WO2004009217A1 - 気体浄化材 - Google Patents

気体浄化材 Download PDF

Info

Publication number
WO2004009217A1
WO2004009217A1 PCT/JP2003/009068 JP0309068W WO2004009217A1 WO 2004009217 A1 WO2004009217 A1 WO 2004009217A1 JP 0309068 W JP0309068 W JP 0309068W WO 2004009217 A1 WO2004009217 A1 WO 2004009217A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas purification
purification material
air
gas
particulate adsorbent
Prior art date
Application number
PCT/JP2003/009068
Other languages
English (en)
French (fr)
Inventor
Tomoaki Kanno
Original Assignee
Az Electronic Materials (Japan) K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Az Electronic Materials (Japan) K.K. filed Critical Az Electronic Materials (Japan) K.K.
Publication of WO2004009217A1 publication Critical patent/WO2004009217A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/202Polymeric adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings

Definitions

  • the present invention is a gas purification material used to purify gases such as indoor spaces of homes, offices, shops, factories, clean rooms, etc., and interior spaces of vehicles, or to purify gases supplied to fuel cells etc. More particularly, the present invention relates to a gas purification material preferably used as a gas purification filter material such as a deodorizing filter and an unnecessary gas component removing filter, and a method for producing the same.
  • a gas purification filter material such as a deodorizing filter and an unnecessary gas component removing filter
  • various gas purification materials are used to purify gases in various indoor spaces such as homes, offices, factories, etc., and in vehicle spaces such as vehicles.
  • a method generally used for purifying gas in indoor space and the like using a gas purification material is to incorporate the gas purification material in the form of a filter into an air purifier, take in indoor air into the air purifier, and It is a method of passing it.
  • dust and the like suspended in the air are removed by a filter, and the air is brought into contact with a particulate adsorbent such as activated carbon carried by the filter, thereby causing offensive odor components present in the air or acid gas which is a contaminant component.
  • the purified air is blown back into the room to clean the room.
  • the method of gas purification by this system can be applied not only to air purifiers, but also to air intake by air conditioners (air conditioners) and the like, and to blow of cooled or warmed gas into a room as well. . Also, The same method is adopted in the case of the purification of the air in the car interior space.
  • the adhesive force of adhesive, hot melt resin, etc. is used for air permeable sheets such as woven fabric, woven fabric, non-woven fabric or web which are air permeable substrates.
  • a particulate adsorbent such as activated carbon fixed, a particulate adsorbent previously contained in the sheet when the air-permeable sheet is formed, and a particulate adsorbent sandwiched between two air-permeable sheets.
  • honeycomb-like hexagonal column part filled with pellet-like activated carbon or a triangular column part formed by combining a wave-like air-permeable sheet and a planar air-permeable sheet, pellet-like activated carbon
  • stuffed stuffs are also known.
  • JP-A-3-131233 discloses a sheet-like filter by bonding granular activated carbon, which is a particulate adsorbent, to a reticulated urethane foam.
  • Japanese Patent Laid-Open Publication No. 4-6030 discloses that a deodorizing agent, activated carbon, is supported on a synthetic resin filter net by kneading or fixing with a binder to form a sheet. It is disclosed to form a filter.
  • JP-A-11-15767 and JP-A-10-165731 the surface of a web composed of a connecting portion made of hot melt resin and a resin aggregation portion is disclosed.
  • the deodorized powder particles are dispersed on the surface, the deodorized powder particles are fixed via the resin aggregation portion, and the other deodorized powder particles are fixed to the other surface similarly via the resin aggregation portion, two types of powder particles
  • a method of laminating an activated carbon with a porous non-woven fabric by sprinkling activated carbon together with a powdery powder laminating the non-woven fabric on this, and fixing the activated carbon by heating and pressing with a heat roll.
  • these conventional gas purification materials can not simultaneously adsorb and remove specific gas components in the air passing through the gas purification material and air in contact with the gas purification material, and can not be used as gas purification materials. Insufficient The That is, in the method of fixing granular activated carbon to the reticulated urethane foam or adding a deodorizing agent to the synthetic resin filter net, the adhesive is applied to the urethane foam and the filter net, and this adhesive is used. A granular adsorbent is sprayed and pressed on top, and the solvent contained in the adhesive is evaporated and dried.
  • high concentration adhesives have high viscosity, and such high viscosity adhesives are difficult to apply uniformly.
  • a granular activated carbon-containing sheet comprising an aqueous slurry comprising granular activated carbon, supporting fibers, and water-swellable adhesive fibers
  • a method of making is disclosed. In the technology of mixing granular adsorbent with single fiber and looking into it, it is difficult to sheet large adsorbent into a sheet, because the granular adsorbent and single fiber are suspended in water system to make it form a slurry.
  • particulate adsorbents that can be used, it is not possible to look into large amounts of particulate adsorbents, and it is also necessary to dry particulate adsorbents containing a large amount of water after sheet formation. Yes, the method of mixing granular adsorbent with single fiber and looking into it is not always economical method.
  • one method for increasing the amount of gas purification processing is: Generally, a sheet-like filter material is folded and mounted in a fixed volume, and the filtration area in the fixed volume is increased to increase the gas adsorption amount and the gas removal amount in the fixed volume.
  • sheet-like filter materials are often pleated or corrugated for this purpose, the packing capacity of the granular adsorbent is increased by holding the granular adsorbent between two fiber layers. In this case, there is a problem that the granular adsorbent layer is broken or peeled off when pre-processing or corrugating the sheet-like filter material.
  • the present invention increases the filling capacity of the granular adsorbent without decreasing the air permeability in fixing the granular adsorbent to the air permeable sheet such as woven fabric, woven fabric, non-woven fabric or web which is the air permeable substrate,
  • the air permeable sheet such as woven fabric, woven fabric, non-woven fabric or web which is the air permeable substrate
  • the purpose is to provide a gas purification material that can Disclosure of the invention
  • the inventor of the present invention raises the surface of the air-permeable substrate, and adheres the particulate adsorbent to the raised surface, thereby achieving the above object.
  • the present invention has been made by finding that a purification material can be obtained. That is, the present invention provides a gas purification material characterized in that a particulate adsorbent is fixed to the napped surface of the air-permeable substrate.
  • a method for producing a gas purification material comprising: raising the air-permeable substrate, then dispersing the particulate adsorbent on the raised surface and heating the particulate adsorbent to adhere to the raised surface.
  • Gas purification material of the present invention to produce a gas purification material be well the material and manufacturing methods are not limited in particular c the present invention if is fixed particulate adsorbent in brushed surface of the breathable base material
  • a particulate adsorbent is dispersed on the raised surface and heated to increase the mass.
  • a method of forming a gas purification material by fixing the particulate adsorbent of the present invention to the raised hair.
  • This method only shows a typical method of obtaining the gas purification material of the present invention, and the method of producing the gas purification material of the present invention is not limited to this method. Taking this method as an example, the method for producing the gas purification material of the present invention, the constituent materials of the gas purification material of the present invention, and the like will be described in detail.
  • a method of fixing the particulate adsorbent to the raising surface a method of using an adhesive other than fixing by the above heating may be used.
  • the method of raising the air-permeable substrate in obtaining the gas purification material of the present invention may be carried out by any conventionally known method, for example, a roll on which sand paper is attached to the substrate Emulation brushing method to make fuzz by pressing and roughing, place a cloth on a member on which a large number of fine needles are implanted,
  • a method for raising a needle cloth can be mentioned, for example, in which a fiber is hooked with the above needle to fluff the substrate.
  • a method of raising a sheet by passing it between drums having numerous needles or brushes for drawing the surface is cited as a preferable method.
  • the raising may be performed on one side of the gas purification material through the air-permeable substrate, or both sides of the air-permeable substrate may be raised if necessary.
  • a method of raising both sides at once may be used, or after raising one side, a method of raising the other side may be used.
  • particulate adsorbents used for adsorbing gas components such as acid gases, alkaline gases, organic substances and the like that cause the above-mentioned offensive odor etc. include, for example, iron, manganese, copper, aluminum, magnesium, zinc and nickel. And metals such as cobalt, platinum, palladium, gold, ruthenium and rhodium, metal oxides or chlorides of these metals, zeolite, kaolin, sepiolite, silica gel, activated carbon and the like.
  • the particulate adsorbent of the present invention may be titanium oxide powder, phthalocyanine powder, platinum powder or the like that catalytically decomposes an acid gas, an alkaline gas, an organic substance or the like, that is, catalyst particles.
  • the catalyst particles also include photocatalysts such as photoactive rutile titanium oxide.
  • the photocatalyst can effectively decompose, for example, a substance such as an aldehyde gas or the like that contacts the surface of the photocatalyst particles by irradiation with visible light or ultraviolet light.
  • catalyst particles which do not show an adsorption effect are also included in the particulate adsorbent of the present invention.
  • particulate adsorbents may be used alone or in combination of two or more. Moreover, as these particulate adsorbents, those having a large surface area are preferable from the viewpoint of adsorptivity.
  • the particulate adsorbent silica gel, activated alumina, zeolite and catalyst particles can be mentioned as preferable.
