EP1537060B1 - Keramische hohlfasern hergestellt aus nanoskaligen pulverteilchen - Google Patents
Keramische hohlfasern hergestellt aus nanoskaligen pulverteilchen Download PDFInfo
- Publication number
- EP1537060B1 EP1537060B1 EP02807705A EP02807705A EP1537060B1 EP 1537060 B1 EP1537060 B1 EP 1537060B1 EP 02807705 A EP02807705 A EP 02807705A EP 02807705 A EP02807705 A EP 02807705A EP 1537060 B1 EP1537060 B1 EP 1537060B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ceramic
- hollow fibers
- anyone
- nanoscale
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 111
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 97
- 239000000843 powder Substances 0.000 title claims description 32
- 239000002245 particle Substances 0.000 title description 19
- 238000000034 method Methods 0.000 claims abstract description 42
- 238000001125 extrusion Methods 0.000 claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 claims abstract description 21
- 239000007787 solid Substances 0.000 claims abstract description 15
- 238000009987 spinning Methods 0.000 claims abstract description 11
- 239000012528 membrane Substances 0.000 claims abstract description 7
- 239000000446 fuel Substances 0.000 claims abstract description 5
- 229920000642 polymer Polymers 0.000 claims abstract description 5
- 238000005516 engineering process Methods 0.000 claims abstract description 4
- 239000011159 matrix material Substances 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims abstract description 4
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 4
- 210000000056 organ Anatomy 0.000 claims abstract description 3
- 238000012216 screening Methods 0.000 claims abstract 4
- 230000003287 optical effect Effects 0.000 claims abstract 2
- 230000002787 reinforcement Effects 0.000 claims abstract 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 19
- 238000005245 sintering Methods 0.000 claims description 18
- 239000011230 binding agent Substances 0.000 claims description 17
- 239000002253 acid Substances 0.000 claims description 14
- -1 carbide Chemical class 0.000 claims description 11
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 8
- 239000011148 porous material Substances 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 8
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 7
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 claims description 7
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 claims description 7
- 239000007858 starting material Substances 0.000 claims description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical group O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 239000001913 cellulose Substances 0.000 claims description 5
- 229920002678 cellulose Polymers 0.000 claims description 5
- 235000010980 cellulose Nutrition 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims description 5
- 238000007493 shaping process Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- ZTMBTYCPRBJULN-UHFFFAOYSA-N hexylperoxy hydrogen carbonate Chemical compound CCCCCCOOOC(O)=O ZTMBTYCPRBJULN-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 239000001856 Ethyl cellulose Substances 0.000 claims description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 claims description 2
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 claims description 2
- 229920001249 ethyl cellulose Polymers 0.000 claims description 2
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims description 2
- 229920000609 methyl cellulose Polymers 0.000 claims description 2
- 239000001923 methylcellulose Substances 0.000 claims description 2
- 235000010981 methylcellulose Nutrition 0.000 claims description 2
- 229920000058 polyacrylate Polymers 0.000 claims description 2
- 229920000193 polymethacrylate Polymers 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 229940093476 ethylene glycol Drugs 0.000 claims 2
- 229910044991 metal oxide Inorganic materials 0.000 claims 2
- 150000004706 metal oxides Chemical class 0.000 claims 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims 1
- 239000007795 chemical reaction product Substances 0.000 claims 1
- 238000007796 conventional method Methods 0.000 claims 1
- 230000000873 masking effect Effects 0.000 claims 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims 1
- 229960004063 propylene glycol Drugs 0.000 claims 1
- 235000013772 propylene glycol Nutrition 0.000 claims 1
- 239000011253 protective coating Substances 0.000 claims 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims 1
- 239000000835 fiber Substances 0.000 abstract description 28
- 239000002105 nanoparticle Substances 0.000 abstract description 27
- 229910010293 ceramic material Inorganic materials 0.000 abstract description 2
- 238000009770 conventional sintering Methods 0.000 abstract 1
- 230000008569 process Effects 0.000 description 21
- 239000000463 material Substances 0.000 description 15
- 238000007650 screen-printing Methods 0.000 description 11
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000011164 primary particle Substances 0.000 description 6
- 239000003999 initiator Substances 0.000 description 5
- 229910052594 sapphire Inorganic materials 0.000 description 5
- 239000011877 solvent mixture Substances 0.000 description 5
- 238000001914 filtration Methods 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 238000000518 rheometry Methods 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 239000006057 Non-nutritive feed additive Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 150000004770 chalcogenides Chemical class 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 238000001728 nano-filtration Methods 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- 229920001410 Microfiber Polymers 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 229910001593 boehmite Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- MQHNKCZKNAJROC-UHFFFAOYSA-N dipropyl phthalate Chemical compound CCCOC(=O)C1=CC=CC=C1C(=O)OCCC MQHNKCZKNAJROC-UHFFFAOYSA-N 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- UFZOPKFMKMAWLU-UHFFFAOYSA-N ethoxy(methyl)phosphinic acid Chemical compound CCOP(C)(O)=O UFZOPKFMKMAWLU-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- 238000010327 methods by industry Methods 0.000 description 2
- 239000003658 microfiber Substances 0.000 description 2
- 150000004771 selenides Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910005543 GaSe Inorganic materials 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004614 Process Aid Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- 229910052946 acanthite Inorganic materials 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 150000001343 alkyl silanes Chemical class 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000004814 ceramic processing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- FSJWWSXPIWGYKC-UHFFFAOYSA-M silver;silver;sulfanide Chemical compound [SH-].[Ag].[Ag+] FSJWWSXPIWGYKC-UHFFFAOYSA-M 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- 239000008279 sol Substances 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 125000005402 stannate group Chemical group 0.000 description 1
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 1
- 150000004772 tellurides Chemical class 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62272—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
- C04B35/62277—Fibres based on carbides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0041—Inorganic membrane manufacture by agglomeration of particles in the dry state
- B01D67/00411—Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0041—Inorganic membrane manufacture by agglomeration of particles in the dry state
- B01D67/00413—Inorganic membrane manufacture by agglomeration of particles in the dry state by agglomeration of nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
- B01D69/087—Details relating to the spinning process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
- B01D71/0271—Perovskites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/0048—Fibrous materials
- C04B20/0056—Hollow or porous fibres
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/486—Fine ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62231—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
- C04B35/62236—Fibres based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62231—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
- C04B35/6225—Fibres based on zirconium oxide, e.g. zirconates such as PZT
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62231—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
- C04B35/62259—Fibres based on titanium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62272—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
- C04B35/62277—Fibres based on carbides
- C04B35/62281—Fibres based on carbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62272—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
- C04B35/62286—Fibres based on nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62272—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
- C04B35/62286—Fibres based on nitrides
- C04B35/62295—Fibres based on nitrides based on silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6263—Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6264—Mixing media, e.g. organic solvents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63424—Polyacrylates; Polymethacrylates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/636—Polysaccharides or derivatives thereof
- C04B35/6365—Cellulose or derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/75—Printability
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
- C04B2235/3246—Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/449—Organic acids, e.g. EDTA, citrate, acetate, oxalate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/526—Fibers characterised by the length of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5264—Fibers characterised by the diameter of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5284—Hollow fibers, e.g. nanotubes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6021—Extrusion moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S264/00—Plastic and nonmetallic article shaping or treating: processes
- Y10S264/19—Inorganic fiber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2973—Particular cross section
- Y10T428/2975—Tubular or cellular
Definitions
- the invention relates to a process for producing a ceramic hollow fiber based on nanoscale, inorganic oxide particles, preferably yttrium-stabilized zirconium oxide, zirconium oxide, titanium dioxide, silicon dioxide and aluminum oxide, and the ceramic hollow fibers produced by this process.
- Ceramic fibers are gaining more and more industrial importance, with ceramic full fibers of aluminum oxide in particular already being available on the market.
- the companies 3M, Mitsui, Sumitomo and Toyobo already offer ceramic continuous filaments of aluminum oxide in price ranges between 400 and 1800 US $ / kg.
- Less industrially important are ceramic short fibers with lengths in the range of 1 .mu.m, due to their lung permeability, for which reason e.g. in Germany these fibers may no longer be processed.
- New development trends arise in the field of ceramic hollow fibers, as the ceramic hollow fiber can be used in principle in all areas where solid fibers are established, and also opens up additional market segments.
- Ceramic hollow fibers are not yet commercially available, but are the subject of current developments in many research institutions. Compared to solid fibers, hollow fibers have a high flexural strength, a high insulation factor and at a lower material input of about 40 to 60 wt .-%, which also involves a weight saving at the same volume. In addition, the hollow fibers are coolable from the inside and z. As heat, ingredients, etc. can carry away very well.
- the main fields of application of the ceramic hollow fiber are in the fields of metal polymer and Keramikmatrixarmmaschineen, artificial organs, optical fibers, ceramic membranes, solid electrolyte for fuel cell (SOFC), tissue engineering, textile industry and the production of extremely lightweight, temperature-stressing ceramic components such as heat shields or brake systems, which can dissipate heat.
- SOFC fuel cell
- the hollow fiber In contrast to planar structures, the hollow fiber produces three-dimensional and also rotationally symmetric structures, which also permit flexible use in numerous applications of microsystem technology.
- the hollow fibers produced can pack tightly and thus guarantee a high surface to volume ratio.
- the hollow fibers are very small and plastically deformable.
- large outside diameters (in the range of a few mm) of a usable as Elektroylt Y-ZrO2 hollow fiber lead to high cathode resistance and low power densities in the filter membrane, the available per unit volume specific surface area must be very high, even large filter systems still economically realize to be able to.
- a variant of the spinning process is used by the same author DE 19730996 A1 described in that no solution, sol or gel, but a ceramic melt is spun.
- a ceramic starting powder Al2O3 + aluminosilicate
- the nozzle must be made of a material that can withstand these extremely high temperatures (tantalum or tungsten), which goes far beyond the scope of standard nozzles.
- This variant of the spinning process if it can be handled at all, certainly not an economical alternative to the production of hollow fibers.
- porous ceramic hollow fibers e.g. For filtration, it is necessary, especially if you want to penetrate into the ultrafiltration or the nanofiltration, either the entire hollow fiber of nanoparticles (only in this way you get the small pores in a sintering step) or you have to produce a hollow fiber with a layered structure.
- the latter means coating a coarsely porous support with a thin layer of nanoparticles.
- Commercially available high-quality nanoparticles are either amorphous (SiO2) or boehmite (AIO (OH)), precursors of true nanoparticles (aluminum oxide).
- the production of ceramic hollow fibers via the extrusion of fine particles is in WO 99/22852 described.
- a submicron ⁇ -Al2O3 powder is used to recover hollow fibers for the filtration area.
