WO2003093195A1 - Herstellung keramischer, glaskeramischer und sonstiger mineralischer werkstoffe und verbundwerkstoffe - Google Patents

Herstellung keramischer, glaskeramischer und sonstiger mineralischer werkstoffe und verbundwerkstoffe Download PDF

Info

Publication number
WO2003093195A1
WO2003093195A1 PCT/EP2003/004676 EP0304676W WO03093195A1 WO 2003093195 A1 WO2003093195 A1 WO 2003093195A1 EP 0304676 W EP0304676 W EP 0304676W WO 03093195 A1 WO03093195 A1 WO 03093195A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic
ceramic
binder
materials
composition
Prior art date
Application number
PCT/EP2003/004676
Other languages
English (en)
French (fr)
Inventor
Olaf Binkle
Ralph Nonninger
Original Assignee
Itn Nanovation Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itn Nanovation Gmbh filed Critical Itn Nanovation Gmbh
Priority to US10/513,307 priority Critical patent/US7384470B2/en
Priority to JP2004501337A priority patent/JP2005524599A/ja
Priority to EP03725147A priority patent/EP1419124A1/de
Priority to AU2003227715A priority patent/AU2003227715A1/en
Publication of WO2003093195A1 publication Critical patent/WO2003093195A1/de
Priority to US12/153,758 priority patent/US20080223254A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/14Colouring matters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/28Slip casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/30Drying methods
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6027Slip casting

Definitions

  • the invention relates to the production of ceramic, glass-ceramic and other mineral materials and composite materials, and in particular to an inorganic binder suitable for this production.
  • the invention also relates to a composition containing this binder, as well as the articles and coatings produced with this composition.
  • organic binders e.g. phenolic resins
  • inorganic binders e.g. cement
  • a desired structure is solidified through the use of organic binders or hybrid materials.
  • organic binders like the hybrid materials, burn and lose their strength in the process.
  • the pyrolysis products formed in use are toxic in most cases.
  • inorganic binders There are two types of inorganic binders, namely those that require water to solidify (e.g. cement, lime and gypsum) and those that require other additives in addition to water (e.g. water glass, magnesia binder, phosphate binders).
  • inorganic binders are certainly cement, lime and gypsum. Dressed with water, these serve as inorganic binding materials in the manufacture of mortar and concrete as a filler and hardening agent. They allow almost any, but temporary, formability and solidify or harden even at low temperatures.
  • Cement, lime and gypsum have in common that they have a reactivity to water. After these inorganic substances have been mixed with water, chemical transformations occur, which lead to products that are more or less crystalline.
  • hardening processes There are three types of hardening processes: hydratic, hydraulic and carbonatic hardening.
  • hydrate consolidation the addition water is bound and incorporated in molecular form (e.g. CaS0 4 becomes CaS0 4 * H 2 O), while hydraulic consolidation leads to hydrolysis of the starting material (e.g. CaO becomes Ca ( OH)), and during carbonatic solidification, carbon dioxide is absorbed and chemically bound (e.g. CaO becomes Ca (OH) 2 and in the second step CaC0 3 ).
  • Pure types of consolidation are rare in practice, usually there is a combination of two or all three types of consolidation. It remains to be noted that the solidification of these inorganic binders is always exothermic.
  • magnesia binder MgO
  • magnesium chloride magnesium chloride
  • Phosphate binders in turn harden by mixing Al (OH) 3 with phosphoric acid (HaP0 4 ) or by mixing Al (OH) 3 with an Al (H 2 P0 4 ) 3 solution to form tertiary aluminum phosphate.
  • HaP0 4 phosphoric acid
  • Al (OH) 3 with an Al (H 2 P0 4 ) 3 solution to form tertiary aluminum phosphate.
  • the solidification takes place by adding additives, such as. B. the esters of organic acids, acids in general or the addition of oxides or hydroxides. Solidification after the addition of oxides (e.g. ZnO) or hydroxides leads to the formation of poorly soluble silicate hydrates (e.g. ZnS ⁇ O 3 ).
  • water does not lead directly to a chemical reaction, but the presence of water as the reaction medium is a basic requirement for the chemical reactions taking place.
  • the inorganic binders discussed in the prior art do not meet the requirements here. All of the inorganic binders discussed show reaction speeds which are too fast and too uncontrolled, so that a uniform layer application, e.g. B. in an industrial spraying process, or common ceramic molding processes such as film casting, extrusion or injection molding are almost impossible. Furthermore, the exothermic heat of reaction generated in the process and the fact that ceramic layers / moldings bonded in this way interfere
  • the object of the invention is to eliminate or at least largely avoid the disadvantages known from the prior art.
  • the invention is intended to provide an inorganic binder (ie an inorganic binder) which has the most important advantages of an organic binder.
  • the inorganic binder should therefore be chemically neutral in the production of the ceramic, glass-ceramic or other mineral composite materials. Nevertheless, it should connect or bond the particles / powder particles / fibers and the like to be connected to one another.
  • This function of the binder should be independent of external activation, for example not by adding water such as when setting cement, but be an intrinsic property of the binder.
  • the inorganic binder should remain in the material and, as far as possible, keep the shrinkage that occurs during sintering / firing as small as possible so that tensions and cracks are avoided.
  • the inorganic binder according to the invention is intended for the production of ceramic, glass-ceramic and other mineral materials and composite materials and contains at least one inorganic compound with an average particle size ⁇ 100 nm and at least one solvent.
  • a decisive feature for the function of the binder according to the invention is the fact that it contains so-called nanoscale inorganic compounds.
  • This particle size is said to relate to the individual particle / powder particle in the non-agglomerated state Respectively. Because of their high surface energies, nanoscale particles often accumulate and in this way form agglomerates or particle clusters that simulate a larger particle size than the individual particle actually has.
  • the size specifications in the invention accordingly relate, as far as possible, to the average particle size of an individual particle, which in this context can also be referred to as “primary particle”.
  • the particle size of the inorganic compounds used according to the invention should be in the sub- ⁇ m range. Accordingly, the average particle size will usually be ⁇ 200 nm in any case, in particular, as defined in claim 1, ⁇ 100 nm.
  • Ceramic glass ceramic
  • mineral materials or composite materials used in claim 1 are known to the person skilled in the art and should be understood as broadly as possible.
  • Inorganic binders according to the invention are for the production of very many inorganic materials As is well known, ceramics are materials and products that are made from a powder using ceramic technology and then converted into their final form by a sintering or firing process. Glass ceramics are materials produced from glasses by controlled crystallization, while the mineral materials The generic term for corresponding inorganic materials, which will be explained further below with reference to the zeolites. In any case, the invention is intended to extend to the production of all inorganic materials which are produced using a binder from one Raw mass are solidified, in particular by solidification at temperatures above 200 ° C.
  • the average particle sizes of the inorganic compounds used are well below 100 nm. Particle sizes between 2 nm and 50 nm are to be emphasized here, particle sizes between 2 nm and 25 nm being further preferred.
  • the nanoscale powder particles used for the binder according to the invention are, in particular, a nanoscale chalcogenide, carbide or nitride powder.
  • the chalcogenides are binary compounds in which the elements oxygen, sulfur, selenium and tellurium occur as electronegative components.
  • the chalcogenide powders can therefore be oxide, sulfide, selenide or telluride powders. Nanoscale oxide powders are preferred. In particular, all those powders can be used that are usually used for powder sintering.
  • Examples are (optionally hydrated) oxides such as ZnO, Ce0 2 , Sn0 2 , Al 2 0 3 , CdO, Si0 2 , Ti0 2 , ln 2 0 3 , Zr0 2 , yttrium-stabilized Zr0 2 , Al 2 0 3 , La 2 0 3 , Fe 2 0 3 , Fe 3 0 4 , Cu 2 0, Ta 2 0 5 , Nb 2 0 5 , V 2 0 5 , M0O3, or WO 3 , but also phosphates, silicates, zirconates, aluminates and stannates, Sulfides such as CdS, ZnS, PbS and Ag 2 S, selenides such as GaSe, CdSe and ZnSe, tellurides such as ZnTe or CdTe, carbides such as WC, CdC 2 or SiC, nitrides such as BN, AIN, Si 3 N 4
  • ITO indium tin oxide
  • antimony tin oxide fluorine-doped tin oxide and Zn-doped AI 2 O 3
  • luminous pigments with Y- or Eu-containing compounds or mixed oxides with perovskite structure such as BaTi0 3 , PbTi0 3 and lead zirconium titanate (PZT).
  • PZT lead zirconium titanate
  • the inorganic binder according to the invention preferably contains nanoscale particles which are a chalcogenide, preferably oxide, hydrated oxide, nitride or carbide of Zr, Al, B, Zn, Si, Cd, Ti, Ce, Fe, Sn, In, La, Cu, Ta, Nb, V, Mo or W, particularly preferably Zr, Al, Ti, Fe and Si. Oxides are particularly preferably used.
  • Preferred nanoparticles are those of aluminum oxide, boehmite, zirconium oxide, yttrium-stabilized zirconium oxide, iron oxide and titanium dioxide or mixtures of such nanoparticles.
  • the amount of solvent contained in the binder according to the invention is in principle not critical and can be varied depending on the use of the binder. However, it is preferred if the solvent component in the binder, based on its total weight, is present in an amount between 40% by weight and 95% by weight. Within this range, amounts between 50% and 80% by weight are preferred.
  • solvents for example aliphates and oils.
  • polar solvents in particular esters, alcohols, diols, glycols and the like.
  • alcohols these are preferably the C 1 -C 5 -alkanols, and in particular ethanol.
  • a particularly preferred solvent is water, which is optionally also preferred in a mixture with alcohols.
  • Aqueous binder systems are particularly easy to handle, particularly with regard to their low toxicity.
  • the binder according to the invention can optionally contain further additives.
  • additives that support the distribution of the inorganic compound in the binder system and / or hinder the agglomeration of the individual nanoparticles.
  • it can be, for example, anionic or cationic surfactants.
  • composition or starting substance according to the invention for the production of ceramic, glass-ceramic and other mineral materials and composite materials is characterized in that it contains at least one inorganic binder according to the invention. It is this binder that sets the composition apart from the prior art.
  • the amount of the binder contained in the composition is in principle not critical according to the invention. This amount is chosen so that the success according to the invention occurs. Usually the amount of binder will be kept as low as possible for cost reasons. Preferred amounts of binder in the composition are between 1% by weight and 40% by weight, in particular between 5% by weight and 20% by weight. If one refers to the information on the nanoscale inorganic compound, this is preferably contained in the composition in amounts between 1.5% and 15% by weight, preferably 5% to 10% by weight.
  • the consistency of the composition can be varied within wide limits.
  • the composition can be in the form of a low-viscosity suspension, in the form of a higher-viscosity suspension or in the form of a slip, up to the form of a comparatively solid, pasty mass.
  • a low-viscosity suspension will often be selected, which can then be spread on, sprayed on, or even applied by dipping or flooding. If moldings are to be produced from the composition, then so the composition will be presented in the form of an optionally pasty mass which can then be cast, extruded or the like.
  • the composition according to the invention primarily contains those constituents (then bound by the binder) from which the material or composite material to be produced is to be made.
  • these are preferably all customary inorganic particles or fibers, as are known for the production of ceramics and glass ceramics.
  • These usual "ceramic powders" as further constituents of the composition usually have a larger particle size than the nanoscale particles in the binder. These particles will often be in the ⁇ m range, in particular between 1 ⁇ m and 500 ⁇ m.
  • sub- ⁇ m particles are contained in the composition, for example powder particles with particle sizes between 500 nm and 1,000 nm (1 ⁇ m).
  • the inorganic particles or fibers for the production of ceramics and glass ceramics are preferably the chalcogenides, carbides and / or nitrides already explained, with the use of oxides also being preferred here. Reference is hereby expressly made to the corresponding statements in the previous description relating to these compounds.
  • compositions should also be emphasized in which so-called zeolites are used in addition to the binder according to the invention.
  • the zeolites are is known to be a group of water-containing minerals based on aluminosilicates, which are known to the person skilled in the art.
  • the zeolites contain cavities inside, which makes them ideal for various areas of application.
  • Zeolites are used as so-called molecular sieves or in ion exchangers. The advantages of zeolite-based materials produced according to the invention are explained below.
  • compositions according to the invention can in all cases contain other customary additives which influence, for example, the properties of the composition itself (addition of dispersing aids, surfactants and the like) or its processability (for example adhesion promoter when used as a coating material).
  • additional of dispersing aids, surfactants and the like or its processability (for example adhesion promoter when used as a coating material).
  • at least one further organic binder can also be added to the composition according to the invention, which organic binder is removed from the composition again at a solidification carried out at higher temperatures, ie. H. is burned out.
  • the invention further comprises the inorganic moldings and the inorganic coatings which are produced or can be produced with the aid of the binder according to the invention or from the composition according to the invention.
  • the invention also encompasses all those objects which are provided (in whole or in part) with such a coating according to the invention.
  • the nanoparticles used as inorganic binders have very large specific surfaces, which are preferably covered with reactive hydroxyl groups. These are surface groups able to crosslink at room temperature, ie before the sintering or firing process, with the surface groups of the materials to be bonded (e.g. ceramic powder, fibers etc.). In this way it is possible to solidify the unfired (green) layers / shaped bodies analogously to the organic binders. Due to the high radii of curvature of the nanoparticles, nanoparticles still have extremely high surface energies.
  • Open-pore structure is understood here to mean that the pores present in the layers / moldings are accessible from the outside, ie are not closed to the outside.
  • the open-pore structure thus extends at least partially over the layers / shaped bodies, although it does not necessarily extend through the entire layers / shaped bodies. If this is the case, the corresponding shaped body could be used, for example, as a filter, in particular as a ceramic filter.
  • the porous layer can be sintered as the temperature rises to close to the theoretical density or up to the theoretical density.
  • the porosity can be adjusted accordingly by selecting and managing the temperature in the invention. As long as the firing temperature used is below that at which the coarser powder particles sinter, i.e. show mass transport, the solidification takes place without shrinkage and tension.
  • the inorganic moldings according to the invention and the inorganic coatings according to the invention can be designed to be more or less porous, depending on the choice. If the materials / composites according to the invention, in particular the ceramic and glass-ceramic materials / composites, are solidified or sintered at comparatively low temperatures and / or during comparatively short times, moldings and coatings of higher porosity are obtained. Solidification or sintering at higher temperatures and / or over longer periods of time gives one
  • the ceramic and glass-ceramic materials and composite materials according to the invention are particularly suitable for a wide variety of applications. Their possible use as insulation materials, as a filter for gas and liquid filtration, as scratch-resistant layers, as diesel soot catalysts and as highly porous carrier materials for catalytically active substances should be particularly emphasized here. If the materials and composite materials according to the invention are applied as coatings to objects, metals, ceramics, glass ceramics, glass and enamel are particularly suitable as substrate materials.
  • zeolites can also be bound with the binders according to the invention. Both zeolite layers or zeolite coatings and zeolite moldings can be produced.
  • the pores of the zeolites are not filled in such materials using zeolites. This means that both the zeolite cavities and the large (inner) surface of the zeolites are preserved.
  • the layers can solidify at comparatively low temperatures, in particular between 500 ° C and 600 ° C, within a short period of time, e.g. B. be carried out within a few seconds.
  • the layers obtained have excellent resistance to temperature changes and withstand repeated heating from room temperature to higher temperatures, for example 600 ° C., within a short period of time, for example within only 3 seconds, without problems. Any layer thicknesses can be obtained up to moldings with thick walls.
  • zeolite layers and shaped zeolite bodies are, for example, catalyst layers or shaped catalyst bodies for gas phase reactions, as filters for the separation of gases, the possibility of use as sensors, in particular gas sensors, the possibility of use as adsorption layers (e.g. for removing pollutants or for gas adsorption) ) and the possible use as an ion exchanger.
  • the invention comprises the use of inorganic compounds with an average particle size ⁇ 100 nm as a binder component for the production of ceramic, glass-ceramic and other mineral materials and composite materials.
  • an aluminum oxide powder (Ceralox APA 0.5 (corresponds to 0.5 ⁇ m particle size) from Condea-Chemie GmbH, Germany) are slurried with 10 g of water.
  • 10 g of an inorganic binder solution (45% by weight of nanoscale zirconium oxide (average particle size ⁇ 50 nm) in 55% by weight of water) are added to the suspension thus obtained.
  • 0.9 g of commercially available organic binder PVA, polyvinyl alcohol
  • a composition according to the invention is thus obtained in the form of a suspension.
  • the viscosity of this suspension can be adjusted as desired by adding, preferably less, amounts of water and / or nitric acid or by changing the addition amount of the organic binder. These suspensions can then be applied to substrates made of metal, ceramic, glass ceramic, glass and enamel using a spray process for producing ceramic layers. The solidification takes place by sintering / firing at temperatures above 500 ° C. The porosity of the ceramic layers obtained can also be adjusted by selecting the final temperature and / or by the duration of the sintering / firing process.
  • Example 2 As described in Example 1, a further low-viscosity ceramic suspension is produced. Ceramic moldings are obtained from this suspension by slip casting. The green body obtained is first dried in a drying cabinet at 70 ° C. and then sintered / fired above 500 ° C. Here, too, porosities of the molded body obtained can be compared in a comparable manner by the temperature level and duration of the
  • a so-called sol is produced from 1.63 g of a boehmite AIOOH (product Disperal P3 from Sasol Ltd.) and 7.43 g of water. 1.64 g of ceralox powder (see Example 1) are added to this sol in a bead mill and are added over a period of 10 min. ground. Finally, 4.5 g of a zeolite (product Fe-MSM-1S from Alsi-Pentha-Zeolith GmbH, Germany) and 1.5 g of iron oxide (Fe 2 0 3 ) from Riedel-de Haen as filler and dye are added , The suspension obtained in this way is sprayed onto a ceramic support as a coating, dried at room temperature and then fired at 600.degree.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)
  • Catalysts (AREA)

Abstract

Ein anorganischer Binder für die Herstellung keramischer, glaskeramischer und sonstiger mineralischer Werkstoffe und Verbundwerkstoffe enthält mindestens eine anorganische Verbindung mit einer mittleren Teilchengröße < 100 nm und mindestens ein Lösungsmittel. Bei den anorganischen Verbindungen handelt es sich vorzugsweise um solche aus der Gruppe der Chalkogenide, der Carbide und/oder der Nitride. Es ist weiter bevorzugt, wenn die mittlere Teilchengröße < 50 nm, insbesondere < 25 nm, ist. Bei dem Lösungsmittel handelt es sich insbesondere um polare Lösungsmittel, insbesondere um Wasser.

Description

Beschreibung
Herstellung keramischer, laskeramischer und sonstiger mineralischer Werkstoffe und Verbundwerkstoffe
Die Erfindung betrifft die Herstellung keramischer, glaskeramischer und sonstiger mineralischer Werkstoffe und Verbundwerkstoffe und dabei insbesondere einen für diese Herstellung geeigneten anorganischen Binder. In diesem Zusammenhang betrifft die Erfindung auch eine Zusammensetzung, die diesen Binder enthält, sowie die mit dieser Zusammensetzung hergestellten Gegenstände und Beschichtungen.
Zum Binden von verschiedensten Materialien bei der Herstellung von Werkstoffen werden im Stand der Technik sowohl organische Bindemittel (z. B. Phenolharze) als auch anorganische Bindemittel (z. B. Zement) genutzt. Auch der Einsatz von Hybridmaterialien als Bindemittel, die auf Basis des sogenannten Sol-Gel-Prozesses hergestellt werden, ist bekannt.
Durch die Verwendung von organischen Bindemitteln oder von Hybridmaterialien wird eine gewünschte Struktur verfestigt. Ein Einsatz so gebundener Materialien bei hohen Temperaturen ist jedoch nicht möglich, da die organischen Bindemittel ebenso wie die Hybridmaterialien verbrennen und dabei ihre Festigkeit verlieren, Hinzu kommt, daß die bei der Verwendung entstehenden Pyrolyseprodukte in den meisten Fällen toxisch sind. Will man Materialien so miteinander verbinden, daß die resultierenden Verbundwerkstoffe temperaturstabil sind, so nutzt man deshalb anorganische Bindemittel. Bei den anorganischen Bindemitteln unterscheidet man zwei Arten, nämlich diejenigen Bindemittel, die zum Verfestigen Wasser benötigen (z. B. Zement, Kalk und Gips) und diejenigen, die zum Verfestigen neben Wasser noch weitere Zusatzstoffe benötigen (z. B. Wasserglas, Magnesiabinder, Phosphatbinder).
Die bekanntesten anorganischen Bindemittel sind sicherlich Zement, Kalk und Gips. Mit Wasser angemacht, dienen diese als anorganische Bindebaustoffe bei der Mörtel- und Betonherstellung als Kittstoff und Erhärtungsträger. Sie ermöglichen eine nahezu beliebige, zeitlich aber begrenzte Formbarkeit und erstarren bzw. erhärten bereits bei niedrigen Temperaturen.
Zement, Kalk und Gips ist gemeinsam, daß sie eine Reaktionsfähigkeit gegenüber Wasser besitzen. Nach der Vermischung dieser anorganischen Stoffe mit Wasser treten chemische Umwandlungen ein, welche zu Produkten, die mehr oder wenig kristallin sind, führen. Bei den Verfestigungsprozessen unterscheidet man drei Arten: die hydratische, die hydraulische und die carbonatische Verfestigung. Bei der hydratischen Verfestigung wird das Zugabewasser in molekularer Form gebunden und eingebaut (z. B. aus CaS04 wird CaS04 * H2O), bei der hydraulischen Verfestigung kommt es zur Hydrolyse des Ausgangsstoffes (z. B. aus CaO wird Ca(OH) ), und bei der carbonatischen Verfestigung wird Kohlendioxid aufgenommen und chemisch gebunden (z. B. aus CaO wird Ca(OH)2 und im zweiten Schritt CaC03). Reine Verfestigungsarten sind in der Praxis selten, meist liegt eine Kombination aus zwei oder allen drei Verfestigungsarten vor. Es bleibt noch festzuhalten, daß die Verfestigung dieser anorganischen Bindemittel immer exotherm abläuft.
Neben Zement, Kalk und Gips gibt es auch eine Gruppe von anorganischen Bindemitteln, die zur Verfestigung neben Wasser noch Zusatzstoffe benötigen. Die Erhärtung von Magnesiabinder (MgO) beruht auf der Bildung schwerlöslicher basischer Magnesiumsalzhydrate durch die Zugabe von Magnesiumchlorid- oder
Magnesiumsulfatlösungen. Phosphatbinder wiederum erhärten durch das Mischen von AI(OH)3 mit Phosphorsäure (HaP04) oder durch das Mischen von AI(OH)3 mit einer AI(H2P04)3- ösung unter Bildung von tertiärem Aluminiumphosphat. Im Falle des Wasserglases (wäßrige Lösung von Na20 und S1O2) erfolgt die Verfestigung durch die Zugabe von Zusatzstoffen, wie z. B. den Estern organischer Säuren, Säuren allgemein oder der Zugabe von Oxiden bzw. Hydroxiden. Bei der Verfestigung nach Zusatz von Oxiden (z. B. ZnO) bzw. Hydroxiden kommt es zur Bildung von schwerlöslichen Silicathydraten (z. B. ZnSιO3). In den zuletzt diskutierten drei Fällen führt Wasser nicht unmittelbar zu einer chemischen Reaktion, aber das Vorhandensein von Wasser als Reaktionsmedium ist für die ablaufenden chemischen Reaktionen Grundvoraussetzung.
Das Applizieren mineralischer, speziell keramischer Schichten auf Metall-, Glas-, Email- oder Keramiksubstrate bzw. die Herstellung von Keramiken erfordert üblicherweise die Verwendung eines Bindemittels, da die mineralischen, insbesondere die keramischen Ausgangsstoffe pulverförmig anfallen. Verwendet werden hierbei nahezu ausschließlich organische Bindemittel, die der Schicht oder dem Formkörper vor dem Brand (dem Sintern) eine ausreichende Festigkeit verleihen. Während des Sinterprozesses werden die organischen Bindemittel pyrolytisch zersetzt und verlassen als gasförmige Abbauprodukte den keramischen Formkörper bzw. die keramische Schicht. Das Ausbrennen der organischen Bindemittel verursacht während des Sinterprozesses eine Schrumpfung der keramischen Schicht bzw. des Formkörpers, die ihrerseits zu Spannungen und Rissen in der Schicht bzw. im Formkörper führt. Idealerweise würde man deshalb zur Herstellung eines keramischen Formkörpers ein anorganisches Bindemittel verwenden, das während des Sinterprozesses in der Schicht bzw. im Formkörper verbleibt, so daß die Schrumpfung klein bleibt und resultierende Spannungen nicht auftreten.
Die im Stand der Technik diskutierten anorganischen Bindemittel genügen hier aber den Anforderungen nicht. Alle diskutierten anorganischen Bindemittel zeigen zu schnelle und dabei zu unkontrollierte Reaktionsgeschwindigkeiten, so daß ein gleichmäßiger Schichtauftrag, z. B. in einem industriellen Sprühprozeß, oder gängige keramische Formgebungsverfahren wie Foliengießen, Extrusion oder Spritzgießen nahezu unmöglich sind. Desweiteren stört die exotherme Reaktionswärme, die im Prozeß erzeugt wird und die Tatsache, daß so gebundene keramische Schichten/Formkörper unter
Temperaturbelastung nachkondensieren würden, was ebenfalls zu Spannungsrissen führen würde. Auch gibt es zahlreiche Anwendungsfälle, die Wasser als Lösungsmittel oder als Reaktionspartner nicht erlauben.
Dementsprechend stellt sich die Erfindung die Aufgabe, die aus dem Stand der Technik bekannten Nachteile auszuschließen oder doch zumindest weitgehend zu vermeiden. Insbesondere soll durch die Erfindung ein anorganischer Binder (d. h. ein anorganisches Bindemittel) bereitgestellt werden, der die wichtigsten Vorteile eines organischen Binders/Bindemittels aufweist. Der anorganische Binder soll sich somit bei der Herstellung der keramischen, glaskeramischen oder sonstigen mineralischen WerkstoffeΛ erbundwerkstoffe chemisch neutral verhalten. Trotzdem soll er die miteinander zu verbindenden Teilchen/Pulverteilchen/Fasern und dergleichen miteinander verbinden oder verkleben. Diese Funktion des Binders soll unabhängig von einer äußeren Aktivierung, beispielsweise nicht durch Zugabe von Wasser wie beim Abbinden von Zement, erfolgen, sondern eine intrinsische Eigenschaft des Binders sein. Bei der Verfestigung des Werkstoffs, insbesondere bei einem Sinter- oder Brennvorgang soll der anorganische Binder im Werkstoff verbleiben und dabei möglichst den beim Sintern/Brennen auftretenden Schrumpf so klein wie möglich halten, damit Spannungen und Risse vermieden werden.
Diese Aufgabe wird gelöst durch den anorganischen Binder mit den Merkmalen des Anspruchs 1 und die Zusammensetzung gemäß Anspruch 10. Bevorzugte Ausführungsformen des erfindungsgemäßen Binders und der erfindungsgemäßen Zusammensetzung sind in den abhängigen Ansprüchen 2 bis 9 bzw. 11 bis 15 dargestellt. Die Ansprüche 16 bis 18 betreffen die entsprechend hergestellten Werkstoffe. Die Ansprüche 19 bis 22 beanspruchen die Verwendung bestimmter anorganischer Verbindungen. Der Wortlaut sämtlicher Ansprüche wird hiermit durch Bezugnahme zum Inhalt dieser Beschreibung gemacht.
Der anorganische Binder nach der Erfindung ist für die Herstellung keramischer, glaskeramischer und sonstiger mineralischer Werkstoffe und Verbundwerkstoffe vorgesehen und enthält mindestens eine anorganische Verbindung mit einer mittleren Teilchengröße < 100 nm sowie mindestens ein Lösungsmittel.
Zur Erläuterung sei hier noch folgendes ausgeführt.
Ein entscheidendes Merkmal für die Funktion des erfindungsgemäßen Binders ist die Tatsache, daß er sogenannte nanoskalige anorganische Verbindungen enthält. Üblicherweise spricht man von nanoskaligen Teilchen oder Pulvern, wenn sich die mittlere Teilchengröße weit im Sub-μm-Bereich befindet. Dabei soll sich diese Teilchengröße auf das einzelne Teilchen/Pulverteilchen im nicht-agglomerierten Zustand beziehen. Nanoskalige Teilchen lagern sich aufgrund ihrer hohen Oberflächenenergien häufig zusammen und bilden auf diese Weise Agglomerate oder Teilchentrauben, die eine größere Teilchengröße vortäuschen als das einzelne Teilchen tatsächlich besitzt. Die Größenangaben bei der Erfindung beziehen sich dementsprechend, soweit möglich, auf die mittlere Teilchengröße eines einzelnen Teilchens, das in diesem Zusammenhang auch als „Primärteilchen" bezeichnet werden kann.
Damit die erfindungsgemäßen Vorteile eintreten, soll sich, wie erwähnt, die Teilchengröße der erfindungsgemäß eingesetzten anorganischen Verbindungen, die üblicherweise in Pulverform eingesetzt werden, weit im Sub-μm-Bereich befinden. Dementsprechend wird die mittlere Teilchengröße üblicherweise in jedem Fall < 200 nm sein, insbesondere, wie in Anspruch 1 definiert, < 100 nm.
Die in Anspruch 1 verwendeten Begriffe „Keramik", „Glaskeramik", „mineralisch" und „Werkstoffe" bzw. „Verbundwerkstoffe" sind dem Fachmann bekannt und sollen so breit als möglich verstanden werden. Erfindungsgemäße anorganische Binder sind für die Herstellung sehr vieler anorganischer WerkstoffeΛ erbundwerkstoffe geeignet und vorteilhaft. Bekanntlich versteht man unter Keramiken Werkstoffe und Erzeugnisse, die nach keramischer Technologie aus einem Pulver geformt und anschließend durch einen Sinterprozeß bzw. Brennprozeß in ihre Endform überführt werden. Glaskeramiken sind durch kontrollierte Kristallisation erzeugte Werkstoffe aus Gläsern, während die mineralischen Werkstoffe den Oberbegriff für entsprechende anorganische Materialien darstellen. Dies wird im folgenden durch die Bezugnahme auf die Zeolithe noch weiter erläutert. Jedenfalls soll sich die Erfindung auf die Herstellung aller anorganischen Materialien erstrecken, die mit Hilfe eines Binders/ Bindemittels aus einer Rohmasse verfestigt werden, insbesondere durch Verfestigung bei Temperaturen oberhalb 200 °C.
Bei bevorzugten Ausführungsformen des anorganischen Binders liegen die mittleren Teilchengrößen der verwendeten anorganischen Verbindungen weit unterhalb 100 nm. Hervorzuheben sind hier Teilchengrößen zwischen 2 nm und 50 nm, wobei Teilchengrößen zwischen 2 nm und 25 nm weiter bevorzugt sind.
Bei den eingesetzten nanoskaligen Pulverteilchen für den erfindungsgemäßen Binder handelt es sich insbesondere um ein nanoskaliges Chalkogenid-, Carbid- oder Nitridpulver. Bekanntlich handelt es sich bei den Chalkogeniden um binäre Verbindungen, bei denen die Elemente Sauerstoff, Schwefel, Selen und Tellur als elektronegative Komponente auftreten. Bei den Chalkogenidpulvern kann es sich also um Oxid-, Sulfid-, Selenid- oder Telluridpulver handeln. Nanoskalige Oxidpulver sind bevorzugt. Es können insbesondere alle diejenigen Pulver eingesetzt werden, die üblicherweise für das Pulversintern verwendet werden. Beispiele sind (gegebenenfalls hydratisierte) Oxide wie ZnO, Ce02, Sn02, Al203, CdO, Si02, Ti02, ln203, Zr02, Yttrium-stabilisiertes Zr02, Al203, La203, Fe203, Fe304, Cu20, Ta205, Nb205, V205, M0O3, oder WO3, aber auch Phosphate, Silikate, Zirkonate, Aluminate und Stannate, Sulfide wie CdS, ZnS, PbS und Ag2S, Selenide wie GaSe, CdSe und ZnSe, Telluride wie ZnTe oder CdTe, Carbide wie WC, CdC2 oder SiC, Nitride wie BN, AIN, Si3N4 und TJ3N4, entsprechende Mischoxide wie Metall-Zinn-Oxide, z. B. Indium-Zinn-Oxid (ITO), Antimon-Zinn-Oxid, fluordotiertes Zinnoxid und Zn-dotiertes AI2O3, Leuchtpigmente mit Y- oder Eu-haltigen Verbindungen, oder Mischoxide mit Perowskitstruktur wie BaTi03, PbTi03 und Bleizirkontitanat (PZT). Weiterhin können auch Mischungen der angegebenen Pulverteilchen eingesetzt werden. Der erfindungsgemäße anorganische Binder enthält bevorzugt nanoskalige Teilchen, bei denen es sich um ein Chalkogenid, vorzugsweise Oxid, Oxidhydrat, Nitrid oder Carbid von Zr, AI, B, Zn, Si, Cd, Ti, Ce, Fe, Sn, In, La, Cu, Ta, Nb, V, Mo oder W, besonders bevorzugt von Zr, AI, Ti, Fe und Si handelt. Besonders bevorzugt werden Oxide eingesetzt. Bevorzugte Nanoteilchen sind solche von Aluminiumoxid, Böhmit, Zirkonoxid, Yttrium-stabilisiertes Zirkonoxid, Eisenoxid und Titandioxid oder Mischungen aus solchen Nanoteilchen.
Die Menge des im erfindungsgemäßen Binder enthaltenen Lösungsmittels ist grundsätzlich nicht kritisch und kann je nach Verwendung des Binders variiert werden. Es ist jedoch bevorzugt, wenn die Lösungsmittelkomponente im Binder, bezogen auf dessen Gesamtgewicht, in einer Menge zwischen 40 Gew.-% und 95 Gew.-% vorhanden ist. Innerhalb dieses Bereichs sind Mengen zwischen 50 Gew.-% und 80 Gew.-% bevorzugt.
Grundsätzlich können die unterschiedlichsten Lösungsmittel Verwendung finden, beispielsweise auch Aliphate und öle. In vielen Fällen ist es jedoch vorteilhaft, wenn polare Lösungsmittel eingesetzt werden und dabei insbesondere Ester, Alkohole, Diole, Glykole und dergleichen. Werden Alkohole verwendet, so handelt es sich hier vorzugsweise um die Cι-C5-Alkanole, und dabei insbesondere um Ethanol. Ein besonders bevorzugtes Lösungsmittel ist Wasser, das gegebenenfalls auch in Mischung mit Alkoholen bevorzugt ist. Wäßrige Bindersystems sind, insbesondere im Hinblick auf ihre geringe Toxizität, besonders einfach handhabbar.
Gegebenenfalls kann der erfindungsgemäße Binder weitere Zusatzstoffe enthalten. Hier handelt es sich insbesondere um Zusatzstoffe, die die Verteilung der anorganischen Verbindung im Bindersystem unterstützen und/oder die Agglomeration der einzelnen Nanoteilchen behindern. Hier kann es sich beispielsweise um anionische oder kationische Tenside handeln.
Die erfindungsgemäße Zusammensetzung oder Ausgangssubstanz für die Herstellung keramischer, glaskeramischer und sonstiger mineralischer Werkstoffe und Verbundwerkstoffe zeichnet sich dadurch aus, daß sie mindestens einen erfindungsgemäßen anorganischen Binder enthält. Es ist dieses Bindemittel, welches die Zusammensetzung vom Stand der Technik abhebt.
Die Menge des in der Zusammensetzung enthaltenen Binders ist nach der Erfindung grundsätzlich nicht kritisch. Diese Menge wird so gewählt, daß der erfindungsgemäße Erfolg eintritt. Üblicherweise wird man die Menge des Binders aus Kostengründen so gering wie möglich halten. Bevorzugte Bindermengen in der Zusammensetzung liegen zwischen 1 Gew.-% und 40 Gew.-%, insbesondere zwischen 5 Gew.-% und 20 Gew.-%. Bezieht man die Angabe auf die nanoskalige anorganische Verbindung, so ist diese in der Zusammensetzung bevorzugt in Mengen zwischen 1 ,5 Gew.-% und 15 Gew.-%, vorzugsweise 5 Gew.-% bis 10 Gew.-% enthalten.
In Abhängigkeit von der Zusammensetzung des Binders und in Abhängigkeit von den übrigen Komponenten der Zusammensetzung kann die Konsistenz der Zusammensetzung innerhalb weiter Grenzen variiert werden. So kann die Zusammensetzung in Form einer niedrigviskosen Suspension, in Form einer höherviskosen Suspension bzw. in Form eines Schlickers, bis hin zur Form einer vergleichsweise festen, pastösen Masse vorliegen. So wird man zum Aufbringen der Zusammensetzung als Beschichtung häufig eine niedrigviskose Suspension wählen, die dann beispielsweise aufgestrichen, aufgesprüht oder sogar durch Tauchen oder Fluten aufgebracht werden kann. Wenn Formkörper aus der Zusammensetzung hergestellt werden sollen, so wird man die Zusammensetzung eher in Form einer, gegebenenfalls pastösen Masse vorlegen, die dann gegossen, extrudiert oder dergleichen werden kann.
Neben dem Binder enthält die erfindungsgemäße Zusammensetzung in erster Linie diejenigen (durch den Binder dann gebundenen) Bestandteile, aus denen der herzustellende Werkstoff oder Verbundwerkstoff bestehen soll. Zum einen handelt es sich hier vorzugsweise um alle üblichen anorganischen Teilchen oder Fasern, wie sie für die Herstellung von Keramiken und Glaskeramiken bekannt sind. Diese üblichen „Keramikpulver" besitzen dann als weitere Bestandteile der Zusammensetzung im Regelfall vorzugsweise eine größere Teilchengröße als die nanoskaligen Teilchen im Binder. Diese Teilchen werden häufig im μm-Bereich, insbesondere zwischen 1 μm und 500 μm, liegen. Es ist jedoch nach der Erfindung ebenfalls bevorzugt, wenn, neben den nanoskaligen Teilchen des Binders (< 100 nm), Sub-μm- Teilchen in der Zusammensetzung enthalten sind, beispielsweise Pulverteilchen mit Teilchengrößen zwischen 500 nm und 1.000 nm (1 μm).
Bei den anorganischen Teilchen bzw. Fasern für die Herstellung von Keramiken und Glaskeramiken handelt es sich vorzugsweise um die bereits erläuterten Chalkogenide, Carbide und/oder Nitride, wobei auch hier die Verwendung von Oxiden bevorzugt ist. Auf die entsprechenden Ausführungen in der bisherigen Beschreibung bezüglich dieser Verbindungen wird hiermit ausdrücklich verwiesen und Bezug genommen.
Bezüglich der Herstellung sonstiger mineralischer Werkstoffe und Verbundwerkstoffe sind außerdem Zusammensetzungen hervorzuheben, bei denen neben dem erfindungsgemäßen Binder sogenannte Zeolithe eingesetzt werden. Bei den Zeolithen handelt es sich bekanntlich um eine Gruppe wasserhaltiger Minerale auf Basis von Aluminosilikaten, die dem Fachmann bekannt sind. Die Zeolithe enthalten im Inneren Hohlräume, was sie für verschiedene Einsatzgebiete prädestiniert. So finden Zeolithe als sogenannte Molekularsiebe oder in Ionenaustauschern Verwendung. Die Vorteile von erfindungsgemäß hergestellten Werkstoffen auf Basis von Zeolithen werden im folgenden noch erläutert.
Schließlich können die erfindungsgemäßen Zusammensetzungen in allen Fällen weitere übliche Zusatzstoffe enthalten, die beispielsweise die Eigenschaften der Zusammensetzung selbst (Zusatz von Dispergier- hilfsmitteln, Tensiden und dergleichen) oder ihre Verarbeitbarkeit (z. B. Haftverbesserer bei der Anwendung als Beschichtungsmaterial) beeinflussen. Gegebenenfalls kann der erfindungsgemäßen Zusammensetzung neben dem erfindungsgemäßen anorganischen Binder auch mindestens ein weiterer organischer Binder zugesetzt sein, der bei einer bei höheren Temperaturen vorgenommenen Verfestigung wieder aus der Zusammensetzung entfernt, d. h. ausgebrannt wird.
Weiterhin umfaßt die Erfindung die anorganischen Formkörper und die anorganischen Beschichtungen, die mit Hilfe des erfindungsgemäßen Binders bzw. aus der erfindungsgemäßen Zusammensetzung hergestellt oder herstellbar sind. In diesem Zusammenhang umfaßt die Erfindung auch alle diejenigen Gegenstände, die (ganz oder teilweise) mit einer solchen erfindungsgemäßen Beschichtung versehen sind.
An dieser Stelle bietet es sich an, die Funktion der im erfindungsgemäßen Binder enthaltenen Nanoteilchen zu erläutern.
Die als anorganisches Bindemittel eingesetzten Nanoteilchen verfügen über sehr große spezifische Oberflächen, die vorzugsweise mit reaktiven Hydroxylgruppen belegt sind. Diese Oberflächengruppen sind in der Lage, bereits bei Raumtemperatur, d. h. vor dem Sinter- bzw. Brennprozeß, mit den Oberflächengruppen der zu bindenden Materialien (z. B. keramische Pulver, Fasern etc.) zu vernetzen. Auf diese Weise ist eine, den organischen Bindemitteln analoge Verfestigung der ungebrannten (grünen) Schichten/Formkörper möglich. Aufgrund der hohen Krümmungsradien der Nanoteilchen besitzen Nanoteilchen weiterhin extrem hohe Oberflächenenergien. Bereits bei Temperaturen oberhalb 200 °C, bevorzugt oberhalb 300 °C, zeigt es sich, daß diese Oberflächenenergien einen Materialtransport (Diffusion) von den Nanoteilchen hin zu den Kontaktstellen der zu bindenden (üblicherweise gröberen) Materialien zeigen. Die gebundenen, gröberen Pulverteilchen besitzen deutlich niedrigere Oberflächenenergien und sintern deshalb zu diesem Zeitpunkt noch nicht, das bedeutet, sie schrumpfen auch noch nicht. Der Materialtransport, ausgelöst durch die Nanoteilchen, führt zu einem Sintern der gebundenen Teilchen, ohne daß ein Stofftransport in den gebundenen größeren Teilchen einsetzt. Diese Form des Massentransports ist vollkommen neu, da sich die als Binder eingesetzten Nanoteilchen, analog zu Opfermaterialien, auflösen, also ihre ursprüngliche Form verlieren und dabei die gröberen Pulverteilchen miteinander verbinden/versintern. Dieses schrumpfungsfreie Sintern führt zunächst zu einer porösen (häufig stark porösen) Schicht, wobei eine sogenannte offenporige Struktur vorliegt. Unter offenporiger Struktur wird hier verstanden, daß die in den Schichten/Formkörpern vorhandenen Poren von außen her zugänglich, d. h. nach außen nicht geschlossen sind. Die Offenporigkeit erstreckt sich also mindestens teilweise über die Schichten/Formkörper, wobei sie sich jedoch nicht zwangsläufig durch die gesamten Schichten/Formkörper hindurch erstreckt. Ist dies der Fall, so wäre der entsprechende Formkörper beispielsweise als Filter, insbesondere als keramisches Filter, einsetzbar. Die poröse Schicht läßt sich jedoch bei weiterer Temperaturerhöhung bis nahe an die theoretische Dichte oder bis zur theoretischen Dichte sintern. Dementsprechend läßt sich die Porosität durch Auswahl und Führung der Temperatur bei der Erfindung einstellen. Solange die angewendete Brenntemperatur unterhalb derjenigen liegt, bei der die gröberen Pulverteilchen sintern, sprich einen Massentransport zeigen, solange erfolgt die Verfestigung schwindungs- und spannungsfrei.
Aus den obigen Ausführungen ergibt sich, daß die erfindungsgemäßen anorganischen Formkörper und die erfindungsgemäßen anorganischen Beschichtungen je nach Wahl mehr oder weniger porös ausgestaltet sein können. Verfestigt oder sintert man die erfindungsgemäßen Werkstoffe/Verbundwerkstoffe, insbesondere die keramischen und glaskeramischen Werkstoffe/Verbundwerkstoffe, bei vergleichsweise niedrigen Temperaturen und/oder während vergleichsweise kurzer Zeiten, so erhält man Formkörper und Beschichtungen höherer Porosität. Verfestigt oder sintert man bei höheren Temperaturen und/oder über längere Zeiträume, erhält man
Werkstoffe/Verbundwerkstoffe nahe der theoretischen Dichte oder der theoretischen Dichte. Bei entsprechender Verfestigung/Sinterung lassen sich schwindungsfreie und spannungsfreie Formkörper und Beschichtungen erhalten, die als Folge davon weitgehend frei von Rissen sind. Dies zeichnet die erfindungsgemäßen Formkörper und Beschichtungen in besonderer Weise gegenüber dem Stand der Technik aus. Solche Formkörper und Beschichtungen sind auch in besonderer Weise gegen hohe Temperaturen beständig.
Die erfindungsgemäßen keramischen und glaskeramischen Werkstoffe und Verbundwerkstoffe sind für die verschiedensten Einsatzgebiete in besonderer Weise geeignet. Besonders hervorgehoben werden soll hier ihre Verwendungsmöglichkeit als Isolationswerkstoffe, als Filter für Gas- und Flüssigkeitsfiltration, als Kratzfestschichten, als Dieselrußkatalysatoren und als hochporöse Trägermaterialien für katalytisch wirksame Substanzen. Wenn die erfindungsgemäßen Werkstoffe und Verbundwerkstoffe als Beschichtungen auf Gegenstände aufgetragen werden, so kommen als Substratmaterialien insbesondere Metalle, Keramiken, Glaskeramiken, Glas und Email in Frage.
Wie bereits erläutert, lassen sich mit den erfindungsgemäßen Bindern auch die sogenannten Zeolithe binden. Dabei können sowohl Zeolith- Schichten bzw. Zeolith-Beschichtungen als auch Zeolith-Formkörper hergestellt werden.
Überraschend werden in solchen Werkstoffen unter Einsatz von Zeolithen die Poren der Zeolithe nicht gefüllt. Damit bleiben sowohl die Hohlräume der Zeolithe als auch die große (innere) Oberfläche der Zeolithe erhalten. Wird mit Zeolith-Schichten gearbeitet, so kann die Verfestigung der Schichten schon bei vergleichsweise niedrigen Temperaturen, insbesondere zwischen 500 °C und 600 °C, innerhalb kurzer Zeiträume, z. B. innerhalb von wenigen Sekunden, durchgeführt werden. Die erhaltenen Schichten verfügen über eine ausgezeichnete Temperaturwechselbeständigkeit und überstehen wiederholtes Aufheizen von Raumtemperatur auf höhere Temperaturen, beispielsweise 600 °C, innerhalb kurzer Zeiträume, beispielsweise innerhalb von nur 3 Sekunden, problemlos. Es können beliebig hohe Schichtdicken bis hin zu Formkörpern mit dicken Wandungen erhalten werden. Üblicherweise bevorzugte Schichtdicken liegen im Bereich zwischen 1 μm und 300 μm. Werden solche Schichten auf flexible Substrate, insbesondere metallische Substrate, aufgebracht, so können die beschichteten Substrate gebogen/verbogen werden, ohne daß es zu Abplatzungen der aufgebrachten Zeolith-Schichten kommt. Auch die Beschichtung filigraner Strukturen (z. B. dünner Drahtgewebe oder dünner Metallplättchen) ist ohne weiteres möglich. Bevorzugte Anwendungsgebiete für Zeolith-Schichten und Zeolith-Formkörper sind beispielsweise Katalysatorschichten oder Katalysatorformkörper für Gasphasenreaktionen, als Filter für die Trennung von Gasen, die Einsatzmöglichkeit als Sensoren, insbesondere Gassensoren, die Einsatzmöglichkeit als Adsorptionsschichten (z. B. zur Entfernung von Schadstoffen oder zur Gasadsorption) und die Einsatzmöglichkeit als Ionenaustauscher.
Schließlich umfaßt die Erfindung die Verwendung anorganischer Verbindungen mit einer mittleren Teilchengröße < 100 nm als Binderbestandteil für die Herstellung keramischer, glaskeramischer und sonstiger mineralischer Werkstoffe und Verbundwerkstoffe. Diese Verwendung ergibt sich aus der bisherigen Beschreibung. Dementsprechend kann auf die entsprechenden Ausführungen ausdrücklich Bezug genommen und verwiesen werden.
Die genannten und weitere Vorteile der Erfindung ergeben sich aus der Beschreibung der nun folgenden Beispiele in Verbindung mit den Unteransprüchen. Dabei können die einzelnen Merkmale der Erfindung für sich allein oder in Kombination miteinander verwirklicht sein.
Beispiele
Beispiel 1
40 g eines Aluminiumoxid-Pulvers (Ceralox APA 0.5 (entspricht 0,5 μm Teilchengröße) der Condea-Chemie GmbH, Deutschland) werden mit 10 g Wasser aufgeschlämmt. Zu der so erhaltenen Suspension werden 10 g einer anorganischen Binderlösung (45 Gew.-% nanoskaliges Zirkonoxid (mittlere Teilchengröße < 50 nm) in 55 Gew.-% Wasser) hinzugegeben. Dann werden noch 0,9 g kommerziell erhältlicher organischer Binder (PVA, Polyvinylalkohol) hinzugemischt. Man erhält so eine erfindungsgemäße Zusammensetzung in Form einer Suspension. Die Viskosität dieser Suspension läßt sich durch Zugabe, vorzugsweise geringer, Mengen an Wasser und/oder Salpetersäure bzw. durch Änderung der Zugabemenge des organischen Binders beliebig einstellen. Diese Suspensionen können anschließend mit Hilfe eines Sprühverfahrens zur Herstellung keramischer Schichten auf Substrate aus Metall, Keramik, Glaskeramik, Glas und Email aufgebracht werden. Die Verfestigung erfolgt dabei durch Sintern/Brennen bei Temperaturen oberhalb 500 °C. Durch Wahl der Endtemperatur und/oder durch die Dauer des Sinter-/ Brennvorgangs läßt sich auch die Porosität der erhaltenen keramischen Schichten einstellen.
Beispiel 2
Wie in Beispiel 1 geschildert, wird eine weitere niedrigviskose keramische Suspension hergestellt. Aus dieser Suspension werden durch Schlickergießen keramische Formkörper erhalten. Dabei wird der erhaltene Grünkörper zunächst bei 70 °C in einem Trockenschrank getrocknet und anschließend oberhalb 500 °C gesintert/gebrannt. Auch hier lassen sich in vergleichbarer Weise Porositäten des erhaltenen Formkörpers durch Temperaturhöhe und Dauer der
Temperaturanwendung variieren.
Beispiel 3
Aus 1 ,63 g eines Böhmits AIOOH (Produkt Disperal P3 der Sasol Ltd.) und 7,43 g Wasser wird unter Rühren ein sogenanntes Sol hergestellt. Zu diesem Sol werden in einer Perlmühle 1 ,64 g Ceralox-Pulver (siehe Beispiel 1 ) zugegeben und über einen Zeitraum von 10 min. gemahlen. Zum Schluß erfolgt die Zugabe von 4,5 g eines Zeolithen (Produkt Fe- MSM-1S der Alsi-Pentha-Zeolith GmbH, Deutschland) und 1 ,5 g Eisenoxid (Fe203) von Riedel-de Haen als Füller und Farbstoff. Die so erhaltene Suspension wird auf einen keramischen Träger als Beschichtung aufgesprüht, bei Raumtemperatur getrocknet und anschließend bei 600 °C gebrannt.

Claims

Patentansprüche
1. Anorganischer Binder für die Herstellung keramischer, glaskeramischer und sonstiger mineralischer Werkstoffe und
Verbundwerkstoffe, wobei der Binder mindestens eine anorganische Verbindung mit einer mittleren Teilchengröße < 100 nm und mindestens ein Lösungsmittel enthält.
2. Anorganischer Binder nach Anspruch 1 , dadurch gekennzeichnet, daß die mittlere Teilchengröße der anorganischen Verbindung < 50 nm, insbesondere < 25 nm, ist.
3. Anorganischer Binder nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß es sich bei der anorganischen Verbindung um eine Verbindung aus der Gruppe der Chalkogenide, der Carbide und/oder der Nitride handelt.
4. Anorganischer Binder nach Anspruch 3, dadurch gekennzeichnet, daß es sich bei den Chalkogeniden um Oxide oder Sulfide, insbesondere um Oxide handelt.
5. Anorganischer Binder nach Anspruch 4, dadurch gekennzeichnet, daß es sich bei den Oxiden um Oxide der Elemente der 1. bis 7. Nebengruppe des Periodensystems, insbesondere der 3. bis 5.
Nebengruppe des Periodensystems handelt.
6. Anorganischer Binder nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Lösungsmittel im Binder, bezogen auf das Gesamtgewicht des Binders, in einer
Menge zwischen 40 Gew.-% und 95 Gew.-%, insbesondere zwischen 50 Gew.-% und 80 Gew.-%, enthalten ist.
7. Anorganischer Binder nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es sich bei dem Lösungsmittel um ein polares Lösungsmittel handelt.
8. Anorganischer Binder nach Anspruch 7, dadurch gekennzeichnet, daß es sich bei dem polaren Lösungsmittel um mindestens einen Alkohol, insbesondere um Ethanol, handelt.
9. Anorganischer Binder nach Anspruch 7, dadurch gekennzeichnet, daß es sich bei dem polaren Lösungsmittel um Wasser handelt.
10. Zusammensetzung für die Herstellung keramischer, glaskeramischer und sonstiger mineralischer Werkstoffe und Verbundwerkstoffe, dadurch gekennzeichnet, daß sie mindestens einen anorganischen Binder nach einem der vorhergehenden
Ansprüche enthält.
11. Zusammensetzung nach Anspruch 10, dadurch gekennzeichnet, daß der Binder in der Zusammensetzung, bezogen auf das Gesamtgewicht der Zusammensetzung, in einer Menge zwischen
1 Gew.-% und 40 Gew.-%, insbesondere zwischen 5 Gew.-% und 20 Gew.-%, enthalten ist.
12. Zusammensetzung nach Anspruch 10 oder Anspruch 1 1 , dadurch gekennzeichnet, daß die Zusammensetzung in Form einer
Suspension, vorzugsweise einer niedrigviskosen Suspension, vorliegt.
13. Zusammensetzung nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß sie neben dem Binder übliche anorganische
Teilchen und/oder Fasern für die Herstellung keramischer und glaskeramischer Werkstoffe und Verbundwerkstoffe enthält.
14. Zusammensetzung nach Anspruch 13, dadurch gekennzeichnet, daß die Teilchen und/oder Fasern aus Chalkogeniden, Carbiden und/oder Nitriden, vorzugsweise aus Oxiden, bestehen.
15. Zusammensetzung nach einem der Ansprüche 10 bis 14, insbesondere nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß sie neben dem Binder Teilchen mindestens eines Zeolithen enthält.
16. Anorganischer Werkstoff oder Verbundwerkstoff, insbesondere anorganischer Formkörper, herstellbar oder hergestellt mit dem anorganischen Binder nach einem der Ansprüche 1 bis 9 oder herstellbar oder hergestellt aus der Zusammensetzung nach einem der Ansprüche 10 bis 15.
17. Anorganische Beschichtung, herstellbar oder hergestellt mit dem anorganischen Binder nach einem der Ansprüche 1 bis 9 oder herstellbar oder hergestellt aus der Zusammensetzung nach einem der Ansprüche 10 bis 15.
18. Gegenstand, dadurch gekennzeichnet, daß er mindestens teilweise, vorzugsweise vollständig mit der anorganischen Beschichtung nach Anspruch 17 beschichtet ist.
19. Verwendung einer anorganischen Verbindung mit einer mittleren Teilchengröße < 100 nm zur Herstellung keramischer, glaskeramischer und sonstiger mineralischer Werkstoffe und Verbundwerkstoffe.
20. Verwendung nach Anspruch 19, dadurch gekennzeichnet, daß es sich bei der anorganischen Verbindung um eine Verbindung aus der Gruppe der Chalkogenide, der Carbide und/oder der Nitride, vorzugsweise um ein Oxid, handelt.
21. Verwendung nach Anspruch 20, dadurch gekennzeichnet, daß es sich bei dem Oxid um ein Oxid der Elemente der 1. bis 7.
Nebengruppe des Periodensystems, insbesondere der 3. bis 5. Nebengruppe des Periodensystems, handelt.
22. Verwendung nach einem der Ansprüche 19 bis 21 , dadurch gekennzeichnet, daß die anorganische Verbindung eine mittlere
Teilchengröße < 50 nm, insbesondere < 25 nm, aufweist.
PCT/EP2003/004676 2002-05-05 2003-05-05 Herstellung keramischer, glaskeramischer und sonstiger mineralischer werkstoffe und verbundwerkstoffe WO2003093195A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/513,307 US7384470B2 (en) 2002-05-05 2003-05-05 Production of ceramic, glass ceramic and other mineral materials and composite materials
JP2004501337A JP2005524599A (ja) 2002-05-05 2003-05-05 セラミック、ガラスセラミックおよび他の鉱物材料および複合材料の製造
EP03725147A EP1419124A1 (de) 2002-05-05 2003-05-05 Herstellung keramischer, glaskeramischer und sonstiger mineralischer werkstoffe und verbundwerkstoffe
AU2003227715A AU2003227715A1 (en) 2002-05-05 2003-05-05 Production of ceramic, glass ceramic and other mineral materials and composite materials
US12/153,758 US20080223254A1 (en) 2002-05-05 2008-05-23 Production of ceramic, glass ceramic and other mineral materials and composite materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10220086.6 2002-05-05
DE10220086A DE10220086A1 (de) 2002-05-05 2002-05-05 Verfestigung mineralischer Werkstoffe

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/153,758 Division US20080223254A1 (en) 2002-05-05 2008-05-23 Production of ceramic, glass ceramic and other mineral materials and composite materials

Publications (1)

Publication Number Publication Date
WO2003093195A1 true WO2003093195A1 (de) 2003-11-13

Family

ID=29225059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/004676 WO2003093195A1 (de) 2002-05-05 2003-05-05 Herstellung keramischer, glaskeramischer und sonstiger mineralischer werkstoffe und verbundwerkstoffe

Country Status (7)

Country Link
US (2) US7384470B2 (de)
EP (1) EP1419124A1 (de)
JP (1) JP2005524599A (de)
CN (1) CN1303039C (de)
AU (1) AU2003227715A1 (de)
DE (1) DE10220086A1 (de)
WO (1) WO2003093195A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005040582A1 (de) * 2005-08-22 2007-03-01 Itn Nanovation Gmbh Hochtemperaturstabile keramische Schichten und Formkörper
WO2007031224A2 (de) 2005-09-14 2007-03-22 Itn Nanovation Ag Schicht oder beschichtung sowie zusammensetzung zu ihrer herstellung
EP2133165A1 (de) 2008-06-03 2009-12-16 ITN Nanovation AG Verfahren zum Vergießen von Kupfer und kupferhaltigen Legierungen
US8721938B2 (en) 2009-09-30 2014-05-13 3M Innovative Properties Company Methods for making layered dental appliances
US8813364B2 (en) 2009-12-18 2014-08-26 3M Innovative Properties Company Methods for making layered dental appliances
US8834752B2 (en) 2009-09-30 2014-09-16 3M Innovative Properties Company Systems and methods for making layered dental appliances
US8865033B2 (en) 2008-10-01 2014-10-21 3M Innovative Properties Company Process for producing a dental appliance
US9039947B2 (en) 2009-09-30 2015-05-26 3M Innovative Properties Company Methods for making layered dental appliances from the outside in
EP3659989A1 (de) * 2018-11-29 2020-06-03 Ivoclar Vivadent AG Schlicker und verfahren zur herstellung von keramischen und glaskeramischen 3d strukturen

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10143837A1 (de) * 2001-09-06 2003-03-27 Itn Nanovation Gmbh Selbstreinigende keramische Schichten für Backöfen und Verfahren zur Herstellung selbstreinigender keramischer Schichten
EP2062642A1 (de) * 2003-05-29 2009-05-27 Japan Science and Technology Agency Katalysator zum Synthetisieren von Kohlenstoff-Nanospulen, Syntheseverfahren für diesen und Syntheseverfahren für Kohlenstoff-Nanospulen
DE10360464A1 (de) * 2003-12-22 2005-07-14 Wacker-Chemie Gmbh Dispersion die mindestens 2 Arten von Partikeln enthält
US7413721B2 (en) * 2005-07-28 2008-08-19 Battelle Energy Alliance, Llc Method for forming ammonia
JP2007191381A (ja) * 2005-12-19 2007-08-02 Denso Corp セラミックス原料及びセラミックス成形体の製造方法
FR2907776B1 (fr) * 2006-10-27 2009-02-06 Snc Eurokera Soc En Nom Collec Vitroceramique de beta-quartz bleues, articles en lesdites vitroceramiques; procede de fabrication
DE102006062641A1 (de) 2006-12-28 2008-07-03 Ltn Nanovation Ag Stabile Dispersionen nanoskaliger Partikel
US20100240526A1 (en) * 2007-05-24 2010-09-23 Hong Keith C Photocatalytic roofing granules, photocatalytic roofing products and process for preparing same
JP5346172B2 (ja) * 2008-04-03 2013-11-20 日揮触媒化成株式会社 セラミックス用結合剤およびセラミックス成型体
WO2009141872A1 (ja) * 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体
US10494291B2 (en) 2014-10-23 2019-12-03 Corning Incorporated Hygroscopic additives for silica soot compacts and methods for forming optical quality glass
US10793466B2 (en) 2015-02-27 2020-10-06 Corning Incorporated Nanoparticle additives for silica soot compacts and methods for strengthening silica soot compacts
CN105599106B (zh) * 2015-12-31 2018-07-31 华中科技大学 一种陶瓷型芯坯体的微喷射粘结成形方法
CN114478026A (zh) * 2022-01-20 2022-05-13 江苏埃梯恩膜过滤技术有限公司 一种用于陶瓷或玻璃陶瓷的无机粘结剂

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111711A (en) 1976-07-22 1978-09-05 Societe Europeenne Des Produits Refractaires Cements and concretes which contain them
US4236931A (en) * 1978-06-26 1980-12-02 Societe Europeenne Des Produits Refractaires Gas-permeable refractory parts
EP0395203A2 (de) * 1989-03-28 1990-10-31 Foseco International Limited Feuerfeste Unterlegkörper
DE4238688A1 (de) * 1992-11-17 1994-05-19 Bosch Gmbh Robert Gesinterter Festelektrolyt mit hoher Sauerstoffionenleitfähigkeit
WO1995010491A1 (de) * 1993-10-11 1995-04-20 Institut für Neue Materialien Gemeinnützige GmbH VERFAHREN ZUR HERSTELLUNG VON TiN-SINTERKÖRPERN UND -SCHICHTEN
WO1998018741A2 (en) * 1996-10-11 1998-05-07 Nanomaterials Research Corporation Passive electronic components prepared from suspensions of nanoscale ceramic powders
DE19719948A1 (de) * 1997-05-13 1998-11-19 Inst Neue Mat Gemein Gmbh Nanostrukturierte Formkörper und Schichten sowie Verfahren zu deren Herstellung
WO1999006825A1 (en) * 1997-07-31 1999-02-11 Nanomaterials Research Corporation Low-cost multilaminate sensors
US6007926A (en) * 1997-01-30 1999-12-28 The United States Of America As Represented By The Secretary Of The Navy Phase stablization of zirconia
WO2001014280A1 (en) 1999-08-23 2001-03-01 Cabot Corporation Silicate-based sintering aid and method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983423A (en) * 1988-05-24 1991-01-08 Ceramem Corporation Method of forming a porous inorganic membrane on a porous support using a reactive inorganic binder
DE19538667C2 (de) * 1995-01-30 1997-08-14 Comtrade Ltd Verfahren zur Herstellung von wärmeisolierenden Formkörpern, nach dem Verfahren hergestellte wärmeisolierende Formkörper sowie ihre Verwendung
US6933331B2 (en) * 1998-05-22 2005-08-23 Nanoproducts Corporation Nanotechnology for drug delivery, contrast agents and biomedical implants
US6202471B1 (en) * 1997-10-10 2001-03-20 Nanomaterials Research Corporation Low-cost multilaminate sensors
US5905000A (en) * 1996-09-03 1999-05-18 Nanomaterials Research Corporation Nanostructured ion conducting solid electrolytes
MY122234A (en) * 1997-05-13 2006-04-29 Inst Neue Mat Gemein Gmbh Nanostructured moulded bodies and layers and method for producing same
JPH1149572A (ja) * 1997-08-01 1999-02-23 Honda Motor Co Ltd セラミックス複合粒子及びその製造方法
DE19849048A1 (de) * 1998-10-23 2000-04-27 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung von Suspensionen und Pulvern von Indium-Zinn-Oxid und deren Verwendung
DE19924453A1 (de) * 1999-05-28 2001-01-18 Grace Gmbh & Co Kg Formkörper aus Silicagel und porösen amorphen Mischoxiden, Verfahren zu ihrer Herstellung und deren Verwendung
DE19958973C2 (de) * 1999-12-08 2002-08-14 Rockwool Mineralwolle Verfahren und Vorrichtung zur Herstellung einer Faserdämmstoffbahn
DE10127494B4 (de) * 2001-06-09 2005-07-07 Itn Nanovation Gmbh Hochtemperaturstabile anorganische Bornitridschichten
DE10143837A1 (de) * 2001-09-06 2003-03-27 Itn Nanovation Gmbh Selbstreinigende keramische Schichten für Backöfen und Verfahren zur Herstellung selbstreinigender keramischer Schichten

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111711A (en) 1976-07-22 1978-09-05 Societe Europeenne Des Produits Refractaires Cements and concretes which contain them
US4236931A (en) * 1978-06-26 1980-12-02 Societe Europeenne Des Produits Refractaires Gas-permeable refractory parts
EP0395203A2 (de) * 1989-03-28 1990-10-31 Foseco International Limited Feuerfeste Unterlegkörper
DE4238688A1 (de) * 1992-11-17 1994-05-19 Bosch Gmbh Robert Gesinterter Festelektrolyt mit hoher Sauerstoffionenleitfähigkeit
WO1995010491A1 (de) * 1993-10-11 1995-04-20 Institut für Neue Materialien Gemeinnützige GmbH VERFAHREN ZUR HERSTELLUNG VON TiN-SINTERKÖRPERN UND -SCHICHTEN
WO1998018741A2 (en) * 1996-10-11 1998-05-07 Nanomaterials Research Corporation Passive electronic components prepared from suspensions of nanoscale ceramic powders
US6007926A (en) * 1997-01-30 1999-12-28 The United States Of America As Represented By The Secretary Of The Navy Phase stablization of zirconia
DE19719948A1 (de) * 1997-05-13 1998-11-19 Inst Neue Mat Gemein Gmbh Nanostrukturierte Formkörper und Schichten sowie Verfahren zu deren Herstellung
WO1999006825A1 (en) * 1997-07-31 1999-02-11 Nanomaterials Research Corporation Low-cost multilaminate sensors
WO2001014280A1 (en) 1999-08-23 2001-03-01 Cabot Corporation Silicate-based sintering aid and method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BURGARD D ET AL: "SYNTHESIS AND COLLOIDAL PROCESSING OF NANOCRYSTALLINE (Y2O3-STABILIZED) ZRO2 POWDERS BY A SURFACE FREE ENERGY CONTROLLED PROCESS", MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS, MATERIALS RESEARCH SOCIETY, PITTSBURG, PA, US, VOL. 432, PAGE(S) 113-120, ISSN: 0272-9172, XP002066069 *
See also references of EP1419124A1
VON BURGARD ET AL.: "Synthesis and colloidal processing of nanocrystalline Y203-stabilized Zr02 powders by a surface free energy controlled process", MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS, MATERIALS RESEARCH SOCIETY, PITTSBURG, PA, vol. 432, pages 113 - 120, XP002066069

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005040582A1 (de) * 2005-08-22 2007-03-01 Itn Nanovation Gmbh Hochtemperaturstabile keramische Schichten und Formkörper
WO2007031224A2 (de) 2005-09-14 2007-03-22 Itn Nanovation Ag Schicht oder beschichtung sowie zusammensetzung zu ihrer herstellung
EP2133165A1 (de) 2008-06-03 2009-12-16 ITN Nanovation AG Verfahren zum Vergießen von Kupfer und kupferhaltigen Legierungen
DE102008026535A1 (de) 2008-06-03 2009-12-17 Itn Nanovation Ag Verfahren zum Vergießen von Kupfer und kupferhaltigen Legierungen
US8865033B2 (en) 2008-10-01 2014-10-21 3M Innovative Properties Company Process for producing a dental appliance
US8721938B2 (en) 2009-09-30 2014-05-13 3M Innovative Properties Company Methods for making layered dental appliances
US8834752B2 (en) 2009-09-30 2014-09-16 3M Innovative Properties Company Systems and methods for making layered dental appliances
US9039947B2 (en) 2009-09-30 2015-05-26 3M Innovative Properties Company Methods for making layered dental appliances from the outside in
US8813364B2 (en) 2009-12-18 2014-08-26 3M Innovative Properties Company Methods for making layered dental appliances
EP3659989A1 (de) * 2018-11-29 2020-06-03 Ivoclar Vivadent AG Schlicker und verfahren zur herstellung von keramischen und glaskeramischen 3d strukturen

Also Published As

Publication number Publication date
US20080223254A1 (en) 2008-09-18
EP1419124A1 (de) 2004-05-19
CN1303039C (zh) 2007-03-07
US20050126438A1 (en) 2005-06-16
JP2005524599A (ja) 2005-08-18
AU2003227715A1 (en) 2003-11-17
US7384470B2 (en) 2008-06-10
CN1665759A (zh) 2005-09-07
DE10220086A1 (de) 2003-11-13

Similar Documents

Publication Publication Date Title
WO2003093195A1 (de) Herstellung keramischer, glaskeramischer und sonstiger mineralischer werkstoffe und verbundwerkstoffe
DE10119538C2 (de) Verfahren zur Beschichtung von Substraten und deren Verwendungen
EP0817723B1 (de) Verfahren zur herstellung von schwindungsangepassten keramik-verbundwerkstoffen
EP1537060B1 (de) Keramische hohlfasern hergestellt aus nanoskaligen pulverteilchen
DE69830852T2 (de) Verfahren zum brennen von keramischen wabenkörpern
DE2631875A1 (de) Keramischer cordierit-verbundkoerper und verfahren zu seiner herstellung
EP0254165A2 (de) Bei hohen Temperaturen beständige Katalysator-Formkörper und Verfahren zu deren Herstellung
DE3222162A1 (de) Filtermedium zur filtration von schmelzfluessigen metallen
WO2007014562A1 (de) Thermoschock- und korrosionsbeständiger keramikwerkstoff, verfahren zu seiner herstellung sowie verwendung
WO2011098319A1 (de) Tiegel für die photovoltaik
EP2782885A1 (de) Verfahren zum behandeln einer oberfläche eines mineralischen substrats und nach dem verfahren hergestellter formgegenstand
DE102017216964A1 (de) Silikatische Aluminiumschmelzefilter
DE102019006135A1 (de) Verfahren zum Erzeugen von katalytisch aktiven Oberflächen
DE102006014999A1 (de) Verfahren zur Herstellung eines Filterelements und einer Trägerstruktur für einen Katalysator mit verbesserter Beständigkeit gegen Alkali- und Erdalkaliionen
EP1924536A1 (de) Hochtemperaturstabile keramische schichten und formkörper
DE102004063428A1 (de) Keramischer Formkörper mit photokatalytisch-aktiver Beschichtung und Verfahren zur Herstellung desselben
DE102007031854B4 (de) Verfahren zur Herstellung von keramischen Körpern mit funktionalisierten Porenoberflächen und danach hergestellter Körper
DE10114496B4 (de) Verfahren zur Herstellung keramischer Massen und keramischer Hohlfasern, keramische Massen, ihre Verwendung und keramische Hohlfasern
CN114478026A (zh) 一种用于陶瓷或玻璃陶瓷的无机粘结剂
DE69200689T2 (de) Mischung von chemischen substanzen zur herstellung einer feuerfesten zusammensetzung, verfahren zur herstellung dieser zusammensetzung und verfahren zur ihrer anwendung.
EP2960221B1 (de) Feuerfestes keramisches Erzeugnis
DE102006011224B4 (de) Schlicker sowie damit hergestellter keramischer Verbundwerkstoff
EP0373354B1 (de) Verfahren zur Herstellung von feuerfesten keramischen Formkörpern
DE1471068B2 (de) Poröse, keramische Akustikplatte und Verfahren zu ihrer Herstellung
DE2114968C3 (de) Verfahren zum Herstellen feuerfester Formkörper auf Korundbasis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003725147

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003725147

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004501337

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038159406

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10513307

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642