  • the particulate adsorbent used in the present invention may be, for example, impregnated carbon or the like in which a chemical deodorant is attached to the surface of the above-mentioned particulate adsorbent.
  • Examples of chemical adsorbents attached to the impregnated carbon include potassium carbonate, hydrogen carbonate, sodium carbonate, sodium carbonate, and the like for acid gases such as aldehyde gases, NO x, SO x, and acetic acid.
  • Alkali metal carbonates such as sodium hydrogen carbonate, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, ethanololeamine, hexamethylenediamine, methinoleamine, piperazin, ani- nine, p —
  • Amphinic compounds such as fanicidin, sulfanilic acid and amidobenzoic acid and their salts, imines such as polyethyleneimine and iminojetol or imino compounds and their salts, guanidinium compounds and their salts, L-arginine, methylamine hydrochloride Salt, semi-carpazide hydrochloride, hydrazin, hydroquinone, hydroxyl sulfate Emissions, and the like permanganate.
  • alkaline gases such as ammonia, amines and pyridine
  • examples of alkaline gases include organic acids such as phosphoric acid, sulfuric acid, nitric acid, malic acid, citric acid and ascorbic acid, and inorganic acids.
  • organic acids such as phosphoric acid, sulfuric acid, nitric acid, malic acid, citric acid and ascorbic acid, and inorganic acids.
  • These chemical adsorbents may be impregnated into the air-permeable substrate, or may be previously contained in the substrate, instead of the particulate adsorbent.
  • the photocatalyst is usually in the form of fine particles, but in the case of fine particles, these fine particles may be attached to a particulate carrier to form a particulate adsorbent.
  • a particulate carrier for example, titanium oxide fine particles, which are photocatalysts, are dispersed in polyvinyl alcohol (PVA) solution, and this dispersed solution is sprayed on activated carbon, etc.
  • PVA polyvinyl alcohol
  • Finely oxidized to heat-fusion polymer particles such as hot melt resin Any of the conventionally known methods such as a method of spraying titanium particles and adhering them to the surface of polymer particles which are regarded as a molten surface or an adhesive surface may be employed.
  • the filter becomes thicker and pleating becomes difficult, and on the other hand, if it is too small, the pressure loss is increased and the brushed nonwoven fabric is likely to flow out, so 100-100 0 ⁇ m is preferred.
  • the particulate adsorbent may be applied to the napped air-permeable substrate by any conventionally known application method.
  • a method using a roll-type sprayer which is conventionally known as a powder sprayer, is preferable as a method for uniformly spreading particulate adsorptive particles on a breathable base material such as a nonwoven fabric which has been raised.
  • the roll type sprayer includes a hopper for storing powder, a rotating body rotatably supported at a lower portion of the hopper, and an accommodation groove for storing the powder on an outer peripheral portion, and an outer periphery of the rotating body.
  • a scraper is disposed at a position close to the surface to regulate the drop supply of the powder in the hopper.
  • Examples of the air-permeable substrate used in the present invention include paper, woven fabric, woven fabric, non-woven fabric and the like, but in consideration of economy, paper and non-woven fabric are preferred, and in particular, raising on both sides is easy to occur. Paper, non-woven fabric is preferred.
  • a non-woven fabric composed of a heat-fusion fiber containing a heat-fusion polymer is preferable.
  • the content of heat-fusion fibers is 50% or more, preferably 70% or more, more preferably 80% or more, 1 Even if it is 0 0%.
  • the heat fusible polymer is a polymer containing a heat fusible component which is melted by heating
  • the heat fusible fiber is a fiber containing a polymer component which is melted by heating, which is melted by heat, A fiber that fuses with a matching fiber.
  • the heat fusion component include polyethylene, modified polyethylene, copolymer polyester, copolymer nylon, ethylene vinyl acetate copolymer and the like.
  • the cross-sectional shape of the heat-fusion fiber may be any cross-sectional shape including round and rectangular cross sections.
  • the heat fusible fiber may be a single component resin, or may be a multicomponent resin.
  • thermally fused fiber made of a multicomponent resin examples include cross-sectional shapes having a side-by-side structure or a sea-score structure.
  • a resin whose melting point is lower in the sheath portion than in the core portion is used.
  • examples of such a combination include a combination of polyethylene and ethylene-vinyl acetate copolymer as the sheath, polypropylene as the core, a copolymerized polyester having a low melting temperature as the sheath, and a combination of polyethylene terephthalate as the core.
  • the fineness of the heat-fused fiber used in the present invention is 1 to 100 denier, more preferably 3 to 50 denier, and still more preferably 5 to 30 denier.
  • fibers other than heat fusible fibers used together with heat fusible fibers include fibers having a melting temperature higher than that of heat fusible fibers It may be anything.
  • Such fibers include, for example, synthetic fibers such as polyester, polyacrylo-triol, polyamides, polyolefins such as polypropylene, etc., natural fibers such as linters, cotton, hemp etc., semi-synthetics such as wood pulp, rayon etc. It may be resin fiber, glass fiber or the like.
  • fibers such as rayon, polyester, polyolefin and polyamide.
  • the fineness of the fibers other than the heat-fusion fiber is the same as that of the heat-fusion fiber, and is 1 to 100 denier, more preferably 3 to 50 denier, and still more preferably 5 to 30 denier.
  • a method of immobilizing the particulate adsorbent on the surface of the raised air-permeable substrate there is a method other than the method of immobilizing the particulate adsorbent by the adhesive force at the time of heat melting of the heat-fusion fiber containing the above-mentioned heat-fusion polymer.
  • heating may be performed in a state where pressure is not applied to the napped surface using infrared rays, etc. After a particulate adsorbent is dispersed on the napped surface, it is fed between a pair of heated belts, Depending on the temperature, heating may be performed by passing under pressure.
  • the particles of the heat fusible polymer are, for example, a thermoplastic polyamide resin, a thermoplastic polyester resin, a thermoplastic polyurethane resin, a polyolefin resin, an ethylene / vinyl acetate copolymer, and an ethylene / vinyl acetate copolymer.
  • a thermoplastic polyamide resin for example, a thermoplastic polyamide resin, a thermoplastic polyester resin, a thermoplastic polyurethane resin, a polyolefin resin, an ethylene / vinyl acetate copolymer, and an ethylene / vinyl acetate copolymer.
  • the melting point of the heat fusible polymer particles is usually equal to or less than the melting point of the heat fusible fiber constituting the air-permeable substrate, and is lower than that of the non-heat fusible fiber. .
  • the particulate adsorbent is fixed to the napped surface of the air-permeable substrate, the particulate adsorbent is fixed to the air-permeable substrate or the napped fibers, but it is preferable that the napped fibers are not fixed to each other.
  • the above melting point may be set to satisfy such conditions. Of course, if the air permeability is not impeded, the raised fibers may be in a fixed state.
  • resins that are difficult to be decomposed by the photo catalyst include, for example, polyolefin resins, and Among them, polyethylene resins are preferred.
  • the amount of hot melt resin used is preferably 1% to 200% based on the weight of the particulate adsorbent used. If the amount is less than 1%, adhesion is insufficient and the particulate adsorbent does not adhere to the air-permeable substrate such as a nonwoven fabric which is raised and tends to fall off from the air-permeable substrate, while if it is more than 200%, the particulate adsorbent Most of the surface is covered with the hot melt resin, which deteriorates the deodorizing performance, etc., and the hot melt resin is absorbed by the air-permeable substrate at the time of melting, which impairs the air permeability of the substrate, It may come out with a stain-like appearance.
  • the average particle size of the hot melt resin is preferably smaller than the particle size of the particulate adsorbent, and 10 to 100 ⁇ m is preferable.
  • the average particle size of the hot melt resin is larger than 100 ⁇ m, sufficient adhesion can not be obtained, and when it is smaller than 10 ⁇ ⁇ , the air flow resistance is increased.
  • the air-permeable base material itself or the hot melt resin is previously made an antibacterial agent
  • Antifungal agents, antiviral agents, flame retardants, functional agents, etc. can be mixed or mixed.
  • these agents may be attached to or fixed to the particulate adsorbent in a method and amount that does not impair its inherent performance, or may be attached to the air-permeable substrate by coating or the like.
  • the air-permeable substrate may be provided with functionality other than the above, such as electrability.
  • the gas purification material of the present invention purifies the gas in the indoor space such as the home, office, shop, factory, art museum, clean room, the interior space of a vehicle such as a car or a train, or in the plane of an aircraft. Or air cleaners, air conditioners, gas supply machines, etc. used to purify the gas supplied to the room, in the car, in the aircraft, and further to the fuel cell, chemical reactor, etc. It is preferably used as a filler material.
  • the gas purification material of the present invention may be formed into a flat plate shape, or a pleated shape or a corrugated shape to form a filter material, and air may be purified, for example, by passing air through the surface of the gas purification material.
  • the gas purification material of the present invention may be corrugated and formed into a cam shape so as to provide a large number of ventilation paths in a direction parallel to the gas purification material to obtain a gas purification filter.
  • a gas purification filter having low pressure loss and higher contact gas removal efficiency per unit volume.
  • honeycombs Although various methods for manufacturing honeycombs are known, one of them is using cardboard.
  • corrugated board has a constitution in which a flat base liner and a corrugated core base are laminated using an adhesive and are called a corrugator or a corrugated machine. Manufactured using an apparatus.
  • the desired honeycomb structure can be obtained by stacking the corrugated board in multiple stages or cutting it in a rolled state. (See, for example, Figs. 1 to 4 of Japanese Utility Model Laid-Open Publication No. 571-1924).
  • a honeycomb structure can be produced by the same method.
  • the gas purification material of the present invention may be a functional sheet, for example, a functional non-woven fabric further added by being laminated on a breathable substrate.
