphthylmethyl group, Bulle group, xenon cyclohexane - Anoreke such Honoré group -Heryl ring residues such as aryl groups such as a phenyl group, a phenyl group, and a naphthinole group, and a furyl group, a cyenyl group, and an indolyl group.
  • R 2 4 may have a substituent, specific examples of the substituent, an alkyl group described above, a methoxy group, an ethoxy group, an alkoxy group such as Kishiruokishi group to n-, methylthio radical, n —Alkylthio groups such as hexylthio groups, phenoxy groups, aryloxy groups such as 1-naphthyloxy groups, arylthio groups such as phenylthio groups, halogen atoms such as chlorine and bromine, dimethylamino groups and diphenylamino groups Di-substituted amino group, aryl group described above, heterocyclic residue described above, carboxyalkyl group such as carboxyl group, carboxymethyl group, sulfonylalkyl group such as sulfolpropyl group, phosphate group, hydroxamic acid group And an electron-withdrawing group such as a cyano group, a nitro group,
  • R 25 include the above-mentioned alkyl group, the above-mentioned alkoxy group, and the above-mentioned halogen atom Can be mentioned.
  • R 25 may have a substituent, and specific examples thereof include the aforementioned alkyl group, the aforementioned alkoxy group, the aforementioned halogen atom, and the aforementioned aryl group.
  • Specific examples of R 2S and R 27 include a hydrogen atom, the aforementioned alkyl group, the aforementioned alkoxy group, the aforementioned alkylthio group, the aforementioned aryl group, the aforementioned aryloxy group, the aforementioned arylthio group, and the aforementioned heterocyclic residue. Indicates a group.
  • R 26 and R 27 may have a substituent.
  • substituents include the above-mentioned alkyl group, the above-mentioned alkoxy group, the above-mentioned aryl group, the above-mentioned heterocyclic residue, The halogen atoms described above can be exemplified.
  • Specific examples of X 8 may be cited in (157) - (173).
  • Specific examples of R 28 include those listed as shown in (174) - (2 01). However, these specific examples are not limited.
  • the photoelectric conversion material of the present invention includes an organic dye represented by the aforementioned general formula (I), a merocyanine dye represented by the general formula (II), a merocyanine dye represented by the general formula (IV), and a compound represented by the general formula (V): It consists of each of the merocyanine dyes shown.
  • the semiconductor electrode of the present invention is a semiconductor electrode comprising a substrate having a conductive surface, a semiconductor layer coated on the conductive surface, and a dye adsorbed on the surface of the semiconductor layer, wherein the dye is: The organic dye represented by the general formula (I), the merocyanine dye represented by the general formula (II), and the merocyanine dye represented by the general formula (IV) And a dye selected from the merocyanine dyes represented by the general formula (V).
  • the above-mentioned substrate having conductivity on the surface may be a substrate having conductivity such as metal, glass having a conductive layer containing a conductive agent on the surface, or glass.
  • a plastic substrate can be used.
  • the conductive agent may be a metal such as platinum, gold, silver, copper, or aluminum, carbon, or an indium oxide composite oxide (hereinafter abbreviated as “ ⁇ ”), or a metal such as tin oxide doped with fluorine. Oxide (hereinafter abbreviated as “FTO”).
  • the conductive substrate preferably has a transparent structure that transmits 10% or more of light, and more preferably transmits 50% or more of light.
  • conductive glass in which a conductive layer made of ITO or FTO is deposited on glass is particularly preferable.
  • Metal leads may be used to reduce the resistance of the transparent conductive substrate.
  • Examples of the material of the metal lead wire include metals such as aluminum, copper, silver, gold, platinum, and nickel.
  • Metal leads are installed on a transparent substrate by vapor deposition, sputtering, crimping, etc., and ITO or FTO is provided on them, or metal leads are installed on a transparent conductive layer.
  • a simple semiconductor such as silicon or germanium, a compound semiconductor represented by a metal chalcogenide, a compound having a viscous bouskite structure, or the like can be used.
  • Metal chalcogenides include titanium, tin, zinc, iron, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, dioxide, or tantalum oxide, cadmium, zinc, lead, silver , Antimony, bismuth sulfide, cadmium, lead selenide, and cadmium tenorelide.
  • phosphides such as zinc, gallium, indium and cadmium, gallium arsenide, copper-indium-monoselenide, copper-indium-monosulfide and the like are preferable.
  • strontium titanate, calcium titanate, sodium titanate, barium titanate, and -oblic acid rim are preferable.
  • the semiconductor used in the present invention may be single crystal or polycrystal.
  • conversion efficiency A single crystal is preferable, but a polycrystal is preferable in terms of production cost, securing of raw materials, and the like, and the particle diameter of the semiconductor is preferably 4 nm or more and 1 ⁇ or less.
  • Examples of a method for forming a semiconductor layer on a conductive substrate include a method in which a dispersion or colloid solution of semiconductor fine particles is coated on the conductive substrate, and a sol-gel method.
  • the dispersion liquid can be prepared by the sol-gel method described above, the method of mechanical pulverization using a mortar or the like, the method of dispersing while pulverizing using a mill, or the method of precipitating fine particles in a solvent when synthesizing a semiconductor. And a method of using it as it is.
  • a dispersion prepared by mechanical pulverization or pulverization using a mill it is formed by dispersing at least semiconductor fine particles alone or a mixture of semiconductor fine particles and a resin in water or an organic solvent.
  • the resin used include polymers and copolymers of vinyl compounds such as styrene, butyl acetate, tallylic acid ester and methacrylic acid ester, silicone resin, phenoxy resin, polysulfone resin, polybutyral resin, polyvinyl formal resin, and polyester resin.
  • solvents for dispersing the semiconductor fine particles include water, alcohol solvents such as methanol, ethanol, or isopropyl alcohol, ketone solvents such as acetone, methylethylketone, and methylisobutylketone, ethyl formate, and ethyl acetate.
  • alcohol solvents such as methanol, ethanol, or isopropyl alcohol
  • ketone solvents such as acetone, methylethylketone, and methylisobutylketone, ethyl formate, and ethyl acetate.
  • ester solvents such as ⁇ -butyl acetate, ether solvents such as getyl ether, dimethoxetane, tetrahydrofuran, dioxolan or dioxane, ⁇ , ⁇ ⁇ ⁇ ⁇ -dimethylformamide, ⁇ , ⁇ ⁇ ⁇ ⁇ -dimethylacetamide
  • amide solvents such as ⁇ -methyl-2-pyrrolidone, etc., dichloromethane, chlorinated honolem, bromophonolem, methinole iodide, dichloroethane, trichloroethane, trichloroethylene, chlorobenzene, ⁇ -dichlorobenzene , Funoleo mouth Halogenated hydrocarbon solvents such as benzene, bromobenzene, iodobenzene or 1-chloronaphthalene, ⁇ -pentane, ⁇ -hexane,
  • Examples of a method of applying the obtained dispersion include a roller method, a dipping method, an air knife method, a blade method, a wire bar, and the like, a slide hopper method, an etastrusion method, a curtain method, a spin method, or a spray method. it can.
  • the semiconductor layer may be a single layer or a multilayer.
  • a multi-layer it is also possible to apply a multi-layer coating of a dispersion of semiconductor fine particles having different particle diameters, or to apply a multi-layer coating of coating layers having different types of semiconductors, resins, and additives.
  • multilayer coating is an effective means when the film thickness is insufficient by one coating.
  • the thickness of the semiconductor layer is preferably from 0.1 to L O O z m, and more preferably from 1 to 30 im.
  • the heat treatment temperature at this time is preferably from 40 to 700 ° C, more preferably from 80 to 600 ° C.
  • the heat treatment time is preferably from 5 minutes to 20 hours, more preferably from 10 minutes to 10 hours.
  • the semiconductor fine particles preferably have a large surface area so that many dyes can be adsorbed. Therefore, the surface area when the semiconductor layer is coated on the substrate is preferably at least 10 times, more preferably at least 100 times the projected area.
  • a method of adsorbing the dye on the semiconductor layer a method of immersing a working electrode containing semiconductor fine particles in a dye solution or a dye dispersion, or a method of applying and adsorbing the dye solution or the dispersion on the semiconductor layer may be used.
  • the dipping method, dip method, roller method, air knife method, etc. can be used, and in the latter case, the wire bar method, slide hopper method, extrusion method, curtain method, spin method, spray method Etc. can be used.
  • Condensing agents are those that act as catalysts that appear to physically or chemically bind the dye to the inorganic surface, or Any that acts stoichiometrically and advantageously shifts the chemical equilibrium. Further, a thiol or a hydroxy conjugate may be added as a condensation aid.
  • Solvents that dissolve or disperse dyes include water, alcohol solvents such as methanol, ethanol, or isopropyl alcohol, ketone solvents such as acetone, methyl ethyl ketone, or methyl isobutyl ketone, ethyl formate, and ethyl acetate.
  • alcohol solvents such as methanol, ethanol, or isopropyl alcohol
  • ketone solvents such as acetone, methyl ethyl ketone, or methyl isobutyl ketone, ethyl formate, and ethyl acetate.
  • an ester-based solvent such as n-butyl acetate or the like; an ether-based solvent such as getyl ether, dimethyloxetane, tetrahydrofuran, dioxolan or dioxane; N, N-dimethylformamide; N, N-dimethylacetamide; Or amide solvents such as N-methyl-2-pyrrolidone, dichloromethane, chlorinated honolem, promophonolem, methylinole trichloride, dichloroethane, trichlorinated ethane, trichloroethylene, chlorinated benzene, o-cyclohexane benzene, phthalenole Mouth ben Halogenated hydrocarbon solvents such as benzene, propobenzene, lodobenzene, or 1-chloronaphthalene, n-pentane, n-hexane, n-octane,
  • the temperature for adsorbing the dye is preferably 150 ° C. or higher and 200 ° C. or lower.
  • This adsorption may be performed while stirring.
  • the method of stirring include, but are not limited to, a stirrer, a pole mill, a paint conditioner, a sand mill, an attritor, a disperser, and an ultrasonic dispersion.
  • the time required for the adsorption is preferably 5 seconds or more and 1000 hours or less, more preferably 10 seconds or more and 500 hours or less, and even more preferably 1 minute or more and 150 hours.
  • the semiconductor electrode of the present invention can be obtained.
  • the melocyanine dye represented by the above general formula (II) when used as the dye, it is preferable to use a steroid compound together with the merocyanine dye.
  • the steroidal compound has a general formula (III)
  • R 11 is a hydrogen atom, a hydroxyl group, a halogen atom, an alkyl group, an alkoxy group, an aryl group, a heterocyclic residue, an acyl group, an acyloxy group, an oxycarbonyl group, an oxo group, an acidic group. it is shown, which may have a substituent.
  • R 1 2 is. a represents an alkyl group containing an acidic group an integer from 0 to 1 3.
  • the steroid ring contains a double bond May be.
  • R 11 in the general formula (III) include a hydrogen atom, a hydroxyl group, the aforementioned halogen atom, the aforementioned alkyl group, the aforementioned alkoxy group, the aforementioned alkyl group, the aforementioned heterocyclic residue, and acetyl.
  • acetyl group such as 4-methylbenzoyl group, acetyloxy group, acetyl group such as 4-methylbenzoyloxy group, etc. Shows the aforementioned acidic group.
  • R 11 may have a substituent, and specific examples of the substituent include the aforementioned alkyl group, the aforementioned alkoxy group, the aforementioned alkylthio group, the aforementioned aryloxy group, the aforementioned arylthio group, Examples include the aforementioned halogen atom, the aforementioned disubstituted amino group, the aforementioned aryl group, the aforementioned heterocyclic residue, the aforementioned acidic group, and the aforementioned electron-withdrawing group.
  • Specific examples of R 12 include the above-mentioned alkyl groups, and may have a substituent. Specific examples of the substituent include the aforementioned alkyl group, the aforementioned aryl group, the aforementioned alkoxy group, the aforementioned acyl group, and the aforementioned acidic group.
  • the steroid compound is used in adsorbing the merocyanine dye represented by the aforementioned general formula (II).
  • the amount of the steroid compound is 0.01 to 1 part by mass of the dye. 1100 parts by mass is preferred, and 0.1-100 parts by mass is more preferred.
  • the photoelectric conversion element of the present invention may be an organic dye represented by the general formula (I), a merocyanine dye represented by the general formula (II), a merocyanine dye represented by the general formula (IV), or a compound represented by the general formula (V): And a device having a semiconductor electrode containing each of the above dyes as the dye. More specifically, the semiconductor layer sensitized by the conductive substrate and the dye placed on the conductive substrate
  • the photosensitive layer may have a single-layer structure or a laminated structure, and is designed according to the purpose.
  • the constituent components of each layer may be mutually diffused or mixed.
  • the charge transfer layer in the photoelectric conversion element of the present invention contains an electrolyte in which a redox couple is dissolved in an organic solvent, a gel electrolyte in which a liquid in which a redox couple is dissolved in an organic solvent is impregnated in a polymer matrix, and a redox couple Molten salts, solid electrolytes, organic hole transport materials, and the like can be used.
  • the electrolytic solution used in the present invention is preferably composed of an electrolyte, a solvent, and an additive.
  • Preferred electrolytes are lithium iodide, sodium iodide, potassium iodide, cesium iodide, calcium iodide and the like in combination with metal iodide monoiodine, tetraalkylammonium monodide, pyridium monide, imida.
  • Complexes sodium polysulfide, alkylthiol-alkyldisulfide, etc.
  • the electrolyte concentration in the electrolytic solution is preferably from 0.05 to 20 M, more preferably from 0.1 to 15 M.
  • the solvent used for the electrolytic solution include carbonate solvents such as ethylene carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, ether solvents such as dioxane, getyl ether, and ethylene glycol dialkyl ether, and methanol.
  • a basic compound such as t-butylpyridine, 2-picoline, and 2,6-lutidine may be used in combination.
  • the electrolyte may be gelled by a method such as addition of a polymer, addition of an oleoresin gelling agent, polymerization containing a polyfunctional monomer, and crosslinking reaction of the polymer.
  • Preferred polymers in the case of genoleation by adding a polymer include polyacrylonitrile, polyvinylidene fluoride and the like.
  • Preferred gelling agents for gelling by adding an oil gelling agent include dibenzylden-D-sorbitol, cholesterol derivatives, amino acid derivatives, and trans- (1R, 2R) _1,2-cyclohexandiamine alkylamides. Derivatives, alkynoleurea derivatives, N-octyl-1-D-dalconamide benzoate, double-headed amino acid derivatives, quaternary ammonium derivatives and the like.
  • preferred monomers include dibutylbenzene, ethylene gnorecone resin methacrylate, ethylene glycolo resin acrylate, diethylene glycol resin methacrylate, triethylene glycol resin resin methacrylate, pentaerythritol triate acrylate, and tri Methylol propantharylate and the like can be mentioned.
  • the above-mentioned monomers can be polymerized by radical polymerization.
  • the monomer for gel electrolyte that can be used in the present invention can be subjected to radical polymerization by heating, light, electron beam or electrochemically.
  • Polymerization initiators used when formed by cross-linking high-molecular-weight heating include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvale-trinole), Dimethinolay 2, 2'-azobis
  • azo-based initiators such as (2-methylpropionate) and peroxide-based initiators such as benzoyl peroxide.
  • the addition amount of these polymerization initiators is preferably from 0.01 to 20% by mass, more preferably from 0.1 to 10% by mass, based on the total amount of the monomers.
  • the electrolyte When the electrolyte is gelled by the crosslinking reaction of the polymer, it is desirable to use a polymer containing a reactive group necessary for the crosslinking reaction and a crosslinking agent together.
  • the crosslinkable reactive group include nitrogen-containing heterocycles such as pyridine, imidazole, thiazole, oxazole, triazonole, morpholine, piperidine, and piperazine.
  • Bifunctional or more functional reagents capable of electrophilic reaction with nitrogen atoms such as alkyl halides, aralkyl halides, sulfonic esters, acid anhydrides, acid chlorides and isocyanates can be mentioned.
  • copper iodide, copper thiocyanate, etc. can be introduced into the electrode by casting, coating, spin coating, immersion, electrolytic plating, etc. it can.
  • an organic charge transport material can be used instead of the electrolyte.
  • the charge transport materials include a hole transport material and an electron transport material.
  • Examples of the former include, for example, oxadiazoles disclosed in Japanese Patent Publication No. 34-54666, triphenylmethanes disclosed in Japanese Patent Publication No. 45-555, and the like.
  • Kimiaki 5 2-4 1 8 No. 8 virazolines described in Japanese Patent Publication No. 55-42380, hydrazones described in Japanese Patent Application Laid-Open No.
  • Examples thereof include tetraarylbenzidines disclosed in JP-A-58445, stilbenes disclosed in JP-A-58-65440, and JP-A-60-98437.
  • examples of the charge transporting material used in the present invention include JP-A-60-24553, JP-A-2-96767, JP-A-2-183260, and JP-A-2-22616 •.
  • the hydrazones described above, and the stilbenes described in JP-A-2-51162 and JP-A-3-75660 are particularly preferred. These can be used alone or as a mixture of two or more.
  • electron transport substances for example, chloral, tetracyanoethylene, tetracyanoquinodimethane, 2,4,7-tri-tol-9-phnoleolenone, 2,4,5,7-tetrautro-19-fluorenone, 2,4,5,7-tetranitroxanthone, 2,4,8-trinitrothioxanthone, 1,3,7-trietrobenbenzothiophene or 1,3,7-trinitrodibenzothiophene-1,5 5 Dioxide, etc.
  • electron transport materials can be used alone or as a mixture of two or more.
  • a certain kind of electron-withdrawing compound can be added as a sensitizer for further increasing the sensitizing effect.
  • the electron-withdrawing compound include 2,3-dichloro-1,4-naphthoquinone, 1-nitroanthraquinone, 1-chloro mouth _5-two-mouth anthraquinone, 2-chloro anthraquinone, and phenanthrenequinone.
  • a resin in combination, and a polystyrene resin, a polybutyl acetal resin, a polysulfone resin, a polycarbonate resin, a polyester resin, and a polyphenylene oxide resin are used.
  • Polyarylate resin ataryl resin, metharyl resin, phenoxy resin and the like.
  • polystyrene resin, polyvinyl alcohol resin, polycarbonate resin, polyester resin and polyarylate resin are excellent. These resins can be used alone or as a mixture of two or more of them as a copolymer.
  • Some of these resins have low mechanical strength such as tension, bending, and compression.
  • substances that impart plasticity can be added.
  • Specific examples include phthalenic acid ester (eg, DOP, DBP, etc.), phosphate ester (eg, TCP, TOP, etc.), sebacic acid ester, adipic acid ester, ethryl rubber, chlorinated hydrocarbon, and the like. If these substances are added more than necessary, the properties are adversely affected. Therefore, the ratio is preferably 20% or less based on the binder resin.
  • an antioxidant, an anti-curl agent and the like can be added as required.
  • the amount of the resin used is preferably from 0.01 to 20 parts by mass, more preferably from 0.01 to 5 parts by mass, per 1 part by mass of the charge transporting substance. If the ratio of the resin is too high, the sensitivity is lowered, and if the ratio of the resin is too low, the repetition characteristics may be deteriorated or the coating may be damaged.
  • the charge transfer layer There are roughly two methods for forming the charge transfer layer. One is to attach the counter electrode first on the semiconductor fine particle-containing layer carrying the sensitizing dye, and then sandwich the liquid charge transfer layer in the gap. The other is to directly charge the semiconductor fine particle-containing layer. This is a method of adding a moving layer. In the latter case, the counter electrode will be granted later.
  • examples of the method of sandwiching the charge transfer layer include a normal pressure process using a capillary phenomenon by immersion or the like and a vacuum process in which the gas phase is replaced with a liquid phase at a pressure lower than normal pressure.
  • a counter electrode in the wet charge transfer layer in an undried state to prevent liquid leakage at the edge.
  • the composition is wet-coated and solidified by a method such as polymerization. In that case, a counter electrode may be provided after drying and immobilization.
  • a solution of the organic charge transporting material and a gel electrolyte can be applied by the immersion method, the roller method, the dipping method, the air knife method, the ethanol Examples include the lubrication method, slide hopper method, wire bar method, spin method, spray method, casting method, and various printing methods.
  • a substrate having a conductive layer can be used as in the case of the above-mentioned conductive substrate.
  • a substrate is not necessarily required in a configuration in which strength and sealing property are sufficiently maintained.
  • Specific examples of the material used for the counter electrode include metals such as platinum, gold, silver, copper, aluminum, rhodium, and indium, and carbon, conductive metal oxides such as ITO, and FTO.
  • the thickness of the counter electrode is not particularly limited.
  • At least one of the conductive substrate and the counter electrode must be substantially transparent.
  • a method is preferable in which the conductive substrate is transparent and sunlight is incident from the substrate side.
  • a material that reflects light is preferably used for the counter electrode, and a metal, a glass, a plastic, or a metal thin film on which a conductive oxide is evaporated is preferable.
  • the counter electrode material can be appropriately formed on the charge transfer layer or the semiconductor fine particle-containing layer by a method such as application, lamination, vapor deposition, or bonding.
  • a counter electrode can be formed directly on the charge transfer layer by a method such as coating, vapor deposition, or CVD.
  • N, N-dimethylformamide (21.4 g) was placed in a flask, and the mixture was stirred while cooling on an ice bath, and phosphorus oxychloride (13.3 g) was added dropwise over 15 minutes. Stirring is continued for 1 hour at the same temperature, and a solution of N, N-dimethylformamide (10 ml) in which julolidine (5.1 g) represented by the following (F_1) is dissolved is taken for 10 minutes. Dripping. 1 hour Thereafter, the reaction solution was poured into a dilute aqueous sodium hydroxide solution (200 ml), and organic components were extracted with toluene. The solvent was distilled off, and the residue was purified by silica gel chromatography to obtain the following compound (F-2). 5.3 g. Yield 91%.
  • Titanium oxide (Nippon Aerosil P-25) 3 g, acetyl acetone 0.2 g 0.3 g of a surfactant (Triton X-100, manufactured by Aldrich Co.) was dispersed together with 6.5 g of water in a paint conditioner for 6 hours. This dispersion was applied on an FTO glass substrate using a wire par so as to have a film thickness of 10 ⁇ . After the application, the coating was dried at 100 ° C. for 1 hour, and then baked in air at 450 ° C. for 30 minutes.
  • Triton X-100 Triton X-100
  • the counter electrode was formed by sputtering platinum on FTO.
  • An electrolyte was immersed between the two electrodes to produce a photoelectric conversion element.
  • a xenon lamp of 100 mW / cm 2 intensity was irradiated from the working electrode side with a cut filter UV-39 manufactured by Toshiba to cut light of 400 nm or less.
  • the open-circuit voltage was 0.60 V
  • the short-circuit current density was 5.5 mA / cm 2
  • the form factor was 0.65
  • the conversion efficiency was 2.15%.
  • Example V-5 A device was prepared and evaluated in the same manner as in Example V-5, except that the exemplified compound (A-5) was changed to a dye shown in Table 1. The results are shown in Table 1.
  • a device was prepared and evaluated in the same manner as in Example V-5 except that the exemplified compound (A-5) was changed to the compound shown in (G-1) below.
  • the open-circuit voltage was 0.55 V
  • the short-circuit current density was 2.5 mA / c
  • the form factor was 0.51
  • the conversion efficiency was 0.70%, which were low values.
  • a device was prepared and evaluated in the same manner as in Example V-5 except that the exemplified compound (A-5) was changed to the compound shown in (G-2) below.
  • the open-circuit voltage was 0.65 V
  • the short-circuit current density was 2.8 mA / cm
  • the form factor was 0.45
  • the conversion efficiency was 0.82%, which were low values.
  • Dissolve compound (H-1) (10.1 g), rhodanine-3-acetic acid (7.4 g), and ammonium acetate (2.56 g) in 5.9 g of acetic acid, Heat and stir at C. After 30 minutes, when calo heat is stopped, it solidifies immediately. After cooling to room temperature, water (100 ml) was added and stirred, and the crystals were collected by filtration. The crystals were transferred to a beaker, washed twice with water (500 ml), and then twice with 2-propanol (100 ml). The coarsely-packed crystal was recrystallized from methylacetosolve (about 50 m 1) to obtain an exemplified compound (B-8). 11.0 g. Yield 66%.
  • Example W-4 Synthesis of Exemplified Compound (B-9) Dissolve the following compound (H-3) (2.6 g), rhodanine-3-acetic acid (1.7 g) and ammonium acetate (0.5 g) in 2.2 g of acetic acid and heat at 120 ° C Stirring. After 30 minutes, heating stops and solidifies immediately. After cooling to room temperature, water (50 ml) was added and the mixture was stirred, and the crystals were collected by filtration. The crystals were transferred to a beaker, washed twice with water (100 ml), then washed twice with 2-propanol (50 ml), to give the exemplified compound (B-9). 2. 9 g. Yield 69%.
  • Test example W-1 Durability test The durability of the dye can be measured in a stable redox cycle by means of the italic bonoretanmetry. With some exceptions, stable redox cycles cannot be observed for photographic syayun and merocyan dye.
  • Example 1 The cyclic portammetry property of the compound (B-9) of W-4 was measured. The measurement conditions are shown below.
  • Figure 14 shows the measurement results.
  • the oxidation potential of the compound (B-9) showed a peak at 0.85 V. Thereafter, when the potential was scanned in the opposite direction, a peak was observed at 0.79 V, indicating that the dye that had been acidified was reduced again and returned to the state before oxidation. In other words, this dye is not decomposed by oxidation ⁇ reduction, indicating high durability.
  • Cyclic portanometry was measured in the same manner as in Test Example W-11 except that the merocyanine dye represented by the following compound (1-1) was used. The results are shown in FIG. From FIG. 15, the oxidation potential of the compound (1-1) showed a peak at 0.7 IV. Thereafter, no peak was observed when the potential was scanned in the reverse direction. That is, all the dyes were completely decomposed by oxidation.
  • Titanium oxide S-Aerosil P-25 3 g, acetylacetone 0.2 g.
  • Surfactant Aldrich Triton X-100 0.3 g together with 6.5 g water Dispersion treatment was performed for 6 hours using a single conditioner. This dispersion was applied on a FTO glass substrate using a wire bar to a film thickness of 1 O ⁇ m. After the application, the coating was dried at 100 ° C. for 1 hour, and then baked in air at 450 ° C. for 30 minutes.
  • 0.014 g of the dye represented by the exemplified compound (B-9) and 0.15 g of the steroid compound represented by the exemplified compound (E-1) were dissolved in 10 ml of ethanol.
  • the semiconductor electrode prepared above was immersed in this solution at room temperature for 15 hours to perform an adsorption treatment.
  • the counter electrode used was platinum sputtered on FTO.
  • An electrolyte was immersed between the two electrodes to produce a photoelectric conversion element.
  • simulated sunlight generated from the power of a solar simulator (AMI. 5, lO OmWZcm 2 intensity) was irradiated as a light source from the working electrode side.
  • the open-circuit voltage was 0.68 V
  • the short-circuit current density was 9.8 mAZcm 2
  • the form factor was 0.70
  • the conversion efficiency was 4.66 ° / 0 .
  • Example X-1 A device was prepared in the same manner as in Example X-1, except that the exemplified compound (B-9) was changed to the dye shown in Table 2 and the exemplified compound (E-1) was changed to a steroid compound shown in Table 2. evaluated. The results are shown in Table 2.
  • a device was prepared and evaluated in the same manner as in Example X-1, except that 0.014 g of the exemplary compound (B-9) was changed to 0.014 g of the compound shown in (J-1) below.
  • the open-circuit voltage was 0.58V
  • the short-circuit current density was 4.8mA / cm 2
  • the form factor was 0.53
  • the conversion efficiency was 1.48 ° / 0 .
  • a device was prepared and evaluated in the same manner as in Example X-1, except that the amount was changed to 0.15 g. As a result, the open circuit voltage was 0.65 V, the short circuit current density was 2.7 mA / cm 2 , and the form factor was 0.6.
  • the semiconductor electrode prepared above was immersed in a 0.3 mM ethanol solution of the dye represented by the exemplified compound (C-4) at room temperature for 15 hours to perform an adsorption treatment.
  • the counter electrode used was platinum sputtered on FTO.
  • Example I-2 A device was prepared and evaluated in the same manner as in Example I-2, except that the exemplified compound (C-4) was changed to a dye shown in Table 3. The results are shown in Table 3.
  • Table 3 A device was prepared and evaluated in the same manner as in Example I-2, except that the exemplified compound (C-4) was changed to a dye shown in Table 3. The results are shown in Table 3.
  • the dyes of the present invention show good conversion efficiency.
  • Example Y-2 A device was prepared and evaluated in the same manner as in Example Y-2, except that the exemplified compound (C-14) was changed to the compound shown in (L-1) below.
  • the open-circuit voltage was 0.58 V
  • the short-circuit current density was 5.3 mA / cm 2
  • the N form factor was 0.55
  • the conversion efficiency was 1.69%.
  • the semiconductor electrode prepared above was immersed in a 0.3 mM ethanol solution of the dye represented by the exemplified compound (D-9) at room temperature for 15 hours to perform an adsorption treatment.
  • the photoelectric conversion element was manufactured by immersing the electric angle between the two electrodes.
  • it irradiated solar simulator (AMI. 5G, the irradiation intensity l O OmWZcm 2) as a light source from the working electrode side forces et generated artificial sunlight.
  • AMI. 5G the irradiated solar simulator
  • the shape factor 0.6 3 showed good values and conversion efficiency 4. 30 ° / 0.
  • Example Z-2 A device was prepared and evaluated in the same manner as in Example Z-2, except that the exemplified compound (D-9) was changed to a dye shown in Table 4. The results are shown in Table 4.
  • Table 4 A device was prepared and evaluated in the same manner as in Example Z-2, except that the exemplified compound (D-9) was changed to a dye shown in Table 4. The results are shown in Table 4.
  • the dyes of the present invention exhibit good conversion efficiency.
  • Example Z-2 A device was prepared and evaluated in the same manner as in Example Z-2 except that the exemplified compound (D-9) was changed to the compound shown in (M-1). As a result, the open circuit voltage 0. 56V, the short-circuit current density 10.3 1 11 input / / (: 111 2, the shape factor 0.63, the conversion efficiency 3. compared to 63% as in Example Z- 2 at a low value Industrial potential
  • the dye of the present invention has good photoelectric conversion characteristics and is suitably used for semiconductor electrodes in solar cells and the like. Further, a photoelectric conversion element having a semiconductor electrode using the dye has excellent photoelectric conversion efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