- the powder is mixed with commercially available binders, extruded and fired at 1300 ° C., with a porosity of 35%.
- the hollow fiber realized in the example before sintering had an outer diameter of 3 mm and an inner diameter of 2 mm, after sintering the outer diameter had shrunk to 2.4 mm and the inner diameter to 1.6 mm.
- the hollow fiber still had a porosity of 35% and served to realize ceramic filters.
- the representation of ceramic hollow fibers enjoys high industrial interest, with miniaturization being of advantage for many applications, or crucial for many applications.
- the representation of ceramic hollow fibers requires the availability of the powder suitable for the application, as well as a suitable production method and sintering to a defect-free component.
- the smallest, patented hollow fibers have outside diameters above 500 microns, the smallest, known from the literature hollow fibers have an outer diameter of 150 microns and a lumen (inner diameter) of 90 microns. All these hollow fibers are composed of microscale particles and usually porous, since sintering near theoretical density failed due to process engineering difficulties. The processing of nanoparticles into ceramic hollow fibers has not been described yet and can be considered new.
- pore sizes of ⁇ 100 nm, preferably ⁇ 50 nm and particularly preferably ⁇ 10 nm are necessary, which result only from the use of nanoparticles.
- nanoparticles miniaturized hollow fibers with outer diameters ⁇ 500 .mu.m, preferably ⁇ 200 .mu.m and particularly preferably ⁇ 100 .mu.m can be realized.
- the only ceramic forming process that directly delivers the tubular shape of the hollow fiber is extrusion.
- ceramic masses of nanoparticles have to be developed whose solids content is> 30% by volume, better> 35% by volume, since otherwise the hollow fiber is exposed to strong stresses during firing and can be damaged.
- the production of the ceramic mass should continue to be carried out with customary ceramic processing units under industrially customary conditions.
- the difficulty lies in the processing of nanoparticles.
- the specific powder surface increases up to 250 m 2 / g.
- the proportion of organic binders has to be drastically increased, as the large surface area binds organic processing aids, which are then no longer available for adjusting the rheology.
- the smallest particle sizes which were known from the literature, for example still processed by injection molding, have a particle size of 70 nm [ Song and Evans J. Rheologie 40, 1996, 131 ff ]. Below 70 nm, the primary particle size increases drastically and can be up to 250 m 2 / g for particles of 10 nm. The resulting increased interactions between the particles and the organic processing aids and the associated high viscosity reduces the solids content so drastically that injection molding of these particles is no longer possible. Analogous to this, the extrusion of nanoparticles can be seen, which is also unknown.
- the object of the present invention was to provide a ceramic offset based on nanoscale particles and a method for its production, in which the solids content of the nanoparticles, ie the powder content in the offset, is so high that it can be processed by ceramic extrusion to hollow fibers , Hollow fibers prepared in this way should have outer diameters ⁇ 500 ⁇ m but preferably ⁇ 200 ⁇ m and particularly preferably ⁇ 100 ⁇ m after extrusion and can be converted into ceramic hollow fibers via a downstream process. Depending on the field of application, the hollow fibers produced in this way should be sintered porous or to almost theoretical density.
- a ceramic offset comprising at least one ceramic powder having a primary particle size ⁇ 100 nm, preferably ⁇ 50 nm and at least one polymeric binder and at least one oxycarboxylic acid and at least one solvent.
- the extruded hollow fibers thus produced can be converted at significantly lower temperatures into ceramic hollow fibers, as known in the prior art. Compared to the prior art, the sintering temperature can be reduced by 100 to 300 ° C, depending on the material used.
- the ceramic pastes used for hollow fiber production are also suitable for ceramic screen printing.
- the ceramic powder used is a nanoscale, ceramic-forming powder. This is in particular a nanoscale chalcogenide, carbide or nitride powder.
- the chalcogenide powders may be an oxide, sulfide, selenide or telluride powder. Nanoscale oxide powders are preferred. All powders commonly used for powder sintering can be used.
- Examples are (optionally hydrated) oxides such as ZnO, CeO 2, SnO 2, Al 2 O 3, CdO, SiO 2, TiO 2, In 2 O 3, ZrO 2, yttrium-stabilized ZrO 2, Al 2 O 3, La 2 O 3, Fe 2 O 3, Fe 3 O 4, Cu 2 O, Ta 2 O 5, Nb 2 O 5, V 2 O 5, MoO 3, or WO 3 but also phosphates, silicates, zirconates, aluminates and stannates, sulfides such as CdS, ZnS, PbS and Ag2S, selenides such as GaSe, CdSe and ZnSe, tellurides such as ZnTe or CdTe, carbides such as WC, CdC2 or SiC, nitrides such as BN, AIN , Si3N4 and Ti3N4, corresponding mixed oxides such as metal-tin oxides, eg Indium tin oxide (ITO), antimony tin oxide, fluor
- the inventive offset preferably contains nanoscale particles which are an oxide, hydrated oxide, chalcogenide, nitride or carbide of Si, Al, B, Zn, Zr, Cd, Ti, Ce, Sn, In, La, Fe, Cu, Ta, Nb, V, Mo or W, more preferably Si, Zr, Al, B, W, and Ti. Particular preference is given to using oxides.
- Preferred nanoscale inorganic particulate solids are alumina, zirconia, titania, silicon carbide, tungsten carbide, and silicon nitride.
- the inorganic particles contained in the offset generally have an average primary particle size in the range from 1 to 300 nm or 1 to 100 nm, preferably 5 to 50 nm and particularly preferably 5 to 20 nm.
- the primary particles may also be in agglomerated form, preferably they are not agglomerated or substantially not agglomerated.
- the starting powder is mixed with an organic binder which provides the necessary plasticization of the mixture.
- the inventive ceramic offset comprises at least one polymeric binder and at least one oxycarboxylic acid and at least one solvent.
- thermoplastic polymer any thermoplastic polymer can be used, especially those which are common for extrusion.
- examples of usable thermoplastic polymers are polyolefins, such as polyethylene, dialkyl phthalates (dimethyl phthalate, diethyl phthalate, dipropyl phthalate and dibutyl phthalate), polypropylene and poly-1-butene, polymethyl (meth) acrylate, polyacrylonitrile, polystyrene and polyvinyl alcohol, polyamides, polyesters, polyacetates, polycarbonates , linear polyurethanes and corresponding copolymers such as ethylene-vinyl acetate (EVA) copolymers, as well as biopolymers such as cellulose, methyl cellulose, ethyl cellulose, propyl cellulose; Carboxy-modified cellulose, Ambergum et al. wherein polyacrylates, polymethacrylates, cellulose and ambergum are preferred. It may be a thermoplastic polymer or
- the polymer component used is acrylates and methacrylates prepared using a free-radical initiator after molding, e.g. UV irradiation or thermally crosslinked and so build up the necessary within the inventive offset polymeric component.
- acrylate and methacrylate compounds are all commercially available acrylate and methacrylate compounds, but preferably the marketed by BASF Lucirin brands and the Laromer brands, such as LR8765, ES81, LR8713, LR8986, PE55F, PE56F, LR 8793, LR8846, LR 9004, LR8799, LR8800 , LR8907, LR8981, LR8992, PE55W, LR8895, LR8949, LR8983, LR8739, LR8987, LR8748, LR8863, LR8945, LR8967, LR8982, LR8812, LR8894, LR8997, LR8864, LR8889, LR8869, LR8996, LR8946, LR8899, LR8985.
- BASF Lucirin brands and the Laromer brands such as LR8765, ES81, LR8713, LR8986,
- radical starter all radial starters known to those skilled in the art can be used. This method is particularly suitable if the screen printing is used as the ceramic molding process and a targeted structuring is to be achieved by means of a mask technique.
- surfactant molecules are used. These molecules must have a bifunctional structure so that one part of the molecule binds to the particle surface and another part of the molecule realizes compatibility with the matrix.
- Particularly suitable here are bifunctional molecules from the class of the carboxylic acids, the carboxylic acid amides, the carboxylic acid esters, the carboxylic acid chlorides, the ⁇ -diketones, the alkylsilanes and in particular the oxycarboxylic acids.
- the oxycarboxylic acids used are trioxadecanoic acid and dioctaheptanoic acid.
- this contains an organic solvent or a mixture of two or more organic solvents, preferably from the group of alkylene glycols in particular ethylene glycol, propylene glycol, Diethylengykolmonobutylether, Diethylenglykolmonoallylether, Diethylenglykolmonohexyether, Diethylenglycolmonodecylether, diethylene glycol monoethyl ether and structurally similar molecules can be used.
- an alcohol mixture of ethylene glycol and diethylene glycol monobutyl ether is used.
- water is used as the solvent.
- the extrusion of the nanoparticles into hollow fibers succeeds, only the screen printing as a ceramic molding process for the ceramic composition according to the invention can not be operated with water as the solvent.
- the organic solvent or the combination of several organic solvents due to the rheology is mandatory.
- the nanoscale powders are compounded with the polymer, the oxacarboxylic acid and the solvent or solvent mixture in conventional mixing and kneading machines.
- Suitable compounding means are kneaders, twin screw extruders, shear roll compactors, three-roll mills, and mortar mills. The mixing or kneading process is carried out until a homogeneous mixture is achieved.
- the suitable parameters, such as temperature, required shearing effect, inter alia for optimum compounding, are known to the person skilled in the art.
- a portion of the dispersing medium (preferably in vacuo) can be removed again until the ceramic mass has the desired solids content for the particular molding process, preferably extrusion.
- Preferred solids contents of the ceramic compositions are at least 20% by volume and preferably> 25% by volume and more preferably> 30% by volume.
- the offsets produced in this way can also be used as screen-printing pastes.
- the ceramic molding After shaping, the ceramic molding can be dried in a conventional manner, debindered and finally processed into the finished sintered body.
- the ceramic body produced in the above manner, in particular the ceramic hollow fiber, can be dried and sintered without cracking.
- the molding process can also be modified so that the extrusion compound in a feed tank or a pressure vessel of a spinning device, as is commonly used in textile or chemical fiber filament production, given and at a temperature zw. Room temperature and 300 ° C. the spinning device is promoted.
- the spinning device can be designed with a plurality of nozzles whose nozzles have an opening width between 1 and 500 microns preferably zw. 30 and 100 microns.
- a nozzle material can be used all known in the art materials, especially sapphire nozzles and nozzles made of stainless steel.
- the individual fibers can be wound directly onto a spool with infinitely variable rotation speed.
- hollow fibers can be produced, which in turn serve to produce ceramic membranes with pore sizes between 0.5 nm and 1000 nm, preferably between 0.5 nm and 200 nm and particularly preferably between 1 nm and 100 nm nm.