  • the surface on which the functional sheet is to be provided may be the surface on which the particulate adsorbent is adhered to the raised surface, or the surface on which the particulate adsorbent is not attached, although it is the surface to which the particulate adsorbent is not attached. It does not matter. However, it is preferable to provide the particulate adsorbent on the surface on which the particulate adsorbent is fixed, since it is possible to give the same function to a non-brushed air-permeable substrate.
  • a heat fusible polymer in the substrate sheet is used as a method of providing the functional sheet on the air-permeable substrate. Bonding of functional sheets, and bonding using separate hot melt resin particles, etc.
  • the functional sheet examples include an electret meltpro nonwoven fabric having low pressure loss and high collection efficiency, and a nonwoven fabric provided with an antibacterial agent and an antifungal agent.
  • the electret meltblown nonwoven fabric can be formed of nylon, polyethylene, polypropylene or the like, but a polyolefm-based fiber having a high electret effect is preferable.
  • the core is made of polyester with a melting temperature of 240 ° C and the sheath is made of polyethylene with a melting temperature of 132 ° C as a breathable base material, and it is made of heat-fusion fiber with a denier of 2 denier 40 g Zm 2 product, which is a spunbonded non-woven fabric, is brushed on one side through a brushed mouth, and using a roll type spreader with a hopper and a roll on the brushed surface, 20 mesh or more and 42 mesh or less Granular activated carbon manufactured by Kuraray Chemical Co., Ltd. was dispersed to 200 g / m 2 , sandwiched between a pair of dimensionless belts, heated and pressurized at 150 ° C., and cooled. Gas purification material.
  • the basis weight of the obtained gas purification material was 235 gZm 2 , and the amount of the fixed granular activated carbon was 195 gZm 2 .
  • the granular activated carbon did not fall from the obtained gas purification material, and when it was subjected to a bending test, there was no breakage of the activated carbon layer, and good pleat characteristics were exhibited.
  • a gas purification material was obtained in the same manner as in Example 1 except that the air-permeable substrate used in Example 1 was not raised.
  • Basis weight of the resultant gas purification material is a 1 4 0 g Roh m 2, the amount of granular activated carbon which is fixed a lot amount of granular activated carbon to fall was 90 g7m 2.
  • a toluene gas having a concentration of 60 ppm was passed through the obtained gas purification material in the same manner as in Example 1. As compared with Example 1, the amount of granular activated carbon adhered to the substrate was smaller than in Example 1. Because of, the breakthrough time at 50% was 18 minutes.
  • Example 2 Using a 34 g-m 2 polyester spunbond nonwoven fabric manufactured by Mitsui Chemicals, Inc., brush it in the same manner as in Example 1. On the brushed surface, use a Tokyo ink of average particle diameter 100 ⁇ m in advance. 1 0 weight powder Corp. polyethylene hot Tomeruto resin 0/0 were mixed, 3 0 the granular activated carbon, which is adjusted to below 4 2 mesh least 2 0 mesh Interview manufactured by Kuraray Chemical Co., as granular activated carbon The mixture was sprayed so as to be 0 g / m 2 , and heated and pressurized at 150 ° C. in the same manner as in Example 1, followed by cooling treatment.
  • the basis weight of the obtained gas purification material was 360 g / m 2 , and the amount of the fixed granular activated carbon measured was 305 g / m 2 . From the gas purification material obtained in the same manner as in Example 1, granular activated carbon did not fall, and when it was subjected to bending test, there was no destruction of the activated carbon layer, and good pleat characteristics were exhibited.
  • toluene gas with a humidity of 50% adjusted to a concentration of 60 ppm as in Example 1 is passed, and the concentration of toluene gas is measured using a detection tube manufactured by Gastec Co., Ltd. According to the measurement, the breakthrough time at 50 ° / 0 is 6 3 It was a minute.
  • a 30 mesh pass product of polyethylene-based hot melt resin manufactured by Tokyo Ink Co., Ltd. is pre-coated at 30 g / m 2, which corresponds to 10% of the amount of granular activated carbon to be sprayed.
  • a gas purification material was obtained.
  • toluene gas having a humidity of 50% adjusted to a concentration of 60 ppm was passed, and the concentration was measured with a toluene gas detector tube manufactured by Gastec Co., Ltd. and, 50% when the breakthrough time was measured between the rollers is 2 1 minute, was short lifetime.
  • a hot melt non-woven fabric of 27 gZm 2 made of a thermoplastic polyamide resin manufactured by Nittobos Co., Ltd. in advance is 34 g / m 2 of a polyester spunbond non-woven fabric manufactured by Mitsui Chemicals, Inc.
  • a gas purification material was obtained in the same manner as in Example 2 except for laminating on the top of the product.
  • a polyester spunbond nonwoven manufactured by Mitsui Chemical Co., Ltd. as in Example 2 Using a 34 g Zm 2 product of cloth, raise it as in Example 1 and use a brush made of Tokyo Ink Co., Ltd. polyethylene hot melt resin powder with an average particle diameter of 100 / zm in advance.
  • Granular activated carbon prepared by Kuraray Chemical Co., Ltd.'s 20% by weight phosphoric acid-impregnated carbon mixed with 10% by weight of a mixture of 20 mesh or more and 42 mesh or less; 300 g of granular activated carbon sprayed so as to / m 2, further sprayed with 4 0 mesh pass product of Tokyo ink Co., Ltd. powder Poryechi interconnection hot Tomeruto resin such that 2 0 g / m 2. from the top , Mitsui Spun Co., Ltd. polyester spunbond nonwoven fabric 3
  • the basis weight of the obtained gas purification material was 430 gZm 2 , and the amount of the fixed granular activated carbon measured was 310 g Zm 2 .
  • the granular activated carbon did not fall from the gas purification material obtained in the same manner as in the example, and when the bending test was conducted, there was no destruction of the activated carbon layer despite the large amount of the fixed granular activated carbon. Pleated characteristics were exhibited.
  • concentration was measured with an ammonia detector tube,
  • the breakthrough time at 50% was 48 minutes, a good life time was obtained, and a low pressure drop of 1.3 mmA q was obtained.
  • Example 3 25% by weight of powder of polyethylene-based hot melt resin manufactured by Tokyo Ink Co., Ltd. made of Tokyo Mesh Co., Ltd. in advance without raising the air-permeable substrate 25% by weight of granular activated carbon 20 weight of Kuraray Chemical Co., Ltd. mixed.
  • the basis weight of the obtained gas purification material is 430 gZm 2 , and the amount of the fixed granular activated carbon measured is 300 g zm 2.
  • the fall of the granular activated carbon from the obtained gas purification material Although the filter material was hard, when the bending test was performed, the activated carbon layer was broken and the bending test could not withstand.
  • Example 2 In the same manner as in Example 2, using a 34 g Zm 2 product of a polyester spunbond nonwoven fabric manufactured by Mitsui Chemicals, Inc., the surface of the substrate is raised in the same manner as in Example 1, and the raised surface is A 20% mesh pass product of Tohso's Alhydrode adsorption granular high-silica zeolite mixed with 10% by weight of polyethylene hot melt resin with an average particle diameter of 100 ⁇ m manufactured by Ink Co., Ltd. After spraying so that the amount of granular zeolite was 300 g / m 2 and heating and pressurizing in the same manner as in Example 1, cooling was performed to obtain a gas purification material.
  • the mass per unit area of the obtained gas purification material was 6 90 gm 2 , and when the amount of the fixed blue particles was measured, a large amount of 5 80 g / m 2 fixed was obtained. There was no fall of the blue particles from the obtained gas purification material, and the adhesive strength was also sufficient.
  • the bending test was performed, there was no breakage of the zeolite layer, and it showed a good pleating property.
  • gas phase aldehyde adjusted to 5 ppm with 50 ppm of acetoaldehyde gas was passed through this burner at a filter surface wind speed of 2 m / sec, the concentration of acetoaldehyde after 30 minutes was measured by FID gas chromatography. The removal efficiency was 87%.
  • Example 4 The same procedure as in Example 4 was repeated except that the 27 g / m 2 polyamide hot melt non-woven fabric manufactured by Nittobos Co., Ltd. used in Comparative Example 3 was laminated instead of raising the air-permeable substrate. On one side of the air-permeable substrate, a granular adsorbent of high silica zeolite for adsorption on Tosoh alde hydroxide was fixed. Unlike Example 4, the obtained gas purification material is often the one in which the base material yellow particles are dropped, and the amount of the particulate zeolite attached after removing the non-sticking zeolite particles is When measured, it was 150 gZm 2 .
  • a polyamide hot melt non-woven fabric is laminated on the surface of this gas purification material on which the zeolite particles are not fixed, and the above-mentioned granular zeolite is again sprayed so as to be 300 gZm 2 and heated. Pressure was applied to obtain a gas purification material in which the particulate adsorbent was fixed on both sides of the air-permeable base raised.
  • the gas purification material obtained there are also non-adhered zeolite particles.
  • the surface weight of the gas purification material after removal of the non-sticking, non-sticking blue particles was 3 9 8 g / m 2 , and the amount of the stuck blue-white particles was measured to be 310 g. It was smaller than / m 2 and Example 4. Also, although the zeolite particles and the base material were adhered, the adhesion between the zeolite particles was weak, and the zeolite particles fell during the bending test, and the adhesion strength was not sufficient.
  • Example 4 the obtained gas purification material was used as a post-corrugated filter, and the aldehyde removal efficiency was determined to be 59%, which was lower than in Example 4. Effect of the invention
  • the gas purification material of the present invention can carry a large amount of particulate adsorbent without a reduction in air permeability, and nevertheless, it has excellent prding characteristics in practical use. is there. For this reason, the passing efficiency of the gas to be purified and the contacting efficiency of the gas are good, and it is possible to form a good filter of the amount of gas adsorption or the amount of gas removal per unit volume.
  • the gas purification material of the present invention is preferably used as an air purifier, an air conditioner, a deodorizing filter material such as a gas supply machine, an unnecessary gas component removal material, etc. It is possible to purify air, etc. by adsorbing and Z or decomposing it, such as acid gas, alkaline gas, organic matter, etc. which are malodorous components or contaminating components present in the above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Filtering Materials (AREA)
  • Electrostatic Separation (AREA)
  • Catalysts (AREA)