特定の構造を有する有機系の色素、該色素からなる光電変換材料、および表面に導電性を有する基板と、その導電性表面上に被覆された半導体層と、その表面に吸着した前記色素からなる半導体電極、並びに該色素を用いてなる光電変換素子が開示されている。本発明においては、前記色素を用いることにより、光電変換効率に優れる光電変換素子を提供することができ、この光電変換素子は、太陽電池などに好適に用いられる。

Description

明 細 書 有機系色素、 光電変換材料、 半導体電極および光電変換素子 技術分野
本発明は、 新規な有機系の色素、 光電変換材料、 半導体電極および光電変換素 子に関する。 さらに詳しくは、 本発明は、 太陽電池などにおける半導体電極など に好適に用いられる良好な光電変換特性を有する新規な有機系の色素、 この色素 からなる光電変換材料、 それを用いた半導体電極、 およぴ該半導体電極を有する 光電変換効率に優れる光電変換素子に関するものである。 背景技術
大量の化石燃料の使用で引き起こされる c o 2濃度増加による地球温暖化、 更 に人口増加に伴うエネルギー需要の増大は、 人類の存亡にまで関わる問題と認識 されている。 そのため近年、 無限で有害物質を発生しない太陽光の利用が精力的 に検討されている。 このタリーンエネルギー源である太陽光利用として現在実用 化されているものは住宅用の単結晶シリコン、 多結晶シリコン、 アモルファスシ リコンおよびテルル化力ドミゥムゃセレン化インジウム銅等の無機系太陽電池が 挙げられる。
し力 しな力 Sら、 これらの太陽電池に用いられているシリコンは、 非常に純度の 高いものが必要とされ、 当然精製の工程は複雑でプロセス数も多く、 高い製造コ ストがかかる。 このように無機材料の太陽光発電はコスト面でも、 ユーザーへの ペイバックが長い点でも不利であり、 普及するためには問題があった。
一方、 有機材料を使う太陽電池も多くのものが提案されている。 有機太陽電池 としては、 : 型有機半導体と仕事関数の小さい金属を接合させるショットキ一型 光電変換素子、 p型有機半導体と n型無機半導体、 あるいは p型有機半導体と電 子受容性有機化合物を接合させるヘテロ接合型光電変換素子等があり、 利用され る有機半導体は、 クロロフィル、 ペリレン等の合成色素や顔料、 ポリアセチレン 等の導電性高分子材料、 またはそれらの複合材料等である。 これらを真空蒸着法、 キャスト法、 またはデイツビング法等により、 薄膜化し電池材料が構成されてい る。 有機材料は低コスト、 大面積ィヒが容易等の長所もあるが、 変換効率は 1 %以 下と低いものが多く、 また耐久性も悪いという問題もあった。
こうした状況の中で、 Nature (第 353卷、 P737、 1991)および米国特許第
492772 号明細書に報告された 「色素增感された半導体微粒子を使う光電変換素 子および太陽電池」 は画期的であった。 この文献には電池作製に必要な材料およ び製造技術も開示されている。 提案された電池は、 グレッツエル型と呼ばれ、 ル テェゥム錯体で分光増感された酸化チタン多孔質薄膜を作用電極とする湿式太陽 電池である。 この方式の利点は酸化チタン等の安価な酸化物半導体を高純度まで 精製する必要がないこと、 従って安価で、 更に利用できる光は広い可視光領域に までわたっており、 可視光成分の多い太陽光を有効に電気へ変換できることであ る。
反面、 非常に高価なルテユウム錯体が使われており、 コスト面で改良が求めら れている。 高価なルテェゥム錯体を安価なシァニン等の有機色素へ変更すること が出来れば、 この問題は解決出来る。 この電池の色素としてシァ ン色素やメロ シァニン色素が開示されている (特開平 1 1一 2 3 8 9 0 5号公報、 特開 2 0 0 1 - 5 2 7 6 6号公報、 特開 2 0 0 1— 7 6 7 7 3号公報) 。 しかしながら、 こ れらの色素は、 酸化チタンへの吸着が低かったり、 高い増感効果を得るには至つ ておらず、 また経時安定性 (耐久性) にも問題がある。
このような事情のもとで、 本発明の第 1の目的は、 経時安定性に優れ、 良好な 光電変換特性などを有し、 太陽電池などにおける半導体電極などに好適に用いら れる新規な有機系の色素と、 この色素からなる光電変換材料を提供することにあ る。 また、 第 2の目的は、 上記の有機系の色素を用いた半導体電極および光電変 換効率に優れる光電変換素子を提供することにある。 発明の開示
本発明者らは、 前記目的を達成するために鋭意研究を重ねた結果、 特性の構造 を有する有機系の色素により、 その目的を達成し得ることを見出し、 この知見に 基づいて、 本発明を完成するに至った。 すなわち、 本発明は、
(1) 一般式 (I)
Figure imgf000004_0001
(一般式 (I) において、 R1はアルキル基、 ァラルキル基、 アルケニル基、 ァリール基、 ヘテロ環残基を示し、 置換基を有していてもよい。 また、 R1はべ ンゼン環と環状構造を形成してもよい。 R2、 R3は水素原子、 アルキル基、 ァ ルコキシ基、 アルキルチォ基、 モノ置換アミノ基、 ジ置換アミノ基、 ァラルキル 基、 アルケニル基、 ァリール基、 ヘテロ環残基を示し、 それぞれ置換基を有して いてもよい。 また、 R2と R3は直接、 あるいは連結基を介して結合し環状構造 を形成してもよい。 R 4は酸性基を有する置換基を示す。 Xはメチレン、 酸素原 子、 硫黄原子、 アミノ基、 置換アミノ基を示す。 nは 0、 1の整数を示す。 ) で示される構造を有することを特徴とする有機系色素 (以下、 色素 Iと称す。 ) 、
(2) 上記 (1) 項に記載の有機系色素からなる光電変換材料、
(3) 表面に導電†生を有する基板と、 その導電性表面上に被覆された半導体層と、 その半導体層の表面に吸着した色素からなる半導体電極において、 上記色素が上 記 (1) 項に記載の有機系色素を含むことを特徴とする半導体電極、
(4) 上記 (1) 項に記載の有機系色素を用いたことを特徴とする光電変換素子、
(5) 一般式 (II)
Figure imgf000004_0002
(一般式 (II) において、 R 5はアルキル基、 ァラルキル基、 ァルケ-ル基、 ァリール基、 ヘテロ環残基を示し、 置換基を有していてもよい。 R 6はアルキル 基、 アルコキシ基、 ハロゲン原子を示し、 置換基を有していてもよい。 R7、 R 8は水素原子、 アルキル基、 アルコキシ基、 アルキルチオ基、 ァリール基、 ァリ ールォキシ基、 ァリールチオ基、 ヘテロ環残基を示し、 置換基を有していてもよ い。 R9は酸 ¾Ξ基を有する置換基を示す。 X1はァミノ基と共に環状構造を形成 する連結基を示す。 mは 0、 1を示す。 炭素一炭素二重結合は、 E型、 または Z 型の何れであってもよい。 )
で示される構造を有することを特徴とするメロシアニン色素 (以下、 色素 Πと称 す。 ) 、
(6) 上記 (5) 項に記載のメロシアニン色素からなる光電変換材料、
(7) 表面に導電性を有する基板と、 その導電性表面上に被覆された半導体層と、 その半導体層の表面に吸着した色素からなる半導体電極において、 上記色素が上 記 (5) 項に記載のメロシアニン色素を含むことを特徴とする半導体電極、
(8) 上記 (5) 項に記載のメロシアニン色素を用いたことを特徴とする光電変 換素子、
(9) 一般式 (IV)
Figure imgf000005_0001
(一般式 (IV) において、 R 13はァリーレン基、 ヘテロ環残基を示し、 置換 基を有していてもよい。 R 14は水素原子、 アルキル基、 アルコキシ基、 ハロゲ ン原子を示す。 R15、 R16は水素原子、 アルキル基、 アルコキシ基、 アルキル チォ基、 モノ置換アミノ基、 ジ置換アミノ基、 ァラルキル基、 アルケニル基、 ァ リール基、 ヘテロ環残基を示し、 それぞれ置換基を有していてもよい。 R17は 酸性基を有する置換基を示す。 R18、 R 19は水素原子、 アルキル基、 ァリール 基、 ヘテロ環残基を示し、 置換基を有していてもよい。 また、 R18、 R19は直 接あるいは連結基を介して結合してもよい。 Rz R21、 R22は水素原子、 ァ ルキル基、 アルコキシ基、 ァリール基、 ヘテロ環残基を示す。 X 5はァミノ基と 共に環状構造を形成する連結基を示す。 pは 0〜2の整数、 qは 0〜2の整数を 示す。 炭素一炭素二重結合は、 E型または Z型の何れであってもよい。 ) で示される構造を有することを特徴とするメロシアニン色素 (以下、 色素 IIIと称 す。 ) 、
(10) 上記 (9) 項に記載のメロシアニン色素からなる光電変換材料、
(11) 表面に導電性を有する基板と、 その導電性表面上に被覆された半導体層 と、 その半導体層の表面に吸着した色素からなる半導体電極において、 上記色素 が上記 (9) 項に記載のメロシアニン色素を含むことを特徴とする半導体電極、
(12) 上記 (9) 項に記載のメロシアニン色素を用いたことを特徴とする光電 変換素子、
(13) 一般式 (V)
Figure imgf000006_0001
(一般式 (V) において、 R 24はアルキル基、 ァラルキル基、 ァルケ-ル基、 ァリール基、 ヘテロ環残基を示し、 置換基を有していてもよい。 R25はアルキ ル基、 アルコキシ基、 ハロゲン原子を示し、 置換基を有していてもよい。 R26、 R 27は水素原子、 アルキル基、 アルコキシ基、 アルキルチオ基、 ァリール基、 ァリールォキシ基、 ァリールチオ基、 ヘテロ環残基を示し、 置換基を有していて もよい。 R 28は酸性基の 4級アンモニゥム塩、 酸性基の金属塩、 アミド基、 ェ ステル基を含有する置換基を示す。 X8はァミノ基と共に環状構造を形成する連 結基を示す。 bは 0、 1を示す。 炭素一炭素二重結合は、 E型、 または Z型の何 れであってもよい。 )
で示される構造を有することを特徴とするメロシアニン色素 (以下、 色素 IVと称 す。 ) 、
(14) 上記 (13) 項に記載のメロシアニン色素からなる光電変換材料、 およ ぴ
(15) 表面に導電†生を有する基板と、 その導電性表面上に被覆された半導体層 と、 その半導体層の表面に吸着した色素からなる半導体電極において、 上記色素 が上記 (13) 項に記載のメロシア ン色素を含むことを特徴とする半導体電極、
(16) 上記 (13) 項に記載のメロシアニン色素を用いたことを特徴とする光 電変換素子、
を提供するものである。 図面の簡単な説明
図 1〜図 13は、 それぞれ実施例 W_ 1〜W— 13で得た色素の UV吸収スぺ クトル図である。 図 14および図 15は、 それぞれ試験例 W— 1および比較試験 例 W— 1で用いた色素のサイクリックボノレタンメトリ一特性図である。 発明を実施するための最良の形態
本発明の色素には、 色素 I、 色素 II、 色素 IIIおよび色素 IVの態様があり、 それ ぞれの色素について説明する。
本発明の色素 Iは、 一般式 ( I )
Figure imgf000007_0001
(一般式 (I) において、 R1はアルキル基、 ァラルキル基、 ァルケエル基、 ァリール基、 ヘテロ環残基を示し、 置換基を有していてもよい。 また、 R1はべ ンゼン環と環状構造を形成してもよい。 R2、 R 3は水素原子、 アルキル基、 ァ ルコキシ基、 アルキルチオ基、 モノ置換アミノ基、 ジ置換アミノ基、 ァラルキル 基、 アルケニル基、 ァリール基、 ヘテロ環残基を示し、 それぞれ置換基を有して いてもよい。 また、 R 2と R 3は直接、 あるいは連結基を介して結合し環状構造 を形成してもよい。 R 4は酸性基を有する置換基を示す。 Xはメチレン、 酸素原 子、 硫黄原子、 アミノ基、 置換アミノ基を示す。 nは 0、 1の整数を示す。 ) で示される構造を有する有機系色素である。
ここで、 R 1の具体例としては、 メチル基、 ェチル基、 イソプロピル基等のァ ルキル基、 ベンジル基、 1—ナフチルメチル基等のァラルキル基、 ビュル基、 シ クロへキセエル基等のアルケエル基、 フエニル基、 ナフチル基等のァリール基、 フリル基、 チェェ /レ基、 インドリル基等のへテロ環残基を挙げることができる。 また、 R 1は置換基を有していてもよく、 その置換基の具体例としては、 上述の ァノレキル基、 メ トキシ基、 エトキシ基、 n—へキシルォキシ基等のアルコキシ基、 メチルチオ基、 n—へキシルチオ基等のアルキルチオ基、 フエノキシ基、 1ーナ フチルォキシ基等のァリールォキシ基、 フエ-ルチオ基等のァリールチオ基、 塩 素、 臭素等のハロゲン原子、 ジメチルァミノ基、 ジフエ-ルァミノ基等のジ置換 アミノ基、 上述のァリール基、 上述のへテロ環残基、 カルボキシル基、 カルボキ シメチル基のようなカルボキシアルキル基、 スルホ-ルプロピル基のようなスル ホニルアルキル基、 リン酸基、 ヒドロキサム酸基等の酸性基、 シァノ基、 ニトロ 基、 トリフルォロメチル基等の電子吸引性基を挙げることができる。 また、 R 1 はベンゼン環と結合して環状構造を形成してもよく、 その具体例は (1 ) 〜
( 9 ) を挙げることができる。 R 2と R 3の具体例としては、 水素原子、 上述の アルキル基、 上述のアルコキシ基、 上述のアルキルチオ基、 メチルァミノ基、 ァ 二リノ基等のモノ置換アミノ基、 上述のジ置換アミノ基、 上述のァラルキル基、 上述のァルケ-ル基、 上述のァリール基、 上述のへテロ環残基を挙げることがで きる。 また、 R 2は置換基を有していてもよく、 その置換基の具体例としては、 上述のアルキル基、 メ トキシ基、 エトキシ基、 n—へキシルォキシ基等のアルコ キシ基、 メチルチオ基、 n—へキシルチオ基等のアルキルチオ基、 フエノキシ基、
1一ナフチルォキシ基等のァリールォキシ基、 フエ-ルチオ基等のァリ一ルチオ 基、 塩素、 臭素等のハロゲン原子、 ジメチルァミノ基、 ジフエニルァミノ基等の ジ置換アミノ基、 上述のァリール基、 上述のへテロ環残基、 カルボキシル基、 力 ルポキシメチノレ基のようなカルボキシアルキル基、 スルホ-ルプロピル基のよう なスルホニルアルキル基、 リン酸基、 ヒドロキサム酸基等の酸性基、 シァノ基、 ニトロ基、 トリフルォロメチル基等の電子吸引性基を挙げることができる。 また、
R2と R3は結合して環状構造を形成してもよく、 その具体例は (10) 〜 (2 0) に挙げることができる。 R4の具体例としては、 (21) 〜 (46) に示す ものを挙げることができる。 し力 し、 これらの具体例は限定されるものではない。
Figure imgf000009_0001
(1) (2) (3)
Figure imgf000009_0002
Figure imgf000009_0003
6
Figure imgf000010_0001
HOHNOO— HO£Od— H02OS— HOOO
Figure imgf000010_0002
0/e00Zdf/X3d 請 OOZ OAV
Figure imgf000011_0001
次に、 本発明の色素 Iの具体例を A— 1〜A_ 2 3に挙げるが、 これらに限定 されるものではない。
Figure imgf000011_0002
Figure imgf000012_0001
d 請 00Z OAV
Figure imgf000013_0001
Figure imgf000014_0001
W
Figure imgf000015_0001
Figure imgf000016_0001
次に、 本発明の色素 IIは、 一般式 (II)
Figure imgf000016_0002
(—般式 (Π) において、 R 5はアルキル基、 ァラルキル基、 アルケュル基、 ァリール基、 ヘテロ環残基を示し、 置換基を有していてもよい。 R 6はアルキル 基、 アルコキシ基、 ハロゲン原子を示し、 置換基を有していてもよい。 R 7、 R 8は水素原子、 アルキル基、 アルコキシ基、 アルキルチオ基、 ァリール基、 ァリ ールォキシ基、 ァリールチオ基、 ヘテロ環残基を示し、 置換基を有していてもよ い。 R 9は酸性基を有する置換基を示す。 X 1はァミノ基と共に環状構造を形成 する連結基を示す。 mは 0、 1を示す。 炭素一炭素二重結合は、 E型、 または Z 型の何れであってもよい。 )
で示される構造を有するメロシア ン色素である。
この一般式 (II) で示されるメロシアニン色素としては、 一般式 (II一 1 )
Figure imgf000017_0001
(一般式 (II一 1 ) において、 R 5はアルキル基、 ァラルキル基、 ァルケ-ル 基、 ァリール基、 ヘテロ環残基を示し、 置換基を有していてもよい。 R 6はアル キル基、 アルコキシ基、 ハロゲン原子を示し、 置換基を有していてもよい。 R 1 0は 2価のアルキレン基、 2価のァリーレン基を示し、 それぞれ置換基を有して いてもよい。 X 1はァミノ基と共に環状構造を形成する連結基を示す。 X 2は酸 素原子、 硫黄原子を示し、 X 3は酸素原子、 硫黄原子、 ジシァノメチレン基を示 す。 mは 0、 1を示す。 炭素一炭素二重結合は、 E型、 または Z型の何れであつ てもよい。 )
で示される化合物、 および一般式 (II一 2 )
Figure imgf000017_0002
(一般式 (11—2 ) において、 R 5はアルキル基、 ァラルキル基、 ァルケ-ル 基、 ァリーノレ基、 ヘテロ環残基を示し、 置換基を有していてもよい。 R 6はァノレ キル基、 ァノレコキシ基、 ハロゲン原子を示し、 置換基を有していてもよい。 X 4 は 5 〜 7員環を形成する 2価のアルキレン基を示す。 R 1。は 2価のアルキレン 基、 2価のァリーレン基を示し、 それぞれ置換基を有していてもよい。 mは 0、 1を示す。 炭素一炭素二重結合は、 E型、 または Z型の何れであってもよい。 ) で示される化合物を好ましく挙げることができる。