- the built-up of nanoscale starting materials hollow fiber can be fired at the appropriate temperature, or the ceramic mass is extended by the addition of a sacrificial material.
- the sacrificial material is an organic or inorganic component composed of carbon and is added in amounts of between 5 and 20% by weight.
- nanoscale yttrium stabilized zirconia takes place in a commercially available mixing unit, the powder content is adjusted to 72 wt .-% (31 vol.%).
- 300 g of a solvent mixture of ethylene glycol and diethylene glycol monobutyl ether in the ratio 1: 1 are presented.
- 700 g of a nanoscale zirconium oxide modified with dioctaheptanoic acid are added to this mixture.
- an acrylate-based binder system (Lacromer, BASF) and a radical initiator, the mixture is homogenized.
- the paste thus prepared can be screen printed to form a sheet on a ceramic or metal substrate. Using mask technology and exposure to UV rays, extremely fine structures can be achieved by polymerization. The unpolymerized areas can be removed by washing.
- the processing of nano-scale, yttrium-doped zirconia by extrusion is carried out in a commercially available mixing apparatus, the powder content being adjusted to 72% by weight (31% by volume).
- 300 g of a solvent mixture of ethylene glycol and diethylene glycol monobutyl ether in the ratio 1: 1 are presented.
- 700 g of a nanoscale zirconium oxide modified with dioctaheptanoic acid are added to this mixture.
- an acrylate-based binder system (Lacromer, BASF) and a radical initiator, the mixture is homogenized.
- the paste thus prepared can be further processed by extrusion into ceramic hollow fibers.
- the ceramic mass is conveyed through a sapphire nozzle with an outer nozzle diameter of 100 ⁇ m and an internally centered mandrel. All in all 7 of these nozzles were placed in a steel frame and extruded at extrusion pressures between 10 and 30 MPa. The individual fibers were finally taken up on a spool with infinitely variable rotational speed, the take-off speed being five meters per second.
- the micro hollow fiber had, after crosslinking and drying, an outer diameter of 70 ⁇ m and an inner diameter of 50 ⁇ m. From this continuous fiber 20 cm long hollow fibers were cut, which were either stacked or interwoven with each other.
- the ceramic hollow fiber had an outer diameter of 56 ⁇ m and an inner diameter of 40 ⁇ m, with a density of 97% of the theoretical density.
- Example 2 Method analogous to Example 2, but 65 g of an activated carbon serving as a sacrificial material were added to the offset. After sintering at 1050 ° C for 2 hours, a porous hollow fiber was obtained. The porosity was 35%, the mean pore size was 5 nm.
- the ceramic material is conveyed through a sapphire nozzle with an outer nozzle diameter of 100 .mu.m and an internally centered mandrel. A total of 7 of these nozzles were inserted into a steel frame and extruded at extrusion pressures of between 10 and 30 MPa. The individual fibers were finally taken up on a spool with infinitely variable rotational speed, the take-off speed being five meters per second.
- the microfiber fiber had an outer after crosslinking and drying
- Diameter of 77 microns and an inner diameter of 59 microns From this continuous fiber 20 cm long hollow fibers were cut, which were either stacked or interwoven with each other. After debinding the organic components and sintering for 2 hours at 1200 ° C, a ceramic hollow fiber or a fabric made of ceramic hollow fibers was obtained.
- the hollow ceramic fiber had an outer diameter of 60 ⁇ m and an inner diameter of 45 ⁇ m, with a density of 98% of the theoretical density.
- nanoscale zirconia by extrusion is carried out in a commercially available mixing unit, wherein the powder content is adjusted to 72 wt .-% (31 vol .-%).
- 300 g of a solvent mixture of ethylene glycol and diethylene glycol monobutyl ether in the ratio 1: 1 are presented.
- 700 g of a nanoscale zirconium oxide modified with dioctaheptanoic acid are added to this mixture.
- an acrylate-based binder system (Lacromer, BASF) and a radical initiator, the mixture is homogenized.
- the paste thus prepared can be further processed by extrusion into ceramic hollow fibers.
- the ceramic mass is conveyed through a sapphire nozzle with an outer nozzle diameter of 100 ⁇ m and an internally centered mandrel. A total of 7 of these nozzles were placed in a steel frame and extruded at extrusion pressures zw. 10 and 30 MPa. The individual fibers were finally taken up on a spool with infinitely variable rotational speed, the take-off speed being five meters per second.
- the micro-fiber had after crosslinking and drying an outer diameter of 70 microns and an inner diameter of 50 microns. From this continuous fiber 20 cm long hollow fibers were cut, which were either stacked or interwoven with each other. After debindering the organic components and sintering at 950 ° C. for 2 hours, a porous ceramic hollow fiber or a porous ceramic hollow fiber fabric was obtained.
- the ceramic hollow fiber had an outer diameter of 60 ⁇ m, an inner diameter of 44 ⁇ m and a porosity of 37%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Fibers (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Artificial Filaments (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Medicinal Preparation (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Materials For Medical Uses (AREA)
- Filtering Materials (AREA)
Description
- Die Erfindung betrifft ein Verfahren zur Herstellung einer keramischen Hohlfaser auf Basis nanoskaliger, anorganischer Oxidteilchen, bevorzugt Yttrium stabilisiertes Zirkonoxyd, Zirkonoxyd, Titandioxyd, Siliziumdioxyd und Aluminiumoxyd sowie die nach diesem Verfahren hergestellten, keramischen Hohlfasern.
- Keramische Fasern gewinnen industriell mehr und mehr an Bedeutung, wobei insbesondere keramische Vollfasern aus Aluminiumoxyd bereits auf dem Markt verfügbar sind. So bieten die Firmen 3M, Mitsui, Sumitomo und Toyobo bereits keramische Endlosfasern aus Aluminiumoxyd in Preissegmenten zwischen 400 und 1800 US$/kg an. Industriell weniger bedeutend sind keramische Kurzfasern mit Längen im Bereich von 1 µm, aufgrund deren Lungengängigkeit, weswegen z.B. in Deutschland diese Fasern nicht mehr verarbeitet werden dürfen. Neue Entwicklungstrends ergeben sich in dem Bereich der keramischen Hohlfaser, da sich die keramische Hohlfaser prinzipiell in allen Bereichen, in denen Vollfasern etabliert sind, einsetzten lässt und zusätzlich weitere Marktsegmente erschließt.
- Keramische Hohlfasern sind kommerziell noch nicht verfügbar, jedoch in vielen Forschungseinrichtungen Thema aktueller Entwicklungen. Im Vergleich zu Vollfasern besitzen Hohlfasern eine hohe Biegefestigkeit, einen hohen Isolationsfaktor und dies bei einem geringeren Materialeinsatz von ca. 40 bis 60 Gew.-%, womit auch eine Gewichtsersparnis bei gleichem Volumen einhergeht. Hinzu kommt, dass die Hohlfasern von innen kühlbar sind und z. B. Wärme, Inhaltsstoffe etc. sehr gut abtransportieren können.
- Die wichtigsten Anwendungsfelder der keramischen Hohlfaser liegen in den Bereichen Metall- Polymer und Keramikmatrixarmierungen, künstliche Organe, Lichtleiterfasern, keramische Membrane, Feststoffelektrolyt für die Brennstoffzelle (SOFC), Tissue Engineering, Textilindustrie und der Herstellung extrem leichter, temperaturbelastender keramischer Bauteile z.B. Hitzeschilder oder Bremssysteme, die gezielt Wärme abführen können.
- Im Gegensatz zu planaren Strukturen werden mit der Hohlfaser dreidimensionale und auch rotationssymmetrische Strukturen erzeugt, die auch einen flexiblen Einsatz in zahlreichen Anwendungen der Mikrosystemtechnik erlauben.
- Für die Wirtschaftlichkeit der hier angesprochenen Anwendungen ist es entscheidend, dass die hergestellten Hohlfasern sich dicht packen lassen und damit ein hohes Oberflächen zu Volumenverhältnis garantieren. Idealerweise sind die Hohlfasern sehr klein und plastisch verformbar. Im Bereich der Brennstoffzelle z.B. würden große Außendurchmesser (im Bereich einiger mm) einer als Elektroylt nutzbaren Y-ZrO2 Hohlfaser zu hohen Kathodenwiderständen und zu geringen Leistungsdichten führen, im Bereich der Filtermembrane muss die pro Volumeneinheit zur Verfügung stehenden spezifischen Oberflächen sehr hoch sein, um auch große Filteranlagen wirtschaftlich noch realisieren zu können.
- Es hat nicht an Versuchen gefehlt, Hohlfasern über ein Spinnen von Lösungen, Gelen oder Solen entsprechender Ausgangssubstanzen zu gewinnen, die dann in einem zweiten Schritt über diverse chemische Reaktionen und physikalische Prozesse zu keramischen Fasern umgewandelt werden. Beschränkt werden diese Verfahren dadurch, dass die notwendigen Ausgangssubstanzen nicht immer verfügbar sind, oder dass sich nicht jede gewünschte Phase durch pyrolytische Zersetzung und Phasenumwandlung herstellen lässt oder aber, dass beim Sintern der Hohlfaser (wenn man eine keramische Hohlfaser herstellen will, muss man die organischen Prozesshilfsmittel entfernen) der Schrumpf und die damit verbundenen Spannungen in der Hohlfaser so groß werden, dass die Hohlfaser zerbricht. Bisher scheint auf solchem Weg nur die Darstellung von SiO2 also Glashohlfasern in größeren Mengen gelungen zu sein (Frauenhofer Institut für Silicatforschung in Würzburg).
