WO2003098774A1 - Chargeur d'element secondaire et technique de charge - Google Patents

Chargeur d'element secondaire et technique de charge Download PDF

Info

Publication number
WO2003098774A1
WO2003098774A1 PCT/JP2003/006168 JP0306168W WO03098774A1 WO 2003098774 A1 WO2003098774 A1 WO 2003098774A1 JP 0306168 W JP0306168 W JP 0306168W WO 03098774 A1 WO03098774 A1 WO 03098774A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
secondary battery
voltage
value
charge
Prior art date
Application number
PCT/JP2003/006168
Other languages
English (en)
French (fr)
Inventor
Hiromi Takaoka
Shigetomo Matsui
Yutaka Iuchi
Taneo Nishino
Osamu Nakamura
Original Assignee
Techno Core International Co., Ltd.
The New Industry Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002142605A external-priority patent/JP2003333765A/ja
Priority claimed from JP2002142606A external-priority patent/JP2003333758A/ja
Priority claimed from JP2002142598A external-priority patent/JP2003333764A/ja
Priority claimed from JP2002142599A external-priority patent/JP2003333760A/ja
Priority claimed from JP2002213625A external-priority patent/JP2004055432A/ja
Application filed by Techno Core International Co., Ltd., The New Industry Research Organization filed Critical Techno Core International Co., Ltd.
Priority to US10/481,691 priority Critical patent/US7109684B2/en
Priority to EP03725819A priority patent/EP1507326A4/en
Priority to KR1020037008535A priority patent/KR100611059B1/ko
Publication of WO2003098774A1 publication Critical patent/WO2003098774A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • H02J7/00716Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to integrated charge or discharge current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule

Definitions

  • the present invention relates to a method and an apparatus for charging a secondary battery such as a storage battery, a nickel-cadmium battery, a nickel metal hydride battery, and a lithium ion battery.
  • a secondary battery such as a storage battery, a nickel-cadmium battery, a nickel metal hydride battery, and a lithium ion battery.
  • This secondary battery is a battery that can be charged and discharged repeatedly. Electric energy is converted into chemical energy and stored, and conversely, the stored chemical energy is converted into electric energy and used.
  • Typical examples of the secondary batteries that are practically used include nickel-cadmium batteries, nickel-metal hydride batteries, lithium-ion batteries, and NAS batteries.
  • the electromotive and discharge reactions that occur inside the secondary battery involve chemical reactions, electrical reactions, and complex energy conversion and energy exchange involving these two reactions. Intervenes in the temporal component of these various reactions. Therefore, it is necessary to perform charging while taking these reactions into account. It may be destroyed. If not, the internal structure of the secondary battery will be degraded, the battery life will be shortened, and the number of cycles will be reduced.
  • a program for changing the applied voltage with the progress of the charging time is incorporated in the control unit of the charging device of the secondary battery so that the secondary battery is appropriately charged, and the secondary battery is controlled according to the program. It is configured to apply a voltage to the battery.
  • two A number of charging devices that have a battery voltage detection unit that detects the voltage of the next battery and that determine and control the end of charging of the battery to be charged by using the battery voltage as a control amount have been filed.
  • the secondary battery charging device disclosed in Japanese Patent Application Laid-Open No. 8-95633 includes a voltage detection circuit that detects a negative potential difference of a charging voltage due to a constant current of a battery to be charged, and a voltage detection circuit that detects a constant current of the battery to be charged.
  • a temperature detection circuit for detecting a change (temperature differential value) of the battery temperature per unit time, a negative potential difference and a temperature differential value detected by the voltage detection circuit and the temperature detection circuit, and various preset standards.
  • a charge control circuit that controls the charge switch by comparing the detected values with the values. The detected negative potential difference and the temperature differential value reach the reference negative potential difference and the temperature differential value that are selected and set in advance. The control is performed when charging is completed.
  • the control unit of the charging device monitors the state of the battery to be charged using the detected value of the battery voltage or the temperature value as a control amount to determine the charging end state. If the end detection method is simply applied ignoring the state of the secondary battery, various inconveniences will occur as described below.
  • the characteristics at the time of charging differ depending on the type of secondary battery, such as the difference in the electrode type and electrolyte type, the difference in the battery structure, and the like. Its characteristics vary greatly depending on differences in environmental conditions, usage history of secondary batteries, electrochemical itineraries, and the like.
  • the rechargeable battery charge time be as short as possible.
  • the applied voltage during charging may be lower than its rated value depending on the type of secondary battery, and in this case, in particular, a considerable amount of time is required until charging is completed. There is a problem that it takes time. Furthermore, there is no way to know how much secondary battery to be charged is stored or how long it takes to charge, which is inconvenient for the user.
  • An object of the present invention is to enable reliable quick charging while preventing uncharged or overcharged secondary batteries, or to apply such charging to a plurality of types of secondary batteries, or It is an object of the present invention to provide a highly convenient secondary battery charger.
  • the charging device for a secondary battery includes: a charging voltage supply unit configured to supply a charging voltage to the secondary battery; and a current detection unit configured to detect a current value of a charging current supplied to the secondary battery. And a charge control device for controlling charging of the secondary battery.
  • the charge control device includes: a full charge-balance voltage value; and a charge applied voltage for obtaining a peak value or a substantially peak value of the charge current.
  • Storage means for storing a predetermined charge application voltage value which exceeds the full charge equilibrium voltage value but does not reach the irreversible chemical reaction area; and a charge voltage supplied from the charge voltage supply means.
  • First step The secondary battery set in the charging device is charged for a predetermined time at the predetermined charging applied voltage value.
  • Second step The applied voltage of the secondary battery is switched from the predetermined applied voltage to the full charge equilibrium voltage.
  • the detected current value is determined by the determination means. If the detected current value is larger than the reference current value for completion of charging, the process returns to the first step and repeats the above flow. If the current value is equal to or less than the charge completion reference current value, charging is stopped.
  • Such charge control allows proper charging to a fully charged state without causing excessive chemical reaction (oxidation-reduction reaction), and does not damage the internal structure of the secondary battery, thus dramatically improving cycle life. be able to.
  • the main charging in this charging device is performed at a predetermined charging applied voltage value exceeding the full charging equilibrium voltage value, a considerably large charging current flows, and the charging time can be reduced.
  • the charge state is checked at the full charge equilibrium voltage value, it is possible to accurately charge the battery to the full charge state.
  • the charging device for a secondary battery of the second aspect of the present invention is the same as that of the first aspect, but the storage means of the charging control device stores the full charge of a plurality of types of secondary batteries.
  • An equilibrium voltage value and the predetermined charging applied voltage value are stored in advance, and by inputting the type of the secondary battery to be charged to the charge control device, the secondary battery is stored in the table of the storage means.
  • a predetermined charge application voltage value corresponding to the type of battery and a full charge equilibrium voltage value are selected and set, and the secondary battery is charged by the set predetermined charge application voltage value and the full charge equilibrium voltage value. It charges.
  • a predetermined charging applied voltage value corresponding to the type of the secondary battery to be charged from the table of the storage means and a full charging equilibrium voltage value are manually adjusted appropriately.
  • the battery can be properly charged to a fully charged state without causing an excessive chemical reaction (redox reaction).
  • the charging by this charging device does not damage the internal structure of the secondary battery, so that the cycle life can be significantly improved.
  • the main charging with this charging device Since the charging is performed at a predetermined charging applied voltage value exceeding the full charging equilibrium voltage value, a considerably large charging current flows, and the charging time can be reduced.
  • the charge state is checked at the full charge equilibrium voltage value, the battery can be charged to the full charge state accurately.
  • the charging device for a secondary battery according to the third aspect of the present invention has the same structure as that of the first aspect, but the storage means of the charging control device includes
  • N (n is a natural number of 2 or more), and stores the full-charge equilibrium voltage value and the predetermined charging application voltage value for the secondary batteries of the types,
  • the secondary battery set in the charging device is charged for a predetermined time at the k-th predetermined charging applied voltage value among the predetermined charging applied voltage values of the n types of secondary batteries.
  • -Fifth step The detected voltage value is compared by the voltage value determination means. If the voltage value is larger than the k-th lowest predetermined charge application voltage value, 1 is added to k. The added value is set as a new k, and the process returns to the second step. On the other hand, if the voltage value is equal to or lower than the k-th lowest predetermined charge application voltage value, the process proceeds to the next sixth step.
  • the charging device for a secondary battery according to the fourth aspect has the same effects as the charging device for a secondary battery according to the first aspect for each type of secondary battery to be charged.
  • the battery can be charged quickly and properly until it is fully charged without causing an excessive chemical reaction (oxidation-reduction reaction) by automatically determining the type of the battery.
  • the charging device for a secondary battery according to the fourth aspect of the present invention has a structure similar to that of the third aspect, and further includes a voltage detection unit that performs charging with the predetermined charging applied voltage value.
  • the difference between the detected charging voltage value and the charging voltage value detected by the voltage detection means during the previous charging with the predetermined charging applied voltage value is within a predetermined range set in advance. It is provided with a voltage difference determining means for determining whether or not the charging of the secondary battery is controlled in accordance with the following first to eighth steps.
  • the secondary battery set in the charging device is charged for a predetermined time with the k-th predetermined charging application voltage value among the predetermined charging application voltage values of the n types of secondary batteries.
  • the detected current value is determined by the current value determination means. If the current value is larger than the charge completion reference current value, the process returns to the second step and repeats the above flow. On the other hand, if the current value is equal to or less than the charge completion reference current value, charging is stopped.
  • the secondary battery charger of the fourth aspect also has the same effect as the secondary battery charger of the first aspect, and automatically determines the type of the secondary battery during the charging process, It can be charged quickly and properly to full charge without causing excessive chemical reaction (redox reaction).
  • a charging device for a secondary battery includes: a charging voltage supply unit configured to supply a charging voltage to the secondary battery; a voltage detection unit configured to detect an open voltage of the secondary battery; And a charge control device for controlling charging of the battery, wherein the charge control device is a charge applied voltage value for obtaining a peak value or a substantially peak value of a charge current, and a full charge equilibrium voltage value.
  • a storage means for storing a predetermined charging applied voltage value which exceeds but does not reach the irreversible chemical reaction region, and a difference voltage which is a difference between the predetermined charging applied voltage value and an open circuit voltage of the secondary battery is preset and set.
  • a difference voltage judging means for judging and comparing with a predetermined judgment reference value.
  • the charging of the secondary battery is controlled according to three steps.
  • Second step In this state, the open-circuit voltage of the secondary battery is detected, and the difference voltage, which is the difference between the predetermined charge application voltage value and the open-circuit voltage, is determined.
  • the battery can be properly charged to a full charge state without causing an excessive chemical reaction (oxidation-reduction reaction), and the internal structure of the secondary battery is not damaged.
  • the service life can be dramatically improved.
  • this charging device detects a difference voltage between a predetermined charging applied voltage value exceeding a full charging equilibrium voltage value and an open voltage of the secondary battery, it is more accurate to determine whether or not the battery is fully charged. Can be determined.
  • the main charging in this charging device is performed at a predetermined charging applied voltage value exceeding the full charging / balancing voltage value, a considerably large charging current flows, thereby shortening the charging time. Can be achieved.
  • a charging device for a secondary battery according to a sixth aspect of the present invention is the same as that of the fifth aspect, but the charging control device is different from the voltage detecting means in place of the difference voltage determining means.
  • the open-circuit voltage is determined by the determining means. If the open-circuit voltage is smaller than a full charge equilibrium voltage value which is a determination reference value, the process returns to the first step and repeats the above flow. On the other hand, when the open circuit voltage is equal to or higher than the full charge equilibrium voltage value, the charging of the secondary battery is stopped.
  • the secondary battery charger of the sixth aspect it is possible to properly charge the battery to a fully charged state without causing an excessive chemical reaction (oxidation-reduction reaction) and to prevent damage to the internal structure of the secondary battery. Can be prevented Therefore, the cycle life can be significantly improved. Furthermore, since the main charging in this charging device is performed at a predetermined voltage value exceeding the full charging equilibrium voltage value, a considerably large charging current flows, thereby shortening the charging time. be able to.
  • a charging device for a secondary battery includes: charging voltage supply means for applying a predetermined voltage to the secondary battery; and a power supply to the secondary battery when the predetermined voltage is being applied.
  • Current detecting means for detecting a current value of the charging current to be charged, and charging time estimating means for calculating a required charging time until full charge based on the detected current value.
  • the required charging time until full charging can be ascertained by an easy method of detecting the current value, and the convenience is improved.
  • the required charging time is defined as a time until a current value detected by the current detecting means reaches a charging completion reference current value detected at the time of completion of charging, and the current value is equal to or less than the charging completion reference current value. It may be configured to stop charging at the time of.
  • the charging of the secondary battery may be stopped after the required charging time has elapsed, and the charging can be reliably stopped by such a simple configuration.
  • this allows proper charging to a full charge state without causing a chemical reaction (oxidation-reduction reaction) due to overcharging, and does not damage the internal structure of the secondary battery. It can be dramatically improved.
  • charging voltage supply means for applying a predetermined voltage to the secondary battery, and when the predetermined voltage is being applied to the secondary battery,
  • Current detecting means for detecting a current value of the charging current to be supplied; and a current detecting means for detecting a current value by the current detecting means.
  • a charging device for a secondary battery may include a charging rate deriving unit that calculates a charging rate of the secondary battery.
  • the charging rate indicating how much the battery is charged at the present time can be grasped by an easy method of detecting the current value, thereby improving convenience. I do.
  • the charging voltage supply means applies a voltage exceeding the predetermined voltage to the secondary battery for a predetermined time, and then changes the applied voltage to The voltage is switched to a predetermined voltage, and the value of the current flowing at this time is detected by the current detecting means.
  • the charging device for a secondary battery includes: a charging voltage supply unit configured to supply a charging voltage to the secondary battery; and a current detection unit configured to detect a current value of a charging current supplied to the secondary battery.
  • the charging control device comprises: a full-charge equilibrium voltage value; a peak value of a charging current; A predetermined charge application voltage value which is a charge application voltage value for obtaining a substantially peak value, and which exceeds the full charge equilibrium voltage value but does not reach the irreversible chemical reaction region; Switching means for switching the charging voltage supplied from the voltage supply means to the predetermined charging applied voltage value or the full charging equilibrium voltage value; and a required time until full charging based on the current value detected by the current detecting means.
  • a charging time prediction means for determining a charging time; Comprising:
  • the charging of the secondary battery is controlled according to the following first to sixth steps.
  • First step The secondary battery set in the charging device is charged for a predetermined time at the predetermined charging applied voltage value.
  • Second step The applied voltage of the secondary battery is switched from the predetermined applied charge voltage value to the full charge equilibrium voltage value.
  • the charging time estimating means calculates the required charging time until full charging based on the detected current value.
  • the charging of the secondary battery can be performed mainly at a predetermined charging applied voltage value exceeding the full-charge equilibrium voltage value.
  • the battery can be supplied to the battery, thereby shortening the charging time.
  • a full-charge equilibrium voltage value is applied to the secondary battery, the current value detected when the secondary battery is fully charged is almost 0, making it easy to detect.
  • the time can be determined accurately, and convenience is improved.
  • the charging is stopped when the required charging time has been reached, so that the battery can be properly charged to a fully charged state without causing an excessive chemical reaction (oxidation-reduction reaction). Since the internal structure of the battery is not damaged, the cycle life can be significantly improved.
  • a charging device for a secondary battery includes: a charging voltage supply unit configured to supply a charging voltage to the secondary battery; and a current detection unit configured to detect a current value of a charging current supplied to the secondary battery. Means, and a charge control device for controlling charging of the secondary battery, wherein the charge control device obtains a full charge equilibrium voltage value and a peak value or a substantially peak value of a charging current. A predetermined charge application voltage value that exceeds the full charge equilibrium voltage value but does not reach the irreversible chemical reaction region; and a storage unit storing: a charge voltage supplied from the charge voltage supply unit.
  • Switching means for switching to the predetermined charge applied voltage value or the full charge equilibrium voltage value; and a charging rate of the secondary battery at the time when the current value is detected by the current detection means.
  • a determination means for comparing and determining the charging rate determined by the charging rate derivation means with a determination reference value input and set in advance.
  • the charging of the secondary battery is controlled according to the following first to fifth steps.
  • -First step The secondary battery set in the charging device is charged at the predetermined charging applied voltage value for a predetermined time.
  • Second step The applied voltage of the secondary battery is switched from the predetermined applied charging voltage value to the full charging equilibrium voltage value.
  • the determined charging rate is determined by the determining means, and if the charging rate is detected below the determination reference value, the process returns to the first step and repeats the above flow. When the charging rate becomes equal to or more than the determination reference value, charging is stopped.
  • the rechargeable battery can be charged mainly with a predetermined charging applied voltage value exceeding the full-charge equilibrium voltage value, so that a considerably large charging current is applied to the secondary battery.
  • the battery can be supplied to the battery, thereby shortening the charging time.
  • the current value detected when the secondary battery is fully charged is substantially zero, so that the detection is easy, and the charging rate at the present time is Can be obtained accurately, and convenience is improved.
  • the battery can be charged properly to a fully charged state without causing a chemical reaction (oxidation-reduction reaction) due to overcharging. Since the internal structure of the battery is not damaged, the cycle life can be significantly improved.
  • the amount of charge injected into the secondary battery can be easily counted, and if a large-capacity capacitor is used as a medium, a large amount of charge can be stored in a short time. Injection into the secondary battery, that is, a large current can flow, thereby shortening the charging time.
  • the method can be implemented at low cost and the reliability can be improved.
  • a battery charging device for a secondary battery includes: a check power supply unit that applies a predetermined voltage to the secondary battery; and a current detecting unit that detects a current value supplied to the secondary battery.
  • a current value determining means for comparing the detected current value with a previously set charging completion reference current value, wherein the closed power supply circuit is shut off by the check power supply unit.
  • a predetermined voltage is applied to the secondary battery, a current value flowing at this time is detected, and the detected current value is compared with a predetermined charge completion reference current value.
  • the current value is larger than the above, the power storage and transfer control are repeatedly performed.
  • the current value is equal to or smaller than the charge completion reference current value, the charging of the secondary battery is stopped.
  • the battery can be properly charged to a fully charged state without causing an excessive chemical reaction (oxidation-reduction reaction), and the internal structure of the secondary battery is damaged.
  • the cycle life can be significantly improved because it can be prevented from being given.
  • the state of charge of the secondary battery can be monitored during the storage period of the capacitor, so that the charging time can be further reduced. Then, by setting the predetermined voltage to a full-charge equilibrium voltage value, it is determined that a full charge state has been reached if the detected current value is 0 or less for any secondary battery. It is possible to easily and accurately determine whether the battery is fully charged.
  • the battery charging device for a secondary battery includes a voltage detecting means for detecting an open voltage of the secondary battery, and a voltage for comparing the detected open voltage with a full-charge equilibrium voltage value. And a value judging means, wherein the open-circuit voltage of the secondary battery is detected in a state in which the closed-loop circuit is shut off, and the detected open-circuit voltage is compared with a full-charge equilibrium voltage value. When the voltage is lower than the full-charge equilibrium voltage value, the storage and transfer control is repeated, and when the open-circuit voltage is equal to or higher than the full-charge equilibrium voltage value, charging of the secondary battery is stopped. ing.
  • the battery can be properly charged to a fully charged state without causing an excessive chemical reaction (oxidation-reduction reaction), and the internal structure of the secondary battery is damaged.
  • the cycle life can be significantly improved because it can be prevented from being given.
  • the state of charge of the secondary battery can be observed, so that the charging time can be further reduced.
  • a charging device for a secondary battery is for charging a plurality of secondary batteries, wherein charging voltage control means for applying a voltage to the secondary battery; Control means for grasping the state of charge; and battery designation switching means for switching a secondary battery to which a charging voltage is applied based on a charge completion signal from the control means.
  • each secondary battery since each secondary battery is reliably charged one by one while checking its charge state, an uncharged secondary battery may be generated,
  • all secondary batteries can be properly charged to a fully charged state without causing excessive chemical reaction (redox reaction) due to overcharging.
  • redox reaction chemical reaction
  • this can prevent damage to the internal structure of each secondary battery, so that the cycle life can be significantly improved.
  • a check voltage control means for applying a full charge equilibrium voltage value when grasping a charge state of the secondary battery, and a voltage switching means for switching between the charge voltage and the check voltage
  • Current detection means for detecting the current of the secondary battery when the check voltage is applied
  • control means for grasping the state of charge of the secondary battery based on a signal from the current detection means.
  • a voltage switching unit configured to switch the application of the charging voltage or to stop the application of the charging voltage
  • a voltage detection unit that detects an open voltage of the secondary battery when the application of the charging voltage is stopped. Means, and control means for ascertaining the state of charge of the secondary battery based on a signal from the voltage detecting means.
  • the charging voltage applied to the secondary battery is a charging applied voltage value that obtains a peak value or a substantially peak value of a charging current, and exceeds a full charge equilibrium voltage value. May be a predetermined charging applied voltage value that does not reach the irreversible chemical reaction region.
  • the battery charger for a secondary battery controls charging of a plurality of secondary batteries
  • a battery switching means for switching to charging of the next uncharged secondary battery is provided, and the secondary batteries are individually charged.
  • the control is easy, and it is possible to reliably charge all the secondary batteries. Become.
  • the charging device includes a notifying unit that notifies the required charging time, the charging rate, or the charging completion, or the charging state of the secondary battery being charged, May be improved.
  • the charging device for a secondary battery includes charging voltage supply means for supplying a charging current to the secondary battery, and a plurality of secondary batteries are connected in series to the charging voltage supply means. Connected to form a secondary battery group, and when one secondary battery is fully charged, the next uncharged secondary battery is charged, and a plurality of secondary batteries in this secondary battery group are charged. Are configured to be charged sequentially.
  • each rechargeable battery can be charged even if there is a difference in characteristics between the rechargeable batteries. Can be prevented from appearing. As a result, the original performance of the secondary battery can be sufficiently achieved, the life of the battery (pack power source) can be extended, and the equipment using the pack power source can be driven stably.
  • the charging device of the sixteenth aspect is a charging device of the various aspects described above, which has a structure that switches between large-current charging with high voltage application and charging with low-controlled voltage application.
  • each secondary battery is prevented from being excessively charged. Since the battery can be properly charged to a fully charged state, it becomes a so-called gentle charge for each rechargeable battery, preventing the internal structure from being damaged. As a result, the cycle life can be significantly improved, and the cost burden can be reduced.
  • a relatively large charging current can be passed through each secondary battery, so that the charging time per battery can be reduced.
  • the charging device for a secondary battery according to the sixteenth aspect after charging each secondary battery of a certain secondary battery group, connects the secondary battery connected in parallel with this secondary battery group.
  • Each secondary battery of the battery group may be configured to be charged.
  • the charging device for a secondary battery according to the sixteenth aspect may be configured to enable charging of a plurality of secondary battery groups in parallel.
  • charging of each secondary battery group can be started at the same time, and the charging time as a whole can be further shortened. Shortening can be achieved, and the usability is excellent for users.
  • the charging device for a secondary battery according to the sixteenth aspect may be configured such that a plurality of secondary battery groups can be used in series and in parallel.
  • the charge control device may be configured to determine a full charge equilibrium voltage value and a charge applied voltage value that obtains a peak value or substantially a peak value of a charge current, and the charge control device exceeds the full charge equilibrium voltage value but is irreversible.
  • the secondary battery In a charging device having a structure in which a predetermined charging application voltage value that does not reach the reaction region is stored and the voltage value is switched to control the application of the voltage, the secondary battery is operated at the predetermined charging application voltage value.
  • Short-circuit means for short-circuiting between the terminals of the secondary battery may be provided after the application for a predetermined time and before the applied voltage is switched to the full-charge equilibrium voltage value.
  • the charging device for a secondary battery includes: a charging voltage supply unit configured to supply a charging voltage to the secondary battery; a voltage detection unit configured to detect a battery voltage of the secondary battery; Means for comparing and determining the battery voltage value of the secondary battery after the completion of charging detected by the means and a recharge voltage value lower than the full-charge equilibrium voltage value. When the battery voltage value becomes equal to or less than the recharge voltage value, a charge voltage is supplied by the charge voltage supply means to perform recharge.
  • the battery voltage of the rechargeable battery taken out of the charger is always higher than the recharge voltage value, and is in a state suitable for use. Can be improved.
  • the charging device for a secondary battery includes: The charging state is checked, a series of charging operations for charging at a predetermined charging voltage for a predetermined time are repeated, and charging is stopped when it is determined that the charging state has been reached to a full charging state. A relaxation time is provided between the series of charging operations.
  • the charging device for a secondary battery is for charging a plurality of secondary batteries, and after checking a charging state of the secondary battery, at a predetermined charging voltage for a predetermined time.
  • a series of charging operations for charging are performed alternately for each uncharged secondary battery, and as a turn, the secondary battery is charged while repeating the evening.
  • the battery is configured to stop charging from the secondary battery that has been determined to have reached the fully charged state, and the relaxation time is a series of charging operations for each secondary battery last night. This is the time between the completion of the operation and the start of a series of charging operations in the next turn.
  • charging is suspended from the completion of the series of charging operations in the evening before the start of the series of charging operations in the next turn.
  • This rest period becomes the relaxation time, the electrode surface is stabilized, and the full charge state can be checked accurately in the next turn, improving reliability.
  • an electrode reaction occurs on the surface of the electrode in contact with the electrolyte, and the process of this electrode reaction is the movement of the reactant from inside the electrolyte to the electrode surface, and the reaction between the reactant and the electrode.
  • the transfer of electrons between the electrodes and the transfer of the product from the electrode surface to the inside of the electrolyte are simultaneous processes, and this transfer takes a considerable amount of time.
  • the ions may be detected as if they have reached a fully charged state due to ions in the moving process that are electrophoresing near the electrode surface. It is effective to provide a relaxation time to prevent this erroneous detection, and the charging of the secondary battery of the nineteenth aspect is effective. In the electrical equipment, a reasonable and effective relaxation time is provided as part of the charging cycle for each secondary battery.
  • a cooling unit for cooling the heat generating unit in the charging device may be provided.
  • the heat generated by the heat-generating portions such as the heat-generating element is suppressed, and the heat transfer to the secondary battery is prevented, and the excessive chemical reaction (oxidation-reduction reaction) inside the secondary battery is not promoted.
  • the user is not perceived as an illusion as if the secondary battery was heated.
  • the rechargeable battery is properly charged to a fully charged state, and it is possible to prevent the internal structure of the rechargeable battery from being damaged, thereby dramatically improving the cycle life. .
  • the charging device for a secondary battery according to the twentieth aspect of the present invention is provided with a removal means for removing the secondary battery set on the seat of the charging device with one touch. Thereby, the secondary battery can be easily taken out, and convenience is improved.
  • the take-out means includes an operation member that is pressed down by a user, a push-up member that pushes up the secondary battery set in the seat portion, and a shaft that pushes up the push-up member.
  • the negative side of the push-up member protrudes and retracts from the seat of the charging device, and the secondary battery can be easily removed with a single touch, thereby improving convenience.
  • the take-out means may be configured such that one longitudinal side of the seat is depressed.
  • an object of the present invention is to enable reliable quick charging while preventing uncharged or overcharged secondary batteries, or to perform such charging for a plurality of secondary batteries. It is an object of the present invention to provide a rechargeable battery charging method that can be used.
  • a full-charge equilibrium voltage value and a charge application voltage value that obtains a peak value or a substantially peak value of a charging current, which exceeds the full-charge equilibrium voltage value A predetermined charging applied voltage value that does not reach the irreversible chemical reaction area is stored in advance, and after applying the secondary battery at the predetermined charging applied voltage value for a predetermined time, the applied voltage is charged to the full level.
  • the current value flowing to the secondary battery is detected while the voltage is being applied at the full charge equilibrium voltage value, and the detected current value is compared with the charge completion reference current value. When the current value is larger than the charge completion reference current value, the secondary battery is applied again at the predetermined charge application voltage value, and the above flow is repeated. Stops charging the rechargeable battery when the current value is less than A.
  • charging can be performed properly to a fully charged state without causing a chemical reaction (oxidation-reduction reaction) due to overcharging, and the internal structure of the secondary battery is not damaged.
  • the cycle life can be significantly improved.
  • the main charging in this method is performed at a predetermined charging applied voltage value exceeding the full charging equilibrium voltage value, a considerably large charging current flows, and the charging time can be reduced.
  • a full-charge equilibrium voltage value and a peak value or a substantially peak value of a charging current for n (n is a natural number of 2 or more) types of secondary batteries are provided.
  • a predetermined applied voltage value that exceeds the full charge equilibrium voltage value but does not reach the irreversible chemical reaction region is stored in advance. Charge the rechargeable battery according to the steps.
  • the secondary battery is charged for a predetermined time at a k-th predetermined charging application voltage value among predetermined charging application voltage values of n types of secondary batteries.
  • '3rd step If k- ⁇ , jump to the 6th step.
  • 'Fourth step While the secondary battery is being charged at the k-th lowest predetermined applied voltage value for a predetermined time, the voltage value applied to the secondary battery is detected.
  • Step 8 If the detected current value is larger than the charging completion reference current value, the process returns to the second step and repeats the above flow. If the current is equal to or less than the completion reference current value, charging is stopped.
  • the method for charging a secondary battery according to the second aspect has the same effect as the method for charging a secondary battery according to the first aspect.
  • the type of the secondary battery is automatically determined. It can be charged quickly and properly to full charge without causing a chemical reaction (oxidation-reduction reaction) due to overcharging.
  • a full-charge equilibrium voltage value and a peak value or a substantially peak value of a charging current for n are provided.
  • the applied voltage value to obtain A predetermined charge application voltage value that exceeds the full charge equilibrium voltage value but does not reach the irreversible chemical reaction region is stored in advance, and the secondary battery is charged according to the following first to eighth steps.
  • Second step The secondary battery is charged for a predetermined time at a k-th predetermined charging application voltage value among the predetermined charging application voltage values of the n types of secondary batteries.
  • the method of charging the secondary battery according to the third aspect also has the same effect as the method of charging the secondary battery according to the first aspect.
  • the battery can be charged quickly and properly until it is fully charged without causing a chemical reaction (redox reaction) due to overcharging by automatically determining the type of the battery.
  • the battery voltage value of the secondary battery after charging is monitored, and the battery voltage value is lower than the full-charge equilibrium voltage value. Recharging is performed when:
  • the battery voltage of the secondary battery taken out of the charging device is always higher than the recharge voltage value, and is in a state suitable for use. Can be planned.
  • the charging state of the secondary battery is checked, a series of charging operations for charging at a predetermined charging voltage for a predetermined time are repeated, and the charging state is checked.
  • the charging is stopped when it is determined that the battery has reached the fully charged state, and a relaxation time is provided between the series of charging operations.
  • a charging method for a secondary battery is a charging method for charging a plurality of secondary batteries, wherein the charging state of the secondary battery is checked, and then the battery is charged at a predetermined charging voltage for a predetermined time.
  • a series of charging operations is performed alternately for each uncharged secondary battery, and as a turn, a plurality of secondary batteries are charged while repeating the evening, and the charging state check is completed. Stop charging from the secondary battery that is determined to have reached the charged state.
  • the relaxation time is calculated for each rechargeable battery in a series of This is the time between the completion of the charging operation and the start of a series of charging operations in the next turn.
  • charging is suspended from completion of a series of charging operations in the previous turn in each secondary battery to start of a series of charging operations in the next turn, This rest period becomes the relaxation time, the electrode surface is stabilized, and the full charge state can be checked accurately in the next turn, improving reliability.
  • an electrode reaction occurs on the surface of the electrode in contact with the electrolyte, and the process of this electrode reaction is the movement of the reactant from inside the electrolyte to the electrode surface, and the reaction between the reactant and the electrode.
  • the transfer of electrons between the electrodes and the transfer of the product from the electrode surface to the inside of the electrolyte are simultaneous processes, and this transfer takes a considerable amount of time.
  • the ions may be detected as if they have reached a fully charged state due to ions in the moving process that are electrophoresing near the electrode surface. In order to prevent this false detection, it is effective to provide a relaxation time.
  • a rational and effective method is provided as a part of a charging cycle for each secondary battery. Has a relaxation time.
  • FIG. 1 is a block diagram showing a configuration of a charging device for a secondary battery 1 according to the first to eighth embodiments.
  • FIG. 2 is a circuit diagram for measuring the electromotive force of the secondary battery 1.
  • FIG. 3 is a graph showing current-voltage characteristics for each charging rate of the secondary battery 1.
  • FIG. 4 is a graph showing the relationship between the current value of the secondary battery 1 and the required charging time.
  • FIG. 5 is a flowchart showing charging control by the charging device for the secondary battery 1 according to the first embodiment.
  • FIG. 6 is a circuit diagram for switching the terminal voltage of the secondary battery 1 according to the first embodiment.
  • FIG. 7 is a time chart showing switching of the terminal voltage of the secondary battery 1 according to the first embodiment.
  • FIG. 8 is a graph showing the applied voltage accompanying the switching of the terminal voltage of the secondary battery 1 according to the first embodiment.
  • Fig. 9 is a graph showing the battery terminal voltage, charging current, and check current of the nickel-hydrogen secondary battery over time.
  • FIG. 10 is a graph showing the battery terminal voltage, the charging current, and the check current of the nickel-oxide secondary battery over time.
  • FIG. 11 is a flowchart showing charging control of the secondary battery 1 by the charging device according to the second embodiment.
  • FIG. 12 is a flowchart showing charging control of the secondary battery 1 by the charging device according to the second embodiment.
  • FIG. 13 is a flowchart showing charging control by the charging device for the secondary battery 1 according to the third embodiment.
  • FIG. 14 is a flowchart showing charging control by the charging device for the secondary battery 1 according to the third embodiment.
  • Figure 1 5 is Ru graph der showing the relationship between the differential voltage / d E s is the difference between the predetermined charging voltage E and the open-circuit voltage E x of the secondary battery 1 and the required charging time.
  • FIG. 16 is a flowchart showing charging control by the charging device for the secondary battery 1 according to the fourth embodiment.
  • FIG. 17 is a flowchart showing charging control by the charging device for the secondary battery 1 according to the fifth embodiment.
  • FIG. 18 is a flowchart illustrating charging control by the charging device for the secondary battery 1 according to the sixth embodiment.
  • FIG. 19 is a flowchart showing charging control by the charging device for the secondary battery 1 according to the seventh embodiment.
  • FIG. 20 is a block diagram showing a configuration of a charging device for the secondary battery 1 according to the eighth and ninth embodiments.
  • FIG. 21 shows a charging system using the charging device for the secondary battery 1 according to the eighth embodiment. It is a flow chart showing control.
  • FIG. 22 is a flowchart showing charging control by the charging device for the secondary battery 1 according to the ninth embodiment.
  • FIG. 23 is a diagram showing a configuration of a basic electric circuit for charging the secondary battery 1 in the eighth embodiment and the ninth embodiment of the charging device for the secondary battery 1.
  • FIG. 24 is a block diagram showing a configuration of the charging device for the secondary batteries 1-1,... According to the tenth and eleventh embodiments.
  • FIG. 25 is a flowchart showing the charging control by the charging device for the secondary batteries 1, 1,... According to the tenth embodiment.
  • FIG. 26 is a flowchart showing charging control by the charging device for the rechargeable batteries 1 1 1 according to the eleventh embodiment.
  • FIG. 27 is a block diagram showing a configuration of a charging device for rechargeable batteries 1 1 1 according to the twelfth embodiment.
  • FIG. 28 is a flowchart showing charging control by the charging device for the rechargeable batteries 1 1 1 according to the twelfth embodiment.
  • FIG. 29 is a plan view showing the configuration of the charging device 50 for the secondary batteries 1 1 1 according to the fourteenth embodiment.
  • FIG. 30 is a side cross-sectional view showing a configuration of a charging device 50 for the secondary batteries 1 1 1 according to the fifteenth embodiment.
  • FIG. 31 is a rear cross-sectional view showing a configuration of a take-out means of the charging device 50 of the secondary batteries 1 1 ⁇ according to the sixteenth embodiment.
  • FIG. 32 is a side cross-sectional view showing the structure of the take-out means of the charging device 50 for the secondary batteries 1 1, 1 • according to the seventeenth embodiment.
  • the highest applied voltage (predetermined charge) outside the irreversible chemical reaction region so as not to damage the internal structure of the secondary battery. It is characterized in that a large current flows through the secondary battery by applying an applied voltage value, and charging is performed while periodically checking for full charge (at the end of charging). This full charge state check at the full charge equilibrium voltage value instantaneously and accurately The state of charge can be determined.
  • the time required to complete charging can be reduced to within 30 minutes, and the battery can be fully charged without causing excessive chemical reaction (redox reaction).
  • the battery can be properly charged to the charged state, and as a result, the cycle life can be improved to 500,000 times or more without damaging the internal structure of the secondary battery.
  • the charging device shown in FIG. 1 charges a secondary battery 1, and includes a power supply unit 2, a current detection unit 3, a voltage detection unit 9, and a program / operation control unit 4.
  • the power supply unit 2 includes a transformer and rectifier circuit for converting commercial AC electricity into DC.
  • the current detection unit 3 detects a value of a charging current supplied to the secondary battery 1.
  • the voltage detector 9 detects a voltage value applied to the secondary battery 1 or a charging voltage of the secondary battery 1.
  • the program / operation control unit 4 is a charge control unit that controls charging of the secondary battery 1, and includes a current value detected by the current detection unit 3 and a current value detected by the voltage detection unit 9. The voltage value is transmitted.
  • the program / operation control unit 4 serving as the charge control means includes a full-charge equilibrium voltage E eq (see FIG. 3) according to the type or model of the secondary battery 1 obtained in advance by a test or the like, and the full-charge equilibrium voltage.
  • a predetermined charging applied voltage value E s exceeding the value E eq see Fig. 3. While increasing the voltage applied to the rechargeable battery 1 having a charging rate of approximately 0%, the ratio of the increase in the charging current to the increase in the applied voltage ( delta iota Zeta delta E) is decreased by storage means for the charging current is stored and irreversible chemical reaction region voltage value corresponding to the current peak one click value I s.
  • the program / arithmetic control unit 4 stores a program for determining whether or not the secondary battery 1 has reached a full charge and calculating a required charging time t until the secondary battery 1 is fully charged. ing.
  • Reference numeral 5 denotes a voltage / current control unit that performs switching control of the voltage and current applied to the secondary battery 1 based on a command from the program / operation control unit 4. That is, the voltage / current control unit 5 controls the charging of the secondary battery 1 Configuring the switching means changing disconnect the voltage to a predetermined special charging voltage E s or equilibrium voltage E eq at full charge or the like.
  • Reference numeral 6 denotes a charge that supplies the charging voltage determined by the voltage / current control unit 5 to the secondary battery 1 in response to a start instruction, and completes charging in response to a termination instruction from the program / operation control unit 4. Shows the voltage supply section.
  • Reference numeral 7 denotes a display unit for displaying the required charging time t or the like calculated by the program / operation control unit 4, and reference numeral 8 denotes an operation unit for the user to perform a start operation or the like.
  • the display unit 7 is configured to visually notify the user of the required charging time t and the like, but may be configured to be notified by voice or the like.
  • the configuration of the notification means is not particularly limited.
  • a secondary battery is a battery that can be charged and discharged repeatedly, and is used by converting electrical energy into chemical energy and storing it, and vice versa. You.
  • Representative examples of the secondary battery 1 that are practically used include a nickel-cadmium battery, a nickel-hydrogen metal battery, a lithium ion battery, and a NAS battery.
  • the nickel-cadmium battery separates the positive electrode using nickel oxyhydroxide (Ni (OOH)) and the negative electrode using cadmium (C d) by a synthetic resin separator,
  • Ni nickel oxyhydroxide
  • C d cadmium
  • the electrolyte is an aqueous solution containing potassium hydroxide having high conductivity as a main component, and lithium hydroxide, sodium hydroxide, or the like is added as needed to improve the characteristics of the positive electrode.
  • C d cadmium
  • OH— hydroxide ions
  • e- electrons
  • a successful cycle means that the positive electrode is rich in water (H 2 ⁇ ), the product nickel hydroxide (N i (OH) 2 ) is low in concentration, and the negative electrode is hydroxylated. Low cadmium (C d (OH) 2 ) concentration. This can be expressed by the following equation.
  • E emf E ° + ((R ⁇ T) F) ⁇ 1 n (C a (C N ⁇ C c ))
  • E G is the standard electromotive force, a positive electrode, a material to thus determined constants constituting the negative electrode, not dependent on their amount.
  • the standard electromotive force E ° is about 1.2 [V (port)] in the case of a nickel-powered nickel-metal battery.
  • R is the gas constant
  • T is the absolute temperature
  • F is Faraday's number.
  • the concentration of water (H 20 ) C a in the positive electrode High, the lower the concentration C N of nickel hydroxide (N i (OH) 2) , the electromotive force E emf increases. Further, in the negative electrode, the hydroxide cadmium (C d (OH) 2) The electromotive force E emf increases as the concentration C c decreases. A large electromotive force E emf means a large amount of stored power.
  • the circuit shown in FIG. 2 may be formed to accurately know the state of charge of the secondary battery 1. That is, connect the variable power supply 1 1 to the secondary battery 1 Then, the potential of the variable power supply 11 is adjusted to a potential that balances the electromotive force E of the secondary battery 1. That is, the variable power supply 11 is adjusted so that the current detected by the current detection unit 3 becomes ⁇ 0 [mA (milliampere)], whereby the electromotive force E emf of the secondary battery 1 is indirectly measured. In this way, the electromotive force E emf in the fully charged state of the secondary battery 1 is measured for each type or model, and the data is input to the storage means of the program / operation control unit 4.
  • the horizontal axis of the graph in Fig. 3 shows the battery terminal voltage (applied voltage), and the vertical axis shows the charging current, and shows the voltage-current characteristics of each secondary battery 1 having a different charging rate. .
  • the dotted line ⁇ indicated by a broken line indicates the voltage-current characteristic when charging the rechargeable battery 1 having a charging rate of approximately 0%.
  • a voltage E a lower than the standard voltage E Q (nominal voltage) is applied. Even when the charging current starts flowing, the applied voltage (battery terminal voltage) when the charging current starts flowing is the open-circuit voltage.
  • the open-circuit voltage increases as the charging rate increases.
  • Daraf ⁇ indicated by a dashed line in FIG. 3 indicates a voltage-current characteristic when the rechargeable battery 1 having a charging rate of about 50% is charged, and the applied voltage is increased (from 0 [V]).
  • One was the open circuit voltage E beta the charging current begins to flow in the secondary battery 1 when the charge rate is higher than the open circuit voltage E a of approximately 0% of the secondary battery 1.
  • the graph ⁇ indicated by the two-dot chain line in FIG. 3 shows the voltage first current characteristic during charge of the charging rate of about 90% of the secondary battery 1, open-circuit voltage E tau in (E r> E ⁇ ) is there.
  • the secondary battery 1 has an open circuit voltage E ⁇ ( ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ , ⁇ , ⁇ , ),
  • the charging current increases substantially in proportion to the applied voltage, and after a predetermined voltage (inflection point in the voltage-current curve), the rate of increase of the charging current with respect to the applied voltage ( ⁇ ⁇ ⁇ ) decreases, and eventually, even if the applied voltage is increased, the charging current does not increase at all, and the charging current reaches the current peak value I s . To reach.
  • the applied voltage value corresponding to is E s
  • the predetermined charging applied voltage value E s is a voltage value specific to the secondary battery 1 determined by the type of the secondary battery 1, the deterioration state of the secondary battery 1, and the like.
  • the secondary battery 1 When the voltage exceeds the predetermined special charging voltage E s is applied, the secondary battery 1, the flow advances further redox reaction of the active material inside, sparked electrolysis reaction, the negative resistance characteristic Appearance and abnormalities such as unintended heat generation reaction and swelling may possibly lead to breakage of the internal structure of the secondary battery 1. If not, the irreversible chemical reaction will extend and greatly affect the cycle life of the secondary battery 1.
  • the area defined by the relationship between the charging current and the applied voltage at which such an irreversible chemical reaction that adversely affects the secondary battery 1 occurs is the irreversible chemical reaction area D indicated by oblique lines in FIG. .
  • the minimum voltage (voltage on the reaction watershed) in the irreversible chemical reaction zone D decreases as the charging rate increases (the charging current decreases).
  • the storage capacity of the secondary battery 1 is obtained by multiplying the charging current by the charging time, if the charging time is to be shortened, it is necessary to increase the charging current.
  • the charging current can be increased as the applied voltage is increased.
  • the secondary battery 1 regardless of the charging rate (also charging rate is 0% substantially, even substantially 1 0 0%), the place of the constant charge applied voltage E s When a voltage is applied, without cause an irreversible chemical reaction, I e Q. Higher peak value I s . It has the potential to receive the charging current of, and by flowing such a large charging current, the charging time is drastically shortened compared to charging by applying the voltage of the full charge equilibrium voltage E e Q. be able to.
  • the applied voltage value is irreversibly changed.
  • Chemical reaction region D outside the highest charging current (current peak value I s.) Fixed to said predetermined special charging voltage E s which can supply the make large current charging, timely application voltage value Is switched to the above-described full-charge equilibrium voltage value E eq to reduce the charging current, and it is determined whether or not the secondary battery 1 is in the fully charged state during the application of the voltage at this voltage value.
  • the value of the applied voltage for large current charging is the current peak value I s . It is not limited to said predetermined special charging voltage E s corresponding to.
  • the voltage value corresponding to the slightly lower have a current value than that ( ⁇ E S) may be used. That is, as shown in FIG. 3, while increasing the voltage applied to the secondary battery 1 having a charging rate of approximately 0%, the rate of increase of the charging current ( ⁇ ⁇ ⁇ ⁇ ) with respect to the applied voltage decreases. When the charging current hardly increases (slightly increases), charging may be performed at a charging applied voltage value corresponding to a current value outside the irreversible chemical reaction region D.
  • the current peak value I s also occurs when charging using this charging applied voltage value. Near current flows, enabling high-current charging.
  • the predetermined terms sets the charging applied voltage value E s, in each type of secondary battery 1, charging electrostatic Nagarepi Ichiku value I s unchanged regardless of changes in charging rate.
  • the charging current has a peak value I s within a constant applied voltage change range. May be set based on the voltage-current characteristic graph ⁇ in the case where the charging rate is approximately 0% shown in FIG. That is, the applied voltage corresponding to the charging current when the rate of increase of the charging current that increases with the applied voltage decreases to 0 or substantially 0, and the voltage before reaching the irreversible chemical reaction region D Value to the specified charging applied voltage It is to set as the value E s.
  • charging is switched from high-current charging to charging at the full-charge equilibrium voltage value in a timely manner, and based on detection of the charging current, whether subsequent charging is high-current charging or full-charge charging voltage This is a method of determining
  • the charging device of the first embodiment is configured as shown in FIG. 1, and the program / operation control unit 4 stores the full-charge equilibrium voltage value E e .
  • a check current value determination program for comparing and determining the check current value i detected by the current detection unit 3 during application of the secondary battery 1 with a preset charge completion reference current value J;
  • a charge time prediction program for obtaining a required charge time t until full charge based on the check current value i detected by the current detection unit 3 during application of the full charge equilibrium voltage value E eq is incorporated. That is, the program / operation control unit 4 functions as a check current value determination unit and a charging time prediction unit.
  • the charging apparatus of the first implementation embodiment (or slightly less than) of the predetermined special charging voltage E s to the secondary battery 1 voltage fixed time and 1 ⁇ applied, after a large current charging, it switches the applied voltage to the ⁇ charge balanced voltage value E eq, the current value i during the application of the voltage at the equilibrium voltage E eq at full charge
  • the required charging time t from the current value i to the full charge is detected, the required charging time t is displayed on the display unit 7 of the secondary battery 1 by an LED, an LCD, or the like.
  • the required charging time t until the full charge is obtained from, for example, a graph showing the relationship between the current value i and the required charging time t as shown in FIG. You can ask.
  • the current value i detected when the voltage of the full charge equilibrium voltage value E eq is applied to the secondary battery 1 having the charging rate of 0% is I e Q. (See Fig. 3)
  • the program and the arithmetic and control unit 4 are stored in a table stored in advance in a storage unit. and a predetermined special charging voltage E s corresponding to the type of the secondary battery 1, and the equilibrium voltage E eq at full charge are selected respectively (step a 1).
  • the charging applied voltage value E s, and equilibrium voltage E eq at full charge is a value set in advance by the nickel one cadmium, nickel monohydrogen type and model number, such as a lithium ion secondary battery, for example, for nickel Ichika cadmium secondary battery, the equilibrium voltage E eq at full charge is about 1.4 1 [V], also, about the higher than the charging applied voltage value E s 1. 8 0 [V] is selected.
  • Step A2 when the user performs a charging start operation by operating the operation unit 8 (Step-up A 2), the secondary battery voltage of a predetermined special charging voltage E s to 1, Jo Tokoro time (constant time) 1 ⁇ Continuously applied (step A3).
  • the time required from the detected current value i to the full charge that is, the current value i is estimated to be a charge completion reference current value J (detected at the time of full charge)
  • the required charging time t until the current value is reached is calculated, and the required charging time t is displayed on the display unit 7 (step A7).
  • the detected current value i is compared with the charge completion reference current value J by the check current value determination program (step A 8), and the current value i is determined as the charge completion reference current value. If the current value i is larger than the value J, the flow returns to the step A3 to repeat the above-described flow (charging control). Assuming that the next battery 1 has reached the fully charged state, charging is stopped here (step A9).
  • the current value i is obtained at a charge rate of 100% (full charge state). Is 0 [mA], but in practice, there is a slight variation depending on the battery, so if the overcharge due to this is to be prevented, the charge completion reference current value J is larger than 0 [mA]. It is preferable to set a slightly larger value, for example, about 10 [mA]. No. In this case, the required charging time t is a time until the current value i reaches 10 [mA] or less.
  • the structure differs depending on the shape or the like, if example embodiment, in the case of nickel one cadmium rechargeable battery And about 120 [seconds] are selected. Further, the minimum time T 2 to the short removes the charges charged in the conductive interface secondary battery 1, the conductive surface to be determined by the time required to the clean state, the the same as above two In the case of the secondary battery 1, about 0.001 [second] is selected. Further, as a minute time T 3 the voltage of said equilibrium voltage E eq at full charge is applied to approximately 0.1 [sec] is Bareru selected.
  • reference numeral 1 denotes a secondary battery
  • reference numeral 3 denotes a current detection unit for detecting a charging current of the secondary battery 1
  • reference numeral 9 denotes a voltage for detecting an applied voltage of the secondary battery 1.
  • a first gate 36, a second gate 37, and a third gate 38, each of which is constituted by a switching element such as a field effect transistor (FET), are provided. Is established.
  • Reference numeral 31 denotes a first power supply (variable power supply) capable of changing the applied voltage to a fully charged equilibrium voltage value E eq according to the type or model of the secondary battery 1, and reference numeral 3 2 denotes it is the second power of possible to apply a predetermined special charging voltage E 8.
  • the positive terminal of the rechargeable battery 1 is connected to the emitter of the first gate 36, the emitter of the second gate 37, the collector of the third gate 38, and the negative terminal of the voltage detecting means 9.
  • the collector of the first gate 36 is connected to the positive terminal of the second power source 32, and the negative terminal of the second power source 32 is connected to the positive terminal of the first power source 31 and the second terminal of the second power source 32.
  • the first power supply 31 The positive terminal of the current detecting means 3 is connected to the negative terminal, and the negative terminal of the current detecting means 3 is connected to the positive terminal of the voltage detecting means 9, the negative terminal of the secondary battery 1, and the emitter of the third gate 38. Commonly connected. '
  • the short-circuit means for short-circuiting the terminals of the secondary battery 1 is constituted by the gates 36, 37, 38, and the short-circuit removes the electric charge on the electric field surface, and the next charging voltage is applied.
  • the current is stabilized immediately after the charging voltage is switched, and the accuracy in current measurement is improved.
  • the third gate 38 is set to 0 FF, and the second gate 37 is set to ⁇ this time, and the secondary battery 1 is charged to the full charge equilibrium voltage value E eq. Is applied for a short time ⁇ 3 .
  • the current value i of the secondary battery 1 is detected, and from this detected current value i, it is determined whether or not the battery is fully charged, and the time t required for full charge is obtained. the second gate 3 7 to 0 FF after T 3 has elapsed.
  • the charging device of the first embodiment by detecting the current value i of the secondary battery 1 to periodically check the state of charge, excessive chemical reaction can be achieved. (Oxidation-reduction reaction) does not occur, and the battery can be properly charged to a fully charged state.
  • the user can know the time required for full charging, Convenience can be improved.
  • the secondary battery 1 before switching the applied voltage to the full-charge equilibrium voltage value E e Q , the secondary battery 1 is short-circuited to remove the electric charge charged on the electrode interface of the secondary battery 1 and to change the electrode interface. It can be in a clean state. This allows a smooth transition to voltage application at the full-charge equilibrium voltage value, and stabilizes the charging current immediately after switching to the full-charge equilibrium voltage value. As a result, the current value can be measured accurately, and proper charging can be achieved.
  • the charging device according to the second embodiment is characterized in that the type and the like of the secondary battery 1 are automatically determined without inputting the type and the like of the secondary battery 1, and the battery can be rapidly charged to a full charge. There is. Say here, secondary battery
  • the type 1 means not only secondary batteries with different materials for the positive and negative electrodes, such as nickel-cadmium secondary batteries and nickel-hydrogen secondary batteries, but also materials for the positive and negative electrodes Include secondary batteries of the same type but with different storage capacities.
  • the full charge equilibrium voltage value E eq of the secondary battery 1 and the predetermined charging applied voltage value E s differ depending on the type of the secondary battery, the storage capacity, and the like.For example, when the storage capacity is 100 0 0 (mAh (m The rechargeable nickel-cadmium rechargeable battery has a full charge equilibrium voltage of approximately 1.41 [V] and a predetermined charge applied voltage of approximately 1.80 [V]. And the storage capacity is The full charge equilibrium voltage of the nickel-hydrogen rechargeable battery of 200 Cm A h 3 is approximately 1.44 [V], and the predetermined charging applied voltage is 1.60 [V]. .
  • FIG. 9 shows that in the charging device for the secondary battery 1 of the first embodiment, the full charge equilibrium voltage value is 1.44 [V], and the predetermined charging applied voltage value is 1.60 [V].
  • FIG. 10 is a diagram showing battery terminal voltage, charging current, and check current over time when a nickel-hydrogen secondary battery is charged at a set voltage value corresponding to a nickel-hydrogen secondary battery.
  • the full-charge equilibrium voltage value is 1.44 [V]
  • the predetermined charging applied voltage value is 1.60 [V]
  • the nickel-hydrogen secondary battery is supported.
  • FIG. 5 is a diagram showing the time course of battery terminal voltage, charging current, and check current when a nickel-metal dominium secondary battery is charged at the set voltage value of FIG. In FIG.
  • the predetermined charging applied voltage value of 1.60 [V] in step A3 is applied, the fixed time T1 is 55 seconds, and no short circuit is performed in step A4.
  • a minute time T 3 for applying a full charge balanced voltage value of 1. 4 4 [V] at step a 5 are the 5 seconds.
  • the secondary battery 1 when it is applied at a predetermined special charging voltage E s is a constant charging current to the secondary battery 1 regardless charging rate (current peak Value I s .) Flows.
  • a secondary batteries 1 at a lower voltage value than a predetermined special charging voltage E s As the charging rate is increased, the charging current flowing through the secondary battery 1 is reduced Go.
  • nickel-hydrogen secondary When the nickel-metal hydride secondary battery is charged at the set voltage value corresponding to the battery, a predetermined charging applied voltage value of the nickel-hydrogen secondary battery (1.60 [V )), And a predetermined current (current peak value I s ) corresponding to the predetermined charging applied voltage value is applied, and as a result, the power supply
  • the voltage drop between the unit 2, the voltage / current control unit 5, and the charging voltage supply unit 6 is also substantially constant.
  • the voltage between the terminals of a nickel-hydrogen rechargeable battery is substantially constant from the start of charging to the completion of charging without exceeding 1.6 [V]
  • the charging current is also substantially constant from the start of charging to the completion of charging.
  • the check current is properly checked by the full charge equilibrium voltage value of the nickel-hydrogen secondary battery of 1.44 [V], and the nickel-hydrogen secondary battery is rapidly charged until it is fully charged. And it can be charged properly.
  • the charging current flowing to the secondary battery gradually decreases.
  • the voltage drop between the power supply unit 2 and the voltage / current control unit 5 and the charging voltage supply unit 6 also gradually decreases, and as a result, the nickel-cadmium secondary battery terminal
  • the voltage applied to the capacitor gradually increases, and eventually exceeds 1.6 [V], and reaches approximately 1.8 [V] when charging is completed.
  • the check current is regularly checked based on the full charge equilibrium voltage value of the nickel-hydrogen rechargeable battery of 1.44 [V]. 4 4 [V] is higher than the full-charge equilibrium voltage of the nickel-cadmium rechargeable battery, 1.41 [V], so that the nickel-cadmium rechargeable battery can be fully charged accurately. Can not be charged.
  • the secondary battery 1 is a nickel-hydrogen secondary battery. At the corresponding voltage value, charging and the state of charge are checked. If the terminal voltage of the secondary battery 1 exceeds 1.6 [V] during this charging process, the secondary battery 1 After determining that the battery is a cadmium secondary battery, the secondary battery 1 is charged with a voltage value corresponding to the nickel-cadmium secondary battery, and the state of charge is checked.
  • the charging device is also configured as shown in FIG. 1, and the storage means (memory) of the program 'arithmetic control unit 4 includes a plurality of secondary batteries. Of the full charge equilibrium voltage value E e . When a predetermined special charging voltage E s is stored.
  • the program and the arithmetic and control unit 4 also include a check current value i detected by the current detection unit 3 during application of the rechargeable battery 1 at the full charge equilibrium voltage value E e Q and a previously set charging completion.
  • Ru comparison determination unit der the reference current value J, the charging voltage detected by the voltage detection unit 9 during charging in the secondary battery 1 a predetermined special charging voltage E s a charging voltage determination program is a comparative determination means and the predetermined special charging voltage E s, is incorporated.
  • the other configuration of the charging device according to the second embodiment is substantially the same as that of the charging device according to the first embodiment, and thus the description thereof is omitted.
  • the storage means of the program / operation control unit 4 stores the full charge equilibrium voltage value E e Q (E eql E e Q h ) and the predetermined charging applied voltage value E s ( The charging control of the secondary battery 1 by the charging device storing E s ,... E h ) will be described with reference to the flowchart shown in FIG.
  • the full charge equilibrium voltage value is E eQ l and E eqh
  • the predetermined charge applied voltage value is E SI ⁇ E sh .
  • Step B3 The voltage value applied to the secondary battery 1 by the voltage detection unit 9 while the secondary battery 1 is being charged at the lower predetermined charging applied voltage value E s i for a fixed time T i. e (Step B3), and the detected voltage value e is determined by the charging voltage value determination program.
  • Step B 4 If the voltage value e is larger than the lower predetermined charging applied voltage value E s ], the process jumps to step B 10 described later, and the voltage value e is the lower value. If it is equal to or less than the predetermined charging applied voltage value E, the process proceeds to the next step B5.
  • the rechargeable battery 1 After the lapse of the predetermined time T, the rechargeable battery 1 is short-circuited for a minimum time T 2.
  • Step ⁇ 5 After removing the electric charge on the electric field surface, the applied voltage of the secondary battery 1 is changed to the lower one of the two types of full charge equilibrium voltage values of the full charge equilibrium voltage values of the two rechargeable batteries. The voltage is switched to E eq , and the secondary battery 1 is applied with the lower full-charge equilibrium voltage E eq , for a short time T 3 (step B 6).