一般式 (II) において、 R 5の具体例としては、 メチル基、 ェチル基、 イソプ 口ピル基等のアルキル基、 ベンジル基、 1一ナフチルメチル基等のァラルキル基、 ビニノレ基、 シクロへキセエル基等のァ /レケ二/レ基、 フエエル基、 ナフチル基等の ァリール基、 フリル基、 チェニル基、 インドリル基等のへテロ環残基を挙げるこ とができる。 また、 R 5は置換基を有していてもよく、 その置換基の具体例とし ては、 上述のアルキル基、 メトキシ基、 エトキシ基、 n—へキシルォキシ基等の アルコキシ基、 メチルチオ基、 η—へキシルチオ基等のアルキルチオ基、 フエノ キシ基、 1一ナフチルォキシ基等のァリールォキシ基、 フエ-ルチオ基等のァリ 一ルチオ基、 塩素、 臭素等のハロゲン原子、 ジメチルァミノ基、 ジフエ二ノレアミ ノ基等のジ置換アミノ基、 上述のァリール基、 上述のへテロ環残基、 カルボキシ ル基、 力ルポキシメチル基のようなカルポキシアルキル基、 スルホニルプロピル 基のようなスルホエルアルキル基、 リン酸基、 ヒ ドロキサム酸基等の酸性基、 シ ァノ基、 ニトロ基、 トリフルォロメチル基等の電子吸引性基を挙げることができ る。 R 6の具体例としては、 上述のアルキル基、 上述のアルコキシ基、 上述のハ ロゲン原子を挙げることができる。 また、 R 6は置換基を有していてもよく、 そ の具体例としては上述のアルキノレ基、 上述のァノレコキシ基、 上述のハロゲン原子、 上述のァリール基を挙げることができる。 R 7、 R 8の具体例としては水素原子、 上述のアルキル基、 上述のアルコキシ基、 上述のアルキルチオ基、 上述のァリー ル基、 上述のァリールォキシ基、 上述のァリールチオ基、 上述のへテロ環残基を 示す。 また、 R 7、 R 8は置換基を有していてもよく、 その置換基の具体例とし ては上述のアルキル基、 上述のアルコキシ基、 上述のァリール基、 上述のへテロ 環残基、 上述のハロゲン原子を挙げることができる。 X 1の具体例は (4 7 ) 〜
( 6 3 ) に挙げることができる。 R 9の具体例としては (6 4 ) 〜 (9 1 ) に示 すものを挙げることができる。 し力 し、 これらの具体例は限定されるものではな 8
Figure imgf000019_0001
3d 請 00Z OAV CD
Figure imgf000020_0001
Figure imgf000021_0001
一般式 (II— 1) において、 R5、 R6、 X1は一般式 (II) と同じである。 X2 の具体例としては、 酸素原子、 硫黄原子を挙げることができ、 X3の具体例は酸 素原子、 硫黄原子、 ジシァノメチレン基を挙げることができる。 R1Qの具体例 としては、 メチレン基、 エチレン基等の 2価のアルキレン基、 1, 4 _フエ-レ ン基、 1, 5—ナフチレン基等の 2価のァリーレン基を挙げることができる。
—般式 (II一 2) において、 R5、 R6は一般式 (II) と同じである。 また R10 は一般式 (11—1) と同じである。 X4の具体例としては、 下記の (92) 〜 (95) を示すものを挙げることができる。 R10の具体例としては、 上述のァ ノレキレン基、 上述のァリーレン基を示すことが出来る。
Figure imgf000021_0002
Figure imgf000022_0001
Figure imgf000022_0002
(94) (95)
次に、 本発明の色素 IIであるメロシアニン色素の具体例を B 'Β— 35 Ζ 挙げるが、 これらに限定されるものではない。
Figure imgf000022_0003
Figure imgf000023_0001
3
3
οο
Figure imgf000024_0001
()B10-
Figure imgf000025_0001
=S
0 N
H2C— COOH
Oi
Figure imgf000026_0001
Figure imgf000026_0002
) (B18-
Figure imgf000027_0001
/ O 0AV;
o
Figure imgf000028_0001
(B-35)
Figure imgf000029_0001
本発明のメロシアニン色素 (II) の合成ルートを以下に示す。 化合物①、 ある いは化合物③から化合物②を合成し、 次いで酸性基や酸性基前駆体を有する化合 物と反応することで目的物④を得ることができる。
Figure imgf000030_0001
R"=酸性基を有する置換基
化合物①のカルボュル化反応による化合物②の合成方法としては、 Friedel - Crafts反応に代表されるァシル化反応、 Vilsmeiyer反応に代表されるホルミル化 反応、 あるいは一度ェトリル化を行い、 -トリル基をカルポニル基へ変換する方 法が挙げられるが、 カルポニル化合物を得られる条件であれば、 どのような反応 を用いても構わない。 し力 し、 本発明では、 Vilsmeiyer反応によりホルミル化が 最も好適である。 1 9 2 7年、 Vilsmeiyerらによって報告されたこのホルミル化 反応は、 ォキシ塩化リン、 ホスゲン、 塩化チォ-ル等の存在下、 N, N—ジメチ ルホルムアミド、 N—メチル一ホルムァ-リド等を作用させ、 ホルミル基を導入 する方法である。 操作が簡便であり、 反応条件が穏和なことから広く利用されて いるものである。
化合物③から化合物②を合成する方法としては、 種々の方法が挙げられる。
R一がメチル基の場合、 二酸化セレン、 クロム酸、 次亜ハロゲン酸等による酸 化反応、 ハロゲン化メチルへ変換した後にジメチルスルホキシド、 ニトロアル力 ンナトリウム塩、 へキサメチレンテトラミン等を用いた酸化反応、 ジハロゲン化 メチルへ変換した後に酸またはアルカリ性で加水分解する反応が挙げられる。 R 一がハロゲン原子の場合、 グルニャール試薬や有機リチウムハロゲン原子を M gや L iに変換した後、 ホルミル化剤としてギ酸エステルやホルムアミドを用い てホルミル化する方法、 P d触媒下、 水素と一酸化炭素と反応させる方法等が挙 げられる。
化合物②と酸 ¾Ξ基あるいは酸性基前駆体を有する化合物を縮合して目的物④ を得る方法としては、 アルドール縮合や knoevenagel等のカルポニル化合物と活 性メチレンの反応による方法、 Wittig反応によるォレフィン合成の方法が挙げら れる。 力ルポ-ノレ化合物と活性メチレンの縮合反応は、 塩基または酸触媒下にお いて合成されるものである。 反応条件によっては、 ヒドロキシル化合物とその脱 水によって生成する不飽和化合物が得られるが、 反応に用いる塩基や酸、 そして 反応温度を制御することで不飽和化合物を優先的に得ることが出来る。
Wittig反応はカルボ-ル基をォレフインへ変換するのに非常に優れた反応であ る。 通常、 反応はアルカリ性条件下、 緩和な温度で進行する。 本発明においては、 カルボ-ル基を有する中間体②と、 酸性基あるいは酸性基の前駆体を有する亜リ ン酸ジエステル、 ホスホランあるいはリンイリドと反応させることによって容易 に目的物を得ることが出来る。
さらに、 本発明の色素 IIIは、 一般式 (IV)
(IV)
Figure imgf000032_0001
(一般式 (IV) において、 R13はァリーレン基、 ヘテロ環残基を示し、 置換 基を有していてもよい。 R 14は水素原子、 アルキル基、 アルコキシ基、 ノヽロゲ ン原子を示す。 R15、 R 16は水素原子、 アルキル基、 アルコキシ基、 アルキル チォ基、 モノ置換アミノ基、 ジ置換アミノ基、 ァラルキル基、 アルケニル基、 ァ リール基、 ヘテロ環残基を示し、 それぞれ置換基を有していてもよい。 R17は 酸性基を有する置換基を示す。 R18、 R 19は水素原子、 アルキル基、 ァリール 基、 ヘテロ環残基を示し、 置換基を有していてもよい。 また、 R18、 R19は直 接あるいは連結基を介して結合してもよい。 R2°、 R21、 R22は水素原子、 ァ ルキル基、 アルコキシ基、 ァリール基、 ヘテロ環残基を示す。 X 5はァミノ基と 共に環状構造を形成する連結基を示す。 pは 0〜2の整数、 qは 0〜2の整数を 示す。 炭素—炭素二重結合は、 E型または Z型の何れであってもよい。 ) で示される構造を有するメロシアニン色素である。
この一般式 (IV) で示されるメロシアニン色素としては、 一般式 (IV— 1) )
Figure imgf000033_0001
(一般式 (IV— 1) において、 R 13はァリーレン基、 ヘテロ環残基を示し、 置換基を有していてもよい。 R 14は水素原子、 アルキル基、 アルコキシ基、 ノヽ ロゲン原子を示す。 R18、 R 19は水素原子、 アルキル基、 ァリール基、 ヘテロ 環残基を示し、 置換基を有していてもよい。 また、 R18、 R19は直接あるいは 連結基を介して結合してもよい。 R20、 R21、 R 22は水素原子、 アルキル基、 アルコキシ基、 ァリール基、 ヘテロ環残基を示す。 R 23はアルキレン基、 ァリ 一レン基を示す。 X 5はァミノ基と共に環状構造を形成する連結基を示す。 X6 は酸素原子、 硫黄原子を示し、 X7は酸素原子、 硫黄原子、 ジシァノメチレン基 を示す。 ; pは 0〜2の整数、 qは 0〜2の整数を示す。 炭素一炭素二重結合は、 E型または Z型の何れであってもよい。 )
で示される化合物を好ましく挙げることができる。
ここで、 R13の具体例としては、 1, 4—フエ-レン基、 2, 6—ナフチレ ン基等のァリーレン基、 2, 5—チェエレン基等のへテロ環残基を挙げることが できる。 また、 R13は置換基を有していてもよく、 その置換基の具体例として は、 メチル基、 ェチル基、 n—プロピル基等のアルキル基、 メ トキシ基、 ェトキ シ基、 n—へキシルォキシ基等のアルコキシ基、 メチルチオ基、 n—へキシルチ ォ基等のアルキルチオ基、 フエノキシ基、 1一ナフチルォキシ基等のァリールォ キシ基、 フエ-ルチオ基等のァリールチオ基、 塩素、 臭素等のハロゲン原子、 ジ メチルァミノ基、 ジフエニルァミノ基等のジ置換アミノ基、 フエニル基、 4ーメ チルフエニル基、 2—ナフチル基等のァリール基、 フリノレ基、 チェ-ル基等のへ テロ環残基、 カルボキシル基、 カルポキシメチル基のようなカルポキシアルキル 基、 スルホニルプロピル基のようなスルホニルアルキル基、 リン酸基、 ヒドロキ サム酸基等の酸性基、 シァノ基、 エトロ基、 トリフルォロメチル基等の電子吸引 性基を挙げることができる。 R 14の具体例としては水素原子、 上述のアルキル 基、 上述のアルコキシ基、 上述のハロゲン原子を挙げることができる。 R15と Ri 6の具体例としては、 水素原子、 上述のアルキル基、 上述のアルコキシ基、 上述のアルキルチオ基、 メチルァミノ基、 ァニリノ基等のモノ置換アミノ基、 上 述のジ置换ァミノ基、 ベンジル基等のァラルキル基、 ビュル基等のアルケ-ル基、 上述のァリール基、 上述のへテロ環残基を挙げることができる。 R2。、 R21、 R 22の具体例としては水素原子、 上述のアルキル基、 上述のアルコキシ基、 上 述のァリール基、 上述のへテロ環残基を挙げることができる。 X 5はァミノ基と 環状構造を形成する連結基であり、 その具体例は (96) 〜 (1 12) に挙げる ことができる。 R 17は酸性基を有する置換基であり、 その具体例としては (1 13) 〜 (140) に示すものを挙げることができる。 R18と R19は水素原子、 上述のアルキル基、 上述のァリール基、 上述のへテロ環残基を挙げることができ、 その具体例としては (141) 〜 (156) を挙げることができる。 し力 し、 こ れらの具体例は限定されるものではなレ、。
Figure imgf000034_0001
ε
Figure imgf000035_0001
/C00Zdf/X3d 請 00Z OAV
Figure imgf000036_0001
(140)
Figure imgf000037_0001
R1 9
Hヽ Λζ CH3
C
(141)
Figure imgf000037_0002
)
Figure imgf000037_0003
Figure imgf000038_0001
次に、 本発明の色素 IIIであるメロシアニン色素の具体例を (C一 1) 〜 4) に挙げるが、 これらに限定されるものではない。
Figure imgf000038_0002
Figure imgf000039_0001
(1
Figure imgf000040_0001
Figure imgf000040_0002
0/C00Zdf/X3d 請 00Z OAV
Figure imgf000041_0001
次に、 本発明の色素 IVは、 一般式 (V)
Figure imgf000042_0001
(一般式 (V) において、 R 2 4はアルキル基、 ァラルキル基、 アルケニル基、 ァリール基、 ヘテロ環残基を示し、 置換基を有していてもよい。 R 2 5はアルキ ル基、 アルコキシ基、 ハロゲン原子を示し、 置換基を有していてもよい。 R 2 6、 R 2 7は水素原子、 アルキル基、 アルコキシ基、 アルキルチオ基、 ァリール基、 ァリールォキシ基、 ァリールチオ基、 ヘテロ環残基を示し、 置換基を有していて もよい。 R 2 8は酸性基の 4級アンモ-ゥム塩、 酸性基の金属塩、 アミ ド基、 ェ ステル基を含有する置換基を示す。 X 8はァミノ基と共に環状構造を形成する連 結基を示す。 bは 0、 1を示す。 炭素一炭素二重結合は、 E型、 または Z型の何 れであってもよい。 )
で示される構造を有するメロシアニン色素である。
ここで、 R 2 4の具体例としては、 メチル基、 ェチル基、 イソプロピル基等の アルキル基、 ベンジル基、 1 _ナフチルメチル基等のァラルキル基、 ビュル基、 シクロへキセ-ノレ基等のァノレケ-ノレ基、 フエ二ノレ基、 ナフチノレ基等のァリール基、 フリル基、 チェニル基、 インドリル基等のへテロ環残基を挙げることができる。 また、 R 2 4は置換基を有していてもよく、 その置換基の具体例としては、 上述 のアルキル基、 メトキシ基、 エトキシ基、 n—へキシルォキシ基等のアルコキシ 基、 メチルチオ基、 n—へキシルチオ基等のアルキルチオ基、 フエノキシ基、 1 一ナフチルォキシ基等のァリールォキシ基、 フエ二ルチオ基等のァリ一ルチオ基、 塩素、 臭素等のハロゲン原子、 ジメチルァミノ基、 ジフエ-ルァミノ基等のジ置 換ァミノ基、 上述のァリール基、 上述のへテロ環残基、 カルボキシル基、 カルボ キシメチル基のようなカルボキシアルキル基、 スルホ-ルプロピル基のようなス ルホニルアルキル基、 リン酸基、 ヒドロキサム酸基等の酸性基、 シァノ基、 ニト 口基、 トリフルォロメチル基等の電子吸引性基を挙げることができる。 R 2 5の 具体例としては、 上述のアルキル基、 上述のアルコキシ基、 上述のハロゲン原子 を挙げることができる。 また、 R 25は置換基を有していてもよく、 その具体例 としては上述のアルキル基、 上述のアルコキシ基、 上述のハロゲン原子、 上述の ァリール基を挙げることができる。 R2S、 R 27の具体例としては水素原子、 上 述のアルキル基、 上述のアルコキシ基、 上述のアルキルチオ基、 上述のァリール 基、 上述のァリールォキシ基、 上述のァリールチオ基、 上述のへテロ環残基を示 す。 また、 R26、 R 27は置換基を有していてもよく、 その置換基の具体例とし ては上述のアルキル基、 上述のアルコキシ基、 上述のァリール基、 上述のへテロ 環残基、 上述のハロゲン原子を挙げることができる。 X8の具体例は (157) 〜 (173) に挙げることができる。 R28の具体例としては (174) 〜 (2 01) に示すものを挙げることができる。 し力 し、 これらの具体例は限定される ものではない。
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000046_0001
次に、 本努明の色素 IVの具体例を (D— 1) (D- 30) に挙げるが、 これ らに限定されるものではない。
Figure imgf000046_0002
H3)4 CH2CH3)4
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000049_0001
) (15D-
Figure imgf000050_0001
()1D9-
Figure imgf000051_0001
3)4
Figure imgf000052_0001
本発明の光電変換材料は、 前述の一般式 ( I ) で示される有機系色素、 一般式 (II) で示されるメロシアェン色素、 一般式 (IV) で示されるメロシアニン色素 および一般式 (V) で示されるメロシアニン色素それぞれからなるものである。 また、 本発明の半導体電極は、 表面に導電性を有する基板と、 その導電性表面 上に被覆された半導体層と、 その半導体層の表面に吸着した色素からなる半導体 電極において、 上記色素が、 前述の一般式 (I ) で示される有機系色素、 一般式 (II) で示されるメロシアニン色素、 一般式 (IV) で示されるメロシアニン色素 および一般式 (V) で示されるメロシア ン色素の中から選ばれる色素を含むも のである。
上記の表面に導電性を有する基板 (以下、 導電性基板と称すことがある。 ) は、 金属のように基板そのものに導電性があるもの、 または表面に導電剤を含む導電 層を有するガラスあるいはプラスチックの基板を用いることができる。 後者の場 合、 導電剤としては白金、 金、 銀、 銅、 アルミニウム等の金属、 炭素、 あるいは インジウムースズ複合酸化物 (以降 「ι το」 と略記する) 、 フッ素をドーピン グした酸化スズ等の金属酸化物 (以降 「F T O」 と略記する) 等が挙げられる。 導電性基板は、 光を 1 0 %以上透過する透明†生を有していることが好ましく、 5 0 %以上透過することがより好ましい。 この中でも、 I T Oや F T Oからなる導 電層をガラス上に堆積した導電性ガラスが特に好ましい。
透明導電性基板の抵抗を下げる目的で、 金属リード線を用いてもよい。 金属リ ード線の材質はアルミニウム、 銅、 銀、 金、 白金、 ニッケル等の金属が挙げられ る。 金属リード線は、 透明基板に蒸着、 スパッタリング、 圧着等で設置し、 その 上に I T Oや F T Oを設ける方法、 あるいは透明導電層上に金属リード線を設置 する。