- In
DE 197 01 751 A1 wird auch die Darstellung einer Al2O3 Mikrohohlfaser beschrieben, die über Spinnen einer Aluminiumoxydvorstufe [Al2(OH)5Cl] gewonnen wurde, aber die angesprochenen Nachtteile des Verfahrens sind offensichtlich. Zum einen stehen nicht alle notwendigen Ausgangsmaterialien zur Verfügung, zum anderen ist der Anteil an organischer Bindephase in den Fasern so groß, dass ein Sintern der Hohlfasern zu defektfreien keramischen Fasern nicht möglich ist. InDE 197 01 751 A1 werden einzelne Fasern zum Sintern langsam auf 1600 °C aufgeheizt, eine Stunde gehalten und langsam wieder abgekühlt, Aussagen über die Defektfreiheit .der Fasern fehlen ebenso wie Bilder der gebrannten Faser. Das lediglich eine grüne Faser visuell festgehalten wurde, lässt die prozesstechnischen Schwierigkeiten dieses Verfahrens erahnen. Aus eigenen Erfahrungen ist zu berichten, dass die Herstellung defektfreier, keramischer Bauteile so nicht möglich ist. Eine Variante des Spinnverfahren wird von dem gleichen Autor inDE 19730996 A1 beschrieben, indem keine Lösung, Sol oder Gel, sondern eine keramische Schmelze versponnen wird. Hierbei wird ein keramisches Ausgangspulver (Al2O3 + Alumosilikat) bei 2300 °C durch die Düse eines Werkzeuges geführt und versponnen. Die Düse muss aus einem Material bestehen, das diese extrem hohen Temperaturen aushält (Tantal oder Wolfram), was den Rahmen standardmäßig verfügbarer Düsen weit sprengt. Diese Variante des Spinnprozesses stellt, sollte sie überhaupt händelbar sein, sicherlich keine wirtschaftliche Alternative zur Produktion von Hohlfasern dar. - Um dichte keramische Hohlfasern mit geringem Außen- und Innendurchmesser und mit jedem gewünschten Material wirtschaftlich realisieren zu können, gibt es zwei Möglichkeiten. Entweder man verwendet Templets (Platzhalter), die in einem zweiten Schritt entfernt werden und somit den Übergang Faser zu Hohlfaser bewirken oder aber man verwendet sehr kleinen keramischen Teilchen, die dann in üblichen keramischen Formgebungsverfahren wie der Elektrophorese, der Extrusion oder dem Foliengießen zu Hohlfasern verarbeitet werden. Je kleiner die eingesetzten Teilchen sind, um so kleiner werden die realisierten Fasern.
- Will man hingegen poröse keramische Hohlfasern z.B. für die Filtration herstellen, so muss man, speziell wenn man in den Ultrafiltrationsbereich oder den Nanofiltrationsbereich vordringen will, entweder die gesamte Hohlfaser aus Nanoteilchen herstellen (nur so bekommt man in einem Sinterschritt die kleinen Poren) oder aber man muss eine Hohlfaser mit Schichtstruktur herstellen. Letzteres bedeutet einen grobporösen Träger mit einer dünnen Schicht aus Nanoteilchen zu überziehen. Kommerziell verfügbare Nanoteilchen hoher Qualität sind entweder amorph (SiO2) bzw. wie Böhmit (AIO(OH)), Vorstufen von echten Nanoteilchen (Aluminiumoxyd).
- Beim Brennen eines Mehrschichtsystem bestehend aus einem porösen Träger und einer Schicht aus z.B. Böhmit wird sich die Schicht aus Nanoteilchen immer an der Grenzfläche zum grobporösen Träger ablösen, da die Temperaturbehandlung ein Nachkristallisieren der Nanoteilchen auslöst, damit einen starken Schrumpf und starke Spannungen auslöst, die ihrerseits das Bauteil zerstören. Da es kommerziell keine kristallinen Nanoteilchen hoher Qualität (auf Primärteilchengröße redispergierbar) gibt, wurde dieses Problem noch nicht gelöst.
- Zusammengefasst bedeutet dies, dass sowohl die Darstellung von sehr kleinen Geometrien als auch die Darstellung von kleinen Poren für Filterelemente die Verarbeitung von sehr feinen Teilchen fordert. Geeignet ist hierbei bedingt der Einsatz von submikron-Teilchen und besonders geeignet der Einsatz von nanoskaligen, keramischen Teilchen mit Primärteilchengrößen bevorzugt kleiner 100 nm und besonders bevorzugt kleiner 20 nm. Für die Realisierung von Ultrafiltrations- und Nanofiltrationsmembrane oder die Herstellung von flexiblen, keramischen Fasern ist die Verwendung von Nanoteilchen unabdingbar.
- Die Herstellung keramischer Hohlfasern über die Extrusion feiner Teilchen wird in
WO 99/22852 US-Patent 5.707.584 der gleichen Autoren zu betrachten, wobei die Autoren inUS 5.707.584 in ihren Ansprüchen versuchen, sich einen Außendurchmesser der Hohlfaser zw. 500 µm und 3 mm zu patentieren. Aus eigenen Erfahrungen kann gesagt werden, dass mit dem beschriebenen Verfahren Außendurchmesser von 500 µm nicht zu erzielen sind, ein Außendurchmesser von 1 mm erscheint als untere Grenze realistisch. - Weiterhin bleibt festzuhalten, dass die Ansprüche nur poröse Hohlfasern umfassen, die ausschließlich zur Filtration genutzt werden können.
- In einem 1998 veröffentlichten Paper [Werkstoffwoche 1998, 12-15. Oct. 1998, München] beschreibt Gut et. al. (EMPA) seine Fortschritte bei der Produktion von Hohlfasern mittels Extrusion. So wird die Herstellung von keramischen Hohlfasern verschiedener Materialien im subµm-Bereich beschrieben, wobei der Außendurchmesser der extrudierten Hohlfasern 150 µm und der Innendurchmesser 90 µm betrug. Die Verwendung sehr feiner Düsen führte zu Verstopfungen des Mundstückes durch Agglomerate oder Überkörner. Ein weiteres Problem waren Entmischungen, die nach eigenen Angaben auftraten, wegen schlechter chemischer Abstimmung der Pulver/Binder Wechselwirkung. Auch wird die Darstellung dichtgesinterter Hohlfasern nur in einem Fall beschrieben, ansonsten gelang dies nicht, was lediglich für Anwendung in Filtersystemen ausreichend wäre.
- Zusammengefasst kann festgehalten werden, dass die Darstellung keramischer Hohlfasern hohes industrielles Interesse genießt, wobei eine Miniaturisierung für viele Anwendungsfelder von Vorteil bzw. für viele Anwendungen entscheidend ist. Die Darstellung keramischer Hohlfasern setzt die Verfügbarkeit des für die Anwendung geeigneten Pulvers voraus, ebenso ein geeignetes Herstellungsverfahren und ein Sintern zu einem defektfreien Bauteil. Übliche Spinnverfahren ausgehend von Lösungen, Solen und Gelen kommen als Formgebungsverfahren für die keramische Hohlfaser nicht in Betracht, da sich die hier verwendeten Vorstufen mit dem hohem Bindergehalt nicht in keramische Hohlfasern sondern maximal, wie es die Frauenhofer Gesellschaft gezeigt hat, in glasartige Hohlfasern umwandeln lassen. Da Templet-Verfahren in diesen Größenbereichen noch nicht wirtschaftlich beherrschbar sind, bleiben als mögliche Fertigungsverfahren für Hohlfasern nur die klassischen keramischen Formgebungsverfahren wie Elektrophorese (Versuchsstadium), Foliengießen (dünne Folien müssten gerollt und verklebt werden) oder die Extrusion (liefert direkt die Röhrenform). Letzteres wurde auch bereits zur Realisierung von Hohlfasern bzw. kleinen keramischen Röhren genutzt, wobei hier eine Grenze bezüglich der Miniaturisierung erreicht wurde, die von der minimal zur Verfügung stehenden Teilchengrößen der eingesetzten Materialien abhängt. Die kleinsten, patentierten Hohlfasern haben Außendurchmesser oberhalb 500 µm, die kleinsten, literaturbekannten Hohlfasern besitzen einen Außendurchmesser von 150 µm und ein Lumen (Innendurchmesser) von 90 µm. Alle genannten Hohlfasern sind aus mikroskaligen Teilchen aufgebaut und üblicherweise porös, da ein Sintern nahe theoretischer Dichte aufgrund von prozesstechnischen Schwierigkeiten nicht gelang. Die Verarbeitung von Nanoteilchen zu keramischen Hohlfasern wurde noch nicht beschrieben und kann als neu angesehen werden.
- Um defektfreie Hohlfasern für die Filtration im Ultrafiltrations- oder Nanofiltrationsbereich herzustellen, sind Porengrößen < 100 nm, bevorzugt < 50 nm und besonders bevorzugt < 10 nm nötig, die sich nur durch die Verwendung von Nanoteilchen ergeben. Ebenso lassen sich nur durch die Verarbeitung von Nanoteilchen miniaturisierte Hohlfasern mit Außendurchmessern < 500 µm, bevorzugt < 200 µm und besonders bevorzugt < 100 µm realisieren. Das einzige keramische Formgebungsverfahren, das direkt die tubulare Gestalt der Hohlfaser liefert ist die Extrusion. Für die Extrusion müssen keramische Massen aus Nanoteilchen entwickelt werden, deren Feststoffgehalt > 30 Vol.-%, besser > 35 Vol.-% ist, da sonst die Hohlfaser beim Brand starken Spannungen ausgesetzt ist und geschädigt werden kann. Damit der Prozess wirtschaftlich zu betreiben ist, sollte die Herstellung der keramischen Masse weiterhin mit üblichen keramischen Verarbeitungsaggregaten unter industriell üblichen Bedingungen erfolgen. Diese Forderungen, dass keramische Massen basierend auf Nanoteilchen mit hohen Füllgraden und mit üblichen Verarbeitungsaggregaten zu Hohlfasern verarbeitet werden, gehen weit über den Stand der Technik hinaus und wurden bisher noch nicht realisiert.
- Die Schwierigkeit liegt in der Verarbeitung von Nanoteilchen begründet. Bei Teilchen mit ca. 10 nm Teilchengröße erhöht sich die spezifische Pulveroberfläche auf bis zu 250 m2/g. Damit verbunden muss der Anteil an organischen Bindern drastisch erhöht werden, da die große vorhanden Oberfläche organische Prozesshilfemittel bindet, die dann nicht mehr für die Einstellung der Rheologie zur Verfügung stehen. Dies wiederum führt zu sehr kleinen Feststoffgehalten in den z. B. zu extrudierenden Pasten wodurch der lineare Schrumpf ebenso wie die Spannungen im Bauteil beim Sintern so groß werden, dass alle keramischen Bauteile wie z.B. die Hohlfasern zerstört werden. In der Literatur werden deshalb nur wenige Hinweise überhaupt gefunden, für die Verarbeitung von Nanoteilchen zu keramischen Bauteilen, da immer die Schwierigkeit besteht, für das Sintern ausreichend hohe Feststoffgehalte zu realisieren. Während die Verarbeitung von Pulverteilchen über den Schlickerguß, die Elektrophorese und das Foliengießen oftmals auch mit niedrigen Feststoffgehalten möglich ist (verarbeitet werden Suspensionen) müssen für keramische Formgebungsverfahren wie Siebdruck, Spritzgießen und Extrusion keramische Pasten hergestellt werden, mit geeigneter Rheologie und mit hohen Feststoffgehalten von > 30 Vol.-%, bevorzugt aber > als 35 Vol.-%.
- Die kleinsten Teilchengrößen, die literaturbekannt z.B. noch mittels Spritzguß verarbeitet wurden, haben eine Teilchengröße von 70 nm [Song and Evans J. Rheologie 40, 1996, 131 ff]. Unterhalb von 70 nm steigt die Primärteilchengröße drastisch an und kann bei Teilchen von 10 nm bis zu 250 m2/g betragen. Die dadurch erhöhten Wechselwirkungen zw. den Teilchen und den organischen Prozeßhilfsmitteln und die damit verbundene hohe Viskosität reduziert den Feststoffgehalt so drastisch, dass ein Spritzgießen dieser Teilchen nicht mehr möglich ist. Analog hierzu kann die Extrusion von Nanoteilchen gesehen werden, die ebenfalls nicht bekannt ist. Im Falle des Siebdruckes ist die Herstellung geeigneter Pasten auf Basis von Nanoteilchen sogar noch schwieriger, da bei der Extrusion und beim Spritzguß zur Dispergierung von Nanoteilchen, der Einsatz extrem hoher Scherkräfte über Knetaggregate prinzipiell möglich ist. Dies ist bei der Pastenherstellung für den Siebdruck nicht möglich, da die dort verwendeten organischen Prozesshilfsmittel üblicherweise nicht scherstabil sind. So beschreibt Kawahara et.al. [Key Engineering Materials Vol. 159-160, 1999, pp 175-180], die Situation im keramischen Siebdruck von Nanoteilchen wie folgt. Je größer die spezifische Oberfläche der Nanoteilchen ist, um so mehr organische Additive werden zur Einstellung der richtigen Pastenrheologie benötigt, da sonst die Viskosität der Paste so hoch wird, so dass sie nicht mehr zu verarbeiten ist. Da dann wiederum die Menge an organischen Prozesshilfsmitteln zu hoch ist, führt dies beim Ausbrennen der Organik zu Rissen und Defekten. Stand der Technik im Bereich des keramischen Siebdruckes mit Nanoteilchen sind z.B. Carolla et. al. [Adv. Mater. 1999, 11 No 11] die Versätze aus nanoskaligem Titandioxyd herstellen mit maximalen Füllstoffgehalten von 5,4 Vol.% (18,6 Gew.-%) oder Volkel et. al. [Symp. 7 Werkstoffwoche 1996 (1997) 601 ff] deren Versätze einen maximalen Füllstoffgehalt von 7,7 Vol.% besitzen. Das beste literaturbekannte Ergebnis für eine keramische Masse aus nanoskaligen Teilchen die mittels Siebdruck verarbeitet wurde lag bei einem Feststoffgehalt von 17 Vol.-% (55 Gew.-%). Mit all diesen Versätzen ist es unmöglich keramische Strukturen mittels Siebdruck zu fertigen.
- Die Aufgabe der vorliegenden Erfindung bestand darin, einen keramischen Versatz auf Basis nanoskaliger Teilchen und ein Verfahren zu seiner Herstellung bereitzustellen, bei dem der Feststoffgehalt der Nanoteilchen, also der Pulvergehalt im Versatz, so hoch ist, dass er sich mittels keramischer Extrusion zu Hohlfasern verarbeiten lässt. So hergestellte Hohlfasern sollten nach der Extrusion Außendurchmesser < 500 µm bevorzugt aber < 200 µm und besonders bevorzugt < 100 µm besitzen und sich über einen nachgeschalteten Prozess in keramische Hohlfasern umwandeln lassen. Die so hergestellten Hohlfasern sollten je nach Anwendungsbereich porös oder zu nahezu theoretischer Dichte gesintert werden.
- Diese Aufgabe wurde in überraschender Weise durch einen keramischen Versatz gelöst, umfassend mindestens ein keramisches Pulver mit einer Primärteilchengröße < 100 nm, bevorzugt < 50 nm sowie mindestens einem polymeren Binder und mindestens einer Oxycarbonsäure und mindestens einem Lösungsmittel.
- Alternativ ist auch die Zugabe eines Opfermaterials zum Versatz möglich, um gezielt Porengrößen einzustellen.
- Auf diese Weise gelingt es, ausreichend hohe Pulvergehalte im Versatz zu realisieren, so dass bei sehr kleinen nanoskaligen Pulvern eine keramische Formgebung über Extrusion überhaupt erst möglich wird. Durch die Verwendung der oberflächenaktiven Oxycarbonsäure lassen sich weiterhin sehr homogene Versätze realisieren, so dass literaturbekannte Probleme wie Entmischungen (siehe Gut et. al. (EMPA)) nicht auftraten. Dies hat eine enorm hohe Bedeutung für die darauf aufbauende Verfahrenstechnik und Produktenfinricklung. In besonders vorteilhafter Weise lassen sich die so hergestellten, extrudierten Hohlfasern bei deutlich niedrigeren Temperaturen in keramische Hohlfasern umwandeln, als im Stand der Technik bekannt. Im Vergleich zum Stand der Technik kann die Sintertemperatur um 100 bis 300 °C, je nach eingesetztem Material reduziert werden.
- Überraschenderweise wurde auch gefunden, dass sich die für die Hohlfaserproduktion genutzten keramischen Pasten auch für den keramischen Siebdruck eignen.
- Das eingesetzte keramische Pulver ist ein nanoskaliges, keramikbildendes Pulver. Dabei handelt es sich insbesondere um ein nanoskaliges Chalkogenid-, Carbid- oder Nitridpulver. Bei den Chalkogenidpulvern kann es sich um ein Oxid-, Sulfid-, Selenid- oder Telluridpulver handeln. Nanoskalige Oxidpulver sind bevorzugt. Es können alle Pulver eingesetzt werden, die üblicherweise für das Pulversintern verwendet werden. Beispiele sind (gegebenenfalls hydratisierte) Oxide wie ZnO, CeO2, SnO2, AI2O3, CdO, SiO2, Ti02, In2O3, ZrO2, Yttrium stabilisiertes ZrO2, Al2O3, La2O3, Fe2O3, Fe3O4, Cu2O, Ta2O5, Nb2O5, V2O5, MoO3, oder WO3, aber auch Phosphate, Silikate, Zirkonate, Aluminate und Stannate, Sulfide wie CdS, ZnS, PbS und Ag2S, Selenide wie GaSe, CdSe und ZnSe, Telluride wie ZnTe oder CdTe, Carbide wie WC, CdC2 oder SiC, Nitride wie BN, AIN, Si3N4 und Ti3N4, entsprechende Mischoxide wie Metall-Zinn-Oxide, z.B. Indium-Zinn-Oxid (ITO), Antimon-Zinn-Oxid, Fluor dotiertes Zinnoxid und Zn-dotiertes AI2O3, Leuchtpigmente mit Y- oder Eu-haltigen verbindungen, oder Mischoxide mit Perowskitstruktur wie BaTiO3, PbTiO3 und Bleizirkontitanat (PZT). Weiterhin können auch Mischungen der angegebenen Pulverteilchen eingesetzt werden.
- Der erfindungsmäßige Versatz enthält bevorzugt nanoskalige Teilchen, bei denen es sich um ein Oxid, Oxidhydrat, Chalkogenid, Nitrid oder Carbid von Si, Al, B, Zn, Zr, Cd, Ti, Ce, Sn, In, La, Fe, Cu, Ta, Nb, V, Mo oder W, besonders bevorzugt von Si, Zr, Al, B, W, und Ti handelt. Besonders bevorzugt werden Oxide eingesetzt. Bevorzugte nanoskalige anorganische Feststoffteilchen sind Aluminiumoxid, Zirkonoxid, Titanoxid, Siliciumcarbid, Wolframcarbid und Siliciumnitrid.
- Die im Versatz enthaltenen anorganischen Teilchen besitzen im allgemeinen eine durchschnittliche Primärteilchengröße im Bereich von 1 bis 300 nm oder 1 bis 100 nm, vorzugsweise 5 bis 50 nm und besonders bevorzugt 5 bis 20 nm. Die Primärteilchen können auch in agglomerierter Form vorliegen, bevorzugt liegen sie nicht agglomeriert bzw. im wesentlichen nicht agglomeriert vor.
- Zum Zwecke der Formgebung wird das Ausgangspulver mit einem organischen Binder vermischt, der für die notwendige Plastifizierung der Mischung sorgt. Der erfindungsgemäße keramische Versatz enthält mindestens einem polymeren Binder und mindestens eine Oxycarbonsäure und mindestens ein Lösungsmittel.
- Als polymeren Binder kann jedes thermoplastische Polymer verwendet werden, insbesondere solche, die für die Extrusion gebräuchlich sind. Beispiele für einsetzbare thermoplastische Polymere sind Polyolefine, wie Polyethylen, Dialkylphthalate (Dimethylphthalat, Diethylphthalat, Dipropylphthalat und Dibutylphthalat), Polypropylen und Poly-1-buten, Polymethyl-(meth)acrylat, Polyacrylnitril, Polystyrol und Polyvinylalkohol, Polyamide, Polyester, Polyacetate, Polycarbonate, lineare Polyurethane und entsprechende Copolymere, wie Ethylen-Vinylacetat (EVA)-Copolymere, sowie Biopolymere wie Cellulose, Methylcellulose, Ethylcellulose, Propylcellulose; Carboxy-modifizierte Cellulose, Ambergum u.a. wobei Polyacrylate, Polymethacrylate, Cellulose und Ambergum bevorzugt sind. Es kann ein thermoplastisches Polymer eingesetzt werden oder eine Mischung von zwei oder mehreren thermoplastischen Polymeren.
- In einer besonderen Ausführungsform des Verfahrens werden als Polymerkomponente Acrylate und Methacrylate verwendet, die unter Verwendung eines Radikalstarters nach der Formgebung, mittels z.B. UV-Bestrahlung oder thermisch, vernetzt werden und so die innerhalb des erfindungsgemäßen Versatzes notwendige polymere Komponente erst aufbauen. Hier eignen sich alle im Handel befindlichen Acrylat und Methacrylatverbindungen, bevorzugt aber die von der BASF vertriebenen Lucirin Marken und die Laromer-Marken, wie LR8765, ES81, LR8713, LR8986, PE55F, PE56F, LR 8793, LR8846, LR 9004, LR8799, LR8800, LR8907, LR8981, LR8992, PE55W, LR8895, LR8949, LR8983, LR8739, LR8987, LR8748, LR8863, LR8945, LR8967, LR8982, LR8812, LR8894, LR8997, LR8864, LR8889, LR8869, LR8996, LR8946, LR8899, LR8985.
- Als Radikalstarter können alle dem Fachmann bekannten Radialstarter genutzt werden. Dieses Verfahren eignet sich insbesondere, wenn als keramisches Formgebungsverfahren der Siebdruck eingesetzt wird und über eine Maskentechnik eine gezielte Strukturierung erzielt werden soll.
- Um die erforderliche Kompatibilität zwischen den keramischen Teilchen und der polymeren Matrix herzustellen werden grenzflächenaktive Moleküle eingesetzt. Diese Moleküle müssen einen bifunktionellen Aufbau besitzen, so dass sich ein Teil des Moleküls an die Teilchenoberfläche anbinden lässt und ein anderer Teil des Moleküls die Kompatibilität zur Matrix realisiert. Hier eignen sich speziell bifunktionelle Moleküle aus der Klasse der Carbonsäuren, der Carbonsäureamide, der Carbonsäureester, der Carbonsäurechloride, der ß-Diketone, der Alkylsilane und insbesondere der Oxycarbonsäuren. In einer bevorzugten Ausführungsform des Verfahrens werden als Oxycarbonsäuren die Trioxadecansäure und die Dioctaheptansäure verwendet.
- Als weitere Komponente des keramischen Versatzes enthält dieser ein organisches Lösungsmittel oder ein Gemisch von zwei oder mehreren organischen Lösungsmitteln, bevorzugt aus der Gruppe der Alkylenglykolen insbesondere Ethylenglycol, Propylenglykol, Diethylengykolmonobutylether, Diethylenglykolmonoallylether, Diethylenglykolmonohexyether, Diethylenglycolmonodecylether, Diethylenglyolmonoethylether und strukturell ähnliche Moleküle eingesetzt werden können. In einer bevorzugten Ausführungsform wird ein Alkoholgemisch aus Ethylenglykol und Diethylenglykolmonobutylether eingesetzt.
- In einer besonders bevorzugten Ausführungsform wird als Lösungsmittel Wasser eingesetzt. Mit Wasser als Lösungsmittel gelingt die Extrusion der Nanoteilchen zu Hohlfasern, lediglich der Siebdruck als keramisches Formgebungsverfahren für die erfindungsgemäße keramische Masse kann mit Wasser als Lösungsmittel nicht betrieben werden. Hier ist das organische Lösungsmittel bzw. die Kombination mehrerer organischer Lösungsmittel aufgrund der Rheologie zwingend vorgegeben.
- Die nanoskaligen Pulver werden mit dem Polymeren, der Oxacarbonsäure und dem Lösungsmittel bzw. Lösungsmittelgemisch in üblichen Misch- und Knetanlagen kompoundiert. Geeignete Vorrichtungen zum Compoundieren sind Kneter, Doppelschneckenextruder, Scherwalzenkompaktoren, Dreiwalzenstühle und Mörsermühlen. Der Misch- oder Knetprozeß wird so lange durchgeführt, bis eine homogene Mischung erreicht ist. Die geeigneten Parameter, wie Temperatur, erforderliche Scherwirkung u.a. zur optimalen Compoundierung sind dem Fachmann bekannt.
- Nach gründlicher Durchmischung der obigen Komponenten kann ein Teil des Dispergiermediums (vorzugsweise im Vakuum) wieder entfernt werden, bis die keramische Masse den für das jeweilige Formgebungsverfahren, bevorzugt Extrusion gewünschten Feststoffgehalt aufweist. Bevorzugte Feststoffgehalte der keramischen Massen liegen bei mindestens 20 Vol.% und bevorzugt bei > 25 Vol.-% und besonders bevorzugt bei > 30 Vol.-%. In besonders vorteilhafter Weise lassen sich die so hergestellten Versätze auch als Siebdruckpasten einsetzen.
- Nach der Formgebung kann der keramische Formkörper in herkömmlicher Weise getrocknet, entbindert und abschließend zum fertigen Sinterkörper weiterverarbeitet werden. Die in obiger Weise hergestellten, keramischen Körper, insbesondere die keramische Hohlfaser kann rissfrei getrocknet und gesintert werden.
- Selbstverständlich lässt sich das Formgebungsverfahren auch so modifizieren, dass die Extrusionsmasse in ein Aufgabebehälter oder einen Druckbehälter einer Spinnvorrichtung, wie sie üblicherweise in der Textil- oder Chemie-Faserfilament-Produktion eingesetzt wird, gegeben und bei einer Temperatur zw. Raumtemperatur und 300 °C durch die Spinnvorrichtung gefördert wird. Zweckmäßigerweise kann die Spinnvorrichtung mit einer Vielzahl von Düsen ausgelegt werden, deren Düsen eine Öffnungsweite zwischen 1 und 500 µm bevorzugt zw. 30 und 100 µm besitzt.
- Als Düsenmaterial lassen sich allem dem Fachmann bekannten Materialien nutzen, insbesondere Saphirdüsen und Düsen aus Edelstahl. Die Einzelfasern können direkt auf eine Spule mit stufenlos regulierbarer Rotationsgeschwindigkeit aufgewickelt werden.
- Mit Hilfe der erfindungsgemäßen, keramischen Masse lassen sich Hohlfaser herstellen, die wiederum zur Herstellung von keramische Membrane mit Porengrößen zw. 0,5 nm und 1000 nm dienen, bevorzugt zwischen 0,5 nm und 200 nm und besonders bevorzugt zw. 1 nm und 100 nm. Um die gewünschte Porengröße in der Hohlfaser zu realisieren, kann die aus nanoskaligen Ausgangsmaterialien aufgebaute Hohlfaser bei der entsprechenden Temperatur gebrannt werden, oder aber die keramische Masse wird durch die Zugabe eines Opfermaterials erweitert. Das Opfermaterial ist eine aus Kohlenstoff aufgebaute organische oder anorganische Komponente und wird in Mengen zw. 5 und 20 Gew.-% zugesetzt.
- Die folgenden Beispiele erläutert die Erfindung, ohne sie einzuschränken
- Die Verarbeitung von nanoskaligem Yttrium stabilisiertem Zirkonoxyd erfolgt in einem kommerziell verfügbaren Mischaggregat, wobei der Pulvergehalt auf 72 Gew.-% (31 Vol.%) eingestellt wird. Hierzu werden 300 g eines Lösungsmittelgemisch aus Ethylenklykol und Diethylenglykolmonobutylether im Verhältnis 1:1 vorgelegt. Zu dieser Mischung werden 700 g eines mit Dioctaheptansäure modifizierten, nanoskaligen Zirkonoxides gegeben. Nach weiterer Zugabe von 140 g eines acrylatbasierten Bindesystemes (Lacromer, BASF) sowie eines Radikalstarters wird die Mischung homogenisiert. Die so hergestellte Paste lässt sich über Siebdruck zu einer flächigen Schicht auf einem Keramik- oder einem Metallsubstrat verdrucken. Über eine Maskentechnik und die Belichtung mit UV-Strahlen lassen sich über Polymerisation extrem feine Strukturen realisieren. Die nicht polymerisierten Bereiche können mittels Waschen entfernt werden.
- Die Verarbeitung von nanoskaligem, Yttrium dotierten Zirkonoxyd über Extrusion erfolgt in einem kommerziell verfügbaren Mischaggregat, wobei der Pulvergehalt auf 72 Gew.-% (31 Vol.%) eingestellt wird. Hierzu werden 300 g eines Lösungsmittelgemisch aus Ethylenklykol und Diethylenglykolmonobutylether im Verhältnis 1:1 vorgelegt. Zu dieser Mischung werden 700 g eines mit Dioctaheptansäure modifizierten, nanoskaligen Zirkonoxides gegeben. Nach weiterer Zugabe von 140 g eines acrylatbasierten Bindesystemes (Lacromer, BASF) sowie eines Radikalstarters wird die Mischung homogenisiert. Die so hergestellte Paste lässt sich mittels Extrusion zu keramischen Hohlfasern weiterverarbeiten. Hierzu wird die keramische Masse durch eine Saphirdüse mit einem äußeren Düsendurchmesser von 100 µm und einem innen zentrierten Dorn gefördert. Insgesamt wurden 7 dieser Düsen in eine Stahlfassung eingelegt und bei Extrusionsdrücken zw. 10 und 30 MPa extrudiert. Die einzelnen Fasern wurden abschließend auf einer Spule mit stufenlos regulierbarer Rotationsgeschwindigkeit aufgenommen, wobei die Abzugsgeschwindigkeit bei fünf Meter pro Sekunde lag. Die Mikrohohlfaser besaß nach dem Vernetzen und Trocknen einen äußeren Durchmesser von 70 µm und einen Innendurchmesser von 50 µm. Aus dieser Endlosfaser wurden 20 cm lange Hohlfasern abgeschnitten, die entweder gestapelt oder untereinander verwebt wurden. Nach dem Entbindern der organischen Bestandteile und zweistündigem Sintern bei 1050 °C wurde eine keramische Hohlfaser bzw. ein Gewebe aus keramischen Hohlfasern erhalten. Die keramische Hohlfaser hatte einen Außendurchmesser von 56 µm und einen Innendurchmesser von 40 µm, bei einer Dichte von 97 % der theoretischen Dichte.
- Verfahren analog Beispiel 2, jedoch wurden zu dem Versatz 65 g einer, als Opfermaterials dienenden Aktivkohle hinzugegeben. Nach dem zweistündigen Sintern bei 1050 °C wurde eine poröse Hohlfaser erhalten. Die Porosität betrug 35 %, die mittlere Porengröße lag bei 5 nm.
- Die Verarbeitung von nanoskaligem Alluminumoxid über Extrusion erfolgt in einem kommerziell verfügbaren Mischaggregat, wobei der Pulvergehalt auf 71 Gew.-% (37 Vol.-%) eingestellt wird. Hierzu werden 300 g eines Lösungsmittelgemisch aus Ethylenklykol und Diethylenglykolmonobutylether im Verhältnis 1:1 vorgelegt. Zu dieser Mischung werden 700 g eines mit Trioxadecansäure modifizierten, nanoskaligen Zirkonoxides gegeben. Nach weiterer Zugabe von 140 g eines acrylatbasierten Bindesystemes (Lacromer, BASF) sowie eines Radikalstarters wird die Mischung homogenisiert. Die so hergestellte Paste lässt sich mittels Extrusion zu keramischen Hohlfasern weiterverarbeiten. Hierzu wird die keramische Masse durch eine Saphirdüse mit einem äußeren Düsendurchmesser von 100 µm und einem innen zentrierten Dorn gefördert, Insgesamt wurden 7 dieser Düsen in eine Stahlfassung eingelegt und bei Extrusionsdrücken zw. 10 und 30 MPa extrudiert. Die einzelnen Fasern wurden abschließend auf einer Spule mit stufenlos regulierbarer Rotationsgeschwindigkeit aufgenommen, wobei die Abzugsgeschwindigkeit bei fünf Meter pro Sekunde lag.