  • the flow of the steps B 5 may be omitted.
  • the detected current value i is determined by the check current value determination program (step B8). If the current value i is larger than the charge completion reference current value J, the process returns to step B2. Then, if the current value i is equal to or smaller than the charge completion reference current value J, the charging is stopped (step B9).
  • step B4 the secondary battery 1 is If the voltage value e detected by the voltage detecting unit 9 is larger than the lower predetermined applied voltage value E s , while the charging is performed at the charging applied voltage value E s for a fixed time of 1 ⁇ .
  • the applied voltage of the secondary battery 1 is switched to the higher predetermined applied voltage value Esh of the predetermined applied voltage values of the two types of secondary batteries, and the higher predetermined applied voltage value Esh is applied continuously for 1 ⁇ for a fixed time (step B10).
  • the rechargeable battery 1 After the lapse of the predetermined time T i, the rechargeable battery 1 is short-circuited for a minimum time T 2 (step ⁇ 11), and the electric field surface is removed.
  • the type of the secondary full charge balanced voltage value E e Q h of full charge balanced voltage value sac Chino higher battery small secondary battery 1 at the higher full charge balanced voltage value E e Q h time T 3 is applied (Step-up B 1 2).
  • the current detector 3 detects the current value i flowing through the secondary battery 1 while the secondary battery 1 is being applied with the higher full-charge equilibrium voltage value E eqh for a short time T 3. (Step B 1 2).
  • the detected current value i is determined by the check current value determination program (step B 14). If the current value i is larger than the charge completion reference current value J, the step B 1 Returning to 0, the above flow is repeated. On the other hand, if the current value i is equal to or less than the charge completion reference current value J, the charging is stopped (step B9).
  • the storage means of the program / operation control unit 4 stores the full charge equilibrium voltage values E eq I and E eqh and the predetermined charge application voltage value E s ! For the two types of secondary batteries. ⁇ This is an explanation of charging control of the secondary battery 1 by the charging device in which Esh is stored.
  • the storage means of the program / operation control unit 4 stores the full-charge equilibrium voltage values E eq (E eql , E e Q 2 , ⁇ ) for n (n is a natural number of 2 or more) types of secondary batteries. , E eqn ) and a predetermined charging applied voltage value E s (E sl , E s2 , ... , E sn ) are stored in the charging device.
  • E eqn a predetermined charging applied voltage value
  • E s E sl , E s2 , ... , E sn
  • the full charge equilibrium voltage value is E e Q l ⁇ E eq 2 , ⁇ ⁇ ⁇ E eqn
  • the predetermined charging applied voltage value is E sl eq E s 2 ⁇ ⁇ ⁇ ⁇ E sn I do.
  • a predetermined charging applied voltage of n types of secondary batteries is applied to the secondary battery 1 set in the charging device.
  • a voltage is continuously applied for a predetermined time (constant time) T at a predetermined charging application voltage value E k which is the k-th lowest value among the values (step C 3).
  • step C 4 the process jumps to step C 8 described below, and when k ⁇ n_l, the secondary battery 1 is charged to the k-th lowest predetermined charging applied voltage.
  • the voltage detector 9 detects the voltage value e applied to the secondary battery 1 by the voltage detector 9 (step C5).
  • the detected voltage value e is determined (step C 6). If the voltage value e is detected as a value larger than the k-th lowest predetermined applied voltage value Esk , the voltage value e is determined.
  • step C 7 The value obtained by adding 1 is set as a new k (step C 7), and the process returns to step C 3 . If the voltage value e is detected at the k-th or lower predetermined charging applied voltage value Esk or less, Then, proceed to Step C8.
  • the secondary battery 1 After the lapse of the predetermined time T i, the secondary battery 1 is short-circuited for a minimum time T 2 (step C 8), and after removing the electric field surface charge, the applied voltage of the secondary battery 1 is changed by n kinds of times. Switch to the k-th lowest full-charge equilibrium voltage value E eqk of the secondary battery's full-charge equilibrium voltage value, and apply rechargeable battery 1 with the k-th lowest full-charge equilibrium voltage value E eqk for a short time T 3 (Step C 9).
  • Step C8 flows of the secondary battery 1 while short time T 3 is applied in said k-th low full charge balanced voltage value E e Q k, by the current detection unit 3 to the secondary batteries 1
  • the current value i is detected (Step C10).
  • the detected current value i is determined by the check current value determination program (step C11). If the current value i is larger than the charge completion reference current value J, the step C3 is performed. Then, if the current value i is equal to or less than the charge completion reference current value J, the charging is stopped (step C12).
  • the same effects as those of the charging device of the first embodiment can be obtained, and in the charging process, the type of the secondary battery 1 is automatically determined.
  • the battery can be charged quickly and properly to full charge without causing excessive chemical reaction (redox reaction).
  • the charging device of the third embodiment the predetermined charging voltage value e detected by the voltage detecting unit 9 during the charging of the charging applied voltage value E s, the previous round of predetermined special charging voltage E s It is determined whether the difference e from the charging voltage value e detected by the voltage detecting unit 9 during the charging in step S is within a predetermined range W set in advance, and if the difference e exceeds the predetermined range W.
  • the charging device according to the second embodiment is configured such that charging is performed by switching between a full charge equilibrium voltage value E eq and a predetermined charging applied voltage value E s corresponding to another type of secondary battery 1. It is different.
  • the charging device of the third embodiment is also configured as shown in FIG. 1, and the storage means (memory) of the program / operation control unit 4 stores the full-charge equilibrium voltage values of a plurality of secondary batteries. E eq and a predetermined charging applied voltage value E s are stored. Also, the program.
  • the arithmetic and control unit 4 includes a check current value i detected by the current detection unit 3 while the secondary battery 1 is being applied at the full charge equilibrium voltage value E eq , and a charge completion reference current set in advance.
  • the other configuration of the charging device according to the third embodiment is substantially the same as that of the charging device according to the above-described first embodiment, and a description thereof will not be repeated.
  • the storage means of the program / operation control unit 4 stores the full charge equilibrium voltage value E eq (E e Q lE eqh ) and the predetermined charging applied voltage value E s (E si 'E sh) and references Shinano to Furochiya one bets shown in FIG. 1 3 charging control of the secondary battery 1 by the charging device stored La be described.
  • the full charge equilibrium voltage value is E eql and E e Q h
  • the predetermined charge applied voltage value is E s , ⁇ E sh .
  • a predetermined charging applied voltage of two types of secondary batteries is applied to the secondary battery 1 set in the charging device.
  • the voltage is continuously applied for a predetermined time (constant time) 1 ⁇ with a lower predetermined charging application voltage value E sl (step D 2).
  • the voltage value e is detected (step D 3), and the voltage value e detected during charging with the lower predetermined charging applied voltage value E s by the voltage difference determination program is compared with the voltage value e detected last time. It is determined whether or not the difference e from the voltage value e detected during charging at the lower specified charging applied voltage value E s is within a predetermined range W (step D 4). If the difference e is within the predetermined range W, the process proceeds to the next step D5. If the difference Ie exceeds the predetermined range W, the process jumps to step D10 described later. However, this is the first detection of the voltage value e. If, go to the next step D5.
  • Step D 5 After the lapse of the predetermined time T i, the secondary battery 1 is short-circuited for a minimum time T 2 (Step D 5), and after removing the electric field surface charge, the applied voltage of the secondary battery 1 is changed to two types. low had way equilibrium voltage E eq at full charge of one of the full-charge balanced voltage value of the secondary battery, the switching, full charge balanced voltage value of how have low secondary battery 1 E eq, in short time T 3 Then, a voltage is applied (step D6).
  • the detected current value i is determined by the check current value determination program (step D8), and if the current value i is larger than the charge completion reference current value J, the process returns to step D2. Then, if the current value i is equal to or less than the charge completion reference current value J, the charging is stopped (step D9).
  • step D4 if the difference e exceeds the predetermined range W, the applied voltage of the secondary battery 1 is reduced among the predetermined charging applied voltage values of the two types of secondary batteries.
  • the voltage is switched to the higher predetermined charging application voltage value E, and the voltage is continuously applied at the higher predetermined charging application voltage value Esh for a predetermined time (fixed time) (step D10).
  • the rechargeable battery 1 After the lapse of the predetermined time ⁇ time, the rechargeable battery 1 is short-circuited for a minimum time ⁇ 2 (step D 11), and after removing the electric charges on the electric field surface, the applied voltage of the rechargeable battery 1 is changed to two types. Is switched to the higher full-charge equilibrium voltage value E eqh of the secondary battery's full-charge equilibrium voltage value, and the secondary battery 1 is applied with the higher full-charge equilibrium voltage value E eqh for a short time T 3 . (Step D12).
  • the discard-up D 1 1 of full opening one may be omitted. Then, while short time T 3 applies the secondary battery 1 fully charged equilibrium voltage E Eqh the higher, the current detection unit 3 by detecting a current value i flowing through the secondary battery 1 (Step D 13).
  • the detected current value i is determined by the check current value determination program (step D 14). If the current value i is larger than the charge completion reference current value J, the step D 1 It returns to 0 and repeats the above flow. On the other hand, if the current value i is equal to or less than the charge completion reference current value J, the charging is stopped (step D 9).
  • the storage means of the program / operation control unit 4 stores the full charge equilibrium voltage values E e Q and E eqh and the predetermined charge application voltage values E s and E sh for the two types of secondary batteries. This is an explanation of charging control of the secondary battery 1 by the charging device in which is stored.
  • the arithmetic and control unit 4 stores the fully charged equilibrium voltage values E e Q (E eql , E e Q 2 , , E eqn ) and a predetermined charging applied voltage value E s (E sl , E s 2 , ... , E sn ) stored in the charging device to control the charging of the secondary battery 1. This will be described with reference to the flowchart shown in FIG.
  • the full-charge equilibrium voltage value is E eql ⁇ E eq 2 , ..., And E eqn
  • the predetermined charging applied voltage value is E sl ⁇ E s 2 ,.
  • a predetermined charging applied voltage of n types of secondary batteries is applied to the secondary batteries 1 set in the charging device.
  • the voltage is applied continuously for a predetermined time (constant time) 1 at a predetermined charging application voltage value Esk of the k-th lowest value (step F3).
  • step F 4 the process jumps to step F 8 described later, and when k ⁇ n—1, the secondary battery 1 is charged to the k-th lowest predetermined charging applied voltage.
  • a voltage value e applied to the secondary battery 1 is detected by the voltage detection unit 9 (step F5), and the voltage difference determination program uses the k-th lowest predetermined charging applied voltage value Esk this time.
  • the difference e between the voltage value e detected during charging and the voltage value e detected during charging at the last k-th predetermined charging applied voltage value Esk is within the predetermined range W. (Step F 6), and if the difference e is within the predetermined range W, the process proceeds to Step F 8, where the difference e exceeds the predetermined range “W”. Then, the value obtained by adding 1 to the k is defined as a new k
  • Step F7 the process returns to Step F3.
  • the process proceeds to step F8.
  • the rechargeable battery 1 After the lapse of the predetermined time T, the rechargeable battery 1 is short-circuited for a minimum time T 2.
  • Step F 8 After removing the electric charge on the electric field surface, the applied voltage of the secondary battery 1 is now reduced to the k-th lowest full-charge equilibrium voltage among the full-charge equilibrium voltage values of the n types of secondary batteries. switching to a voltage value E eqk, for short time T 3 applies the secondary battery 1 in said k-th low full charge balanced voltage value E e Q k (scan Tetsupu F 9).
  • the detected current value i is determined by the check current value determination program (step F11). If the current value i is larger than the charge completion reference current value J, the step F3 is performed. Then, if the current value i is equal to or smaller than the charge completion reference current value J, the charging is stopped (step F12).
  • the same effects as those of the charging device of the first embodiment can be obtained, and the type and the like of the secondary battery 1 are automatically determined in the charging process. Charges quickly and properly to full charge without causing excessive chemical reaction (redox reaction) It can be carried out.
  • the secondary battery 1 a predetermined special charging voltage E s, after applying a certain time, the applied voltage to shut off, and the predetermined special charging voltage E s in this state open-circuit voltage E x of the secondary battery 1 (E ⁇ , ⁇ 0, ⁇ ⁇ , ⁇ ⁇ , etc.) to detect a differential voltage E s is the difference between this detected difference voltage E s is a predetermined judgment reference value
  • the difference from the charging device of the first embodiment is that the charging of the secondary battery 1 is stopped when it becomes K or less.
  • the charging device of the fourth embodiment is also configured as shown in FIG. 1, and the voltage detection unit 9 is configured to detect the open voltage of the secondary battery 1.
  • the program arithmetic control unit 4, the predetermined open-circuit voltage special charging voltage E s and the secondary battery 1 E ⁇ ( ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ etc.) Sadea Ru voltage difference between a differential voltage computation program is a calculation means for calculating a E S
  • the charging time prediction program is charging time predicting means for obtaining the required charging time r to the fully charged based on the difference voltage E s
  • advance a difference voltage E s A difference voltage determination program as determination means for comparing and determining a predetermined determination reference value K input and set is incorporated.
  • LED or are configured to display the required charging time hand determined from the difference between the voltage E s by the LCD or the like.
  • the display section 7 is configured to notify the user of the required charging time t visually, but may be configured to be notified by voice or the like.
  • the configuration of the means is not particularly limited.
  • For the detection of the voltage of the open-circuit voltage E x is generally must be high Inpi impedance state of the measuring system which current does not flow in the measurement system as when measuring the equilibrium voltage of the battery.
  • the other configuration of the charging device according to the fourth embodiment is substantially the same as that of the charging device according to the above-described first embodiment, and a description thereof will not be repeated.
  • a program stored in a storage means in the program / operation control unit 4 is set in advance. and a predetermined special charging voltage E s corresponding to the type of the secondary battery 1, and a full charge balanced voltage value E e Q are selected respectively (step G 1).
  • a predetermined special charging voltage E s to the secondary battery 1 is a predetermined time (predetermined time) I continued Applied (step G3).
  • predetermined time T ⁇ is indexed from the time variation of the charging current in the case of applying the charging applied voltage E s.
  • Step G 4 After the predetermined time 1 elapses, now cut off the charging applied voltage E s T 4 hours (Step G 4), in this state, the open circuit voltage of the secondary battery 1 ⁇ ⁇ ( ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ , to detect the E [delta], etc.) by the voltage detection unit 3 (Sutetsu flop G 5). Next, determine the differential voltage E s and the charging applied voltage E s and the open-circuit voltage E chi by the differential voltage computation program (Step G 6).
  • the differential voltage detection program by a judgment of the obtained differential voltage E s (step G 7), when the difference voltage E s is greater than the determination reference value K, the above returns to the step G 3 Repeat flow, whereas, the difference voltage E S is when the following criterion value K, because it means that the secondary battery 1 is in a fully charged state, where to stop charging (step G 8).
  • the interruption time T 4 is in the course of blocked from the charging state of the secondary battery 1, determined by the time required for the battery terminal voltage reaches a stable Mr measurable state, secondary top the same For battery 1, 1 to 5 [seconds] is selected.
  • the voltage applied to the secondary battery 1 is controlled as described above, and the state of charge of the secondary battery 1 is periodically observed. With this configuration, it is possible to properly charge the battery to a fully charged state without causing an excessive chemical reaction (oxidation-reduction reaction) and to prevent the internal structure of the secondary battery 1 from being damaged. Therefore, the cycle life can be dramatically improved.
  • the main charge in this method is the full charge equilibrium voltage value E e . To be done by more than a predetermined charging applied voltage E s, it is possible to considerably next that a large charging current is applied, shortening due friendship charging time thereto.
  • the program / operation control unit 4 stores the program in the table stored in advance in the storage means. from a predetermined special charging voltage E s corresponding to the type of the secondary battery 1, and the equilibrium voltage E eq at full charge are selected respectively (step HI).
  • a predetermined special charging voltage E s to the secondary battery 1 is a predetermined time (fixed time) 1 continues to Applied (step H 3).
  • the charging applied voltage E s is changed to T 4 hours Blocked (step H 4), open circuit voltage E x in this state the secondary battery 1 ( ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ , etc.) is detected by the voltage detection unit 3 (Step Eta 5).
  • step # 1 to step # 5 in the fifth embodiment are the same as the control steps from step G1 to step G5 in the fourth embodiment.
  • Ri by the full charge balanced voltage value E e Q and the open-circuit voltage ⁇ ⁇ difference between the voltage E e. (Step H 6).
  • Step H 7 the comparison determination program makes a determination of the calculated difference voltage ⁇ 1 E e Q (Step H 7), when the difference voltage E e Q is greater than 0 [V] is a determination reference value, the Returning to step H3, the above flow is repeated.On the other hand, if the difference voltage E eq is equal to or lower than 0 [V], this means that the secondary battery 1 is in a fully charged state. Here, charging is stopped (step H8).
  • the charging method of the fifth embodiment it can be determined that a full charge state has been reached for any secondary battery 1 if the differential voltage l E eq is 0 [V] or less. Therefore, it is possible to easily and accurately determine whether or not the battery is fully charged.
  • the charging device according to the sixth embodiment is configured such that the charging of the secondary battery 1 is stopped after the required charging time t calculated from the check current value i of the secondary battery 1 has elapsed. Differences from the form of charging device It is.
  • Charging apparatus of this sixth embodiment also, Made up as shown in Figure 1, program arithmetic control unit 4, the current detection during the application of the secondary battery 1 in the full charge balanced voltage value E e
  • a charging time prediction program which is a charging time prediction means for calculating a required charging time t until full charging based on the check current value i detected in the part 3, and a required charging time t from when the required charging time t is determined.
  • a charge completion time monitoring program which is monitoring means for monitoring the progress of charging, is incorporated.
  • the user inputs a kind of secondary battery 1 to be charged, programming the ram arithmetic control unit 4, a charging applied voltage value E s of the constant place corresponding to the type of the secondary battery 1, the full-charge balanced voltage
  • the value of the value E eq is selected (step M l).
  • Step M 2 when the user performs a charging start operation by operating the operation unit 8 (Step-up M 2), the secondary battery 1 to a predetermined special charging voltage E s is a predetermined time (fixed time) 1 ⁇ continued (Step M 3).
  • the rechargeable battery 1 is short-circuited for a minimum time T 2 (step ⁇ 4), and the electric field surface is removed of electric charge. e . Then, the secondary battery 1 is applied with the voltage T 3 for a very short time at the full charge equilibrium voltage value E eq (step M 5).
  • the step Micromax 4 of the flow may be omitted.
  • the time required from the detected current value i to full charge, that is, the current value i is estimated to be a charge completion reference current value J (detected at the time of full charge.
  • the required charging time t until the current value i) is reached is calculated,
  • the required charging time t is displayed on the display section 7 of the secondary battery 1 (step M7).
  • step M8 The control process from step M1 to step M7 in the sixth embodiment is the same as the control process from step A1 to step A7 in the first embodiment. It is determined by the program whether the required charging time t is equal to or less than 0 [sec] (step M8). In this case, the larger the required charging time t than 0 (seconds), the process proceeds to step M 9, a predetermined special charging voltage E s is applied T 5 hours in the secondary battery 1, then again step Returning to step 8, it is determined whether or not the required charging time t has elapsed.
  • step M8 if the required charging time t is equal to or less than 0, that is, if the required charging time t has elapsed, it is determined that the secondary battery 1 has reached a fully charged state, and charging is automatically stopped. (Step M10).
  • the other configuration of the charging device according to the sixth embodiment is substantially the same as that of the charging device according to the first embodiment, and a description thereof will be omitted.
  • a predetermined charging applied voltage value E is applied to the secondary battery 1 until the time t elapses. s is continuously applied, and the charging is automatically stopped after the required charging time t has elapsed.
  • the required charging time t is larger than 0 (seconds).
  • the charging can be reliably stopped with a simple configuration.
  • this allows proper charging to a fully charged state without causing excessive chemical reaction (oxidation-reduction reaction), and does not damage the internal structure of the secondary battery 1. It can improve the charging time and shorten the charging time. Further, since the user can know the time required for full charge, the convenience can be improved.
  • the charging device of the seventh embodiment is configured so that the charging of the secondary battery 1 is stopped after the charging rate calculated from the check current value i of the secondary battery 1 reaches a predetermined value. This is a different point from the charging device of the embodiment.
  • the charging device is also configured as shown in FIG. 1, and the program / operation control unit 4 stores the full-charge equilibrium voltage value E e .
  • the charging rate deriving means which is the charging rate deriving means for obtaining the charging rate of the secondary battery 1 at the time when the current detection unit 3 detects the check current value i while the secondary battery 1 is being applied, and the charging rate deriving program
  • a charging rate determination program which is a determining means for comparing and determining the obtained charging rate with a previously determined reference value L, is incorporated.
  • FIG. 4 is a graph showing a relationship between the current value, i detected when the full-charge equilibrium voltage value E eq is applied and the required charging time t required for full charging, and the charging rate is based on the graph.
  • a conversion table between the check current value and the charging rate or a relational expression between the check current value and the charging rate derived from the graph can be easily obtained by creating the charging rate derivation program. it can.
  • Step N 2 when the user performs a charging start operation by operating the operation unit 8 (Step-up N 2), the secondary battery 1 to a predetermined special charging voltage E s is a predetermined time (predetermined time) is continuously applied (Step N 3). Then, after the lapse of the predetermined time, the secondary battery 1 is short-circuited for a minimum time ⁇ 2 (step ⁇ 4), and after removing the electric charge on the electric field surface, the applied voltage is reduced to a full charge equilibrium voltage value E eq. the switching, the secondary battery 1 is small time T 3 the voltage applied at the full charge balanced voltage value E eq (step New 5).
  • Step N 6 the equilibrium voltage E eq at full charge while short time T 3 is applied, for detecting a current value i that is in a current detection unit 3 flows in the secondary battery 1 by the current detection unit 3 (Step N 6 ).
  • the control steps from step N1 to step N6 in the seventh embodiment are the same as the control steps from step A1 to step A6 in the first embodiment.
  • the charging rate is determined from the detected current value i by the program, and the determined charging rate is displayed on the display unit 7 of the secondary battery 1 (step N7).
  • the obtained charge rate is determined by the charge rate determination program (step N 8). If the charge rate is detected to be less than the determination reference value L (for example, 95%), the above-described step is performed. Returning to N3, the above flow is repeated. On the other hand, when the charging rate becomes equal to or more than the determination reference value L, charging is stopped.
  • the other configuration of the charging device according to the seventh embodiment is substantially the same as that of the charging device according to the first embodiment, and a description thereof will not be repeated.
  • the charging can be reliably stopped with a simple configuration. In addition, this allows proper charging to a fully charged state without causing excessive chemical reaction (oxidation-reduction reaction), and does not damage the internal structure of the secondary battery 1. And the charging time can be shortened.
  • Reference numeral 1 denotes a secondary battery.
  • Reference numeral 12 denotes a power supply unit. Includes a transformer and rectifier to convert to.
  • Reference numeral 13 denotes a large-capacity capacitor (electrolytic capacitor, electric double-layer capacitor, etc.), and the capacitor 13 and the secondary battery 1 are connected in parallel with the power supply unit 12. Further, a switch 17 is provided in a circuit connecting the power supply unit 12 and the capacitor 13, and a switch 18 is provided in a circuit connecting the capacitor 13 and the secondary battery 1.
  • Reference numeral 14 denotes a current detection unit for detecting the current of the secondary battery 1, which is configured to transmit the current value i detected by the current detection unit 14 to the control unit 15. .
  • the control unit 15 performs an opening / closing operation of each of the switches 17 and 18 and a determination as to whether or not the secondary battery 1 has reached a full charge. That is, the control unit 15 incorporates a current value determination program or the like which is current value determination means for determining and comparing the current value i detected by the current detection unit 14 with a preset charging completion reference current value J. Have been.
  • Reference numeral 16 denotes a check power supply unit for applying a pick voltage to the secondary battery 1 based on a command from the control unit 15.
  • the method for charging the secondary battery 1 using the charging device of the eighth embodiment is as follows. First, the switch 17 in the circuit shown in FIG. 20 is closed with the switch 17 closed and the switch 18 opened. in performs power storage by a predetermined time T 6 applies a predetermined power supply voltage to the capacitor 1 3, then the switch 1 7 open, switches the switch 1 8 closed, the secondary battery of the stored electric charge in the capacitor 1 3
  • the rechargeable battery 1 is configured to be charged by repeating the control of transferring the data to 1.
  • the check voltage E c is applied to the secondary battery 1. It is configured to detect the full charge state of the secondary battery by detecting the current value i flowing through the secondary battery 1 at this time.
  • step P 1 when the user operates the operation unit (not shown) to perform a charging start operation (step P 1), based on a command from the control unit 15, the switch 17 in the circuit shown in FIG. 20 is closed. The switch 18 is controlled to open (step P2).
  • the capacitor 1 3 to a predetermined power supply voltage of high-capacity for example, a voltage exceeding the equilibrium voltage E eq at full charge predetermined time (predetermined time) T 6 continued to be applied (step [rho 3), which As a result, electric charges are stored in the capacitor 13.
  • the secondary battery 1 in a state where the connection with the capacitor 13 is cut off is provided with a check voltage by the check power supply unit 16, that is, in the eighth embodiment, the full charge equilibrium voltage.
  • the value E e Q is applied (step P 4), and the current value i flowing in the secondary battery 1 at this time is detected by the current detection unit 5 (step P 5).
  • the detected current value i is compared with a preset charging completion reference current value J (current value considered to be detected upon completion of charging) by the current value determination program (step P 6) If the current value i is larger than the charge completion reference current value J, the process proceeds to step P7, where control is performed so that the switch 17 in the circuit is opened and the switch 18 is closed. . Then, the electric charge stored in the capacitor 13 is transferred to the secondary battery 1, whereby the secondary battery 1 is charged (step P8). Then, after T 7 hours, returning to re-Pi scan Tetsupu [rho 2, opens and closes the switching of switch 1 7, 1 8, the power storage to the capacitor 1 3, wherein the control of the transfer or the like is repeated.
  • a preset charging completion reference current value J current value considered to be detected upon completion of charging
  • Step P 9 a full charge equilibrium voltage value E e is equal to the check voltage.
  • the current value i becomes approximately 0 at a charging rate of 100% (fully charged state), so that it is easy to make a determination, which is suitable for implementation.
  • the value of the charge completion reference current value J is slightly larger than 0 mA. For example, it is preferable to set at about 10 mA.
  • the charge once stored in the capacitor 13 is transferred to the secondary battery 1 to perform charging.
  • the amount of charge injected into the secondary battery 1 can be easily counted, and since a large-capacity capacitor 13 is used as a medium, a large amount of charge can be injected into the secondary battery 1 in a short time, that is, a large current. And the charging time can be shortened.
  • the full charge equilibrium voltage value E e Q (check voltage) is periodically applied to the secondary battery 1, and by detecting the current value i flowing at this time, the charge state of the secondary battery 1 can be grasped.
  • the secondary battery 1 can be appropriately charged to a fully charged state without being overcharged and causing an excessive chemical reaction (redox reaction).
  • redox reaction chemical reaction
  • damage to the internal structure of the secondary battery 1 can be prevented, and the cycle life can be significantly improved.
  • the check voltage is applied to the secondary battery 1 from the check power supply unit 16 provided separately from the power supply unit 12, during the storage period of the capacitor 13,
  • the charging time can be further reduced.
  • an expensive large-current circuit is not required, the circuit configuration is simple, and the control method is extremely easy, so that reliability can be improved.
  • the present invention is not limited to the above embodiment, and various modifications may be made within the scope of the claims. Can be implemented. That is, in the eighth embodiment, the current value i when the full-charge equilibrium voltage value E e Q is applied to the secondary battery 1 is detected, but the applied voltage is the full-charge equilibrium voltage value. It is not limited to E e Q. Furthermore, if the check power supply unit 16 is provided separately from the power supply unit 12 as in the eighth embodiment, the charge state of the secondary battery 1 is observed using the storage period of the capacitor 13. However, it is also possible to apply a voltage controlled by the power supply unit 12 to the secondary battery 1.
  • the check power supply unit 16 of FIG. 20 in the eighth embodiment is deleted, and a voltage detection unit is provided instead of the current detection unit 14; The difference is that the voltage of the secondary battery 1 is measured to determine whether or not the secondary battery 1 has reached a fully charged state.
  • the control unit 1 5 of the charging device of the ninth embodiment the open circuit voltage E chi of the equilibrium voltage E eq at full charge the secondary battery 1 ( ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ , etc.) and A voltage value determination program as a voltage value determination means for comparison determination is incorporated.
  • the open-circuit voltage of the secondary battery 1 E chi ( ⁇ ⁇ , ⁇ 0, ⁇ ⁇ , ⁇ ⁇ , etc.) detected an, this time to continue charging smaller the detected open-circuit voltage E chi is by equilibrium voltage E eq at full charge remote, full charge balanced voltage value If Eeq or more, charging is stopped.
  • step Q 1 when the user operates a not-shown operation unit to perform a charging start operation (step Q 1), based on a command from the control unit 15, the switch 17 in the circuit shown in FIG. 20 is closed. Then, control is performed to open switch 18 (step Q 2). Next, a predetermined power supply voltage, for example, a voltage exceeding a full charge equilibrium voltage value Eeq is continuously applied to the large-capacity capacitor 13 for a predetermined time (constant time) T 6 (step ⁇ 3), As a result, electric charge is stored in the capacitor 13.
  • a predetermined power supply voltage for example, a voltage exceeding a full charge equilibrium voltage value Eeq is continuously applied to the large-capacity capacitor 13 for a predetermined time (constant time) T 6 (step ⁇ 3), As a result, electric charge is stored in the capacitor 13.
  • the open-circuit voltage E x (E a , ⁇ 0 , ⁇ ⁇ , ⁇ ⁇ , etc.) of the secondary battery 1 in a state where the connection with the capacitor 13 is cut off is detected by the voltage detection unit.
  • the detected open circuit voltage ⁇ ⁇ ⁇ ⁇ and the full charge equilibrium voltage value E eq are compared by the voltage value judgment program (step Q 5), and the open circuit voltage E x becomes the full charge equilibrium voltage value E e. If it is smaller than Q , the process proceeds to step Q6, and control is performed so that switch 17 in the circuit is opened and switch 18 is closed.
  • step Q7 the charge stored in the capacitor 13 is transferred to the secondary battery 1, whereby the secondary battery 1 is charged (step Q7). And after T 7 hours, again opens and closes the switching of switch 1 7, 1 8 returns to step Q 2, the power storage to the capacitor 1 3, wherein the control of the transfer or the like is repeated.
  • step Q5 if the detected open circuit voltage Ex becomes equal to or higher than the full charge equilibrium voltage value Eeq , the secondary battery 1 is considered to be in a fully charged state, and charging is stopped here. It is controlled (step Q 8).
  • the other configuration, operation, and effect in the ninth embodiment are substantially the same as those in the eighth embodiment, and thus description thereof will be omitted.
  • FIGS. 23 (a) to (c) showing the configuration of the basic circuit for charging the secondary battery 1 in the eighth and ninth embodiments of the charging device for the secondary battery 1 will be described.
  • FIG. 23 (a) is an equivalent circuit showing the basic circuit configuration of charging in the block diagram of FIG. 20.
  • FIG. 23 (b) is a diagram showing the switch 17 in the circuit closed and the switch 1 in FIG. 8 is opened, the equivalent circuit in the case the Hare T 6 hours line power storage capacitor 1 3, also FIG.
  • (c) is a switch 1 7 closed, sweep rate The Tutsi 1 8 is opened, shows an equivalent circuit of transferring T 7 hours the charge stored in the capacitor 1 3 to the secondary battery 1.
  • E is the power supply voltage
  • r is the internal resistance of power supply 2
  • C is the capacitance of capacitor 13
  • R is the internal resistance of secondary battery 1
  • the initial voltage due to the residual charge of capacitor 13 is V
  • the amount of charge transferred to the rechargeable battery 1 in the first storage (is expressed by the following equation (1)).
  • the time required to charge the [mAh] rechargeable battery is about 5 minutes, which is a rechargeable battery.
  • FIG. 24 is a block diagram of a charging device used in the tenth embodiment of the charging device for the secondary batteries 1, 1..., And the charging device according to the tenth embodiment includes a plurality of secondary batteries 1. ⁇ 1 ⁇ ⁇ ⁇ charging.
  • reference numeral 20 denotes a secondary battery box in which a plurality of secondary batteries 1 are stored in parallel
  • reference numeral 22 denotes a power supply unit
  • the power supply unit 22 is a commercial power supply unit. Includes a transformer and rectifier circuit that converts AC electricity to DC.
  • Reference numeral 23 denotes a charging voltage control unit that controls a charging voltage applied to the secondary battery 1
  • reference numeral 24 denotes a check voltage control unit that controls a check voltage applied when grasping the charging state of the secondary battery 1. It is.
  • reference numeral 25 denotes a current detection unit for detecting a current of the secondary battery 1 when the check voltage is applied, and a control unit controls a current value detected by the current detection unit 25. It is configured to transmit to the control unit 26.
  • the control unit 26 determines whether or not each of the secondary batteries 1 has reached a full charge, the applied voltage, a command to switch the secondary battery 1, the number of the charged secondary batteries 1, and the like. Counting, calculation of required charging time t until full charging, and the like are performed. That is, the control unit 26 includes a check current value i detected by the current detection unit 25 during application of the secondary battery 1 at the full charge equilibrium voltage value E eq , and a charge completion reference set in advance.
  • a check current value determination program which is a determination means for comparing and determining the current value J, until the battery is fully charged based on the check current value i detected by the current detector 3 during application of the full charge equilibrium voltage value E e Q.
  • a charging time prediction program which is a charging time prediction means for calculating the required charging time t, and a counting program for counting the number of charged secondary batteries 1 are incorporated.
  • Reference numeral 27 denotes a voltage switching unit that switches between supplying a charging voltage to the secondary battery 1 or supplying a check voltage based on a command from the control unit 26.
  • reference numeral 28 denotes the charging battery connected to a certain secondary battery 1 based on a charging completion signal from the control unit 26.
  • a battery designation switching unit that switches the connection of the circuit including the voltage control unit 23 and the check voltage control unit 24 to another uncharged secondary battery 1.
  • reference numeral 29 denotes a display unit for displaying the required charging time t calculated by the control unit 26 or whether charging is being performed or charging is completed.
  • the display unit 29 is configured to visually notify the user of the required charging time t and the like, but is configured to be notified by voice or the like.
  • the configuration of the notification means is not particularly limited.
  • a plurality of rechargeable batteries 1 1 1 are configured to be charged one by one.
  • the following control is performed to perform quick charging without damaging the secondary battery 1.
  • a current value i when the chair voltage Ec is applied is detected, and this current value i is compared with a preset charging completion reference current value J (that is, a current value considered to be detected when charging is completed). to thus again subjected to charging at the charging applied voltage value E s larger the better of the current value i, if the current value i is less charging completion reference current value J, as is in the fully charged state
  • the charging of the first secondary battery 1 is stopped.
  • the battery designation switching unit 28 which is a battery switching unit that has received the charging completion signal from the control unit 26, switches the circuit from the secondary battery 1 to the next uncharged secondary battery 1, The same charge control is performed. This charge control is configured to be repeatedly performed until the charging of all the N secondary batteries 1 is completed.
  • a required charging time t until the secondary battery 1 is being charged, or the charging is completed, or until the battery is fully charged is obtained from the current value i, and this is displayed on the display unit 1 of the secondary battery 1.
  • 9 display means
  • display means is configured to display by LED or LCD.
  • step R3 when the user performs a charging start operation by operating an operation unit (not shown) or the like, the full-charge equilibrium voltage value E e of the secondary battery 1 is obtained. Voltage of a predetermined special charging voltage E s exceeding is applied continuously for a predetermined time T Interview (Step R 4). For the setting of this application time TJ, are indexed from the time variation of the charging current in the case of applying the charging applied voltage value E s.
  • the charging voltage is switched to the check voltage Ec (for example, a full charge equilibrium voltage value Eeq ) (step R4).
  • the check voltage E e while applying short time T 3 hours the check voltage E e to the secondary battery 1, it detects the current i flowing through the secondary battery 1 by the current detector 2 5 (Step R 6).
  • the detected current value i is compared with the charge completion reference current value J (current value considered to be detected at the time of completion of charging) (step R7), and the current value i is charged. greater than complete reference current value J, the process returns to step R 4, and line repeatedly the charging control to mark pressurizing the charging applied voltage value E s in the secondary battery 1, while the completion of charging current value i If the reference current value is equal to or less than J, it means that the rechargeable battery 1 is in a fully charged state. It is determined whether the next battery 1 is the Nth battery.
  • step R9 If the secondary battery 1 is not the N-th battery, the process proceeds to step R9, and the circuit is switched from the current secondary battery 1 to the uncharged secondary battery 1 by the battery designation switching unit 28. Then, returning to step R2, the above control is repeated.
  • step R10 if the secondary battery 1 is the N-th, the charging is stopped here, assuming that all the secondary batteries 1 have been charged.
  • the charging time during which the predetermined special charging voltage E s is applied similarly to the first embodiment of FIG. 1, the capacity of the secondary battery 1, the structure differs depending on the shape or the like, for example, nickel one month
  • about 120 [seconds] is selected.
  • the check voltage E c is selected as the time T 3 to mark pressurized 0.1 (seconds) is selected.
  • the fully charged equilibrium voltage value E eq is used for the check voltage E e , as described above, the current value i becomes approximately 0 [mA] at the charging rate of 100% (fully charged state). Therefore, the determination is easy and preferable.
  • the value of the charge completion reference current value J is slightly larger than 0 [mA]. It is more preferable to set a large value, for example, about 10 [mA].
  • the circuit is automatically switched to the next uncharged secondary battery 1.
  • the control is simple, and all the secondary batteries 1 can be charged reliably.
  • the user can reduce the current charging state or the time required for full charging. Because it is possible to know, the convenience can be improved.
  • the check voltage control unit 24 is deleted, and the charging voltage is applied by the voltage switching unit 27. or constituted applied to perform switching of stopping further provided instead electrostatic pressure detector of the current detector 2 5, you Keru open voltage open voltage upon application stop of the charging voltage of the secondary battery 1 E chi ( ⁇ ⁇ , ⁇ ⁇ ⁇ , ⁇ ⁇ , etc.) by the child measured, is the point that is configured to grasp the full charge state of the secondary battery 1 different.
  • the first rechargeable battery 1 is charged with a predetermined charging applied voltage value E exceeding the full charge equilibrium voltage value E eq. s voltage have carried out large current charging to be applied a predetermined time T t of, after this, to cut off a predetermined special charging voltage E s, the secondary battery 1 detected by the front SL voltage detection unit in this state Open circuit voltage ⁇ ⁇ ( ⁇ ⁇ , E beta, E tau, and E [delta], etc.) (see FIG. 3) determines the difference between the predetermined special charging voltage E s.
  • the difference voltage E s of this difference is compared with a predetermined judgment reference value K, and if the difference voltage E s is larger, charging at the predetermined charging applied voltage value E s is continued, if the difference voltage ⁇ 1 E s is less acceptance criteria value K, stops charging of said first rechargeable battery 1 as being fully charged.
  • the battery designation switching unit 28 receiving the charge completion signal from the control unit 26 switches the circuit ′ from the secondary battery 1 to the next uncharged secondary battery 1, and performs the same operation as described above. Is performed. This charge control is repeated until all the N secondary batteries 1 have been charged.
  • the difference between the determination reference value K in this embodiment, the charging applied voltage value E s, the open-circuit voltage E x E eq at which the secondary battery 1 is fully charged (the full charge balanced voltage value) , Ie E s — E e Q.
  • m + 1 is substituted for the value of m (step S2), and when the user performs a charging start operation by operating an operation unit (not shown) (step S3), predetermined special charging voltage E s is applied for the predetermined period (a predetermined time) T E to the next cell 1 (step S 4).
  • step S 6 After the predetermined time 1 elapses, this time to block the charging applied voltage value E s T 4 hours in step S 5, in this state, the open circuit voltage of the secondary battery 1 ⁇ ⁇ ( ⁇ ⁇ , ⁇ 0, ⁇ tau, and E [delta], etc.) detected by the voltage detection unit (step S 6).
  • the detected open-circuit voltage ⁇ ⁇ and the predetermined charging applied voltage value Obtaining a differential voltage E s of the difference between E s (step S 7). Then, compared with the determination reference value K which is set in advance with the obtained differential voltage E S (stearyl-up S 8), if said difference voltage E s is greater than the determination reference value K, returns to scan Tetsupu S 4 again the predetermined special charging voltage E s of the secondary battery Te
  • the charge control applied to 1 is repeatedly performed.
  • the difference voltage E s is equal to or less than the determination reference value K, the secondary battery
  • step S9 determine whether the currently charged secondary battery 1 is the Nth battery.
  • step S 10 If the secondary battery 1 is not the N-th battery, the process proceeds to step S 10, and the circuit is switched from the current secondary battery 1 to the uncharged secondary battery 1 by the battery designation switching unit 28. And the process returns to step S2 to repeat the above control.
  • step S11 if the secondary battery 1 is the N-th, the charging is stopped here assuming that all the secondary batteries 1 have been charged.
  • the charging time during which the predetermined special charging voltage E s is applied to the capacity of the secondary battery 1 differs depending on the shape or the like, For example, AA nickel one cadmium, nickel monohydrogen In the case of the secondary battery 1, 60 to 90 [seconds] is selected. Further, in the course the interruption time T 4 is that blocked from the charging state of the secondary battery 1, determined by the time required for the battery terminal voltage reaches a stable measurement possible state, similar to the secondary battery 1 In some cases, 1 to 5 [seconds] is selected.
  • the detection of the voltage of the open voltage E chi is generally a measurement system that no current flows in the measurement system as when measuring the equilibrium voltage of the battery high Must be in an impedance state.
  • other configurations and operation effects in this embodiment are substantially the same as those in the tenth embodiment, and thus description thereof will be omitted.
  • FIG. 27 is a block diagram showing the configuration of the charging device according to the twelfth embodiment.
  • the charging device according to the twelfth embodiment includes a pack power supply in which a plurality of secondary batteries 1, 1 ′, «are packed.
  • the pack power supply 40 includes a plurality of (2 ⁇ in FIG. 27) secondary battery groups 41 1 and 41 in which a plurality of secondary batteries 1 1 1 are connected in series.
  • the secondary battery groups 4 1 ⁇ 41 are connected in parallel.
  • the following control is performed to perform quick charging without damaging the secondary battery 1. That is, when charging the secondary battery 1, first, after a large current charging for a predetermined time T i applies a predetermined charging voltage value applied E s exceeding the full charge balanced voltage value E eq, now degree switch the above applied voltage E s to a lower check voltage E e than Ete, the check voltage E e minutely time T 3 is applied.
  • the check voltage E e minutely time T 3 is applied.
  • a current value i when the check voltage Ee is applied is detected, and this current value i is compared with a preset charging completion reference current value J (that is, a current value considered to be detected when charging is completed).
  • a preset charging completion reference current value J that is, a current value considered to be detected when charging is completed.
  • Te cowpea who current value i performs charging at the charging completion reference current value larger if again the predetermined special charging voltage E s than J, current value i GaTakashi electrostatic completion criteria If the current value is equal to or less than J, it is determined that the battery is fully charged, and charging of the secondary battery 1 is stopped.
  • the charging device of the twelfth embodiment has a configuration shown in FIG.
  • the charging device of the twelfth embodiment includes a power supply unit 42, a charging voltage control unit 43, a check voltage control unit 44, a processor 48 (control unit), and the like.
  • the power supply section 42 includes a transformer and rectifier circuit for converting commercial AC electricity into DC.
  • the processor 48 instructs the switch 46 to supply the charging voltage from the charging voltage control unit 43 to each of the secondary battery groups 41 and check the power from the check voltage control unit 44. Voltage (voltage applied to grasp the state of charge of the secondary battery 1) to each secondary battery group 41. At this time, switching is performed according to the charging time and the checking time.
  • a current signal of the current detection unit 47 (a detection unit that detects the current of the secondary battery 1 when the check voltage is applied) is input to the processor 48. Then, in the processor 48, the switching unit 46 issues a designation to repeat the charging and checking times as long as the current of the current detecting unit 47 is detected, and that the charging of the secondary battery 1 is completed. (For example, if the detected current value i is less than or equal to the charging completion reference current value J), the state of the voltage application to the next secondary battery 1 is instructed by the processor 48 as described later.
  • the display unit 49 which is a notification unit, receives a status signal from the pack power supply 40 and the processor 48 and displays charging or completion of charging.
  • the display section 49 can be constituted by an LED or a CD.
  • the pack power supply 40 includes a first circuit 51 for supplying a charging voltage to each of the secondary batteries 1 of the secondary battery group 41 shown by 101 in FIG. And a second circuit 52 for supplying a charging voltage to each secondary battery 1 of the secondary battery group 41 indicated by 102.
  • First circuit 5 1 Alpha Eta Alpha has 1 2, ⁇ ⁇ ⁇ , a transistor T r of A LN, B u, B 1 2, ⁇ ⁇ ⁇ , and a transistor T r of B ln
  • second circuit 5 2 has ⁇ 2 1, ⁇ 2 2, ⁇ ⁇ ⁇ , a transistor T r of a 2 n, B 2 1, B 2 2, ⁇ ⁇ ⁇ , and a transistor T r of B 2 n.
  • the processor 4 8 as a control unit, the first circuit 5 1 of each secondary battery pack 4 1 ⁇ 4 1, A 2 1 of the second circuit 5 2, A 2 2, ' ⁇ ' ⁇ Beauty beta 2 1, beta 2 2, it is possible to control the transistor T r of ... ', furthermore, may control the transistors T r of the third circuit to n-th circuit.
  • the charging apparatus is configured to individually charge the plurality of secondary batteries 1 of each secondary battery group 41 individually.
  • the secondary battery group 41 indicated by 101 in FIG. 27 is charged will be described. Then, for example, when charging the secondary battery 1 of ⁇ of the secondary battery group 41, the transistors T r ′ Tr of ⁇ 12 and ⁇ 12 receive the Hi signal, whereby Power is supplied to the rechargeable battery 1 of ⁇ and charged. In this case, the other transistors Tr-Tr r 'are in the Low state. Then, when the rechargeable battery 1 of ⁇ is fully charged, the process proceeds to the rechargeable battery 1 of ⁇ . At the time of charging the secondary battery 1 of m, the transistors Tr 13 and Tr 13 of A 13 and B 13 receive the Hi signal.
  • the fact that the transistor Tr receives the Hi signal means that the full charge equilibrium voltage value E e is as described above. After a large current charging to a certain time T E applies a predetermined special charging voltage E s exceeding, by switching to a lower check voltage E c than Re their the applied voltage E s, the check voltage E the c refers to the state of short time T 2 applied.
  • the circuit is switched to the next uncharged secondary battery 1 according to an instruction from the control unit 8, and the same charge control as described above is performed.
  • This charging control is configured to be repeatedly performed until all M (the number of the secondary batteries 1 in the secondary battery group 41) secondary battery 1 are completely charged.
  • the circuit is switched to the secondary battery group 41 shown by 102 in FIG.
  • the secondary batteries 1 of the secondary battery group 41 shown by 2 are sequentially charged as described above.
  • step T2 p + 1 is substituted for the value of p, and the process proceeds to step T3.
  • step T3 it is determined whether or not the number p of the charged secondary battery 1 is M.
  • M is the number of the secondary batteries 1 of the secondary battery group 41.
  • Step T 4 In the secondary battery 1 of the present first becomes Rukoto is started (Step T 4), said ⁇ -th secondary battery 1 to a predetermined special charging voltage E s is a predetermined time (predetermined time) ⁇ continued (Step ⁇ 5).
  • the application time T E which applies the predetermined special charging voltage E s to the secondary battery 1, for example, about 1 2 0 [sec] is Ru is selected.
  • the charging voltage is switched to the check voltage E c (for example, a full charge equilibrium voltage value E eq ) (step T 6).
  • the check voltage E c while short time T 3 applied to the secondary battery 1 of said p-th, detects a current value i flowing through the secondary battery 1 by the current detecting section 7 (step T 7) .
  • the minute time T 3 for applying the check voltage E e to the secondary batteries 1, for example, about 0.1 [sec] is selected.
  • step T8 the detected current value i is compared with the charging completion reference current value J (current value considered to be detected at the time of completion of charging), and the detected current value i if There greater than the charging completion reference current value J, the flow returns to step T 4, have rows repeat the charging control for applying a predetermined special charging voltage E s to the secondary battery 1, whereas, the detection if the current value i is equal to or less than the charging completion reference current value J that is, since the secondary battery 1 of said p-th is means that the fully charged state, the flow returns to step T 2. That is, the charging of the ⁇ -th secondary battery 1 is completed by this, and by performing the same flow, the secondary battery 1 of I of the secondary battery group 41 shown by 101 is obtained. Charging of all the secondary batteries 1 can be terminated (step # 9).
  • the current is charged at a charging rate of 100% (full charge state). Since the value i is approximately 0 [mA], it is preferable because the determination can be easily performed. However, also in this case, since the battery actually causes a slight variation, if the overcharge due to this is to be prevented, the value of the charge completion reference current value J is larger than 0 (mA). It is more preferable to set a slightly larger value, for example, about 10 [mA]. Further, when charging is started in step T4, a display indicating that charging is being performed by the display unit 8 is started.
  • each secondary battery group 1 is charged under the same control as the secondary battery group 41 indicated by 101 described above. As a result, the charging of the secondary battery group 41 indicated by 101 and 102 ends.
  • the display section 49 changes from the charging display to the charging completion display.
  • the configuration is such that the state of charge is periodically monitored by detecting the current value i flowing through the secondary battery 1, and the It is possible to charge properly to a fully charged state without causing a reaction (oxidation-reduction reaction). In addition, this can prevent the internal structure of the secondary battery 1 from being damaged, so that the cycle life can be significantly improved.
  • the main charging in this charging method is performed at a predetermined charging applied voltage value E s exceeding the full charging equilibrium voltage value E eq , a considerably large charging current flows to the secondary battery 1. Thus, the charging time can be shortened.
  • the next uncharged battery is automatically
  • the circuit is switched to the secondary battery 1 and the individual batteries are individually charged, so that all the secondary batteries 1 can be reliably charged and the uncharged secondary battery 1 can be charged.
  • the charging operation of the secondary battery group 41 does not end while the battery 1 is kept, and the charging reliability of the secondary battery group 41 is excellent.
  • the charging of the secondary battery group 41 shown by 101 in FIG. 27 is completed, the charging of the secondary battery group 41 shown by 102 in FIG. 27 is started. Since the charging of the secondary battery group 41 indicated by 02 is also completed, it is possible to properly charge all the secondary batteries 1 of this pack power supply 40 to the fully charged state, thereby extending the cycle life. It is possible, and as a whole, it can be charged in a short time.
  • the display section 49 indicates that charging is being performed or charging is completed, the user can know that charging is being performed or charging has been completed. For example, immediately after charging is completed, various types of use of this power source are performed. Equipment can be driven. In the display section 49, charging can be distinguished from charging completed by different lighting colors, or either charging or completed charging can be distinguished without lighting. Further, characters such as “charging” and “charging completed” may be displayed.
  • the charging status is visually notified to the user by the display unit 49, but the notification may be performed by voice or the like. There is no particular limitation.
  • the charging of the secondary battery group 41 indicated by 101 is not completed
  • the charging of the secondary battery group 41 indicated by 102 in FIG. 27 may be started. Note that without performing the parallel charging, for example, after the charging of the secondary battery group 41 indicated by 101 is completed, the charging of the secondary battery group 41 indicated by 102 is not started continuously. Alternatively, the charging of the secondary battery group 41 indicated by 102 may be started after a predetermined time has elapsed.
  • a pack power supply 40 when such a pack power supply 40 is used, since there are a plurality of secondary battery groups 41, only the secondary battery group 41 indicated by 101 or 102 is connected to the load. It is preferable that the secondary battery groups 41 and 41 indicated by 01 and 102 can be connected to a load in series or in parallel. As a result, it becomes a power supply corresponding to various connected loads, and has excellent versatility.
  • a switching unit is provided in the circuit unit of the pack power supply 40, and by switching this switching unit, a serial usable state or a parallel usable state can be set.
  • the required charging time t until full charging (that is, charging time) can be obtained from a graph showing the relationship between the current value i and the required charging time t, as shown in FIG.
  • This graph shows the relationship between the current value i detected when the full charge equilibrium voltage value E eq is applied and the charging time t required for full charge, and shows that the rechargeable battery 1 with a charge rate of 0% is fully charged.
  • the current value i detected when applying the equilibrium voltage values E eq I e Q. See FIG. 3
  • the required charge time t may be calculated by a charging time prediction program as the charging time prediction means, and the charging of the secondary battery 1 may be stopped after this time has elapsed. It is also possible to display the charging time t on the display unit 49 by detecting the required charging time t until the battery is fully charged. Thus, if the charging time t is displayed, the user can grasp the charging completion time of the secondary battery 1 during charging.
  • the present invention is not limited to the above-described embodiment, and various modifications may be made within the scope of the claims. It is possible to implement it.
  • the number of the secondary battery groups 41 of the pack power supply 40 can be freely increased and decreased, and the number of the secondary batteries 1 of each of the secondary battery groups 41 * 41 can be freely increased and decreased.
  • the charging rate of the rechargeable battery 1 at the time when the current value i is detected is calculated from the detected current value i using a graph shown in FIG.
  • the charging may be stopped when the charging rate reaches a predetermined value.
  • the charging of the secondary battery 1 may be used open voltage E x of the secondary battery 1.
  • a predetermined special charging voltage E s open collector Pressure E x ( ⁇ ⁇ , E ⁇ , ⁇ ⁇ , ⁇ 6 , etc.) using a differential voltage E s and the difference voltage 1 E S, as compared with the determination reference value K which is set in advance, the difference voltage If ⁇ 1 E S is larger than the criterion value K, charging at the predetermined charging applied voltage value E s is continued, while the difference voltage ⁇ ] E s is equal to or less than the criterion value K. For example, the charging of the secondary battery 1 may be stopped assuming that the battery is in a fully charged state.
  • the display section 49 indicates that the charging of all the secondary battery groups 4 1 ⁇ 4 1 ⁇ ⁇ ⁇ It may be displayed that charging of the next battery group 41 has been completed (completed). In this way, if the end (completion) of charging of each rechargeable battery group 41 is displayed, if a load connection is possible with only the completed rechargeable battery group 41, other rechargeable batteries can be connected. This power supply can be used without waiting for the completion of charging of the group 41, and the usability can be improved.
  • the secondary battery 1 If the secondary battery 1 is left after charging is completed, it will self-discharge and the battery voltage will gradually decrease.For example, if the secondary battery is left for two days, the battery voltage will drop by about 15%. If left for 30 days, the battery voltage drops by about 40%. Therefore, when the secondary battery 1 is used in a device such as a digital camera, the battery voltage may be too low to be useful.
  • the first embodiment In any one of the twelfth embodiment to the twelfth embodiment, or by a method other than the above embodiment, when the battery voltage value of the rechargeable It is configured to recharge.
  • the charging device is also configured as shown in FIG. 1, and the program / operation control unit 4 stores the battery voltage of the secondary battery 1 after the completion of the charging detected by the voltage detection unit 9.
  • a recharge determination program as determination means for comparing and determining a value with a recharge voltage value E lower than the full charge equilibrium voltage value Eeq is incorporated.
  • This recharge voltage value E is set to, for example, 80% of the full charge equilibrium voltage value E eq , and even after charging is completed, the battery voltage of the secondary battery 1 set in the charging device is maintained at the voltage detection unit. is monitored by the 9, when the battery voltage value of the secondary battery 1 is equal to or less than the recharge voltage value E f, recharge command from the program operation control unit 4 is output, the charging voltage supply unit The charging voltage is supplied from 6 to recharge the secondary battery 1.
  • this stop of recharging is performed according to the charging stop condition of any one of the first to twelfth embodiments, or in a charging apparatus using a method other than the above embodiment.
  • the charging stop condition of the charging device shall be followed.
  • the battery voltage of the secondary battery 1 taken out from the charging device is always at or above the recharge voltage value, and is in a state suitable for use. Improvement can be achieved.
  • the internal structure of the rechargeable battery 1 is not damaged and the cycle life is maintained without causing a chemical reaction (redox reaction) due to overcharging and properly recharging until the battery is fully charged. Can be dramatically improved, and the charging time until a full charge is shortened.
  • FIG. 29 is a plan view showing the configuration of the charging device of the fourteenth embodiment of the charging device for a secondary battery.
  • the charging device 50 according to the fourteenth embodiment includes a plurality of secondary batteries 1.1. ⁇ (In this embodiment, four secondary batteries 1) are charged.
  • reference numeral 50a denotes a seat for setting the secondary battery 1
  • reference numeral 50b denotes an outside air intake.
  • Reference numeral 51 denotes a first display portion, which lights when the secondary battery 1 set in the seat portion 50a is almost fully charged, for example, when the battery voltage of the secondary battery 1 is recharged as described above. It is configured to turn on when the voltage value E ⁇ is reached. In the case of this setting, the recharging is performed when the first display section 51, which is lit once after the charging is completed, is turned off.
  • Reference numeral 52 denotes a second display unit, and charging is performed alternately in the order of the bold arrows in FIG. 29. Of the secondary batteries 1, 1, 2, the second corresponding to the secondary battery 1 currently being charged.
  • Reference numeral 53 denotes an ejection button for taking out the secondary battery 1 set in the seat portion 50a of the secondary battery 1
  • reference numeral 54 denotes a start button for starting charging of the secondary battery 1
  • reference numeral 55 is a power lamp, and the charging device 50 is connected to a commercial power source via a power cord (not shown).
  • the charging device 50 of the fourteenth embodiment performs a series of charging operations of charging the battery 2 at a predetermined voltage for a predetermined time after checking the charging state of the secondary battery 1 for each uncharged secondary battery 1 as shown in FIG. 9 in turn in the order indicated by the bold arrows, and this is regarded as one turn, and the rechargeable batteries 1 1 1 are charged while repeating this turn. It is configured to stop charging from the secondary battery 1 determined to have been performed.
  • the rechargeable battery 1 that has reached a fully charged state shall be skipped (skipped) in the next turn. Also, each turn
  • the order in which battery 1 is charged is not limited to the order indicated by the thick arrow in FIG. 29, and may be performed in another order.
  • the check of the state of charge may be performed, for example, by determining the charge current value i at step A8 in the first embodiment, determining the charge current value i at step A8 in the first embodiment, or embodiment performed by the determination or the like of the differential voltage l E s in step G 7 for definitive, the said charge voltage, for example, the predetermined special charging voltage E s is found using.
  • the charging device 50 is configured as described above. In the charging device 50, from the completion of a series of charging operations in the previous turn in each secondary battery 1 to the start of a series of charging operations in the next evening. During this period, charging is suspended, and this pause period becomes a relaxation time, the electrode surface stabilizes, the full charge state can be checked accurately in the next turn, and the reliability improves.
  • an electrode reaction occurs on the surface of the electrode in contact with the electrolyte, and the process of this electrode reaction is the movement of the reactant from inside the electrolyte to the surface of the electrode, and the reaction between the reactant and the electrode.
  • the individual secondary batteries 1 are configured such that a relaxation time is provided between the charging of the battery for a certain period of time and the subsequent checking of the state of charge. May be.
  • a cooling fan 61 is provided as a cooling means inside the charging device 50 of the fifteenth embodiment.
  • the charging of the secondary battery 1 by the charging device 50 of the fifteenth embodiment is performed as shown in any one of the first to fourteenth embodiments.
  • a cooling fan 61 is provided to cool the heating element 64-65 such as the resistor.
  • reference numeral 50 C denotes a casing which is a housing of the charging device 50
  • reference numeral 50 b denotes an outside air intake port provided on one side of the surface of the casing 50 C (FIG. 2).
  • Reference numeral 50 d denotes an outside air intake port provided on one side of the rear surface of the casing 50 C
  • reference numeral 50 e denotes an exhaust port provided on the other side of the rear surface of the casing 50 C
  • 0 h is a leg supporting the casing 50 C.
  • Reference numerals 62 and 63 are substrates
  • reference numerals 64 and 65 are heating elements such as resistors.
  • the charging device 50 is configured.
  • the cooling fan 61 By operating the cooling fan 61, the outside air around the casing 50C is taken in from the outside air intake port 5Ob ⁇ 50d, and the outside air is The heat flows along the surfaces of the heating elements 64-65, and as a result, the heating elements 64 ⁇ 65 are cooled. Then, the taken-in outside air is drawn further inside by the cooling fan 61, and is exhausted from the exhaust port 50e.
  • the charging device 50 of the sixteenth embodiment is provided with an extracting means for extracting the secondary battery 1 set in the charging device 50 with one touch.
  • the removing means of the charging device 50 of the sixteenth embodiment includes a removing button 53 operated by a user to push down, and a seat 50 a of the charging device 50.
  • the push-up member 57 which pushes up the set secondary battery 1, a turning fulcrum shaft 58 for supporting the pushing-up member 57, and the pushing-up member 57 attached to the turning fulcrum shaft 58 to attach the push-up member 57
  • a torsion spring 59 that urges in the anti-push-up direction.
  • the secondary battery 1 can be easily taken out with one touch switch, and the convenience is improved.
  • the charging device 50 of the seventeenth embodiment is provided with a take-out means different from the take-out means of the sixteenth embodiment.
  • the means has a configuration in which one side in the longitudinal direction of the seat portion 50a of the charging device 50 is depressed. In the depressed portion 5Ok, one side (the one in the longitudinal direction) of the set secondary battery 1 is set. Is floating in the air.
  • the required charging time t until full charge is obtained, but from the detected current value i, using the graph shown in FIG. It is also possible to determine the charging rate of the secondary battery 1 at the time of detection of the current value i and stop charging when the charging rate reaches a predetermined value.
  • step A7 can be omitted.
  • the charge end (completion) is determined by comparing the detected current value i with a preset charge completion reference current value J. This is because charging can be completed without obtaining t.
  • a predetermined special charging voltage E s of greater than equilibrium voltage E eq at full charge after a predetermined time T charge the secondary battery 1, to switch to equilibrium voltage E eq at full charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

明 細 書
二次電池の充電装置及び充電方法
技術分野
この発明は、 蓄電池、 ニッケル—カ ドミウム電池、 ニッケル一水 素金属電池、 リチウムィオン電池等の二次電池の充電方法及び充電 装置に関するものである。
背景技術
近年、 デジタルカメラ、 デジタルムービー、 ノートパソコン等の 電子機、 携帯電話等の通信機器、 電動工具、 掃除機といった動力機 器等の電源に、 二次電池を使用するケースが著しく増加してきてい る。 この二次電池とは、 充放電を繰り返し行うことができる電池を いい、 電気エネルギーを化学エネルギーに変換して蓄え、 また逆に 蓄えた化学エネルギーを電気エネルギーに変換して利用される。 こ の二次電池のうちで実用的に使用されている代表的なものとしては、 ニッケル一カ ドミウム電池、 ニッケル—水素金属電池、 リチウムィ オン電池、 N A S電池等が挙げられる。
ところで、 この二次電池の内部で生じる起電反応や放電反応は、 化学的反応、 電気的反応及びこれら両反応が相互に関わる複雑なェ ネルギ一変換とエネルギ一授受とが伴い、 また、 そこにはこれら 種々の反応に対する時間的要素が介在する。 従ってこれらの反応を 考慮しながら充電を行う必要があり、 過度に電流を流して充電を行 えば、 意図しない発熱反応ゃ膨潤等の、 不可逆化学反応により生ず る異常で、 電池の内部構造を破壊してしまう場合がある。 また、 そ こまでには至らないにしても、 この二次電池の内部構造を劣化させ 電池寿命は縮まり、 サイクル使用回数を減少させてしまうことにな る。
そこで、 従来では二次電池が適切に充電されるように、 二次電池 の充電装置の制御部に充電時間の進行に伴い印加電圧を変化させる ようなプログラムを組み込み、 該プログラムによる制御に従って二 次電池に電圧を印加するように構成している。 また、 充電装置に二 次電池の電圧を検出する電池電圧検出部を設け、 該電池電圧を制御 量として、 被充電電池の充電終了を判定制御する充電装置も数多く 出願されている。
例えば、 特開平 8 — 9 5 6 3号公報における二次電池充電装置は、 被充電電池の定電流による充電電圧の負の電位差を検出する電圧検 出回路と、 該被充電電池の定電流に伴う単位時間当りの電池温度の 変化 (温度微分値) を検出する温度検出回路と、 該電圧検出回路及 び該温度検出回路にて検出した負の電位差及び温度微分値と予め設 定した各基準値とをそれぞれ対比して、 充電スィツチを制御する充 電制御回路とで構成され、 検出された負の電位差及び温度微分値が、 予め選択設定した基準となる負の電位差及び温度微分値に到達した ときを充電の終了として制御している。 このように公知技術におい ては、 充電装置の制御部で、 電池電圧の検出値、 あるいはその温度 値を制御量として被充電電池の状態を監視し、 充電終了状態を判定 しかしながら、 このような充電終了検出方法を二次電池の状態を 無視して単純に適用していくと、 以下に示すような種々の不都合が 生じることになる。 すなわち、 その電極種や電解質種の違い、 また 電池構造の違い等、 二次電池の種類によって充電時における特性は 異なり、 また、 同一種、 同型番の二次電池であっても、 受電時の環 境条件の違い、 二次電池の使用履歴、 電気化学的遍歴等によってそ の特性が大きく異なる。 このため、 従来のような同一パターンでの 充電は結果的に過充電となることがあり、 これによつて二次電池内 部で異常な化学反応 (不可逆化学反応) を引き起こして発熱し、 電 気エネルギーが熱エネルギーに変換されるため充電効率が低下する といった問題がある。 また、 ガスの発生により二次電池の内圧が上 昇して漏液する危険性もある。 この結果、 充電 Z放電の繰り返しに 必要な二次電池の内部構造に欠陥が生じ、 そのサイクル寿命が縮ま つてしまうという問題が生じている。
また、 二次電池の充電時間は出来る限り短いことが望ましいが、 前記したような同一パターンでの充電では、 二次電池の種類によつ ては充電時における印加電圧がその定格値よりも低いことがあり、 この場合は特に、 充電が完了するまでにかなりの時間を要するとい う問題がある。 さらに、 充電しょう とする二次電池がどれだけ蓄電 されているのか、 また充電にどれだけの時間を要するのかを知る方 法もなく、 ユーザにとっては不便であるという問題もある。
発明の開示
本発明の目的は、 二次電池の未充電又は過充電を防止しながら、 確実な急速充電を行う ことが可能で、 或いはそのような充電を複数 種類の二次電池に施すことができ、 或いは利便性に富んだ二次電池 の充電装置を提供することにある。
本発明の第一態様における二次電池の充電装置は、 二次電池に充 電電圧を供給する充電電圧供給手段と、 二次電池に通電される充電 電流の電流値を検出する電流検出手段と、 二次電池の充電を制御す る充電制御装置と、 を備えたものであり、 該充電制御装置は、 満充 電平衡電圧値と、 充電電流のピーク値または略ピーク値を得る充電 印加電圧値であって、 該満充電平衡電圧値を超えるが不可逆化学反 応領域には達しない所定の充電印加電圧値とを記憶した記憶手段と 、 前記充電電圧供給手段から供給される充電電圧を該所定の充電印 加電圧値又は該満充電平衡電圧値に切り換える切換手段と、 該満充 電平衡電圧値での印加中に電流検出手段で検出された電流値と、 予 め入力設定された充電完了基準電流値とを比較判定する判定手段と 、 を具備している。
そして、 前記第一態様の充電制御装置においては、 以下の第 1 〜 第 4ステップによる制御が行われる。
• 第 1ステップ: 充電装置にセッ 卜された二次電池を前記所定の充 電印加電圧値で所定時間充電する。
• 第 2ステップ : 二次電池の印加電圧を該所定の充電印加電圧値か ら前記満充電平衡電圧値に切り換える。
• 第 3ステップ : 二次電池を該満充電平衡電圧値で微小時間印加し ている間に、 前記電流検出手段によって二次電池に流れている電流 値を検出する。
• 第 4ステップ : 前記判定手段によってこの検出した電流値の判定 を行い、 該電流値が充電完了基準電流値より大きな値であれば、 前 記第 1ステップに戻って上記のフローを繰り返し、 一方、 該電流値 が該充電完了基準電流値以下であれば、 充電を停止する。
このような充電制御により、 過度な化学反応 (酸化還元反応) を 引き起こすことなく、 満充電状態まで適正に充電が行え、 二次電池 の内部構造を傷めない結果、 サイクル寿命を飛躍的に向上させるこ とができる。 特に、 この充電装置での主なる充電は、 満充電平衡電 圧値を超える所定の充電印加電圧値で行うため、 かなり大きな充電 電流が流れて、 充電時間の短縮を図ることができる。 また、 充電状 態のチェックは満充電平衡電圧値で行うため、 精確に満充電状態ま で充電することができる。
また、 本発明の第二態様の二次電池の充電装置は前記第一態様の ものと同様であるが、 その充電制御装置の記憶手段に、 複数の種類 の二次電池についての、 前記満充電平衡電圧値と、 前記所定の充電 印加電圧値と、 を予め記憶させておき、 該充電制御装置に充電する 二次電池の種類を入力することにより、 該記憶手段のテーブルの中 から該二次電池の種類に相当する所定の充電印加電圧値と、 満充電 平衡電圧値とが選択設定され、 この設定した該所定の充電印加電圧 値と、 該満充電平衡電圧値とにより該二次電池を充電するものであ る。
この第二態様の二次電池の充電装置では; 前記記憶手段のテープ ルの中から充電する二次電池の種類に相当する所定の充電印加電圧 値と、 満充電平衡電圧値とを手動で適正に選択することができ、 過 度な化学反応 (酸化還元反応) を引き起こすことなく、 満充電状態 まで適正に充電を行うことができる。 また、 この充電装置による充 電では、 二次電池の内部構造を傷めない結果、 サイクル寿命を飛躍 的に向上させることができる。 特に、 この充電装置での主なる充電 は、 満充電平衡電圧値を超える所定の充電印加電圧値で行うため、 かなり大きな充電電流が流れて、 充電時間の短縮を図ることができ る。 また、 充電状態のチェックは、 満充電平衡電圧値で行うため、 精確に満充電状態まで充電することができる。
或いは、 本発明の第三態様の二次電池の充電装置は、 前記第一態 様のものと同様の構造であるが、 その充電制御装置の記憶手段には
、 n ( nは 2以上の自然数) 種類の二次電池についての、 前記満充 電平衡電圧値と、 前記所定の充電印加電圧値と、 を記憶したもので あり、 以下の第 1〜第 8ステップによる制御を行うものである。 • 第 1ステップ : 変数を k ( k = l 、 2 、 · · · 、 n ) として、 該 kを初期化し、 k = 1 とする。
- 第 2ステップ : 充電装置にセッ 卜された二次電池を n種類の二次 電池の所定の充電印加電圧値のうち第 k番目に低い所定の充電印加 電圧値で所定時間充電する。
• 第 3ステップ: k = nのときは、 第 6ステップへジヤンプする。 • 第 4ステップ : 二次電池を該第 k番目に低い所定の充電印加電圧 値で所定時間充電している間に、 前記電圧検出手段によって二次電 池に印加されている電圧値を検出する。
- 第 5ステップ : 前記電圧値判定手段によってこの検出した電圧値 の比較を行い、 該電圧値が該第 k番目に低い所定の充電印加電圧値 よりも大きな値であれば、 該 kに 1 を加えたものを新たな kとして 前記第 2ステップに戻り、 一方、 該電圧値が該第 k番目に低い所定 の充電印加電圧値以下であれば、 次の第 6ステツプへ移行する。
• 第 6ステップ : 二次電池の印加電圧を n種類の二次電池の満充電 平衡電圧値のうち第 k番目に低い満充電平衡電圧値に切り換える。
• 第 7ステップ : 二次電池を該第 k番目に低い満充電平衡電圧値で 微小時間印加している間に、 前記電流検出手段によって二次電池に 流れている電流値を検出する。
• 第 8ステップ : 前記電流値判定手段によってこの検出した電流値 の判定を行い、 該電流値が充電完了基準電流値より大きな値であれ ば、 前記第 2ステップに戻って上記のフローを繰り返し、 該電流値 が該充電完了基準電流値以下であれば、 充電を停止する。
この第 Ξ態様の二次電池の充電装置は、 充電対象とする各種類の 二次電池について前記第一態様の二次電池の充電装置と同様の効果 を奏するとともに、 充電過程で、 二次電池の種類等を自動的に判別 して、 過度な化学反応 (酸化還元反応) を引き起こすことなく、 急 速、 且つ適正に満充電まで充電を行うことができる。
或いは、 本発明の第四態様の二次電池の充電装置は、 前記第三態 様のものと同様の構造であって、 さらに、 前記所定の充電印加電圧 値での充電中に電圧検出手段で検出された充電電圧値と、 その前の 回の所定の充電印加電圧値での充電中に電圧検出手段で検出された 充電電圧値との差が、 予め入力設定された所定の範囲内にあるかを 判定する電圧差判定手段を具備し、 以下の第 1〜第 8ステップに従 つて二次電池の充電を制御するものである。
' 第 1ステップ : 変数を k ( k = l 、 2 、 · · · 、 n ) として、 該 kを初期化し、 k = 1 とする。
- 第 2ステップ : 充電装置にセッ トされた二次電池を n種類の二次 電池の所定の充電印加電圧値のうち第 k番目に低い所定の充電印加 電圧値で所定時間充電する。
' 第 3ステップ: k = nのときは、 第 6ステップへジャンプする。 • 第 4ステップ : 二次電池を該第 k番目に低い所定の充電印加電圧 値で所定時間充電している間に、 前記電圧検出手段によって二次電 池に印加されている電圧値を検出する。
• 第 5ステップ : 前記電圧差判定手段によって今回該第 k番目に低 い所定の充電印加電圧値で充電している間に検出した電圧値と、 前 回該第 k番目に低い所定の充電印加電圧値で充電している間に検出 した電圧値との差が所定の範囲内にあれば、 次の第 5ステツプへ移 行し、 一方、 該差が所定の所定の範囲を越えていれば、 該 kに 1を 加えたものを新たな kとして前記第 2ステップへ戻る。 ただし、 今 回の電圧値の検出が第 1回目のときは、 そのまま次の第 6ステップ へ移行する。
•第 6ステップ : 二次電池の印加電圧を n種類の二次電池の満充電 平衡電圧値のうち第 k番目に低い満充電平衡電圧値に切り換える。
- 第 7ステップ: 二次電池を該第 k番目に低い満充電平衡電圧値で 微小時間印加している間に、 前記電流検出手段によって二次電池に 流れている電流値を検出する。
•第 8ステップ: 前記電流値判定手段によってこの検出した電流値 の判定を行い、 該電流値が充電完了基準電流値より大きな値であれ ば、 前記第 2ステップに戻って上記のフローを繰り返し、 一方、 該 電流値が該充電完了基準電流値以下であれば、 充電を停止する。
この第四態様の二次電池の充電装置も、 前記第一態様の二次電池 の充電装置と同様の効果を奏するとともに、 充電過程で、 二次電池 の種類等を自動的に判別して、 過度な化学反応 (酸化還元反応) を 引き起こすことなく、 急速、 且つ適正に満充電まで充電を行うこと ができる。
或いは、 本発明の第五態様の二次電池の充電装置は、 二次電池に 充電電圧を供給する充電電圧供給手段と、 二次電池の開放電圧を検 出する電圧検出手段と、 二次電池の充電を制御する充電制御装置と 、 を備えたものであって、 前記充電制御装置は、 充電電流のピーク 値または略ピーク値を得る充電印加電圧値であって、 満充電平衡電 圧値を超えるが不可逆化学反応領域には達しない所定の充電印加電 圧値を記憶した記憶手段と、 該所定の充電印加電圧値と二次電池の 開放電圧との差である差電圧と予め入力設定された所定の判定基準 値とを比較判定する差電圧判定手段と、 を具備し、 以下の第 1〜第
3ステツプに従って二次電池の充電を制御する。
• 第 1ステップ: 充電装置にセッ トされた二次電池を前記所定の充 電印加電圧値で所定時間充電した後、印加電圧を遮断する。
• 第 2ステップ: この状態で二次電池の開放電圧を検出し、 該所定 の充電印加電圧値と該開放電圧との差である差電圧を求める。
• 第 3ステップ : 前記差電圧判定手段によってこの求めた差電圧の 判定を行い、 該差電圧が判定基準値よりも大きいときは、 前記第 1 ステップに戻って上記のフローを繰り返し、 該差電圧が判定基準値 以下のときは、 二次電池の充電を停止する。
この第五態様の二次電池の充電装置でも、 過度な化学反応 (酸化 還元反応) を引き起こすことなく、 満充電状態まで適正に充電が行 え、 二次電池の内部構造を傷めない結果、 サイクル寿命を飛躍的に 向上させることができる。 また、 この充電装置では、 満充電平衡電 圧値を超える所定の充電印加電圧値と二次電池の開放電圧との差電 圧を検出するようにしているため、 満充電か否かをより正確に判断 することができる。 さらに、 この充電装置での主なる充電は、 満充 電平衡電圧値を超える所定の充電印加電圧値で行われるため、 かな り大きな充電電流が流されることとなり、 これによつて充電時間の 短縮を図ることができる。
或いは、 本発明の第六態様の二次電池の充電装置は、 前記第五態 様のものと同様であるが、 その充電制御装置は、 前記差電圧判定手 段に代えて、 前記電圧検出手段により検出した二次電池の開放電圧 と判定基準値である満充電平衡電圧値とを比較判定する判定手段を 具備し、 以下のステップに従って二次電池の充電を制御することを 特徴としている。
• 第 1ステップ : 充電装置にセッ トされた二次電池を前記所定の充 電印加電圧値で所定時間充電した後、印加電圧を遮断する。
• 第 2ステップ: この状態で二次電池の開放電圧を検出する。
' 第 3ステップ: 前記判定手段によって該開放電圧の判定を行い、 該開放電圧が判定基準値である満充電平衡電圧値よりも小さいとき は、 前記第 1ステップに戻って上記のフローを繰り返し、 一方、 該 開放電圧が満充電平衡電圧値以上のときは、 二次電池の充電を停止 する。
この第六態様の二次電池の充電装置でも、 過度な化学反応 (酸化 還元反応) を引き起こすことなく、 満充電状態まで適正に充電が行 え、 二次電池の内部構造に損傷を与えるのを防止することができる ため、 サイクル寿命を飛躍的に向上させることができる。 さらに、 この充電装置での主なる充電は、 満充電平衡電圧値を超える所定の 電圧値で行われるため、 かなり大きな充電電流が流されることとな り、 これによつて充電時間の短縮を図ることができる。
或いは、 本発明の第七態様の二次電池の充電装置は、 二次電池に 所定の電圧を印加する充電電圧供給手段と、 該所定の電圧を印加し ているときに二次電池に通電される充電電流の電流値を検出する電 流検出手段と、 この検出された電流値に基づき満充電までの所要充 電時間を求める充電時間予測手段と、 を備えている。
この第七態様の二次電池の充電装置では、 電流値を検出するとい う容易な方法で、 満充電までの所要充電時間を把握することができ、 利便性が向上する。
前記所要充電時間を、 前記電流検出手段により検出された電流値 が、 充電完了時に検出される充電完了基準電流値に達するまでの時 間として定義し、 該電流値が該充電完了基準電流値以下のときに充 電を停止するように構成してもよい。
このような構成で充電状態を定期的にチェックすることにより、 過充電による化学反応 (酸化還元反応) を引き起こすことなく満充 電状態まで適正に充電が行え、 二次電池の内部構造に損傷を与えな いため、 サイクル寿命を飛躍的に向上させることができる。
或いは前記所要充電時間経過後に、 二次電池の充電を停止するよ うに構成してもよく、 このような簡素な構成で確実に充電を停止さ せることができる。 また、 これによつて、 過充電による化学反応 (酸化還元反応) を引き起こすことなく、 満充電状態まで適正に充 電が行え、 二次電池の内部構造に損傷を与えないため、 サイクル寿 命を飛躍的に向上させることができる。
或いは、 本発明の第八態様の二次電池の充電装置として、 二次電 池に所定の電圧を印加する充電電圧供給手段と、 該所定の電圧を印 加しているときに二次電池に通電される充電電流の電流値を検出す る電流検出手段と、 該電流検出手段による電流値の検出時点での二 次電池の充電率を求める充電率導出手段と、 を備える二次電池の充 電装置を構成してもよい。
この第八態様の二次電池の充電装置では、 電流値を検出するとい う容易な方法で、 現時点でどれだけ充電されているのかを示す充電 率を把握することができて、 利便性が向上する。
このような第七又は第八態様の二次電池の充電装置においては、 前記充電電圧供給手段により、 二次電池に、 前記所定の電圧を超え た電圧を所定時間印加した後、 印加電圧を前記所定の電圧に切り換 えて、 このとき流れる電流値を前記電流検出手段により検出するも のとしている。
これにより、 二次電池の充電は主に、 所定の電圧を超えた電圧値 で行うことができるため、 比較的大きな充電電流を二次電池に流す ことができ、 これによつて充電時間の短縮を図ることができる。 また、 本発明の第九態様の二次電池の充電装置は、 二次電池に充 電電圧を供給する充電電圧供給手段と、 二次電池に通電される充電 電流の電流値を検出する電流検出手段と、 二次電池の充電を制御す る充電制御装置と、 を備えた二次電池の充電装置であって、 前記充 電制御装置は、 満充電平衡電圧値と、 充電電流のピーク値又は略ピ —ク値を得る充電印加電圧値であって、 該満充電平衡電圧値を超え るが不可逆化学反応領域には達しない所定の充電印加電圧値と、 を 記憶した記憶手段と、 前記充電電圧供給手段から供給される充電電 圧を該所定の充電印加電圧値、 又は該満充電平衡電圧値に切り換え る切換手段と、 前記電流検出手段により検出された電流値に基づき 満充電までの所要充電時間を求める充電時間予測手段と、 を具備し
、 以下の第 1〜第 6ステツプに従って二次電池の充電を制御する。 • 第 1ステップ: 充電装置にセッ 卜された二次電池を前記所定の充 電印加電圧値で所定時間充電する。
• 第 2ステップ: 二次電池の印加電圧を該所定の充電印加電圧値か ら前記満充電平衡電圧値に切り換える。
• 第 3ステップ: 二次電池を該満充電平衡電圧値で微小時間印加し ている間に、 前記電流検出手段によって二次電池に流れている電流 値を検出する。
- 第 4ステップ : 前記充電時間予測手段によりこの検出された電流 値に基づき満充電までの所要充電時間を求める。
• 第 5ステップ : 二次電池の印加電圧を該満充電平衡電圧値から前 記所定の充電印加電圧値に切り換える。
- 第 6ステップ: 前記所要充電時間が経過した後に、 二次電池の充 電を停止する。
この第 1 2態様の二次電池の充電装置では、 二次電池の充電は主 に、 満充電平衡電圧値を超える所定の充電印加電圧値で行う ことが できるため、 かなり大きな充電電流を二次電池に流すことができ、 これによつて充電時間の短縮を図ることができる。 また、 二次電池 に満充電平衡電圧値を印加した場合、 いかなる二次電池においても 満充電時に検出される電流値は略 0となるため、 検出が行い易く、 また、 満充電までの所要充電時間を正確に求めることができ、 利便 性が向上する。 さらに、 前記所要充電時間に達したときに充電を停 止するように構成したことによって、 過度な化学反応 (酸化還元反 応) を引き起こすことなく、 満充電状態まで適正に充電が行え、 二 次電池の内部構造に損傷を与えないため、 サイクル寿命を飛躍的に 向上させることができる。
或いは、 本発明の第十態様の二次電池の充電装置は、 二次電池に 充電電圧を供給する充電電圧供給手段と、 二次電池に通電される充 電電流の電流値を検出する電流検出手段と、 二次電池の充電を制御 する充電制御装置と、 を備えたものであって、 前記充電制御装置は 満充電平衡電圧値と、 充電電流のピーク値または略ピーク値を得る 充電印加電圧値であって、 該満充電平衡電圧値を超えるが不可逆化 学反応領域には達しない所定の充電印加電圧値と、 を記憶した記憶 手段と、 前記充電電圧供給手段から供給される充電電圧を該所定の 充電印加電圧値、 又は該満充電平衡電圧値に切り換える切換手段と 、 前記電流検出手段による電流値の検出時点での二次電池の充電率 を求める充電率導出手段と、 該充電率導出手段により求められた充 電率と、 予め入力設定された判定基準値とを比較判定する判定手段 とを具備し、
以下の第 1〜第 5ステツプに従って二次電池の充電を制御する。 - 第 1ステップ : 充電装置にセッ 卜された二次電池を前記所定の充 電印加電圧値で所定時間充電する。
, 第 2ステップ: 二次電池の印加電圧を該所定の充電印加電圧値か ら前記満充電平衡電圧値に切り換える。
• 第 3ステップ: 二次電池を該満充電平衡電圧値で微小時間印加し ている間に、 前記電流検出手段によって二次電池に流れている電流 値を検出する。
• 第 4ステップ: 前記充電率導出手段により この電流値の検出時点 での二次電池の充電率を求める。
• 第 5ステップ: 前記判定手段によってこの求めた充電率の判定を 行い、 該充電率が判定基準値未満で検出されていれば、 前記第 1ス テツプに戻って上記のフローを繰り返し、 一方、 該充電率が該判定 基準値以上となったときは、 充電を停止する。
この第十態様の二次電池の充電装置では、 二次電池の充電は主に、 満充電平衡電圧値を超える所定の充電印加電圧値で行うことができ るため、 かなり大きな充電電流を二次電池に流すことができ、 これ によって充電時間の短縮を図ることができる。 また、 二次電池に満 充電平衡電圧値を印加した場合、 いかなる二次電池においても満充 電時に検出される電流値は略 0となるため、 検出が行い易く、 また、 現時点での充電率を正確に求めることができ、 利便性が向上する。 さらに、 前記充電率が所定値に達したときに充電を停止するように 構成したことによって、 過充電による化学反応 (酸化還元反応) を 引き起こすことなく満充電状態まで適正に充電が行え、 二次電池の 内部構造に損傷を与えないため、 サイクル寿命を飛躍的に向上させ ることができる。
また、 本発明の第十一態様の二次電池の充電装置は、 電源部に二 次電池とコンデンザとを並列に接続した回路と、 該二次電池とコン デンサとを結ぶ閉ループ回路を遮断/接続する切換手段と、 を備え 、 該閉ループ回路を遮断した状態で、 該コンデンサに電源部の電源 電圧を所定時間印加して蓄電した後、 該閉ループ回路を接続し、 該 コンデンザに蓄電された電荷を二次電池に転送することで、 二次電 池を充電するように構成している。
この第十一態様の二次電池の充電装置によれば、 二次電池への電 荷の注入量がカウントし易くなるとともに、 大容量のコンデンサを 媒体とすれば、 短時間に多くの電荷を二次電池に注入すること、 す なわち大電流を流すことができるため、 充電時間の短縮を図ること ができる。 また、 高額な大電流回路を必要とせず、 しかも制御は極 めて容易であるため、 低コス トで実施可能であるとともに、 信頼性 の向上を図ることもできる。
また、 本発明の第十二態様の二次電池の充電装置は、 二次電池に 所定の電圧を印加するチェック電源部と、 二次電池に通電される電 流値を検出する電流検出手段と、 この検出した電流値と予め入力設 定された充電完了基準電流値とを比較判定する電流値判定手段と、 を備え、 前記閉ル一プ回路を遮断した状態で、 該チェック電源部に より二次電池に所定の電圧を印加し、 このとき流れる電流値を検出 するとともに、 この検出した電流値と所定の充電完了基準電流値と を比較して、 該電流値が該充電完了基準電流値よりも大きいときは 前記蓄電、 転送制御を繰り返し行い、 一方、 該電流値が該充電完了 基準電流値以下のときは、 二次電池の充電を停止するように構成し ている。
この第十二態様の二次電池の充電装置によれば、 過度な化学反応 (酸化還元反応) を引き起こすことなく、 満充電状態まで適正に充 電が行え、 二次電池の内部構造に損傷を与えるのを防止することが できるため、 サイクル寿命を飛躍的に向上させることができる。 ま た、 前記コンデンサの蓄電期間中に、 二次電池の充電状態の観測を 行う ことができるため一段と充電時間の短縮を図ることができる。 そして、 前記所定の電圧を満充電平衡電圧値とすることで、 いか なる二次電池に対しても、 検出された電流値が 0以下となれば満充 電状態に達していると判断することができるため、 容易かつ正確に 満充電か否かを判断することができる。
また、 本発明の第十 Ξ態様の二次電池の充電装置は、 二次電池の 開放電圧を検出する電圧検出手段と、 この検出した開放電圧と満充 電平衡電圧値とを比較判定する電圧値判定手段と、 を備え、 前記閉 ループ回路を遮断した状態で、 二次電池の開放電圧を検出するとと もに、 この検出した開放電圧と満充電平衡電圧値とを比較して、 該 開放電圧が満充電平衡電圧値よりも小さいときは、 前記蓄電、 転送 制御を繰り返し行い、 一方、 該開放電圧が満充電平衡電圧値以上の ときは、 二次電池の充電を停止するように構成している。
この第十三態様の二次電池の充電装置によれば、 過度な化学反応 (酸化還元反応) を引き起こすことなく、 満充電状態まで適正に充 電が行え、 二次電池の内部構造に損傷を与えるのを防止することが できるため、 サイクル寿命を飛躍的に向上させることができる。 ま た、 前記コンデンサの蓄電期間中に、 二次電池の充電状態の観測を 行うことができるため一段と充電時間の短縮を図ることができる。
また、 本発明の第十四態様の二次電池の充電装置は、 複数の二次 電池を充電するものであって、 二次電池に電圧を印加する充電電圧 制御手段と、 前記二次電池の充電状態を把握する制御手段と、 前記 制御手段からの充電完了信号に基づいて、 充電電圧を印加する二次 電池の切り換えを行う電池指定切換手段と、 を備えている。
この第十四態様の二次電池の充電装置では、 各二次電池は、 その 充電状態を確認しながら 1個 1個確実に充電が行われるため、 未充 電の二次電池が生じたり、 また、 過充電となって過度な化学反応 (酸化還元反応) を引き起こしたりすることなく、 全ての二次電池 を満充電状態まで適正に充電することができる。 また、 これによつ て、 各二次電池の内部構造に損傷を与えるのを防止することができ るため、 サイクル寿命を飛躍的に向上させることができる。 この第十四態様の充電装置において、 前記二次電池の充電状態を 把握する際に満充電平衡電圧値を印加するチェック電圧制御手段と、 前記充電電圧とチェック電圧との切り換えを行う電圧切換手段と、 前記チエツク電圧印加時における二次電池の電流を検出する電流検 出手段と、 前記電流検出手段からの信号に基づいて二次電池の充電 状態を把握する制御手段と、 を備えるものとしてもよい。
これにより、 各二次電池の充電中においては、 定期的にチェック 電圧を印加して、 この際に流れる電流値を検出するという容易な方 法で、 二次電池の充電状態を把握することができる。 これにより、 未充電の二次電池が生じたり、 また過充電となって過度な化学反応 (酸化還元反応) を引き起こしたりすることなく、 全ての二次電池 を満充電状態まで適正に充電することができる。
或いは、 前記第十四態様の充電装置において、 前記充電電圧の印 加、 又は印加停止の切り換えを行う電圧切換手段と、 前記充電電圧 の印加停止時における二次電池の開放電圧を検出する電圧検出手段 と、 前記電圧検出手段からの信号に基づいて二次電池の充電状態を 把握する制御手段と、 を備えるものとしてもよい。
これにより、 各二次電池の充電中においては、 定期的に充電電圧 の印加を停止し、 この際に検出される開放電圧を検出するといぅ容 易な方法で、 二次電池の充電状態を把握することができる。 これに より、 未充電の二次電池が生じたり、 また過充電となって過度な化 学反応 (酸化還元反応) を引き起こしたりすることなく、 全ての二 次電池を満充電状態まで適正に充電することができる。
或いは、 前記第十四態様の充電装置において、 前記二次電池に印 加する充電電圧を、 充電電流のピーク値又は略ピーク値を得る充電 印加電圧値であって、 満充電平衡電圧値を超えるが不可逆化学反応 領域には達しない所定の充電印加電圧値としてもよい。
これにより、 満充電平衡電圧値を超える所定の充電印加電圧値で 充電を行うように構成して、 かなり大きな充電電流が二次電池に流 されることとなり、 複数の二次電池を個別に充電する方法を用いて も、 個々の二次電池の充電に要する時間を短くすることができるた め、 結果的に全ての二次電池を充電するのに要する時間の短縮を図 ることができる。
或いは、 本発明の第十五態様の二次電池の充電装置は、 複数の二 次電池を充電制御するものであって、
ある一つの二次電池の充電が完了すると、 次の未充電の二次電池 の充電に切り換える電池切換手段を備え、 個別に二次電池の充電を 行うように構成されている。
この第十五態様の二次電池の充電装置では、 複数の二次電池を 1 個ずつ個別に充電しているため、 制御が簡単で、 全ての二次電池を 確実に充電することが可能となる。
以上の各態様の充電装置においては、 前記充電所要時間、 若しく は、 前記充電率、 若しくは、 充電完了、 又は充電中の二次電池の充 電状態を報知する報知手段を備えて、 利便性を向上してもよい。
また、 本発明の第十六態様の二次電池の充電装置においては、 二 次電池に充電電流を供給する充電電圧供給手段を備え、 該充電電圧 供給手段に、 複数の二次電池を直列に接続して二次電池群を構成し、 ある一つの二次電池が満充電となれば、 次の未充電の二次電池の充 電を行って、 この二次電池群の複数の二次電池の充電を順次行うよ うに構成している。
この第十六態様の二次電池の充電装置によれば、 二次電池毎に特 性の違いがあっても、 各二次電池を充電することができ、 充電し'過 ぎのものや未充電のものが現れるのを防止できる。 これにより、 二 次電池の本来の性能を十分出せることになり、 この電池 (パック電 源) の寿命を延ばすことができるとともに、 パック電源が使用され る機器を安定して駆動させることができる。
そして、 このような第十六態様の充電装置を、 前述の様々な態様 の充電装置のうち、 高い電圧印加での大電流充電と低く制御した電 圧印加での充電とを切り換える構造のもの、 例えば第一態様の充電 装置に適用することにより、 各二次電池は、 過度な充電が防止され て満充電状態まで適正に充電が行えるので、 各二次電池にとっては いわゆる優しい充電となって、 内部構造を傷めることが防止される。 これによつて、 サイクル寿命を飛躍的に向上させることができ、 コ ス ト面での負担の軽減を図ることができる。 さらに、 各二次電池を 充電する場合、 比較的に大きな充電電流を各二次電池に流すことが できるので、 1個当りの充電時間の短縮を図ることができる。 この ため、 このような複数個の二次電池を有するパック電源において全 体としての充電時間を極めて小さくすることができ、 この電源が使 用される各種機器がバッテリ不足でもつて駆動できない時間を少な くすることができ、 この機器の利用性の向上を図ることができる。 さらに、 前記第十六態様の二次電池の充電装置は、 ある一つの二 次電池群の各二次電池の充電を行った後に、 この二次電池群と並列 に接続された次の二次電池群の各二次電池の充電を行うように構成 してもよい。
これにより、 複数の並列に接続された二次電池群の各二次電池の 充電を行うことができて、 大きな出力電圧を得ることができるパッ ク化されたパック電源の充電を行うことができる。
また、 前記第十六態様の二次電池の充電装置は、 複数の二次電池 群の並行した充電を可能に構成してもよい。
これにより、 例えば、 各二次電池群の充電を同時に開始すること ができ、 全体としての充電時間の短縮を一層図ることができ、 この パック電源が使用される機器のバッテリ不足による使用不可時間の 短縮を図ることができ、 ユーザにとって利用性に優れる。
また、 前記第十六態様の二次電池の充電装置は、 複数の二次電池 群の直列使用と並列使用とを可能に構成してもよい。
これにより、 負荷に応じて両使用を使い分けることができ、 汎用 性に優れる。 しかも、 各二次電池群の二次電池は、 以上のような充 電方法により、 充電し過ぎのものや未充電のものが現れるのを防止 でき、 二次電池の本来の性能を十分出せることになり、 電池として 安定した機能を発揮し、 かつ長寿命化を図ることができる。 以上の様々な態様のうち、 充電制御装置が、 満充電平衡電圧値と 、 充電電流のピーク値又は略ピーク値を得る充電印加電圧値であつ て、 該満充電平衡電圧値を超えるが不可逆化学反応領域に達しない 所定の充電印加電圧値とを記憶し、 これらの電圧値を切り換えて電 圧を印加制御する構造の充電装置においては、 二次電池を、 前記所 定の充電印加電圧値で所定時間印加した後であって、 印加電圧を前 記満充電平衡電圧値に切り換える前に、 二次電池の端子間を短絡さ せる短絡手段を備えるものとしてもよい。
これにより、 二次電池の電極界面にチャージした電荷を除去して、 電極界面をクリーンな状態にする。 これにより、 満充電電位への電 圧印加がスムーズに行え、 さらに、 この満充電電位への切換直後の 充電電流が安定し、 その結果、 電流値の測定が正確に行え、 適正な 充電を図ることができる。
そして、 本発明の第十七態様の二次電池の充電装置は、 二次電池 に充電電圧を供給する充電電圧供給手段と、 二次電池の電池電圧を 検出する電圧検出手段と、 該電圧検出手段により検出された充電完 了後の二次電池の電池電圧値と、 満充電平衡電圧値よりも低い再充 電電圧値とを比較判定する判定手段と、 を備え、 該判定手段による 判定で、 該電池電圧値が該再充電電圧値以下となったときに、 該充 電電圧供給手段により充電電圧を供給して、 再充電を行うように構 成されている。
この第十七態様の二次電池の充電装置によれば、 充電装置から取 り出した二次電池の電池電圧は、 いつでも再充電電圧値以上で、 使 用に適した状態にあり、 利便性の向上を図ることができる。
また、 この再充電においても、 過充電による化学反応 (酸化還元 反応) を引き起こすことなく、 満充電状態まで適正に再充電を行う ため、 二次電池の内部構造に損傷を与えず、 サイクル寿命を飛躍的 に向上させることができるとともに、 満充電までの充電時間も短く なる。
また、 本発明の第十八態様の二次電池の充電装置は、 二次電池の 充電状態をチエツクして、 所定の充電電圧で所定時間充電する一連 の充電動作を繰り返し、 前記充電状態のチェックで満充電状態に達 したと判断されると充電を停止するように構成したものであって、 前記一連の充電動作間に、 緩和時間を設けている。
これにより、 前記一連の充電動作間に、 緩和時間を設けたことで 、 次の一連の充電動作での満充電状態のチエツクを精確に行うこと ができ、 信頼性が向上する。
さらに、 本発明の第十九態様の二次電池の充電装置は、 複数の二 次電池を充電するものであって、 二次電池の充電状態をチヱックし た後、 所定の充電電圧で所定時間充電する一連の充電動作を各未充 電の二次電池ごとに交互に行い、 これを 1ターンとして、 該夕一ン を繰り返しながら複数の二次電池を充電し、 前記充電状態のチエツ クで満充電状態に達したと判断された二次電池から充電を停止する ように構成したものであって、 前記緩和時間は、 各二次電池におけ る、 先の夕一ンの一連の充電動作の完了から、 次のターンの一連の 充電動作の開始までの間の時間である。
この第十九態様の二次電池の充電装置では、 各二次電池における 先の夕一ンの一連の充電動作の完了から、 次のターンの一連の充電 動作の開始までの間、 充電が休止され、 この休止期間が緩和時間と なり、 電極表面が安定して、 次のターンでの満充電状態のチェック を精確に行うことができ、 信頼性が向上する。
補足すると、 二次電池の充電中、 電解液と接する電極の表面で電 極反応が起こり、 この電極反応の過程は、 電解液内部から電極表面 への反応物の移動と、 反応物と電極の間での電子の移動と、 電極表 面から電解液内部への生成物の移動との同時過程であり、 この移動 にはかなりの時間を要することから、 二次電池の充電休止直後に、 満充電状態をチェックすると、 電極表面付近で電気泳動している移 動過程のイオン等のために、 あたかも、 満充電状態に達したかのよ うに検知されてしまうことがある。 この誤検知を防ぐためにも、 緩 和時間を設けることは有効であり、 この第十九態様の二次電池の充 電装置では、 各二次電池ごとの充電サイクルの一環として、 合理的 、 且つ効果的に緩和時間が設けられている。
以上の様々な態様の充電装置においては、 それぞれに、 充電装置 内の発熱部を冷却するための冷却手段を設けてもよい。 これにより、 発熱素子等の発熱部の発熱が抑えられて、 二次電池への熱伝達が防 がれ、 二次電池の内部での過度な化学反応 (酸化還元反応) を助長 することもなく、 また、 ユーザが二次電池があたかも発熱したかの ように錯覚にとらわれることもない。 この結果、 二次電池は満充電 状態まで適正に充電が行われて、 二次電池の内部構造に損傷を与え るのを防止することができ、 サイクル寿命を飛躍的に向上させるこ とが きる。
また、 本発明の第二十態様の二次電池の充電装置は、 充電装置の 座部にセッ トされた二次電池をワンタッチで取り出すための取出手 段を設けている。 これにより、 二次電池を簡単に取り出すことがで き、 利便性が向上する。
この第二十態様の二次電池の充電装置において、 前記取出手段は、 ユーザが押し下げ操作する操作部材と、 前記座部にセッ 卜された二 次電池を押し上げる押上部材と、 該押上部材を軸支する回動支点軸 と、 該回動支点軸に取り付けられて該押上部材を反押上方向へ付勢 する付勢手段と、 を備え、 前記操作部材の操作によって、 前記座部 から前記押上部材のー側部が出没するように構成してもよい。
これにより、 ュ一ザが操作部材を操作することで、 充電装置の座 部から押上部材のー側部が出没して、 二次電池をワンタツチで簡単 に取り出すことができ、 利便性が向上する。
また、 前記第二十態様の二次電池の充電装置において、 前記取出 手段は、 前記座部の長手方向一側部を陥没させて構成したものとし てもよい。
これにより、 二次電池の長手方向一側部を押し下げると、 該ー側 部が陥没部に沈み込むととともに、 二次電池の長手方向他側部が浮 き上がって、 該二次電池の両端子の支持が外れ、 二次電池が取り出 されるようになつている。 このようにして、 二次電池をワンタッチ で簡単に取り出すことができ、 利便性が向上する。
次に、 本発明の目的は、 二次電池の未充電又は過充電を防止しな がら、 確実な急速充電を行うことが可能で、 或いはそのような充電 を複数の二次電池について施すことができる二次電池の充電方法を 提供することにある。
本発明の第一態様の二次電池の充電方法は、 満充電平衡電圧値と 、 充電電流のピーク値又は略ピーク値を得る充電印加電圧値であつ て、 該満充電平衡電圧値を超えるが不可逆化学反応領域には達しな い所定の充電印加電圧値とを予め記憶させておき、 二次電池を該所 定の充電印加電圧値で、 所定時間、 印加した後、 印加電圧を該満充 電平衡電圧値に切り換え、 該満充電平衡電圧値で印加している間に 、 二次電池に流れている電流値を検出して、 この検出した電流値を 充電完了基準電流値と比較し、 該電流値が該充電完了基準電流値よ り大きいときは、 再び、 二次電池を該所定の充電印加電圧値で印加 して、 上述のフローを繰り返し、 一方、 該電流値が該充電完了基準 電流値以下のときには、 二次電池の充電を停止するものである。
この第一態様の二次電池の充電方法では、 過充電による化学反応 (酸化還元反応) を引き起こすことなく、 満充電状態まで適正に充 電が行え、 二次電池の内部構造を傷めない結果、 サイクル寿命を飛 躍的に向上させることができる。 特に、 この方法での主なる充電は 満充電平衡電圧値を超える所定の充電印加電圧値で行うため、 かな り大きな充電電流が流れて、 充電時間の短縮を図ることができる。 或いは、 本発明の第二態様の二次電池を充電方法は、 n ( nは 2 以上の自然数) 種類の二次電池についての、 満充電平衡電圧値と、 充電電流のピーク値又は略ピーク値を得る充電印加電圧値であつて、 該満充電平衡電圧値を超えるが不可逆化学反応領域には達しない所 定の充電印加電圧値とを予め記憶させておき、. 以下の第 1〜第 8ス テップに従って二次電池を充電する。
• 第 1ステップ : 変数を k ( k = l 、 2 、 · · · 、 n ) として、 該 kを初期化し、 k == 1 とする。
'第 2ステップ : 二次電池を n種類の二次電池の所定の充電印加電 圧値のうち第 k番目に低い所定の充電印加電圧値で所定時間充電す る。
'第 3ステップ: k - ηのときは、 第 6ステツプへジャンプする。 '第 4ステップ: 二次電池を該第 k番目に低い所定の充電印加電圧 値で所定時間充電している間に、 二次電池に印加されている電圧値 を検出する。
•第 5ステップ: この検出した電圧値が該第 k番目に低い所定の充 電印加電圧値よりも大きな値であれば、 該 kに 1 を加えたものを新 たな として前記第 2ステップに戻り、 該検出した電圧値が該第 k 番目に低い所定の充電印加電圧値以下であれば、 次の第 6ステップ へ移行する。
•第 6ステップ: 二次電池の印加電圧を η種類の二次電池の満充電 平衡電圧値のうち第 k番目に低い満充電平衡電圧値に切り換える。
• 第 7ステップ : 二次電池を該第 k番目に低い満充電平衡電圧値で 微小時間印加している間に、 二次電池に流れている電流値を検出す る。
, 第 8ステップ : この検出した電流値が充電完了基準電流値より大 きな値であれば、 前記第 2ステップに戻って上記のフローを繰り返 し、 一方、 該検出した電流値が該充電完了基準電流値以下であれば、 充電を停止する。
この第二態様の二次電池の充電方法は、 前記第一態様の二次電池 の充電方法と同様の効果を奏するとともに、 充電過程で、 二次電池 の種類等を自動的に判別して、 過充電による化学反応 (酸化還元反 応) を引き起こすことなく、 急速、 且つ適正に満充電まで充電を行 うことができる。
或いは、 本発明の第三態様の二次電池の充電方法は、 n ( nは 2 以上の自然数) 種類の二次電池についての、 満充電平衡電圧値と、 充電電流のピーク値又は略ピーク値を得る充電印加電圧値であって、 該満充電平衡電圧値を超えるが不可逆化学反応領域には達しない所 定の充電印加電圧値とを予め記憶させておき、 以下の第 1〜第 8ス テツプに従って二次電池を充電する。
• 第 1ステップ: 変数を k ( k = l 、 2 、 * · · 、 η ) として、 該 kを初期化し、 k = 1 とする。
•第 2ステップ : 二次電池を n種類の二次電池の所定の充電印加電 圧値のうち第 k番目に低い所定の充電印加電圧値で所定時間充電す る。
'第 3ステップ: k = nのときは、 第 6ステップへジャンプする。 • 第 4ステップ : 二次電池を該第 k番目に低い所定の充電印加電圧 値で所定時間充電している間に、 二次電池に印加されている電圧値 を検出する。
• 第 5ステップ : 今回該第 k番目に低い所定の充電印加電圧値で充 電している間に検出した電圧値と、 前回該第 k番目に低い所定の充 電印加電圧値で充電している間に検出した電圧値との差が所定の範 囲内にあれば、 次の第 6ステップへ移行し、 一方、 該差が所定の所 定の範囲を越えていれば、 該 kに 1 を加えたものを新たな kとして 前記第 2ステップへ戻る。 ただし、 今回の電圧値の検出が第 1回目 のときは、 そのまま次の第 6ステップへ移行する。
• 第 6ステップ : 二次電池の印加電圧を n種類の二次電池の満充電 平衡電圧値のうち第 k番目に低い満充電平衡電圧値に切り換える。
• 第 7ステップ : 二次電池を該第 k番目に低い満充電平衡電圧値で 微小時間印加している間に、 二次電池に流れている電流値を検出す る。
• 第 8ステップ: この検出した電流値が充電完了基準電流値より大 きな値であれば、 前記第 2ステップに戻って上記のフローを繰り返 し、 一方、 該検出した電流値が該充電完了基準電流値以下であれば、 充電を停止する。
この第三態様の二次電池の充電方法も、 前記第一態様の二次電池 の充電方法と同様の効果を奏するとともに、 充電過程で、 二次電池 の種類等を自動的に判別して、 過充電による化学反応 (酸化還元反 応) を引き起こすことなく、 急速、 且つ適正に満充電まで充電を行 うことができる。
また、 本発明の第四態様の二次電池の充電方法は、 充電完了後の 二次電池の電池電圧値を監視し、 該電池電圧値が、 満充電平衡電圧 値よりも低い再充電電圧値以下となったときに、 再充電を行うもの である。
この第四態様の二次電池の充電方法によれば、 充電装置から取り 出した二次電池の電池電圧は、 いつでも再充電電圧値以上で、 使用 に適した状態にあり、 利便性の向上を図ることができる。
また、 この再充電においても、 過充電による化学反応 (酸化還元 反応) を引き起こすことなく、 満充電状態まで適正に再充電を行う ため、 二次電池の内部構造に損傷を与えず、 サイクル寿命を飛躍的 に向上させることができるとともに、 満充電までの充電時間も短く なる。
或いは、 本発明の第五態様の二次電池の充電方法は、 二次電池の 充電状態をチエツクして、 所定の充電電圧で所定時間充電する一連 の充電動作を繰り返し、 前記充電状態のチェックで満充電状態に達 したと判断されると充電を停止するものであり、 前記一連の充電動 作間に、 緩和時間を設けている。
この第五態様の二次電池の充電方法では、 前記一連の充電動作間 に、 緩和時間を設けたことで、 次の一連の充電動作での満充電状態 のチェックを精確に行うことができ、 信頼性が向上する。
或いは、 本発明の第六態様の二次電池の充電方法は、 複数の二次 電池を充電する充電方法であって、 二次電池の充電状態をチェック した後、 所定の充電電圧で所定時間充電する一連の充電動作を各未 充電の二次電池ごとに交互に行い、 これを 1ターンとして、 該夕ー ンを繰り返しながら複数の二次電池を充電し、 前記充電状態のチェ ックで満充電状態に達したと判断された二次電池から充電を停止す る。 前記緩和時間は、 各二次電池における、 先のターンの一連の充 電動作の完了から、 次のターンの一連の充電動作の開始までの間の 時間である。
この第六態様の二次電池の充電方法では、 各二次電池における先 のターンの一連の充電動作の完了から、 次のターンの一連の充電動 作の開始までの間、 充電が休止され、 この休止期間が緩和時間とな り、 電極表面が安定して、 次のターンでの満充電状態のチェックを 精確に行うことができ、 信頼性が向上する。
補足すると、 二次電池の充電中、 電解液と接する電極の表面で電 極反応が起こり、 この電極反応の過程は、 電解液内部から電極表面 への反応物の移動と、 反応物と電極の間での電子の移動と、 電極表 面から電解液内部への生成物の移動との同時過程であり、 この移動 にはかなりの時間を要することから、 二次電池の充電休止直後に、 満充電状態をチェックすると、 電極表面付近で電気泳動している移 動過程のイオン等のために、 あたかも、 満充電状態に達したかのよ うに検知されてしまうことがある。 この誤検知を防ぐためにも、 緩 和時間を設けることは有効であり、 この第六態様の二次電池の充電 方法では、 各二次電池ごとの充電サイクルの一環として、 合理的、 且つ効果的に緩和時間が設けられている。
図面の簡単な説明
図 1 は第一実施形態から第八実施形態に係る二次電池 1 の充電装 置の構成を示すブロック図である。
図 2は二次電池 1の起電力を測定するための回路図である。
図 3は二次電池 1の充電率ごとの電流一電圧特性を示すグラフで ある。
図 4は二次電池 1の電流値と所要充電時間との関係を示すグラフ である。
図 5は第一実施形態に係る二次電池 1の充電装置による充電制御 を示すフローチャートである。
図 6は第一実施形態に係る二次電池 1の端子電圧を切り換えるた めの回路図である。 図 7は第一実施形態に係る二次電池 1の端子電圧の切り換えを示 すタイムチャートである。
図 8は第一実施形態に係る二次電池 1の端子電圧の切り換えに伴 う印加電圧を示すグラフである。
図 9はニッケル -水素二次電池の電池端子電圧、 充電電流、 チェ ック電流の時間経過を示したグラフである。
図 1 0はニッケル一力 ドミゥムニ次電池の電池端子電圧、 充電電 流、 チェック電流の時間経過を示したグラフである。
図 1 1は第二実施形態に係る二次電池 1 の充電装置による充電制 御を示すフローチヤ一トである。
図 1 2は第二実施形態に係る二次電池 1 の充電装置による充電制 御を示すフローチヤ一トである。
図 1 3は第三実施形態に係る二次電池 1の充電装置による充電制 御を示すフローチャートである。
図 1 4は第三実施形態に係る二次電池 1の充電装置による充電制 御を示すフローチャートである。
図 1 5は二次電池 1の所定の充電印加電圧値 E と開放電圧 E xと の差である差電圧/ d E sと所要充電時間との関係を示すグラフであ る。
図 1 6は第四実施形態に係る二次電池 1 の充電装置による充電制 御を示すフローチャートである。
図 1 7は第五実施形態に係る二次電池 1 の充電装置による充電制 御を示すフローチャートである。
図 1 8は第六実施形態に係る二次電池 1 の充電装置による充電制 御を示すフローチャートである。
図 1 9は第七実施形態に係る二次電池 1 の充電装置による充電制 御を示すフローチャートである。
図 2 0は第八実施形態、 第九実施形態に係る二次電池 1の充電装 置の構成を示すブロック図である。
図 2 1は第八実施形態に係る二次電池 1 の充電装置による充電制 御を示すフローチヤ一トである。
図 2 2は第九実施形態に係る二次電池 1の充電装置による充電制 御を示すフローチャートである。
図 2 3は二次電池 1の充電装置の第八実施形態、 第九実施形態に おける二次電池 1の充電用の基本電気回路の構成を示した図である。
図 2 4は第十実施形態、 第十一実施形態に係る二次電池 1 - 1 · · · の充電装置の構成を示すブロック図である。
図 2 5は第十実施形態に係る二次電池 1 · 1 · · の充電装置に よる充電制御を示すフローチヤ一トである。
図 2 6は第十一実施形態に係る二次電池 1 · 1 · • の充電装置 による充電制御を示すフロ一チヤ一トである。
図 2 7は第十二実施形態に係る二次電池 1 · 1 · • の充電装置 の構成を示すブロック図である。
図 2 8は第十二実施形態に係る二次電池 1 · 1 · • の充電装置 による充電制御を示すフローチヤ一トである。
図 2 9は第十四実施形態に係る二次電池 1 · 1 · • の充電装置 5 0の構成を示す平面図である。
図 3 0は第十五実施形態に係る二次電池 1 · 1 · • の充電装置 5 0の構成を示す側面断面図である。
図 3 1は第十六実施形態に係る二次電池 1 · 1 · • の充電装置 5 0の取出手段の構成を示す後面断面図である。
図 3 2は第十七実施形態に係る二次電池 1 · 1 · • の充電装置 5 0の取出手段の構成を示す側面断面図である。
発明を実施するための最良の形態
以下に説明する本発明に係る二次電池の充電装置による充電方法 では、 充電時には、 二次電池の内部構造を損傷させないように、 不 可逆化学反応領域外で、 最も高い印加電圧 (所定の充電印加電圧値 ) を印加して二次電池に大電流を流し、 定期的に満充電 (充電終了 時) をチェックしながら充電を行うところに特徴がある。 この満充 電平衡電圧値での満充電状態のチェックでは、 瞬時に精確に満充電 状態を判定することができ、 この充電方法によれば、 充電完了まで の時間を 3 0分以内まで短縮することができ、 また、 過度な化学反 応 (酸化還元反応) を引き起こすことなく、 満充電状態まで適正に 充電でき、 その結果、 二次電池の内部構造を痛めずサイクル寿命を 5 0 0 0回以上に向上させることができる。
まず、 本発明に係る二次電池の充電装置の基本的な構成を、 図 1 により説明する。
図 1 に示す充電装置は二次電池 1 を充電するものであって、 電源 部 2、 電流検出部 3、 電圧検出部 9、 プログラム · 演算制御部 4を 有している。 該電源部 2は商用交流電気を直流に変換する変圧、 整 流回路を含んでいる。 該電流検出部 3は、 二次電池 1 に通電される 充電電流の電流値を検出する。 該電圧検出部 9は、 二次電池 1 に印 加されている電圧値、 又は二次電池 1の充電電圧を検出する。 該プ ログラム · 演算制御部 4は、 二次電池 1の充電を制御する充電制御 手段であって、 ここに該電流検出部 3で検出された電流値、 及び該 電圧検出部 9で検出された電圧値が送信される。
この充電制御手段であるプログラム ·演算制御部 4は、 予め試験 などにより求めた二次電池 1の種類又は機種等による満充電平衡電 圧値 E e q (図 3参照) と、 該満充電平衡電圧値 E e qを超える所定 の充電印加電圧値 E s (図 3参照。 充電率が略 0 %の二次電池 1 に 印加した電圧を上昇させる中で印加電圧の上昇に対する充電電流の 増加の割合 ( Δ Ι Ζ Δ Ε ) が減少して該充電電流が上昇しなくなつ たときの不可逆化学反応領域 D外での電流ピ一ク値 I s。に対応する 電圧値) とを記憶した記憶手段 (メモリ) を具備し、 該プログラ ム · 演算制御部 4には、 二次電池 1が満充電に達したか否かの判断 や、 満充電までの所要充電時間 tの演算等のプログラムが格納され ている。
符号 5は、 前記プログラム ·演算制御部 4からの指令に基づいて 二次電池 1 に印加する電圧、 電流の切換制御等を行う電圧 · 電流制 御部を示す。 すなわち、 電圧 . 電流制御部 5は、 二次電池 1の充電 電圧を所定の充電印加電圧値 E s又は満充電平衡電圧値 E e q等に切 り換える切換手段を構成する。
符号 6は、 スター卜指示により、 前記電圧 · 電流制御部 5で定め られた充電電圧を二次電池 1 に供給する一方、 前記プログラム ·演 算制御部 4からの終了指示により充電を完了する充電電圧供給部を 示す。 そして、 符号 7は、 前記プログラム ·演算制御部 4で演算さ れた所要充電時間 t等を表示するための表示部、 符号 8はユーザが スタート操作等を行うための操作部を示す。
なお、 本実施の形態では、 報知手段の一例として表示部 7により 視覚を通じてユーザに所要充電時間 t等を報知するように構成して いるが、 音声等により報知するように構成してもよく、 報知手段の 構成は特に限定はしないものとする。
ここで言う、 二次電池とは、 充放電を繰り返し行う ことができる 電池をいい、 電気エネルギーを化学エネルギーに変換して蓄え、 ま た逆に蓄えた化学エネルギーを電気エネルギーに変換して利用され る。
二次電池 1 のうちで実用的に使用されている代表的なものとして は、 ニッケル—カ ドミウム電池、 ニッケル一水素金属電池、 リチウ ムイオン電池、 N A S電池等が挙げられる。
以下、 各実施形態に使用するニッケル—力 ドミゥム電池について 説明する。
ここで、 ニッケル一カ ドミウム電池は、 ォキシ水酸化ニッケル ( N i ( O O H ) ) を用いる正極と、 カ ドミウム (C d ) を用いる 負極とを、 合成樹脂製のセパレー夕で隔離して、 アルカリ電解液と ともに密閉式の電池容器に収納した蓄電池である。 電解質は導電率 の高い水酸化カリウムを主成分とする水溶液であり、 正極の特性を 向上させるため、 必要に応じて水酸化リチウムや水酸化ナトリウム 等が添加される。
このニッケル一力 ドミゥム電池の起電反応式であるが、 正極の反 応は、 次の一般式 (化学反応式) で表される。 2 N i (O OH)+H20 + 2 e "→ 2 N i (O H) 2 + 2 O H - また、 負極の反応は、 次の一般式 (化学反応式) で表される。
C d + 2 0H- C d (OH) 2 + 2 e - 放電において、 上記の正極の反応では、 ォキシ水酸化ニッケル (N i (O O H) ) と水 (H 20) 、 および正極からの電子 ( e -) が反応して、 水酸化ニッケル (N i (OH) 2) が生成する。
一方、 負極の反応では、 カ ドミウム (C d ) が、 正極で生成され セパレ一夕を透過した水酸化イオン (O H— ) と反応して、 水酸化 カ ドミウム ( C d ( O H) 2) と電子 ( e— ) を生成し、 この電子 ( e -) は外部負荷を通過して正極へ供給される。
前記サイクルで電子 ( e— ) が外部負荷を通過する過程で仕事と して利用される。 従って、 このサイクルが上手く回るということは、 正極に水 ( H 2〇) が豊富にあり、 生成物である水酸化ニッケル (N i (O H) 2) の濃度が低く、 そして、 負極では水酸化カ ドミ ゥム (C d (O H) 2) の濃度が低いことである。 これを数式で表 現すると次式となる。
E e m f = E ° + ((R · T) F) · 1 n (C aノ(CN · C c))
ここで、 E Gは標準起電力であり、 正極、 負極を構成する物質に よって決まる定数で、 それらの量には依存しない。 ニッケル一力 ド ミ ゥム電池の場合、 この標準起電力 E °は約 1 . 2 〔 V (ポル ト) 〕 である。 また、 Rは気体定数、 Tは絶対温度、 Fはファラデ 一数である。
前記の数式が示すように、 正極においては、 水 (H 20) の濃度 C a。が高く、 水酸化ニッケル (N i (O H) 2) の濃度 CNが低い ほど、 起電力 E e m f は大きくなり.、 また、 負極においては、 水酸化 カ ドミウム (C d (OH) 2) の濃度 C cが低いほど、 起電力 E e m f は大きくなる。 起電力 E e m f が大きいことは、 蓄電量が大きいこと である。
ところで、 二次電池 1 の充電状態を的確に知るには図 2に示す回 路を形成すればよい。 すなわち、 二次電池 1 に可変電源 1 1 を接続 し、 この可変電源 1 1 の電位を、 二次電池 1 の起電力 Eと平衡する 電位に調整する。 すなわち、 電流検出部 3 による検出電流が ± 0 〔mA (ミ リアンペア) 〕 となるように可変電源 1 1 を調整し、 こ れにより二次電池 1の起電力 E e m f を間接的に測定する。 こう して、 二次電池 1 の満充電状態での起電力 E e m f を、 その種類又は機種ご とに測定し、 そのデータを前記プログラム ·演算制御部 4の記憶手 段に入力しておく。
次に、 本発明の充電方法を説明する上で基本となる二次電池 1の 充電電圧と充電電流との特性について、 図 3のグラフに基づいて説 明する。
図 3におけるグラフの横軸には電池端子電圧 (印加電圧) を、 ま た縦軸には充電電流をとつており、 充電率が異なる各二次電池 1の 電圧一電流特性をそれぞれ示している。
破線で示すダラフ αは、 充電率が略 0 %の二次電池 1の充電時の 電圧一電流特性を示しており、 この場合は標準電圧 E Q (公称電 圧) より低い電圧 E aを印加しても充電電流が流れ出す (充電電流 が流れ出す時の印加電圧 (電池端子電圧) を開放電圧とする) 。
また、 開放電圧は充電率が高いほど高くなる。 図 3の一点鎖線で 示すダラフ βは、 充電率が約 5 0 %の二次電池 1の充電時における 電圧一電流特性を示しており、 印加電圧を ( 0 〔V〕 から) 上昇さ せていつたときに二次電池 1 に充電電流が流れ始める開放電圧 Ε β は、 充電率が略 0 %の二次電池 1 の開放電圧 E aよりも高くなる。 図 3の二点鎖線で示すグラフ γは、 充電率が約 9 0 %の二次電池 1 の充電時における電圧一電流特性を示しており、 開放電圧は Ε τ ( E r > E β ) である。 また、 図 3の実線で示すグラフ <5は、 充電率 が略 1 0 0 % ( 1 0 0 %未満) の二次電池 1の充電時における電圧 一電流特性を示しており、 開放電圧は Ε δ ( Ε δ > Ε r) である。 そ して、 充電率が 1 0 0 %の (満充電状態の) 二次電池 1の開放電圧 の値が、 満充電平衡電圧値 E e q ( E e q> E 5) である。
二次電池 1は充電率に応じた開放電圧 E χ ( Ε α、 Ε β , Ε τ、 Ε , 等) を越えると、 略印加電圧に比例して充電電流が増大していき、 所定の電圧 (電圧一電流曲線における変曲点) を過ぎると、 印加電 圧に対する充電電流の増加率 (Δ Ι Ζ Δ Ε ) は減少し、 やがて、 印 加電圧を上昇させても充電電流は全く上昇しなくなり、 充電電流は 電流ピーク値 I s。に到達する。
このように、 印加電圧に対する充電電流の増加率 (Δ I / Δ Ε ) が 0 となったときの電流ピーク値 I s。に対応する印加電圧値は E s となり、 この所定の充電印加電圧値 E sは二次電池 1 の種類や二次 電池 1の劣化状態などによって決まる二次電池 1に固有の電圧値と なる。
前記所定の充電印加電圧値 E sを超える電圧が印加されると、 該 二次電池 1 は、 内部で活物質の酸化還元反応がさらに進んで、 電気 分解反応を惹き起こし、 負性抵抗特性が現れて、 意図しない発熱反 応ゃ、 膨潤等の異常により、 ともすれば二次電池 1の内部構造の破 壊に繋がる恐れがある。 また、 そこまでには至らないにしても、 不 可逆化学反応が伸展し二次電池 1 のサイクル寿命に大きな影響を与 えてしまう。 このような、 二次電池 1 に悪影響を及ぼす不可逆化学 反応が生じるような、 充電電流と印加電圧との関係で画定される領 域が、 図 3にて斜線で示す不可逆化学反応領域 Dである。
なお、 この領域 Dでは、 グラフ αでわかるように、 充電率が略 0 の場合には、 印加電圧の上昇にかかわらず充電電流がピーク値 I s。 のまま一定であり、 また、 グラフ 、 ァ、 δでわかるように、 充電 率が高いと印加電圧の上昇とともに充電電流が低くなり、 さらにそ の低下率は充電率が高いほど大きくなる。 そして、 領域 D内での不 可逆化学反応で現れる二次電池 1 の負性抵抗特性は、 やがてバルク 固有抵抗となり、 充電電流は、 印加電圧の上昇に比例して上昇する。 従って、 二次電池 1 の充電においては、 該二次電池 1が満充電 (充電率 1 0 0 % ) に至るまで、 印加電圧に対する充電電流の相対 値がこの不可逆化学反応領域 Dに入らないように印加電圧を制御す ることが必要となる。 ところで、 図 3でわかるように、 不可逆化学反応領域 Dの最小電 圧 (反応分水嶺上の電圧) は、 充電率が高くなる (充電電流が少な くなる) ほど小さくなる。 一方で、 二次電池 1の蓄電容量は、 充電 電流と充電時間との積で求められるので、 充電時間を短く しょうと すれば、 充電電流を増やすことが必要であり、 一定充電率の下では、 印加電圧を高めるほど充電電流を増やすことができる。
そこで、 満充電まで充電率がいく ら高まっても不可逆化学反応領 域 Dに入らず、 かつ、 充電率略 0 %の二次電池 1にて最大限の充電 電流が流れるようにすることを考慮すれば、 図 3に示す如く、 印加 電圧の値を E e q (充電率 1 0 0 %での開放電圧) とすることが考え られる。 この印加電圧値 E e qを、 満充電平衡電圧値とする。
この満充電平衡電圧値 E e qで電圧印加を行うと、 充電率が上がる ほど充電電流が下がって、 満充電状態の判定がしゃすいという利点 がある。
これを図 3で説明する。 充電率が略 0 %の二次電池 1の端子電圧 を、 満充電平衡電圧値 E e gに固定して充電すると、 最初に I e。。の 充電電流が流れる (グラフ ο;参照) 。 充電が進み充電率が上昇する に連れて、 充電電流は I e q。から減少していき (グラフ i3 、 r参 照) 、 満充電状態 (充電率 1 0 0 % ) に至るまで、 印加電圧に対す る充電電流の相対値が不可逆化学反応領域 Dに達することはない。 そして、 満充電状態になった時点で充電電流が 0 〔m A〕 となるた め、 充電終了の判定が行いやすいのである。
しかしながら、 この二次電池 1 は、 充電率の如何にかかわらず (充電率が略 0 %であっても、 略 1 0 0 %であっても) 、 前記の所 定充電印加電圧値 E sの電圧を印加すれば、 不可逆化学反応を引き 起こすことなく、 I e Q。よりも高いピーク値 I s。の充電電流を受け るだけのポテンシャルを有しており、 このような大充電電流を流す ことで、 満充電平衡電圧値 E e Qの電圧印加による充電に比べ、 充電 時間を飛躍的に短くすることができる。
そこで本発明では、 ある程度の期間中に、 印加電圧値を、 不可逆 化学反応領域 D外で最も高い充電電流 (電流ピーク値 I s。) を流す ことが可能な前記の所定の充電印加電圧値 E sに固定して大電流充 電を行い、 適時に印加電圧値を前記の満充電平衡電圧値 E e qに切り 換えて充電電流を少なく し、 この電圧値での電圧印加中に二次電池 1が満充電状態か否かの判定を行うこととする。
即ち、 所定充電印加電圧値 E sでの充電時には、 最初に二次電池 1 をセッ 卜した時の充電率が低い段階から充電率が高まるにつれて 充電電流は下がることなく、 略ピーク値 I e Q。で保持されるので、 飛躍的に短期間で充電率を高めることができる。 そして、 適当な時 間帯で満充電平衡電圧値 E e qでの電圧印加を行うことで、 充電率の 高まりに応じて充電電流が低くなり、 過充電を防止するとともに、 満充電の判定が容易になるのである。
なお、 大電流充電のための印加電圧の値は、 電流ピーク値 I s。に 対応する前記所定の充電印加電圧値 E sに限らず、.それよりやや低 い電流値に対応する電圧値 (< E S ) でもよい。 即ち、 図 3に示す 如く、 充電率略 0 %の二次電池 1 に印加した電圧を上昇させていく 中で、 該印加電圧に対する充電電流の増加率 (Δ Ι Ζ Δ Ε ) が減少 して該充電電流が殆ど上昇しなくなった (僅かに上昇している) と きの、 不可逆化学反応領域 D外における電流値に対応する充電印加 電圧値で充電を行ってもよい。 この充電印加電圧値による充電でも、 電流ピーク値 I s。近くの電流が流れて、 大電流充電を行うことがで きる。
前記所定の充電印加電圧値 E sを設定するに関しては、 各種類の 二次電池 1 において、 充電率の変化にかかわらず変化しない充電電 流ピ一ク値 I s。を得るように、 例えば、 一定の印加電圧の変化域内 で充電電流がピーク値 I s。に保持される図 3に示す充電率略 0 %の 場合の電圧一電流特性のグラフ αをもとに設定してもよい。 即ち、 印加電圧の上昇とともに上昇する充電電流の増加率が低減して、 0 または略 0になった時の充電電流に対応する印加電圧であって、 不 可逆化学反応領域 Dに達する手前の電圧値を、 所定の充電印加電圧 値 E sとして設定するのである。
(二次電池の充電装置の第一実施形態)
次に、 二次電池 1 の充電装置の第一実施形態について説明する。 これは、 適時に大電流充電から満充電平衡電圧値での充電に切り換 え、 充電電流の検出に基づいて以後の充電を大電流充電とするか満 充電平衡電圧値での充電とするかを判定するという方法を用いたも のである。
この第一実施形態の充電装置は、 図 1 に示すように構成されてお り、 プログラム ·演算制御部 4には、 前記満充電平衡電圧値 E e。で 二次電池 1 を印加中に電流検出部 3で検出されたチエツク電流値 i と、 予め入力設定された充電完了基準電流値 J とを比較判定するた めのチェック電流値判定プログラムと、 該満充電平衡電圧値 E e qで の印加中に電流検出部 3で検出されたチェック電流値 i に基づき満 充電までの所要充電時間 t を求めるための充電時間予測プログラム とが組み込まれている。 即ち、 プログラム · 演算制御部 4は、 チェ ック電流値判定手段、 及び充電時間予測手段として機能している。 このようなプログラム ·演算制御部 4の制御により、 この第一実 施形態の充電装置は、 二次電池 1 に該所定の充電印加電圧値 E sの (或いはそれよりやや低い) 電圧を一定時間 1\印加して、 大電流 充電を行った後、 印加電圧値を該満充電平衡電圧値 E e qに切り換え、 この満充電平衡電圧値 E e qで電圧を印加している間に電流値 i を検 出し、 該電流値 i から満充電までの所要充電時間 t を求め、 L E D、 又は L C D等によって該所要充電時間 t を二次電池 1の表示部 7に 表示するとともに、 前記電流値 i と予め設定した充電完了基準電流 値 J とを比較することによって、 前記電流値 i の方が大きければ再 び前記所定の充電印加電圧値 E sでの充電を行い、 前記電流値 i が 充電完了基準電流値 J以下であれば充電を停止するように制御して いる。
ところで、 前記満充電までの所要充電時間 tは、 例えば、 図 4に 示すような電流値 i と所要充電時間 t との関係を示したグラフから 求めることができる。
図 4に示すグラフは、 満充電平衡電圧値 E e Qの電圧印加時に検出 される電流値 i と、 満充電までに要する所要充電時間 t との関係を 示しており、 該所要充電時間 t は、 電流検出部 3により検出される 電流値 i が充電完了時に検出される充電完了基準電流値 J (例えば、 i = 0 〔m A〕 ) に達するまでの時間である。
充電率が 0 %の二次電池 1 に、 満充電平衡電圧値 E e qの電圧を印 加したときに検出される電流値 i を I e Q。 (図 3参照) とすると、 この図 4のグラフは、 充電が進むにつれて所要充電時間 tが短くな るとともに、 これに伴って検出される電流値も小さくなることを示 している。 そして、 この場合は、 検出電流値が i = 0 C m A 3 にな つたとき、 充電率 1 0 0 %の満充電状態となるため、 所要充電時間 も t = 0 〔秒〕 となる。
従って、 このようなグラフに基づくチェック電流値と所要時間と の間の換算テーブル、 又は該グラフから導出されるチエツク電流値 と所要時間との関係式を前記充電時間予測プログラムとして作成し ておけば、 検出される電流値 i から満充電までの所要充電時間 t を 簡単に求めることができる。
次に、 この第一実施形態の充電装置による二次電池 1の充電制御 の流れを、 図 5に示すフローチャートを参照しながら説明する。
まず、 ユーザが充電する二次電池 1の種類を操作部 8からプログ ラム , 演算制御部 4に入力すると、 該プログラム ·演算制御部 4中 の記憶手段に予め記憶設定されたテーブルの中から、 この二次電池 1の種類に相当する所定の充電印加電圧値 E sと、 満充電平衡電圧 値 E e qとがそれぞれ選択される (ステップ A 1 ) 。
ここで、 前記充電印加電圧値 E s、 及び満充電平衡電圧値 E e qは、 ニッケル一カ ドミウム、 ニッケル一水素、 リチウムイオン二次電池 等の種類と型番によって予め設定される値であり、 例えばニッケル 一カ ドミウム二次電池の場合、 満充電平衡電圧値 E e qは約 1 . 4 1 〔V〕 であり、 また、 充電印加電圧値 E sにはそれよりも高い約 1 . 8 0 〔V〕 が選択される。
次に、 ユーザが操作部 8を操作して充電開始操作を行うと (ステ ップ A 2 ) 、 二次電池 1 に所定の充電印加電圧値 E sの電圧が、 所 定時間 (一定時間) 1\継続して印加される (ステップ A 3 ) 。
ここで、 この印加時間 1\の設定に関しては、 充電印加電圧値 E s を印加した場合における充電電流の時間変化から割出される。 そし て、 この一定時間丁ェ経過後、 二次電池 1 を極小時間 T 2短絡させ (ステップ A 4 ) 、 電界面の電荷を除去した上で、 今度は印加電圧 の値を満充電平衡電圧値 E e qに切り換える (ステップ A 5 ) 。
そして、 この満充電平衡電圧値 E e qの電圧を微小時間 T 3印加し ている間、 このとき二次電池 1 に流れている電流値 i (満充電平衡 電圧値 E e。における電流値 i ) を検出する (ステップ A 6 ) 。
次に、 前記充電時間予測プログラムにより、 この検出された電流 値 i から満充電までに要する時間、 すなわち、 該電流値 i が充電完 了基準電流値 J (満充電時に検出されると推測される電流値) に達 するまでの所要充電時間 t を求め、 この所要充電時間 t を表示部 7 に表示する (ステツプ A 7 ) 。
また、 これと同時に、 前記チェック電流値判定プログラムにより、 この検出された電流値 i と充電完了基準電流値 J とを比較して (ス テツプ A 8 ) 、 該電流値 i が該充電完了基準電流値 J より も大きけ れば、 前記ステップ A 3に戻って、 上述のフロ一 (充電制御) を繰 り返し、 一方、 該電流値 i が該充電完了基準電流値 J以下であれば、 二次電池 1が満充電状態に達しているとして、 ここで充電を停止す る (ステップ A 9 ) 。
ところで、 前記の満充電平衡電圧値 E e qの電圧を印加した場合、 理論的には、 図 3又は図 4のグラフに示すように、 充電率 1 0 0 % (満充電状態) で電流値 i は 0 〔m A〕 になるが、 実際には、 電池 によって極僅かながらバラツキが生じるため、 これによる過充電を 防止しょうとすれば、 前記充電完了基準電流値 J は 0 〔m A〕 より もやや大きな値、 例えば、 1 0 〔m A〕 程度で設定するのが好まし い。 そして、 この場合は、 前記所要充電時間 tは、 前記電流値 iが 1 0 〔m A〕 以下に達するまでの時間となる。
また、 前記所定の充電印加電圧値 E sの電圧が印加される充電時 間 は、 二次電池 1の容量、 構造、 形状等によって異なるが、 例 えば、 ニッケル一カ ドミウム二次電池の場合は、 約 1 2 0 〔秒〕 が 選ばれる。 また、 前記短絡させる極小時間 T 2は、 二次電池 1 の電 界面にチャージした電荷を除去して、 前記電界面をク リーンな状態 にするのに要する時間で決められ、 前記と同上の二次電池 1の場合 は約 0 . 0 0 1 〔秒〕 が選ばれる。 また、 前記の満充電平衡電圧値 E e qの電圧が印加される微小時間 Τ 3としては約 0 . 1 〔秒〕 が選 ばれる。
尚、 この微小時間 T 3の設定を 1秒以上とした場合には、 前記の ステップ Α 4のフローは省略してもよい。
ここで、 図 5のフローチャートに示した充電電圧の切り換えは、 例えば、 図 6 に示す回路を用いて行う ことが可能である。 図 6 にお ける、 符号 1 は二次電池、 符号 3は二次電池 1 の充電電流を検出す るための電流検出部、 符号 9は二次電池 1の印加電圧を検出するた めの電圧検出部であり、 この回路中には、 電界効果型トランジスタ ( F E T ) 等のスイッチング素子で構成される第 1ゲート 3 6、 第 2ゲ一ト 3 7、 第 3ゲ一ト 3 8がそれぞれ介設されている。 また、 符号 3 1は、 印加電圧を二次電池 1 の種類、 又は機種ごとに応じた 満充電平衡電圧値 E e qに設定変更することが可能な第 1電源 (可変 電源) 、 符号 3 2は所定の充電印加電圧値 E 8を印加することが可 能な第 2電源である。
詳述すると、 二次電池 1 のプラス端子は第 1ゲート 3 6のェミツ 夕と、 第 2ゲート 3 7 のェミツ夕と、 第 3ゲート 3 8 のコレクタと、 電圧検出手段 9のマイナス端子とにそれぞれ共通接続され、 第 1ゲ —ト 3 6のコレクタは第 2電源 3 2のプラス端子に接続されて、 該 第 2電源 3 2のマイナス端子は第 1電源 3 1のプラス端子と、 第 2 ゲート 3 7のコレクタに接続されている。 また、 第 1電源 3 1のマ ィナス端子に電流検出手段 3のプラス端子が接続され、 該電流検出 手段 3のマイナス端子に電圧検出手段 9のプラス端子と、 二次電池 1のマイナス端子と、 第 3ゲート 3 8のェミッタとが共通接続され ている。 '
次に、 図 6に示す回路を用いて二次電池 1に印加する充電電圧を 制御する方法について図 7及び図 8を参照しながら説明する。
まず始めに、 前記第 1ゲート 3 6のみを O Nにすることで、 二次 電池 1に所定の充電印加電圧値 E sを Tュ時間印加した後、 該第 1ゲ ート 3 6を O F Fして、 第 3ゲート 3 8のみを O Nにすることで、 T 2時間短絡する。 このように二次電池 1 の端子間を短絡する短絡 手段はゲート 3 6 · 3 7 · 3 8によって構成されて、 この短絡によ つて電界面の電荷を除去し、 次の充電電圧の投入をスムーズにし、 また、 充電電圧切り換え直後における電流を安定させて、 電流測定 における精度の向上を図っている。
そして、 前記極小時間 Τ 2経過後、 第 3ゲート 3 8を 0 F Fにす るとともに、 今度は第 2ゲ一ト 3 7 を〇 Νにして、 二次電池 1 に満 充電平衡電圧値 E e qの電圧を微小時間 Τ 3印加する。 そして、 この 間に、 二次電池 1 の電流値 i の検出を行うとともに、 この検出した 電流値 i から、 満充電か否かの判定、 及び満充電までに要する時間 t を求め、 該微小時間 T 3経過後に第 2ゲート 3 7を 0 F Fにする。 そして、 前記判定の結果、 まだ満充電に達していなければ、 第 1 ゲ一ト 3 6 を O Nにして充電印加電圧値 E sを印加するという前記 の一連の制御を繰り返し行う一方、 満充電状態にあると判定された 場合は、 ここで充電を停止するように構成されている。
以上のように、 第一実施形態の充電装置によれば、 二次電池 1の 電流値 i を検出することで、 その充電状態を定期的にチェックする ように構成したことによって、 過度な化学反応 (酸化還元反応) を 引き起こすことなく、 満充電状態まで適正に充電を行うことができ る。
また、 これによつて、 二次電池 1 の内部構造に損傷を与えるのを 防止することができるため、 サイクル寿命を飛躍的に向上させるこ とができる。 さらに、 この方法での主なる充電は、 満充電平衡電圧 値 E e qを超えた所定の充電印加電圧値 E sで行われるため、 かなり 大きな充電電流が二次電池 1 に流されることとなり、 これによつて 充電時間の短縮を図ることができる。
また、 前記二次電池 1の電流値 i から所要充電時間 t を求めて、 これを表示部 7 に表示するように構成したことによって、 ユーザは 満充電までに要する時間を知ることができるため、 利便性の向上を 図ることができる。
さらに、 印加電圧を満充電平衡電圧値 E e Qに切り換える前に、 こ の二次電池 1 を短絡させることにより、 二次電池 1の電極界面にチ ヤージした電荷を除去して、 電極界面をクリーンな状態にすること ができる。 これにより、 満充電平衡電圧値での電圧印加への移行が スムーズに行え、 しかもこの満充電平衡電圧値への電圧値切換直後 の充電電流が安定する。 その結果、 電流値の測定を正確に行うこと ができ、 適正な充電を図ることができる。
(二次電池の充電装置の第二実施形態)
次に、 二次電池 1の充電装置の第二実施形態について説明する。 この第二実施形態の充電装置は、 二次電池 1の種類等を入力する ことなく、 自動的に二次電池 1の種類等が判別されて、 急速に、 満 充電まで充電が行えるところに特徴がある。 ここで言う、 二次電池
1 の種類等とは、 ニッケル一カ ドミウム二次電池とニッケル—水素 二次電池などのように、 正極、 負極を構成する物質が異なる二次電 池のみならず、 正極、 負極を構成する物質が同種で、 蓄電容量が異 なる二次電池も含むものとする。
二次電池 1の満充電平衡電圧値 E e qと所定の充電印加電圧値 E s とは、 二次電池の種類や蓄電容量などによって異なり、 例えば蓄電 容量が 1 0 0 0 〔m A h (ミ リ ' アンペア ' ァヮ一) 〕 のニッケル 一カ ドミウム二次電池の満充電平衡電圧値は約 1 . 4 1 〔V〕 、 所 定の充電印加電圧値は約 1 . 8 0 〔V〕 となっており、 蓄電容量が 2 0 0 0 C m A h 3 のニッケル一水素二次電池の満充電平衡電圧値 は約 1 . 4 4 〔V〕 、 所定の充電印加電圧値は 1 . 6 0 〔V〕 とな つている。
図 9は、 前記の第一実施形態の二次電池 1の充電装置において、 満充電平衡電圧値を 1 . 4 4 〔V〕 とし、 所定の充電印加電圧値を 1 . 6 0 〔V〕 として、 ニッケル—水素二次電池対応の設定電圧値 でニッケル一水素二次電池を充電したときの、 電池端子電圧、 充電 電流、 チェック電流の時間経過を示した図であり、 図 1 0は同じく 第一実施形態の二次電池 1の充電装置において、 満充電平衡電圧値 を 1 . 4 4 〔V〕 、 所定の充電印加電圧値を 1 . 6 0 〔V〕 として、 二ッケルー水素二次電池対応の設定電圧値で、 ニッケル一力 ドミゥ ムニ次電池を充電したときの、 電池端子電圧、 充電電流、 チェック 電流の時間経過を示した図である。 図 9及び図 1 0において、 前記 ステップ A 3での所定の充電印加電圧値 1 . 6 0 〔V〕 を印加する 一定時間 T 1 は 5 5秒とし、 前記ステップ A 4における短絡は行わ ないものとして、 前記ステップ A 5での満充電平衡電圧値 1 . 4 4 〔V〕 を印加する微小時間 T 3は 5秒とする。
また、 図 1 に示す電源部 2 と電圧 , 電流制御部 5 と充電電圧供給 部 6 との間には、 所定の抵抗があり、 ニッケル一水素二次電池対応 の設定では、 電源部 2から供給される 2 . 0 〔V〕 の電圧は、 該電 源部 2 と該電圧 · 電流制御部 5 と該充電電圧供給部 6 との間で電圧 降下が生じて、 ニッケル一水素二次電池の端子間で、 約 1 . 6 〔V〕 の電圧が印加されるように設計されている。
また、 ここで、 図 3に示すように、 二次電池 1を所定の充電印加 電圧値 E sで印加しているときには、 充電率に関わらず二次電池 1 には一定の充電電流 (電流ピーク値 I s。) が流れる。 一方、 二次電 池 1 を所定の充電印加電圧値 E sよりも低い電圧値で印加している ときには、 充電率が上昇するに連れて、 二次電池 1 に流れる充電電 流は減少していく。
このような特性から、 図 9に示すように、 ニッケル一水素二次電 池対応の設定電圧値でニッケルー水素二次電池を充電したときには、 ニッケル一水素二次電池の端子間には、 該ニッケル一水素二次電池 の所定の充電印加電圧値 ( 1 . 6 0 〔V〕 ) に相当する約 1 , 6 〔V〕 の電圧が印加されて、 該所定の充電印加電圧値に対応する所 定の電流 (電流ピーク値 I s。) が通電され、 この結果、 前記電源部 2 と電圧 · 電流制御部 5 と充電電圧供給部 6 との間での電圧降下値 も略一定となる。 すなわち、 ニッケル一水素二次電池の端子間電圧 は充電開始後から充電完了まで 1 . 6 〔V〕 を越えることなく略一 定となるとともに、 充電電流も充電開始後から充電完了まで略一定 となり、 また、 定期的に、 ニッケル—水素二次電池の満充電平衡電 圧値 1 . 4 4 〔V〕 によってチェック電流が適正にチェックされて、 該ニッケル一水素二次電池を満充電まで急速、 且つ適正に充電する ことができる。
—方、 図 1 0に示すように、 ニッケル一水素二次電池対応の設定 電圧値で、 ニッケル一カ ドミウム二次電池を充電したときには、 充 電開始後からしばらくの間、 該ニッケル一力 ドミゥム二次電池の端 子間には 1 . 4 〔V〕 から 1 . 6 〔V〕 の電圧で印加される。
これは、 ニッケル一カ ドミウム二次電池の所定の充電印加電圧値 ( 1 . 8 0 〔 V〕 ) よりも低い電圧値であり、 この結果、 充電率が 上昇するに連れて、 ニッケル一カ ドミウム二次電池に流れる充電電 流は次第に減少していく。 これに伴い、 前記電源部 2 と電圧 · 電流 制御部 5 と充電電圧供給部 6 との間での電圧降下値も徐々に減少し ていき、 この結果、 ニッケル—カ ドミウム二次電池の端子間に印加 される電圧値が次第に上昇していき、 やがて、 1 . 6 〔V〕 を越え て、 充電完了時では約 1 . 8 〔V〕 となっている。
そして、 また定期的にニッケル一水素二次電池の満充電平衡電圧 値 1 . 4 4 〔 V〕 によってチェック電流をチェックしているが、 こ のニッケル一水素二次電池の満充電平衡電圧値 1 . 4 4 〔V〕 は二 ッケル—カ ドミウム二次電池の満充電平衡電圧値 1 . 4 1 〔V〕 よ りも高いために、 ニッケル一カ ドミウム二次電池を正確に満充電ま で充電することができない。
そこで、 第二実施形態の充電装置では、 ニッケル一水素二次電池 と、 ニッケル一力 ドミゥムニ次電池とを判別する場合を例に挙げて 説明すると、 二次電池 1 を、 ニッケル一水素二次電池対応の電圧値 で、 充電と、 充電状態のチェックをし、 この充電過程で、 該二次電 池 1の端子電圧が 1. 6 〔V〕 を越えたときには、 該二次電池 1は ニッケル一カ ドミウム二次電池であると判断して、 その後は、 該ニ 次電池 1 を、 ニッケル一カ ドミウム二次電池対応の電圧値で、 充電 と、 充電状態のチェックを行う。
以下、 具体的に説明すると、 この第二実施形態の充電装置も、 図 1 に示すように構成されており、 プログラム ' 演算制御部 4の記憶 手段 (メモリ) には、 複数の二次電池についての、 満充電平衡電圧 値 E e。と、 所定の充電印加電圧値 E sとが記憶されている。 またプ ログラム ,演算制御部 4には、 二次電池 1を満充電平衡電圧値 E e Q で印加中に電流検出部 3で検出されたチェック電流値 i と、 予め入 力設定された充電完了基準電流値 J とを比較判定する判定手段であ るチェック電流値判定プログラムと、 二次電池 1 を所定の充電印加 電圧値 E sで充電中に電圧検出部 9で検出された充電電圧値 と、 該所定の充電印加電圧値 E sとを比較判定する判定手段である充電 電圧値判定プログラムと、 が組み込まれている。
なお、 この第二実施形態の充電装置におけるその他の構成は、 前 記第一実施形態の充電装置と略同様であるため、 その説明を省略す る。
プログラム ·演算制御部 4の記憶手段に、 2種類の二次電池につ いての、 満充電平衡電圧値 E e Q (E e q l · E e Q h) と、 所定の充電 印加電圧値 E s (E s , · E h) とが記憶されている充電装置による 二次電池 1の充電制御を、 図 1 1 に示すフローチヤ一トを参照しな がら説明する。
ここで、 満充電平衡電圧値については、 E e Q lく E e q hとし、 所 定の充電印加電圧値については、 E S I <E s hとする。 まず、 ユーザは操作部 8を操作して充電開始操作を行うと (ステ ップ B 1 ) 、 充電装置にセッ トされた二次電池 1に 2種類の二次電 池の所定の充電印加電圧値のうちの低い方の所定の充電印加電圧値 E s lで所定時間 (一定時間) 1\継続して印加される (ステップ B 2 ) 。
そして、 二次電池 1 を該低い方の所定の充電印加電圧値 E s iで一 定時間 T i充電している間に、 前記電圧検出部 9によって二次電池 1 に印加されている電圧値 eを検出し (ステップ B 3 ) 、 前記充電 電圧値判定プログラムによ り この検出した電圧値 e の判定を行い
(ステップ B 4 ) 、 該電圧値 eが該低い方の所定の充電印加電圧値 E s 】よりも大きな値であれば、 後記のステツプ B 1 0へジャンプし、 該電圧値 eが該低い方の所定の充電印加電圧値 E ,以下であれば、 次のステップ B 5へ移行する。
前記一定時間 Tェ時間経過後に二次電池 1 を極小時間 T 2短絡させ
(ステップ Β 5 ) 、 電界面の電荷を除去した上で、 今度は、 二次電 池 1 の印加電圧を 2種類の二次電池の満充電平衡電圧値のうちの低 い方の満充電平衡電圧値 E e q ,に切り換えて、 二次電池 1 を該低い 方の満充電平衡電圧値 E e q ,で微小時間 T 3印加する (ステップ B 6 ) 。
尚、 この微小時間 T 3の設定を 1秒以上とした場合には、 前記の ステップ B 5のフローは省略してもよい。
次に、 二次電池 1 をこの低い方の満充電平衡電圧値 E e q ,で微小 時間 T 3印加している間に、 前記電流検出部 3 によって二次電池 1 に流れている電流値 i を検出する (ステップ B 7 ) 。
そして、 前記チェック電流値判 プログラムによってこの検出し た電流値 i の判定を行い (ステップ B 8 ) 、 該電流値 i が充電完了 基準電流値 J より大きな値であれば、 前記ステップ B 2に戻って上 記のフローを繰り返し、 一方、 該電流値 i が該充電完了基準電流値 J以下であれば、 充電を停止する (ステップ B 9 ) 。
—方、 前記ステップ B 4において、 二次電池 1 を低い方の所定の 充電印加電圧値 E s ,で一定時間 1\充電している間に、 電圧検出部 9により検出した電圧値 eが該低い方の所定の充電印加電圧値 E s , よりも大きな値であれば、 二次電池 1の印加電圧を、 2種類の二次 電池の所定の充電印加電圧値のうちの高い方の所定の充電印加電圧 値 E s hに切り換え、 該高い方の所定の充電印加電圧値 E s hで一定 時間 1\継続して印加する (ステップ B 1 0 ) 。
前記一定時間 T i時間経過後に、 二次電池 1を、 極小時間 T 2短絡 させ (ステップ Β 1 1 ) 、 電界面の電荷を除去した上で、 今度は、 二次電池 1の印加電圧を 2種類の二次電池の満充電平衡電圧値のう ちの高い方の満充電平衡電圧値 E e Q hに切り換えて、 二次電池 1 を 該高い方の満充電平衡電圧値 E e Q hで微小時間 T 3印加する (ステ ップ B 1 2 ) 。
尚、 微小時間 T 3の設定を 1秒以上とした場合には、 前記のステ ップ B 1 1のフ口一は省略してもよい。
次に、 二次電池 1 をこの高い方の満充電平衡電圧値 E e q hで微小 時間 T 3印加している間に、 前記電流検出部 3によって二次電池 1 に流れている電流値 i を検出する (ステップ B 1 2 ) 。
そして、 前記チェック電流値判定プログラムによってこの検出し た電流値 i の判定を行い (ステップ B 1 4 ) 、 該電流値 i が充電完 了基準電流値 Jより大きな値であれば、 前記ステップ B 1 0に戻つ て上記のフローを繰り返し、 一方、 該電流値 i が該充電完了基準電 流値 J以下であれば、 充電を停止する (ステップ B 9 ) 。
以上、 プログラム · 演算制御部 4の記憶手段に、 2種類の二次電 池についての、 満充電平衡電圧値 E e q I · E e q hと、 所定の充電印 加電圧値 E s ! · E s hとが記憶されている充電装置による二次電池 1の充電制御の説明である。
次に一般に、 プログラム · 演算制御部 4の記憶手段に n (nは 2 以上の自然数) 種類の二次電池についての、 満充電平衡電圧値 E e q (E e q l、 E e Q 2、 · · · 、 E e q n) 、 所定の充電印加電圧値 E s (E s l、 E s 2、 · · · 、 E s n) とが記憶されている充電装置によ る二次電池 1の充電制御について図 1 2に示すフローチャートを参 照しながら説明する。
ここで満充電平衡電圧値は、 E e Q lく E e q 2、 · · · 、 く E e q n とし、 所定の充電印加電圧値は、 E s lく E s 2、 · · · 、 く E s nと する。
まず、 ここで、 変数を k ( k = l 、 2 、 · · · 、 n ) として、 該 kを初期化し、 k = 1 とする (ステップ C 1 ) 。 次に、 ユーザが操 作部 8を操作して充電開始操作を行うと (ステップ C 2 ) 、 充電装 置にセッ トされた二次電池 1 に n種類の二次電池の所定の充電印加 電圧値のうち第 k番目に低い所定の充電印加電圧値 E kで所定時間 (一定時間) T 継続して電圧が印加される (ステップ C 3 ) 。
ここで、 k = nのときは (ステップ C 4 ) 、 後記のステップ C 8 へジャンプし、 k≤ n _ lのときは、 二次電池 1 を該第 k番目に低 い所定の充電印加電圧値 E s kで一定時間 Tェ充電している間に、 前 記電圧検出部 9 によって二次電池 1 に印加されている電圧値 eを検 出し (ステップ C 5 ) 、 前記充電電圧値判定プログラムにより この 検出した電圧値 eの判定を行い (ステップ C 6 ) 、 該電圧値 eが該 第 k番目に低い所定の充電印加電圧値 E s kよりも大きな値で検出さ れていれば、 該 kに 1 を加えたものを新たな kとして (ステップ C 7 ) 、 前記ステップ C 3に戻り、 該電圧値 eが該第 k番目に低い所 定の充電印加電圧値 E s k以下で検出されていれば、 ステップ C 8へ 移行する。
前記一定時間 T i経過後に、 二次電池 1 を極小時間 T 2短絡させ (ステップ C 8 ) 、 電界面の電荷を除去した上で、 今度は、 二次電 池 1の印加電圧を n種類の二次電池の満充電平衡電圧値のうち第 k 番目に低い満充電平衡電圧値 E e q kに切り換え、 二次電池 1 を該第 k番目に低い満充電平衡電圧値 E e q kで微小時間 T 3印加する (ス テツプ C 9 ) 。
尚、 この微小時間 Τ 3の設定を 1秒以上とした場合には、 前記の ステップ C 8のフローは省略してもよい。 次に、 二次電池 1 を該第 k番目に低い満充電平衡電圧値 E e Q kで 微小時間 T 3印加している間に、 前記電流検出部 3によって二次電 池 1 に流れている電流値 i を検出する (ステップ C 1 0 ) 。
そして、 前記チェック電流値判定プログラムによってこの検出し た電流値 i の判定を行い (ステップ C 1 1 ) 、 該電流値 iが充電完 了基準電流値 Jより大きな値であれば、 前記ステップ C 3に戻って 上記のフローを繰り返し、 一方、 該電流値 iが該充電完了基準電流 値 J以下であれば、 充電を停止する (ステップ C 1 2 ) 。
以上のように、 第二実施形態の充電装置によれば、 前記第一実施 形態の充電装置と同様の効果を奏するとともに、 充電過程で、 二次 電池 1 の種類等を自動的に判別して、 過度な化学反応 (酸化還元反 応) を引き起こすことなく、 急速、 且つ適正に満充電まで充電を行 うことができる。
(二次電池の充電装置の第三実施形態)
次に、 二次電池 1の充電装置の第三実施形態について説明する。 この第三実施形態の充電装置は、 所定の充電印加電圧値 E sでの 充電中に電圧検出部 9で検出された充電電圧値 e と、 その前の回の 所定の充電印加電圧値 E sでの充電中に電圧検出部 9で検出された 充電電圧値 e との差 eが、 予め入力設定された所定の範囲 W内に あるかを判定して、 該所定の範囲 Wを越えていれば、 他の種別の二 次電池 1 に対応する満充電平衡電圧値 E e qと所定の充電印加電圧値 E sとに切り換えて充電するように構成した点が、 第二実施形態の 充電装置と異なる点である。
この第三実施形態の充電装置も、 図 1 に示すように構成されてお り、 プログラム ·演算制御部 4の記憶手段 (メモリ) には、 複数の 二次電池についての、 満充電平衡電圧値 E e qと、 所定の充電印加電 圧値 E sとが記憶されている。 また、 プログラム . 演算制御部 4に は、 二次電池 1 を満充電平衡電圧値 E e qで印加中に電流検出部 3で 検出されたチエツク電流値 i と、 予め入力設定された充電完了基準 電流値 J とを比較判定する判定手段であるチェック電流値判定プロ グラムと、 前記所定の充電印加電圧値 E sでの充電中に電圧検出部 9で検出された充電電圧値 e と、 その前の回の所定の充電印加電圧 値 E sでの充電中に電圧検出部 9で検出された充電電圧値 eとの差 eが、 予め入力設定された所定の範囲 W内にあるかを判定する判 定手段である電圧差判定プログラムと、 が組み込まれている。
なお、 この第三実施形態の充電装置におけるその他の構成は、 前 記第一実施形態の充電装置と略同様であるため、 その説明を省略す る。
プログラム · 演算制御部 4の記憶手段に、 2種類の二次電池につ いての、 満充電平衡電圧値 E e q (E e Q l · E e q h) と、 所定の充電 印加電圧値 E s (E s i ' E s h) とが記憶されている充電装置による 二次電池 1の充電制御を図 1 3に示すフローチヤ一トを参照しなが ら説明する。
ここで、 満充電平衡電圧値については、 E e q lく E e Q hとし、 所 定の充電印加電圧値については、 E s , <E s hとする。
まず、 ユーザは操作部 8を操作して充電開始操作を行うと (ステ ップ D 1 ) 、 充電装置にセッ トされた二次電池 1 に 2種類の二次電 池の所定の充電印加電圧値のうちの低い方の所定の充電印加電圧値 E s lで所定時間 (一定時間) 1\継続して印加される (ステップ D 2 ) 。
そして、 二次電池 1を、 該低い方の所定の充電印加電圧値 E s ,で —定時間 T i充電している間に、 前記電圧検出部 9によって二次電 池 1 に印加されている電圧値 eを検出して (ステップ D 3 ) 、 前記 電圧差判定プログラムによつて今回該低い方の所定の充電印加電圧 値 E s ,で充電している間に検出した電圧値 e と、 前回該低い方の所 定の充電印加電圧値 E s ,で充電している間に検出した電圧値 e との 差 eが所定の範囲 W内にあるかの判定を行い (ステップ D 4 ) 、 該差 eが該所定の範囲 W内にあれば、 次のステップ D 5へ移行し、 該差 I eが該所定の所定の範囲 Wを越えていれば、 後記のステツプ D 1 0へジャンプする。 ただし、 今回の電圧値 eの検出が第 1回目 のときは、 そのまま次のステップ D 5へ移行する。
前記一定時間 T i経過後に、 二次電池 1 を極小時間 T 2短絡させ (ステップ D 5 ) 、 電界面の電荷を除去した上で、 今度は、 二次電 池 1 の印加電圧を 2種類の二次電池の満充電平衡電圧値のうちの低 い方の満充電平衡電圧値 E e q ,に切り換えて、 二次電池 1 を該低い 方の満充電平衡電圧値 E e q ,で微小時間 T 3、 電圧を印加する (ス テツプ D 6 ) 。
尚、 この微小時間 T 3の設定を 1秒以上とした場合には、 前記の ステップ D 5のフ口一は省略してもよい。
次に、 二次電池 1をこの低い方の満充電平衡電圧値 E e q ,で微小 時間 T 3印加している間に、 前記電流検出部 3によって二次電池 1 に流れている電流値 i を検出する (ステップ D 7 ) 。
そして、 前記チェック電流値判定プログラムによってこの検出し た電流値 i の判定を行い (ステップ D 8 ) 、 該電流値 i が充電完了 基準電流値 J より大きな値であれば、 前記ステツプ D 2に戻って上 記のフローを繰り返し、 一方、 該電流値 iが該充電完了基準電流値 J以下であれば、 充電を停止する (ステップ D 9 ) 。
一方、 前記ステップ D 4において、 前記の差 eが前記所定の範 囲 Wを越えていれば、 二次電池 1の印加電庄を 2種類の二次電池の 所定の充電印加電圧値のうちの高い方の所定の充電印加電圧値 E に切り換え、 該高い方の所定の充電印加電圧値 E s hで所定時間 (一 定時間) 継続して印加する (ステップ D 1 0 ) 。
前記一定時間 Ί 時間経過後に、 二次電池 1を、 極小時間 Τ 2短絡 させ (ステップ D 1 1 ) 、 電界面の電荷を除去した上で、 今度は、 二次電池 1 の印加電圧を 2種類の二次電池の満充電平衡電圧値のう ちの高い方の満充電平衡電圧値 E e q hに切り換えて、 二次電池 1 を 該高い方の満充電平衡電圧値 E e q hで微小時間 T 3印加する (ステ ップ D 1 2 ) 。
尚、 微小時間 T 3の設定を 1秒以上とした場合には、 前記のステ ップ D 1 1 のフ口一は省略してもよい。 次に、 二次電池 1をこの高い方の満充電平衡電圧値 E e q hで微小 時間 T 3印加している間に、 前記電流検出部 3によって二次電池 1 に流れている電流値 i を検出する (ステップ D 1 3 ) 。
そして、 前記チェック電流値判定プログラムによってこの検出し た電流値 i の判定を行い (ステップ D 1 4) 、 該電流値 i が充電完 了基準電流値 Jより大きな値であれば、 前記ステップ D 1 0に戻つ て上記のフローを繰り返し、 一方、 該電流値 iが該充電完了基準電 流値 J以下であれば、 充電を停止する (ステップ D 9 ) 。
以上、 プログラム ·演算制御部 4の記憶手段に、 2種類の二次電 池についての、 満充電平衡電圧値 E e Q , · E e q hと、 所定の充電印 加電圧値 E s , · E s hとが記憶されている充電装置による二次電池 1の充電制御の説明である。
次に一般に、 プログラム . 演算制御部 4の記憶手段に n (nは 2 以上の自然数) 種類の二次電池についての、 満充電平衡電圧値 E e Q (E e q l、 E e Q 2、 · · · 、 E e q n) 、 所定の充電印加電圧値 E s (E s l、 E s 2、 · · · 、 E s n) とが記憶されている充電装置によ る二次電池 1の充電制御について図 1 4に示すフローチヤ一トを参 照しながら説明する。
ここで満充電平衡電圧値は、 E e q l <E e q 2、 · ■ · 、 く E e q n とし、 所定の充電印加電圧値は、 E s l<E s 2、 · · · 、 <E s nと する。
まず、 ここで、 変数を k ( k = 1 , 2、 · · · 、 n ) として、 該 kを初期化し、 k == 1 とする (ステップ F 1 ) 。 次に、 ユーザが操 作部 8を操作して充電開始操作を行うと (ステップ F 2 ) 、 充電装 置にセッ 卜された二次電池 1 に n種類の二次電池の所定の充電印加 電圧値のうち第 k番目に低い所定の充電印加電圧値 E s kで所定時間 (一定時間) 1 継続して印加される (ステップ F 3 ) 。
ここで、 k = nのときは (ステップ F 4 ) 、 後記のステップ F 8 へジャンプし、 k≤ n— 1のときは、 二次電池 1 を該第 k番目に低 い所定の充電印加電圧値 E s kで一定時間 T i充電している間に、 前 記電圧検出部 9によって二次電池 1 に印加されている電圧値 eを検 出して (ステップ F 5 ) 、 前記電圧差判定プログラムにより今回該 第 k番目に低い所定の充電印加電圧値 E s kで充電している間に検出 した電圧値 e と、 前回該第 k番目に低い所定の充電印加電圧値 E s k で充電している間に検出した電圧値 e との差 eが所定の範囲 W内, にあるかの判定を行い (ステップ F 6 ) 、 該差 eが該所定の範囲 W内にあれば、 ステップ F 8へ移行し、 該差 eが該所定の所定の 範囲" Wを越えていれば、 該 kに 1 を加えたものを新たな k として
(ステップ F 7 ) 、 前記ステップ F 3へ戻る。 ただし、 今回の電圧 値 eの検出が第 1回目のときは、 ステップ F 8へ移行する。
前記一定時間 Tェ経過後に、 二次電池 1 を極小時間 T 2短絡させ
(ステップ F 8 ) 、 電界面の電荷を除去した上で、 今度は、 二次電 池 1の印加電圧を n種類の二次電池の満充電平衡電圧値のうち第 k 番目に低い満充電平衡電圧値 E e q kに切り換え、 二次電池 1 を該第 k番目に低い満充電平衡電圧値 E e Q kで微小時間 T 3印加する (ス テツプ F 9 ) 。
尚、 この微小時間 T 3の設定を 1秒以上とした場合には、 前記の ステップ F 8のフ口一は省略してもよい。
次に、 二次電池 1 を該第 k番目に低い満充電平衡電圧値 E e Q kで 微小時間 T 3印加している間に、 前記電流検出部 3によって二次電 池 1 に流れている電流値 i を検出する (ステップ F 1 0 ) 。
そして、 前記チェック電流値判定プログラムによってこの検出し た電流値 i の判定を行い (ステップ F 1 1 ) 、 該電流値 i が充電完 了基準電流値 J より大きな値であれば、 前記ステップ F 3に戻って 上記のフローを繰り返し、 一方、 該電流値 i が該充電完了基準電流 値 J以下であれば、 充電を停止する (ステップ F 1 2 ) 。
以上のように、 第三実施形態の充電装置によっても、 前記第一実 施形態の充電装置と同様の効果を奏するとともに、 充電過程で、 二 次電池 1 の種類等を自動的に判別して、 過度な化学反応 (酸化還元 反応) を引き起こすことなく、 急速、 且つ適正に満充電まで充電を 行うことができる。
(二次電池の充電装置の第四実施形態)
次に、 二次電池 1の充電装置の第四実施形態を説明する。
この第四実施形態の充電装置では、 二次電池 1を所定の充電印加 電圧値 E sで、 一定時間 印加した後、 印加電圧を遮断し、 この 状態で該所定の充電印加電圧値 E sと二次電池 1の開放電圧 E x (E α、 Ε 0、 Ε τ、 Ε δ等) との差である差電圧 Ε sを検出して、 この 検出した差電圧 E sが所定の判定基準値 K以下となったときに、 二次電池 1の充電を停止するように構成した点が、 第一実施形態の 充電装置と異なる点である。
この第四実施形態の充電装置も、 図 1 に示すように構成されてお り、 電圧検出部 9 は二次電池 1の開放電圧を検出するように構成さ れている。
プログラム · 演算制御部 4には、 前記所定の充電印加電圧値 E s と二次電池 1の開放電圧 E χα、 Ε β, Ε τ、 Ε δ等) との差であ る差電圧 E Sを求める演算手段である差電圧演算プログラムと、 該差電圧 E sに基づき満充電までの所要充電時間 rを求める充電 時間予測手段である充電時間予測プログラムと、 該差電圧 E sと 予め入力設定された所定の判定基準値 Kとを比較判定する判定手段 である差電圧判定プログラムとが、 組み込まれている。 また、 表示 部 7では、 L E D、 又は L C D等によって差電圧 E sから求めた 所要充電時間てを表示するように構成している。
なお、 第四実施形態では、 報知手段の一例として表示部 7 により 視覚を通じてユーザに所要充電時間 t を報知するように構成してい るが、 音声等により報知するように構成してもよく、 報知手段の構 成は特に限定はしないものとする。
ここで、 この第四実施形態における判定基準値 Kは、 充電印加電 圧 E sと前記二次電池 1が満充電状態にあるときの開放電圧 E X = E e q (満充電平衡電圧値) との差、 すなわち、 K= E S— E e qの値と なる。 なお、 この第四実施形態での制御を行う際に設計上注意を要 するのは、 前記開放電圧 E xの電圧の検知は、 一般に電池の平衡電 圧を測るときのように計測系に電流が流れない計測系の高ィンピー ダンス状態でなければならない。
前記の所要充電時間 τについて説明すると、 この所要充電時間て は、 例えば、 図 1 5に示すような差電圧 E sと所要充電時間 て と の関係を示したグラフから求めることができる。 すなわち、 充電率 が略 0 %における開放電圧は E x = E α (図 3参照) であるから、 こ のときの差電圧を E s = E s— Ε α、 また、 所要充電時間を て = て ひとすると、 前記グラフは、 充電が進むにつれて所要充電時間てが 短くなるとともに、 これに伴って差電圧 E sの値も小さくなるこ とを示している。 そして、 この差電圧 E Sの値が判定基準値 K (この場合の判定基準値 Kは、 K = E s _ E e q ) に達したとき、 す なわち充電率 1 0 0 %の満充電状態となったとき、 前記所要充電時 間は て = 0 となる。 このように、 前記グラフ、 又は前記グラフから 導出される関係式を予め所要充電時間予測プログラムに作成してお けば、 差電圧 E sの値から満充電までの所要充電時間 てを簡単に 求めることができる。
なお、 この第四実施形態の充電装置におけるその他の構成は、 前 記第一実施形態の充電装置と略同様であるため、 その説明を省略す る。
次に、 この第四実施形態の充電装置による二次電池 1の充電制御 を図 1 6に示すフローチャートを参照しながら説明する。
まず、 ユーザが充電する二次電池 1 の種類を操作部 7からプログ ラム ' 演算制御部 4に入力すると、 該プログラム · 演算制御部 4中 の記憶手段に予め記憶設定されたテーブルの中から、 この二次電池 1の種類に相当する所定の充電印加電圧値 E sと、 満充電平衡電圧 値 E e Qとがそれぞれ選択される (ステップ G 1 ) 。
次に、 ユーザは操作部 8を操作して充電開始操作を行うと (ステ ップ G 2 ) 、 二次電池 1 に所定の充電印加電圧値 E sが所定時間 (一定時間) Ί 継続して印加される (ステップ G 3 ) 。 こ こで、 この一定時間 T\の設定に関しては、 前記充電印加電圧 E sを印加し た場合における充電電流の時間変化から割出される。
そして、 前記一定時間 1 経過後、 今度は充電印加電圧 E sを T 4 時間遮断し (ステップ G 4 ) 、 この状態で、 二次電池 1の開放電圧 Ε χ ( Ε α、 Ε β、 Ε τ、 Ε δ等) を電圧検出部 3で検出する (ステツ プ G 5 ) 。 次に、 前記差電圧演算プログラムにより前記充電印加電 圧 E sと開放電圧 Ε χとの差電圧 E sを求める (ステップ G 6 ) 。
そして、 前記差電圧判定プログラムによってこの求めた差電圧 E sの判定を行い (ステップ G 7 ) 、 該差電圧 E sが判定基準値 K よりも大きいときは、 前記ステップ G 3に戻って上記のフローを繰 り返し、 一方、 該差電圧 E Sが判定基準値 K以下のときは、 二次 電池 1が満充電状態にあることを意味しているため、 ここで充電を 停止する (ステップ G 8 ) 。
ところで、 図 1 6に示すフローチヤ一トには記載していないが、 前記ステップ G 6 において求めた差電圧 1 E sの値から満充電まで の所要充電時間てを求めることができる。 そして、 ここで求めた所 要充電時間てを表示部 7に表示することによって、 満充電までに要 する時間をユーザに知らせることができるため、 これによつて利便 性が向上する。 また、 前記所定の充電印加電圧 E sが印加される充 電時間 1\は、 二次電池 1 の容量、 構造、 形状等によって異なるが、 例えば単三型のニッケル力 ドミゥム、 ニッケル水素二次電池の場合 は、 6 0 〜 9 0 〔秒〕 が選ばれる。 また、 前記遮断時間 T 4は、 二 次電池 1の充電状態から遮断した経過において、 電池端子電圧が安 定し計測可能な状態に達するのに要する時間で決められ、 前記と同 上の二次電池 1 の場合については 1 〜 5 〔秒〕 が選ばれる。 以上の ように第四実施形態における二次電池 1 の充電方法によれば、 前記 のように二次電池 1 に印加する電圧を制御して、 二次電池 1の充電 状態を定期的に観測するように構成したことによって、 過度な化学 反応 (酸化還元反応) を引き起こすことなく、 満充電状態まで適正 に充電が行え、 二次電池 1の内部構造に損傷を与えるのを防止する ことができるため、 サイクル寿命を飛躍的に向上させることができ る。 また、 この方法では、 前記所定の充電印加電圧 E sと二次電池 1の開放電圧 E xとの差電圧 E sを検出するようにしているため、 満充電か否かをより正確に判断することができる。 さらに、 この方 法での主なる充電は、 満充電平衡電圧値 E e。を超える所定の充電印 加電圧 E sで行われるため、 かなり大きな充電電流が流されること となり、 これによつて充電時間の短縮を図ることができる。
(二次電池の充電装置の第五実施形態) 次に、 二次電池 1の充電 装置の第五実施形態を説明する。 この第五実施形態の充電装置では、 プログラム · 演算制御部 4に、 前記満充電平衡電圧値 E e。と二次電 池 1の開放電圧 E x ( E a、 E 0 , Ε τ、 等) との差である差電圧 E e Qと、 判定基準値である 0 〔V〕 とを比較判定する差電圧判定 手段としての比較判定プログラムが組み込まれており、 この差電圧 E e qが 0 〔V〕 よりも大きければ、 前記の充電印加電圧値 E sを 印加するという充電制御を繰り返し行い、 該差電圧 E e qが 0 〔V〕 以下であれば、 満充電状態であるとして充電を停止するよう に制御した点が、 前記第四実施形態と異なる点である。
なお、 この第五実施形態におけるその他の構成は、 前記第四実施 形態と略同様であるため、 その説明を省略する。
次に、 この第五実施形態の充電装置による二次電池 1の充電制御 を図 1 7に示すフローチャートを参照しながら説明する。
まず、 ユーザが充電する二次電池 1 の種類を操作部 7からプログ ラム · 演算制御部 4に入力すると、 該プログラム ·演算制御部 4中 の記憶手段に予め記憶設定されたテ一ブルの中から、 この二次電池 1の種類に相当する所定の充電印加電圧値 E sと、 満充電平衡電圧 値 E e qとがそれぞれ選択される (ステップ H I ) 。
次に、 ユーザは操作部 8を操作して充電開始操作を行うと (ステ ップ H 2 ) 、 二次電池 1 に所定の充電印加電圧値 E sが所定時間 (一定時間) 1 継続して印加される (ステップ H 3 ) 。
そして、 一定時間 1 経過後、 今度は充電印加電圧 E sを T 4時間 遮断して (ステップ H 4) 、 この状態で二次電池 1の開放電圧 E xα、 Ε β, Ε τ、 Ε δ等) を電圧検出部 3で検出する (ステップ Η 5 ) 。
この第五実施形態におけるステップ Η 1からステップ Η 5までの 制御工程は、 前記第四実施形態のステップ G 1からステップ G 5ま での制御工程と同様であり、 次に、 前記差電圧演算プログラムによ り前記満充電平衡電圧値 E e Qと開放電圧 Ε χとの差電圧 E e。を 求める (ステップ H 6 ) 。
そして、 前記比較判定プログラムによってこの求めた差電圧^ 1 E e Qの判定を行い (ステップ H 7 ) 、 該差電圧 E e Qが判定基準値 である 0 〔V〕 よりも大きいときは、 前記ステップ H 3に戻って上 記のフローを繰り返し、 一方、 該差電圧 E e qが 0 〔V〕 以下のと きは、 二次電池 1が満充電状態にあることを意味しているため、 こ こで充電を停止する (ステップ H 8 ) 。
この第五実施形態の充電方法によれば、 いかなる二次電池 1 に対 しても、 差電圧 l E e qが 0 〔V〕 以下となれば満充電状態に達して いると判断することができるため、 容易かつ正確に満充電に達して いるか否かの判断を行うことができる。
なお、 この満充電平衡電圧値 E e qと開放電圧 E xとの差電圧 E e qを求める替わりに、 開放電圧 E xと満充電平衡電圧値 E e Qとを比 較して、 該開放電圧 E xが該満充電平衡電圧値 E e Qよりも小さいと きは、 満充電平衡電圧値 E e。を超える所定の充電印加電圧 E sを印 加する充電制御を繰り返し行う一方、 該開放電圧 E xが満充電平衡 電圧値 E e。以上のときは、 二次電池 1の充電を停止するように構成 することも可能である。
(二次電池の充電装置の第六実施形態)
次に、 二次電池 1の充電装置の第六実施形態について説明する。 この第六実施形態の充電装置では、 二次電池 1のチェック電流値 i から求めた所要充電時間 tが経過した後に、 二次電池 1の充電を 停止するように構成した点が、 第一実施形態の充電装置と異なる点 である。
この第六実施形態の充電装置も、 図 1に示すように構成されてお り、 プログラム · 演算制御部 4には、 前記満充電平衡電圧値 E e で 二次電池 1 を印加中に電流検出部 3で検出されたチェック電流値 i に基づき満充電までの所要充電時間 t を求める充電時間予測手段で ある充電時間予測プログラムと、 該所要充電時間 t を求めたときか ら該所要充電時間 tの経過を監視する監視手段である充電完了時間 監視プログラムとが組み込まれている。
次に、 この第六実施形態の充電装置による二次電池 1の充電制御 を図 1 8に示すフローチャートを参照しながら説明する。
まず、 ユーザが充電する二次電池 1 の種類を入力すると、 プログ ラム · 演算制御部 4において、 この二次電池 1の種類に相当する所 定の充電印加電圧値 E sと、 満充電平衡電圧値 E e qの値とがそれぞ れ選択される (ステップ M l ) 。
次に、 ユーザが操作部 8を操作して充電開始操作を行うと (ステ ップ M 2 ) 、 二次電池 1 に所定の充電印加電圧値 E sが所定時間 (一定時間) 1\継続して印加される (ステップ M 3 ) 。
そして、 一定時間 1\経過後に、 二次電池 1 を、 極小時間 T 2短絡 させて (ステップ Μ 4 ) 、 電界面の電荷を除去した上で、 今度は、 印加電圧を満充電平衡電圧値 E e。に切り換え、 二次電池 1を、 この 満充電平衡電圧値 E e qで微小時間 T 3電圧印加する (ステップ M 5 ) 。
尚、 この微小時間 T 3の設定を 1秒以上とした場合には、 前記の ステップ Μ 4のフローは省略してもよい。
そして、 この満充電平衡電圧値 E e qを微小時間 Τ 3印加している 間に、 電流検出部 3で二次電池 1 に流れている電流値 i を電流検出 部 3で検出する (ステップ M 6 ) 。 次に、 前記充電時間予測プログ ラムにより、 この検出された電流値 i から満充電までに要する時間、 すなわち、 該電流値 iが充電完了基準電流値 J (満充電時に検出さ れると推測される電流値 i ) に達するまでの所要充電時間 t を求め、 この所要充電時間 tを二次電池 1の表示部 7に表示する (ステップ M 7 ) 。
この第六実施形態におけるステツプ M 1からステップ M 7までの 制御工程は、 前記第一実施形態のステップ A 1からステップ A 7ま での制御工程と同様であり、 次に、 前記充電完了時間監視プロダラ ムにより前記所要充電時間 tが 0 〔秒〕 以下であるか否かの判断を 行う (ステップ M 8 ) 。 このとき、 前記所要充電時間 tが 0 〔秒〕 よりも大きければ、 ステップ M 9に移行して、 二次電池 1に所定の 充電印加電圧値 E sを T 5時間印加し、 その後、 再びステップ Μ 8に 戻って、 前記所要充電時間 tが経過したか否かの判断を行う。 また、 ステップ M 8において、 前記所要充電時間 tが 0以下、 すなわち、 所要充電時間 tが経過していれば、 二次電池 1が満充電状態に達し ているとして、 自動的に充電を停止する (ステップ M l 0 ) 。
なお、 この第六実施形態の充電装置におけるその他の構成は、 前 記第一実施形態の充電装置と略同様であるため、 その説明を省略す る。
ここで、 図 9に示す制御フローチャートにおいては、 一旦、 前記 電流値 i から所要充電時間 t を求めた後は、 この時間 tが経過する までは前記二次電池 1 に所定の充電印加電圧値 E sを印加する充電 を継続して行い、 前記所要充電時間 t経過後に自動的に充電を停止 するように構成したが、 前記ステップ M 8において、 前記所要充電 時間 tが 0 〔秒〕 よりも大きければ、 ステップ M 3に戻って前記一 連の充電制御を繰り返し行い、 前記所要充電時間 tが 0 〔秒〕 以下 となったときに充電を停止するように構成することも可能である。 以上のように、 所要充電時間 t経過後に自動的に充電を停止する ように構成すれば、 簡素な構成で確実に充電を停止させることが可 能となる。 またこれによつて、 過度な化学反応 (酸化還元反応) を 引き起こすことなく、 満充電状態まで適正に充電が行え、 二次電池 1 の内部構造に損傷を与えないため、 サイクル寿命を飛躍的に向上 させることができるとともに、 充電時間の短縮を図ることもできる。 さらに、 ユーザは満充電までに要する時間を知ることができるた め、 これによつて.利便性の向上を図ることができる。
(二次電池の充電装置の第七実施形態)
次に、 二次電池 1の充電装置の第七実施形態について説明する。 この第七実施形態の充電装置では、 二次電池 1のチェック電流値 i から求めた充電率が所定値に達した後に、 二次電池 1 の充電を停 止するように構成した点が、 第一実施形態の充電装置と異なる点で ある。
この第七実施形態の充電装置も、 図 1に示すように構成されてお り、 プログラム ·演算制御部 4には、 前記満充電平衡電圧値 E e。で 二次電池 1 を印加中に電流検出部 3によるチエツク電流値 i の検出 時点での二次電池 1の充電率を求める充電率導出手段である充電率 導出プログラムと、 該充電率導出プログラムにより求められた充電 率と予め入力設定された判定基準値 Lとを比較判定する判定手段で ある充電率判定プログラムとが組み込まれている。
前記の図 4は、 満充電平衡電圧値 E e q印加時に検出される電流値 , i と、 満充電までに要する所要充電時間 t との関係を示すグラフで あり、 充電率は、 該グラフに基づくチェック電流値と充電率との間 の換算テーブル、 又は該グラフから導出されるチエツク電流値と充 電率との関係式を、 充電率導出プログラムに作成しておく ことで、 容易に求めることができる。
次に、 この第七実施形態の充電装置による二次電池 1 の充電制御 を図 1 9 に示すフローチャートを参照しながら説明する。
まず、 ユーザが充電する二次電池 1.の種類を入力すると、 プログ ラム ·演算制御部 4において、 この二次電池 1 の種類に相当する所 定の充電印加電圧値 E sと、 満充電平衡電圧値 E e qの値とがそれぞ れ選択される (ステップ N 1 ) 。
次に、 ユーザが操作部 8を操作して充電開始操作を行うと (ステ ップ N 2 ) 、 二次電池 1 に所定の充電印加電圧値 E sが所定時間 (一定時間) 継続して印加される (ステップ N 3 ) 。 そして、 前記一定時間 経過後、 二次電池 1 を、 極小時間 τ 2短 絡させ (ステップ Ν 4 ) 、 電界面の電荷を除去した上で、 今度は、 印加電圧を満充電平衡電圧値 E e qに切り換え、 二次電池 1 をこの満 充電平衡電圧値 E e qで微小時間 T 3電圧印加する (ステップ Ν 5 ) 。
尚、 この微小時間 Τ 3の設定を 1秒以上とした場合には、 前記の ステップ Ν 4のフ口一は省略してもよい。
そして、 この満充電平衡電圧値 E e qを微小時間 Τ 3印加している 間に、 電流検出部 3で二次電池 1 に流れている電流値 i を電流検出 部 3で検出する (ステップ N 6 ) 。 この第七実施形態におけるステ ップ N 1からステップ N 6までの制御工程は、 前記第一実施形態の ステップ A 1からステップ A 6までの制御工程と同様であり、 次に、 前記充電率導出プログラムにより、 この検出された電流値 i から充 電率を求め、 この求めた充電率を二次電池 1の表示部 7 に表示する (ステップ N 7 ) 。
そして、 前記充電率判定プログラムによって、 この求めた充電率 の判定を行い (ステップ N 8 ) 、 該充電率が判定基準値 L (例えば、 9 5 %など) 未満で検出されていれば、 前記ステップ N 3に戻って 上記のフローを繰り返し、 一方、 該充電率が該判定基準値 L以上と なったときは、 充電を停止する。
なお、 この第七実施形態の充電装置におけるその他の構成は、 前 記第一実施形態の充電装置と略同様であるため、 その説明を省略す る。
以上のように、 充電率が該判定基準値 L以上となったときに自動 的に充電を停止するように構成すれば、 簡素な構成で確実に充電を 停止させることが可能となる。 またこれによつて、 過度な化学反応 (酸化還元反応) を引き起こすことなく、 満充電状態まで適正に充 電が行え、 二次電池 1 の内部構造に損傷を与えないため、 サイクル 寿命を飛躍的に向上させることができるとともに、 充電時間の短縮 を図ることもできる。
さらに、 ュ一ザは満充電までに要する時間を知ることができるた め、 これによつて利便性の向上を図ることができる。
(二次電池の充電装置の第八実施形態)
次に、 二次電池 1の充電装置の第八実施形態について説明する。 この第八実施形態の充電装置は、 図 2 0に示すように構成されて おり、 符号 1は二次電池であり、 符号 1 2は電源部で、 該電源部 1 2は商用交流電気を直流に変換する変圧、 整流回路を含んでいる。 また、 符号 1 3は大容量のコンデンサ (電解コンデンサ、 電気二重 層コンデンサ等) であり、 電源部 1 2に並列にコンデンサ 1 3 と二 次電池 1 とが接続されている。 さらに、 電源部 1 2 とコンデンサ 1 3 とを結ぶ回路にはスィッチ 1 7が、 また、 コンデンサ 1 3 と二次 電池 1 とを結ぶ回路にはスィツチ 1 8がそれぞれ介設されている。 また、 符号 1 4は二次電池 1の電流を検出するための電流検出部で あり、 該電流検出部 1 4で検出された電流値 i を制御部 1 5に送信 するように構成している。 ここで、 制御部 1 5では、 各スィッチ 1 7 、 1 8の開閉操作や、 二次電池 1が満充電に達したか否かの判断 等が行われる。 すなわち、 制御部 1 5には、 電流検出部 1 4で検出 した電流値 i と予め入力設定された充電完了基準電流値 J とを比較 判定する電流値判定手段である電流値判定プログラム等が組み込ま れている。 また、 符号 1 6は制御部 1 5からの指令に基づいて二次 電池 1にチヱック電圧を印加するためのチェック電源部である。
第八実施形態の充電装置を用いて二次電池 1 を充電する方法とし ては、 まず、 図 2 0に示す回路中の切換手段であるスィッチ 1 7を 閉、 スィッチ 1 8を開とした状態でコンデンサ 1 3に所定の電源電 圧を一定時間 T 6印加して蓄電を行い、 その後スィッチ 1 7 を開、 スィッチ 1 8を閉に切り替えて、 コンデンサ 1 3に蓄電された電荷 を二次電池 1 に転送するという制御を繰り返し行うことによって、 二次電池 1 を充電するように構成している。 この際、 二次電池 1が 満充電状態に達しているか否かを判断する方法としては、 コンデン サ 1 3の蓄電時、 すなわち、 コンデンサ 1 3 と二次電池 1 とを結ぶ 回路が遮断された状態において、 二次電池 1 にチェック電圧 E cを 印加し、 このとき二次電池 1 に流れる電流値 i を検出することによ つて、 二次電池の満充電状態を把握するように構成している。
次に、 この第八実施形態の充電装置による二次電池 1の充電制御 を図 2 1 に示すフローチャートを参照しながら説明する。
まず、 ユーザは図示せぬ操作部を操作して充電開始操作を行うと (ステップ P 1 ) 、 制御部 1 5からの指令に基づいて、 図 2 0に示 す回路中のスィッチ 1 7を閉じて、 スィッチ 1 8を開くように制御 される (ステップ P 2 ) 。
次に、 前記大容量のコンデンサ 1 3に所定の電源電圧、 例えば、 満充電平衡電圧値 E e qを超える電圧が所定時間 (一定時間) T 6継 続して印加され (ステップ Ρ 3 ) 、 これによつてコンデンサ 1 3に 電荷が蓄電される。
また、 この際、 前記コンデンサ 1 3 との接続が遮断された状態に ある二次電池 1 に、 チェック電源部 1 6によるチェック電圧、 すな わち、 この第八実施形態においては満充電平衡電圧値 E e Qが印加さ れ (ステップ P 4 ) 、 このとき二次電池 1 に流れる電流値 iが電流 検出部 5で検出される (ステップ P 5 ) 。
次に、 前記電流値判定プログラムにより、 この検出された電流値 i と、 予め設定された充電完了基準電流値 J (充電完了時に検出さ れると考えられる電流値) とを比較して (ステップ P 6 ) 、 該電流 値 i が該充電完了基準電流値 J よりも大きければ、 ステップ P 7に 移行して、 今度は回路中のスィッチ 1 7を開いて、 スィッチ 1 8を 閉じるように制御される。 すると、 前記コンデンサ 1 3に蓄えられ ていた電荷が二次電池 1 に転送され、 これによつて二次電池 1の充 電が行われる (ステップ P 8 ) 。 そして、 T7時間経過後、 再ぴス テツプ Ρ 2に戻って、 スィッチ 1 7、 1 8の開閉切り換えを行い、 コンデンサ 1 3への蓄電、 転送等の前記制御が繰り返し行われる。 —方、 前記ステップ Ρ 6において検出された電流値 i が充電完了基 準電流値 J以下となれば、 二次電池 1は満充電状態にあるとして、 ここで充電が停止されるように制御されている (ステップ P 9 ) 。 ところで、 前記チェック電圧に満充電平衡電圧値 E e。を用いた場 合、 図 3のグラフに示したように、 充電率 1 0 0 % (満充電状態) で電流値 i が略 0になるため、 判定が行い易く実施に好適である。 しかしながらこの場合も、 実際には二次電池によって極僅かながら パラツキが生じるため、 これによる過充電を防止しょうとすれば、 前記充電完了基準電流値 Jの値としては 0 m Aよりもやや大きな値、 例えば、 1 0 m A程度で設定するのが好ましい。
以上のように、 第八実施形態における二次電池 1の充電方法によ れば、 一旦コンデンサ 1 3に蓄えた電荷を、 二次電池 1 に転送する ことで充電を行うように構成したことによって、 二次電池 1への電 荷の注入量がカウントし易くなるとともに、 大容量のコンデンサ 1 3を媒体としているため、 短時間に多くの電荷を二次電池 1 に注入 すること、 すなわち大電流を流すことができ、 これによつて充電時 間の短縮化を図ることができる。 また、 二次電池 1 には定期的に満 充電平衡電圧値 E e Q (チェック電圧) が印加され、 この際に流れる 電流値 i を検出することで、 二次電池 1 の充電状態を把握するよう に構成されているため、 二次電池 1が過充電となって過度な化学反 応 (酸化還元反応) を引き起こすことなく満充電状態まで適正に充 電することができる。 この結果、 二次電池 1の内部構造に損傷を与 えるのを防止し、 サイクル寿命を飛躍的に向上させることができる。 またこの際、 二次電池 1 には、 前記電源部 1 2 とは別に設けられた チェック電源部 1 6からチェック電圧が印加されるように構成され ているため、 前記コンデンサ 1 3の蓄電期間中に二次電池 1の充電 状態の観測を行うことが可能となり、 一段と充電時間の短縮を図る ことができる。 さらにこの充電方法によれば、 高額な大電流回路を 必要とせず、 回路構成が簡単であるとともに、 その制御方法も極め て容易であるため、 信頼性の向上を図ることもできる。
以上、 二次電池 1の充電装置の第八実施形態の具体的な実施の形 態について説明をしたが、 前記実施の形態に限定されるものではな く、 この請求の範囲内で種々変更して実施することが可能である。 すなわち、 前記第八実施形態においては、 二次電池 1に満充電平衡 電圧値 E e Qを印加したときの電流値 i を検出するように構成したが、 印加する電圧は前記満充電平衡電圧値 E e Qに限定するものではない。 さらに、 前記第八実施形態のように電源部 1 2 とは別にチェック電 源部 1 6を設ければ、 コンデンサ 1 3の蓄電期間を利用して、 二次 電池 1の充電状態の観測を行うことができるため好ましいが、 前記 二次電池 1 に電源部 1 2で制御された電圧を印加するように構成す ることも可能である。
(二次電池の充電装置の第九実施形態)
次に、 二次電池 1の充電装置の第九実施形態について説明する。 この第九実施形態の充電装置においては、 前記第八実施形態にお ける図 2 0のチェック電源部 1 6を削除するとともに、 前記電流検 出部 1 4の替わりに電圧検出部を設け、 前記二次電池 1 の電圧を測 定することによって二次電池 1が満充電状態に達しているか否かを 判断するように構成した点が異なる。 この第九実施形態の充電装置 の制御部 1 5には、 前記満充電平衡電圧値 E e qと二次電池 1 の開放 電圧 Ε χ ( Ε α、 Ε β、 Ε γ、 Ε β等) とを比較判定する電圧値判定手 段としての電圧値判定プログラムが組み込まれている。
具体的な判定方法としては、 前記コンデンサ 1 3の蓄電時、 すな わちコンデンサ 1 3 と二次電池 1 とを結ぶ回路が遮断された状態に おいて、 二次電池 1 の開放電圧 Ε χ ( Ε α、 Ε 0 , Ε τ、 Ε δ等) を検 出し、 このとき検出された開放電圧 Ε χが満充電平衡電圧値 E e qよ りも小さければ充電を継続し、 満充電平衡電圧値 E e q以上であれば、 充電を停止するように構成している。
次に、 この第九実施形態の充電装置による二次電池 1の充電制御 を図 2 2に示すフローチャートを参照しながら説明する。
まず、 ユーザは図示せぬ操作部を操作して充電開始操作を行うと (ステップ Q 1 ) 、 制御部 1 5からの指令に基づいて、 図 2 0に示 す回路中のスィッチ 1 7を閉じて、 スィッチ 1 8を開くように制御 される (ステップ Q 2 ) 。 次に、 前記大容量のコンデンサ 1 3に所定の電源電圧、 例えば、 満充電平衡電圧値 E e qを超える電圧が所定時間 (一定時間) T 6継 続して印加されて (ステップ Ρ 3 ) 、 これによつてコンデンサ 1 3 に電荷が蓄電される。
また、 この際、 前記コンデンサ 1 3 との接続が遮断された状態に ある二次電池 1の開放電圧 E x (E a、 Ε 0、 Ε τ、 Ε δ等) が電圧検 出部で検出される (ステップ Q 4 ) 。 次に、 前記電圧値判定プログ ラムにより この検出された開放電圧 Ε χと満充電平衡電圧値 E e qと を比較して (ステップ Q 5 ) 、 該開放電圧 E xが満充電平衡電圧値 E e Qよりも小さければ、 ステップ Q 6に移行して、 今度は回路中の スィッチ 1 7 を開いて、 スィッチ 1 8を閉じるように制御される。 すると、 前記コンデンサ 1 3に蓄えられていた電荷が二次電池 1 に 転送され、 これによつて二次電池 1の充電が行われる (ステップ Q 7 ) 。 そして T 7 時間経過後、 再びステップ Q 2に戻ってスィッチ 1 7、 1 8の開閉切り換えを行い、 コンデンサ 1 3への蓄電、 転送 等の前記制御が繰り返し行われる。 一方、 前記ステップ Q 5におい て、 検出された開放電圧 E xが満充電平衡電圧値 E e q以上となれば、 二次電池 1 は満充電状態にあるとして、 ここで充電が停止されるよ うに制御されている (ステップ Q 8 ) 。 なお、 この第九実施形態に おけるその他の構成、 及び作用効果は、 前記第八実施形態と略同様 であるため、 その説明を省略する。
次に、 この二次電池 1の充電装置の第八実施形態、 第九実施形態 における二次電池 1の充電の基本回路の構成を示した図 2 3 ( a) 〜 ( c ) の各等価回路をもとに、 過渡現象理論に従って、 1回の蓄 電で二次電池 1 に転送される電荷量と、 満充電までに要する充電時 間とを理論的に求めた。 その結果を以下に示す。 こ こで図 2 3 ( a ) は、 前記図 2 0のブロック図における充電の基本回路構成を 示した等価回路であり、 同図 (b) は前記回路中のスィッチ 1 7を 閉、 スィッチ 1 8を開として、 コンデンサ 1 3の蓄電を T 6時間行 う場合の等価回路を、 また、 同図 ( c ) はスィッチ 1 7 を閉、 スィ ツチ 1 8を開として、 前記コンデンサ 1 3に蓄えられた電荷を二次 電池 1に T 7時間転送する場合の等価回路を示している。 また、 図 における Eは電源電圧、 rは電源 2の内部抵抗、 Cはコンデンサ 1 3の静電容量、 Rは二次電池 1の内部抵抗であり、 コンデンサ 1 3 の残留電荷による初期電圧を Vとすると、 1回目の蓄電で二次電池 1 に転送される電荷量 (^ェは次式 ( 1 ) で表される。
Q, = C- (E-V)e-T,/rC- (l-e-T2/RC) · · · ( 1 )
また、 同様に 2回目の蓄電で二次電池 1 に転送される電荷量 Q 2 を次式 ( 2 ) に示す。
Q2=C- {E-(E-V)e-T1/rC-e"n/RC} -e-T1/rC- (l-e- /RC) · · · ( 2 ) さらに、 同様に、 3回目の蓄電で二次電池 1 に転送される電荷量 Q 3を次式 ( 3 ) に示す。
Q3=C- [E - {E—(E - V)e-T1/rC'e—T2/RC} ,e_T1/rC'e— T2/RC] .6—τ1/Γ" (ト e- T2/Rc) • · · ( 3 )
前記 ( 1 ) 〜 ( 3 ) に示す式から、 一般に n回目の蓄電で二次電 池 1 に転送される電荷量 Q nを次式 ( 4 ) に示す。
Qn-C- [Ε· {l-e-(a+b) + e-2{a+b)-e-3(a+b)- · ·+ (— 1) . e-(n-i) ("b)
+ (-1) n.V.e- (n-l) (a + b)} .e- a . (卜 e-b) - . . ( 4 ) ここで、 上記 ( 4) 式における a ^ T i/ r C, b = T 2 Z R Cを 示している。 これより、 電源 2の内部抵抗 rを 1 〔Ω〕 、 電源電圧 Εを 5 0 〔V〕 、 二次電池 1の内部抵抗 Rを 1 〔Ω〕 、 コンデンサ 1 3の静電容量 Cを 1 〔 F (ファラ ド) 〕 、 コンデンサ 1 3の初期 電圧 Vを 0 〔V〕 、 時間 Τ 2をそれぞれ 1 〔秒〕 と仮定した場 合における各電荷量 Q 2、 Q 3を求めと、 Q ^ l l . 6 3
〔 C (クーロン) 〕 、 0 0 〔 C〕 、 Q 3 = 1 0 . 2 6
〔C〕 という値が得られる。 これより、 二次電池 1 に転送される平 均電荷量を 2秒当り約 1 0 . 0 0 〔 C〕 と仮定すると、 1 6 0 0
〔mA h〕 の二次電池を充電するのに要する時間は、 約 5分で充電 兀 とな 。
(複数二次電池の充電装置の第十実施形態) 次に、 複数の二次電池 1 · 1 · · · を充電対象とする充電装置の 第十実施形態について説明する。
図 2 4は二次電池 1 · 1 · · · の充電装置の第十実施形態に使用 する充電装置のブロック図であり、 この第十実施形態に係る充電装 置は、 複数の二次電池 1 · 1 · · · の充電を行うものである。
図 2 4において、 符号 2 0は複数の二次電池 1 · 1 · · · が並設 して収納された二次電池ボックス、 符号 2 2は電源部であり、 該電 源部 2 2は商用交流電気を直流に変換する変圧、 整流回路を含んで いる。 また、 符号 2 3は二次電池 1 に印加する充電電圧を制御する 充電電圧制御部、 符号 2 4は二次電池 1 の充電状態を把握する際に 印加するチェック電圧を制御するチェック電圧制御部である。 さら に、 符号 2 5は、 前記チェック電圧印加時における二次電池 1の電 流を検出するための電流検出部であり、 該電流検出部 2 5で検出さ れた電流値を制御手段である制御部 2 6に送信するように構成して いる。
ここで、 制御部 2 6では、 各二次電池 1が満充電に達したか否か の判断や、 印加電圧、 及び二次電池 1 の切り換え指令、 充電された 二次電池 1 の個数等のカウント、 及び満充電までの所要充電時間 t の演算等が行われる。 すなわち、 この制御部 2 6には、 満充電平衡 電圧値 E e qで二次電池 1 を印加中に電流検出部 2 5で検出されたチ ェック電流値 i と、 予め入力設定された充電完了基準電流値 J とを 比較判定する判定手段であるチェック電流値判定プログラム、 該満 充電平衡電圧値 E e Qでの印加中に電流検出部 3で検出されたチエツ ク電流値 i に基づき満充電までの所要充電時間 t を求める充電時間 予測手段である充電時間予測プログラム、 充電された二次電池 1の 個数を数えるカウントプログラム等が組み込まれている。
また、 符号 2 7は、 制御部 2 6からの指令に基づいて二次電池 1 に充電電圧を供給するか、 又はチェック電圧を供給するかの切り換 えを行う電圧切換部である。 さらに、 符号 2 8は制御部 2 6からの 充電完了信号に基づいて、 ある二次電池 1 に接続された前記充電電 圧制御部 2 3やチェック電圧制御部 2 4等を含む回路の接続を、 他 の未充電の二次電池 1に切り換える電池指定切換部である。 さらに、 符号 2 9は、 制御部 2 6で演算された所要充電時間 t、 又は充電中 か充電完了かを表示するための表示部である。
なお、 第十実施形態では、 報知手段の一例として表示部 2 9によ り視覚を通じてユーザに所要充電時間 t等を報知するように構成し ているが、 音声等により報知するように構成してもよく、 報知手段 の構成は特に限定はしないものとする。
この第十実施形態においては複数の二次電池 1 · 1 · · · を、 個 別に一個一個充電するように構成している。 前記二次電池 1の充電 特性に鑑み、 以下のような制御を行うことによって、 前記二次電池 1に損傷を与えることなく急速充電を行うように構成している。
すなわち、 この第十実施形態においては、 並設された N個の二次 電池 1のうち、 まず 1つ目の二次電池 1 に、 前記所定の充電印加電 圧値 E sで一定時間 Tェ印加する大電流充電を行った後、 今度は印加 電圧を該所定の充電印加電圧値 E sよりも低いチェック電圧 E cに切 り換えて、 該チェック電圧 E cで微小時間 T 2印加する。 ここで、 こ のチェック電圧 E eには前記満充電平衡電圧値 E e qを用いるのが好 ましい。
そして、 前記チェアク電圧 E c印加時における電流値 i を検出し、 この電流値 i と、 予め設定した充電完了基準電流値 J (すなわち、 充電完了時に検出されると考えられる電流値) とを比較することに よって、 該電流値 i の方が大きければ再び前記充電印加電圧値 E s での充電を行い、 該電流値 i が充電完了基準電流値 J以下であれば、 満充電状態にあるとして前記 1つ目の二次電池 1 の充電を停止する。 このとき、 制御部 2 6から充電完了信号を受けた電池切換手段であ る電池指定切換部 2 8は、 前記二次電池 1から、 次の未充電の二次 電池 1 に回路を切り換え、 前記と同様の充電制御を行う。 そして、 この充電制御は N個の二次電池 1全てが充電完.了となるまで繰り返 し行われるように構成されている。 また、 この第十実施形態においては、 前記電流値 iから二次電池 1の充電中、 又は充電完了、 又は満充電までの所要充電時間 t を求 め、 これを二次電池 1 の表示部 1 9 (表示手段) に L E D、 又は L C D等によって表示するように構成している。
次に、 この第十実施形態の充電装置による二次電池 1の充電制御 を図 2 5に示すフローチャートを参照しながら説明する。
この第十実施形態では N個の二次電池 1を充電する場合について 述べる。
まず、 充電された二次電池 1 の個数を示す m ( m = 0 、 1 、 2 、 · · · 、 N ) の値に初期値として 0 を代入する (ステップ R 1 ) .
次に、 前記 mの値に m + 1 を代入し (ステップ R 2 ) 、 ステップ R 3に移行する。 ステップ R 3において、 ユーザが図示せぬ操作部 を操作するなどして充電開始操作を行うと、 前記二次電池 1 に満充 電平衡電圧値 E e。を超える所定の充電印加電圧値 E sの電圧が所定 時間 Tュ継続して印加される (ステップ R 4 ) 。 この印加時間 T Jの 設定に関しては、 前記充電印加電圧値 E sを印加した場合における 充電電流の時間変化から割出される。
そして、 前記一定時間 1\経過後、 充電電圧をチェック電圧 E c (例えば、 満充電平衡電圧値 E e q ) に切り換える (ステップ R 4 ) 。 そして、 このチェック電圧 E eを二次電池 1に微小時間 T 3時間印加 している間に、 二次電池 1 に流れる電流値 i を電流検出部 2 5で検 出する (ステップ R 6 ) 。
次に、 この検出した電流値 i と、 前記充電完了基準電流値 J (充 電完了時に検出されると考えられる電流値) とを比較して (ステツ プ R 7 ) 、 該電流値 iが充電完了基準電流値 J よりも大きければ、 ステップ R 4に戻って、 前記充電印加電圧値 E sを二次電池 1 に印 加する前記充電制御を繰り返し行し、 一方、 該電流値 i が充電完了 基準電流値 J以下であれば、 二次電池 1は満充電状態にあることを 意味しているため、 ステップ: 8に移行して現在充電されている二 次電池 1が N番目であるか否かの判断を行う。
そして、 前記二次電池 1が N番目でない場合は、 ステップ R 9に 移行して、 電池指定切換部 2 8により現在の二次電池 1から未充電 の二次電池 1への回路の切り換えを行い、 ステップ R 2に再び戻つ て前記制御を繰り返し行う。
一方、 前記二次電池 1が N番目である場合は、 全ての二次電池 1 の充電が完了したとして、 ここで充電を停止する (ステップ R 1 0 ) 。
ところで、 前記所定の充電印加電圧値 E sが印加される充電時間 は、 前記図 1 の第一実施形態と同様、 二次電池 1 の容量、 構造、 形状等によって異なるが、 例えば、 ニッケル一カ ドミウム二次電池 の場合は、 約 1 2 0 〔秒〕 が選ばれる。 またチェック電圧 E cを印 加する時間 T 3としては約 0 . 1 〔秒〕 が選ばれる。 また、 前記チ エック電圧 E eに満充電平衡電圧値 E e qを用いた場合、 前記したよ うに、 充電率 1 0 0 % (満充電状態) で電流値 iが略 0 〔m A〕 に なるため、 判定が行い易く好適である。 しかしこの場合も、 実際に は電池によつて極僅かながらバラツキが生じるため、 これによる過 充電を防止しょう とすれば、 前記充電完了基準電流値 Jの値として は 0 〔m A〕 よりもやや大きな値、 例えば、 1 0 〔m A〕 程度で設 定するとより好ましい。
以上のように二次電池 1の充電装置の第十実施形態によれば、 一 つの二次電池 1の充電が完了すると、 自動的に次の未充電の二次電 池 1 に回路が切り替わって、 1個ずつ個別に充電が行われるように 構成されているため、 制御が簡単で、 全ての二次電池 1 を確実に充 電することが可能となる。
さらに、 各二次電池 1の充電中においては、 定期的にチ Xック電 圧が印加され、 この際に流れる電流値 i を検出するという容易な方 法で、 二次電池 1の充電状態を把握するように構成されているため、 未充電の二次電池 1が生じたり、 また過充電となって過度な化学反 応 (酸化還元反応) を引き起こしたりすることなく、 全ての二次電 池 1 を満充電状態まで適正に充電することができる。 また、 これに よって、 二次電池 1の内部構造に損傷を与えるのを防止することが できるため、 サイクル寿命を飛躍的に向上させることができる。 さらに、 この方法での主なる充電は、 満充電平衡電圧値 E e qを超 える所定の充電印加電圧値 E sで行われるため、 かなり大きな充電 電流が二次電池 1 に流されることとなる。 これによつて、 複数の二 次電池 1 · 1 · · · を個別に充電する方法を用いても、 個々の二次 電池 1の充電に要する時間を短くすることができるため、 結果的に 全ての二次電池 1 を充電するのに要する時間の短縮を図ることがで さる。
また、 前記二次電池 1 の充電中、 又は充電完了、 又は所要充電時 間 t を表示部 7に表示するように構成したことによって、 ユーザは 現在の充電状態、 又は満充電までに要する時間を知ることができる ため、 利便性の向上を図ることができる。
(複数二次電池の充電装置の第十一実施形態)
次に、 複数の二次電池 1 · 1 · · · を充電対象とする充電装置の 第十一実施形態を説明する。
この第十一実施形態においては、 図 2 4に示すように、 前記第十 実施形態の充電装置において、 チエツク電圧制御部 2 4を削除する とともに、 前記電圧切換部 2 7で充電電圧の印加、 又は印加停止の 切り換えを行うように構成し、 さらに電流検出部 2 5の替わりに電 圧検出部を設けて、 前記二次電池 1への充電電圧の印加停止時にお ける開放電圧開放電圧 Ε χ ( Ε α、 Ε Ε τ、 Ε δ等) を測定するこ とによって、 二次電池 1の満充電状態を把握するように構成した点 が異なる。
より具体的に述べると、 並設された Ν個の二次電池 1のうち、 ま ず 1つ目の二次電池 1に、 前記満充電平衡電圧値 E e qを超える所定 の充電印加電圧値 E sの電圧を一定時間 T t印加する大電流充電を行 い、 この後、 所定の充電印加電圧値 E sを遮断して、 この状態で前 記電圧検出部によって検出される二次電池 1の開放電圧 Ε χ ( Ε α、 Ε β, Ε τ、 Ε δ等) (図 3参照) と、 前記所定の充電印加電圧値 Ε sとの差を求める。 そして、 この差の差電圧 E sと、 予め設定した 判定基準値 Kとを比較し、 該差電圧 E sの方が大きければ該所定 の充電印加電圧値 E sでの充電を継続する一方、 該差電圧^ 1 E sが判 定基準値 K以下であれば、 満充電状態にあるとして前記 1つ目の二 次電池 1 の充電を停止する。 このとき、 制御部 2 6から充電完了信 号を受けた電池指定切換部 2 8は、 前記二次電池 1から、 次の未充 電の二次電池 1 に回路'を切り換えて、 前記と同様の充電制御を行う。 そしてこの充電制御を N個の二次電池 1全てが充電完了となるまで 繰り返し行う。
ここで、 この実施形態における判定基準値 Kは、 充電印加電圧値 E sと、 二次電池 1が満充電状態にあるときの開放電圧 E x = E e q (満充電平衡電圧値) との差、 すなわち E s— E e Qの値として 構成される。
次に、 この第十一実施形態の充電装置による二次電池 1の充電制 御を図 2 6に示すフローチヤ一トを参照しながら説明する。
この実施形態では N個の二次電池 1 · · を充電する場合について 述べる。
まず、 充電された二次電池 1 の個数を示す m (m = 0 、 1 、 2、 · · · 、 N ) の値に初期値として 0 を代入する (ステップ S
1 )
次に、 前記 mの値に m + 1 を代入し (ステップ S 2 ) 、 ュ一ザが 図示せぬ操作部を操作するなどして充電開始操作を行うと (ステツ プ S 3 ) 、 前記二次電池 1 に所定の充電印加電圧値 E sが所定時間 (一定時間) Tェ継続して印加される (ステップ S 4 ) 。
そして、 前記一定時間 1 経過後、 ステップ S 5において今度は 前記充電印加電圧値 E sを T4時間遮断し、 この状態で、 二次電池 1 の開放電圧 Ε χα、 Ε 0、 Ε τ、 Ε δ等) を電圧検出部で検出する (ステップ S 6 ) 。
次に、 この検出した開放電圧 Ε χと、 前記所定の充電印加電圧値 E sとの差の差電圧 E sを求める (ステップ S 7 ) 。 そして、 この 求めた差電圧 E Sと予め設定した判定基準値 Kとを比較し (ステ ップ S 8 ) 、 該差電圧 E sが該判定基準値 Kより大きければ、 ス テツプ S 4に戻って再び前記所定の充電印加電圧値 E sを二次電池
1 に印加する前記充電制御を繰り返し行う。
一方、 該差電圧 E sが該判定基準値 K以下であれば、 二次電池
1 は満充電状態にあることを意味しているため、 ステップ S 9に移 行して、 現在充電されている二次電池 1が N番目であるか否かの判 断を行う。
そして、 前記二次電池 1が N番目でない場合は、 ステップ S 1 0 に移行して、 電池指定切換部 2 8により現在の二次電池 1から未充 電の二次電池 1への回路の切り換えを行い、 ステップ S 2に再び戻 つて前記制御を繰り返し行う。
一方、 前記二次電池 1が N番目である場合は、 全ての二次電池 1 の充電が完了したとして、 こ こで充電を停止する (ステップ S 1 1 ) 。
ところで、 前記所定の充電印加電圧値 E sが印加される充電時間 は、 二次電池 1の容量、 構造、 形状等によって異なるが、 例え ば、 単三型のニッケル一カ ドミウム、 ニッケル一水素二次電池 1の 場合は、 6 0 〜 9 0 〔秒〕 が選ばれる。 また、 前記遮断時間 T 4は 二次電池 1の充電状態から遮断した経過において、 電池端子電圧が 安定し計測可能な状態に達するのに要する時間で決められ、 前記と 同様の二次電池 1の場合については、 1〜 5 〔秒〕 が選ばれる。
なお、 前記制御を行う際に設計上注意を要するのは、 前記開放電 圧 Ε χの電圧の検知は、 一般に電池の平衡電圧を測るときのように 計測系に電流が流れない計測系の高ィンピーダンス状態でなければ ならない。 また、 この実施形態におけるその他の構成、 及び作用効 果は、 前記第十実施形態と略同様であるため、 その説明を省略する。
(複数二次電池の充電装置の第十二実施形態)
次に、 複数の二次電池 1 · 1 · · · を充電対象とする充電装置の 第十二実施形態を説明する。
図 2 7は第十二実施形態の充電装置の構成を示すプロック図であ り、 該第十二実施形態の充電装置は、 複数の二次電池 1 · 1 ' · « をパック化したパック電源 4 0の各二次電池 1を充電するものであ る。 この場合、 パック電源 4 0は、 複数個の二次電池 1 · 1 · · · が直列に接続された複数 (図 2 7では 2偭) の二次電池群 4 1 · 4 1を備え、 各二次電池群 4 1 · 4 1は並列に接続されている。
この第十二実施形態では、 前述の二次電池 1の充電特性に鑑み、 以下のような制御を行うことによって、 二次電池 1に損傷を与える ことなく、 急速充電を行うように構成した。 すなわち、 各二次電池 1 を充電する場合、 まず、 満充電平衡電圧値 E e qを超える所定の充 電印加電圧値 E sを一定時間 T i印加する大電流充電を行った後、 今 度は上記印加電圧値 E sをそれよりも低いチェック電圧 E eに切り換 えて、 このチェック電圧 E eを微小時間 T 3印加する。 ここで、 この チェック電圧 E cには満充電平衡電圧値 E e qを用いるのが好ましい。
そして、 チェック電圧 E e印加時における電流値 i を検出し、 こ の電流値 i と予め設定した充電完了基準電流値 J (すなわち、 充電 完了時に検出されると考えられる電流値) とを比較することによつ て、 該電流値 i の方が該充電完了基準電流値 Jよりも大きければ再 び前記所定の充電印加電圧値 E sでの充電を行い、 該電流値 i が充 電完了基準電流値 J以下であれば、 満充電状態にあるとして二次電 池 1の充電を停止する。
そのため、 この第十二実施形態の充電装置は、 図 2 7に示す構成 としている。
すなわち、 この第十二実施形態の充電装置は、 電源部 4 2 と、 充 電電圧制御部 4 3 と、 チェック電圧制御部 4 4と、 プロセッサ一 4 8 (制御部) 等を備えている。 また、 電源部 4 2は商用交流電気を 直流に変換する変圧、 整流回路を含んでいる。 プロセッサー 4 8は 切替器 4 6に指示して、 充電電圧制御部 4 3から各二次電池群 4 1 に充電電圧を供給したり、 チエツク電圧制御部 4 4からチェック電 圧 (二次電池.1 の充電状態を把握する際に印加する電圧) を各二次 電池群 4 1 に供給したりする。 この際、 充電時間とチェック時間と に応じて切り替えられる。 さらに、 チェック時間内では電流検知部 4 7 (上記チェック電圧印加時における二次電池 1 の電流等を検出 する検知部) の電流信号がプロセッサー 4 8に入力される。 そして、 このプロセッサー 4 8では、 電流検知部 4 7の電流が検知される限 り切替器 4 6によって、 充電、 チェックの時間繰返し行う指定を出 し、 この二次電池 1の充電が完了したことを検知 (例えば、 検出し た電流値 i が充電完了基準電流値 J以下であることを検知) すれば、 後述するように、 プロセッサー 4 8の指示によって次の二次電池 1 への電圧印加状態とする。 また、 報知手段である表示部 4 9は、 パ ック電源 4 0及びプロセッサー 4 8からの状態信号を受けて充電中 あるいは充電完了等を表示する。 なお、 表示部 4 9は L E Dあるい は C D等にて構成することができる。
また、 このパック電源 4 0は、 図 2 7中の 1 0 1で示す二次電池 群 4 1 の各二次電池 1 に充電電圧を供給するための第 1回路 5 1 と、 図 2 7中の 1 0 2で示す二次電池群 4 1の各二次電池 1 に充電電圧 を供給するための第 2回路 5 2とを備えている。
第 1回路 5 1は Α Η、 Α 1 2、 · · · 、 A L Nのトランジスタ T r と、 B u、 B 1 2、 · · · 、 B l nのトランジスタ T r とを有し、 第 2回路 5 2は、 Α 2 1、 Α 2 2、 · · · 、 A 2 nのトランジスタ T r と、 B 2 1、 B 2 2、 · · · 、 B 2 nのトランジスタ T r とを有する。
このため、 制御部としてのプロセッサー 4 8は、 各二次電池群 4 1 · 4 1 の第 1回路 5 1、 第 2回路 5 2の A2 1、 A 2 2、 ' · ' 及 び Β 2 1、 Β 2 2、 · · ' のトランジスタ T rを制御することができ、 さらには、 第 3回路〜第 n回路のトランジスタ T rを制御すること ができる。
そして、 この充電装置では、 各二次電池群 4 1の複数の二次電池 1 · 1 · · · を、 個別に一個一個充電するように構成している。
図 2 7中の 1 0 1で示す二次電池群 4 1 を充電する場合を説明す れば、 例えば、 この二次電池群 4 1の Πの二次電池 1 を充電する場 合、 Α 1 2、 Β 1 2のトランジスタ T r ' T rが H i信号を受け、 こ れにより、 この Πの二次電池 1 に電源供給され、 充電される。 この 場合、 他のトランジスタ T r - T r · · ' は L o w状態である。 そ して、 この Πの二次電池 1が満充電となれば、 次の Πの二次電池 1 に移行する。 この mの二次電池 1の充電時には、 A 1 3、 B 1 3のト ランジスタ T r · T rが H i信号を受けることになる。
ここで、 トランジスタ T rが H i 信号を受けるとは、 上記のよう に、 満充電平衡電圧値 E e。を超える所定の充電印加電圧値 E sを一 定時間 Tェ印加する大電流充電を行った後、 上記印加電圧値 E sをそ れよりも低いチェック電圧 E cに切り換えて、 このチェック電圧 E c を微小時間 T 2印加する状態をいう。
このため、 一つの二次電池 1の充電が完了すれば、 制御部 8から の指示により次の未充電の二次電池 1 に回路を切り換えて、 上記と 同様の充電制御を行う ことになり、 この充電制御が、 M個 (二次電 池群 4 1の二次電池 1の数) の二次電池 1全てが充電完了となるま で繰り返し行われるように構成されている。 また、 図 2 7中の 1 0 1で示す二次電池群 4 1の充電が終了すれば、 図 2 7中の 1 0 2で 示す二次電池群 4 1側に回路が切り換わって 1 0 2で示す二次電池 群 4 1の二次電池 1が上記のように順次充電される。
次に、 この第十二実施形態の充電装置による二次電池 1の充電制 御を図 2 8に示すフローチヤ一トを参照しながら詳説する。
この場合、 まず、 図 2 7中の 1 0 1で示す二次電池群 1 について 説明する。
まず、 充電された二次電池 1 の個数を示す p ( p = 0、 1、 2、 · · · 、 M) の値に初期値として 0 を代入する (ステップ T 1 ) 。 次に、 ステップ T 2において上記 pの値に p + 1 を代入し、 ステップ T 3に移行する。 このステップ T 3では、 充電された二次 電池 1の数 pが Mであるか否かを判定する。 ここで、 Mとはこの二 次電池群 4 1の二次電池 1の数である。 そして、 このステップ T 3で、 ρ =Μ+ 1でなければ、 次のステ ップ Τ 4へ移行し、 ρ =Μ+ 1であれば、 この二次電池群 4 1の全 ての二次電池 1 の充電が完了しているので、 この二次電池群 4 1の 充電が終了する (ステップ Τ 9 ) 。
ρ =Μ+ 1でない場合、 第!)本目の二次電池 1に充電が開始され ることになり (ステップ Τ 4 ) 、 該第 ρ本目の二次電池 1 に所定の 充電印加電圧値 E sが所定時間 (一定時間) Ί 継続して印加される (ステップ Τ 5 ) 。 この所定の充電印加電圧値 E sを二次電池 1 に 印加する印加時間 Tェとしては、 例えば、 約 1 2 0 〔秒〕 が選ばれ る。
そして、 前記一定時間 T i時間経過後、 充電電圧をチェック電圧 E c (例えば、 満充電平衡電圧値 E e q) に切り換える (ステップ T 6 ) 。 このチェック電圧 E cを該第 p本目の二次電池 1 に微小時間 T 3印加している間に、 該二次電池 1 に流れる電流値 i を電流検出 部 7で検出する (ステップ T 7 ) 。 このチェック電圧 E eを二次電 池 1 に印加する微小時間 T 3としては、 例えば、 約 0. 1 〔秒〕 が 選ばれる。
次に、 ステップ T 8において、 この検出された電流値 i と、 前記 充電完了基準電流値 J (充電完了時に検出されると考えられる電流 値) とを比較して、 該検出された電流値 i が該充電完了基準電流値 J よりも大きければ、 前記ステップ T 4に戻って、 前記所定の充電 印加電圧値 E sを二次電池 1 に印加する上記充電制御を繰り返し行 い、 一方、 該検出された電流値 i が該充電完了基準電流値 J以下で あれば、 該第 p本目の二次電池 1は満充電状態にあることを意味し ているため、 ステップ T 2に戻る。 すなわち、 これでこの第 ρ本目 の二次電池 1の充電が終了し、 以下、 同様のフローを行うことによ り、 1 0 1で示す二次電池群 4 1の I の二次電池 1から全ての二次 電池 1の充電を終了させることができる .(ステップ Τ 9 ) 。
ところで、 前記チェック電圧 E eに満充電平衡電圧値 E e qを用い た場合、 図 3に示すように、 充電率 1 0 0 % (満充電状態) で電流 値 i が略 0 〔m A〕 になるため、 判定が行い易く好適である。 しか しこの場合も、 実際には電池によって極僅かながらバラツキが生じ るため、 これによる過充電を防止しょうとすれば、 前記充電完了基 準電流値 Jの値としては 0 〔m A〕 よりもやや大きな値、 例えば、 1 0 〔m A〕 程度で設定するとより好ましい。 また、 ステップ T 4 となって充電が開始されれば、 前記表示部 8による充電中表示が開 始される。
次に、 この図 2 7中の 1 0 1で示す二次電池群 4 1の全ての二次 電池 1の充電が終了すれば、 次の図 2 7中の 1 0 2で示す二次電池 群 4 1の充電が開始される。 すなわち、 1 0 1で示す二次電池群 4 1の充電が終了した場合、 前記図 2 8のステツプ T 3での判断が p = M + 1であるので、 この p = M + 1 となったときに、 制御部 8で は 1 0 2で示す二次電池群 4 1の充電を開始するように指令する。
この 1 0 2で示す二次電池群 4 1でも前記した 1 0 1で示す二次 電池群 4 1 と同様の制御でもって各二次電池群 1の充電が行われる。 このため、 各 1 0 1 · 1 0 2で示す二次電池群 4 1の充電が終了す る。 そして、 この充電が終了すれば、 前記表示部 4 9は充電中表示 から充電完了表示となる。
このように、 第十二実施形態の充電方法では、 二次電池 1に流れ る電流値 i を検出することで、 その充電状態を定期的に観測するよ うに構成したことによって、 過充電による化学反応 (酸化還元反 応) を引き起こすことなく、 満充電状態まで適正に充電を行うこと ができる。 またこれによつて、 二次電池 1の内部構造に損傷を与え るのを防止することができるため、 サイクル寿命を飛躍的に向上さ せることができる。
さらに、 この充電方法での主なる充電は、 満充電平衡電圧値 E e q を超える所定の充電印加電圧値 E sで行われるため、 かなり大きな 充電電流が二次電池 1 に流されることとなりこれによつて充電時間 の短縮を図ることができる。
また、 一つの二次電池 1の充電が完了すると、 自動的に次の未充 電の二次電池 1 に回路が切り替わって、 1個ずつ個別に充電が行わ れるように構成されているため、 全ての二次電池 1 を確実に充電す ることができ、 未充電の二次電池 1 を有するまま二次電池群 4 1の 充電動作が終了することがなくなり、 二次電池群 4 1の充電の信頼 性に優れる。
さらに、 図 2 7中の 1 0 1で示す二次電池群 4 1の充電が完了し た後、 図 2 7中の 1 0 2で示す二次電池群 4 1の充電が開始され、 この 1 0 2で示す二次電池群 4 1 の充電も完了するので、 このパッ ク電源 4 0の全ての二次電池 1をそれぞれ満充電状態まで適正に充 電が行えて、 サイクル寿命を延ばすことができ、 しかも、 全体とし て短時間での充電が可能である。
また、 表示部 4 9にて充電中あるいは充電完了等が表示されるの で、 ユーザは充電中あるいは充電完了を把握することができ、 例え ば、 充電完了後、 直ちにこの電源を使用した各種の機器を駆動させ ることができる。 なお、 表示部 4 9において、 充電中と充電完了と は、 点灯色を相違させて区別したり、 充電中と充電完了のどちらか の場合を点灯させずに区別したりすることができる。 さらには、 「充電中」 の文字や 「充電完了」 の文字等を表示するようにしても よい。
なお、 報知手段の一例として表示部 4 9により視覚を通じてュ一 ザに充電状態.を報知するように構成しているが、 音声等により報知 するように構成してもよく、 報知手段の構成は特に限定はしないも のとする。
ところで、 図 2 7に示すように、 二次電池群 4 1を複数個有する パック電源 4 0である場合に、 第十二実施形態では、 一つの二次電 池群 4 1の充電が終了した後に、 次の二次電池群 4 1の充電を開始 . していたが、 複数の二次電池群 4 1 · 4 1の並行充電を可能として、 各二次電池群 4 1 · 4 1の充電を同時に開始してもよい。 これによ つて、 各二次電池群 4 1 · 4 1の充電完了時間がほぼ同時となって、 このパック電源 4 0の全体の充電時間の大幅な短縮を図ることがで きる。 また、 並行充電として、 同時でなく多少ずれて開始されても よい。 例えば、 図 2 7中の 1 0 1で示す二次電池群 4 1の充電が開 始された後、 所定時間経過した後 (この 1 0 1 で示す二次電池群 4 1の充電が終了しない範囲) に図 2 7中の 1 0 2で示す二次電池群 4 1の充電が開始されるようにしてもよい。 なお、 並行充電を行わ ずに、 例えば、 1 0 1で示す二次電池群 4 1の充電が終了した後、 連続して 1 0 2で示す二次電池群 4 1の充電を開始させずに、 所定 時間経過後に、 1 0 2で示す二次電池群 4 1の充電を開始するよう にしてもよい。
また、 このようなパック電源 4 0を使用する場合、 複数の二次電 池群 4 1 を有するので 1 0 1又は 1 0 2で示す二次電池群 4 1のみ を負荷に接続したり、 1 0 1 と 1 0 2で示す二次電池群 4 1 · 4 1 を直列又は並列として負荷に接続したりすることができるようにす るのが好ましい。 これによつて、 接続される種々の負荷に対応する 電源となって、 汎用性に優れるものとなる。 この場合、 このパック 電源 4 0の回路部に切替手段を設け、 この切替手段を切り替えるこ とによって、 直列使用可能状態としたり、 並列使用可能状態とした りすることができる。
ところで、 満充電までの所要充電時間 t (つまり充電時間) は、 図 4に示すように、 電流値 i と所要充電時間 t との関係を示したグ ラフから求めることができる。 このグラフは満充電平衡電圧値 E e q 印加時に検出される電流値 i と、 満充電までに要する充電時間 t と の関係を示しており、 充電率が 0 %の二次電池 1 に、 満充電平衡電 圧値 E e qを印加したときに検出される電流値 i を I e Q。 (図 3参 照) とすると、 前記グラフは、 充電か進むにつれて所要充電時間 t が短くなるとともに、 これに伴って検出される電流値も小さくなる ことを示している。 そしてこの場合は、 前記電流値が i = 0になつ たとき、 充電率 1 0 0 %の満充電状態となるため、 所要充電時間も t = 0 となる。
従って、 このようなグラフ、 又はこのグラフから導出される関係 式を充電時間予測プログラムとして予め制御手段であるプロセッサ 一 4 8に作成しておけば、 検出される電流値 iから満充電までの所 要充電時間 t を簡単に求めることができる。 このため、 この充電時 間予測手段である充電時間予測プログラムにより所要充電時間 t を 算出して、 この時間が経過した後に、 二次電池 1の充電を停止する ようにしてもよい。 また、 満充電までの所要充電時間 t を検出する ことによって、 表示部 4 9にその充電時間 t を表示するようにする ことも可能である。 このように、 充電時間 tが表示されれば、 充電 中の二次電池 1の充電完了時刻をユーザは把握することができる。 以上に、 この第十二実施形態の二次電池 1の充電方法の具体的な 実施の形態について説明をしたが、 前記実施の形態に限定されるも のではなく、 請求の範囲内で種々変更して実施することが可能であ る。 例えば、 パック電源 4 0の二次電池群 4 1の数の増減は自由で あり、 さらには、 各二次電池群 4 1 * 4 1の二次電池 1 の数の増減 も自由である。 また、 各二次電池 1 を充電する際には、 チェック電 圧 E eを印加させる前に極小時間 (例えば、 約 0 . 0 0 1 〔秒〕 ) だけ、 この二次電池 1を短絡させてもよい。 これによつて、 二次電 池 1の電極界面にチャージした電荷を除去して、 電極界面をクリ一 ンな状態にすることができる。 従って、 二次電池 1 を短絡させれば、 満充電平衡電圧値 E e Qへの電圧印加がスムーズに行え、 さらに、 こ の満充電平衡電圧値 E e qへの切り換え直後の充電電流が安定し、 そ の結果、 電流値 i の測定が正確に行え、 適正な充電を図ることがで きる。
また、 一つの二次電池 1の充電を終了する場合、 検出される電流 値 i から図 3に示すグラフ等を用いて、 この電流値 i の検出時点に おける二次電池 1 の充電率を求め、 この充電率が所定値に達したと きに充電を停止するようにしてもよい。
さらに、 各二次電池 1 の充電を行う場合、 二次電池 1 の開放電圧 E xを用いてもよい。
この場合、 すなわち、 前記所定の充電印加電圧値 E sと、 開放電 圧 E x ( Ε α、 E β , Ε τ、 Ε 6等) との差電圧 Ε sを用い、 該差電 圧 1 E Sを、 予め設定した判定基準値 Kと比較して、 該差電圧^ 1 E S の方が該判定基準値 Kよりも大きければ前記所定の充電印加電圧値 E sでの充電を継続し、 一方、 該差電圧^] E sが該判定基準値 K以下 であれば、 満充電状態にあるとして前記二次電池 1の充電を停止す るようにしてもよい。 この判定基準値 Kは、 所定の充電印加電圧値 E sと、 二次電池 1が満充電状態にあるときの開放電圧 E x = E e q (満充電平衡電圧値) との差、 すなわち K == E s— E e qの値として 構成される。 この場合、 満充電平衡電圧値 E e qと開放電圧 E xとの 差電圧 E sから所要充電時間 t を求めて、 これを表示部 4 9に表 示するように構成することができる。
ところで、 充電完了時には表示部 4 9 にてその旨が表示されるが、 この際完了を知らせる完了音 (例えば、 ブザー音) を発生させるよ うにしてもよい。 また、 複数の二次電池群 4 1 - 4 1 · · · を有す る場合、 表示部 4 9にて、 全二次電池群 4 1 · 4 1 · · · の充電完 了と、 各二次電池群 4 1の充電の終了 (完了) とを表示するように してもよい。 このように、 各二次電池群 4 1の充電の終了 (完了) が表示されれば、 この完了した二次電池群 4 1のみでもって、 負荷 接続が可能な場合に、 他の二次電池群 4 1 の充電完了を待つことな く、 この電源を使用することができ、 利用性の向上を図ることがで きる。
(二次電池の充電装置の第十三実施形態)
次に、 二次電池 1の充電装置の第十三実施形態について説明する。 二次電池 1 は充電完了後、 放置しておく と、 自己放電して、 電池 電圧が次第に低下していき、 例えば、 2 日放置しておく と、 電池電 圧は約 1 5 %低下してしまい、 3 0 日放置しておく と、 電池電圧は 約 4 0 %も低下してしまう。 このため、 二次電池 1 をデジタルカメ ラなどの機器に使用する場合に、 その電池電圧が低くすぎて、 役に 立たない場合がある。
そこで、 この第十三実施形態の充電装置では、 前記第一実施形態 から第十二実施形態のうちの何れか 1つの実施形態で、 若しくは、 上記実施形態以外の方法で、 充電を完了した二次電池 1の電池電圧 値が所定の電圧値以下となったときに、 再充電を行うように構成し ている。
この第十三実施形態の充電装置も、 図 1に示すように構成されて おり、 プログラム ·演算制御部 4には、 電圧検出部 9によって検出 された充電完了後の二次電池 1の電池電圧値と、 前記満充電平衡電 圧値 E e qよりも低い再充電電圧値 E とを比較判定する判定手段と しての再充電判定プログラムが組み込まれている。
この再充電電圧値 E ま、 例えば満充電平衡電圧値 E e qの 8 0 % と設定されており、 充電完了後においても、 充電装置にセッ トされ た二次電池 1の電池電圧は電圧検出部 9 によって監視されており、 該二次電池 1 の電池電圧値が再充電電圧値 E f 以下となったときに、 プログラム · 演算制御部 4から再充電指令が出力され、 前記充電電 圧供給部 6から充電電圧が供給されて、 該二次電池 1 の再充電を行 うように構成している。
なお、 この再充電の停止は、 前記第一実施形態から第十二実施形 態のうちの何れか 1つの実施形態の充電停止条件、 若しくは、 上記 実施形態以外の方法の充電装置にあっては、 その充電装置の充電停 止条件に従うものとする。
以上のように、 再充電を行うように構成すれば、 充電装置から取 り出した二次電池 1 の電池電圧は、 いつでも再充電電圧値 以上 で、 使用に適した状態にあり、 利便性の向上を図ることができる。
また、 この再充電においても、 過充電による化学反応 (酸化還元 反応) を引き起こすことなく、 満充電状態まで適正に再充電を行う ため、 二次電池 1 の内部構造に損傷を与えず、 サイクル寿命を飛躍 的に向上させることができるとともに、 満充電までの充電時間も短 くなる。
(複数二次電池の充電装置の第十四実施形態)
次に、 複数の二次電池 1 を充電対象とする充電装置の第十四実施 形態について説明する。
図 2 9は二次電池の充電装置の第十四実施形態の充電装置の構成 を示す平面図であり、 この第十四実施形態に係る充電装置 5 0は、 複数の二次電池 1 · 1 · · · (本実施の形態では、 4本の二次電池 1 ) の充電を行うものである。
図 2 9において、 符号 5 0 aは二次電池 1 をセッ 卜するための座 部であり、 符号 5 0 bは外気取込口ある。 符号 5 1は第 1表示部で、 座部 5 0 aにセッ トされた二次電池 1が満充電状態に近いときに点 灯し、 例えば、 二次電池 1の電池電圧が前記の再充電電圧値 E ^に 達したときに、 点灯するように構成されている。 この設定の場合、 一旦充電を終えて点灯している第 1表示部 5 1が消灯に切り換わつ たときに、 前記再充電が実行されるように構成される。 符号 5 2は 第 2表示部で、 図 2 9中の太線矢印の順番に交互に充電が行われる 二次電池 1 · 1 · · , のうち現在充電中の二次電池 1 に対応する第 2表示部 5 2が点滅し、 二次電池 1が満充電状態に達して充電が完 了すると、 その二次電池 1に対応する第 2表示部 5 2が点灯するよ うに構成されている。 符号 5 3は二次電池 1の座部 5 0 aにセッ ト された二次電池 1 を取り出すための取出ポタン、 符号 5 4は二次電 池 1 の充電を開始させるためのスタートポタン、 符号 5 5は電源ラ ンプであり、 該充電装置 5 0は図示せぬ電源コードを介して商用電 源に接続されるようになっている。
この第十四実施形態の充電装置 5 0は、 二次電池 1 の充電状態を チェックした後、 所定の電圧で所定時間充電する一連の充電動作を 各未充電の二次電池 1 ごとに図 2 9中の太線矢印の順番に交互に行 い、 これを 1 ターンとして、 該ターンを繰り返しながら複数の二次 電池 1 · 1 · · · を充電し、 前記充電状態のチェックで満充電状態 に達したと判断された二次電池 1から充電を停止するように構成し ている。
なお、 満充電状態に達した二次電池 1は、 次のターンでその順番 が飛ばされる (スキップする) ものとする。 また、 各ターンで二次 電池 1 を充電する順番は、 図 2 9中の太線矢印の順番に限定するも のではなく、 他の順番で行ってもよい。
前記充電状態のチェックは、 例えば、 前記第一実施形態における ステツプ A 8での充電電流値 i の判定、 前記第一実施形態における ステップ A 8での充電電流値 i の判定、 又は、 前記第四実施形態に おけるステップ G 7での差電圧 l E sの判定等により行われ、 前記 充電電圧には、 例えば、 前記の所定の充電印加電圧値 E sが用いら れる。
以上のように充電装置 5 0が構成され、 この充電装置 5 0では、 各二次電池 1 における先のターンの一連の充電動作の完了から、 次 の夕一ンの一連の充電動作の開始までの間、 充電が休止され、 この 休止期間が緩和時間となり、 電極表面が安定して、 次のターンでの 満充電状態のチェックを精確に行うことができ、 信頼性が向上する 補足すると、 二次電池 1の充電中、 電解液と接する電極の表面で 電極反応が起こり、 この電極反応の過程は、 電解液内部から電極表 面への反応物の移動と、 反応物と電極の間での電子の移動と、 電極 表面から電解液内部への生成物の移動との同時過程であり、 この移 動にはかなりの時間を要することから、 二次電池 1 の充電休止直後 に、 満充電状態をチェックすると、 電極表面付近で電気泳動してい る移動過程のイオン等のために、 あたかも、 満充電状態に達したか のように検知されてしまうことがある。 この誤検知を防ぐためにも 緩和時間を設けることは有効であり、 この第十四実施形態の充電装 置 5 0では、 各二次電池 1の充電サイクルの一環として、 合理的、 且つ効果的に緩和時間が設けられている。
なお、 前記第一実施形態から第十二実施形態においても、 個々の 二次電池 1 において、 一定時間丁ェの充電と、 その後の充電状態の チェックとの間に、 緩和時間を設けるように構成してもよい。
(二次電池の充電装置の第十五実施形態)
次に、 二次電池 1の充電装置の第十五実施形態を説明する。 図 3 0に示すように、 この第十五実施形態の充電装置 5 0の内部 には、 冷却手段として冷却フアン 6 1が設けられている。 この第十 五実施形態の充電装置 5 0による二次電池 1の充電は、 前記第一実 施形態から第十四実施形態のうちの何れかの実施形態に示すように 行われ、 従って、 二次電池 1の内部では過度の化学反応が起こるこ となく、 二次電池 1 自体は発熱はしない。 しかしながら、 充電を制 御する電子部品の抵抗等が発熱するために、 該抵抗等の発熱素子 6 4 - 6 5を冷却すべく冷却フアン 6 1が設けられている。
図 3 0において、 符号 5 0 Cは充電装置 5 0の筐体であるケーシ ング、 符号 5 0 bはケ一シング 5 0 C表面の一側部に設けられた外 気取込口 (図 2 9参照) 、 符号 5 0 dはケーシング 5 0 C裏面の一 側部に設けられた外気取込口、 符号 5 0 eはケーシング 5 0 C裏面 の他側部に設けられた排気口、 符号 5 0 hはケ一シング 5 0 Cを支 持する脚部である。 符号 6 2及び符号 6 3は基板であり、 符号 6 4 及び符号 6 5は抵抗等の発熱素子ある。
以上のように充電装置 5 0は構成されており、 冷却ファン 6 1 を 作動することで、 外気取込口 5 O b · 5 0 dからケーシング 5 0 C 周囲の外気が取り込まれ、 該外気は発熱素子 6 4 - 6 5の表面に沿 うように流れて、 この結果、 該発熱素子 6 4 · 6 5が冷却されるよ うになつている。 そうして、 取り込まれた外気は冷却ファン 6 1に よりさらに奥に引き込まれて、 排気口 5 0 eから排気される。
以上のような構成で、 発熱素子 6 4 * 6 5の発熱が抑えられて、 二次電池 1への熱伝達が防がれ、 二次電池 1の内部での過度な化学 反応 (酸化還元反応) を助長することもなく、 また、 ユーザが二次 電池 1があたかも発熱したかのように錯覚にとらわれることもない。 この結果、 二次電池 1は満充電状態まで適正に充電が行われて、 二 次電池 1の内部構造に損傷を与えるのを防止することができ、 サイ クル寿命を飛躍的に向上させることができる。
(二次電池の充電装置の第十六実施形態)
次に、 二次電池 1の充電装置の第十六実施形態を説明する。 この第十六実施形態の充電装置 5 0は、 該充電装置 5 0にセッ ト された二次電池 1 をワンタッチで取り出すための取出手段が設けら れている。
図 2 9及び図 3 1に示すように、 この第十六実施形態の充電装置 5 0の取出手段は、 ユーザが押し下げ操作する取出ポタン 5 3 と、 充電装置 5 0の座部 5 0 aにセッ トされた二次電池 1 を押し上げる 押上部材 5 7 と、 該押上部材 5 7を軸支する回動支点軸 5 8 と、 該 回動支点軸 5 8に取り付けられて該押上部材 5 7を反押上方向へ付 勢する ト一シヨンスプリング 5 9と、 を備えている。
以上のような構成で、 図 3 1 ( b ) に示すように、 ユーザが操作 部材である取出ポタン 5 3を押すと、 該取出ポタン 5 3の下端が押 上部材 5 7の他側部を押し下げ、 回動支点軸 5 8を支点にして、 該 押上部材 5 7 の一側部が座部 5 0 aから上昇し、 これにより、 二次 電池 1が押し上げられて、 該二次電池 1の両端子の支持が外れるよ うになつている。
そして、 図 3 1 ( a ) に示すように、 ユーザが押していた取出ポ タン 5 3をはなすと、 付勢手段である ト一シヨンスプリング 5 9の 復元力によって、 押上部材 5 7の一側部は元位置の座部 5 0 aの凹 曲面に沿った位置に復帰し、 二次電池 1のセッ 卜が可能な状態とな る。
以上のように、 ュ一ザが取出ポタン 5 3を操作することで、 充電 装置 5 0の座部 5 0 aから押上部材 5 7 の一側部が出没し、 二次電 池 1が取り出されるようになつている。 このような構成で、 二次電 池 1を、 ワン夕ツチで簡単に取り出すことができ、 利便性が向上す る。
(二次電池の充電装置の第十七実施形態)
次に、 二次電池 1の充電装置の第十七実施形態を説明する。
この第十七実施形態の充電装置 5 0は、 前記第十六実施形態の取 出手段とは、 別形態の取出手段が設けられている。
図 3 2に示すように、 この第十七実施形態の充電装置 5 0の取出 手段は、 充電装置 5 0の座部 5 0 aの長手方向一側部を陥没させた 構成で、 この陥没部 5 O kでは、 セッ トされた二次電池 1の一側部 (長手方向一側部) が宙に浮いた状態となっている。
図 3 2 ( a ) ( b ) に示すように、 二次電池 1 の一側部を押し下 げると、 該ー側部が陥没部 5 0 kに沈み込み、 二次電池 1 の他側部 が浮き上がって、 該二次電池 1の両端子の支持が外れ、 二次電池 1 が取り出されるようになつている。 このような構成で、 二次電池 1 をワンタッチで簡単に取り出すことができ、 利便性が向上する。 以上の如く、 二次電池 1の充電装置の第一実施形態から第十七実 施形態について説明をしたが、 前記実施の形態に限定されるもので はなく、 請求の範囲に記載の範囲内で種々変更して実施することが 可能である。
すなわち、 前記図 1に示す第一実施形態等では、 満充電までの所 要充電時間 t を求めるように構成したが、 前記検出される電流値 i から、 図 3に示すグラフ等を用いて、 前記電流値 i の検出時点にお ける二次電池 1の充電率を求め、 この充電率が所定値に達したとき に充電を停止するように構成することも可能である。
また、 図 5に示すフローチヤ一トにおいては、 ステップ A 7 を省 略することも可能である。 これは、 図 5に示す制御方法では、 充電 終了 (完了) を、 検出した電流値 i と、 予め設定された充電完了基 準電流値 J とを比較することによって判断しているので、 充電時間 t を求めることなく、 充電完了させることができるからである。 また、 前記各実施形態では、 満充電平衡電圧値 E e qを超える所定 の充電印加電圧値 E sで、 二次電池 1 を一定時間 T 充電した後に、 満充電平衡電圧値 E e qに切り換えるように構成したが、 前記切り換 えを行わずに所定の電圧を印加し、 このとき検出される電流値 i力、 ら満充電までの所要充電時間 t を求めるように構成することも可能 である。
ところで、 前記各実施形態に示すように、 二次電池 1に印加する 充電電圧を、 所定の充電印加電圧値 E sから満充電平衡電圧値 E e q に切り換える前に、 二次電池 1 を短絡させれば、 二次電池 1の電界 面にチャージした電荷を除去して、 よりスムーズに前記充電電圧の 切り換えを行うことができ、 また切り換え後の充電電流も安定する ため好ましいが、 短絡させずに切り換えを行うことも可能である。