半導体層を構成する半導体としては、 シリコン、 ゲルマニウムのような単体半 導体、 あるいは金属のカルコゲニドに代表される化合物半導体、 またはべ口ブス カイト構造を有する化合物等を使用することができる。 金属のカルコゲニドとし てはチタン、 スズ、 亜鉛、 鉄、 タングステン、 ジルコニウム、 ハフニウム、 スト ロンチウム、 インジウム、 セリウム、 イットリウム、 ランタン、 バナジウム、 二 ォプ、 あるいはタンタルの酸化物、 カドミウム、 亜鉛、 鉛、 銀、 アンチモン、 ビ スマスの硫化物、 カドミウム、 鉛のセレン化物、 カドミウムのテノレル化物等が挙 げられる。 他の化合物半導体としては亜鉛、 ガリウム、 インジウム、 カドミウム、 等のリン化物、 ガリウム砒素、 銅一インジウム一セレン化物、 銅一インジウム一 硫化物等が好ましい。 また、 ぺロプスカイト構造を有する化合物としては、 チタ ン酸ストロンチウム、 チタン酸カルシウム、 チタン酸ナトリウム、 チタン酸バリ ゥム、 -ォブ酸力リゥム等が好ましい。
本宪明に用いられる半導体は、 単結晶でも多結晶でもよい。 変換効率としては 単結晶が好ましいが、 製造コスト、 原材料確保等の点では多結晶が好ましく、 そ の半導体の粒径は 4 n m以上、 1 μ πι以下であることが好ましい。
導電性基板上に半導体層を形成する方法としては、 半導体微粒子の分散液また はコロイド溶液を導電性基板上に塗布する方法、 ゾルーゲル法等がある。 その分 散液の作製方法としては、 前述のゾルーゲル法、 乳鉢等で機械的に粉砕する方法、 ミルを使って粉砕しながら分散する方法、 あるいは半導体を合成する際に溶媒中 で微粒子として析出させ、 そのまま使用する方法等が挙げられる。
機械的粉碎、 あるいはミルを使用して粉砕して作製する分散液の場合、 少なく とも半導体微粒子単独、 あるいは半導体微粒子と樹脂の混合物を水あるいは有機 溶剤に分散して形成される。 使用される樹脂としては、 スチレン、 酢酸ビュル、 アタリル酸エステル、 メタタリル酸エステル等によるビニル化合物の重合体や共 重合体、 シリコーン樹脂、 フエノキシ樹脂、 ポリスルホン樹脂、 ポリビュルプチ ラール樹脂、 ポリビニルホルマール樹脂、 ポリエステル樹脂、 セルロースエステ ル樹脂、 セルロースエーテル樹脂、 ウレタン榭脂、 フエノール榭脂、 エポキシ樹 脂、 ポリカーボネート樹脂、 ポリアリレート樹脂、 ポリアミド樹脂、 ポリイミド 樹脂等が挙げられる。
半導体微粒子を分散する溶媒としては、 水、 メタノール、 エタノール、 あるい はィソプロピルアルコール等のアルコール系溶媒、 アセトン、 メチルェチルケト ン、 あるいはメチルイソプチルケトン等のケトン系溶媒、 ギ酸ェチル、 酢酸ェチ ル、 あるいは酢酸 η _プチル等のエステル系溶媒、 ジェチルエーテル、 ジメトキ シェタン、 テトラヒドロフラン、 ジォキソラン、 あるいはジォキサン等のエーテ ル系溶媒、 Ν, Ν—ジメチルホルムァミド、 Ν, Ν—ジメチルァセトアミ ド、 あ るいは Ν—メチルー 2—ピロリ ドン等のアミド系溶媒、 ジクロロメタン、 クロ口 ホノレム、 プロモホノレム、 ヨウ化メチノレ、 ジクロロェタン、 トリクロロェタン、 ト リクロロエチレン、 クロ口ベンゼン、 ο—ジクロ口ベンゼン、 フノレオ口ベンゼン、 ブロモベンゼン、 ョードベンゼン、 あるいは 1一クロロナフタレン等のハロゲン 化炭化水素系溶媒、 η—ペンタン、 η —へキサン、 η—オクタン、 1 , 5 —へキ サジェン、 シクロへキサン、 メチノレシクロへキサン、 シク口へキサジェン、 ベン ゼン、 トノレェン、 ο—キシレン、 m—キシレン、 —キシレン、 ェチノレベンゼン、 あるいはクメン等の炭化水素系溶媒を挙げることができる。 これらは単独、 ある いは 2種以上の混合溶媒として用いることができる。
得られた分散液の塗布方法としては、 ローラ法、 ディップ法、 エアナイフ法、 ブレード法、 ワイヤーバー等、 スライ ドホッパ法、 エタストルージョン法、 カー テン法、 スピン法、 あるいはスプレー法を挙げることができる。
更に半導体層は、 単層であっても多層であってもよい。 多層の場合、 粒径の異 なる半導体微粒子の分散液を多層塗布したり、 種類の異なる半導体や、 樹脂、 添 加剤の組成が異なる塗布層を多層塗布することもできる。 また、 一度の塗布で膜 厚が不足する場合には多層塗布は有効な手段である。
一般的に、 半導体層の膜厚が増大するほど単位投影面積当たりの担持色素量も 増えるため光の捕獲率が高くなるが、 生成した電子の拡散距離も増えるために電 荷の再結合も多くなつてしまう。 従って、 半導体層の膜厚は 0 . 1〜; L O O z m が好ましく、 1〜3 0 i mがより好ましい。
半導体微粒子は導電性基板上に塗布した後、 加熱処理してもしなくともよいが、 粒子同士の電子的コンタクト及ぴ塗膜強度の向上や基板との密着性向上の点から、 加熱処理することが好ましい。 その際の加熱処理温度は 4 0〜 7 0 0 °Cが好まし く、 8 0〜 6 0 0 °Cがより好ましい。 また、 加熱処理時間は 5分〜 2 0時間が好 ましく、 1 0分〜 1 0時間がより好ましい。
半導体微粒子は多くの色素を吸着できるように表面積の大きなものが好ましい。 このため半導体層を基板上に塗設した状態での表面積は、 投影面積に対して 1 0 倍以上であることが好ましく、 1 0 0倍以上であることがより好ましい。
半導体層に色素を吸着させる方法としては、 色素溶液中あるいは色素分散液中 に半導体微粒子を含有する作用電極を浸漬する方法、 色素溶液あるいは分散液を 半導体層に塗布して吸着させる方法を用いることができる。 前者の場合、 浸漬法、 ディップ法、 ローラ法、 エアーナイフ法等を用いることができ、 後者の場合は、 ワイヤーバー法、 スライ ドホッパー法、 ェクストルージョン法、 カーテン法、 ス ピン法、 スプレー法等を用いることができる。
色素を吸着する際、 縮合剤を併用してもよい。 縮合剤は、 無機物表面に物理的 あるいは化学的に色素を結合すると思われる触媒的作用をするもの、 または化学 量論的に作用し、 化学平衡を有利に移動させるものの何れであってもよい。 更に、 縮合助剤としてチオール、 あるいはヒドロキシィ匕合物を添加してもよい。
色素を溶解、 あるいは分散する溶媒は、 水、 メタノール、 エタノール、 あるい はイソプロピルアルコール等のアルコール系溶媒、 アセトン、 メチルェチルケト ン、 あるいはメチルイソプチルケトン等のケトン系溶媒、 ギ酸ェチノレ、 酢酸ェチ ル、 あるいは酢酸 n—プチル等のエステル系溶媒、 ジェチルエーテル、 ジメ トキ シェタン、 テトラヒドロフラン、 ジォキソラン、 あるいはジォキサン等のエーテ ル系溶媒、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド、 あ るいは N—メチルー 2—ピロリ ドン等のアミド系溶媒、 ジクロロメタン、 クロ口 ホノレム、 プロモホノレム、 3ゥ化メチノレ、 ジクロロェタン、 トリクロ口エタン、 ト リクロロエチレン、 クロ口ベンゼン、 o—ジクロ口ベンゼン、 フノレオ口ベンゼン、 プロモベンゼン、 ョードベンゼン、 あるいは 1一クロロナフタレン等のハロゲン 化炭化水素系溶媒、 n—ペンタン、 n —へキサン、 n—オクタン、 1 , 5—へキ サジェン、 シクロへキサン、 メチノレシク口へキサン、 シク口へキサジェン、 ベン ゼン、 トノレェン、 o—キシレン、 m—キシレン、 p—キシレン、 ェチルベンゼン、 あるいはクメン等の炭化水素系溶媒を挙げることができ、 これらは単独、 あるい は 2種以上の混合として用いることができる。
これらを用い、 色素を吸着する際の温度としては、 一 5 0 °C以上、 2 0 0 °C以 下が好ましい。 また、 この吸着は攪拌しながら行っても構わない。 攪拌する場合 の方法としては、 スターラー、 ポールミル、 ペイントコンディショナー、 サンド ミル、 アトライター、 デイスパーザー、 あるいは超音波分散等が挙げられるが、 これらに限定されるものではない。 吸着に要する時間は、 5秒以上、 1 0 0 0時 間以下が好ましく、 1 0秒以上、 5 0 0時間以下がより好ましく、 1分以上、 1 5 0時間が更に好ましい。
このようにして、 本発明の半導体電極を得ることができる。
本発明の半導体電極において、 色素として前述の一般式 (II) で示されるメロ シァニン色素を用いる場合、 該メロシアニン色素と共に、 ステロイ ド系化合物を 併用することが好ましい。
上記ステロイド系化合物としては、 一般式 (III)
Figure imgf000057_0001
(一般式 (III) において R 1 1は水素原子、 水酸基、 ハロゲン原子、 アルキル 基、 アルコキシ基、 ァリール基、 ヘテロ環残基、 ァシル基、 ァシルォキシ基、 ォ キシカルボ二ル基、 ォキソ基、 酸性基を示し、 置換基を有していてもよい。 R 1 2は酸性基を含有するアルキル基を示す。 aは 0〜 1 3の整数を示す。 また、 ス テロイド環内は二重結合を含んでもよい。 )
で示される化合物を用いることができる。
一般式 (III) における R 1 1の具体例としては、 水素原子、 水酸基、 前述のハ ロゲン原子、 前述のアルキル基、 前述のアルコキシ基、 前述のアルキル基、 前述 のへテロ環残基、 ァセチル基、 4一メチルベンゾィル基等のァシル基、 ァセチル ォキシ基、 4一メチルベンゾィルォキシ基等のァシルォキシ基、 ェトキシカルボ 二ノレ基、 フエ-ルォキシ力/レポニル基等のォキシカルボニル基、 ォキソ基、 前述 の酸性基を示す。 また、 R 1 1は置換基を有していてもよく、 その置換基の具体 例としては、 前述のアルキル基、 前述のアルコキシ基、 前述のアルキルチオ基、 前述のァリールォキシ基、 前述のァリールチオ基、 前述のハロゲン原子、 前述の ジ置換アミノ基、 前述のァリール基、 前述のへテロ環残基、 前述の酸性基、 前述 の電子吸引性基を挙げることができる。 R 1 2の具体例としては前述のアルキル 基を挙げることができ、 置換基を有していてもよい。 その置換基の具体例として は、 前述のアルキル基、 前述のァリール基、 前述のアルコキシ基、 前述のァシル 基、 前述の酸性基を挙げることができる。
このステロイ ド系化合物の具体例を (E— 1 ) ~ (E— 1 0 ) に挙げるが、 こ れらに限定されるものではない。 19
Figure imgf000058_0001
請 00Z OAV
Figure imgf000059_0001
このステロイ ド系化合物は、 前述の一般式 (II) で示されるメロシアニン色素 を吸着させる際に併用されるが、 該ステロイ ド系化合物の量は、 上記色素 1質量 部に対して 0 . 0 1〜1 0 0 0質量部が好ましく、 0 . 1〜 1 0 0質量部がより 好ましい。
本発明の光電変換素子は、 前述の一般式 ( I ) で示される有機系色素、 一般式 (II) で示されるメロシアェン色素、 一般式 (IV) で示されるメロシアユン色素、 あるいは一般式 (V) で示されるメロシアニン色素を用いた素子であり、 具体的 には、 色素として、 上記の各色素を含む半導体電極を有する素子である。 より具 体的には、 導電性基板と導電性基板上に設置した色素により増感された半導体層
(感光層) とからなる半導体電極、 電荷移動層および対極から構成されている。 感光層は単層構成でも積層構成でもよく、 目的に応じて設計される。 また、 導電 性基板の導電層と感光層の境界、 感光層と電荷移動層の境界等、 この素子におけ る境界においては、 各層の構成成分は相互に拡散、 または混合していてもよい。 本発明の光電変換素子における電荷移動層としては、 酸化還元対を有機溶媒に 溶解した電解液、 酸化還元対を有機溶媒に溶解した液体をポリマーマトリックス に含浸したゲル電解質、 酸化還元対を含有する溶融塩、 固体電解質、 有機正孔輸 送材料等を用いることができる。
本発明で使用される電解液は、 電解質、 溶媒、 及び添加物から構成されること が好ましい。 好ましい電解質はヨウ化リチウム、 ヨウ化ナトリウム、 ヨウ化カリ ゥム、 ヨウ化セシウム、 ヨウ化カルシウム等の金属ヨウ化物一ヨウ素の組み合わ せ、 テトラアルキルァンモニゥムョ一ダイド、 ピリジユウムョ一ダイド、 イミダ ゾリゥムョ一ダイド等の 4級アンモェゥム化合物のヨウ素塩一ヨウ素の組み合わ せ、 臭化リチウム、 臭化ナトリウム、 臭化カリウム、 臭化セシウム、 臭化カノレシ ゥム等の金属臭化物一臭素の組み合わせ、 テトラアルキルアンモニゥムブロマイ ド、 ピリジェゥムプロマイド等の 4級アンモ-ゥム化合物の臭素塩一臭素の組み 合わせ、 フエロシアン酸塩一フェリシアン酸塩、 フエ口セン一フエリシ-ゥムィ オン等の金属錯体、 ポリ硫化ナトリゥム、 アルキルチオール一アルキルジスルフ ィド等のィォゥ化合物、 ビォロゲン色素、 ヒドロキノンーキノン等が挙げられる。 上述の電解質は単独の組み合わせであっても混合であってもよい。 また、 電解質 として、 室温で溶融状態の溶融塩を用いることもできる。 この溶融塩を用いた場 合は、 特に溶媒を用いなくても構わない。
電解液における電解質濃度は、 0 . 0 5〜 2 0 Mが好ましく、 0 . 1〜1 5 M が更に好ましい。 電解液に用いる溶媒としては、 エチレンカーボネート、 プロピ レンカーボネート等のカーボネート系溶媒、 3—メチルー 2—ォキサゾリジノン 等の複素環化合物、 ジォキサン、 ジェチルエーテル、 エチレングリコールジアル キルエーテル等のエーテル系溶媒、 メタノール、 エタノール、 ポリプロピレング リコールモノアルキルエーテル等のアルコール系溶媒、 ァセト: r-トリノレ、 ベンゾ 二トリル等の二トリル系溶媒、 ジメチルスルホキシド、 スルホラン等の非プロト ン性極性溶媒等が好ましい。 また、 t—ブチルピリジン、 2—ピコリン、 2, 6 —ルチジン等の塩基性化合物を併用しても構わない。
本発明では、 電解質はポリマー添加、 オイノレゲル化剤添加、 多官能モノマー類 を含む重合、 ポリマーの架橋反応等の手法によりゲル化させることもできる。 ポ リマー添加によりゲノレ化させる場合の好ましいポリマーとしては、 ポリアクリロ 二トリル、 ポリフッ化ビ-リデン等を挙げることができる。 オイルゲル化剤添加 によりゲル化させる場合の好ましいゲル化剤としては、 ジベンジルデン一D _ソ ルビトール、 コレステロール誘導体、 アミノ酸誘導体、 トランス一 (1 R , 2 R) _ 1, 2—シク口へキサンジァミンのアルキルァミド誘導体、 アルキノレ尿素 誘導体、 N—ォクチル一 D—ダルコンアミドベンゾェート、 双頭型アミノ酸誘導 体、 4級アンモユウム誘導体等を挙げることができる。
多官能モノマーによって重合する場合の好ましいモノマーとしては、 ジビュル ベンゼン、 エチレングノレコーノレジメタクリレート、 エチレングリコーノレジアタリ レート、 ジエチレングリコーノレジメタクリレート、 トリエチレングリコーノレジメ タクリレート、 ペンタエリスリ トールトリアタリレート、 トリメチロールプロパ ントリアタリレート等を挙げることができる。 更に、 アクリルアミド、 メチルァ クリレート等のアクリル酸や α—アルキルアクリル酸から誘導されるエステル類 やアミド類、 マレイン酸ジメチル、 フマル酸ジェチル等のマレイン酸ゃフマル酸 から誘導されるエステノレ類、 ブタジエン、 シクロペンタジェン等のジェン類、 ス チレン、 ρ—クロロスチレン、 スチレンス ^ホン酸ナトリウム等の芳香族ビエノレ 化合物、 ビュルエステル類、 アタリ口エトリル、 メタクリロエトリル、 含窒素複 素環を有するビニル化合物、 4級アンモ-ゥム塩を有するビュル化合物、 N—ビ ニノレホノレムアミ ド、 ビニノレスノレホン酸、 ビ-リデンフルオライド、 ビュルアルキ ルエーテル類、 N—フエエルマレイミ ド等の単官能モノマーを含有してもよい。 モノマー全量に占める多官能性モノマーは、 0 . 5〜7 0質量0 /0が好ましく、 1 . 0〜5 0質量%がより好ましい。
上述のモノマーは、 ラジカル重合によって重合することができる。 本発明で使 用できるゲル電解質用モノマーは、 加熱、 光、 電子線あるいは電気化学的にラジ カル重合することができる。 架橋高分子力加熱によって形成される場合に使用さ れる重合開始剤は、 2, 2 '—ァゾビスイソプチロニトリル、 2, 2 '—ァゾ ビス (2 , 4—ジメチルバレ口-トリノレ) 、 ジメチノレー 2, 2 '—ァゾビス
( 2—メチルプロピオネート) 等のァゾ系開始剤、 ベンゾィルパーォキシド等の 過酸化物系開始剤等が好ましい。 これらの重合開始剤の添加量は、 モノマー総量 に対して、 0 . 0 1〜2 0質量%が好ましく、 0 . 1〜1 0質量%がより好まし レ、。
ポリマーの架橋反応により電解質をゲル化させる場合、 架橋反応に必要な反応 性基を含有するポリマー及び架橋剤を併用することが望ましい。 架橋可能な反応 性基に好ましい例としては、 ピリジン、 ィミダゾール、 チアゾール、 ォキサゾー ル、 トリァゾーノレ、 モルフォリン、 ピぺリジン、 ピぺラジン等の含窒素複素環を 挙げることができ、 好ましい架橋剤は、 ハロゲン化アルキル、 ハロゲン化ァラル キル、 スルホン酸エステル、 酸無水物、 酸クロリ ド、 イソシァネート等の窒素原 子に対して求電子反応可能な 2官能以上の試薬を挙げることができる。
無機固体ィヒ合物を電解質の代わりに用いる場合、 ヨウ化銅、 チォシアン化銅等 をキャスト法、 塗布法、 スピンコート法、 浸漬法、 電解メツキ等の手法により電 極内部に導入することができる。