- Die Mikroholfaser besaß nach dem Vernetzen und Trocknen einen äußeren
- Durchmesser von 77 µm und einen Innendurchmesser von 59 µm. Aus dieser Endlosfaser wurden 20 cm lange Hohlfasern abgeschnitten, die entweder gestapelt oder untereinander verwebt wurden. Nach dem Entbindern der organischen Bestandteile und zweistündigem Sintern bei 1200 °C wurde eine keramische Hohlfaser bzw. ein Gewebe aus keramischen Hohlfasern erhalten. Die keramische Hohlfaser hatte einen Außendurchmesser von 60 µm und einen Innendurchmesser von 45 µm, bei einer Dichte von 98 % der theoretischen Dichte.
- Die Verarbeitung von nanoskaligem Zirkonoxyd über Extrusion erfolgt in einem kommerziell verfügbaren Mischaggregat, wobei der Pulvergehalt auf 72 Gew.-% (31 Vol.-%) eingestellt wird. Hierzu werden 300 g eines Lösungsmittelgemisch aus Ethylenklykol und Diethylenglykolmonobutylether im Verhältnis 1:1 vorgelegt. Zu dieser Mischung werden 700 g eines mit Dioctaheptansäure modifizierten, nanoskaligen Zirkonoxides gegeben. Nach weiterer Zugabe von 140 g eines acrylatbasierten Bindesystemes (Lacromer, BASF) sowie eines Radikalstarters wird die Mischung homogenisiert. Die so hergestellte Paste lässt sich mittels Extrusion zu keramischen Hohlfasern weiterverarbeiten. Hierzu wird die keramische Masse durch eine Saphirdüse mit einem äußeren Düsendurchmesser von 100 µm und einem innen zentrierten Dorn gefördert. Insgesamt wurden 7 dieser Düsen in eine Stahlfassung eingelegt und bei Extrusionsdrücken zw. 10 und 30 MPa extrudiert. Die einzelnen Fasern wurden abschließend auf einer Spule mit stufenlos regulierbarer Rotationsgeschwindigkeit aufgenommen, wobei die Abzugsgeschwindigkeit bei fünf Meter pro Sekunde lag.
- Die Mikroholfaser besaß nach dem Vernetzen und Trocknen einen äußeren Durchmesser von 70 µm und einen Innendurchmesser von 50 µm. Aus dieser Endlosfaser wurden 20 cm lange Hohlfasern abgeschnitten, die entweder gestapelt oder untereinander verwebt wurden. Nach dem Entbindern der organischen Bestandteile und zweistündigem Sintern bei 950°C wurde eine poröse keramische Hohlfaser bzw. ein Gewebe aus porösen keramischen Hohlfasern erhalten. Die keramische Hohlfaser hatte einen Außendurchmesser von 60 µm, einen Innendurchmesser von 44 µm und eine Porosität von 37 %.
Claims (19)
- Verfahren zur Herstellung von keramischen Hohlfasern aus nanoskaligen Pulvern, dadurch gekennzeichnet, daß mana) eine keramische Masse herstellt, indem man ein nanoskaliges Metalloxid-, -carbid-, -nitrid- oder -sulfid-Pulver mit einer Oxycarbonsäure umsetzt, mit einer Mischung von mindestens einem Lösungsmittel und mindestens einem polymeren Binder zu einer keramischen Masse kompoundiert,b) die keramische Masse zu Hohlfaserrohlingen extrudiert oder spinnt undc) die Rohlinge nach üblichen Sinterverfahren sintert.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die keramische Masse einen Feststoffgehalt von mindestens 20 Vol.-%, vorzugsweise > 25 Vol.-% und insbesondere > 30 Vol.-% besitzt.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das nanoskalige Pulver Aluminiumoxid, Zirkonoxid, Yttrium stabilisiertes Zirkonoxyd, Titanoxid, Siliciumcarbid, Wolframcarbid und/oder Siliciumnitrid ist.
- Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die eingesetzte Oxycarbonsäure bevorzugt Trioxadecansäure oder Dioctaheptansäure ist.
- Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das eingesetzte Lösungsmittel Wasser und/oder Ethylenglycol, Propylenglykol, Diethylenglykolmonoethylether, Diethylenglykolmonobutylether, insbesondere eine Mischung aus Ethylenglykol und Diethylenglykolmonobutylether umfaßt.
- Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man als polymeren Binder Cellulose, Methylcellulose, Ethylcellulose, Polyvinylalkohol, Ambergum, ein Polyacrylat und/oder ein Polymethacrylat einsetzt.
- Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man als polymeren Binder mindestens ein Acrylat und/oder Methacrylat einsetzt, das man unter Verwendung eines Radikalstarters nach der Formgebung polymerisiert.
- Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Außendurchmesser der keramischen Hohlfaser < 500 µm, vorzugsweise < 200 µm und insbesondere < 100 µm beträgt.
- Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Extrusionsmasse in einen Aufgabebehälter oder einen Druckbehälter einer üblichen Spinnvorrichtung gegeben und bei einer Temperatur zwischen Raumtemperatur und 300°C durch die Spinnvorrichtung gefördert wird.
- Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß sich die Hohlfasern zu Dichten > 97 % der theoretischen Dichte sintern lassen.
- Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß man poröse Hohlfasern herstellt, deren Porengröße in Abhängigkeit von den Bedingungen des Sinterns (Temperatur, Druck, Zeit, Atmosphäre) zwischen 0,5 nm und 1000 nm, vorzugsweise zwischen 0,5 nm und 200 nm und insbesondere zwischen 0,9 nm und 100 nm liegt.
- Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß man zur Erzeugung von porösen Hohlfasern zu der keramischen Masse Aktivkohle, vorzugsweise in einer Menge von 5 bis 20 Gew.%, als Templet zugibt.
- Keramische Hohlfasern mit einem Außendurchmesser von < 500 µm, vorzugsweise < 200 µm und insbesondere < 100 µm, erhältlich durch das Verfahren nach einem der Ansprüche 1 bis 12.
- Keramische Hohlfasern, gekennzeichnet durch einen Außendurchmesser von < 500 µm, vorzugsweise < 200 µm und insbesondere < 100 µm, enthaltend das Reaktionsprodukt aus einem nanoskaligen Metalloxid-, -carbid-, -nitrid- oder -sulfid-Pulver mit einer Oxycarbonsäure und mindestens einem polymeren Binder.
- Verwendung der keramischen Masse nach Anspruch 1 zur Verformung mittels keramischem Siebdruck und, ggf. in Kombination mit einer geeigneten Maskentechnik, anschließendem Aushärten.
- Verwendung der keramischen Hohlfasern nach Anspruch 13 oder 14 zur Herstellung eines Gewebes, daß sich formstabil sintern läßt.
- Verwendung der keramischen Hohlfasern nach Anspruch 13 oder 14 für Metall-, Polymer- und Keramikmatrixarmierungen, für künstliche Organe, für Bauteile der Mikrosystemtechnik, für Lichtleiterfasern, für keramische Membrane, für den Feststoffelektrolyt in der Brennstoffzelle (SOFC), für Tissue Engineering und für die Herstellung extrem leichter, temperaturbelasteter keramischer Bauteile wie Hitzeschilder oder Bremssysteme.
- Verwendung der keramischen Hohlfasern nach Anspruch 13 oder 14 zur Herstellung von keramischen Membranen oder zur Herstellung des Festkörperelektrolyten in der Hochtemperatur-Brennstoffzelle (SOFC).
- Verwendung der mittels keramischem Siebdruck nach Anspruch 15 geformten Strukturen für Isolationsschichten, Funktionsschichten, Schutzschichten, für Sensoren, Aktoren und in elektronischen Bauteilen und Displays.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2002/009698 WO2004020362A1 (de) | 2002-08-30 | 2002-08-30 | Keramische hohlfasern hergestellt aus nanoskaligen pulverteilchen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1537060A1 EP1537060A1 (de) | 2005-06-08 |
EP1537060B1 true EP1537060B1 (de) | 2008-10-15 |
Family
ID=31970237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02807705A Expired - Lifetime EP1537060B1 (de) | 2002-08-30 | 2002-08-30 | Keramische hohlfasern hergestellt aus nanoskaligen pulverteilchen |
Country Status (8)
Country | Link |
---|---|
US (1) | US7922964B2 (de) |
EP (1) | EP1537060B1 (de) |
JP (1) | JP2005538016A (de) |
AT (1) | ATE411264T1 (de) |
AU (1) | AU2002368195A1 (de) |
DE (1) | DE50212920D1 (de) |
ES (1) | ES2314133T3 (de) |
WO (1) | WO2004020362A1 (de) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070152364A1 (en) * | 2005-11-16 | 2007-07-05 | Bilal Zuberi | Process for extruding a porous substrate |
KR100599774B1 (ko) * | 2004-06-07 | 2006-07-13 | 삼성에스디아이 주식회사 | 연료전지용 막/전극 접합체, 이의 제조방법 및 이를포함하는 연료전지 |
CA2570368C (en) * | 2004-06-17 | 2011-06-21 | Philippe Pierre Marie Joseph Doneux | Acoustic laminate |
US7640732B2 (en) * | 2005-11-16 | 2010-01-05 | Geo2 Technologies, Inc. | Method and apparatus for filtration of a two-stroke engine exhaust |
US20090166910A1 (en) * | 2005-11-16 | 2009-07-02 | Geo2 Technologies, Inc. | System and Method for Twin Screw Extrusion of a Fibrous Porous Substrate |
US8038759B2 (en) * | 2005-11-16 | 2011-10-18 | Geoz Technologies, Inc. | Fibrous cordierite materials |
US7938877B2 (en) * | 2005-11-16 | 2011-05-10 | Geo2 Technologies, Inc. | Low coefficient of thermal expansion materials including modified aluminosilicate fibers and methods of manufacture |
US7938876B2 (en) * | 2005-11-16 | 2011-05-10 | GE02 Technologies, Inc. | Low coefficient of thermal expansion materials including nonstoichiometric cordierite fibers and methods of manufacture |
US20100048374A1 (en) * | 2005-11-16 | 2010-02-25 | James Jenq Liu | System and Method for Fabricating Ceramic Substrates |
US8039050B2 (en) * | 2005-12-21 | 2011-10-18 | Geo2 Technologies, Inc. | Method and apparatus for strengthening a porous substrate |
JP2008078033A (ja) * | 2006-09-22 | 2008-04-03 | Central Res Inst Of Electric Power Ind | 固体酸化物形燃料電池 |
US7781372B2 (en) * | 2007-07-31 | 2010-08-24 | GE02 Technologies, Inc. | Fiber-based ceramic substrate and method of fabricating the same |
US20090169884A1 (en) * | 2007-12-28 | 2009-07-02 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Hollow organic/inorganic composite fiber , hollow ceramic fiber, and methods of making the same |
JP2009245628A (ja) * | 2008-03-28 | 2009-10-22 | Mitsubishi Materials Corp | 固体電解質及び平板型の固体酸化物形燃料電池 |
US9790343B2 (en) | 2008-06-12 | 2017-10-17 | Avery Dennison Corporation | Porous material and method for producing the same |
ES2657456T3 (es) * | 2008-06-12 | 2018-03-05 | Avery Dennison Corporation | Material y método para producirlo |
US8268041B2 (en) * | 2008-06-30 | 2012-09-18 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Hollow organic/inorganic composite fibers, sintered fibers, methods of making such fibers, gas separation modules incorporating such fibers, and methods of using such modules |
GB0812486D0 (en) * | 2008-07-08 | 2009-04-29 | Bae Systems Plc | Electrical Power Sources |
WO2010040243A1 (en) * | 2008-10-07 | 2010-04-15 | Empa Eidgenössische Materialprüfungs- Und Forschungsanstalt | Process and device for manufacturing shaped composite, the shaped composite and the shaped inorganic article derived from it |
CH699805A2 (de) * | 2008-10-30 | 2010-04-30 | Huber+Suhner Ag | Koaxialkabel. |
CN102448908A (zh) * | 2009-05-29 | 2012-05-09 | 康宁股份有限公司 | 加载微粒的纤维及其制备方法 |
US8461462B2 (en) * | 2009-09-28 | 2013-06-11 | Kyocera Corporation | Circuit substrate, laminated board and laminated sheet |
EP2536673A1 (de) * | 2010-02-17 | 2012-12-26 | The University of Queensland | Verfahren zur herstellung einer hohlfaser-keramikmembran |
EE05664B1 (et) * | 2010-12-31 | 2013-06-17 | Tartu �likool | Meetod mikrotorude valmistamiseks alkoksiididest ja mikrotorude kasutamine |
US8388744B1 (en) * | 2011-08-30 | 2013-03-05 | General Electric Company | Systems and methods for using a boehmite bond-coat with polyimide membranes for gas separation |
EP2888059B1 (de) | 2012-08-21 | 2018-10-10 | Avery Dennison Corporation | System zur herstellung poröser filme, fasern, kugeln und anderer artikel |
CN103933868A (zh) * | 2013-01-17 | 2014-07-23 | 华东理工大学 | 分离甲醇-水陶瓷基中空纤维渗透汽化复合膜的制备方法 |
US9504550B2 (en) | 2014-06-26 | 2016-11-29 | Vertera, Inc. | Porous devices and processes for producing same |
US9517593B2 (en) | 2014-06-26 | 2016-12-13 | Vertera, Inc. | Apparatus and process for producing porous devices |
US9085665B1 (en) | 2014-12-31 | 2015-07-21 | Vertera, Inc. | Method for producing porous material |
US9498922B2 (en) | 2014-06-26 | 2016-11-22 | Vertera, Inc. | Apparatus and process for producing porous devices |
CN104372293B (zh) * | 2014-08-22 | 2016-08-24 | 华永校 | 一种制备微孔贯通二氧化硅烧结体蒸镀材料的方法 |
USD815281S1 (en) | 2015-06-23 | 2018-04-10 | Vertera, Inc. | Cervical interbody fusion device |
CN108057874B (zh) * | 2016-10-31 | 2023-03-17 | 张志国 | 一种三维网络陶瓷骨架增强体金属基复合耐材料及其制备方法 |
CN109721339A (zh) * | 2019-02-15 | 2019-05-07 | 江苏埃梯恩膜过滤技术有限公司 | 一种制备基于纳米级氧化物颗粒的陶瓷中空纤维的方法 |
CN113540446B (zh) * | 2021-07-05 | 2022-10-25 | 常德昆宇新能源科技有限公司 | 一种锂离子电池负极材料及其制备方法 |
CN114505050B (zh) * | 2022-02-28 | 2024-06-21 | 江苏惠尔船舶技术有限公司 | 一种基于静电纺丝技术的锆掺杂介孔分子筛纤维制备方法 |
DE202022101351U1 (de) | 2022-03-14 | 2022-04-14 | Thüringisches Institut für Textil- und Kunststoff-Forschung Rudolstadt e.V. | Hochgefüllte prekeramische Fasern als Basismaterial für die Herstellung von Knochenersatzkörpern |
CN114804894A (zh) * | 2022-07-01 | 2022-07-29 | 中国人民解放军国防科技大学 | 一种多元复相微纳陶瓷纤维及其制备方法、应用 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4571414A (en) * | 1984-04-11 | 1986-02-18 | General Electric Company | Thermoplastic molding of ceramic powder |
JPS63270368A (ja) * | 1987-04-30 | 1988-11-08 | Okura Ind Co Ltd | セラミツクス多孔体の製造方法 |
NL9300642A (nl) * | 1993-04-15 | 1994-11-01 | Tno | Werkwijze voor de vervaardiging van keramische holle vezels, in het bijzonder holle vezelmembranen voor microfiltratie, ultrafiltratie en gasscheiding. |
FR2776287B1 (fr) * | 1998-03-20 | 2000-05-12 | Ceramiques Tech Soc D | Materiau ceramique poreux massif homogene |
US6376590B2 (en) * | 1999-10-28 | 2002-04-23 | 3M Innovative Properties Company | Zirconia sol, process of making and composite material |
DE10114496B4 (de) * | 2001-03-25 | 2008-11-27 | Itn Nanovation Ag | Verfahren zur Herstellung keramischer Massen und keramischer Hohlfasern, keramische Massen, ihre Verwendung und keramische Hohlfasern |
DE10119538C2 (de) * | 2001-04-21 | 2003-06-26 | Itn Nanovation Gmbh | Verfahren zur Beschichtung von Substraten und deren Verwendungen |
-
2002
- 2002-08-30 AT AT02807705T patent/ATE411264T1/de not_active IP Right Cessation
- 2002-08-30 JP JP2004531758A patent/JP2005538016A/ja not_active Ceased
- 2002-08-30 EP EP02807705A patent/EP1537060B1/de not_active Expired - Lifetime
- 2002-08-30 ES ES02807705T patent/ES2314133T3/es not_active Expired - Lifetime
- 2002-08-30 US US10/525,700 patent/US7922964B2/en not_active Expired - Fee Related
- 2002-08-30 WO PCT/EP2002/009698 patent/WO2004020362A1/de active Application Filing
- 2002-08-30 AU AU2002368195A patent/AU2002368195A1/en not_active Abandoned
- 2002-08-30 DE DE50212920T patent/DE50212920D1/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
ES2314133T3 (es) | 2009-03-16 |
DE50212920D1 (de) | 2008-11-27 |
US20060154057A1 (en) | 2006-07-13 |
EP1537060A1 (de) | 2005-06-08 |
ATE411264T1 (de) | 2008-10-15 |
US7922964B2 (en) | 2011-04-12 |
WO2004020362A1 (de) | 2004-03-11 |
JP2005538016A (ja) | 2005-12-15 |
AU2002368195A1 (en) | 2004-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1537060B1 (de) | Keramische hohlfasern hergestellt aus nanoskaligen pulverteilchen | |
DE10119538C2 (de) | Verfahren zur Beschichtung von Substraten und deren Verwendungen | |
DE69009934T2 (de) | Keramischer Filter und Verfahren zu seiner Herstellung. | |
EP0817723B1 (de) | Verfahren zur herstellung von schwindungsangepassten keramik-verbundwerkstoffen | |
EP0874788B1 (de) | Mikroholfaser aus keramischem Material sowie deren Verwendung | |
EP2051659B1 (de) | Verfahren zum herstellen einer porösen, keramischen oberflächenschicht | |
DE10220086A1 (de) | Verfestigung mineralischer Werkstoffe | |
EP1934156A1 (de) | Keramik aus präkeramischen papier- oder pappstrukturen, verfahren zu ihrer herstellung und ihre verwendung | |
DE10114496B4 (de) | Verfahren zur Herstellung keramischer Massen und keramischer Hohlfasern, keramische Massen, ihre Verwendung und keramische Hohlfasern | |
DE69123470T2 (de) | Zusammengesetztes Dielektrikum und seine Verwendung für eine gedruckte Leiterplatte | |
DE60208464T2 (de) | Ceriumoxid enthaltende Festelektrolyte | |
EP0564982A2 (de) | Keramischer Formkörper aus Aluminiumoxid mit hoher Metallisierungshaftfestigkeit | |
DE4446533C1 (de) | Verfahren zur Herstellung von keramischen Verbundkörpern und deren Verwendung | |
DE3840137C1 (de) | ||
EP0775672A1 (de) | Verfahren zur Herstellung eines flachen, glasartigen oder keramischen Formkörpers mit strukturierter Oberfläche | |
DE3854979T2 (de) | Formkörper aus keramischem Werkstoff und seine Herstellung | |
EP0441219A1 (de) | Giessmasse zur Herstellung keramischer Grünfolien und ihre Verwendung | |
DE19701751B4 (de) | Mikrohohlfaser aus keramischen Material, ein Verfahren zu deren Herstellung sowie deren Verwendung | |
EP0739864A1 (de) | Keramischer Werkstoff sowie Verfahren zu seiner Herstellung | |
DE19817482C2 (de) | Verfahren zur Herstellung von Dickschichten aus ferroelektrischen Keramiken | |
DE19828168C2 (de) | Verfahren zur Herstellung einer keramischen Schicht auf einen keramischen Grünkörper und Verwendung des so erhaltenen Produkts | |
EP2425885B1 (de) | Keramischer Filter sowie Verfahren zur Erstellung eines keramischen Filters | |
EP0230976A2 (de) | Verfahren zur Herstellung einer Schutzschicht | |
DE19935271A1 (de) | Matrixmaterial für Brennstoffzellen sowie Verfahren zu seiner Herstellung | |
DE19758431B4 (de) | Verfahren zur Herstellung von Mikrohohlfasern und deren Weiterverarbeitung zu Formkörpern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050330 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
111Z | Information provided on other rights and legal means of execution |
Free format text: ATBEBGCHCYCZDEDKEEESFIFRGBGRIEITLILUMCNLPTSESKTR Effective date: 20050405 |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ITN NANOVATION AG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: RIEDERER HASLER & PARTNER PATENTANWAELTE AG Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50212920 Country of ref document: DE Date of ref document: 20081127 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2314133 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090316 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081015 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081015 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081015 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081015 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090115 |
|
26N | No opposition filed |
Effective date: 20090716 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081015 |
|
BERE | Be: lapsed |
Owner name: ITN NANOVATION A.G. Effective date: 20090831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL Ref country code: NL Ref legal event code: V1 Effective date: 20100301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100301 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140828 Year of fee payment: 13 Ref country code: GB Payment date: 20140828 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140926 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50212920 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150830 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150830 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150831 |