Claims

請 求 の 範 囲
1 . 二次電池に充電電圧を供給する充電電圧供給手段と、 二次電池 に通電される充電電流の電流値を検出する電流検出手段と、 二次電 池の充電を制御する充電制御装置と、 を備えた二次電池の充電装置 であって、
前記充電制御装置は、
充電対象の二次電池の満充電平衡電圧値と、 充電電流のピーク値 または略ピーク値を得る充電印加電圧値であって、 該満充電平衡電 圧値を超えるが不可逆化学反応領域には達しない所定の充電印加電 圧値と、 を記憶した記憶手段と、
前記充電電圧供給手段から供給される充電電圧を前記所定の充電 印加電圧値又は前記満充電平衡電圧値に切り換える切換手段と、 前記満充電平衡電圧値での電圧印加中に電流検出手段で検出され た電流値と、 予め入力設定された充電完了基準電流値とを比較判定 する判定手段と、
を具備しており、
以下の第 1〜第 4のステツプに従って二次電池の充電を制御する ことを特徴とする二次電池の充電装置。
• 第 1ステップ : 前記充電装置にセッ トされた二次電池を前記所定 の充電印加電圧値で所定時間充電する。
, 第 2ステップ : 該二次電池への印加電圧を該所定の充電印加電圧 値から前記満充電平衡電圧値に切り換える。
- 第 3ステップ: 該二次電池を該満充電平衡電圧値で微小時間印加 している間に前記電流検出手段によって二次電池に流れている電流 値を検出する。
• 第 4ステップ: 前記判定手段によってこの検出した電流値の判定 を行い、 検出電流値が前記充電完了基準電流値より大きな値であれ ば前記第 1ステップに戻って上記のフローを繰り返し、 該検出電流 値が該充電完了基準電流値以下であれば該二次電池の充電を停止す る。
2 . 前記充電制御装置の記憶手段に、 複数の種類の二次電池それぞ れについての前記満充電平衡電圧値と前記所定の充電印加電圧値と を予め記憶させておき、
該充電制御装置に充電する二次電池の種類を入力することにより、 該記憶手段のテーブルの中から当該二次電池の種類に相当する所定 の充電印加電圧値と満充電平衡電圧値とを選択設定し、 設定した該 所定の充電印加電圧値と該満充電平衡電圧値とにより該二次電池が 充電されることを特徴とする請求の範囲第 1項に記載の二次電池の 充電装置。
3 . 前記二次電池を、 前記所定の充電印加電圧値で、 所定時間、 印 加した後であって、 印加電圧を前記満充電平衡電圧値に切り換える 前に、 二次電池の端子間を短絡させる短絡手段を備えたことを特徴 とする請求の範囲第 1項又は第 2項に記載の二次電池の充電装置。
4 . 前記充電装置内の発熱部を冷却するための冷却手段を設けたこ とを特徴とする請求の範囲第 1項から第 3項のうち何れか一項に記 載の二次電池の充電装置。
5 . 二次電池に充電電圧を供給する充電電圧供給手段と、 二次電池 に通電される充電電流の電流値を検出する電流検出手段と、 二次電 池に印加される電圧を検出する電圧検出手段と、 二次電池の充電を 制御する充電制御装置とを備えた二次電池の充電装置であって、 前記充電制御装置は、
n ( nは 2以上の自然数) 種類の二次電池についての、 満充電平 衡電圧値と、 充電電流のピーク値または略ピーク値を得る充電印加 電圧値であって、 該満充電平衡電圧値を超えるが不可逆化学反応領 域には達しない所定の充電印加電圧値と、 を記憶した記憶手段と、 前記充電電圧供給手段から供給される充電電圧を切り換える切換 手段と、
前記満充電平衡電圧値での電圧印加中に電流検出手段にて検出さ れた電流値と、 予め入力設定された充電完了基準電流値とを比較判 定する電流値判定手段と、 前記所定の充電印加電圧値の電圧での充電中に電圧検出手段にて 検出された充電電圧値と、 該所定の充電印加電圧値とを比較する電 圧値判定手段と、
を具備し、
以下の第 1〜第 8ステツプに従って二次電池の充電を制御するこ とを特徴とする二次電池の充電装置。
• 第 1ステップ : 変数を k ( k = l 、 2 、 · · · 、 n ) として、 該 kを初期化し、 k = 1 とする。
• 第 2ステップ: 充電装置にセッ トされた二次電池を n種類の二次 電池それぞれの所定の充電印加電圧値のうち第 k番目に低い所定の 充電印加電圧値で所定時間充電する。
- 第 3ステップ: k == nのときは、 第 6ステツプへジャンプする。 • 第 4ステップ : 二次電池を該第 k番目に低い所定の充電印加電圧 値で所定時間充電している間に、 前記電圧検出手段によつて二次電 池に印加されている電圧値を検出する。
• 第 5ステップ : 前記電圧値判定手段によつてこの検出電圧値の比 較を行い、 該検出電圧値が該第 k番目に低い所定の充電印加電圧値 よりも大きな値であれば、 該 kに 1 を加えたものを新たな kとして 前記第 2ステツプに戻り、 該検出電圧値が該第 k番目に低い所定の 充電印加電圧値以下であれば、 第 6ステツプへ移行する。
• 第 6ステップ : 二次電池の印加電圧を n種類の二次電池の満充電 平衡電圧値のうち第 k番目に低い満充電平衡電圧値に切り換える。
• 第 7ステップ : 二次電池を該第 k番目に低い満充電平衡電圧値で 微小時間印加している間に、 前記電流検出手段によって二次電池に 流れている電流値を検出する。
• 第 8ステップ : 前記電流値判定手段によってこの検出電流値の判 定を行い、 該検出電流値が充電完了基準電流値より大きな値であれ ば、 前記第 2ステップに戻って上記のフロ一を繰り返し、 該検出電 流値が該充電完了基準電流値以下であれば、 充電を停止する。
6 . 前記二次電池を、 前記所定の充電印加電圧値で、 所定時間、 印 加した後であって、 印加電圧を前記満充電平衡電圧値に切り換える 前に、 二次電池の端子間を短絡させる短絡手段を備えたことを特徴 とする請求の範囲第 5項に記載の二次電池の充電装置。
7 . 前記充電装置内の発熱部を冷却するための冷却手段を設けたこ とを特徴とする請求の範囲第 5項又は第 6項に記載の二次電池の充
8 . 二次電池に充電電圧を供給する充電電圧供給手段と、 二次電池 に通電される充電電流の電流値を検出する電流検出手段と、 二次電 池に印加される電圧を検出する電圧検出手段と、 二次電池の充電を 制御する充電制御装置とを備えた二次電池の充電装置であって、 前記充電制御装置は、
n ( nは 2以上の自然数) 種類の二次電池についての、 満充電平 衡電圧値と、 満充電平衡電圧値と、 充電電流のピーク値または略ピ 一ク値を得る充電印加電圧値であって、 該満充電平衡電圧値を超え るが不可逆化学反応領域には達しない所定の充電印加電圧値と、 を 記憶した記憶手段と、
前記充電電圧供給手段から供給される充電電圧を切り換える切換 手段と、
前記満充電平衡電圧値での電圧印加中に電流検出手段で検出され た電流値と、 予め入力設定された充電完了基準電流値とを比較判定 する電流値判定手段と、
前記所定の充電印加電圧値での充電中に電圧検出手段で検出され た充電電圧値と、 その前の回の所定の充電印加電圧値での充電中に 電圧検出手段で検出された充電電圧値との差が、 予め入力設定され た所定の範囲内にあるかを判定する電圧差判定手段と、
を具備し、
以下の第 1〜第 8ステツプに従って二次電池の充電を制御するこ とを特徴とする二次電池の充電装置。
' 第 1ステップ : 変数を k ( k = l、 2、 · · ·、 n ) として、 該 kを初期化し、 k = l とする。 • 第 2ステップ: 充電装置にセッ トされた二次電池を n種類の二次 電池の所定の充電印加電圧値のうち第 k番目に低い所定の充電印加 電圧値で所定時間充電する。
• 第 3ステップ: k = nのときは、 第 6ステップへジャンプする。 - 第 4ステップ : 二次電池を該第 k番目に低い所定の充電印加電圧 値で所定時間充電している間に、 前記電圧検出手段によつて二次電 池に印加されている電圧値を検出する。
• 第 5ステップ : 前記電圧差判定手段によって今回該第 k番目に低 い所定の充電印加電圧値で充電している間に検出した電圧値と、 前 回該第 k番目に低い所定の充電印加電圧値で充電している間に検出 した電圧値との差が所定の範囲内にあれば、 次の第 5ステツプへ移 行し、 一方、 該差が所定の所定の範囲を越えていれば、 該 kに 1を 加えたものを新たな kとして前記第 2ステップへ戻る。 ただし、 今 回の電圧値の検出が第 1回目のときは、 そのまま次の第 6ステップ へ移行する。
- 第 6ステップ : 二次電池の印加電圧を n種類の二次電池の満充電 平衡電圧値のうち第 k番目に低い満充電平衡電圧値に切り換える。
•第 7ステップ : 二次電池を該第 k番目に低い満充電平衡電圧値で 微小時間印加している間に、 前記電流検出手段によつて二次電池に 流れている電流値を検出する。 3
• 第 8ステップ : 前記電流値判定手段によってこの検出した電流値 の判定を行い、 該電流値が充電完了基準電流値より大きな値であれ ば、 前記第 2ステップに戻って上記のフローを繰り返し、 一方、 該 電流値が該充電完了基準電流値以下であれば、 充電を停止する。
9 . 前記二次電池を、 前記所定の充電印加電圧値で、 所定時間、 印 加した後であって、 印加電圧を前記満充電平衡電圧値に切り換える 前に、 二次電池の端子間を短絡させる短絡手段を備えたことを特徴 とする請求の範囲第 8項に記載の二次電池の充電装置。
1 0 . 前記充電装置内の発熱部を冷却するための冷却手段を設けた ことを特徴とする請求の範囲第 8項又は第 9項に記載の二次電池の
1 1 . 二次電池に充電電圧を供給する充電電圧供給手段と、 二次電 池の開放電圧を検出する電圧検出手段と、 二次電池の充電を制御す る充電制御装置と、 を備えた二次電池の充電装置であって、
前記充電制御装置は、
充電対象の二次電池についての、 充電電流のピーク値または略ピ 一ク値を得る充電印加電圧値であって、 満充電平衡電圧値を超える が不可逆化学反応領域には達しない所定の充電印加電圧値を記憶し た記憶手段と、
該所定の充電印加電圧値と二次電池の開放電圧との差である差電 圧と予め入力設定された所定の判定基準値とを比較判定する差電圧 判定手段と、
を具備し、
以下の第 1〜第 3ステップに従って二次電池の充電を制御するこ とを特徵とする二次電池の充電装置。
•第 1ステップ : 充電装置にセッ トされた二次電池を前記所定の充 電印加電圧値で所定時間充電した後、印加電圧を遮断する。
•第 2ステップ: この状態で二次電池の開放電圧を検出し、 該所定 の充電印加電圧値と該開放電圧との差である差電圧を求める。
•第 3ステップ: 前記差電圧判定手段によつてこの求めた差電圧の 判定を行い、 該差電圧が判定基準値よりも大きいときは、 前記第 1 ステップに戻って上記のフローを繰り返し、 一方、 該差電圧が判定 基準値以下のときは、 二次電池の充電を停止する。
1 2 . 前記充電所要時間、 若しくは、 前記充電率、 若しくは、 充電 完了、 又は充電中の二次電池の充電状態を報知する報知手段を備え たことを特徵とする請求の範囲第 1 1項に記載の二次電池の充電装
1 3 . 前記充電装置内の発熱部を冷却するための冷却手段を設けた ことを特徴とする請求の範囲第 1 1項又は第 1 2項に記載の二次電 池の充電装置。
1 4 . 二次電池に充電電圧を供給する充電電圧供給手段と、 二次電 池の開放電圧を検出する電圧検出手段と、 二次電池の充電を制御す る充電制御装置と、 を備えた二次電池の充電装置であって、
前記充電制御装置は、
充電対象の二次電池の満充電平衡電圧値と、 充電電流のピーク値 または略ピーク値を得る充電印加電圧値であつて、 該満充電平衡電 圧値を超えるが不可逆化学反応領域には達しない所定の充電印加電 圧値と、 を記憶した記憶手段と、
前記電圧検出手段により検出した二次電池の開放電圧と判定基準 値である満充電平衡電圧値と比較判定する判定手段と、
を具備し、
以下の第 1〜第 3ステツプに従って二次電池の充電を制御するこ とを特徴とする二次電池の充電装置。
• 第 1ステップ: 充電装置にセッ トされた二次電池を前記所定の充 電印加電圧値で所定時間充電した後、印加電圧を遮断する。
, 第 2ステップ : この状態で二次電池の開放電圧を検出する。
• 第 3ステップ : 前記判定手段によって該開放電圧の判定を行い、 該開放電圧が判定基準値である満充電平衡電圧値よりも小さいとき は、 前記第 1ステップに戻って上記のフローを繰り返し、 一方、 該 開放電圧が満充電平衡電圧値以上のときは、 二次電池の充電を停止 する。
1 5 . 前記充電所要時間、 若しくは、 前記充電率、 若しくは、 充電 完了、 又は充電中の二次電池の充電状態を報知する報知手段を備え たことを特徴とする請求の範囲第 1 4項に記載の二次電池の充電装 置。
1 6 . 前記充電装置内の発熱部を冷却するための冷却手段を設けた ことを特徴とする請求の範囲第 1 4項又は第 1 5項に記載の二次電 池の充電装置。
1 7 . 二次電池に所定の電圧を印加する充電電圧供給手段と、 該所 定の電圧を印加しているときに二次電池に通電される充電電流の電 流値を検出する電流検出手段と、 この検出された電流値に基づき満 充電までの所要充電時間を求める充電時間予測手段と、 を備えたこ とを特徴とする二次電池の充電装置。
1 8 . 前記充電電圧供給手段により、 二次電池に、 前記所定の電圧 を超えた電圧を所定時間印加した後、 印加電圧を前記所定の電圧に 切り換えて、 このとき流れる電流値を前記電流検出手段により検出 するように構成したことを特徴とする請求の範囲第 1 7項に記載の 二次電池の充電装置。
1 9 . 前記所要充電時間とは、 前記電流検出手段により検出された 電流値が、 充電完了時に検出される充電完了基準電流値に達するま での時間であり、 該電流値が該充電完了基準電流値以下のときに充 電を停止するように構成したことを特徴とする請求の範囲第 1 7項 又は第 1 8項に記載の二次電池の充電装置。
2 0 . 前記所要充電時間経過後に、 二次電池の充電を停止するよう に構成したことを特徴とする請求の範囲第 1 7項から第 1 9項の何 れか一項に記載の二次電池の充電装置。
2 1 . 前記所定の電圧は、 満充電平衡電圧値であることを特徴とす る請求の範囲第 1 7項から第 2 0項のうち何れか一項に記載の二次 電池の充電装置。
2 2 . 前記充電所要時間、 若しくは、 前記充電率、 若しくは、 充電 完了、 又は充電中の二次電池の充電状態を報知する報知手段を備え たことを特徴とする請求の範囲第 1 7項から第 2 1項のうち何れか 一項に記載の二次電池の充電装置。
2 3 . 前記充電装置内の発熱部を冷却するための冷却手段を設けた ことを特徵とする請求の範囲第 1 7項から第 2 2項のうち何れか一 項に記載の二次電池の充電装置。
2 4 . 二次電池に所定の電圧を印加する充電電圧供給手段と、 該所 定の電圧を印加しているときに二次電池に通電される充電電流の電 流値を検出する電流検出手段と、 該電流検出手段によ ¾電流値の検 出時点での二次電池の充電率を求める充電率導出手段と、 を備えた ことを特徴とする二次電池の充電装置。
2 5 . 前記充電電圧供給手段により、 二次電池に、 前記所定の電圧 を超えた電圧を所定時間印加した後、 印加電圧を前記所定の電圧に 切り換えて、 このとき流れる電流値を前記電流検出手段により検出 するように構成したことを特徴とする請求の範囲第 2 4項に記載の 二次電池の充電装置。
2 6 . 前記充電所要時間、 若しくは、 前記充電率、 若しくは、 充電 完了、 又は充電中の二次電池の充電状態を報知する報知手段を備え たことを特徴とする請求の範囲第 2 4項又は第 2 5項に記載の二次 電池の充電装置。
2 7 . 前記充電装置内の発熱部を冷却するための冷却手段を設けた ことを特徴とする請求の範囲第 2 4項から第 2 6項のいずれか一項 に記載の二次電池の充電装置。
2 8 . 二次電池に充電電圧を供給する充電電圧供給手段と、 二次電 池に通電される充電電流の電流値を検出する電流検出手段と、 二次 電池の充電を制御する充電制御装置と、 を備えた二次電池の充電装 置であって、
前記充電制御装置は、
充電対象の二次電池についての満充電平衡電圧値と、 充電電流の ピーク値または略ピーク値を得る充電印加電圧値であって、 該満充 電平衡電圧値を超えるが不可逆化学反応領域には達しない所定の充 電印加電圧値と、 を記憶した記憶手段と、
前記充電電圧供給手段から供給される充電電圧を該所定の充電印 加電圧値、 又は該満充電平衡電圧値に切り換える切換手段と、
前記電流検出手段により検出された電流値に基づき満充電までの 所要充電時間を求める充電時間予測手段と、
を具備し、
以下の第 1〜第 6ステツプに従って二次電池の充電を制御するこ とを特徴とする二次電池の充電装置。
• 第 1ステップ: 充電装置にセッ トされた二次電池を前記所定の充 電印加電圧値で所定時間充電する。
• 第 2ステップ : 二次電池の印加電圧を該所定の充電印加電圧値か ら前記満充電平衡電圧値に切り換える。
• 第 3ステップ : 二次電池を該満充電平衡電圧値で微小時間印加し ている間に、 前記電流検出手段によって二次電池に流れている電流 値を検出する。
• 第 4ステップ : 前記充電時間予測手段により この検出された電流 値に基づき満充電までの所要充電時間を求める。
• 第 5ステップ: 二次電池の印加電圧を該満充電平衡電圧値から前 記所定の充電印加電圧値に切り換える。
• 第 6ステップ : 前記所要充電時間が経過した後に、 二次電池の充 電を停止する。
2 9 . 前記二次電池を、 前記所定の充電印加電圧値で、 所定時間、 印加した後であって、 印加電圧を前記満充電平衡電圧値に切り換え る前に、 二次電池の端子間を短絡させる短絡手段を備えたことを特 徵とする請求の範囲第 2 8項に記載の二次電池の充電装置。
3 0 . 前記充電所要時間、 若しくは、 前記充電率、 若しくは、 充電 完了、 又は充電中の二次電池の充電状態を報知する報知手段を備え たことを特徴とする請求の範囲第 2 8項又は第 2 9項に記載の二次 電池の充電装置。
3 1 . 前記充電装置内の発熱部を冷却するための冷却手段を設けた ことを特徴とする請求の範囲第 2 8項から第 3 0項のいずれか一項 に記載の二次電池の充電装置。
3 2 . 二次電池に充電電圧を供給する充電電圧供給手段と、 二次電 池に通電される充電電流の電流値を検出する電流検出手段と、 二次 電池の充電を制御する充電制御装置と、 を備えた二次電池の充電装 置であって、
前記充電制御装置は、
充電対象の二次電池についての満充電平衡電圧値と、 充電電流の ピーク値または略ピーク値を得る充電印加電圧値であって、 該満充 電平衡電圧値を超えるが不可逆化学反応領域には達しない所定の充 電印加電圧値と、 を記憶した記憶手段と、
前記充電電圧供給手段から供給される充電電圧を該所定の充電印 加電圧値、 又は該満充電平衡電圧値に切り換える切換手段と、
前記電流検出手段による電流値の検出時点での二次電池の充電率 を求める充電率導出手段と、
該充電率導出手段により求められた充電率と、 予め入力設定され た判定基準値とを比較判定する判定手段と、
を具備し、
以下の第 1〜第 5ステツプに従って二次電池の充電を制御するこ とを特徴とする二次電池の充電装置。
- 第 1ステップ : 充電装置にセッ トされた二次電池を前記所定の充 電印加電圧値で所定時間充電する。
• 第 2ステップ : 二次電池の印加電圧を該所定の充電印加電圧値か ら前記満充電平衡電圧値に切り換える。
• 第 3ステップ : 二次電池を該満充電平衡電圧値で微小時間印加し ている間に、 前記電流検出手段によって二次電池に流れている電流 値を検出する。
• 第 4ステップ : 前記充電率導出手段により この電流値の検出時点 での二次電池の充電率を求める。
' 第 5ステップ : 前記判定手段によってこの求めた充電率の判定を 行い、 該充電率が判定基準値未満で検出されていれば、 前記第 1ス テツプに戻って上記のフローを繰り返し、 該充電率が該判定基準値 以上となったときは、 充電を停止する。
3 3 . 前記二次電池を、 前記所定の充電印加電圧値で、 所定時間、 印加した後であって、 印加電圧を前記満充電平衡電圧値に切り換え る前に、 二次電池の端子間を短絡させる短絡手段を備えたことを特 徵とする請求の範囲第 3 2項に記載の二次電池の充電装置。
3 4 . 前記充電所要時間、 若しくは、 前記充電率、 若しくは、 充電 完了、 又は充電中の二次電池の充電状態を報知する報知手段を備え たことを特徴とする請求の範囲第 3 2項又は第 3 3項に記載の二次 電池の充電装置。
3 5 . 前記充電装置内の発熱部を冷却するための冷却手段を設けた ことを特徴とする請求の範囲第 3 2項から第 3 4項の何れか一項に 記載の二次電池の充電装置。
3 6 . 電源部に二次電池とコンデンサとを並列に接続した回路と、 該二次電池とコンデンザとを結ぶ閉ループ回路を遮断/接続する 切換手段と、 を備え、
該閉ループ回路を遮断した状態で、 該コンデンサに電源部の電源 電圧を所定時間印加して蓄電した後、 該閉ループ回路を接続して、 該コンデンサに蓄電された電荷を二次電池に転送することで、 二次 電池を充電するように構成したことを特徴とする二次電池の充電装
3 7 . 二次電池に所定の電圧を印加するチェック電源部と、 二次電 池に通電される電流値を検出する電流検出手段と、
この検出した電流値と予め入力設定された充電完了基準電流値と を比較判定する電流値判定手段と、 を備え、
前記閉ループ回路を遮断した状態で、 該チェック電源部により二 次電池に所定の電圧を印加し、 このとき流れる電流値を検出すると ともに、 この検出した電流値と所定の充電完了基準電流値とを比較 して、 該電流値が該充電完了基準電流値よりも大きいときは、 前記 蓄電、 転送制御を繰り返し行い、 一方、 該電流値が該充電完了基準 電流値以下のときは、 二次電池の充電を停止するように構成したこ とを特徴とする請求の範囲第 3 6項に記載の二次電池の充電装置。
3 8 . 前記所定の電圧は、 満充電平衡電圧値であることを特徴とす る請求の範囲第 3 7項に記載の二次電池の充電装置。
3 9 . 二次電池の開放電圧を検出する電圧検出手段と、
この検出した開放電圧と満充電平衡電圧値とを比較判定する電圧 値判定手段と、 を備え、
前記閉ループ回路を遮断した状態で、 二次電池の開放電圧を検出 するとともに、 この検出した開放電圧と満充電平衡電圧値とを比較 して、 該開放電圧が満充電平衡電圧値よりも小さいときは、 前記蓄 電、 転送制御を繰り返し行い、 一方、 該開放電圧が満充電平衡電圧 値以上のときは、 二次電池の充電を停止するように構成したことを 特徴とする請求の範囲第 3 6項に記載の二次電池の充電装置。
4 0 . 前記充電装置内の発熱部を冷却するための冷却手段を設けた ことを特徴とする請求の範囲第 3 6項から第 3 9項の何れか一項に 記載の二次電池の充電装置。
4 1 . 複数の二次電池を充電する充電装置において、 二次電池に電 圧を印加する充電電圧制御手段と、 前記二次電池の充電状態を把握 する制御手段と、
前記制御手段からの充電完了信号に基づいて、 充電電圧を印加す る二次電池の切り換えを行う電池指定切換手段と、
を備えたことを特徴とする二次電池の充電装置。
4 2 . 前記二次電池の充電状態を把握する際に満充電平衡電圧値を 印加するチェック電圧制御手段と、
前記充電電圧とチェック電圧との切り換えを行う電圧切換手段と、 前記チェック電圧印加時における二次電池の電流を検出する電流 検出手段と、
前記電流検出手段からの信号に基づいて二次電池の充電状態を把 握する制御手段と、
を備えたことを特徴とする請求の範囲第 4 1項に記載の二次電池 の充電装置。
4 3 . 前記充電電圧の印加、 又は印加停止の切り換えを行う電圧切 換手段と、
前記充電電圧の印加停止時における二次電池の開放電圧を検出す る電圧検出手段と、
前記電圧検出手段からの信号に基づいて二次電池の充電状態を把 握する制御手段と、
を備えたことを特徴とする請求の範囲第 4 2項に記載の二次電池 の充電装置。
4 4 . 前記二次電池に印加する充電電圧は、 充電対象の二次電池に ついての充電電流のピーク値または略ピーク値を得る充電印加電圧 値であって、 満充電平衡電圧値を超えるが不可逆化学反応領域には 達しない所定の充電印加電圧値であることを特徴とする請求の範囲 第 4 1項から第 4 3項のうち何れか一項に記載の二次電池の充電装
4 5 . 前記充電所要時間、 若しくは、 前記充電率、 若しくは、 充電 完了、 又は充電中の二次電池の充電状態を報知する報知手段を備え たことを特徴とする請求の範囲第 4 1項から第 4 4項のうち何れか 一項に記載の二次電池の充電装置。
4 6 . 前記充電装置内の発熱部を冷却するための冷却手段を設けた ことを特徵とする請求の範囲第 4 1項から第 4 5項のうち何れか一 項に記載の二次電池の充電装置。
4 7 . 複数の二次電池を充電制御する充電装置において、
ある一つの二次電池の充電が完了すると、 次の未充電の二次電池 の充電に切り換える電池切換手段を備え、
個別に二次電池の充電を行うように構成したことを特徴とする二 次電池の充電装置。
4 8 . 二次電池に充電電流を供給する充電電圧供給手段を備え、 該 充電電圧供給手段に、 複数の二次電池を直列に接続して二次電池群 を構成し、 ある一つの二次電池が満充電となれば、 次の未充電の二 次電池の充電を行って、 この二次電池群の複数の二次電池の充電を 順次行うように構成したことを特徴とする二次電池の充電装置。
4 9 . ある一つの二次電池群の各二次電池の充電を行った後に、 こ の二次電池群と並列に接続された次の二次電池群の各二次電池の充 電を行うように構成したことを特徴とする請求の範囲第 4 8項に記 載の二次電池の充電装置。
5 0 . 複数の二次電池群の並行した充電を可能に構成したことを特 徵とする請求の範囲第 4 8項に記載の二次電池の充電装置。
5 1 . 複数の二次電池群の直列使用と並列使用とを可能に構成した ことを特徴とする請求の範囲第 4 8項から第 5 0項のうち何れか一 項に記載の二次電池の充電装置。
5 2 . 前記二次電池を、 前記所定の充電印加電圧値で、 所定時間、 印加した後であって、 印加電圧を前記満充電平衡電圧値に切り換え る前に、 二次電池の端子間を短絡させる短絡手段を備えたことを特 徵とする請求の範囲第 4 8項から第 5 1項のうち何れか一項に記載 の二次電池の充電装置。
5 3 . 前記充電装置内の発熱部を冷却するための冷却手段を設けた ことを特徴とする請求の範囲第 4 8項から第 5 2項のうち何れか一 項に記載の二次電池の充電装置。
5 4 . 二次電池に充電電圧を供給する充電電圧供給手段と、
二次電池の電池電圧を検出する電圧検出手段と、
該電圧検出手段により検出された充電完了後の二次電池の電池電 圧値と、 満充電平衡電圧値よりも低い再充電電圧値とを比較判定す る判定手段と、
を備え、
該判定手段による判定で、 該電池電圧値が該再充電電圧値以下と なったときに、 該充電電圧供給手段により充電電圧を供給して、 再 充電を行うように構成したことを特徴とする二次電池の充電装置。
5 5 . 二次電池の充電状態をチェックして、 所定の充電電圧で所定 時間充電する一連の充電動作を繰り返し、 前記充電状態のチエツク で満充電状態に達したと判断されると充電を停止するように構成し た二次電池の充電装置において、 前記一連の充電動作間に、 緩和時 間を設けたことを特徴とする二次電池の充電装置。
5 6 . 複数の二次電池を充電する充電装置であって、 二次電池の充 電状態をチエツクした後、 所定の充電電圧で所定時間充電する一連 の充電動作を各未充電の二次電池ごとに交互に行い、 これを 1夕一 ンとして、 該夕一ンを繰り返しながら複数の二次電池を充電し、 前 記充電状態のチェックで満充電状態に達したと判断された二次電池 から充電を停止するように構成した二次電池の充電装置において、 前記緩和時間は、 各二次電池における、 先のターンの一連の充電動 作の完了から、 次のターンの一連の充電動作の開始までの間の時間 であることを特徴とする請求の範囲第 5 5項に記載の二次電池の充
5 7 . 二次電池に充電電圧を供給する充電電圧供給手段と、 二次電 池の充電を制御する充電制御装置と、 を備えた二次電池の充電装置 であって、
前記充電装置内の発熱部を冷却するための冷却手段を設けたこと を特徴とする二次電池の充電装置。
5 8 . 二次電池を充電する充電装置において、 該充電装置の座部に セッ トされた二次電池をワンタッチで取り出すための取出手段を設 けたことを特徴とする二次電池の充電装置。
5 9 . 前記取出手段は、 ユーザが押し下げ操作する操作部材と、 前 記座部にセッ トされた二次電池を押し上げる押上部材と、 該押上部 材を軸支する回動支点軸と、 該回動支点軸に取り付けられて該押上 部材を反押上方向へ付勢する付勢手段と、 を備え、
前記操作部材の操作によって、 前記座部から前記押上部材のー側 部が出没するように構成したことを特徴とする請求の範囲第 5 8項 に記載の二次電池の充電装置。
6 0 . 前記取出手段は、 前記座部の長手方向一側部を陥没させて構 成したことを特徴とする請求の範囲第 5 8項に記載の二次電池の充
6 1 . 満充電平衡電圧値と、
充電電流のピーク値又は略ピーク値を得る充電印加電圧値であつ て、 該満充電平衡で質値を超えるが不可逆化学反応領域には達しな い所定の電流値に対応する所定の充電印加電圧値と、
を予め記憶させておき、
二次電池を該所定の充電印加電圧値で、 所定時間、 印加した後、 印加電圧を該満充電平衡電圧値に切り換え、 該満充電平衡電圧値で 印加している間に、 二次電池に流れている電流値を検出して、 この 検出した電流値を充電完了基準電流値と比較し、 該電流値が該充電 完了基準電流値より大きいときは、 再び、 二次電池を該所定の充電 印加電圧値で印加して上述のフローを繰り返し、 一方、 該電流値が 該充電完了基準電流値以下のときには、 二次電池の充電を停止する ことを特徴とする二次電池の充電方法。
6 2 . n ( nは 2以上の自然数) 種類の二次電池についての、 満充電平衡電圧値と、
充電電流のピーク値または略ピーク値を得る充電印加電圧値であ つて、 該満充電平衡電圧値を超えるが不可逆化学反応領域には達し ない所定の充電印加電圧値と、
を予め記憶させておき、
以下の第 1〜第 8ステツプに従って二次電池を充電することを特 徵とする二次電池の充電方法。
• 第 1ステップ : 変数を k ( k = l 、 2 、 · · · 、 n ) として、 該 kを初期化し、 k = l とする。
•第 2ステップ : 二次電池を n種類の二次電池の所定の充電印加電 圧値のうち第 k番目に低い所定の充電印加電圧値で所定時間充電す る。
'第 3ステップ: k = nのときは、 第 6ステツプへジャンプする。 • 第 4ステップ : 二次電池を該第 k番目に低い所定の充電印加電圧 値で所定時間充電している間に、 二次電池に印加されている電圧値 を検出する。
• 第 5ステップ : この検出した電圧値が該第 k番目に低い所定の充 電印加電圧値よりも大きな値であれば、 該 kに 1を加えたものを新 たな kとして前記第 2ステップに戻り、 一方、 該検出した電圧値が 該第 k番目に低い所定の充電印加電圧値以下であれば、 次の第 6ス テツプへ移行する。
• 第 6ステップ : 二次電池の印加電圧を n種類の二次電池の満充電 平衡電圧値のうち第 k番目に低い満充電平衡電圧値に切り換える。 •第 7ステップ : 二次電池を該第 k番目に低い満充電平衡電圧値で 微小時間印加している間に、 二次電池に流れている電流値を検出す る。
- 第 8ステップ : この検出した電流値が充電完了基準電流値より大 きな値であれば、 前記第 2ステップに戻って上記のフローを繰り返 し、 一方、 該検出した電流値が該充電完了基準電流値以下であれば、 充電を停止する。
6 3 . n ( nは 2以上の自然数) 種類の二次電池についての、
満充電平衡電圧値と、
充電電流のピーク値または略ピーク値を得る充電印加電圧値であ つて、 該満充電平衡電圧値を超えるが不可逆化学反応領域には達し ない所定の充電印加電圧値と、
を予め記憶させておき、
以下の第 1〜第 8ステップに従って二次電池を充電することを特 徵とする二次電池の充電方法。
• 第 1ステップ : 変数を k ( k = l 、 2 、 · · · 、 n ) として、 該 kを初期化し、 k = 1 とする。
• 第 2ステップ : .二次電池を n種類の二次電池の所定の充電印加電 圧値のうち第 k番目に低い所定の充電印加電圧値で所定時間充電す る。
• 第 3ステップ: k = nのときは、 第 6ステップへジヤンプする。 ' 第 4ステップ : 二次電池を該第 k番目に低い所定の充電印加電圧 値で所定時間充電している間に、 二次電池に印加されている電圧値 を検出する。
• 第 5ステップ : 今回該第 k番目に低い所定の充電印加電圧値で充 電している間に検出した電圧値と、 前回該第 k番目に低い所定の充 電印加電圧値で充電している間に検出した電圧値との差が所定の範 囲内にあれば、 次の第 6ステップへ移行し、 一方、 該差が所定の所 定の範囲を越えていれば、 該 kに 1 を加えたものを新たな kとして 前記第 2ステップへ戻る。 ただし、 今回の電圧値の検出が第 1回目 のときは、 そのまま次の第 6ステップへ移行する。
• 第 6ステップ : 二次電池の印加電圧を n種類の二次電池の満充電 平衡電圧値のうち第 k番目に低い満充電平衡電圧値に切り換える。
• 第 7ステップ : 二次電池を該第 k番目に低い満充電平衡電圧値で 微小時間印加している間に、 二次電池に流れている電流値を検出す る。
• 第 8ステップ : この検出した電流値が充電完了基準電流値より大 きな値であれば、 前記第 2ステップに戻って上記のフローを繰り返 し、 一方、 該検出した電流値が該充電完了基準電流値以下であれば、 充電を停止する。
6 4 . 充電完了後の二次電池の電池電圧値を監視し、 該電池電圧値 が、 満充電平衡電圧値よりも低い再充電電圧値以下となったときに 、 再充電を行うことを特徴とする二次電池の充電方法。
6 5 . 二次電池の充電状態をチェックして、 所定の充電電圧で所定 時間充電する一連の充電動作を繰り返し、 前記充電状態のチェック で満充電状態に達したと判断されると充電を停止する二次電池の充 電方法において、 前記一連の充電動作間に、 緩和時間を設けたこと を特徴とする二次電池の充電方法。
6 6 . 複数の二次電池を充電する充電方法であって、 二次電池の充 電状態をチェックした後、 所定の充電電圧で所定時間充電する一連 の充電動作を各未充電の二次電池ごとに交互に行い、 これを 1ター ンとして、 該夕一ンを繰り返しながら複数の二次電池を充電し、 前 記充電状態のチエツクで満充電状態に達したと判断された二次電池 から充電を停止する二次電池の充電方法において、 前記緩和時間は、 各二次電池における、 先のターンの一連の充電動作の完了から、 次 のターンの一連の充電動作の開始までの間の時間であることを特徴 とする請求の範囲第 6 5項に記載の二次電池の充電装置。
PCT/JP2003/006168 2002-05-17 2003-05-16 Chargeur d'element secondaire et technique de charge WO2003098774A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/481,691 US7109684B2 (en) 2002-05-17 2003-05-16 Secondary cell charger and charging method
EP03725819A EP1507326A4 (en) 2002-05-17 2003-05-16 SECONDARY CELL CHARGER AND CHARGING METHOD
KR1020037008535A KR100611059B1 (ko) 2002-05-17 2003-05-16 이차전지의 충전장치 및 충전방법

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2002-142606 2002-05-17
JP2002-142605 2002-05-17
JP2002142605A JP2003333765A (ja) 2002-05-17 2002-05-17 二次電池の充電方法
JP2002-142598 2002-05-17
JP2002142606A JP2003333758A (ja) 2002-05-17 2002-05-17 二次電池の充電方法
JP2002142598A JP2003333764A (ja) 2002-05-17 2002-05-17 二次電池の充電方法
JP2002142599A JP2003333760A (ja) 2002-05-17 2002-05-17 複数の二次電池の充電方法及び充電装置
JP2002-142599 2002-05-17
JP2002213625A JP2004055432A (ja) 2002-07-23 2002-07-23 二次電池の充電方法及び使用方法
JP2002-213625 2002-07-23

Publications (1)

Publication Number Publication Date
WO2003098774A1 true WO2003098774A1 (fr) 2003-11-27

Family

ID=29554486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006168 WO2003098774A1 (fr) 2002-05-17 2003-05-16 Chargeur d'element secondaire et technique de charge

Country Status (5)

Country Link
US (1) US7109684B2 (ja)
EP (1) EP1507326A4 (ja)
KR (1) KR100611059B1 (ja)
CN (1) CN100367627C (ja)
WO (1) WO2003098774A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1605573A1 (en) * 2004-02-25 2005-12-14 Techno Core International Co., Ltd. Charger for secondary battery
CN116736118A (zh) * 2023-04-24 2023-09-12 广东华庄科技股份有限公司 一种电池组检测方法及系统

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482784B2 (en) * 2003-07-15 2009-01-27 Panasonic Corporation Degradation judgment circuit for secondary battery
US20070159133A1 (en) * 2006-01-10 2007-07-12 Eveready Battery Company, Inc. Battery Charger
GB0612541D0 (en) * 2006-06-28 2006-08-02 Davidson Paul Battery charger
JP5277595B2 (ja) * 2006-09-26 2013-08-28 セイコーエプソン株式会社 回路を含む装置、デバイス、送受信システム、および、制御方法
US8237447B2 (en) * 2007-05-11 2012-08-07 Panasonic Ev Energy Co., Ltd. Apparatus for detecting state of storage device
DE102007027902A1 (de) * 2007-06-18 2008-12-24 Robert Bosch Gmbh Batteriepack mit Umschaltung für Hochstrombetrieb
KR100998304B1 (ko) * 2008-01-23 2010-12-03 삼성에스디아이 주식회사 배터리 팩 및 이의 충전 방법
US8115492B2 (en) * 2008-01-25 2012-02-14 Eveready Battery Company, Inc. Fuel gauging system and method thereof
US20100327809A1 (en) * 2008-02-29 2010-12-30 Techno Core International Co., Ltd. Charging apparatus and quality judging apparatus for packed battery
US8314594B2 (en) * 2008-04-30 2012-11-20 Medtronic, Inc. Capacity fade adjusted charge level or recharge interval of a rechargeable power source of an implantable medical device, system and method
US8193766B2 (en) * 2008-04-30 2012-06-05 Medtronic, Inc. Time remaining to charge an implantable medical device, charger indicator, system and method therefore
US8751010B2 (en) * 2008-04-30 2014-06-10 Medtronic, Inc. Time to next recharge session feedback while recharging an implantable medical device, system and method therefore
US8965721B2 (en) * 2009-09-30 2015-02-24 Tesla Motors, Inc. Determining battery DC impedance
US9991551B2 (en) 2010-02-04 2018-06-05 Gs Yuasa International Ltd. Assembled battery, method of charging an assembled battery, and charging circuit which charges an assembled battery
KR101671775B1 (ko) * 2010-02-04 2016-11-02 가부시키가이샤 지에스 유아사 충전 방법
JP2013029407A (ja) * 2011-07-28 2013-02-07 Seiko Instruments Inc 電子機器および電子時計
JP2013083612A (ja) * 2011-10-12 2013-05-09 Mitsumi Electric Co Ltd 電池状態計測方法及び電池状態計測装置
WO2013122766A1 (en) 2012-02-16 2013-08-22 Lightening Energy Energy banking system and method using rapidly rechargeable batteries
KR102125507B1 (ko) * 2012-07-02 2020-06-23 삼성전자주식회사 배터리 충전을 위한 방법 및 그 전자 장치
US9153990B2 (en) * 2012-11-30 2015-10-06 Tesla Motors, Inc. Steady state detection of an exceptional charge event in a series connected battery element
US20150008867A1 (en) * 2013-07-03 2015-01-08 At&T Intellectual Property I, L.P. Charge pump battery charging
US9509154B2 (en) 2013-07-25 2016-11-29 Green Cubes Technology Corporation Algorithmic battery charging system and method
US9586497B2 (en) * 2013-08-22 2017-03-07 Lightening Energy Electric vehicle recharging station including a battery bank
EP2887085B1 (en) * 2013-12-17 2016-09-14 Braun GmbH Method and apparatus for indicating a low battery level
US9455582B2 (en) 2014-03-07 2016-09-27 Apple Inc. Electronic device and charging device for electronic device
CA3101535C (en) * 2014-03-26 2022-09-06 New Flyer Industries Canada Ulc Controlling batteries for electric bus
JP2016015813A (ja) 2014-07-01 2016-01-28 パナソニックIpマネジメント株式会社 電動工具用充電装置及び電動工具用充電システム
US9917335B2 (en) 2014-08-28 2018-03-13 Apple Inc. Methods for determining and controlling battery expansion
US20160064961A1 (en) * 2014-09-02 2016-03-03 Apple Inc. User-behavior-driven battery charging
CN106299476B (zh) * 2015-05-19 2019-03-12 深圳市比克动力电池有限公司 锂离子电池的化成方法
KR102415122B1 (ko) * 2015-08-20 2022-06-30 삼성에스디아이 주식회사 배터리 시스템
KR101989491B1 (ko) * 2015-11-30 2019-06-14 주식회사 엘지화학 언노운 방전 전류에 의한 배터리 셀의 불량 검출 장치 및 방법
CN106932721A (zh) * 2015-12-31 2017-07-07 无锡华润矽科微电子有限公司 充电完成检测电路及其控制方法
JP6824295B2 (ja) * 2017-01-26 2021-02-03 株式会社ソニー・インタラクティブエンタテインメント 電気機器
US11153819B2 (en) * 2017-02-06 2021-10-19 Itron Networked Solutions, Inc. Battery control for safeguarding lower voltage integrated circuits
WO2018207150A1 (en) 2017-05-11 2018-11-15 Analog Devices Global Unlimited Company Digital modulation scheme for data transfer
JP7000845B2 (ja) * 2017-12-25 2022-01-19 トヨタ自動車株式会社 ニッケル水素電池の再生装置および再生方法
CN114399014A (zh) 2019-04-17 2022-04-26 苹果公司 无线可定位标签
EP3959487A1 (en) * 2019-04-24 2022-03-02 Rosemount Tank Radar AB Radar level gauge system and method for controlling the radar level gauge system
KR102718122B1 (ko) * 2019-05-02 2024-10-15 주식회사 엘지에너지솔루션 전도체의 불량을 검출하기 위한 장치, 방법 및 배터리 팩
CN111009943B (zh) * 2019-12-10 2022-03-25 惠州Tcl移动通信有限公司 电池的充电方法、装置、存储介质和终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328235A (ja) * 1986-07-18 1988-02-05 松下電器産業株式会社 充電制御装置
JP3006939U (ja) * 1994-07-20 1995-01-31 日興電機工業株式会社 バッテリ充電装置
JPH0731073A (ja) * 1993-07-08 1995-01-31 Sanyo Electric Co Ltd 二次電池の充電方法
JPH0833212A (ja) * 1994-07-14 1996-02-02 Wave Energ Corp エネルギを負荷に供給する電源装置およびその供給方法
JPH08298728A (ja) * 1995-02-28 1996-11-12 Nec Corp 充電完了時間表示付き二次電池用充電装置
JPH10172616A (ja) * 1996-12-17 1998-06-26 Sanyo Electric Co Ltd 充電装置
JP2002199607A (ja) * 2000-12-22 2002-07-12 Shin Sangyo Souzou Kenkyu Kiko 二次電池の充電方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849682A (en) * 1987-10-30 1989-07-18 Anton/Bauer, Inc. Battery charging system
JPH036939U (ja) * 1989-06-06 1991-01-23
US5341285A (en) * 1992-07-14 1994-08-23 Wave Energy Corporation Intelligent transformerless system for transferring energy from a power source to an isolated load
JPH0731037A (ja) 1993-07-12 1995-01-31 Mitsubishi Electric Corp ケーブル引留装置
JP3402757B2 (ja) 1994-06-16 2003-05-06 東芝電池株式会社 二次電池の充電方法および二次電池の充電装置
JPH08185898A (ja) * 1994-12-28 1996-07-16 Yamaha Motor Co Ltd 2次電池の冷却装置
AU702572B2 (en) * 1995-02-28 1999-02-25 Nec Corporation Battery charger capable of displaying necessary charging time
US5594318A (en) * 1995-04-10 1997-01-14 Norvik Traction Inc. Traction battery charging with inductive coupling
JP3228097B2 (ja) * 1995-10-19 2001-11-12 株式会社日立製作所 充電システム及び電気自動車
US6064178A (en) * 1998-05-07 2000-05-16 Ford Motor Company Battery charge balancing system having parallel switched energy storage elements
JP4081698B2 (ja) * 1998-08-05 2008-04-30 株式会社ジーエス・ユアサコーポレーション 鉛蓄電池の充電方法
US6204632B1 (en) * 1999-09-08 2001-03-20 Selfcharge Apparatus for charging multiple batteries
US6326766B1 (en) * 2000-06-09 2001-12-04 Shoot The Moon Products Ii, Llc Rechargable battery pack and battery pack charger with safety mechanisms
DE602004024660D1 (de) * 2004-02-25 2010-01-28 Techno Core Internat Co Ltd Ladegerät für eine sekundärbatterie

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328235A (ja) * 1986-07-18 1988-02-05 松下電器産業株式会社 充電制御装置
JPH0731073A (ja) * 1993-07-08 1995-01-31 Sanyo Electric Co Ltd 二次電池の充電方法
JPH0833212A (ja) * 1994-07-14 1996-02-02 Wave Energ Corp エネルギを負荷に供給する電源装置およびその供給方法
JP3006939U (ja) * 1994-07-20 1995-01-31 日興電機工業株式会社 バッテリ充電装置
JPH08298728A (ja) * 1995-02-28 1996-11-12 Nec Corp 充電完了時間表示付き二次電池用充電装置
JPH10172616A (ja) * 1996-12-17 1998-06-26 Sanyo Electric Co Ltd 充電装置
JP2002199607A (ja) * 2000-12-22 2002-07-12 Shin Sangyo Souzou Kenkyu Kiko 二次電池の充電方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1507326A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1605573A1 (en) * 2004-02-25 2005-12-14 Techno Core International Co., Ltd. Charger for secondary battery
EP1605573A4 (en) * 2004-02-25 2006-04-12 Techno Core Internat Co Ltd CHARGER FOR A SECONDARY BATTERY
CN116736118A (zh) * 2023-04-24 2023-09-12 广东华庄科技股份有限公司 一种电池组检测方法及系统
CN116736118B (zh) * 2023-04-24 2024-01-30 广东华庄科技股份有限公司 一种电池组检测方法及系统

Also Published As

Publication number Publication date
EP1507326A1 (en) 2005-02-16
US20040257043A1 (en) 2004-12-23
CN100367627C (zh) 2008-02-06
KR20040011450A (ko) 2004-02-05
US7109684B2 (en) 2006-09-19
CN1543698A (zh) 2004-11-03
EP1507326A4 (en) 2008-08-06
KR100611059B1 (ko) 2006-08-10

Similar Documents

Publication Publication Date Title
WO2003098774A1 (fr) Chargeur d&#39;element secondaire et technique de charge
JP5839210B2 (ja) バッテリー充電装置及び方法
CA2646169A1 (en) Battery charge indication methods, battery charge monitoring devices, rechargeable batteries, and articles of manufacture
TW200820541A (en) Electronics with multiple charge rate
TW201242212A (en) Improved independent serial battery detecting charger
TW200401466A (en) Charger for rechargeable batteries
JP2008048473A (ja) 充電器
TW200841552A (en) Battery management system, battery pack and charging method thereof
RU2007133519A (ru) Перезаряжаемое приводное устройство
CN101960690A (zh) 充电设备和充电方法
CN102364744B (zh) 锂离子电池组充放电控制方法以及系统
TW201138266A (en) A method for discharging a battery apparatus
JPH04502099A (ja) 電池の急速充電装置および方法
KR101726384B1 (ko) 이차 전지의 충전 제어 장치 및 방법
JP3508254B2 (ja) 二次電池の充電装置
JP3430439B2 (ja) 二次電池の充電方法及び二次電池の充電装置
CN202282624U (zh) 锂离子电池组充放电循环控制系统
JP2003333765A (ja) 二次電池の充電方法
JPH1174001A (ja) 鉛蓄電池の充電方法
JP2004343936A (ja) 二次電池の充電装置及び充電方法
JP2003333758A (ja) 二次電池の充電方法
JP3875129B2 (ja) 二次電池の充電方法及び装置
TWM532110U (zh) 充電裝置
JP2003333760A (ja) 複数の二次電池の充電方法及び充電装置
WO2004001890A1 (ja) 二次電池の充電方法及び充電装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020037008535

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2003725819

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038007622

Country of ref document: CN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWP Wipo information: published in national office

Ref document number: 1020037008535

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10481691

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003725819

Country of ref document: EP