また、 本亮明では電解質の代わりに有機電荷輸送物質を用いることができる。 電荷輸送物質には正孔輸送物質と電子輸送物質がある。 前者の例としては、 例え ば特公昭 3 4— 5 4 6 6号公報等に示されているォキサジァゾール類、 特公昭 4 5 - 5 5 5号公報等に示されているトリフエニルメタン類、 特公昭 5 2 - 4 1 8 8号公報等に示されているビラゾリン類、 特公昭 55— 42380号公報等に示 されているヒドラゾン類、 特開昭 56-123544号公報等に示されているォ キサジァゾーゾレ類、 特開昭 54— 58445号公報に示されているテトラァリー ルベンジジン類、 特開昭 58— 65440号公報、 あるいは特開昭 60—984 37号公報に示されているスチルベン類等を挙げることができる。 その中でも、 本発明に使用される電荷輸送物質としては、 特開昭 60— 24553号公報、 特 開平 2— 96767号公報、 特開平 2—183260号公報、 並びに特開平 2— 22616◦号公報に示されているヒドラゾン類、 特開平 2— 51 162号公報、 並びに特開平 3 _ 75660号公報に示されているスチルベン類が特に好ましい。 また、 これらは単独、 あるいは 2種以上の混合物として用いることができる。 一方、 電子輸送物質としては、 例えばクロラエル、 テトラシァノエチレン、 テ トラシァノキノジメタン、 2, 4, 7—トリ-トロ一 9ーフノレオレノン、 2, 4, 5, 7—テトラュトロ一 9一フルォレノン、 2, 4, 5, 7—テトラニトロキサ ントン、 2, 4, 8—トリニトロチォキサントン、 1, 3, 7—トリエトロジべ ンゾチォフェン、 あるいは 1, 3, 7—トリ二トロジベンゾチォフェン一 5, 5 ージォキシド等がある。 これらの電子輸送物質は単独、 あるいは 2種以上の混合 物として用いることができる。
また、 更に増感効果を増大させる増感剤として、 ある種の電子吸引性化合物を 添加することもできる。 この電子吸引性化合物としては例えば、 2, 3—ジクロ ロー 1, 4一ナフトキノン、 1—ュトロアントラキノン、 1一クロ口 _5—二ト 口アントラキノン、 2—クロ口アントラキノン、 フエナントレンキノン等のキノ ン類、 4一二トロべンズアルデヒド等のアルデヒド類、 9一べンゾィルアントラ セン、 インダンジオン、 3, 5—ジニトロべンゾフエノン、 あるいは 3, 3' , 5, 5' —テトラニトロべンゾフエノン等のケトン類、 無水フタノレ酸、 4一クロ 口ナフタル酸無水物等の酸無水物、 テレフタラルマロノ-トリル、 9一アントリ ノレメチリデンマロノ二トリノレ、 4—ニトロベンザルマロノ-トリル、 あるいは 4 一 (: p—-トロベンゾィルォキシ) ベンザルマロノュトリル等のシァノ化合物、 3_ベンザルフタリ ド、 3— (α—シァノー: —二トロベンザル) フタリ ド、 あ るいは 3— ( ーシァノー ρ—ニトロベンザノレ) 一 4, 5, 6, 7—テトラクロ ロフタリ ド等のフタリド類等を挙げることができる。
これらの電荷輸送材料を用いて電荷移動層を形成する場合、 樹脂を併用するこ とが好ましく、 ポリスチレン樹脂、 ポリビュルァセタール樹脂、 ポリスルホン樹 脂、 ポリカーボネート樹脂、 ポリエステノレ樹脂、 ポリフエ-レンオキサイド樹脂、 ポリアリレート樹脂、 アタリル樹脂、 メタタリル樹脂、 フエノキシ樹脂等が挙げ られる。 これらの中でも、 ポリスチレン樹脂、 ポリビエルァセタール樹脂、 ポリ カーボネート樹脂、 ポリエステル樹脂、 ポリアリレート樹脂が優れている。 又、 これらの樹脂は、 単独あるいは共重合体として 2種以上を混合して用いることが できる。
これらの樹脂の中には、 引っ張り、 曲げ、 圧縮等の機械的強度に弱いものがあ る。 この性質を改良するために、 可塑性を与える物質を加えることができる。 具 体的には、 フタノレ酸エステル (例えば D O P、 D B P等) 、 リン酸エステル (例 えば T C P、 T O P等) 、 セバシン酸エステル、 アジピン酸エステル、 エトリル ゴム、 塩素化炭化水素等があげられる。 これらの物質は、 必要以上に添加すると 特性に悪影響を及ぼすので、 その割合は結着剤樹脂に対し 2 0 %以下が好ましい。 その他、 酸化防止剤やカール防止剤等を必要に応じて添加することができる。 用いられる樹脂量は、 電荷輸送物質 1質量部に対して 0 . 0 0 1〜2 0質量部 が好ましく、 0 . 0 1〜5質量部以下がより好ましい。 樹脂の比率が高すぎると 感度が低下し、 また、 樹脂の比率が低くなりすぎると繰り返し特性の悪化や塗膜 の欠損を招くおそれがある。
電荷移動層の形成方法は大きく 2通りの方法が挙げられる。 1つは増感色素を 担持した半導体微粒子含有層の上に、 先に対極を貼り合わせ、 その隙間に液状の 電荷移動層を挟み込む方法、 もう一つは、 半導体微粒子含有層の上に直接電荷移 動層を付与する方法である。 後者の場合、 対極はその後 たに付与することにな る。
前者の場合、 電荷移動層の挟み込み方法として、 浸漬等による毛管現象を利用 する常圧プロセスと常圧より低レ、圧力にして気相を液相に置換する真空プロセス が挙げられる。 後者の場合、 湿式の電荷移動層においては未乾燥のまま対極を付 与し、 エッジ部の液漏洩防止を施す必要がある。 また、 ゲル電解液の場合におい ては、 湿式で塗布して重合等の方法により固体化する方法もある。 その場合、 乾 燥、 固定化した後に対極を付与してもよい。 電解液の他、 有機電荷輸送材料の溶 解液やゲル電解質を付与する方法としては、 半導体微粒子含有層や色素の付与と 同様に、 浸漬法、 ローラ法、 ディップ法、 エアーナイフ法、 エタストルージョン 法、 スライドホッパー法、 ワイヤーバー法、 スピン法、 スプレー法、 キャスト法、 各種印刷法等が挙げられる。
対極は通常前述の導電性基板と同様に導電性層を有する基板を用いることもで きるが、 強度や密封性が十分に保たれるような構成では基板は必ずしも必要では ない。 対極に用いる材料の具体例としては、 白金、 金、 銀、 銅、 アルミニウム、 ロジウム、 インジウム等の金属、 炭素、 I T O、 F T O等の導電性金属酸化物等 が挙げられる。 対極の厚さには特に制限はない。
感光層に光が到達するためには、 前述の導電性基板と対極の少なくとも一方は 実質的に透明でなければならない。 本発明の光電変換素子においては、 導電性基 板が透明であり、 太陽光を基板側から入射させる方法が好ましい。 この場合、 対 極には光を反射させる材料を使用することが好ましく、 金属、 導電性酸化物を蒸 着したガラス、 プラスチック、 あるいは金属薄膜が好ましい。
対極の塗設については前述の通り、 電荷移動層の上に付与する場合と半導体微 粒子層上に付与する場合の 2通りがある。 何れの場合も対極材料の種類や電荷移 動層の種類により、 適宜、 電荷移動層上または半導体微粒子含有層上に対極材料 を塗布、 ラミネート、 蒸着、 貼り合わせ等の手法により形成可能である。 また、 電荷移動層が固体の場合には、 その上に直接、 前述の導電性材料を塗布、 蒸着、 C VD等の手法で対極を形成することができる。
次に本発明を実施例により更に詳細に説明する力 本発明はこれらに何ら限定 されるものではない。
合成例 V— 1 化合物 (F— 2 ) の合成
N, N—ジメチルホルムアミド ( 2 1 . 4 g ) をフラスコに入れ、 氷浴上で冷 却下攪拌し、 ォキシ塩化リン (1 3 . 3 g ) を 1 5分かけて滴下。 同温で 1時間 攪拌を続け、 下記の ( F _ 1 ) で表されるジュロリジン ( 5 . 1 g ) を溶解した N, N—ジメチルホルムァミド (1 0 m l ) 溶液を 1 0分間かけて滴下。 1時間 後、 反応液を希水酸化ナトリウム水溶液 (200ml) に注ぎ込み、 トルエンで 有機成分を抽出。 溶媒を留去し、 残渣をシリカゲルクロマトグラフィーで精製し、 下記の化合物 (F— 2) を得た。 5. 3 g。 収率 91%。
Figure imgf000066_0001
(F-1) (F-2) 実施例 V— 1 例示化合物 (A— 5) の合成
化合物 (F— 2) (1. O g) 、 ローダニン— 3—酢酸 (0. 96 g) 、 酢酸 アンモニゥム (0. 4 g) を酢酸 2. O gに溶解し、 120°Cで加熱攪拌。 30 分後、 加熱を停止すると直ぐに固化。 室温まで冷却後、 水 (50ml) を加えて 攪拌し、 結晶を濾取。 結晶をビーカーに移し、 水 (200m l) で洗浄。 粗結晶 をメチルセ口ソルブで再結晶し、 例示化合物 (A-5) を得た。 1. 3 g。 収率 70。/。。
実施例 V— 2 例示化合物 (A— 8) の合成
下記の化合物 (F-3) (10. 1 g) 、 ローダニン一 3—酢酸 (7. 4 g) 、 酢酸アンモ-ゥム (2. 56 g) を酢酸 15. 9 gに溶角 し、 120°Cで加熱攪 拌。 30分後、 加熱を停止すると直ぐに固化。 室温まで冷却後、 水 (100m 1) を加えて攪拌し、 結晶を濾取。 結晶をビーカーに移し、 水 (500ml) で 2回洗浄し、 次いで 2—プロパノール (100m l) で 2回洗浄。 粗結晶をメチ ルセ口ソルブ (約 50ml) で再結晶し、 例示化合物 (A-8) を得た。 1 1. 0 g。 収率 66 %。
Figure imgf000066_0002
(F-3) 実施例 V— 3 例示化合物 (A— 9) の合成
下記の化合物 (F-4) (2. 6 g) 、 ローダニン一 3—酢酸 (1. 7 g) 、 酢酸アンモニゥム (0. 5 g) を酢酸 2. 2 gに溶角 し、 120°Cで加熱攪拌。 30分後、 加熱を停止すると直ぐに固化。 室温まで冷却後、 水 (5 Oral) を加 えて攪拌し、 結晶を濾取。 結晶をビーカーに移し、 水 (100ml) で 2回洗浄 し、 次いで 2—プロパノール (50m l) で 2回洗浄し、 例示化合物 (A— 9) を得た。 2. 9 g。 収率 69 %。
Figure imgf000067_0001
(F-4)
実施例 V— 4 例示化合物 (A— 10) の合成
下記の化合物 (F- 5) (1. 6 g) 、 ローダェンー 3—酢酸 (1. 4 g) 、 酢酸アンモ-ゥム (1. O g) を酢酸 4. 4 gに溶角军し、 120°Cで加熱攪拌。 30分後、 加熱を停止すると直ぐに固化。 室温まで冷却後、 水 (50ml) を加 えて攪拌し、 結晶を濾取。 結晶をビーカーに移し、 水 (100ml) で2回洗浄 し、 次いで 2—プロパノール (50ml) で 2回洗浄し、 例示化合物 (A— 9) を得た。 2. 8 g。 収率 95 %。
Figure imgf000067_0002
(F-5)
実施例 V - 5 光電変換素子の作製
酸化チタン (日本ァエロジル社製 P— 25) 3 g、 ァセチルアセトン 0. 2 g 界面活性剤 (アルドリツチ社製 Triton X-100) 0. 3 gを水 6. 5 gと共にペイ ントコンデイショナ一で 6時間分散処理を施した。 この分散液を F T Oガラス基 板上にワイヤーパーを用いて膜厚 10 μΐηになるように塗布した。 塗布後、 10 0 °Cで 1時間乾燥し、 次いで空気中、 450 °Cで 30分間焼成した。
例示化合物 (A- 5) で示した色素 0. 01 gをエタノール 10mlに溶解し た。 この溶液に、 先に作製した半導体電極を室温で 15時間浸漬し、 吸着処理を 施した。
電解液としては、 ヨウ素 0. 03M、 テトラ一 n—プロピルアンモェゥムョー ダイド 0. 5Mをプロピレンカーボネートノァセトニトリル =6Z4の混合液に 溶解したものを使用した。 対極には FT O上に白金をスパッタリングしたものを 使用した。
両電極間に電解液を浸して光電変換素子を作製した。 ここに、 作用電極側から 東芝製カツトフィルター UV— 39で 400 nm以下の光をカツトした 100m W/cm2強度のキセノンランプを照射した。 その結果、 開放電圧 0. 60V、 短絡電流密度 5. 5 mA/ cm2, 形状因子 0. 65、 変換効率 2. 15 %と良 好な値を示した。
実施例 V— 6〜V— 1 2
例示化合物 (A-5) を、 表 1に示す色素に変更した以外は実施例 V— 5と同 様にして素子を作製し評価した。 その結果を表 1に示す。
Figure imgf000068_0001
表 1の結果からわかるように、 本宪明の色素は良好な変換効率を示すことがわ かる。 比較例 V— 1
例示化合物 (A-5) を、 下記の (G— 1) に示すィヒ合物に変更した以外は実 施例 V— 5と同様にして素子を作製し、 評価した。 その結果、 開放電圧 0. 5 5 V、 短絡電流密度 2. 5 mA/ c 形状因子 0. 5 1、 変換効率 0. 70 % と低い値であった。
Figure imgf000069_0001
比較例 V— 2
例示化合物 (A-5) を、 下記の (G— 2) に示す化合物に変更した以外は実 施例 V— 5と同様にして素子を作製し、 評価した。 その結果、 開放電圧 0. 65 V、 短絡電流密度 2. 8mA/cm 形状因子 0. 45、 変換効率 0. 8 2% と低い値であった。
Figure imgf000069_0002
実施例 W— 1 例示化合物 (B— 3) の合成
下記の化合物 (H- 1) (1. 1 8 g) 、 シァノ酢酸 (0. 46 g) 、 酢酸ァ ンモ -ゥム (0. 77 g) を酢酸 2. 5 gに溶角 し、 1 20°Cで加熱攪拌。 30 分後、 加熱を停止し室温まで冷却後、 水 (1 00m l ) 、 酢酸ェチル (100m 1 ) を加えて分液ロートに移した。 有機層を分離し、 無水硫酸ナトリウムで乾燥 後、 溶媒を留去。 粗結晶を酢酸ェチルで洗浄し、 例示化合物 (B-3) を得た。 0. 54 g。 収率 34. 8%。 融点=208. 1〜2 10. 1°C。 エタノール中 の UV吸収スペク トルを図 1に示す。 最大吸収波長 (; Lmax) = 3 99. 6 nm0 最大モル吸収率 ( ε max) = 23 100 1 /m o 1 ■ c m。
Figure imgf000070_0001
実施例 W— 2 例示化合物 (B— 6) の合成
化合物 (H- 2) (1. 82 g) 、 ローダニン一 3—酢酸 (1. 59 g) 、 酢 酸アンモ-ゥム (1. 27 g) を酢酸 3. 9 gに溶解し、 1 20°Cで加熱攪拌。 30分後、 加熱を停止すると直ぐに固化。 室温まで冷却後、 水 (1 00m l) を 加えて攪拌し、 結晶を濾取。 結晶をビーカーに移し、 水 (1 00m l ) で 2回洗浄。 次いでイソプロピルエーテルで攪拌洗浄し、 例示化合物 (B-6) を得た。 3. 2 g。 収率 9 9%。 融点 =271. 9〜274. 0°C。 エタノール 中の UV吸収スペク トルを図 2に示す。 最大吸収波長 ( max) =430. 8 n m。 最大モノレ吸収率 ( ε max) = 3 2700 1 /m o 1 · c m。
CH2CH3
(H-2)
、CHO
実施例 W_ 3 例示化合物 (B— 8) の合成
化合物 (H— 1) (10. 1 g) 、 ローダニン— 3—酢酸 (7. 4 g) 、 酢酸 アンモ-ゥム (2. 56 g) を酢酸 1 5. 9 gに溶解し、 1 20°Cで加熱攪拌。 30分後、 カロ熱を停止すると直ぐに固化。 室温まで冷却後、 水 (1 00m l ) を 加えて攪拌し、 結晶を濾取。 結晶をビーカーに移し、 水 (500m l) で 2回洗 浄し、 次いで 2—プロパノール (1 00m l) で 2回洗净。 粗詰晶をメチルセ口 ソルブ (約 50 m 1 ) で再結晶し、 例示化合物 (B— 8 ) を得た。 1 1. 0 g。 収率 66%。 融点 =249. 2〜25 3. 7°C (分解) 。 エタノール中の UV吸 収スぺク トルを図 3に示す。 最大吸収波長 ( max) =48 1. 0 nm。 最大モ ル吸収率 ( ε max) = 3 1 000 1 /m o 1 · c m。
実施例 W— 4 例示化合物 (B— 9) の合成 下記の化合物 (H— 3) (2. 6 g) 、 ローダニン一 3—酢酸 (1. 7 g) 、 酢酸アンモェゥム (0. 5 g) を酢酸 2. 2 gに溶解し、 120°Cで加熱攪拌。 30分後、 加熱を停止すると直ぐに固化。 室温まで冷却後、 水 (50ml) を加 えて攪抻し、 結晶を濾取。 結晶をビーカーに移し、 水 (100ml) で2回洗浄 し、 次いで 2—プロパノール (50ml) で 2回洗浄し、 例示化合物 (B-9) を得た。 2. 9 g。 収率 69%。 融点 =235. 8〜238. 1°C (分解) 。 ェ タノール中の UV吸収スペク トルを図 4に示す。 最大吸収波長 (; Lmax) =48 2. 6 n m。 最大モル吸収率 ( ε max) =43300 1 /m o 1 · c m。
Figure imgf000071_0001
実施例 W— 5 例示化合物 (B— 10) の合成
下記の化合物 (H— 4) (1. 64 g) 、 ローダニン— 3- -酢酸 (1. 40 g) 、 酢酸アンモェゥム (0. 96 g) を酢酸 4. 4 gに溶角 し、 120°Cで加
15分後、 加熱を停止すると直ぐに固化。 室温まで冷却後、 水 (50m 1) を加えて攪拌し、 結晶を濾取。 結晶をビーカーに移し、 水 (100ml) で 2回洗浄し、 次いで 2—プロパノール (50m l) で 2回洗浄し、 例示化合物 (B— 10) を得た。 2. 78 g。 収率 94. 6 %。 融点 = 251. 9〜255. 9°C。 エタノール中の UV吸収スペク トルを図 5に示す。 最大吸収波長 (λ max) =472. 8 nm。 最大モノレ吸収率 ( E max) =25600 1 /m o 1 ■ c m0
(H-4)
Figure imgf000071_0002
実施例 W— 6 例示化合物 (B— 14 ) の合成
下記の化合物 (H— 5) (0. 5 8 g) 、 ローダニン一 3—酢酸 (0. 26 g) 、 酢酸アンモユウム (0. 46 g) を酢酸 2, 0 gに溶解し、 1 20°Cでカロ 熱攪拌。 30分後、 加熱を停止し室温まで冷却後、 水 (100m l ) 、 酢酸ェチ ル (100m l ) を加えて分液ロートに移した。 有機層を分離し、 無水硫酸ナト リウムで乾燥後、 溶媒を留去。 得た粗結晶を 2—プロパノール洗浄し、 例示化合 物 (B— 14) を得た。 0. 66 g。 収率 80. 7%。 融点 = 1 75. 3〜1 7 6. 9°C。 エタノール中の UV吸収スペク トルを図 6に示す。 最大吸収波長 (λ max) =48 5. 6 n m。 最大モル吸収率 ( ε max) =43000 1 /m o 1 · c m0