Abstract

 通気性基材を起毛した後、該起毛面に粒状吸着剤を散布し、加熱する。この加熱により、粒状吸着剤とともに散布された熱融着ポリマー粒子或いは基材を構成する繊維状の熱融ポリマーを溶融させ、これにより起毛面に粒状吸着剤を固着させて、気体浄化材を形成する。この方法により形成された気体浄化材は、単位面積あたりの粒状吸着剤の固着量が多く、且つプリーツ加工特性も良好であるため、空気清浄機、空気調和機などのフィルタ材として好適に用いられる。

Description

明 細 書 気体浄化材 技術分野
本発明は、 家庭、 事務所、 商店、 工場、 クリーンルームなどの室内空 間、 車輛の車内空間などの気体を浄化するため、 あるいは燃料電池など に供給する気体を浄化するために用いられる気体浄化材に関し、 さらに 詳細には消臭フィルタ、 不要ガス成分除去フィルタなどの気体清浄化フ ィルタ材として好ましく用いられる気体浄化材およびその製造方法に関 する。 背景技術
従来、 家庭、 事務所、 工場などを初めとする種々の室内空間や車輛な どの車内空間などの気体を浄化するために、 種々の気体浄化材が使用さ れている。 気体浄化材を用い、 室内空間などの気体を浄化する際一般に 利用されている方法は、 気体浄化材をフィルタ形態で空気清浄機内に組 み込み、 室内空気を空気清浄機内に取り込み、 前記フィルタを通過させ る方法である。 これにより、 空気中に浮遊する埃などをフィルタにより 除去するとともに、 空気をフィルタに担持された活性炭などの粒状吸着 剤と接触させ、 空気中に存在する悪臭成分或いは汚染成分である酸性ガ ス、 アルカリ性ガス、 有機物などを吸着および/又は分解して空気を浄 化する方法である。 浄化された空気は再度室内に吹き出され、 室内が浄 化される。 このシステムによる気体の浄化法は、 空気清浄機以外にも、 エアコン (空気調和機) 等での空気取り込み、 および冷却或いは暖めら れた気体の室内への吹き出しの際にも同様に適用され得る。 また、 車輛 などの車内空間の空気の浄化の際にも同様な方法が採られている。
これら気体の浄化に用いられる気体浄化材としてのフィルタ材には、 通気性基材である織物、織布、不織布またはウェブ等の通気性シートに、 接着剤、 ホッ トメルト樹脂などの接着力を利用して活性炭などの粒状の 吸着剤を固着させたもの、 通気性シート作成時にシート内に粒状吸着剤 を予め含有させたもの、 2枚の通気性シート間に粒状吸着剤を挟み込ん だものなど種々のものが知られている。 この他にも、 ハニカム状の六角 柱の部分にペレッ ト状活性炭を詰めたもの、 或いは、 波状の通気性シー トと平面状の通気性シートを組み合わせることにより形成された三角柱 部分にペレツト状活性炭を詰めたものも知られている。
これらの内の幾つかを具体的に例示すると、 特開平 3 - 1 1 3 2 1 3 号公報には、 網状ウレタンフォームに粒状吸着剤である粒状活性炭を固 着することによりシート状のフィルタを形成することが、 また特開平 4 - 6 0 3 2 0号公報には、 合成樹脂製のフィルタネッ トに脱臭剤である 活性炭を練り込みやバインダ一での固着により担持させて、 シート状の フィルタを形成することが開示されている。 また、 特開平 1 1一 5 7 4 6 7号公報および特開平 1 0— 1 6 5 7 3 1号公報には、 ホッ トメルト 樹脂からなる連結部と樹脂凝集部とで構成されたウェブの表面に脱臭粉 粒体を散布し、 脱臭粉粒体を樹脂凝集部を介して固着し、 他表面に同様 に樹脂凝集部を介して他の脱臭粉粒体を固着し、 2種の粉粒体を積層す る方法や、 通気性不織布に活性炭を粉体のパインダ一とともに散布し、 この上に不織布を重ね、 熱ロールで加熱、 加圧することにより活性炭を 固着させる方法が開示されている。
しかし、 これら従来の気体浄化材は、 気体浄化材を通過する空気およ び気体浄化材と接触する空気中の特定ガス成分を同時に良好に吸着なら びに除去できることができず、 気体浄化材としては不十分なものであつ た。 即ち、 前記、 網状ウレタンフォームに粒状活性炭を固着したり、 合 成樹脂製のフィルタネッ トに脱臭剤を添加する方法では、 ウレタンフォ ームゃフィルタネッ トに接着剤が塗布され、 この接着剤上に粒状吸着剤 を散布して押しつけ、 接着剤中に含まれている溶剤を蒸発乾燥する方法 が採られている。 しかし、 高濃度の接着剤は粘度が高く、 このような高 粘度の接着剤は均一に塗布することが困難である。 一方粘度を下げるベ く溶剤の量を多く して希薄とした接着剤を塗布すると、 接着力が低下す るのが避けられないとともに、 塗布した接着剤に比例した量しか粒状吸 着剤が付着しないという問題がある。 さらに、 多量の接着剤を使用する と活性炭粒子の表面が接着剤で被覆されるため、 臭気などのガス成分の 吸着性が低下する欠点が指摘されており、 吸着性能の良好な大量の粒状 吸着剤をシートに付着させることは困難であった。 また、 接着剤を多量 に用いた場合には、 通気抵抗が高くなり、 比較的粗い粉塵たとえば、 花 粉、 砂塵、 スパイク粉塵等に対して早期の目詰まりを起こしやすいとい う問題もあった。
一方、 ホッ トメルト樹脂で構成された不織布に脱臭粉粒体を散布して 脱臭粉粒体を積層させる方法や、 通気性不織布の間に活性炭とバインダ 一を挟んで活性炭を固着させる方法では、 一度の工程で大量の粒状吸着 粒子を固着させることができず、 また通気性不織布の間に活性炭粒子と バインダーを挟む方法では、 粒状吸着剤の層の上下に繊維層があり、 気 体の通過により特定のガス状成分を吸着あるいは除去させる場合には問 題はないが、 気体を吸着剤に接触させて特性のガス状成分を除去する場 合には、 接触させる気体が直接、 吸着剤と接触することはできず、 さら に、 十分な単位体積当たりのガス吸着量あるいはガス除去量が得られな いという問題があった。
これとは別に、 粒状吸着剤を単繊維と混合して漉き込む技術が従来か ら知られており、特開平 2 0 0 0— 2 4 4 2 6号公報等には粒状活性炭、 支持繊維、 および水膨潤性の接着性繊維を含有する水系スラリ一からな る粒状活性炭含有シートの製造方法が開示されている。 粒状吸着剤を単 繊維と混合して漉き込む技術では、 水系の中に粒状吸着剤と単繊維を懸 濁させてスラ リー状とさせるため、 粒子の大きな吸着剤をシート化させ ることが難しく、 使用できる粒状吸着剤が限定される上、 大量の粒状吸 着剤を漉き込むことはできず、 さらに、 シー ト形成後、 大量に水分を含 んだ粒状吸着剤を乾燥させることも必要であり、 粒状吸着剤を単繊維と 混合して漉き込む方法は、 必ずしも経済的な方法とは言えないものであ る。
近年、 家庭、 事務所などの室内、 車輛などの車内での生活臭に対する 閛心が高まり、 より一層の気体中の臭気ガス成分の吸着あるいは除去が 求められているばかりでなく、 排気ガスなどによる酸性ガスの大気中濃 度の増大等により、 半導体製造時などにおけるクリーンルーム内の気体 の浄化やクリーンルームへの清浄空気の供給、 美術館等での絵画、 プロ ンズ像、 金属製美術品類の保護、 燃料電池などに供給するガスの浄化な どを目的としての気体中の特定ガス成分の吸着あるいは除去が求められ るようになり、これに対応したより優れたフィルタ材も求められている。 このようなフィルタ材の特性の改善のためには、 粒状吸着剤の改質とと もに粒状吸着剤の充填容量を増大させることが望まれている。
前記した気体の通過効率ならびに接触効率が同時に良好な、 従来知ら れた表面に粒状吸着剤が付着されたフィルタ材では、 粒状吸着剤のフィ ルタ材への充填容量を増大させることが困難である。 一方、 前記した 2 層の繊維層で粒状吸着剤を挟持する方法では粒状吸着剤の充填容量を增 大させ、そのままシート材の形態で使用することは可能である。しかし、 気体浄化を行う場合、 気体の浄化処理量の増大を図る方法としては、 一 定体積内にシート状フィルタ材を折り込んで装着し、 一定体積中の濾過 面積を増大させて、 一定体積でのガス吸着量ならびにガス除去量を増大 させる方法が一般的である。
' このよ うな目的でシート状フィルタ材がプリーッ加工やコルゲート加 ェされることも多いが、 2層の繊維層で粒状吸着剤を挟持する方法によ り粒状吸着剤の充填容量の増大を図った場合、 シート状フィルタ材をプ リーッ加工やコルゲート加工する際に粒状吸着剤の層が割れたり、 剥離 するという問題がある。 この粒状吸着剤層の割れや剥離の問題を解決す ベく接着剤の量を増大させたとしても、 粒状吸着剤同士は点付着してい るだけであるからプリ一ッ加工時に必要な靭性ゃ強度は得られず、また、 大量の接着剤のために、 粒状吸着剤の表面が接着剤で被覆されることに より粒状吸着剤が本来有する吸着性能が阻害され、 浄化すべき気体が粒 状吸着剤と接触しないでフィルタ材を通過する、 あるいはフィルタ材表 面に粒状吸着剤が存在しないことにより、 浄化すべき気体がフィルタ材 の粒状吸着剤と接触しないという根本的な問題もある。
本発明は、 通気性基材である織物、 織布、 不織布またはウェブ等の通 気性シートに粒状吸着剤を固着するに当って、 通気性の低下なく粒状吸 着剤の充填容量を増大させ、 実使用にあたってのプリーツ加工特性が良 好であり、 浄化させる気体の通過効率、 接触効率を同時に増大させると ともに、 単位体積当たりのガス吸着量あるいはガス除去量が増大された フィルタ材を形成することができる気体浄化材の提供を目的とするもの である。 発明の開示