Figure imgf000072_0001
実施例 W— 7 例示化合物 (B— 1 9) の合成
下記の化合物 (H— 6) (0. 7 7 g) 、 ローダユン— 3—酢酸 (0. 56 g) 、 酢酸アンモユウム (0. 76 g) を酢酸 2. 5 gに溶角早し、 1 20°Cでカロ 熱攪拌。 1 5分後、 加熱を停止すると直ぐに固化。 室温まで冷却後、 水 (50m 1 ) を加えて攪拌し、 結晶を濾取。 結晶をビーカーに移し、 水 (100m l ) で 2回洗浄し、 次いで 2_プロパノール (50m l ) で洗浄し、 例示化合物 (B- 1 9) を得た。 1. 08 g。 収率 84. 3%。 融点 =244. 0〜246. 4°C。 エタノール中の UV吸収スペクトルを図 7に示す。 最大吸収波長 ( λ max) =4 1 2. 8 n m。 最大モル吸収率 ( ε max) = 1 2300 1 / o 1 · c m。
Figure imgf000073_0001
実施例 W_ 8 例示化合物 (B— 28 ) の合成
化合物 (H- 1) (2. 63 g) 、 ローダユン一 3—プロピオン酸 (2. 05 g) 、 酢酸アンモ-ゥム (0. 52 g) を酢酸 2. 2 gに溶解し、 120°Cでカロ 熱攪拌。 15分後、 加熱を停止すると直ぐに固化。 室温まで冷却後、 水 (50m 1) を加えて攪拌し、 結晶を濾取。 結晶をビーカーに移し、 水 (100ml) で 2回洗浄し、 次いで 2—プロパノール (100ml) で洗浄し.., 例示化合物 (B 一 28) を得た。 4. 08 g。 収率 90. 6%。 融点=215. 6〜220. 2°C。 エタノール中の UV吸収スペク トルを図 8に示す。 最大吸収波長 (え max) =486. 0 n m。 最大モル吸収率 ( ε max) =43700 1 /m o 1 · c m0
実施例 W— 9 例示化合物 (B— 29 ) の合成
下記の化合物 (H— 7) (1. 55 g) 、 ローダ ン一 3—酢酸 (1. 38 g) 、 酢酸アンモニゥム (0. 52 g) を酢酸 2. 2 gに溶解し、 120°Cでカロ 熱攪拌。 2時間後、 加熱を停止すると直ぐに固化。 室温まで冷却後、 水 (50m 1) を加えて攪拌し、 結晶を濾取。 結晶をビーカーに移し、 水 (100ml) で 2回洗浄し、 次いで 2—プロパノール (50ml) で洗浄し、 例示化合物 (B- 29) を得た。 1. 81 §。 収率58. 9%。 融点=152. :〜 154. 4°C。 エタノール中の UV吸収スペクトルを図 9に示す。 最大吸収波長 ( X max) =4 82. 4 n m。 最大モル吸収率 ( ε max) =25000 1 /m o 1 ■ c m。
Figure imgf000074_0001
実施例 W— 1 0 例示化合物 (B— 3 0) の合成
下記の化合物 (H— 8) ( 1. 0 7 g) 、 ローダニン一 3—酢酸 (0. 84 g) 、 酢酸アンモ-ゥム (1. 3 3 g) を酢酸 4. l gに溶解し、 1 20。Cでカロ 熱攪拌。 30分後、 加熱を停止し室温まで冷却後、 水 (1 0 0m l ) 、 酢酸ェチ ル (1 00m l ) を加えて分液ロートに移した。 有機層を分離し、 無水硫酸ナト リウムで乾燥後、 溶媒を留去。 得た粗結晶をイソプロピルエーテルで攪拌洗浄し、 例示化合物 (B- 3 0) を得た。 1. 49 g。 収率 8 1. 3。 融点 = 22 3. 5〜224. 4°C。 エタノール中の UV吸収スペク トルを図 1 0に示す。 最大吸 収波長 ( λ max) =484. 4 n m。 最大モル吸収率 ( ε max) = 3 5 700 1 / m o 1 , c m0
Figure imgf000074_0002
実施例 W— 1 1 例示化合物 (B— 3 1) の合成
化合物 (H— 9) (2. 26 g) 、 ローダニン一 3—酢酸 (1. 3 3 g) 、 酢 酸アンモ-ゥム (1. 2 7 g) を酢酸 4. 3 gに溶解し、 1 20°Cで加熱攪拌。 30分後、 加熱を停止し室温まで冷却後、 水 (1 00m l ) 、 酢酸ェチル (1 0 0m l ) を加えて分液ロートに移した。 有機層を分離し、 無水硫酸ナトリゥムで 乾燥後、 溶媒を留去。 得た粗結晶をイソプロピルエーテルで攪持洗浄し、 例示化 合物 (B— 3 1) を得た。 3. 0 2 g。 収率 8 7. 4 %。 融点 = 1 6 0. 5〜1 6 3. 5°C。 エタノール中の UV吸収スぺク トルを図 1 1に示す。 最大吸収波長
( λ max) =4 84. 0 n m。 最大モル吸収率 ( ε max) =48 500 1 /m o 1 · c m。
Figure imgf000075_0001
実施例 W— 1 2 例示化合物 (B— 3 2) の合成
下記の化合物 (H— 1 0) (1. 0 7 g) 、 ローダニン一 3—酢酸 (0. 47 g) 、 酢酸アンモ-ゥム (0. 7 3 g) を酢酸 3. 6 gに溶解し、 1 20°Cでカロ 熱攪拌。 3 0分後、 加熱を停止し室温まで冷却後、 水 (1 00m l ) 、 酢酸ェチ ル (1 00m l ) を加えて分液ロートに移した。 有機層を分離し、 無水硫酸ナト リウムで乾燥後、 溶媒を留去。 得た粗結晶をイソプロピルエーテルで攪拌洗浄し、 例示化合物 (B- 3 2) を得た。 1. 2 5 g。 収率 8 3. 9 %。 融点 = 1 3 1. 1〜1 3 3. 4°C。 エタノール中の UV吸収スぺクトルを図 1 2に示す。 最大吸 収波長 ( λ max) =48 5. 8 n m。 最大モル吸収率 ( ε max) = 3 88 00 1 / m o 丄 c m„
Figure imgf000075_0002
実施例 W— 1 3 例示化合物 (B— 3 3) の合成
下記の化合物 (H— 1 1 ) (2. 0 1 g) 、 ローダニン一 3 -酢酸 (1. 9 1 g) 、 酢酸アンモェゥム (0. 9 5 g) を酢酸 2. 8 gに溶角?し、 1 20°Cでカロ 熱攪拌。 1 5分後、 加熱を停止すると直ぐに固化。 室温まで冷却後、 水 (5 0m 1 ) を加えて攪拌し、 結晶を濾取。 結晶をビーカーに移し、 水 (1 00m l ) で 2回洗浄し、 次いで 2—プロパノール (50m l ) で洗浄し、 例示化合物 (B— 3 3) を得た。 2. 9 5 g。 収率 78. 9 %。 融点 = 24 8. 5〜249. 9°C。 エタノール中の UV吸収スペクトルを図 13に示す。 最大吸収波長 ( max) =
48 0. 4 n m。 最大モル吸収率 ( ε max) = 34 8 0 0 1 /m o 1 c nir
Figure imgf000075_0003
試験例 W— 1 耐久性試験 色素の耐久性は、 サイタリックボノレタンメトリーにより、 安定な酸化還元サイ クルで測ることができる。 一部の例外を除き、 写真用シァユン、 メロシアェン色 素は安定な酸化還元サイクルが観測できない。
実施例 W— 4の化合物 (B-9) のサイクリックポルタンメトリ一特性を測定 した。 測定条件を以下に示す。
測定条件
掃引速度: 20 OmVZ秒
: ァセトニトリル
:過塩素酸テトラー n—プチルアンモニゥム (0. lmo l Zl ) 作用電極: 白金静止電極
参照電極:飽和力ロメル電極
測定した結果を図 14に示す。 図 14より、 化合物 (B— 9 ) の酸化電位は 0. 85Vにピークを示した。 その後、 電位を逆方向へ走査すると 0. 79Vにピー クが観測され、 酸ィヒされた色素が再び還元されて酸化前の状態へ戻つたことがわ かる。 すなわち、 この色素は酸化→還元による分解が無く、 耐久性が高いことを 示している。
比較試験例 W— 1
下記の化合物 (1— 1) で示されるメロシアニン色素を用いた以外は試験例 W 一 1と同様にしてサイクリックポルタンメトリ一を測定した。 結果を図 15に示 す。 図 15より、 化合物 (1 -1) の酸化電位は 0. 7 IVにピークを示した。 その後、 電位を逆方向へ走査してもピークは観測されなかった。 すなわち、 全て の色素が酸化によつて完全に分解したことを示している。
Figure imgf000076_0001
実施例 X— 1
酸化チタン (S本ァエロジル社製 P— 25) 3 g、 ァセチルアセトン 0. 2 g. 界面活性剤 (アルドリッチ社製 Triton X-100) 0. 3 gを水 6. 5 gと共にペイ ントコンデイショナ一で 6時間分散処理を施した。 この分散液を F T Oガラス基 板上にワイヤーバーを用いて膜厚 1 O^mになるように塗布した。 塗布後、 10 0 °Cで 1時間乾燥し、 次いで空気中、 450 °Cで 30分間焼成した。
例示化合物 (B— 9) で示した色素 0. 014 g、 例示化合物 (E— 1) で示 したステロイド系化合物 0. 15 gをェタノール 10mlに溶解した。 この溶液 に、 先に作製した半導体電極を室温で 15時間浸漬し、 吸着処理を施した。 電角军液としては、 ヨウ素 0. 03M、 テトラー n—プロピルアンモニゥムョー ダイド 0. 5Mをプロピレンカーボネート Z 3—メトキシプロピオ-トリル =6 Z 4の混合液に溶解したものを使用した。 対極には F TO上に白金をスパッタリ ングしたものを使用した。
両電極間に電解液を浸して光電変換素子を作製した。 ここに、 作用電極側から 光源としてソーラーシユミレーター (AMI. 5、 l O OmWZcm2強度) 力 ら発生した疑似太陽光を照射した。 その結果、 開放電圧 0. 68V、 短絡電流密 度 9. 8 m AZ c m 2、 形状因子 0. 70、 変換効率 4. 66 °/0と良好な値を示 した。
実施例 X— 2〜X— 13
例示化合物 (B— 9) を表 2に示す色素に、 また例示化合物 (E— 1) を表 2 に示すステロイド系化合物に変更した以外は実施例 X— 1と同様にして素子を作 製し評価した。 その結果を表 2に示す。
表 2
例示 ステロイド 開放電圧 短絡電流密度 変換効率 形状因子
化合物 系化合物 (V) (mA/cm2) (%) 実施例 X-2 B-3 E-1 0.632 9.6 0.66 4.00 実施例 X-3 B-6 E-1 0.644 8.4 0.70 3.79 実施例 X-4 B-10 E-1 0.655 9.8 0.67 4.30 実施例 X-5 B-11 E-1 0.628 9.5 0.69 4.12 実施例 X-6 B-14 E-1 0.663 8.4 0.70 3.90 実施例 X-7 B-19 E-1 0.619 8.8 0.72 3.92 実施例 X-8 B-9 E-2 0.672 8.9 0.71 3.96 実施例 X-9 B-9 E-3 0.644 9.1 0.70 4.10 実施例 X-10 B-9 E-4 0.685 8.9 0.68 4.15 実施例 X-11 B-9 E-5 0.674 9.3 0.71 4.45 実施例 X-12 B-9 E-8 0.681 9.0 0.70 4.29 実施例 X-13 B-9 E-9 0.629 9.1 0.70 4.01 表 2の結果からわかるように、 本発明の色素とステロイド系化合物の組み合わ せは良好な変換効率を示すことが分かる。
比較例 X— 1
例示化合物 (B-9) 0. 014 gを、 下記の (J— 1) に示す化合物 0. 0 14 gに変更した以外は実施例 X—1と同様にして素子を作製し、 評価した。 そ の結果、 開放電圧 0. 58V、 短絡電流密度 4. 8mA/cm2、 形状因子 0. 53、 変換効率 1. 48 °/0と低い値であつた。
比較例 X— 2
ステロイ ド系化合物 (E— 1) 0. 15 gを、 下記の (J— 2) に示す化合物
0. 15 gに変更した以外は実施例 X— 1と同様にして素子を作製し、 評価した。 その結果、 開放電圧 0. 65V、 短絡電流密度 2. 7mA/cm2、 形状因子 0.
44、 変換効率 0. 77 %と低い値であつた。
Figure imgf000078_0001
実施例 Y— 1 化合物 (C一 4) の合成
下記の化合物 (K— 1) (0. 92 g) ローダニン一 3 (0. 50 g) 、 酢酸アンモユウム (0. 25 g) を酢酸 4. 8 gに溶解し、 120°Cでカロ 熱攪拌。 30分後、 加熱を停止。 室温まで冷却後、 水 (50ml) を加えて攪拌 し、 析出した結晶を濾取。 得た結晶を、 水 (100m l ) 、 2—プロパノール (10ml) と水 (50m l) の混合液で順次洗浄し、 例示化合物 (C— 4) を 得た。 1. 23 g。 収率 96%。
Figure imgf000079_0001
実施例 Y— 2 光電変換素子の作製
酸化チタン ( 本ァエロジル社製 P— 25) 3 g、 ァセチルアセトン 0. 2 g、 界面活性剤 (アルドリッチ社製 Triton X-100) 0. 3 gを水 6. 5 gと共にペイ ントコンディショナ一で 6時間分散処理を施した。 更に、 この分散液にポリェチ レンダルコール (# 20, 000) 1. 2 gを加えてペーストを作製した。 この ペーストを FT Oガラス基板上に膜厚 10 z/mになるように塗布し、 室温で乾燥 後、 空気中で 500 で 1時間焼成した。
例示化合物 (C— 4) で示した色素の 0. 3 mMエタノール溶液に、 先に作製 した半導体電極を室温で 15時間浸漬し、 吸着処理を施した。
電解液としては、 ヨウ素 0. 03M、 テトラー n—プロピルアンモニゥムョー ダイド 0. 5Mをプロピレンカーボネート Zァセトニトリル = 6Z4の混合液に 溶解したものを使用した。 対極には F TO上に白金をスパッタリングしたものを 使用した。
両電極間に電解液を浸して光電変換素子を作製した。 ここに、 作用電極側から 光源としてソーラーシミュレーター (AMI. 5 G、 照射強度 10 OmW/cm 2) 力 ^発生した疑似太陽光を照射した。 その結果、 開放電圧 0. 65V、 短絡 電流密度 10. !!! !!! 形状因子。. 68、 変換効率 4. 64%と良好 なィ直を示した。
実施例 Y_3〜Y_6
例示化合物 (C-4) を、 表 3に示す色素に変更した以外は実施例 Υ— 2と同 様にして素子を作製し評価した。 その結果を表 3に示す。 表 3
Figure imgf000080_0002
表 3の結果からわかるように、 本発明の色素は良好な変換効率を示すことがわ かる。
比較例 Y— 1
例示化合物 (C一 4) を、 下記の (L—1) に示す化合物に変更した以外は実 施例 Y— 2と同様にして素子を作製し、 評価した。 その結果、 開放電圧 0. 58 V、 短絡電流密度 5. 3mA/cm2 N 形状因子 0. 55、 変換効率 1. 69 % と低い値であった。
(L-1)
Figure imgf000080_0001
実施例 Z— 1 化合物 (D— 9) の合成
下記の化合物 (M— 1) (0. 10 g) 、 テトラー n—ブチルアンモニゥムヒ ドロキシド (2. 5ml) 、 水 (7. 5ml ) をフラスコに入れ、 氷浴上で攪拌 した。 30分後、 0. 1Nの硝酸水溶液を滴下して pH= 4にした。 析出した結 晶を濾取し、 水で洗浄した。 0. 10 gの結晶を得た。
Figure imgf000081_0001
実施例 Z— 2 光電変換素子の作製
酸化チタン (日本ァエロジル社製 P— 25) 3 g、 ァセチルアセトン 0. 2 g、 界面活性剤 (アルドリツチ社製 Triton X-100) 0. 3 gを水 6. 5 gと共にペイ ントコンディショナーで 6時間分散処理を施した。 更に、 この分散液にポリェチ レンダルコール (# 20, 000) 1. 2 gを加えてペーストを作製した。 この ペーストを FT Oガラス基板上に膜厚 1 Ομπιになるように塗布し、 室温で乾燥 後、 空気中で 500。Cで 1時間焼成した。
例示化合物 (D— 9) で示した色素の 0. 3 mMエタノール溶液に、 先に作製 した半導体電極を室温で 1 5時間浸漬し、 吸着処理を施した。
電解液としては、 ヨウ化リチウム 0. 1M、 ヨウ素 0. 0 5M、 ヨウ化 1, 2 —ジメチルー 3— n—プロピルアンモニゥム 0. 5Mの 3—メ トキシァセトニト リル溶液を用いた。 対極には F TO上に白金をスパッタリングしたものを使用し た。
両電極間に電角 夜を浸して光電変換素子を作製した。 ここに、 作用電極側から 光源としてソーラーシミュレーター (AMI. 5G、 照射強度 l O OmWZcm 2) 力 ら発生した疑似太陽光を照射した。 その結果、 開放電圧 0. 6 5V、 短絡 電流密度 1 0. 5111 /^ 1112、 形状因子0. 6 3、 変換効率 4. 30 °/0と良好 な値を示した。
実施例 Z— 3〜Z— 5
例示化合物 (D— 9 ) を、 表 4に示す色素に変更した以外は実施例 Z— 2と同 様にして素子を作製し評価した。 その結果を表 4に示す。 表 4
Figure imgf000082_0001
表 4の結果からわかるように、 本発明の色素は良好な変換効率を示すことがわ かる。
参考例 Z— 1
例示化合物 (D-9) を、 前記 (M— 1) に示す化合物に変更した以外は実施 例 Z— 2と同様にして素子を作製し、 評価した。 その結果、 開放電圧 0. 56V、 短絡電流密度 10. 3111入// (:1112、 形状因子0. 63、 変換効率 3. 63 %と 実施例 Z— 2に比較して低い値であった。 産業上の利用の可能性
本発明の色素は、 良好な光電変換特性を有し、 太陽電池などにおける半導体電 極などに好適に用いられる。 また、 該色素を用いた半導体電極を有する光電変換 素子は、 光電変換効率に優れている。

Claims

請求の範囲
-般式 ( I )
Figure imgf000083_0001
(一般式 (I ) において、 R 1はアルキル基、 ァラルキル基、 アルケュル基、 ァリーノレ基、 ヘテロ環残基を示し、 置換基を有していてもよい。 また、 R 1はべ ンゼン環と環状構造を形成してもよい。 R 2、 R 3は水素原子、 アルキル基、 ァ ルコキシ基、 アルキルチオ基、 モノ置換アミノ基、 ジ置換アミノ基、 ァラルキル 基、 アルケニル基、 ァリール基、 ヘテロ環残基を示し、 それぞれ置換基を有して いてもよい。 また、 R 2と R 3は直接、 あるいは連結基を介して結合し環状構造 を形成してもよい。 R 4は酸性基を有する置換基を示す。 Xはメチレン、 酸素原 子、 硫黄原子、 アミノ基、 置換アミノ基を示す。 nは 0、 1の整数を示す。 ) で示される構造を有することを特徴とする有機系色素。
2 . 請求項 1に記載の有機系色素からなる光電変換材料。
3 . 表面に導電性を有する基板と、 その導電性表面上に被覆された半導体層と、 その半導体層の表面に吸着した色素からなる半導体電極において、 上記色素が請 求項 1に記載の有機系色素を含むことを特徴とする半導体電極。
4. 請求項 1に記載の有機系色素を用いたことを特徴とする光電変換素子。
5 · 請求項 3に記載の半導体電極を有する請求項 4に記載の光電変換素子。
6 . 一般式 (II)
Figure imgf000083_0002
(一般式 (II) において、 R 5はアルキル基、 ァラルキル基、 ァルケエル基、 ァリール基、 ヘテロ環残基を示し、 置換基を有していてもよい。 R 6はアルキル 基、 アルコキシ基、 ハロゲン原子を示し、 置換基を有していてもよい。 R 7、 R 8は水素原子、 アルキル基、 アルコキシ基、 アルキルチオ基、 ァリール基、 ァリ ールォキシ基、 ァリールチオ基、 ヘテロ環残基を示し、 置換基を有していてもよ い。 R 9は酸性基を有する置換基を示す。 X 1はァミノ基と共に環状構造を形成 する連結基を示す。 mは 0、 1を示す。 炭素一炭素二重結合は、 E型、 または Z 型の何れであってもよい。 )
で示される構造を有することを特徴とするメロシア二ン色素。
7 . 一般式 (II) で示される化合物が、 一般式 (II一 1 )
Figure imgf000084_0001
(一般式 (II一 1 ) において、 R 5はアルキル基、 ァラルキル基、 アルケニル 基、 ァリール基、 ヘテロ環残基を示し、 置換基を有していてもよい。 R 6はアル キル基、 アルコキシ基、 ハロゲン原子を示し、 置換基を有していてもよレ、。 R 1 0は 2価のアルキレン基、 2価のァリーレン基を示し、 それぞれ置換基を有して いてもよい。 X 1はァミノ基と共に環状構造を形成する連結基を示す。 X 2は酸 素原子、 硫黄原子を示し、 X 3は酸素原子、 硫黄原子、 ジシァノメチレン基を示 す。 mは 0、 1を示す。 炭素—炭素二重結合は、 E型、 または Z型の何れであつ てもよい。 )
で示される請求項 6に記載のメロシアニン色素。
8 . 一般式 (II) で示される化合物が、 一般式 (II一 2 )
Figure imgf000085_0001
(一般式 (II一 2) において、 R5はアルキル基、 ァラルキル基、 ァルケ-ル 基、 ァリール基、 ヘテロ環残基を示し、 置換基を有していてもよい。 R6はアル キル基、 アルコキシ基、 ハロゲン原子を示し、 置換基を有していてもよい。 X4 は 5〜 7員環を形成する 2価のアルキレン基を示す。 R1。は 2価のアルキレン 基、 2価のァリーレン基を示し、 それぞれ置換基を有していてもよい。 mは 0、 1を示す。 炭素一炭素二重結合は、 E型、 または Z型の何れであってもよい。 ) で示される請求項 6に記載のメロシアニン色素。
9. 請求項 6、 7または 8に記載のメロシア-ン色素からなる光電変換材料。
10. 表面に導電性を有する基板と、 その導電性表面上に被覆された半導体層と、 その半導体層の表面に吸着した色素からなる半導体電極において、 上記色素が請 求項 6、 7または 8に記載のメロシア二ン色素を含むことを特徴とする半導体電 極。
11. 半導体層の表面に吸着した色素が、 さらに少なくとも一種のステロイド系 化合物を含む請求項 10に記載の半導体電極。
12. ステロイド系化合物が、 一般式 (III)
Figure imgf000085_0002
(一般式 (III) において R11は水素原子、 水酸基、 ハロゲン原子、 ァノレキル 基、 アルコキシ基、 ァリール基、 ヘテロ環残基、 ァシル基、 ァシルォキシ基、 ォ キシカノレポ-ル基、 ォキソ基、 酸性基を示し、 置換基を有していてもよい。 R1 2は酸性基を含有するアルキル基を示す。 aは 0 ~ 13の整数を示す。 また、 ス テロイド環内は二重結合を含んでもよい。 )
で示される請求項 1 1に記載の半導体電極。
13. 請求項 6、 7または 8に記載のメロシアェン色素を用いたことを特徴とす る光電変換素子。
14. メロシアニン色素と共に、 さらにステロイド系化合物を用いてなる請求項 1 3に記載の光電変換素子。
1 5. ステロイド系化合物が、 一般式 (III)
Figure imgf000086_0001
(一般式 (III) において R 11は水素原子、 水酸基、 ハロゲン原子、 アルキル 基、 アルコキシ基、 ァリール基、 ヘテロ環残基、 ァシル基、 ァシ /レオキシ基、 ォ キシカルボエル基、 ォキソ基、 酸性基を示し、 置換基を有していてもよい。 R1 2は酸性基を含有するアルキル基を示す。 aは 0〜 13の整数を示す。 また、 ス テロイド環内は二重結合を含んでもよい。 )
で示される請求項 14に記載の光電変換素子。
16. 請求項 10、 11または 12に記載の半導体電極を有する請求項 1 3、 1 4または 15に記載の光電変換素子。
1 7. 一般式 (IV)
Figure imgf000087_0001
(一般式 (IV) において、 R 13はァリーレン基、 ヘテロ環残基を示し、 置換 基を有していてもよい。 R14は水素原子、 アルキル基、 アルコキシ基、 ハロゲ ン原子を示す。 R15、 R 16は水素原子、 アルキル基、 アルコキシ基、 アルキル チォ基、 モノ置換アミノ基、 ジ置換アミノ基、 ァラルキル基、 ァルケエル基、 ァ リール基、 ヘテロ環残基を示し、 それぞれ置換基を有していてもよい。 R17は 酸性基を有する置換基を示す。 R18、 R 19は水素原子、 アルキル基、 ァリール 基、 ヘテロ環残基を示し、 置換基を有していてもよい。 また、 R18、 R19は直 接あるいは連結基を介して結合してもよい。 R2°、 R21、 R22は水素原子、 ァ ルキル基、 アルコキシ基、 ァリール基、 ヘテロ環残基を示す。 X5はァミノ基と 共に環状構造を形成する連結基を示す。 pは 0〜2の整数、 qは 0〜2の整数を 示す。 炭素一炭素二重結合は、 E型または Z型の何れであってもよい。 ) で示される構造を有することを特徴とするメロシア-ン色素。
18. 一般式 (IV) で示される化合物が、 一般式 (IV— 1)
Figure imgf000088_0001
(一般式 (IV— 1) において、 R 13はァリーレン基、 ヘテロ環残基を示し、 置換基を有していてもよい。 R 14は水素原子、 アルキル基、 アルコキシ基、 ノヽ ロゲン原子を示す。 R18、 R 19は水素原子、 アルキル基、 ァリール基、 ヘテロ 環残基を示し、 置換基を有していてもよい。 また、 R18、 R 19は直接あるいは 連結基を介して結合してもよい。 R2。、 R2\ R 22は水素原子、 アルキル基、 アルコキシ基、 ァリール基、 ヘテロ環残基を示す。 R 23はアルキレン基、 ァリ 一レン基を示す。 X 5はァミノ基と共に環状構造を形成する連結基を示す。 X6 は酸素原子、 硫黄原子を示し、 X 7は酸素原子、 硫黄原子、 ジシァノメチレン基 を示す。 pは 0~2の整数、 qは 0〜2の整数を示す。 炭素一炭素二重結合は、 E型または Z型の何れであってもよい。 )
で示される請求項 1 7に記載のメロシアニン色素。
1 9. 請求項 1 7または 1 8に記載のメロシア二ン色素からなる光電変擬才料、
20. 表面に導電性を有する基板と、 その導電性表面上に被覆された半導体層と、 その半導体層の表面に吸着した色素からなる半導体電極において、 上記色素が請 求項 1 7または 1 8に記載のメロシアニン色素を含むことを特徴とする半導体電
2 1. 請求項 1 7または 1 8に記載のメロシアニン色素を用いたことを特徴とす る光電変換素子。
2 2. 請求項 2 0に記載の半導体電極を有する請求項 2 1に記載の光電変換素子。
2 3 . 一般式 (V)
Figure imgf000089_0001
(一般式 (V) において、 R 2 4はアルキル基、 ァラルキル基、 アルケニル基、 ァリール基、 ヘテロ環残基を示し、 置換基を有していてもよい。 R 2 5はアルキ ル基、 アルコキシ基、 ハロゲン原子を示し、 置換基を有していてもよい。 R 2 6、 R 2 7は水素原子、 アルキル基、 アルコキシ基、 アルキルチオ基、 ァリール基、 ァリールォキシ基、 ァリールチオ基、 ヘテロ環残基を示し、 置換基を有していて もよレ、。 R 2 8は酸性基の 4級アンモェゥム塩、 酸性基の金属塩、 アミド基、 ェ ステル基を含有する置換基を示す。 X 8はァミノ基と共に環状構造を形成する連 結基を示す。 bは 0、 1を示す。 炭素一炭素二重結合は、 E型、 または Z型の何 れであってもよレヽ。 )
で示される構造を有することを特徴とするメロシァェン色素。
2 4. 請求項 2 3に記載のメ口シァ ン色素からなる光電変換材料。
2 5 . 表面に導電性を有する基板と、 その導電性表面上に被覆された半導体層と、 その半導体層の表面に吸着した色素からなる半導体電極において、 上記色素が請 求項 2 3に記載のメロシアニン色素を含むことを特徴とする半導体電極。
2 6 . 請求項 2 3に記載のメロシアニン色素を用いたことを特徴とする光電変換 素子。
2 7. 請求項 2 5に記載の半導体電極を有する請求項 2 6に記載の光電変換素子。
2 8 . 半導体層を構成する半導体が、 チタン、 スズ、 亜鉛、 鉄、 銅、 タンダステ ン、 ジノレコ-ゥム、 ノヽフニゥム、 ストロンチウム、 インジウム、 セリウム、 イツ トリウム、 ランタン、 バナジウム、 ェォブ、 タンタル、 カドミウム、 鉛、 銀、 了 ンチモン、 ビスマス、 モリプデン、 ァ /レミ-ゥム、 ガリウム、 クロム、 コパノレト、 ッケルから選ばれる金属のカルコゲニド化合物を少なくとも 1種含む請求項 3、 0、 11、 12、 20または 25に記載の半導体電極。
PCT/JP2003/009408 2002-07-29 2003-07-24 有機系色素、光電変換材料、半導体電極および光電変換素子 WO2004011555A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/488,047 US20040256002A1 (en) 2002-07-29 2003-07-24 Organic dye, photoelectric transducing material, semiconductor electrode, and photoelectric transducing device
EP03771315A EP1526159B1 (en) 2002-07-29 2003-07-24 Organic dye, photoelectric transducing material, semiconductor electrode, and photoelectric transducing device
DE60333014T DE60333014D1 (de) 2002-07-29 2003-07-24 Organischer farbstoff, photoelektrisch signalgebendes material, halbleiterelektrode sowie photoelektrischer signalgeber
AT03771315T ATE471356T1 (de) 2002-07-29 2003-07-24 Organischer farbstoff, photoelektrisch signalgebendes material, halbleiterelektrode sowie photoelektrischer signalgeber
US11/984,199 US7615640B2 (en) 2002-07-29 2007-11-14 Organic dye, photoelectric conversion material, semiconductor electrode and photoelectric conversion device
US11/984,198 US7795529B2 (en) 2002-07-29 2007-11-14 Organic dye, photoelectric conversion material, semiconductor electrode and photoelectric conversion device