本発明者は、 鋭意検討を行った結果、 通気性基材表面を起毛し、 この 起毛面に粒状吸着剤を固着することにより、 上記目的を達成しうる気体 浄化材を得ることができることを見出して本発明をなしたものである。 すなわち、 本発明は、 通気性基材の起毛した面に粒状吸着剤が固着さ れてなることを特徴とする気体浄化材を提供するものである。
また、 本発明は、 通気性基材を起毛した後、 該起毛面に粒状吸着剤を 散布し、 加熱することにより粒状吸着剤を起毛面に固着することを特徴 とする気体浄化材の製造方法を提供するものである。 発明の具体的態様
以下、 本発明の気体浄化材を構成する材料、 および気体浄化材の製造 方法を詳細に説明する。
本発明の気体浄化材は、 通気性基材の起毛した面に粒状吸着剤が固着 されていれば良くその材料および製造法は特に限定されるものではない c 本発明の気体浄化材を製造する方法としては、 例えば、 通気性基材、 例 えば織物、 織布、 不織布またはウェブ等の通気性シートの表面を起毛し た後、 この起毛面に粒状吸着剤を散布し、 加熱することにより大量の粒 状吸着剤を起毛に固着させて気体浄化材を形成する方法が挙げられる。 この方法は、 本発明の気体浄化材を得る方法の代表的な方法を示したに すぎないもので、 本発明の気体浄化材を製造する方法がこの方法に限定 されるわけではないが、 以下この方法を例としてあげて、 本発明の気体 浄化材を製造する方法および本発明の気体浄化材の構成材料等を詳細に 説明する。 なお、 粒状吸着剤を起毛面に固着する方法としては、 上記加 熱による固着の他、 接着剤を用いる方法などによってもよい。
まず、本発明の気体浄化材を得る際の通気性基材の起毛方法であるが、 これは従来知られた何れの方法によっても良く、 例えば、 サンドぺーパ 一を取付けたロールを基材に圧接して荒らすことにより毛羽立てるェメ リー起毛加工方法、 微細な針が多数本植設された部材に布を当て、 植設 された針で繊維を引っ掛けて基材を毛羽立てる針布起毛加工方法などを 挙げることができる。 これらの中では、 表面を引つ接くための無数の針 あるいはブラシが周囲に植立されたドラム間にシートを通過させて起毛 する方法が好ましい方法として挙げられる。 起毛は、 気体浄化材の通気 性基材の片面めみでもよく、 必要であれば通気性基材の両面が起毛され てもよい。 両面に起毛処理を施すには、 一度に両面を起毛する方法でも よいし、 片面を起毛した後、 他面を起毛する方法でもよい。
一方、 上記悪臭等の原因となる酸性ガス、 アルカリ性ガス、 有機物質 などのガス成分を吸着するために用いられる粒状吸着剤としては、 例え ば、 鉄、 マンガン、 鲖、 アルミニウム、 マグネシウム、 亜鉛、 ニッケル、 コバルト、 白金、 パラジウム、 金、 ルテニウム、 ロジウムなどの金属単 体、 これらの金属酸化物または金属塩化物、 ゼォライ ト、 カオリ ン、 セ ピオライ ト、 シリカゲル、 活性炭等が挙げられる。 さらに、 本発明の粒 状吸着剤は、 酸性ガス、 アルカリ性ガス、 有機物質などを触媒的に分解 する酸化チタン、 フタロシアン、 白金などの粉粒子、 すなわち触媒粒子 であってもよい。 触媒粒子には、 光活性なルチル型酸化チタンなどの光 触媒も含まれる。 光触媒は、 可視光あるいは紫外光の照射により、 光触 媒粒子表面に接触する、 例えばアルデヒ ド系ガス等の物質やガスなどを 有効に分解することができる。 これら触媒粒子は前記ガスあるいは物質 を吸着する能力を有さないものもあるが、 本発明においては、 吸着作用 を示さない触媒粒子も本発明の粒状吸着剤に包含される。
これら粒状吸着剤は、 単独で用いられてもよいし、 2種以上が併用さ れてもよい。 またこれら粒状吸着剤は、 表面積の大きいものが吸着性の 点から好ましい。 本発明においては、 粒状吸着剤として、 シリカゲル、 活性アルミナ、 ゼォライ ト、 および触媒粒子を好ましいものとして挙げ ることができる。 また、 本発明において用いられる粒状吸着剤は、 上記粒状吸着剤の表 面に、 化学脱臭剤を付着させた、 例えば添着炭などであっても良い。 添 着炭に付着される化学吸着剤としては、 例えば、 アルデヒ ド系ガスや N O x、 S O x、 酢酸などの酸性ガスに対しては、 炭酸カリウム、 炭酸水 素力リ ゥム、 炭酸ナトリゥム、 炭酸水素ナトリゥムなどのアル力リ金属 炭酸塩、 水酸化ナトリウム、 水酸化カリウムなどのアルカリ金属水酸化 物、 エタノーノレアミン、 へキサメチレンジァミン、 メチノレアミ ン、 ピぺ ラジン、 ァニリ ン、 p —ァニシジン、 スルファニル酸、 ァミ ノ安息香酸 などのァミン化合物およびその塩類、 ポリエチレンィミン、 イミノジェ タノールなどのイミン或いはィミノ化合物およびその塩類、 グァニジン 系化合物おょぴその塩類、 L一アルギニン、 メチルァミ ン塩酸塩、 セミ カルパジド塩酸塩、 ヒ ドラジン、 ヒ ドロキノン、 硫酸ヒ ドロキシルアミ ン、 過マンガン酸塩などが挙げられる。 また、 アンモニア、 アミン類、 ピリジン等のアルカリ性ガス用には、 燐酸、 硫酸、 硝酸、 リンゴ酸、 ク ェン酸、 ァスコルビン酸などの有機酸、 無機酸が挙げられる。 なお、 こ れら化学吸着剤は、 粒状吸着剤にではなく、 通気性基材に含浸させる或 いは予め基材に含有させておいてもよい。
また、 通常光触媒は微細粒.子である場合が多いが、 微細粒子である場 合には、 これら微細粒子を粒状担体に添着させて粒状吸着剤としてもよ い。 添着方法としては、 例えば光触媒である酸化チタン微細粒子をポリ ビニールアルコール (P V A ) 溶液に分散し、 この分散溶液を活性炭な どに吹き付ける方法、 ホッ トメルト樹脂などの熱融着ポリマー粒子に微 細酸化チタン粒子を吹き付け、 溶融表面あるいは粘着表面とされたポリ マー粒子表面に付着させる方法など、 従来知られた任意の方法が採用で さる。
本発明の気体浄化材においては、 粒状吸着剤の平均粒径が大きいとフ ィルタが厚くなってプリーツ加工が難しくなるし、 反対に小さすぎると 圧力損失が高くなるとともに、 起毛した不織布から外部に流出し易くな るという問題があるので、 1 0 0〜 1 0 0 0 ^ m程度が好ましレ、。
粒状吸着剤の起毛した通気性基材への散布方法は、 従来知られた散布 方法であれば何れのものでも良い。 本発明を限定するものではないが、 起毛した不織布等通気性基材に粒状吸着粒子を均一に散布する方法とし て、 従来粉体散布装置として知られたロール式散布機を用いる方法が好 ましい方法として挙げられる。 なお、 このロール式散布機は、 粉体を貯 溜するホッパーと、 このホッパーの下部に回転可能に支持され、 外周部 に粉体を収容する収容溝を有する回転体と、 この回転体の外周面の近接 位置に配置されて前記ホッパー内の粉体の落下供給を規制するスクレー パとからなっている。
本発明に用いられる通気性基材としては、 紙、 織物、 織布、 不織布な どを挙げることができるが、 経済性から考えて紙、 不織布が好ましく、 特に、 表裏の両面で起毛がかかりやすい紙、 不織布が好ましい。 また、 不織布においては、 粒状吸着剤を固着する上で、 熱融着ポリマーを含ん だ熱融着繊維で構成されている不織布が好ましい。 通気性基材を熱融着 繊維を含む繊維により構成する場合、 熱融着繊維の含有量は、 5 0 %以 上、好ましくは 7 0 %以上、より好ましくは 8 0 %以上であり、 1 0 0 % であってもよレヽ。
熱融着ポリマーとは、 加熱によって溶融する熱融着成分を含んだポリ マーであり、 熱融着繊維とは、 加熱によって溶融するポリマー成分を含 んだ繊維を指し、熱により溶融し、隣り合う繊維と融着する繊維である。 熱融着成分としては、 例えば、 ポリエチレン、 変性ポリエチレン、 共重 合ポリエステル、 共重合ナイロン、 エチレン酢酸ビニル共重合体などを 挙げることができる。 熱融着繊維の断面形状は、 丸断面、 矩形断面を含め、 どのような断面 形状であってもよい。 また熱融着繊維は単一成分の樹脂でもよく、 複数 成分の樹脂からなるものであってもよい。 複数成分の樹脂からなる熱融 着繊維としては、 サイ ドバイサイ ド構造やシースコア構造を有する断面 形状が挙げられる。 例えば、 シースコア構造を有する繊維では、 シース 部の方がコア部より溶融温度が低い樹脂が用いられる。 このような組合 せとしては、 例えばシースをポリエチレンやエチレン酢酸ビニル共重合 物、 コアをポリプロピレンとする組合せや、 シースを溶融温度の低い共 重合ポリエステル、 コアをポリエチレンテレフタレートとする組合せ等 が挙げられる。 このように溶融温度の異なる樹脂を組合せ、 繊維の表面 の溶融温度が内部に比べ低い繊維とすることで、 所定の温度において表 面部分だけを溶融させ、 内部の繊維の形状はそのまま保持することがで きる。 本発明で用いられる熱融着繊維の繊度は 1〜 1 0 0デニール、 よ り好ましくは 3〜 5 0デニール、 さらに好ましくは 5〜 3 0デニールで ある。