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2002-220145 2002-07-29
JP2002220145A JP4187476B2 (ja) 2002-07-29 2002-07-29 光電変換材料、半導体電極、並びにそれを用いた光電変換素子
JP2002280105A JP4080288B2 (ja) 2002-09-26 2002-09-26 太陽電池用メロシアニン色素
JP2002-280105 2002-09-26
JP2002-300782 2002-10-15
JP2002300782A JP4610158B2 (ja) 2002-10-15 2002-10-15 光電変換素子
JP2002368719A JP4610160B2 (ja) 2002-12-19 2002-12-19 光電変換材料、半導体電極、並びにそれを用いた光電変換素子
JP2002-368719 2002-12-19
JP2003-23205 2003-01-31
JP2003023205A JP2004235052A (ja) 2003-01-31 2003-01-31 光電変換材料、並びにそれを用いた光電変換素子

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10488047 A-371-Of-International 2003-07-24
US11/984,199 Division US7615640B2 (en) 2002-07-29 2007-11-14 Organic dye, photoelectric conversion material, semiconductor electrode and photoelectric conversion device
US11/984,198 Division US7795529B2 (en) 2002-07-29 2007-11-14 Organic dye, photoelectric conversion material, semiconductor electrode and photoelectric conversion device

Publications (1)

Publication Number Publication Date
WO2004011555A1 true WO2004011555A1 (ja) 2004-02-05

Family

ID=31192425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009408 WO2004011555A1 (ja) 2002-07-29 2003-07-24 有機系色素、光電変換材料、半導体電極および光電変換素子

Country Status (5)

Country Link
US (1) US7795529B2 (ja)
EP (3) EP2009064B1 (ja)
AT (1) ATE471356T1 (ja)
DE (1) DE60333014D1 (ja)
WO (1) WO2004011555A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1798804A1 (en) * 2004-09-08 2007-06-20 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion devices
EP1892792A1 (en) * 2005-06-14 2008-02-27 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
US7592540B2 (en) 2005-05-16 2009-09-22 Samsung Sdi Co., Ltd. Polymer electrolyte and dye-sensitized solar cell comprising the polymer electrolyte
JP2010126724A (ja) * 2008-11-28 2010-06-10 Samsung Electro-Mechanics Co Ltd 太陽電池用色素化合物、色素増感光電変換素子、及び色素増感太陽電池
WO2010074326A1 (en) * 2008-12-25 2010-07-01 Canon Kabushiki Kaisha Probe for a biological specimen and labelling method and screening method using the probe
US7977570B2 (en) 2005-05-24 2011-07-12 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
US8227690B2 (en) 2003-03-14 2012-07-24 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
US8338700B2 (en) 2001-07-06 2012-12-25 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
US8383831B2 (en) 2008-08-06 2013-02-26 Mitsubishi Paper Mills Limited Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell
US8735720B2 (en) 2006-03-02 2014-05-27 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2886643B1 (fr) * 2005-06-06 2007-09-14 Daniel Michelet Nouveau type de jonction moleculaire entre semi-conducteur et un metal
GB0516800D0 (en) * 2005-08-16 2005-09-21 Kontrakt Technologies Ltd Organic compound, semiconductor crystal film and method of producing thereof
TW200800978A (en) * 2006-03-23 2008-01-01 Otsuka Pharma Co Ltd Carbazole compound
KR20090125799A (ko) 2007-03-29 2009-12-07 아스비오파마 가부시키가이샤 Cpla2 저해 활성을 가지는 인돌 유도체 및 그 용도 및 제조 방법
KR101696939B1 (ko) * 2008-10-29 2017-01-16 후지필름 가부시키가이샤 색소, 이것을 사용한 광전 변환 소자, 광전기 화학 전지, 및 색소의 제조 방법
EP2433989B1 (en) * 2009-05-22 2018-03-14 Panasonic Corporation Light-absorbing material and photoelectric conversion element
WO2011013558A1 (ja) * 2009-07-28 2011-02-03 保土谷化学工業株式会社 インドール誘導体
JPWO2011083527A1 (ja) * 2010-01-07 2013-05-13 日本電気株式会社 光電変換用色素、半導体電極、光電変換素子、太陽電池、および、新規ピロリン系化合物
TWI429628B (zh) * 2010-03-29 2014-03-11 Univ Taipei Medical 吲哚基或吲哚啉基羥肟酸化合物
US20110240928A1 (en) * 2010-03-31 2011-10-06 MALAXIT Co. Composites with high photoquenching factor of electroconduction based on polymer-metalorganic compounds
JP2013543138A (ja) * 2010-09-02 2013-11-28 日東電工株式会社 電解質を利用することによってフォトリフラクティブデバイスの性能を改良するためのシステムおよび方法
ITMI20121672A1 (it) * 2012-10-05 2014-04-06 Eni Spa Colorante organico per una cella solare sensibilizzata da colorante
CN103408963B (zh) * 2013-08-08 2014-08-27 陕西师范大学 脲供体双桥链有机染料及其应用
US9305715B2 (en) 2014-08-01 2016-04-05 Hunt Energy Enterprises Llc Method of formulating perovskite solar cell materials
EP3440046A1 (en) * 2016-04-07 2019-02-13 High Force Research Limited Synthetic retinoids for use in rar mediated conditions
US11474098B2 (en) 2017-12-22 2022-10-18 The Trustees Of Columbia University In The City Of New York Drug target for preventing pathologic calcium overload in cardiomyocytes and methods of screening for same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005481A1 (en) 2000-07-06 2002-01-17 Hitae Lee Three-way encryption/decryption system
WO2002011213A1 (fr) 2000-07-27 2002-02-07 Nippon Kayaku Kabushiki Kaisha Transducteur photoélectrique sensibilisé par un colorant
WO2003005481A1 (fr) * 2001-07-06 2003-01-16 Nippon Kayaku Kabushiki Kaisha Element de conversion photoelectrique sensibilise par une matiere colorante

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB654683A (en) * 1947-02-24 1951-06-27 Kodak Ltd Photographic silver salt emulsions containing dyes and processes for producing such dyes
JPS45555B1 (ja) 1966-03-24 1970-01-09
US3824099A (en) 1973-01-15 1974-07-16 Ibm Sensitive electrophotographic plates
US4123269A (en) 1977-09-29 1978-10-31 Xerox Corporation Electrostatographic photosensitive device comprising hole injecting and hole transport layers
US4150987A (en) 1977-10-17 1979-04-24 International Business Machines Corporation Hydrazone containing charge transport element and photoconductive process of using same
JPS56123544A (en) 1980-03-03 1981-09-28 Hitachi Ltd Composite type electrophotographic plate and electrophotographic method using it
JPS5866440A (ja) 1981-10-16 1983-04-20 Fujitsu Ltd 波形符号化方式
JPS6024553A (ja) 1983-07-20 1985-02-07 Mitsubishi Paper Mills Ltd 電子写真用感光体
JPS6098437A (ja) 1983-11-04 1985-06-01 Ricoh Co Ltd 電子写真用感光体
CH674596A5 (ja) 1988-02-12 1990-06-15 Sulzer Ag
JP2659561B2 (ja) 1988-08-12 1997-09-30 三菱製紙株式会社 電子写真感光体
JPH0296767A (ja) 1988-10-03 1990-04-09 Mitsubishi Paper Mills Ltd 電子写真感光体
JP2690541B2 (ja) 1989-01-09 1997-12-10 三菱製紙株式会社 電子写真感光体
JPH02226160A (ja) 1989-02-27 1990-09-07 Mitsubishi Paper Mills Ltd 電子写真感光体
JP2812729B2 (ja) 1989-08-17 1998-10-22 三菱製紙株式会社 電子写真感光体
JPH11144773A (ja) * 1997-09-05 1999-05-28 Fuji Photo Film Co Ltd 光電変換素子および光再生型光電気化学電池
JP4201095B2 (ja) 1998-02-20 2008-12-24 富士フイルム株式会社 光電変換素子および光電気化学電池
JP3925888B2 (ja) * 1999-08-04 2007-06-06 富士フイルム株式会社 感光性組成物
US6335144B1 (en) * 1999-04-27 2002-01-01 Fuji Photo Film Co., Ltd. Photopolymerizable composition for short wavelength semiconductor laser exposure
JP3680094B2 (ja) 1999-06-02 2005-08-10 独立行政法人産業技術総合研究所 有機色素増感型多孔質酸化物半導体電極及びそれを用いた太陽電池
JP2001076773A (ja) 1999-08-31 2001-03-23 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに新規スクアリリウムシアニン色素
JP2003005481A (ja) 2001-06-20 2003-01-08 Fuji Xerox Co Ltd 画像形成装置の色ずれ制御方法及びその装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005481A1 (en) 2000-07-06 2002-01-17 Hitae Lee Three-way encryption/decryption system
WO2002011213A1 (fr) 2000-07-27 2002-02-07 Nippon Kayaku Kabushiki Kaisha Transducteur photoélectrique sensibilisé par un colorant
WO2003005481A1 (fr) * 2001-07-06 2003-01-16 Nippon Kayaku Kabushiki Kaisha Element de conversion photoelectrique sensibilise par une matiere colorante

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8338701B2 (en) 2001-07-06 2012-12-25 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
US8338700B2 (en) 2001-07-06 2012-12-25 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
US8227690B2 (en) 2003-03-14 2012-07-24 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
EP1798804A4 (en) * 2004-09-08 2009-07-01 Nippon Kayaku Kk DYE SENSITIZED PHOTOELECTRIC CONVERSION DEVICES
AU2005281053B2 (en) * 2004-09-08 2010-02-18 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion devices
AU2005281053B9 (en) * 2004-09-08 2010-06-03 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion devices
EP1798804A1 (en) * 2004-09-08 2007-06-20 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion devices
US8022293B2 (en) 2004-09-08 2011-09-20 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectic conversion devices
US7592540B2 (en) 2005-05-16 2009-09-22 Samsung Sdi Co., Ltd. Polymer electrolyte and dye-sensitized solar cell comprising the polymer electrolyte
US7977570B2 (en) 2005-05-24 2011-07-12 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
US8022294B2 (en) 2005-06-14 2011-09-20 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
EP1892792A4 (en) * 2005-06-14 2010-09-01 Nippon Kayaku Kk COLOR-SENSITIVE PHOTOELECTRIC CONVERSION DEVICE
EP1892792A1 (en) * 2005-06-14 2008-02-27 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
US8735720B2 (en) 2006-03-02 2014-05-27 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
US8383831B2 (en) 2008-08-06 2013-02-26 Mitsubishi Paper Mills Limited Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell
JP2010126724A (ja) * 2008-11-28 2010-06-10 Samsung Electro-Mechanics Co Ltd 太陽電池用色素化合物、色素増感光電変換素子、及び色素増感太陽電池
JP2010169678A (ja) * 2008-12-25 2010-08-05 Canon Inc 生物試料用標識剤並びに該標識剤を用いた標識方法及びスクリーニング方法
WO2010074326A1 (en) * 2008-12-25 2010-07-01 Canon Kabushiki Kaisha Probe for a biological specimen and labelling method and screening method using the probe
US9801960B2 (en) 2008-12-25 2017-10-31 Canon Kabushiki Kaisha Probe for a biological specimen and labelling method and screening method using the probe

Also Published As

Publication number Publication date
EP1997855A3 (en) 2010-09-08
EP1526159A1 (en) 2005-04-27
EP1526159B1 (en) 2010-06-16
EP1526159A4 (en) 2006-05-31
DE60333014D1 (de) 2010-07-29
EP1997855A2 (en) 2008-12-03
ATE471356T1 (de) 2010-07-15
US7795529B2 (en) 2010-09-14
EP2009064A2 (en) 2008-12-31
US20080087327A1 (en) 2008-04-17
EP2009064A3 (en) 2010-04-21
EP2009064B1 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
WO2004011555A1 (ja) 有機系色素、光電変換材料、半導体電極および光電変換素子
JP4610160B2 (ja) 光電変換材料、半導体電極、並びにそれを用いた光電変換素子
JP2004063274A (ja) 光電変換材料、半導体電極、並びにそれを用いた光電変換素子
JP2004235052A (ja) 光電変換材料、並びにそれを用いた光電変換素子
JP5096673B2 (ja) 半導体電極および光電変換素子
US7615640B2 (en) Organic dye, photoelectric conversion material, semiconductor electrode and photoelectric conversion device
JP5416450B2 (ja) 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP2006156212A (ja) 半導体電極並びにそれを用いた光電変換素子
JP5096758B2 (ja) 光電変換材料、半導体電極並びにそれを用いた光電変換素子
US20040256002A1 (en) Organic dye, photoelectric transducing material, semiconductor electrode, and photoelectric transducing device
JP5185503B2 (ja) 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP2005019251A (ja) 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP4610158B2 (ja) 光電変換素子
JP2005019252A (ja) 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP2004319120A (ja) 半導体電極の作製方法、並びにそれを用いた光電変換素子
JP2005026114A (ja) 半導体電極並びにそれを用いた光電変換素子
JP2005019253A (ja) 半導体電極並びにそれを用いた光電変換素子
JP2005026116A (ja) 半導体電極並びにそれを用いた光電変換素子
JP2005082678A (ja) 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP2005026115A (ja) 半導体電極並びにそれを用いた光電変換素子
JP2008091137A (ja) 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP2007227146A (ja) 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP2011187371A (ja) 色素増感型太陽電池用色素、半導体電極及び色素増感型太陽電池
JP2009301946A (ja) 光電変換素子用材料
JP2005019249A (ja) 光電変換材料、半導体電極並びにそれを用いた光電変換素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2003771315

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10488047

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2003771315

Country of ref document: EP