本発明の通気性基材を熱融着繊維を含有する繊維により形成する際、 熱融着繊維とともに用いられる熱融着繊維以外の繊維としては、 熱融着 繊維より溶融温度が高い繊維であればどのようなものであってもよい。 このような繊維としては、 例えば、 ポリエステル、 ポリアクリ ロ-トリ ル、 ポリアミ ド、 ポリプロピレン等のポリオレフイン、 等の合成繊維の 他、 リンター、 木綿、 麻などの天然繊維、 木材パルプ、 レーヨンなどの 半合成樹脂繊維、ガラス繊維等であってもよい。好ましくは、 レーヨン、 ポリエステル、 ポリオレフイン、 ポリアミ ドなどの繊維である。 熱融着 繊維以外の繊維の繊度は、 熱融着繊維と同様であり、 1〜 1 0 0デニー ル、 より好ましくは 3〜 5 0デニール、 さらに好ましくは 5〜 3 0デニ ールである。 起毛した通気性基材面への粒状吸着剤の固定化方法としては、 上記の 熱融着ポリマーを含んだ熱融着繊維の熱溶融時の粘着力で粒状吸着剤を 固定化する方法以外に、 熱融着ポリマーの粉粒体を粒状吸着剤とともに 散布し、 加熱して熱融着ポリマーを溶融し、 粒状吸着剤を起毛した通気 性基材に固定する方法、 さらには、 これらの方法を併用する方法を挙げ ることができる。 加熱方法としては、 赤外線などを用い、 起毛面に圧力 をかけない状態で加熱してもよいし、 起毛した面に粒状吸着剤を散布し た後、 一対の加熱されたベルト間に送り込み、 必要に応じ加圧下に通過 させることにより加熱を行ってもよい。
上記熱融着ポリマーの粉粒体としては、 熱可塑性ポリアミ ド系樹脂、 熱可塑性ポリエステル樹脂、 熱可塑性ポリウレタン樹脂、 ポリオレフィ ン樹脂、 エチレン一酢酸ビニル共重合体、 エチレン一酢酸ビニル共重合 体の鹼化物、 アクリル酸共重合体、 エチレン一ェチルアタ リレート共重 合体、 エチレン一アク リル共重合体、 アイオノマー樹脂 (エチレンーメ タクリル酸共重合体に金属を付加した感熱性樹脂) などのポリオレフィ ン変性樹脂、 およびこれら 2種以上の複合物などのホッ トメルト樹脂が 挙げられる。 また、 熱融着ポリマーの粉粒体の融点は、 通常通気性基材 を構成する前記熱融着繊維の融点と同等あるいはそれ以下、 また熱融着 繊維でない繊維に比べより低い融点とされる。 粒状吸着剤を通気性基材 の起毛した面に固着する際には、 粒状吸着剤が通気性基材あるいは起毛 した繊維に固着されるが、 起毛した繊維が互いに固着されないことが好 ましい態様として挙げられ、 このよ うな条件となるよう上記融点を設定 すればよい。 もちろん、 通気性が阻害されなければ、 起毛した繊維同士 が固着された状態となってもかまわない。なお、光触媒を用いる場合は、 接着剤として光触媒で分解され難いものを用いることが好ましい。 光触 媒により分解され難い樹脂としては、 例えばポリオレフイン系樹脂、 特 にポリエチレン系樹脂が好ましいものとして挙げられる。
ホッ トメル ト樹脂の使用量は、 使用する粒状吸着剤の重量に基づいて 1 %〜 2 0 0 %とすることが好ましい。 1 %より少ないと、 接着不足と なり粒状吸着剤が起毛した不織布などの通気性基材に固着されず、 通気 性基材から脱落しやすくなり、 一方、 2 0 0 %より多くなると粒状吸着 剤表面の大部分をホットメルト樹脂が覆うことになり消臭性能などを損 なうこととなるとともに、 溶融時にホッ トメルト樹脂が通気性基材に吸 収され、 基材の通気性を損ない、 またシミ状の外観を呈する場合もでて くる。
ホッ トメルト樹脂の平均粒径としては、 粒状吸着剤の粒径よりも小さ いことが好ましく、 1 0〜 1 0 0 0 μ mが好ましい。 ホットメルト樹脂 の平均粒径が 1 0 0 0 μ mより大きいと十分な接着力が得られず、 1 0 μ πιより小さいと通気抵抗を高くする原因となる。
上記通気性基材あるいは気体浄化材に、 抗菌性、 抗かぴ性、 高ウィル ス性、 難燃性、 その他の機能を付与するため、 通気性基材自体或いはホ ッ トメルト樹脂に予め抗菌剤、 抗かび剤、 抗ウィルス剤、 難燃剤、 機能 性薬剤等を混入、 或いは混合しておくこともできる。 また、 これら薬剤 は、 粒状吸着剤に、 その本来の性能が損なわれない方法及び量で添着、 又は固着されてもよいし、 通気性基材に塗布などにより付着されてもよ い。 さらに、 通気性基材には、 上記以外の機能性、 例えばエレク トレツ ト性が付与されてもよい。
本発明の気体浄化材は、 前記したような家庭、 事務所、 商店、 工場、 美術館、 クリーンルームなどの室内空間、 自動車、 電車などの車輛の車 内空間、航空機の機内などの気体を浄化するため、あるいはこれら室内、 車内、 機内、 更には燃料電池、 化学反応器などに供給する気体を浄化す るために用いられる空気清浄機、 空気調和機、 気体供給機などのフィル タ材として好ましく用いられる。 本発明の気体浄化材は、 平板状で、 或 いはプリーッ状又は波形に成形してフィルタ材とし、 例えば空気を気体 浄化材の面を通過させるこ により、 空気の浄化を行うことができる。 また、 本発明の気体浄化材をコルゲート加工し、 気体浄化材と平行の方 向に多数の通風路を設けるようにハ-カム状に成形し、 気体浄化フィル タを得ることもできる。 特に、 前記基材の表裏両面を起毛し、 表裏両面 に前記粒状吸着剤を固着することにより、 低圧損でかつ、 より高い単位 体積当たりの接触ガス除去効率を有する気体浄化フィルタを得ることが できる。
なお、 ハニカムの製造法は種々知られているが、 その一つは段ボール を利用したものである。 周知のように段ボールは、 フラットな原紙であ るライナーと波形に段成形された原紙である中芯とを接着剤を用いて積 層接着した構成を有し、 コルゲーターまたはコルゲートマシンと呼ばれ る装置を用いて製造される。 この段ボールを多段に積み重ねるかロール 卷きした状態でカットすれば、 目的とするハニカム構造体を得ることが できる。 (例えば、 実開昭 5 7 - 1 1 9 7 2 4号公報の第 1〜4図参照) 本発明においても、 これと同様の方法でハニカム構造体を製造すること ができる。
また、 本発明の気体浄化材は、 機能性シート、 例えば機能性を持った 不織布が、 通気性基材に積層されるなどしてさらに付加されたものであ つてもよい。 機能性シートを設ける面は、 起毛した面に粒状吸着剤を固 着した面でも構わないし、 起毛されているが粒状吸着剤が固着されてい ない面であっても、 起毛されていない面であっても構わない。 しかし、 起毛されていない通気性基材にも同様な機能を持たせることが可能なた め、 粒状吸着剤を固着した面に設けることが好ましい。 機能性シートを 通気性基材に設ける方法としては、 基材シート中の熱融着ポリマーを利 用しての機能性シートの貼り付け、 別途ホッ トメルト樹脂粉粒体などを 用いての接着など、 任意の方法が挙げられる
上記機能性シートとしては、 例えば、 低圧損でかつ高捕集効率を有す るエレク トレツ トメルトプロー不織布や抗菌剤ゃ抗カビ剤が付与された 不織布などが挙げられる。 エレク トレッ トメルトブロー不織布は、 ナイ ロン、 ポリエチレン、 ポリプロピレン等で形成できるが、 エレク トレツ ト効果の高いポリォレフィン系繊維が好ましい。 発明を実施するための最良の形態
以下に実施例をあげて本発明を具体的に説明するが、 本発明は本実施 例に限定されるものではない。
実施例 1
通気性基材として、 芯が溶融温度 240°Cのポリエステル、 鞘が溶融 温度 1 3 2 °Cのポリエチレンからなり、 繊度が 2デニールの熱融着繊維 で構成されている、 ュニチカ (株) 製のスパンボンド不織布である 40 g Zm 2品をプラシのついた口ールを通して一面を起毛させ、 起毛面に ホッパーとロールのついたロール式散布機を用いて、 20メッシュ以上 4 2メ ッシュ以下に調整されたクラレケミカル (株) 製の粒状活性炭を 200 g/m2になるように散布し、 これを 1対の無次元ベルトに挟み、 1 5 0 °Cで加熱加圧後、 冷却して気体浄化材を得た。
得られた気体浄化材の目付は 2 3 5 gZm2、 固着した粒状活性炭の 量は 1 9 5 gZm2であった。 また、 得られた気体浄化材からは粒状活 性炭の落下はなく、 折り曲げテストを行ったところ、 活性炭層の破壌は なく、 良好なプリーツ特性を示した。
5 ΟπιηιΦの得られた気体浄化材を用いて、 室温中、 6 0 p p mの濃 度に調整した湿度 50%の トルエンガスを面速度 1 0 c mZ秒で通過さ せ、ガステック (株)製トルエン検知管で濃度を測定したところ、 5 0 % 時の破過時間は 4 0分となり、 良好な寿命時間が得られた。
比較例 1
実施例 1で用いた通気性基材を起毛しなかったことを除き実施例 1 と 同様にして、 気体浄化材を得た。 得られた気体浄化材の目付は、 1 4 0 gノ m2であり、 固着した粒状活性炭の量は落下する粒状活性炭の量が 多く、 90 g7m2であった。 この得られた気体浄化材を用いて、 実施 例 1と同様に 6 0 p p mの濃度のトルエンガスを通過させたところ、 実 施例 1 と比較すると基材に固着された粒状活性炭の量が少ないため、 5 0 %時の破過時間は 1 8分であった。
実施例 2
三井化学 (株) 製のポリエステルスパンボンド不織布の 3 4 g _ m2 品を用いて、 実施例 1 と同様にして起毛し、 その起毛面に、 予め平均粒 径 1 0 0 μ mの東京ィンキ (株) 製ポリエチレン系ホッ トメルト樹脂の パウダーを 1 0重量0 /0混合した、 クラレケミカル (株) 製の 2 0メッシ ュ以上 4 2メッシュ以下に調整された粒状活性炭を、 粒状活性炭として 3 0 0 g/m2になるように散布し、 実施例 1 と同様にして 1 5 0°Cで 加熱加圧後、 冷却処理を行った。
得られた気体浄化材の目付は、 3 6 0 g /m2であり、 固着した粒状 活性炭の量を測定したところ、 3 0 5 g/m2であった。 実施例 1 と同 様に得られた気体浄化材からは粒状活性炭の落下はなく、 折り曲げテス トを行ったところ、 活性炭層の破壊はなく、 良好なプリーツ特性を示し た。
得られた気体浄化材を用いて、 実施例 1と同様に 6 0 p p mの濃度に 調整した湿度 5 0 %の トルエンガスを通過させ、 ガステック (株) 製検 知管でトルエンガス濃度を測定したところ、 5 0 °/0時の破過時間は 6 3 分であった。
比較例 2
起毛のかわりに、 予め東京インキ (株) 製ポリエチレン系ホットメル ト樹脂の 3 0メッシュパス品を、 散布する粒状活性炭量の 1 0%にあた る 3 0 g /m2にプレコートすることを除き実施例 2と同様にして、 気 体浄化材を得た。
得られた気体浄化材の基材より、 多量の粒状活性炭が落下した。 固着 していない活性炭を全て除去した後の基材に残留する粒状活性炭の量を 測定したところ、 l l O g/m2であった。
得られた気体浄化材を用いて実施例 2と同様に、 6 0 p p mの濃度に 調整した湿度 5 0 %のトルエンガスを通過させ、 ガステック (株) 製の トルエンガス検知管で濃度を測定し、 5 0 %時の破過時間を測定したと ころ 2 1分となり、 寿命時間が短かった。
比較例 3
起毛のかわりに、 予め日東紡 (株) 製の熱可塑性ポリアミ ド系樹脂か らなる 2 7 gZm2のホッ トメルト不織布を三井化学 (株) 製のポリェ ステルスパンボンド不織布の 3 4 g/m 2品の上部に積層することを除 き実施例 2と同様にして、 気体浄化材を得た。
比較例 2と同様に、 得られた気体浄化材の基材ょり多量の粒状活性炭 が落下した。 固着していない活性炭を全て除去した後の基材に残留する 粒状活性炭の量を測定したところ、 1 3 0 g/m2であった。 この気体 浄化材を用いて、 実施例 2と同様にしてトルエンガスの 5 0 %時の破過 時間を測定したところ、 2 8分であり、 実施例 2の寿命時間に及ばなか つた。
実施例 3
実施例 2と同様に三井化学 (株) 製のポリエステルスパンボンド不織 布の 3 4 g Zm2品を用いて、 実施例 1 と同様に起毛させ、 その起毛面 に、 予め平均粒径 1 0 0 /z mの東京インキ (株) 製ポリエチレン系ホッ トメルト榭脂のパウダーを 1 0重量%混合したクラレケミカル (株) 製 の 2 0重量%のリン酸添着炭で 2 0メッシュ以上 4 2メッシュ以下に調 整された粒状活性炭を、 粒状活性炭と して 3 0 0 g/m 2になるように 散布し、 さらに、 4 0メッシュパス品の東京インキ (株) 製のポリェチ レン系ホッ トメルト樹脂のパウダーを 2 0 g /m 2になるように散布し. その上部より、 三井化学 (株) 製のポリエステルスパンボンド不織布 3
4 gZm2を重ね合わせて、 実施例 2と同様に 1 5 0°Cで加熱加圧後、 冷却処理を行った。
得られた気体浄化材の目付は、 4 3 0 gZm2であり、 固着した粒状 活性炭の量を測定したところ、 3 1 0 gZm2であった。 実施例と同様 に得られた気体浄化材からは粒状活性炭の落下はなく、 折り曲げテス ト を行ったところ、 固着した粒状活性炭の量が多いにも係わらず、 活性炭 層の破壊はなく、 良好なプリーツ特性を示した。
5 0 πιπιΦの得られた気体浄化材を用いて、 室温中、 6 0 p p mの濃 度に調整した湿度 5 0 %のアンモニアガスを面速度 1 0 c m/秒で通過 させ、 ガステック (株) 製アンモニア検知管で濃度を測定したところ、
5 0 %時の破過時間は 4 8分となり、 良好な寿命時間が得られ、 かつ、 圧力損失が 1. 3 mmA q と低い結果が得られた。
比較例 4
実施例 3のように通気性基材を起毛せず、 予め 4 0メ ッシュパス品の '東京インキ (株) 製のポリエチレン系ホッ トメルト樹脂のパウダーを粒 状活性炭の重量に対して 2 5重量%混合したクラレケミカル (株) 製の 20重量。 /0のリン酸添着炭で 2 0メッシュ以上 4 2メッシュ以下に調整 された粒状活性炭を、 散布する粒状活性炭の重量と して 3 0 0 g/m2 になるように散布し、 さらに、 4 0メッシュパス品の東京インキ (株) 製のポリエチレン系ホッ トメルト樹脂のパウダーを 2 0 g/m2になる ように散布し、 その上部より、 三井化学 (株) 製のポリエステルスパン ボンド不織布 3 4 gZm2を重ね合わせて、 加熱加圧した後、 冷却して 気体浄化材を得た。
得られた気体浄化材の目付は、 4 3 0 gZm2であり、 固着した粒状 活性炭の量を測定したところ、 3 0 0 gZm2であり、 得られた気体浄 化材からの粒状活性炭の落下は少なかったが、 フィルタ材は硬く、 折り 曲げテス トを行ったところ、 活性炭層が破壊し、 折り曲げテス トには耐 えられな力 つた。
得られた気体浄化材を用いて、 6 0 p p mの濃度に調整した湿度 5 0 %のアンモニアガスを通過させ、 5 0 %時の破過時間を測定したとこ ろ、 2 1分と実施例 3と比較して寿命時間が短く、 かつ圧力損失も 1. 6 mm A qと高い結果となった。
実施例 4
実施例 2と同様に三井化学 (株) 製のポリエステルスパンボンド不織 布の 3 4 g Zm 2品を用いて、 実施例 1 と同様に基材の表面を起毛させ、 その起毛面に、 東京インキ (株) 製の平均粒径 1 0 0 μ mのポリエチレ ン系ホッ トメルト樹脂を 1 0重量%混合した東ソー (株) 製アルデヒ ド 吸着用粒状ハイシリカゼオライ トの 2 0メ ッシュパス品を、 粒状ゼオラ ィ トの量として 3 0 0 g/m2となるように散布し、 実施例 1 と同様に 加熱加圧した後、 冷却を行い、 気体浄化材を得た。
得られた気体浄化材について、 起毛を行わなかった面を実施例 2と同 様にして起毛し、 再度、 前記ホッ トメルト樹脂混合粒状ゼォライ トを 3 0 0 g/m2になるように散布後、 加熱加圧を行い、 通気性基材の起毛 した両面にゼォライ ト粒子を固着した気体浄化材を得た。 得られた気体浄化材の目付は、 6 9 0 g m2であり、 固着したゼォ ライ ト粒子の量を測定したところ、 5 8 0 g/m 2と多量に固着したも のを得ることができ、 得られた気体浄化材からはゼォライ ト粒子の落下 はなく、 その接着強度も十分なものであった。 また、 折り曲げテス トを 行ったところ、 ゼォライ ト層の破壊はなく、 良好なプリーツ特性を示し た。
得られた気体浄化材を用いて谷の深さ 2. 6 mm, 山のピッチが 6 m mのコルゲート形状に成形し、 寸法として、 幅が 2 0 0 mm、 高さが 6 Omm、 厚さ力 Ommのフイ ノレタとした。 このフイ ノレタに 5 p p mに 調整した湿度 5 0 %のァセトアルデヒ ドガスをフィルタ面風速 2 m/秒 で通過させ、 3 0分後のァセトアルデヒ ドの濃度を F I Dガスクロマト グラフで測定したところ、 ァセトアルデヒ ドの除去効率は 8 7 %であつ た。
比較例 5
通気性基材を起毛しない変わりに、 比較例 3で用いた日東紡 (株) 製 の 2 7 g/m 2のポリアミ ド製ホッ トメルト不織布を積層すること以外 は実施例 4と同様にして、 通気性基材の片面に東ソー製アルデヒ ド吸着 用ハイシリカゼォライ トの粒状吸着剤を固着させた。実施例 4とは違い、 得られた気体浄化材は基材ょりゼォライ ト粒子が落下するものが多く、 固着していないゼォライ ト粒子を除去した後に付着している粒状ゼオラ イ トの量を測定したところ、 1 5 0 gZm2であった。
さらに、 この気体浄化材のゼォライ ト粒子の固着されていない面に、 ポリアミ ド製ホットメルト不織布を積層させ、 再度、 前記粒状ゼォライ トを 3 0 0 gZm2になるように散布した後、 加熱加圧を行い、 通気性 基材の起毛した両面に粒状吸着剤を固着した気体浄化材を得た。
得られた気体浄化材からは、 同様に固着されていないゼォライ ト粒子 が落下し、 固着していないゼォライ ト粒子を除去した後の気体浄化材の 目付は、 3 9 8 g / m 2であり、 固着したゼォライ ト粒子の量を測定し たところ、 3 1 0 g / m 2と実施例 4と比べて少なかった。 また、 ゼォ ライ ト粒子と基材は接着していたが、ゼォライ ト粒子同士の接着が弱く、 折り曲げテスト中にゼォライ ト粒子が落下し、 接着強度が十分なもので はなかった。
実施例 4と同様に、 得られた気体浄化材をコルゲート加工後フィルタ とし、 アルデヒ ドガスの除去効率を求めたところ、 5 9 %となり、 実施 例 4と比べて低かった。 発明の効果
以上詳述したように、 本発明の気体浄化材は、 通気性の低下なく多く の量の粒状吸着剤を担持することができ、 それにもかかわらず実使用に あたってのプリーッ加工特性が良好である。 .このため浄化させる気体の 通過効率および気体の接触効率は良好であり、 単位体積当たりのガス吸 着量あるいはガス除去量の良好なフィルタを形成することができる。 産業上の利用可能性
本発明の気体浄化材は、 空気清浄機、 空気調和機、 気体供給機などの 消臭フィルタ材、 不要ガス成分除去材などとして好ましく用いられ、 例 えば、 室内あるいは車内の空気の埃、 空気中に存在する悪臭成分或いは 汚染成分である、 酸性ガス、 アルカリ性ガス、 有機物などを吸着および Z又は分解して空気などを浄化することができる。

Claims

請 求 の 範 囲
1 . 通気性基材の起毛した面に粒状吸着剤が固着されてなることを特徴 とする気体浄化材。
2 . 前記固着が熱融着ポリマーによることを特徴とする請求の範囲第 1 項記載の気体浄化材。
3 . 前記熱融着ポリマーが通気性基材の熱融着繊維に含まれる熱融着ポ リマーであることを特徴とする請求の範囲第 2項記載の気体浄化材。
4 . 前記熱融着ポリマーが粒状吸着剤とともに散布された粉粒体である ことを特徴とする請求の範囲第 2項記載の気体浄化材。
5 . 前記粒状吸着剤の固着が通気性基材の表裏両面において行われたも のであることを特徴とする請求の範囲第 1項記載の気体浄化材。
6 . 前記粒状吸着剤が活性炭、 シリカゲル、 活性アルミナ、 ゼォライ ト および触媒からなる群から選ばれた少なく とも 1種の粒子であることを 特徴とする請求の範囲第 1項乃至第 5項のいずれか一項に記載の気体浄 化材。
7 .請求の範囲第 1項乃至第 6項のいずれか一項に記載の気体浄化材が、 起毛面に粒状吸着剤が鹵着された通気性基材をコルゲート状に成形し、
" さらに前記通気性基材の面に沿う方向に複数の通風路を加工成形したも のであることを特徴とする気体浄化材。
8 . 前記通気性基材に加えて機能性シートが付加されたものであること を特徴とする請求の範囲第 1項乃至第 7項のいずれか一項に記載の気体 浄化材。
9 . 前記機能性シートがエレク トレツト機能を付与されたものであるこ とを特徴とする請求の範囲第 8項記載の気体浄化材。
1 0 . 前記機能性シートが抗菌ならびに抗カビ機能を付与されたもので あることを特徴とする請求の範囲第 8項記載の気体浄化材。
1 1 . 通気性基材を起毛した後、 該起毛面に粒状吸着剤を散布し、 加熱 することにより粒状吸着剤を起毛面に固着することを特徴とする気体浄 化材の製造方法。
PCT/JP2003/009068 2002-07-24 2003-07-17 気体浄化材 WO2004009217A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002214959A JP2004050151A (ja) 2002-07-24 2002-07-24 気体浄化材
JP2002-214959 2002-07-24

Publications (1)

Publication Number Publication Date
WO2004009217A1 true WO2004009217A1 (ja) 2004-01-29

Family

ID=30767903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009068 WO2004009217A1 (ja) 2002-07-24 2003-07-17 気体浄化材

Country Status (3)

Country Link
JP (1) JP2004050151A (ja)
TW (1) TW200403096A (ja)
WO (1) WO2004009217A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100888468B1 (ko) * 2007-08-31 2009-03-11 한국화학연구원 항암활성을 갖는1'-알킬피페리딘-4'-스피로-2-6-(아미도)-2h-벤조피란유도체

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4589038B2 (ja) * 2004-06-16 2010-12-01 株式会社荏原製作所 濾材
KR100891968B1 (ko) * 2007-09-20 2009-04-08 이희자 음식물 쓰레기 건조기
JP5494067B2 (ja) * 2009-10-09 2014-05-14 トヨタ紡織株式会社 表皮材
JP2012179504A (ja) * 2011-02-28 2012-09-20 Toyobo Co Ltd 難燃性脱臭フィルタ
CN103068468A (zh) * 2010-08-11 2013-04-24 东洋纺株式会社 一种阻燃性除臭过滤器
JP2012055879A (ja) * 2010-08-11 2012-03-22 Toyobo Co Ltd 難燃性脱臭フィルタ
JP2013220375A (ja) * 2012-04-16 2013-10-28 Toyobo Co Ltd フィルター濾材
JP6255574B2 (ja) * 2013-09-26 2018-01-10 パナソニックIpマネジメント株式会社 脱臭フィルター並びに空気調和装置
KR101576270B1 (ko) * 2015-02-23 2015-12-11 카즈온(주) 자동차용 에어컨 필터의 제조방법
JP6492241B2 (ja) 2016-12-14 2019-04-03 有限会社フィルコーポレーション フィルタろ材、それを備えたフィルタ素子およびフィルタろ材の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137369U (ja) * 1977-04-06 1978-10-30
JPS6052661A (ja) * 1983-08-29 1985-03-25 大和紡績株式会社 粉粒体入り不織布の製造方法
JPH0339235Y2 (ja) * 1985-10-07 1991-08-19
JPH09117623A (ja) * 1995-10-25 1997-05-06 Matsushita Electric Ind Co Ltd フィルタ−装置
JPH11156124A (ja) * 1997-11-20 1999-06-15 Toyobo Co Ltd ハニカム状空気浄化フィルタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137369U (ja) * 1977-04-06 1978-10-30
JPS6052661A (ja) * 1983-08-29 1985-03-25 大和紡績株式会社 粉粒体入り不織布の製造方法
JPH0339235Y2 (ja) * 1985-10-07 1991-08-19
JPH09117623A (ja) * 1995-10-25 1997-05-06 Matsushita Electric Ind Co Ltd フィルタ−装置
JPH11156124A (ja) * 1997-11-20 1999-06-15 Toyobo Co Ltd ハニカム状空気浄化フィルタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100888468B1 (ko) * 2007-08-31 2009-03-11 한국화학연구원 항암활성을 갖는1'-알킬피페리딘-4'-스피로-2-6-(아미도)-2h-벤조피란유도체

Also Published As

Publication number Publication date
JP2004050151A (ja) 2004-02-19
TW200403096A (en) 2004-03-01

Similar Documents

Publication Publication Date Title
US7052533B2 (en) Filter element, method for manufacture thereof, and filter using said element
JPWO2003066193A1 (ja) 流体清浄フィルター及びフィルター装置
WO2004009217A1 (ja) 気体浄化材
JP3542468B2 (ja) 積層型脱臭濾材
US6177069B1 (en) Laminated deodorant filter medium and method of making the same
JP2018201721A (ja) 消臭フィルター及び該消臭フィルターを備えた空気清浄機
JP2002292227A (ja) フィルターユニット
JP2000279505A (ja) 脱臭性エレクトレットフィルターおよびその製造方法
JPH11156124A (ja) ハニカム状空気浄化フィルタ
JP3946576B2 (ja) カバー材、それを用いたガス除去用濾材およびガス除去ユニット
JP5172165B2 (ja) ガス除去用濾材、複合フィルタ及びフィルタエレメント
JP2007175112A (ja) 脱臭シート
JP2000233113A (ja) 脱臭フィルター、その製造方法及びその利用方法
JP2003062414A (ja) 光触媒複合フィルター
JP3953717B2 (ja) 平面状封入脱臭シートからなるプリーツ折り空気清浄化フィルター
WO2020203508A1 (ja) ガス吸着剤
JP3657438B2 (ja) 空気清浄化フィルターの製造方法
JP2004041836A (ja) 空気清浄フィルター
JP5243740B2 (ja) フィルタエレメント、及びその製造方法
JP2000153115A (ja) 空気清浄化フィルター
JP3421109B2 (ja) 脱臭フィルタ
JP2000210511A (ja) 空気清浄化フィルタ―
JP2002291860A (ja) 通気性脱臭フィルター
JP4932564B2 (ja) ガス除去用濾材及びその製造方法、並びにガス除去用濾材を用いたガス除去エレメント
JPH1076180A (ja) 空気清浄器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase