WO2003091291A1 - Procede de production de polymere (meth)acrylique termine par un groupe silyle reticulable - Google Patents

Procede de production de polymere (meth)acrylique termine par un groupe silyle reticulable Download PDF

Info

Publication number
WO2003091291A1
WO2003091291A1 PCT/JP2003/005018 JP0305018W WO03091291A1 WO 2003091291 A1 WO2003091291 A1 WO 2003091291A1 JP 0305018 W JP0305018 W JP 0305018W WO 03091291 A1 WO03091291 A1 WO 03091291A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
meth
group
compound
acrylic polymer
Prior art date
Application number
PCT/JP2003/005018
Other languages
English (en)
French (fr)
Inventor
Shigeki Ohno
Yoshiki Nakagawa
Kenichi Kitano
Masanao Takeda
Nao Fujita
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to US10/506,103 priority Critical patent/US7439308B2/en
Priority to EP03719143A priority patent/EP1498433A4/en
Publication of WO2003091291A1 publication Critical patent/WO2003091291A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/02Neutralisation of the polymerisation mass, e.g. killing the catalyst also removal of catalyst residues
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1802C2-(meth)acrylate, e.g. ethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/26Removing halogen atoms or halogen-containing groups from the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/01Atom Transfer Radical Polymerization [ATRP] or reverse ATRP

Definitions

  • the present invention relates to a method for producing a (meth) acrylic polymer having a crosslinkable silyl group at a terminal by using atom transfer radical polymerization, a polymer obtained by this production method, and a curable composition.
  • a (meth) acrylic polymer having a crosslinkable silyl group at a terminal can be a crosslinked body having a bridge point at the polymer end after crosslinking, so that an elastic body having a large molecular weight between crosslinking points can be provided.
  • the polymer can be used for highly weatherable materials. This polymer is particularly suitable for materials requiring rubber elasticity, such as sealing materials and adhesives.
  • Examples of the production of a (meth) acrylic polymer having a crosslinkable silyl group at a terminal include, for example, a method disclosed in Japanese Patent Publication No. 3-14068, in which a (meth) acrylic monomer is crosslinked with a crosslinkable silyl group-containing mercaptan, A method for polymerizing in the presence of a disulfide having a reactive silyl group and a radical polymerization initiator having a crosslinkable silyl group has been disclosed. A method of polymerizing in the presence of a crosslinkable silyl group-containing hydrosilane compound or tetrahalosilane is disclosed. In Japanese Patent Application Laid-Open No.
  • an acryl-based polymer having a hydroxyl group at a terminal is first synthesized by using a large amount of a hydroxyl group-containing polysulfide with respect to an initiator, and further converted to a hydroxyl group. It describes a method for producing an acrylic polymer having a crosslinkable silyl group at a terminal, which is characterized by the following.
  • Japanese Patent Application Laid-Open No. 5-977921 discloses a stable carbani group having a crosslinkable silyl group.
  • the above method requires a specific functionalizing agent, and causes economic and equipment problems.
  • a hetero atom is introduced into the polymer main chain skeleton, and the high heat resistance and the high weather resistance characteristic of the (meth) acrylic polymer are impaired.
  • atom transfer radical polymerization which is one of living radical polymerization (for example, Matyjaszewski et al., J. Am. Chem. 3 ⁇ 4 oc. lecules, 1995, 28, 7901, Science 1 996, 2772, 866.
  • a (meth) acrylic polymer having a functional group Using this method, a (meth) acrylic polymer having a crosslinkable silyl group at the terminal can be produced.
  • the present inventors have produced a (meth) acrylic polymer having a halogen at the terminal by atom transfer radical polymerization, and after converting a terminal halogen group into a alkenyl group-containing substituent, convert an alkenyl group into a crosslinkable silyl group.
  • a method for converting to a group-containing substituent has been developed (Japanese Patent Application Laid-Open Nos. 09-27, 2714, 11-04, 3512, 11-080250, and 2000-44626). etc). In these methods, since a functional group is surely introduced into the terminal of the polymer, a good cured product can be obtained.
  • a method for converting an alkenyl group into a crosslinkable silyl group-containing substituent includes, for example, a hydrosilylation reaction in which a hydrosilane compound having a crosslinkable silyl group is added to the alkenyl group.
  • a hydrosilylation reaction it is preferable to use a transition metal complex as a reaction catalyst in that the process is simplified. Disclosure of the invention
  • the polymerization catalyst used in the above atom transfer radical polymerization is a catalyst poison for the hydrosilylation reaction of the present invention. If a polymerization catalyst (catalyst poison) remains in a polymer having an alkenyl group at the end, a large amount of a hydrosilylation catalyst (such as a platinum complex) is required to carry out the hydrosilylation reaction of the alkenyl group. There is. However, the hydrosilylation catalyst often turns brown, dark brown, or black after the hydrosilylation reaction. Therefore, when a large amount of the hydrosilylation catalyst is used, the polymer may be significantly colored and the product value may be reduced.
  • a polymerization catalyst catalyst poison
  • a hydrosilylation catalyst such as a platinum complex
  • a platinum complex which is a typical hydrosilylation catalyst, is expensive, and it is not economically preferable to use a large amount of the platinum complex (that is, the raw material cost increases).
  • it is generally effective to raise the reaction temperature or lengthen the reaction time.
  • this method is not preferable when a crosslinkable silyl group is introduced into the terminal of the polymer by a hydrosilylation reaction. If the temperature of the hydrosilylation reaction is raised or the reaction time is lengthened, a cross-linking reaction or a decomposition reaction of the cross-linkable silyl group at the terminal of the product occurs, and as a result, the quality of the product often deteriorates.
  • a very small amount of free acid (derived from a polymerization catalyst or a halogen atom at a terminal of the polymer) may be present.
  • the presence of free acids in the polymer tends to cause the reaction of the crosslinkable silyl groups, often resulting in poor product quality.
  • the objects of the present invention are the following (1) to (3).
  • the present invention relates to a method for producing a (meth) acrylic polymer having a crosslinkable silyl group at a terminal, characterized in that a hydrosilylation reaction is carried out by mixing the following (A) to (C).
  • the amount of transition metal contained in the polymer is 1 Omg or less per 1 kg of the polymer
  • the amount of the halogen contained in the polymer is (Meth) acrylic polymer having a alkenyl group at the end, in an amount of 50 Omg or less per 1 kg of the polymer
  • the amount of the transition metal contained in the polymer (A) is preferably 3 mg or less per 1 kg of the polymer (A).
  • the amount of halogen contained in the polymer (A) is preferably 30 Omg or less per 1 kg of the polymer (A).
  • the platinum catalyst (C) it is preferable to use a platinum catalyst (C) having a platinum metal content of 0.1 mg or more and 3 Omg or less per 1 kg of the polymer (A), and 0.5 mg or more and 1 Omg or less. It is more preferable to use.
  • a hydrolyzable ester compound (particularly, trialkyl onoletoformate) and / or an alkyl alcohol coexist.
  • the hydrosilylation reaction is performed in an atmosphere of an inert gas such as nitrogen gas.
  • the temperature of the hydrosilylation reaction is preferably from 50 ° C to 150 ° C, more preferably from 70 ° C to 120 ° C.
  • the hydrosilane compound (B) having a crosslinkable silyl group methyldimethoxysilane is preferable.
  • the platinum catalyst (C) is white Gold (0) —1,1,3,3-tetramethyl-1,3-dibutyldisiloxane complex is preferred.
  • the present invention provides a polymer (A) 1S produced by the following steps (1) to (3), wherein the (meth) acryl-based polymer having a crosslinkable silyl group at a terminal is provided.
  • the present invention relates to the above-mentioned method for producing a combined product.
  • a (meth) acrylic polymer having a halogen group at the end is produced by polymerizing a (meth) acrylic monomer using an organic halide or a sulfonyl halide compound as an initiator and a transition metal complex as a catalyst.
  • halogen is preferably selected from the group consisting of chlorine, bromine and iodine.
  • the (meth) acrylic polymer a (meth) acrylate polymer is preferred, and an acrylate polymer is more preferred.
  • the compound having a plurality of alkenyl groups in the molecule is preferably a non-conjugated diene compound, more preferably an alkenyl group-containing aliphatic hydrocarbon-based compound, and —Octadene is particularly preferred.
  • the polymer (A) When producing a (meth) acrylic polymer having a crosslinkable silyl group at the terminal on an industrial scale, the polymer (A) must be treated at a rate of 100 kg or more at a time. Is preferably obtained by Increasing the scale of polymer processing can result in large quantities of product at one time. Increasing the scale is industrially beneficial.
  • the atom transfer radical polymerization in the present invention is one of living radical polymerization.
  • a vinyl monomer is radically polymerized using an organic halide or a sulfonyl halide compound as an initiator and a metal complex having a transition metal as a central metal as a catalyst.
  • Atom transfer radical polymerization is most suitable for the production of halogen-containing (meth) acrylic polymers because the molecular weight and molecular weight distribution can be controlled and a halogen group can be introduced at the polymerization end. ing.
  • the atom transfer radical polymerization will be specifically described.
  • Atom transfer radical polymerization is described, for example, in Matyjaszewski et al., J. Am. Chem. Soc., J. Am. Chem. Soc., 1995, Vol. 117, 56, 14 Pp., Maccromolecules 1995, 28, 790, Science 1 996, 272, 866, WO 966/304 21 Gazette, W097 / 18247, WO98 / 0148, WO98Z40415, or Sawa mo to et al., Macromo lecules 1 995 Year, Vol. 28, pp. 1721, Japanese Patent Application Laid-Open No. 9-208616, Japanese Patent Application Laid-Open No. 8-41117, and the like.
  • the atom transfer radical polymerization of the present invention also includes so-called reverse atom transfer radical polymerization.
  • Reverse atom transfer radical polymerization refers to a state of high oxidation when a normal atom transfer radical polymerization catalyst generates radicals, for example, Cu (II) when Cu (I) is used as a catalyst.
  • This is a method in which a common radical initiator such as peroxide, peroxide or the like is allowed to act, and as a result, an equilibrium state similar to that of atom transfer radical polymerization is produced (Macromolecules 1999, 322, 2887). See 2).
  • an organic halide particularly an organic halide having a highly reactive carbon-to-halogen bond (eg, a carbonyl compound having a halogen at the ⁇ -position, a compound having a halogen at the benzyl position), or a halo Sulfonyl iodide genated compounds and the like are used as initiators.
  • an organic halide having a highly reactive carbon-to-halogen bond eg, a carbonyl compound having a halogen at the ⁇ -position, a compound having a halogen at the benzyl position
  • a halo Sulfonyl iodide genated compounds and the like are used as initiators.
  • C 6 H 5 is a phenyl group
  • X is chlorine, bromine, or iodine.
  • R 3 and R 4 are a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group or an aralkyl group, and X is chlorine, bromine, or iodine
  • R 3 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group, or an aralkyl group, and X is chlorine, bromine, or iodine.).
  • R 1 represents hydrogen or a methyl group
  • R 2 represents a side chain ester bond group of a (meth) acrylic monomer
  • X represents chlorine, bromine, or iodine.
  • an organic haptic compound or a sulphonyl compound having a specific reactive functional group that does not start polymerization together with a functional group that starts polymerization can also be used.
  • a (meth) acrylic polymer having a specific reactive functional group and a halogen-containing structure (1) at the other main chain terminal is obtained.
  • specific reactive functional groups include alkenyl groups, crosslinkable silyl groups, hydroxy groups, epoxy groups, and amino groups.
  • the organic halide having an alkenyl group is not limited, and examples thereof include those having a structure represented by the general formula (2).
  • R 5 is hydrogen or a methyl group
  • R 6 and R 7 are hydrogen, or a monovalent alkyl group having 1 to 20 carbon atoms, an aryl group, or an aralkyl group, or interconnected at the other end.
  • R 8 is — C (O) 0- (ester group), one C (O)-(keto group), or o—, m—, p-phenylene group
  • R 9 is a direct bond
  • Is a divalent organic group having 1 to 20 carbon atoms and may contain one or more ether bonds
  • X is chlorine, bromine, or iodine.
  • R 6 and R 7 include hydrogen, methyl, ethyl, n-propyl, isopropyl, butyl, pentyl, and hexyl.
  • R 6 and R 7 may be linked at the other end to form a cyclic skeleton.
  • organic halide having an alkenyl group represented by the general formula (2) include:
  • X is chlorine, bromine, or iodine
  • n is an integer of 0 to 20.
  • X is chlorine, bromine, or iodine
  • n is an integer of 1 to 20
  • m is an integer of 0 to 20.
  • X is chlorine, bromine, or iodine
  • n is an integer of 0 to 20.
  • X is chlorine, bromine, or iodine
  • n is an integer of 1 to 20
  • m is an integer of 0 to 20.
  • n _CH CH 2 ,
  • X is chlorine, bromine, or iodine
  • n is an integer of 0 to 20.
  • X is chlorine, bromine, or iodine
  • n is an integer of 1 to 20.
  • M is an integer from 0 to 20
  • Examples of the organic halide having an alkenyl group further include a compound represented by the general formula (3).
  • H 2 C C (R 5 )-R 9 _C (R 6 ) (X) -R 10 -R 7 (3)
  • R 10 is a direct bond, _C (O) O— (ester group), — C (O) — (keto group) , Or, o—, m—, p represents a phenylene group)
  • R 9 is a direct bond or a divalent organic group having 1 to 20 carbon atoms (which may contain one or more ether bonds). If it is a direct bond, the halogen-bonded carbon Is a halogenated arylated compound. In this case, since the carbon-halogen bond is activated by the adjacent bullet group, it is not always necessary to have a C (O) O group or a fluorene group as R 10 , and a direct bond may be used. When R 9 is not a direct bond, R 10 is preferably a C (O) O group, a C (O) group or a phenylene group in order to activate a carbon-halogen bond.
  • CH 2 CHC (X) (CH 3 ) 2
  • CH 2 CHC (H) (X) C 2 H 5
  • CH 2 CHC (H) (X) CH (CH 3 ) 2
  • CH 2 CHC (H) (X) C 6 H 5
  • CH 2 CHC (H) (X) CH 2 C 6 H 5
  • CH 2 CHCH 2 C (H) (X) —C0 2 R
  • CH 2 CH (CH 2 ) 2 C (H) (X) —C0 2 R
  • X is chlorine, bromine, or iodine
  • R is an alkyl group having 1 to 20 carbon atoms, an aryl group, or an aralkyl group.
  • X is chlorine, bromine, or iodine
  • n is an integer of 0 to 20.
  • the organic halide having a crosslinkable silyl group is not particularly limited, and examples thereof include those having a structure represented by the general formula (4).
  • R 5 , R 6 , R 7 , R 8 , R 9 , and X are the same as above, and 11 and R 12 are all an alkyl group having 1 to 20 carbon atoms, an aryl group, an aralkyl group, or (R ′) a S i 0- (where R ′ is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and three R ′s may be the same or different) A triorganosiloxy group, and when two or more R 11 or R 12 are present, And may be different.
  • Y represents a hydroxyl group or a hydrolyzable group. When two or more Ys are present, they may be the same or different.
  • a represents 0, 1, 2, or 3 and b represents 0, 1, or 2.
  • m is an integer from 0 to 19. However, it satisfies that a + mb 1) If the compound of the general formula (4) is specifically exemplified,
  • X is chlorine, bromine, iodine
  • n is an integer of 1 to 20
  • m is An integer from 0 to 20
  • X is chlorine, bromine, or iodine.
  • Examples of the organic halide having a crosslinkable silyl group further include those having a structure represented by the general formula (5).
  • X is chlorine, bromine, or iodine
  • R is C 1-20 Alkyl group, aryl group, aralkyl group
  • the organic halide having a hydroxyl group or the sulfonyl halide compound is not particularly limited, and examples thereof include the following.
  • X is chlorine, bromine, or iodine
  • R is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group, an aralkyl group, and n is an integer of 1 to 20.
  • the organic halide having an amino group or the sulfonyl halide compound is not particularly limited, and examples thereof include the following.
  • X is chlorine, bromine, or iodine
  • R is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group, an aralkyl group, and n is an integer of 1 to 20.
  • the organic halide or the sulfonyl halide having the epoxy group is not particularly limited, and examples thereof include the following.
  • X is chlorine, bromine, or iodine
  • R is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group, an aralkyl group
  • n is an integer of 1 to 20.
  • R is an alkyl group, aryl group, or aralkyl group having 1 to 20 carbon atoms, n is an integer of 0 to 20, X is chlorine, bromine, or iodine.
  • n is an integer from 1 to 20;
  • X is a salt OH, bromine, or iodine
  • the transition metal complex used as the polymerization catalyst is not particularly limited, but is preferably a metal complex having a central metal of Group 7, 8, 9, 10 or 11 of the periodic table. More preferred are complexes of zero-valent copper, monovalent copper, divalent ruthenium, divalent iron and divalent nickel. Among them, a copper complex is preferable. Specific examples of monovalent copper compounds include cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, cuprous perchlorate, and the like. is there.
  • a copper compound When a copper compound is used, 2,2′-biviridyl or a derivative thereof, 1,10-phenanthrophosphorus or a derivative thereof, or tetramethylethylenediamine, pentamethylethylentriamine or Polyamines such as hexamethyltris (2-aminoethyl) amine are added as ligands. Further, a tristriphenylphosphine complex of divalent ruthenium chloride (RuCl 2 (PPh 3 ) 3) is also suitable as the catalyst. When a ruthenium compound is used as a catalyst, aluminum alkoxides are added as an activator.
  • RuCl 2 (PPh 3 ) 3 divalent ruthenium chloride
  • divalent bis triphenyl phosphine complex of iron F e C l 2 (PPh 3) 2)
  • 2 -valent bis triflate et el phosphine complexes of nickel N i C 1 2 (PP h 3) 2)
  • divalent bis tributylphosphine complex of nickel N i B r 2 (PBu 3) 2
  • (meth) acrylic monomer used in the atom transfer radical polymerization there is no particular limitation on the (meth) acrylic monomer used in the atom transfer radical polymerization.
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid.
  • Atom transfer radical polymerization can be carried out without a solvent, but can also be carried out in various solvents.
  • the type of the solvent is not particularly limited, and examples thereof include hydrocarbon solvents such as benzene, toluene and the like; getyl ether, tetrahydrofuran, diphene Ether solvents such as toluene, anisol, and dimethoxybengen; halogenated hydrocarbon solvents such as methylene chloride, chloroform, and cyclobenzene; ketone solvents such as acetone, methylethylketone, and methylisobutylketone.
  • Alcohol solvents such as methanol, ethanol, propanol, isopropanol, n-butyl alcohol, tert-butyl alcohol; nitrile solvents such as acetonitrile, propionitrile, benzonitrile; ethyl acetate, butyl acetate, etc.
  • Ester solvents; carbonate solvents such as ethylene carbonate and propylene carbonate; and amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide. These may be used alone or in combination of two or more.
  • the polymerization can also be carried out in an emulsion system or a system using a supercritical fluid co 2 as a medium.
  • the polymerization can be carried out at a temperature in the range of 0 to 200 ° C, preferably at room temperature to 150 ° C, more preferably at a temperature in the range of 50 to 120 ° C. is there.
  • the (meth) acrylic polymer produced by using atom transfer radical polymerization is a (meth) acrylic polymer produced by atom transfer radical polymerization or a modified product thereof.
  • the (meth) acrylic polymer is the polymer of the (meth) acrylic monomer described above, but from the viewpoint of the physical properties of the product and the like, an acrylate (co) polymer is preferred, and more preferably acryl. It is a butyl acid (co) polymer.
  • the molecular weight of the (meth) acrylic polymer is not particularly limited, the number average molecular weight is preferably from 100 to 100, and more preferably from 500 to 500. .
  • the molecular weight distribution of the (meth) acrylic polymer is not particularly limited, but is preferably from 1.05 to 1.50, more preferably from 1.10 to 1.40.
  • Etc. are exemplified.
  • the method (2) is particularly preferable in that the molecular weight, molecular weight distribution, number of functional groups, and the like of the (meth) acrylic polymer can be controlled and the molecular design of the (meth) acrylic polymer can be designed according to the purpose. .
  • the end point of the polymerization is defined as the point when preferably at least 80% of the monomer has reacted, more preferably at least 90%, particularly preferably at least 95%, particularly preferably at least 99%. is there.
  • the compound having two alkenyl groups having low radical polymerizability used for introducing an alkenyl group is selected from the compounds represented by the general formula 9. (9)
  • R 13 is the same group as described above, and R 14 and R 15 are a hydrogen atom or a methyl group and may be the same or different.
  • the compound represented by the general formula 9 is not particularly limited, but when R 13 is a divalent hydrocarbon group having 1 to 20 carbon atoms, the following compounds are preferred.
  • n is an integer of 1 to 20, but n is preferably 2, 4, or 6 because of easy availability of raw materials. That is, 1,5-hexadiene, 1,7-octadiene and 1,9-decadiene are preferred.
  • the amount of the compound having two or more alkenyl groups having low radical polymerizability used for introducing an alkenyl group at the terminal is preferably an excess amount with respect to the polymerization growth terminal. If the amount is equal to or less than the terminal, both of the two alkenyl groups may react, resulting in coupling of the polymerization terminal. For compounds where the reactivity of the two alkenyl groups is equal, the probability of coupling will be statistically determined by the amount of excess added. Therefore, it is preferably at least 1.5 times, more preferably at least 3 times, particularly preferably at least 5 times.
  • the post-treatment method for the (meth) acrylic polymer (A) having an alkenyl terminal at the terminal produced by using atom transfer radical polymerization will be described in detail.
  • the “post-treatment” is a treatment performed on the (meth) acrylic polymer or a mixture thereof after the atom transfer radical polymerization, and is a physical or chemical modification of the (meth) acrylic polymer.
  • the treatment may be performed on a mixture thereof. Examples of the treatment include removal of a solvent used in polymerization and the like, removal of insoluble components such as a polymerization catalyst, purification by extraction with water and treatment with an adsorbent, heat treatment, and the like.
  • one of the treatments is chemical modification such as removal of a halogen group or the like or introduction of a functional group.
  • the post-treatment method is not particularly limited, and various methods are used. For example, a post-treatment method through the following steps 1 and 2 can be exemplified. Steps 1 and 2 will be described in detail.
  • Step 1 heat treatment step: a step of heating a (meth) acrylic polymer produced using atom transfer radical polymerization to a temperature of 140 ° C or more and 250 ° C or less.
  • Step 2 solid-liquid separation step: This is a processing step for the (meth) acrylic polymer that has undergone step 1, and the insoluble components present in the (meth) acrylic polymer are removed from the (meth) acrylic polymer. Separation and removal from the material.
  • step 2 is preferably performed after step 1. Although another treatment may be performed between the step 1 and the step 2, it is preferable that the step 2 is performed after the step 1.
  • Step 1 is a heat treatment step of the (meth) acrylic polymer.
  • High processing temperature if the treatment temperature is too high, the (meth) acrylic polymer will deteriorate due to heat, so the preferred treatment temperature is from 140 ° C to 250 ° C, more preferably 170 ° C. 0 ° C or higher and 250 ° C or lower, particularly preferably 190 ° C or higher and 250 or lower.
  • the treatment time is not particularly limited, and is usually in the range of several minutes to several tens of hours. If the heating is performed for an excessively long time, the (meth) acrylic polymer will be thermally degraded. It is. In some cases, the time required for processing can be reduced by increasing the processing temperature. In addition, step 1 tends to increase the particle size of the solid content in the polymer.
  • the solvent may or may not be present, but preferably is not present.
  • the pressure applied to the polymer during the heat treatment is not particularly limited, but the heat treatment is preferably performed under reduced pressure.
  • the pressure at the time of the heat treatment is usually not higher than 70 Torr, preferably not higher than 100 Torr, more preferably not higher than 20 Torr, and particularly preferably not higher than 10 Torr.
  • heat treatment is performed under reduced pressure, the degree of surface renewal greatly affects the efficiency of impurity removal.
  • a dehalogenation reaction can be performed in step 1.
  • the above treatment conditions are also effective for the dehalogenation reaction.
  • a halogenide having a relatively low boiling point is generated by the dehalogenation reaction, it is preferable to perform the heat treatment while removing the halide under reduced pressure.
  • the (meth) acrylic polymer produced by the above-mentioned method (2) for producing a (meth) acrylic polymer having an alkenyl group at the terminal has a halogen group in the molecule, it is heat-treated under reduced pressure. To perform a dehalogenation reaction.
  • Step 2 is a step of removing insoluble components present in the (meth) acrylic polymer (solid-liquid (Separation step).
  • the solid-liquid separation method is not particularly limited, and a general separation method such as a filtration method and a sedimentation method is used.
  • Examples of the filtration method include a reduced pressure filtration method such as Nutsche and a pressure filtration method such as a filter press method. When the amount of insoluble components is small and the filterability is good, simple filtration using a cartridge filter, a bag filter, or the like, sand filtration, etc., are simple.
  • Examples of the sedimentation method include a static separation method, a decanter, and a centrifugal sedimentation method using a separator-type centrifugal sedimenter.
  • Examples of the method combining filtration and sedimentation include a centrifugal filtration method using a basket-type centrifugal filter or the like and a sedimentation filtration method using a horizontal plate type filter or the like.
  • a filter aid may be used depending on the particle size and the amount of the insoluble component.
  • the filter aid is not particularly limited, but a common one such as diatomaceous earth can be used.
  • the (meth) acrylic polymer may be diluted with a solvent.
  • the diluting solvent is not particularly limited, and a general solvent can be used. However, if a solvent having a polarity higher than that of the (meth) acrylic polymer is used, the solubility of the polymerization catalyst or the like is increased. It is preferable to use a solvent having a lower polarity than the (meth) acrylic polymer.
  • the polarity is too low, it becomes difficult to dissolve the (meth) acrylic polymer, so it is preferable to select an appropriate solvent according to the polarity of the (meth) acrylic polymer. Two or more solvents may be mixed and used to adjust the polarity of the solvent.
  • the (meth) acrylic polymer is a (meth) acrylate polymer, it is preferable to use a hydrocarbon compound such as toluene, xylene, hexane, or methylcyclohexane.
  • the solid-liquid separation treatment may be performed while the (meth) acrylic polymer or a mixture thereof is heated.
  • an adsorption treatment is carried out simultaneously with the above step 1 or as a separate step from the above step 1 to carry out (meth) acrylinolation.
  • the impurities in the system polymer can be removed.
  • treatment with an adsorbent is performed as necessary. Can be.
  • the adsorbent used in the present invention is, for example, an acidic adsorbent or a basic adsorbent.
  • the definition of the “acidic adsorbent” herein is “adsorbent having an adsorbing ability for a basic compound” or “adsorbent having a cation exchange ability”.
  • the definition of “basic adsorbent” herein is “adsorbent capable of adsorbing acidic compounds” or “adsorbent capable of exchanging anion”.
  • adsorbent a synthetic resin adsorbent such as activated carbon and ion exchange resin, and an inorganic adsorbent such as zeolite can also be used.
  • Activated carbon is mostly carbonaceous charcoal and has high adsorptivity.
  • the production method is, for example, a method of treating wood, lignite, peat, or the like with zinc chloride or phosphoric acid as an activator to dry-distill, or activating charcoal with steam. It is usually powdery or granular, and any of them can be used.
  • chemically activated carbon is acidic and steam activated carbon is basic in nature.
  • An ion exchange resin can be used as the synthetic resin adsorbent.
  • Ion exchange As the resin, a common one of acidic and basic ion exchange resins may be used. Also, chelating type ion exchange resins may be used. Functional groups of acidic ion exchange resins include, for example, carboxylic acid groups and sulfonic acid groups.Functional groups of basic ion exchange resins include, for example, amino groups, and functional groups of chelate type ion exchange resins. Examples thereof include an iminodiacetic acid group and a polyamine group.
  • Inorganic adsorbents generally have solid acids and solid bases, and the particles have a porous structure, so their adsorption capacity is very high. Another feature is that it can be used from low to high temperatures.
  • the inorganic adsorbent is not particularly limited, but typical examples thereof include those containing aluminum, magnesium, silicon or the like as a main component or a combination thereof.
  • Examples include zeolite-based adsorbents, collectively referred to as aluminosilicate minerals; dawsonite compounds; and hydrotalcite compounds.
  • Zeolite is available in both natural and synthetic forms
  • Silicon dioxide is known to be crystalline, amorphous, amorphous, glassy, synthetic, natural, and the like. Here, powdery silicon dioxide can be used.
  • silicon dioxide silicic acid made from clay mineral obtained by acid treatment of activated clay, force —plex BS304, carplex BS304F, carplex # 67, carplex # 80 (any Synthetic silicic acid such as Shionogi Pharmaceutical Co., Ltd. is not limited thereto.
  • Aluminum silicate is obtained by substituting a part of silicon of silicic acid with aluminum, and pumice, fly ash, kaolin, bentonite, activated clay, diatomaceous earth and the like are known. Among them, synthetic aluminum silicate has specific surface It has a large product and high adsorption capacity. Examples of synthetic aluminum silicate include Kyodo 700 series (manufactured by Kyowa Chemical), but are not limited to these.
  • Hyde port Tarusai preparative such compounds divalent metal (Mg 2 +, Mn 2 + , F e 2 +, C o 2 +, N i 2 +, Cu 2 +, Z n 2+ , etc.) trihydric (A 13 + , Fe 3 + , Cr 3 + , Co 3 + , In 3+, etc.) or a part of the hydroxyl group of the hydroxide may be a halogen ion, NO 3 -, C0 3 2 ", SO 4 2 -, F e (CN) 6 3", CH 3 CO 2 primary, oxalate ion, is obtained by exchanging the anions such salicylate.
  • divalent metal Mg 2 +, Mn 2 + , F e 2 +, C o 2 +, N i 2 +, Cu 2 +, Z n 2+ , etc.
  • trihydric A 13 + , Fe 3 + , Cr 3 + , Co 3 + , In 3+, etc.
  • divalent metal is Mg 2 +
  • hydrotalcite site is preferably replaced the portion of the hydroxyl groups in co 3 2, for example, synthetic products
  • examples include, but are not limited to, the Kiyoword 500 series and the Kiyoword 1 00 series (both manufactured by Kyowa Chemical Co., Ltd.).
  • Adsorbents obtained by calcining the above hydrotalcites are also suitably used.
  • Divalent metal is Mg 2 + Among them, MgO-A 10 3 solid solution is preferably obtained trivalent metal by firing the high Dorota Rusai preparative such a A 1 3 +, for example Kiyo one word 2000 ( (Kyowa Chemical Co., Ltd.), but are not limited to these.
  • fired talcites are also classified as hydrotanoresites.
  • an adsorbent having both a solid acid and a solid base may be used.
  • examples of such an adsorbent include magnesium silicate.
  • Magnesium silicate has both a solid acid and a solid base, and has the ability to adsorb both acid and base.
  • Kiyo Word 600s is an acid It is classified as both an acidic and a basic adsorbent because it has the property of adsorbing both a base and a base.
  • Mizu force life P-1G is classified as an acidic adsorbent because of its high base adsorption capacity.
  • aluminum hydroxide is amphoteric, it is classified as a basic adsorbent because it is an adsorbent mainly for acids, depending on the conditions.
  • a 1 (OH) 3 ⁇ Na HCO 3 is also called dawsonite and is classified as a basic adsorbent.
  • Examples of the acidic inorganic adsorbent include acid clay, activated clay, anolemminium silicate, silica gel, and the like.
  • Examples of the basic inorganic adsorbent include magnesium oxide, activated alumina, sodium aluminum silicate, and the like.
  • Examples include zeolitic adsorbents and hydrotalcite compounds, which are collectively referred to as the hydrous aluminosilicate minerals.
  • an inorganic adsorbent is preferable among the above.
  • acidic clay, activated clay and aluminum silicate are more preferred as the acidic adsorbent
  • activated clay and anolemminium silicate are more preferred
  • aluminum silicate is particularly preferred.
  • basic adsorbent zeolite-based adsorbents and hydrotalcite compounds, which are collectively referred to as a group of hydrous aluminosilicate minerals such as activated alumina and aluminum sodium silicate, are more preferable. Compounds are more preferred, and hydrotalcite compounds are particularly preferred.
  • the adsorbent may be used alone or as a mixture of two or more.
  • Acrylic polymers produced by atom transfer radical polymerization can be purified by contact with an acidic adsorbent and / or a basic adsorbent.
  • the acidic adsorbent and the basic adsorbent can be mixed and contacted, or they can be contacted in separate steps.
  • the adsorption treatment step may be performed at any stage in the post-treatment step of the (meth) acrylic polymer. For example,
  • the acrylic polymer produced by atom transfer radical polymerization When the acrylic polymer produced by atom transfer radical polymerization is brought into contact with the adsorbent, the acrylic polymer may be used without solvent, or may be diluted with a solvent, or the reaction mixture may be concentrated to distill off the solvent. If a solvent is used, it is usually necessary to recycle the solvent, so it is most preferable not to use a solvent. When a solvent is used, it is preferable to reduce the amount of the solvent (that is, to increase the concentration of the acrylic polymer).
  • the viscosity of the acrylic polymer when the viscosity of the acrylic polymer is high and handling is difficult, etc., it may be diluted with a small amount of solvent and brought into contact with the adsorbent in a solution state, but the concentration of the acrylic polymer in this case is It is preferably at least 60% by weight, more preferably at least 70% by weight, further preferably at least 80% by weight, particularly preferably at least 90% by weight.
  • a general solvent may be used as the diluting solvent.
  • the temperature of the adsorption treatment is not particularly limited, but is generally 0 ° C. to 200 ° C., preferably room temperature to 180 ° C. In the case of using no solvent, it is preferable to carry out the reaction at a high temperature, generally at 0 ° C to 250 ° C, preferably at room temperature to 200 ° C, more preferably at 100 ° C to 18 ° C. Perform adsorption treatment at 0 ° C.
  • the amount of the adsorbent used is usually 0.01 to 10 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 100 to 100 parts by weight of the acrylic polymer. Is from 0.5 to 10 parts by weight, more preferably from 0.5 to 5 parts by weight, particularly preferably from 0.5 to 2 parts by weight.
  • Various embodiments are possible for solid-liquid contact between the adsorbent and the polymer or the polymer solution.
  • a fixed bed method in which the liquid is passed through, a moving bed method in which the liquid is passed through the moving bed of the adsorbent, and a fluidized bed method in which the adsorbent is fluidized and adsorbed by the liquid can be used.
  • various operations to improve the dispersing efficiency such as shaking the container and using ultrasonic waves, can be incorporated.
  • the adsorbent After the polymer or polymer solution is brought into contact with the adsorbent, the adsorbent is removed by filtration, centrifugation, sedimentation, etc., and if necessary, diluted and washed with water to obtain the desired clear polymer solution. Can be obtained.
  • the adsorption treatment may be performed on the (meth) acrylic polymer having an alkenyl group, but may be performed on the precursor of the (meth) acrylic polymer having an alkenyl group.
  • a (meth) acrylic polymer having an alkenyl group obtained by atom transfer radical polymerization is (a) the polymer or (mouth) an intermediate product for producing the acryl polymer.
  • Adsorption treatment can also be performed on a (meth) acrylic polymer having a highly reactive carbon-halogen bond.
  • the amount of the transition metal remaining in the (meth) acrylic polymer having an alkenyl group at the terminal is 10 mg or less per 1 kg of the polymer, and the amount of the halogen is Less than 50 mg / kg.
  • the amount of transition metal remaining in the polymer after the above-mentioned step 1 (heat treatment step) and step 2 (solid-liquid separation step), and / or the polymer after adsorption treatment is usually based on 1 kg of polymer. To less than 1 O mg, and the amount of halogen is usually reduced to less than 500 mg per kg of polymer.
  • a transition metal derived from a polymerization catalyst remaining in the above polymer Can be reduced to 3 mg or less per 1 kg of polymer and / or the amount of halogen can be reduced to 30 Omg or less per 1 kg of polymer by changing the adsorption conditions. it can.
  • the hydrosilane compound (B) having a crosslinkable silyl group in the present invention includes a silicon-containing group (crosslinkable silyl group) capable of crosslinking by a silanol condensation reaction or the like, and a Si—H group (hydrosilyl group). ).
  • hydrosilane compound (B) having a crosslinkable silyl group in the present invention is not particularly limited, but a typical one is represented by the general formula 14
  • the hydrolyzable group represented by Y is not particularly limited and may be a conventionally known hydrolyzable group. Specifically, hydrogen, a halogen atom, an alkoxy group, an acyloxy group, a ketoxime group, an amino group And an amide group, an acid amide group, an aminooxy group, a mercapto group, an alkenyloxy group, and the like.
  • An alkoxy group is particularly preferable because of its mild hydrolytic property and easy handling.
  • the hydrolyzable group or hydroxyl group can be bonded to one silicon atom in the range of 1-3, a + mb, that is, the total sum of the hydrolyzable groups is preferably in the range of 1 to 5.
  • the number of silicon atoms constituting the crosslinkable silicon compound may be one, or two or more, but in the case of silicon atoms linked by siloxane bonds, it may be up to about twenty. .
  • R 16 and R 17 in the general formula 14 include, for example, an alkyl group such as a methyl group and a methyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group, and a benzyl group.
  • hydrosilane compounds (B) particularly those represented by the general formula 15
  • Hydrosilan compound having a crosslinkable group represented by the formula (B) Specific examples of the hydrosilane compound (B) having a crosslinkable group represented by the general formula 14 or 15 include HS i Cl 3 , HS i (CH 3 ) CI 2 , and HS i (CH 3 ) 2 C 1,
  • C 6 H S represents a phenyl group.
  • the platinum catalyst (C) of the present invention is a substance containing platinum, which is obtained by converting a hydrosilane compound (B) having a crosslinkable silyl group into a (meth) acrylic polymer (A) having an alkenyl group at a terminal.
  • platinum catalyst (C) examples include platinum simple substance, alumina, silica, carbon black, and other carriers in which white gold solids are dispersed, chloroplatinic acid, complexes of chloroplatinic acid with alcohols, aldehydes, ketones, etc., platinum Monoolefin complex, platinum (0) — 1,1,3,3-tetramethyl-1,3-dibutyldisiloxane complex, and platinum (0) — 1, 1, 3, 3 —Tetramethyl-1,3-divinyldisiloxane complex is preferred. These catalysts may be used alone or in combination of two or more. In the present invention, the amount of the hydrosilylated platinum catalyst (C) to be used is usually the amount of platinum metal having an alkenyl group at a terminal (meth).
  • Acrylic polymer (A) It is in the range of 0.1 to 3 Omg for 1 kg. Further, it is preferable to be in the range of 0.5 to 10 mg because the reaction proceeds rapidly and is economical.
  • a hydrosilane compound (B) having a crosslinkable silyl group is added to a (meth) acrylic polymer (A) having an alkenyl group at a terminal, for example, a (meth) acrylic compound having an alkenyl group at a terminal is used.
  • the polymer may be mixed with a predetermined amount of the hydrosilylated platinum catalyst (C) described above, and the hydrosilane compound (B) having a crosslinkable silyl group may be added dropwise and divided to react. The above components may be charged at once and reacted.
  • the hydrosilane compound (B) having a crosslinkable silyl group is added to the (meth) acrylic polymer (A) having an alkenyl group at the end, even under an inert gas atmosphere. Although it is not necessary, it is preferable to be under a nitrogen atmosphere in order to suppress consumption of the hydrosilane compound (B) having a crosslinkable silyl group.
  • the reaction temperature is not particularly limited, but may be from 50 to 15 A range of 0 degrees is preferable, and a range of 70 to 120 degrees is more preferable.
  • hydrosilane compound (B) having a crosslinkable silyl group is added to a (meth) acrylic polymer (A) having an alkenyl group at a terminal
  • a hydrolyzable ester compound and a no or alkyl alcohol are added. Since gelation is suppressed by the addition, a hydrolyzable ester compound and / or an alkynoleanol compound may be added as necessary.
  • hydrolyzable ester compound examples include trimethyl orthotoformate, triethyl orthoformate, tripropyl orthoformate, tributyl orthoformate, etc., trimethyl orthoacetate, triethyl orthoacetate, tripyl orthoacetate, tributyl orthoacetate, tributyl orthoacetate, etc.
  • hydrolysable ester compounds include those of the formula R 4 — n S i Y n , where ⁇ is a hydrolyzable group and R is a monovalent organic group, even if it contains a functional group.
  • is an integer of 1 to 4, and preferably 3 or 4.
  • Specific examples thereof include methyltriethoxysilane and ethyltriethoxysilane.
  • the amount of the hydrolyzable ester compound used is 0.1 to 50 parts by weight, preferably 0.1 to 30 parts by weight, based on 100 parts by weight of the (meth) acrylic polymer having an alkenyl group at the terminal. It is.
  • the alkyl alcohol used in the present invention is preferably phenolic alcohol having 1 to 10 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, isobutyl phenol, sec-butyl alcohol, tert. Alcohol. Butyl alcohol, n-amyl alcohol, hexanol, octanol, cellosolve and the like.
  • the alkyl alcohol is preferably used in an amount of 0.1 to 100 parts by weight based on 100 parts by weight of the (meth) acryl-based polymer having an alkenyl group at the terminal.
  • the hydrolyzable ester compound and the alkyl alcohol may be used alone or in combination of two or more. Further, a mixture of the hydrolyzable ester compound and the alkyl alcohol may be used.
  • the hydrolyzable ester compound and / or the alkyl alcohol have an effect of sufficiently suppressing gelation not only during the hydrosilylation reaction but also when added after the reaction is completed.
  • the (meth) acrylic polymer having a crosslinkable silyl group at the terminal obtained as described above can be used as it is as a curable composition.
  • a (meth) acrylic polymer having a hydrolyzable silyl group at the end is three-dimensionally cured by a crosslinking reaction when it comes into contact with moisture.
  • the hydrolyzable ester compound or alkyl alcohol inhibits the hydrolysis of the crosslinkable silyl group during and after the reaction of hydrosilylation. However, it does not show such a strong inhibitory effect as to completely inhibit hydrolysis under high temperature conditions or in the presence of a condensation catalyst described later.
  • hydrolysis rate varies depending on the temperature, humidity, and type of hydrolyzable group
  • an appropriate hydrolyzable group must be selected according to the use conditions.
  • the (meth) acrylic polymer having a hydrolyzable silyl group at the terminal must be kept from contact with water as much as possible during storage.
  • a condensation catalyst may or may not be used.
  • condensation catalyst examples include titanates such as alkyl titanate, organic silicon titanate, tetrabutyl titanate, and tetrapropyl titanate; dibutyl tin dilaurate, dibutyl tin diacetyl acetonate, dibutyl tin maleate, dibutyl tin diacetate
  • titanates such as alkyl titanate, organic silicon titanate, tetrabutyl titanate, and tetrapropyl titanate
  • dibutyl tin dilaurate dibutyl tin diacetyl acetonate, dibutyl tin maleate, dibutyl tin diacetate
  • Organotin compounds such as dibutyltin dimethoxide, tin octylate, tin naphthenate; lead octylate, butylamine, octylamine, dibutynoleamine, monoethanolamine, di
  • the curing speed is slow with this polymer alone.
  • a curing catalyst is used.
  • the curing conditions are not particularly limited, but are generally 0 to 100 ° C, preferably 10 to 50 ° C, for about 1 hour to 1 week.
  • the properties of the cured product depends on the main chain skeleton of the polymer used. Although it depends on the molecular weight and the molecular weight, it can be made widely from rubbery to resinous.
  • the curable composition contains various additives for adjusting physical properties, such as a flame retardant, an antioxidant, a filler, a plasticizer, a physical property modifier, a reaction diluent, an adhesion promoter, and a storage stability.
  • additives for adjusting physical properties such as a flame retardant, an antioxidant, a filler, a plasticizer, a physical property modifier, a reaction diluent, an adhesion promoter, and a storage stability.
  • blending properties improvers, solvents, radical inhibitors, metal deactivators, ozone deterioration inhibitors, phosphorus-based peroxide decomposers, lubricants, pigments, foaming agents, and photocurable resins Is also good.
  • These various additives may be used alone or in combination of two or more.
  • the (meth) acrylic polymer is originally a polymer having excellent durability, an antioxidant is not necessarily required.
  • an antioxidant is not necessarily required.
  • a conventionally known antioxidant, ultraviolet absorber, light stabilizer and the like may be appropriately used. Can be used.
  • the filler that can be blended is not particularly limited, but may be, for example, fine powdered silica, calcium carbonate, tanolek, titanium oxide, diatomaceous earth, barium sulfate, carbon black, surface-treated fine calcium carbonate to impart physical properties such as strength. , Calcined clay, clay, and reinforcing fillers such as activated zinc white.
  • the reinforcing filler may be used alone or in combination of two or more.
  • silica fine powder is preferable, and hydrated silica obtained by a wet production method or the like, dry silica obtained by a dry production method or the like can be used.
  • anhydrous silica is particularly preferred because if the composition contains a large amount of water, side reactions may occur during the curing reaction. Further, those obtained by subjecting the surface of anhydrous silica to a hydrophobic treatment are particularly preferable because they easily exhibit fluidity suitable for molding. In addition, a filler having not so strong reinforcing property can be used for increasing the amount or adjusting physical properties.
  • the plasticizer that can be blended is not particularly limited.
  • phthalates such as dibutyl phthalate, diheptyl phthalate, di (2-ethynolehexynole) phthalate, and butynolebenzyl phthalate may be used for the purpose of adjusting physical properties and controlling properties.
  • Non-aromatic dibasic acid esters such as dioctyl adipate, dioctyl sebacate, dibutyl sebacate, and isodecyl succinate; aliphatic esters such as butyl oleate and methyl acetylsilinoleate Estenoles of polyanylene glycolone such as diethylene glycol dibenzoate, triethylene glycolone resin benzoate and pentaerythritol monooleestenole; Phosphates such as tricresinole phosphate and tributyl phosphate; trimellitate Styrenes; polystyrenes such as polystyrene and poly- ⁇ -methylstyrene; polybutadiene, polybutene, polyisobutylene, butadiene-atarilonitrile, polychloroprene; chlorinated paraffins; alkyldiphenyl, partially hydrogenated terphenyl, etc.
  • Hydrocarbon oils process oils
  • polyether polyols such as polyethylene diol, polypropylene glycol, and polytetramethylene glycol
  • derivatives such as derivatives in which the hydroxyl groups of these polyether polyols have been converted to ester groups, ether groups, and the like.
  • Epoxy plasticizers such as epoxidized soybean oil and epoxy benzyl cysteate; dibasic acids such as sebacic acid, adipic acid, azelaic acid, and phthalic acid; ethylene glycol, diethylene glycol monoethylene, triethylene Polyester plasticizers obtained from dihydric alcohols such as glycol, propylene glycol, and dipropylene glycol; (meth) obtained by polymerizing vinyl monomers such as acrylic plasticizers by various methods Ability to use acrylic polymers or the like singly or as a mixture of two or more types. Not necessarily required. In addition, these plasticizers can be blended at the time of polymer production.
  • the storage stability improver that can be blended is not particularly limited as long as it can suppress the thickening of the composition during storage and the remarkable change in the hardening rate after storage.
  • the storage stability improver that can be blended is not particularly limited as long as it can suppress the thickening of the composition during storage and the remarkable change in the hardening rate after storage.
  • benzothiazole, dimethylmer Rate and the like are examples of the storage stability improver that can be blended.
  • Solvents that can be blended include, for example, aromatic hydrocarbon solvents such as toluene and xylene, ester solvents such as ethynole acetate, butyl acetate, amyl acetate, and cellosolve acetate, methyl ethyl ketone, methyl isobutyl ketone, disobutyl ketone, and the like. And the like. These solvents may be used in the production of the polymer.
  • aromatic hydrocarbon solvents such as toluene and xylene
  • ester solvents such as ethynole acetate, butyl acetate, amyl acetate, and cellosolve acetate, methyl ethyl ketone, methyl isobutyl ketone, disobutyl ketone, and the like.
  • solvents may be used in the production of the polymer.
  • the adhesiveness-imparting agent that can be added is not particularly limited as long as it imparts adhesiveness to the cured product, but a crosslinkable silyl group-containing compound is preferable, and a silane coupling agent is more preferable.
  • Specific examples thereof include alkylalkoxysilanes such as methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane and n-propynoletrimethoxysilane; alkylisopropyloxysilanes such as dimethyldiisopropenoxysilane and methyltriisopropoxyoxysilane; Vinyl-type unsaturated group-containing silanes such as toxic silane, butyl dimethyl methoxy silane, vinyl triethoxy silane, ⁇ -methacryloyloxypropyl methyl dimethoxy silane, and ⁇ -acryloyl propyl methyl triethoxy silane; silicone varnish And polysiloxanes.
  • cross-linking with organic groups having atoms other than carbon and hydrogen atoms such as epoxy group, (meth) acrylic group, isocyanate group, isocyanurate group, olebamate group, amino group, mercapto group, and carboxyl group in the molecule.
  • organic groups having atoms other than carbon and hydrogen atoms such as epoxy group, (meth) acrylic group, isocyanate group, isocyanurate group, olebamate group, amino group, mercapto group, and carboxyl group in the molecule.
  • Silane coupling agents having a functional silyl group are preferred.
  • alkoxysilanes having an isocyanate group include ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropylmethyljetoxysilane, and ⁇ -isocyanoatepropylmethyldimethyl Isocyanate group-containing silanes such as toxoxysilane; alkoxysilanes having an isocyanurate group include isocyanurate silanes such as tris (trimethoxysilyl) isocyanurate; and alkoxysilanes having an amino group include ⁇ -aminopropane.
  • silylated amino polymers silylated amino polymers, unsaturated aminosilane complexes, phenylamino long-chain alkylsilanes, aminosilylated silicones, silylated polyesters, and the like, which are modified derivatives thereof, can also be used as the silane coupling agent.
  • alkoxysilanes having an epoxy group or a (meth) acrylic group in the molecule are more preferable from the viewpoint of curability and adhesiveness.
  • examples of the alkoxysilane having an epoxy group include ⁇ -glycidoxypropylmethyldimethoxysilane, “1-glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3, 4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane, ⁇ -glycidoxypropylmethyldiisopropenoxysilane, etc.
  • alkoxysilanes have a (meth) acryl group
  • alkoxysilanes include ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, acryloxypropyl biltrimethoxysilane, ⁇ _ataryloxypropyltriethoxysilane, methacryloxymethyltrisilane.
  • Examples include toxicoxysilane, metharyloxymethyltriethoxysilane, acryloxymethyltrimethoxysilane, and attaryloxymethyltriethoxysilane, etc. These may be used alone or in combination of two or more.
  • a crosslinkable silyl group condensation catalyst can be used together with the above-mentioned adhesiveness-imparting agent.
  • the crosslinkable silyl group condensation catalyst include organic tin compounds such as dibutyltin diallate, dibutyltin diacetyl acetonate, dibutyltin dimethoxide, tin octoate, and organic aluminum compounds such as aluminum acetyl acetonate.
  • Organic titanium compounds such as tetraisopropoxytitanium and tetrabutoxytitanium are exemplified.
  • Specific examples other than the silane coupling agent are not particularly limited, and examples thereof include an epoxy resin, a phenol resin, sulfur, an alkyl titanate, and an aromatic polysocyanate.
  • the adhesion-imparting agent is preferably incorporated in an amount of 0.01 to 20 parts by weight based on 100 parts by weight of the (meth) acrylic polymer. If the amount is less than 0.01 part by weight, the effect of improving the adhesiveness is small, and if it exceeds 20 parts by weight, the physical properties of the cured product are adversely affected. Preferably it is 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight.
  • the above-mentioned adhesiveness-imparting agent may be used alone or in combination of two or more. The addition of these adhesion-imparting agents can improve the adhesion to the adherend.
  • the molding method when the curable composition of the present invention is used as a molded article is not particularly limited, and various generally used molding methods can be used. For example, casting molding, compression molding, transfer molding, injection molding, extrusion molding, rotational molding, hollow molding, thermoforming and the like can be mentioned. In particular, injection molding is preferred from the viewpoint that automation and continuity are possible and productivity is excellent.
  • the curable composition applied to the flange surface etc. is sandwiched from both sides in an unhardened state and then cured, and the dry type is cured and then sandwiched. Both are possible.
  • the curable composition of the present invention includes, but is not limited to, an electrical / electronic component material such as a sealing material for building elastic sealing materials, a sealing material for double glazing, a sealing material for backside of solar cells, etc.
  • Electrical insulating materials such as coating materials, adhesives, adhesives, elastic adhesives, paints, powder paints, coating materials, foams, potting materials for electric electronics, films, gaskets, casting materials, artificial marble, various types It can be used for various purposes such as molding materials, netted glass and laminated glass end faces (cut sections).
  • the molded article having rubber elasticity obtained from the curable composition of the present invention can be widely used mainly for gaskets and packings.
  • a body part as a sealing material for maintaining airtightness, a vibration preventing material for glass, a vibration damping material for a body part, particularly a wind seal gasket and a gasket for door glass.
  • a chassis part it can be used for anti-vibration and sound-proof engines and suspension rubbers, especially engine mount rubber.
  • engine parts it can be used for hoses for cooling, fuel supply, exhaust control, etc., and seal oil for engine oil. Also, exhaust gas cleaning equipment parts
  • decorations for lighting fixtures waterproof packings, anti-vibration rubbers, insect-proof packings, anti-vibration for cleaners, sound-absorbing and air sealing materials, drip-proof covers for electric water heaters, waterproof packing, and heaters
  • the construction field it can be used for structural gaskets (zipper gaskets), air film structure roofing materials, waterproofing materials, standard sealing materials, vibration proofing materials, soundproofing materials, setting blocks, sliding materials, etc.
  • all-weather pavement materials for sports floors, gymnasium floors, etc. It can be used for golf balls and the like as ball for ball games.
  • anti-vibration rubber it can be used as anti-vibration rubber for automobiles, anti-vibration rubber for railway vehicles, anti-vibration rubber for aircraft, and fenders.
  • number average molecular weight and “molecular weight distribution (ratio of weight average molecular weight to number average molecular weight)” were calculated by a standard polystyrene conversion method using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a GPC column filled with polystyrene cross-linked gel shode XGPCK-804; manufactured by Showa Denko KK was used, and GPC solvent was used as a GPC solvent.
  • Reactive functional groups reactive functional groups: “number of alkenyl groups” or “number of silyl groups” introduced per polymer molecule are determined by 1 H-NMR concentration analysis and GPC. It was calculated from the number average molecular weight.
  • the amount of copper remaining in the polymer can be determined by adding ultrapure nitric acid and ultrapure The mixture was mixed with sulfuric acid and decomposed by microwave. The amount of copper in the decomposition products was measured and quantified using an ICP mass spectrometer (HP-4500, manufactured by Yokogawa Analytical Systems Co., Ltd.).
  • the amount of bromine remaining in the polymer was determined by an oxygen flask combustion method using an ion chromatogram (DX-500 (GP40, ED40) manufactured by Dionesque).
  • the acetonitrile in the mixture and unreacted 1,7-year-old octadiene were heated and devolatilized, and diluted with methylcyclohexane.
  • the insoluble polymerization catalyst was sedimented by a centrifuge and removed. 6 parts of adsorbent for 100 parts of polymer (3 parts of 500 SH Z Kyoichi Ward 700 SL, 3 parts: both manufactured by Kyowa Chemical Co., Ltd.) was added to a solution of the polymer in methylcyclohexane, and the mixture was heated and stirred under an oxygen / nitrogen mixed gas atmosphere. The insolubles were removed, and the polymer solution was concentrated to obtain a polymer having an alkenyl group (polymer [1]).
  • the number average molecular weight of the polymer [1] was 25,800, and the molecular weight distribution was 1.26.
  • the number of alkenyl groups introduced per molecule of the polymer was 1.8.
  • the obtained polymer [1] was heated and devolatilized (at a reduced pressure of 10 torr or less) while stirring at 160 ° C for 12 hours.
  • Step 2 solid-liquid separation step
  • 100 parts of the polymer obtained in the above step 1 was diluted with 400 parts of methylcyclohexane to remove solids, and then the solution was concentrated to obtain a polymer.
  • the number average molecular weight of this polymer was 26,800, and the molecular weight distribution was 1.34.
  • the number of alkenyl groups introduced per molecule of the polymer was 1.8.
  • the amount of copper contained in this polymer was 7 mg per 1 kg of the polymer.
  • the amount of bromine contained in this polymer was 28 Omg per 1 kg of the polymer as a result of elemental analysis.
  • Methyl orthoformate (3 molar equivalents relative to alkenyl group), platinum catalyst [bis (1,3-dibutyl-1,1,3,3-tetramethyldiethyl) Siloxane) A xylene solution of a platinum complex catalyst: hereinafter referred to as a platinum catalyst] (3 Omg per 1 kg of polymer as the amount of platinum metal) and methyldimethoxysilane (3 molar equivalents relative to the alkenyl group). The mixture was heated and stirred at 80 at room temperature for 2 hours. Alkenyl group disappeared by the reaction Was confirmed by 1 H-NMR, and the reaction mixture was concentrated to obtain a target methoxysilyl group-containing polymer. The number average molecular weight was 28,900 and the molecular weight distribution was 1.47. The number of silyl groups introduced per molecule of the polymer was 1.8. Comparative Example 1
  • Step 1 of Production Example 1 the mixture was heated and devolatilized with stirring at 160 ° C for 3 hours (decompression degree: 10 torr or less).
  • Step 2 the polymer obtained by the same operation had a number average molecular weight of 26100 The molecular weight distribution was 1.31.
  • the number of alkenyl groups introduced per molecule of the polymer was 1.8.
  • the amount of copper contained in the polymer was 7 mg per 1 kg of the polymer.
  • the amount of bromine contained in this polymer was 99 Omg per 1 kg of the polymer as a result of elemental analysis.
  • ester acrylate 400 parts (including n-butyl acrylate (111 parts), ethyl acrylate (159 parts), and 2-methoxyl ethyl allylate (130 parts). Part)) was continuously dropped. Triamine (0.84 parts) was added in portions during the dropwise addition of the acrylate.
  • Acetonitrile and unreacted 1,7-octadiene in the mixture were devolatilized by heating and diluted with methylhexane hexane.
  • the insoluble polymerization catalyst was sedimented by a centrifuge and removed.
  • To 100 parts of polymer add 4 parts of adsorbent (2 parts of Kiyoward 500 SH / 2 parts of Kiyoward 700 SL: both manufactured by Kyowa Chemical Co., Ltd.) to the methylcyclohexane solution of the polymer.
  • the mixture was heated and stirred under a nitrogen mixed gas atmosphere. The insolubles were removed, and the polymer solution was concentrated to obtain a polymer having an alkenyl group (polymer [2]).
  • the number average molecular weight of the polymer [2] was 18,400, and the molecular weight distribution was 1.15.
  • the number of alkenyl groups introduced per molecule of the polymer was 2.0.
  • the obtained polymer [2] was heated and devolatilized (at a reduced pressure of 10 torr or less) while stirring at 180 ° C for 12 hours.
  • Step 2 solid-liquid separation step
  • 100 parts of the polymer obtained in the above step 1 were diluted with 400 parts of toluene, and 6 parts of adsorbent was added to 100 parts of the polymer (3 parts of Kyo-word 500 SH 3 parts of Z-Kyo-word 700 SL: Kyowa Chemical Co., Ltd.) was added to a toluene solution of the polymer, and the mixture was heated and stirred in an oxygen / nitrogen mixed gas atmosphere. After removing solids, the solution was concentrated to obtain a polymer.
  • the number average molecular weight of this polymer was 18,800, and the molecular weight distribution was 1.17.
  • the number of alkenyl groups introduced per molecule of the polymer was 2.0.
  • the amount of copper contained in this polymer was 2 mg or less per 1 kg of the polymer.
  • the amount of bromine contained in this polymer was less than 26 Omg per 1 kg of the polymer.
  • the polymer obtained by performing post-treatment (Production in Steps 1 and 2) of Production Example 2 was mixed with methyl orthoformate (1 molar equivalent based on the alkenyl group), a platinum catalyst (1 kg of the polymer as platinum metal). 1 Omg) and methyldimethoxysilane (3 molar equivalents relative to the alkenyl group) were added and mixed in that order, and the mixture was heated with stirring at 100 ° 0 for 0.5 hour under a nitrogen atmosphere. The disappearance of the alkenyl group by the reaction was confirmed by 1 H-NMR, and the reaction mixture was concentrated to obtain a target methoxysilyl group-containing polymer. The number average molecular weight was 19,400 and the molecular weight distribution was 1.24. The number of silyl groups introduced per polymer molecule was 1.9.
  • the polymer obtained by performing exactly the same operation except that the adsorbent was not used in Step 2 of Production Example 2 had a number average molecular weight of 18,600 and a molecular weight distribution of 1.16.
  • the number of alkenyl groups introduced per molecule of the polymer was 2.0.
  • the amount of copper contained in this polymer was 16 mg per 1 kg of the polymer. Also this As a result of elemental analysis, the amount of bromine contained in the polymer was 260 mg per 1 kg of the polymer.
  • Acetonitrile and unreacted 1,7-octadiene in the mixture were devolatilized by heating and diluted with methylhexane hexane.
  • the insoluble polymerization catalyst was sedimented by a centrifuge and removed. 100 parts of polymer (113 kg) and 4 parts of adsorbent (2 parts of Kiyoword 500 SH, 2 parts of Kiyoword 700 SL: both manufactured by Kyowa Chemical Co., Ltd.)
  • the mixture was heated and stirred under an oxygen / nitrogen mixed gas atmosphere. The insolubles were removed, and the polymer solution was concentrated to obtain a polymer having an alkenyl group (polymer [3]).
  • the number average molecular weight of the polymer [3] was 26,400, and the molecular weight distribution was 1.23.
  • the number of alkenyl groups introduced per molecule of the polymer was 1.9.
  • the obtained polymer [3] was heated and devolatilized (at a reduced pressure of 10 torr or less) while stirring at 180 ° C for 12 hours.
  • Step 2 solid-liquid separation step
  • 100 parts of the polymer obtained in the above step 1 was diluted with 100 parts of methylcyclohexane, and 100 parts of the polymer was adsorbed with 6 parts of adsorbent (3 parts of Kiyoword 500 SH // part of Kiyoword 700 SL 3 Part: both manufactured by Kyowa Chemical Co., Ltd.) was added to a solution of the polymer in methylcyclohexane, and the mixture was heated and stirred in an oxygen / nitrogen mixed gas atmosphere. After removing the solid content, the solution was concentrated to obtain a polymer (63 kg). The number average molecular weight of this polymer was 25,300, and the molecular weight distribution was 1.31.
  • the number of alkenyl groups introduced per molecule of the polymer was 1.8.
  • the amount of copper contained in this polymer was 6 mg or less per 1 kg of the polymer.
  • the amount of bromine contained in this polymer was 24 Omg / kg of the polymer as a result of elemental analysis.
  • the polymer obtained by performing post-treatment (Production in Steps 1 and 2) of Production Example 3 was mixed with methyl orthoformate (1 molar equivalent based on the alkenyl group), a platinum catalyst (1 kg of the polymer as platinum metal). Was added in order, and methyldimethoxysilane (2 molar equivalents to the alkenyl group) was added and mixed in that order, and the mixture was heated and stirred at 80 ° C for 4 hours under a nitrogen atmosphere. It was confirmed by 1 H — NMR that the alkenyl group had disappeared by the reaction, and the reaction mixture was concentrated to obtain a target methoxysilyl group-containing polymer. The number average molecular weight was 28200 and the molecular weight distribution was 1.44. The number of silyl groups introduced per molecule of the polymer was 1.8.
  • the polymer obtained in Production Example 1 was prepared under the same reaction conditions as in Example 3 except that the mixture was heated and stirred with methyldimethoxysilane (3 molar equivalents relative to the alkenyl group) for 2 hours without adding methyl orthoformate. Tried to hydrosilylate the product. 1 H—NMR confirmed that the alkenyl group had disappeared by the reaction.
  • the number average molecular weight of the obtained polymer was 2,780,000, and the molecular weight distribution was 1.41.
  • the number of silyl groups introduced per molecule of the polymer was 1.8.
  • Acetonitrile and unreacted 1,7-octadiene in the mixture were devolatilized by heating and diluted with toluene.
  • the insoluble polymerization catalyst was settled and removed by a centrifuge. 100 parts of polymer (125 kg) and 4 parts of adsorbent (2 parts of Kyo-Iwad 500 SH / 2 parts of Kyo-Iwad 700 SL: both manufactured by Kyowa Chemical Co., Ltd.) were added to the toluene solution of the polymer.
  • the mixture was heated and stirred in a mixed gas atmosphere of oxygen and nitrogen. The insolubles were removed, and the polymer solution was concentrated to obtain a polymer having an alkenyl group (polymer [4]).
  • the number average molecular weight of the polymer [4] was 17,700, and the molecular weight distribution was 1.11.
  • the number of alkenyl groups introduced per molecule of the polymer was 2.0.
  • the obtained polymer [4] was heated and devolatilized (at a reduced pressure of 10 torr or less) while stirring at 180 ° C. for 12 hours.
  • Step 2 solid-liquid separation step
  • 100 parts of the polymer obtained in the above step 1 was diluted with 100 parts of toluene, and 6 parts of adsorbent was added to 100 parts of the polymer (3 parts of Kyo-word 500 SH 3 parts of Z-Kyo-word 700 SL: both Kyowa Chemical Co., Ltd.) was added to a toluene solution of the polymer, and the mixture was heated and stirred in an oxygen / nitrogen mixed gas atmosphere. After removing the solid content, the solution was concentrated to obtain a polymer (113 kg).
  • the number average molecular weight of this polymer was 17,800, and the molecular weight distribution was 1.15.
  • the number of alkenyl groups introduced per polymer molecule was 2.1.
  • the amount of copper contained in this polymer was 3 mg per 1 kg of the polymer.
  • the amount of bromine contained in this polymer was 28 Omg per 1 kg of the polymer as a result of elemental analysis.
  • the polymer obtained by performing the post-treatment (the treatment of Step 1 and Step 2) of Production Example 4 was added to methyl orthoformate (1 molar equivalent based on the alkenyl group), a platinum catalyst (1 kg of polymer as platinum metal amount).
  • 1 Omg) and methyldimethoxysilane (2 molar equivalents to the alkenyl group) were sequentially added and mixed, followed by heating and stirring at 100 at 0.5 in a nitrogen atmosphere.
  • the disappearance of the alkenyl group by the reaction was confirmed by 1 H-NMR, and the reaction mixture was concentrated to obtain a target methoxysilyl group-containing polymer.
  • the number average molecular weight was 18,600 and the molecular weight distribution was 1.17.
  • the number of silyl groups introduced per molecule of the polymer was 1.8.
  • Example 7 the amount of the platinum catalyst (the amount of platinum metal was 40 mg per 1 kg of the polymer), the amount of methyldimethoxysilane (the amount was 6 mol equivalents relative to the alkenyl group), and the reaction time (8 hours)
  • the hydrosilylation of the polymer obtained in Production Example 4 was attempted under exactly the same reaction conditions except that was changed. It was confirmed by 1 H-NMR that the alkenyl group had disappeared by the reaction.
  • the number average molecular weight of the obtained polymer was 19100, and the molecular weight distribution was 1.2.2.
  • the number of silyl groups introduced per molecule of the polymer was 1.8.
  • the obtained methoxysilyl group-containing polymer exhibited a darker brown color than any of the polymers obtained in Examples 5 to 7.
  • the obtained polymer had a number average molecular weight of 23,600 and a molecular weight distribution of 1.21.
  • the number of alkenyl groups introduced per molecule of the polymer was 2.0.
  • the acetonitrile and unreacted 1,7-octadiene in the mixture were devolatilized by heating, and 100 parts (124 kg) of the polymer was diluted with 100 parts (124 kg) of methylcyclohexane to obtain 100 parts of polymer.
  • Parts (124 kg) to 1 part of adsorbent Kelco 500 SH 0.5 parts (0.62 kg) Kyo-ward 700 SL 0.5 parts (0.62 kg): Kyowa Chemical Co., Ltd. was added and 1 part of filter aid (1.24 kg) was added, and the mixture was heated and stirred at 100 ° C in an oxygen / nitrogen mixed gas atmosphere. The insolubles were removed, and the solution was concentrated at 100 ° C to obtain a polymer [5].
  • the resulting polymer [5] was added as a carbon radical scavenger in an amount of 0.1 part of Sumilizer I GS (manufactured by Sumitomo Chemical Co., Ltd.) to 100 parts of the polymer, and adsorbent 1 to 100 parts of the polymer.
  • Sumilizer I GS manufactured by Sumitomo Chemical Co., Ltd.
  • adsorbent 1 to 100 parts of the polymer.
  • Step 2 solid-liquid separation step
  • 100 parts (1 10 kg) of the polymer obtained in the above step 1 was added to a hindered phenol-based antioxidant (0.01 part (llg) (Irganoxl Ol O; Ciba Specialty Chemicals), adsorbent) 2 parts (1 part of Kiyoward 500 SH (1.1 kg), 1 part of Kiyoward 700 SL (1.1 kg): both manufactured by Kyowa Chemical Co., Ltd.)
  • the mixture was heated and stirred at 150 ° C for 4 hours. After diluting with 100 parts of toluene to remove solids, the solution was concentrated to obtain a polymer (82 kg).
  • the number average molecular weight of this polymer was 24,000, and the molecular weight distribution was 1.26.
  • the number of alkenyl groups introduced per polymer molecule was 1.9.
  • the amount of copper contained in this polymer was 2 mg or less per 1 kg of the polymer.
  • the amount of bromine contained in the polymer was 17 Omg per 1 kg of the polymer.
  • the polymer obtained by performing post-treatment (Production in Steps 1 and 2) of Production Example 5 was added to methyl orthoformate (1 molar equivalent based on the alkenyl group), a platinum catalyst (1 kg of the polymer as platinum metal). Was added in order, and methyldimethoxysilane (2 molar equivalents relative to the alkenyl group) was added and mixed in that order, and the mixture was heated and stirred at 100 for 1 hour under a nitrogen atmosphere. It was confirmed by 1 H-NMR that the alkenyl group had disappeared by the reaction, and the reaction mixture was concentrated to obtain a desired methoxysilyl group-containing polymer.
  • the number average molecular weight was 24,800 and the molecular weight distribution was 1.29.
  • the number of silyl groups introduced per molecule of polymer was 1.9.
  • the obtained polymer had a number average molecular weight of 17,000 and a molecular weight distribution of 1.11.
  • the number of alkenyl groups introduced per molecule of the polymer was 1.9.
  • the acetonitrile and unreacted 1,7-octadiene in the mixture were devolatilized by heating and diluted with 100 parts (125 kg) of toluene for 100 parts (125 kg) of the polymer. 25 kg) and 1 part of adsorbent (Kyodo 500 SH 0.5 part (0.66 kg) Nokiyo One Word 700 SL 0.5 part (0.66 kg): both manufactured by Kyowa Chemical Co., Ltd.)
  • One part (1.32 kg) of a filter aid was added, and the mixture was heated and stirred at 10 ° C in an oxygen / nitrogen mixed gas atmosphere. The insolubles were removed, and the solution was concentrated at 100 ° C to obtain a polymer [6].
  • the resulting polymer [6] was added as a carbon radical scavenger in an amount of 0.1 part of Sumilizer I GS (manufactured by Sumitomo Chemical Co., Ltd.) to 100 parts of the polymer, and adsorbent 2 was added to 100 parts of the polymer.
  • Sumilizer I GS manufactured by Sumitomo Chemical Co., Ltd.
  • adsorbent 2 was added to 100 parts of the polymer.
  • Step 2 solid-liquid separation step
  • the number of alkenyl groups introduced per molecule of polymer was 1 • 9.
  • the amount of copper contained in this polymer was 2 mg or less per 1 kg of the polymer.
  • the amount of bromine contained in this polymer was 29 Omg per 1 kg of the polymer.
  • the polymer obtained by performing the post-treatment (the treatment of Step 1 and Step 2) of Production Example 6 was added to methyl orthoformate (1 molar equivalent based on the alkenyl group), a platinum catalyst (1 kg of polymer as platinum metal amount). 5 mg) and methyldimethoxysilane (3 molar equivalents relative to the alkyl group) were sequentially added and mixed, and the mixture was heated with stirring at 100 under an atmosphere of nitrogen for 1 hour. It was confirmed by 1 H-NMR that the alkenyl group had disappeared by the reaction, and the reaction mixture was concentrated to obtain a desired polymer having a methoxysilyl group.
  • the number average molecular weight was 17,800 and the molecular weight distribution was 1.17.
  • the number of silyl groups introduced per molecule of polymer was 1.9.
  • Example 1 7 280 30 1.8
  • Example 2 2 or less 260 or less 10 1.9
  • Example 3 6 or less 240 10 1.8
  • Example 4 6 or less 240 30 1.8
  • Example 5 6 or less 240 30 1.8
  • Example 6 6 or less 240 5 1.6
  • Example 7 2 or less 280 10 1.8
  • Example 8 2 or less 280 5 1.9
  • Example 10 2 or less 280 40 1.8 Large coloring Comparative Example 4 2 or less 280 0 (0) No reaction with alkenyl group Production Example 5 (2 or less) (170) Purification method
  • Example 1 1 2 or less 170 10 1.9
  • Example 1 2 2 or less 290 5 1.9
  • Purification method 1 centrifugation, adsorption, solids removal, heating, solids removal
  • Purification method 2 centrifugation, adsorption, removal of solids, heating, adsorption, removal of solids
  • Purification method 3 adsorption, removal of solids, heating, adsorption, removal of solids Industrial applicability
  • the (meth) acrylic polymer (A) having an alkenyl group at the terminal produced by atom transfer radical polymerization can be used.
  • a (meth) acrylic polymer having a crosslinkable silyl group at the terminal can be economically produced.
  • a (meth) acrylic polymer having a small amount of a coloring component and having a crosslinkable silyl group at a terminal can be obtained

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

明 細 書
末端に架橋性シリル基を有する (メタ) アクリル系重合体の製造方法 技術分野
本発明は原子移動ラジカル重合を利用して、 末端に架橋性シリル基を有する (メタ) アクリル系重合体を製造する方法、 この製造方法により得られた重合 体及び硬化性組成物に関する。 背景技術
末端に架橋性シリル基を有する (メタ) アクリル系重合体は、 架橋後は、 架 橋点が重合体末端にある架橋体となるので、 架橋点間分子量が大きい弾性体を 与え得る。
この重合体は高耐候性の材料に用いられ得る。 この重合体は、 とりわけシーリ ング材や接着剤等、 ゴム弾性が要求される材料に適している。
末端に架橋性シリル基を有する (メタ) アクリル系重合体の製造例として、 例えば、 特公平 3— 1 4 0 6 8において、 (メタ) アクリル系モノマーを、 架 橋性シリル基含有メルカブタン、 架橋性シリル基を有するジスルフィ ド、 およ び架橋性シリル基を有するラジカル重合開始剤の存在下に重合させる方法が開 示され、 また、 特公平 4— 5 5 4 4 4において、 アクリル系モノマーを架橋性 シリル基含有ヒ ドロシラン化合物、 またはテトラハロシランの存在下に重合さ せる方法が開示されている。 また、 特開平 6— 2 1 1 9 2 2には、 水酸基含有 ポリスルフィ ドを開始剤に対して大量に用いることにより、 まず末端に水酸基 を有するァクリル系重合体を合成し、 さらに水酸基を変換することを特徴とす る、 末端に架橋性シリル基を有するアクリル系重合体の製造法が記載されてい る。 さらに特開平 5— 9 7 9 2 1には、 架橋性シリル基を有する安定カルバニ オンを開始剤としてァクリル系モノマーをァニオン重合した後、 重合体の末端 を 2官能性の求電子化合物と反応させることを特徴とする、 末端に架橋性シリ ル基を有するアクリル系重合体の製造法が記載されている。
しかし上記方法は特定の官能化剤が必要であり、 経済的 ·設備的な問題が生 じる。 また、 重合体主鎖骨格中にヘテロ原子が導入され、 (メタ) アクリル系 重合体の特徴である高耐熱性、 高耐候性が損なわれるという欠点がある。
—方、 リビングラジカル重合の一つである原子移動ラジカル重合 (例えば、 Ma t y j a s z e w s k i ら、 J . Am. C h e m. ¾ o c . 1 9 9 ο, 1 1 7, 5 6 1 4、 Ma c r omo l e c u l e s、 1 9 9 5、 28、 7 9 0 1 、 S c i e n c e 1 9 9 6、 2 7 2、 8 66。 あるいは S a wamo t oら s Ma c r omo l e c u l e s l 9 9 5, 2 8, 1 72 1を参照) は官能基 を有する (メタ) アクリル系重合体の製造に有用な方法の一つである。 この方 法を利用して、 末端に架橋性シリル基を有する (メタ) アクリル系重合体を製 造することができる。 本発明者らは、 原子移動ラジカル重合により末端にハロ ゲンを有する (メタ) アクリル系重合体を製造し、 末端ハロゲン基をァルケ二 ル基含有置換基に変換した後に、 アルケニル基を架橋性シリル基含有置換基に 変換する方法を開発した (特開平 0 9— 2 7 2 7 1 4、 特開平 1 1— 04 3 5 1 2、 特開平 1 1— 080 2 50、 特開 2000— 446 26等)。 これらの方 法では、 重合体の末端に官能基が確実に導入されるので、 良好な硬化物を得る ことができる。
アルケニル基を架橋性シリル基含有置換基に変換する方法として例えば、 架 橋性シリル基を有するヒ ドロシラン化合物をアルケニル基に付加させるヒ ドロ シリル化反応を挙げることができる。 ヒ ドロシリル化反応の際には、 工程が簡 便になるという点で、 反応触媒として遷移金属錯体を用いるのが好ましい。 発明の開示
ところで本発明者らは、 上記の原子移動ラジカル重合で使用される重合触媒 力 本発明のヒ ドロシリル化反応の触媒毒であることを発見した。 末端にアル ケニル基を有する重合体中に重合触媒 (触媒毒) が残存した場合、 アルケニル 基のヒ ドロシリル化反応をおこなうために多量のヒ ドロシリル化触媒 (白金錯 体等) が必要となることがある。 しかしながらヒ ドロシリル化触媒は、 ヒ ドロ シリル化反応後には、 茶色、 こげ茶色又は黒色に変色することが多い。 したが つてヒ ドロシリル化触媒を多量に用いると、 重合体が著しく着色して製品価値 が低下する場合がある。 また、 代表的なヒ ドロシリル化触媒である白金錯体は 高価であり、 これを多量に使用することは経済的に好ましくない (すなわち原 料コストが高くなる)。 また、 ヒ ドロシリル化触媒の使用量を抑えるためには、 反応温度を高く したり反応時間を長くすることが一般的に有効である。 しかし 、 ヒ ドロシリル化反応により重合体の末端に架橋性シリル基を導入する場合は 、 この方法は好ましくない。 ヒ ドロシリル化反応の温度を高く したり反応時間 を長くすると、 生成物の末端の架橋性シリル基の架橋反応や分解反応などが起 こり、 結果的に生成物の品質が悪くなることが多い。 また、 原子移動ラジカル 重合により製造される重合体中には、 (重合触媒や重合体の末端のハロゲン原 子に由来する) 遊離酸がごく少量存在することがある。 重合体中に遊離酸が存 在すると、 架橋性シリル基の反応が起こりやすくなり、 その結果生成物の品質 が悪くなることが多い。
すなわち本発明の目的は下記 (1 ) 〜 (3 ) である。
( 1 ) ヒ ドロシリル化触媒の使用量を抑えることにより、 重合体の着色を防ぐ
( 2 ) ヒ ドロシリル化触媒の使用量を抑えることにより、 経済的に有利なプロ セスを構築する。 (3) ヒ ドロシリル化反応条件下で、 生成物の末端の架橋性シリル基の反応に より、 生成物の品質が低下することを防ぐ。
本発明は、 下記 (A) 〜 (C) を混合してヒ ドロシリル化反応をおこなうこ とを特徴とする、 末端に架橋性シリル基を有する (メタ) アクリル系重合体の 製造方法に関する。
(A) 原子移動ラジカル重合を利用して製造され、 重合体中に含まれる遷移金 属の量が重合体 1 k gに対して 1 Omg以下であり、 かつ、 重合体中に含まれ るハロゲンの量が重合体 1 k gに対して 50 Omg以下である、 末端にァルケ 二ル基を有する (メタ) アクリル系重合体
(B) 架橋性シリル基を有するヒ ドロシラン化合物
(C) 白金触媒
重合体 (A) に含まれる遷移金属の量は、 重合体 (A) 1 k gに対して 3m g以下であることが好ましい。 重合体 (A) に含まれるハロゲンの量は、 重合 体 (A) 1 k gに対して 30 Omg以下であることが好ましい。 白金触媒 (C ) については、 重合体 (A) 1 k gに対して、 白金金属量として 0. lmg以 上 3 Omg以下の白金触媒 (C) を用いることが好ましく、 0. 5mg以上 1 Omg以下用いることがより好ましい。
また、 ヒ ドロシリル化反応の際に、 加水分解性のエステル化合物 (特にオノレト ギ酸トリアルキル) および/またはアルキルアルコールを共存させることが好 ましい。 また、 ヒドロシリル化反応を、 窒素ガス等の不活性ガス雰囲気下でお こなうことが好ましレ、。 また、 ヒ ドロシリル化反応温度は、 50°C以上 1 50 °C以下が好ましく、 70°C以上 1 20°C以下がより好ましい。 また場合によつ ては、 架橋性シリル基を有するヒ ドロシラン化合物 (B) を分割添加すること が好ましい。 また、 架橋性シリル基を有するヒ ドロシラン化合物 (B) として は、 メチルジメ トキシシランが好ましい。 また、 白金触媒 (C) としては、 白 金 (0 ) — 1, 1 , 3, 3—テトラメチル一 1 , 3—ジビュルジシロキサン錯 体が好ましい。
また本発明は、 重合体 (A) 1S 下記 (1 ) 〜 (3 ) の工程により製造され るものであることを特徴とする、 末端に架橋性シリル基を有する (メタ) ァク リル系重合体の上記の製造方法に関する。
( 1 ) 有機ハロゲン化物、 またはハロゲン化スルホニル化合物を開始剤、 遷移 金属錯体を触媒として (メタ) アクリル系モノマーを重合することによって末 端にハロゲン基を有する (メタ) アクリル系重合体を製造する工程
( 2 ) ハロゲン基と、 アルケニル基を分子内に複数個有する化合物とを反応さ せる工程
( 3 ) 加熱処理により脱ハロゲン化反応をおこなう工程
また、 ハロゲンは、 塩素、 臭素、 ヨウ素からなる群より選択されるものである ことが好ましい。
また、 (メタ) アクリル系重合体としては、 (メタ) アクリル酸エステル系重 合体が好ましく、 アクリル酸エステル系重合体がより好ましい。 また本発明に おいては、 アルケニル基を分子内に複数個有する化合物が、 非共役ジェン化合 物であることが好ましく、 アルケニル基含有脂肪族炭化水素系化合物であるこ とがより好ましく、 1 , 7—ォクタジェンであることが特に好ましい。
また、 末端に架橋性シリル基を有する (メタ) アクリル系重合体を工業的ス ケールで製造する場合には、 重合体 (A) がー度に 1 0 0 k g以上の重合体を 処理することにより得られたものであることが好ましい。 重合体を処理する際 のスケールを大きくすると、 一度に大量の製品を得ることができる。 スケール を大きくすることは、 産業上有益である。
まず始めに原子移動ラジカル重合について詳述する。
本発明における原子移動ラジカル重合とは、 リビングラジカル重合の一つであ り、 有機ハロゲン化物又はハロゲン化スルホニル化合物を開始剤、 遷移金属を 中心金属とする金属錯体を触媒としてビニル系モノマーをラジカル重合する方 法である。 原子移動ラジカル重合法は分子量 ·分子量分布の制御が可能であり 、 重合末端にハロゲン基を導入することも可能であることから、 ハロゲン基含 有 (メタ) アクリル系重合体の製造方法に最も適している。 原子移動ラジカル 重合について具体的に説明する。
原子移動ラジカノレ重合は例えば、 Ma t y j a s z e w s k i ら、 ジャーナ ノレ 'ォプ 'アメリカン 'ケミカノレソサエティ一 (J . Am. C h em. S o c .) 1 9 9 5年、 1 1 7巻、 56 1 4頁、 マク口モレキューノレズ (M a c r o m o l e c u l e s) 1 9 9 5年、 28卷、 7 90 1頁, サイエンス (S c i e n c e) 1 9 96年、 2 7 2巻、 86 6頁、 WO 9 6/304 2 1号公報, W 09 7/1 8 247号公報、 WO 9 8/0 1 480号公報, WO 9 8Z404 1 5号公報、 あるいは S a w a mo t oら、 マク口モレキューノレズ (M a c r omo l e c u l e s ) 1 9 9 5年、 28卷、 1 7 2 1頁、 特開平 9— 208 6 1 6号公報、 特開平 8— 4 1 1 1 7号公報などに開示されている。
また本発明の原子移動ラジカル重合には、 いわゆるリバース原子移動ラジカル 重合も含まれる。 リバース原子移動ラジカル重合とは、 通常の原子移動ラジカ ル重合触媒がラジカルを発生させた時の高酸化状態、 例えば、 C u ( I ) を触 媒として用いた時の C u ( I I ) に対し、 過酸化物等の一般的なラジカル開始 剤を作用させ、 その結果として原子移動ラジカル重合と同様の平衡状態を生み 出す方法である (Ma c r omo l e c u l e s 1 9 9 9, 3 2, 2 8 7 2参 照、)。
この原子移動ラジカル重合では、 有機ハロゲン化物、 特に反応性の高い炭素 一ハロゲン結合を有する有機ハロゲン化物 (例えば、 α位にハロゲンを有する カルボニル化合物や、 ベンジル位にハロゲンを有する化合物) 、 あるいはハロ ゲン化スルホ二ルイ匕合物等が開始剤として用いられる。 具体的に例示するなら ば、
C6H5— CH2X、 C6H5-C (H) (X) CH3
C6H5-C (X) (CH3) 2
(ただし、 上の化学式中、 C6H5はフエニル基、 Xは塩素、 臭素、 またはヨウ 素)
R3— C (H) (X) — CO2R4
R3-C (CH3) (X) — C02R4
R3-C (H) (X) -C (O) R4、 R3_C (CH3) (X) — C (O) R4
(式中、 R3、 R 4は水素原子または炭素数 1〜 20のアルキル基、 ァリール基 、 またはァラルキル基、 Xは塩素、 臭素、 またはヨウ素)
R3-C6H4-S02X
(上記の各式において、 R 3は水素原子または炭素数 1〜20のアルキル基、 ァリール基、 またはァラルキル基、 Xは塩素、 臭素、 またはヨウ素) 等が挙げられる。
有機ハロゲン化物又はハロゲン化スルホニル化合物を開始剤として (メタ) アクリル系モノマーの原子移動ラジカル重合を行うことにより、 一般式 (1) を末端に有する (メタ) アクリル系重合体が得られる。
-CH2-C (R1) (CO2R2) (X) (1)
(式中、 R1は水素またはメチル基、 R2は (メタ) アクリル系モノマーの側鎖 エステル結合の基、 Xは塩素、 臭素、 またはヨウ素を示す。 )
原子移動ラジカル重合の開始剤として、 重合を開始する官能基とともに重合 を開始しない特定の反応性官能基を併せ持つ有機ハ口ゲン化物又はハ口ゲン化 スルホニル化合物を用いることもできる。 このような場合、 一方の主鎖末端に 特定の反応性官能基を、 他方の主鎖末端にハロゲン基含有構造 (1) を有する (メタ) アクリル系重合体が得られる。 このような特定の反応性官能基として は、 アルケニル基、 架橋性シリル基、 ヒ ドロキシル基、 エポキシ基、 アミノ基
、 アミ ド基等が挙げられる。
アルケニル基を有する有機ハロゲン化物としては限定されず、 例えば、 一般 式 (2) に示す構造を有するものが例示される。
R6R7C (X) -R8-R9-C (R5) =CH2 (2)
(式中、 R5は水素、 またはメチル基、 R6、 R7は水素、 または、 炭素数 1〜 20の 1価のアルキル基、 ァリール基、 またはァラルキル、 または他端におい て相互に連結したもの、 R8は、 — C (O) 0- (エステル基) 、 一 C (O) - (ケト基) 、 または o—, m— , p—フエ二レン基、 R9は直接結合、 また は炭素数 1〜 20の 2価の有機基で 1個以上のエーテル結合を含んでいても良 い、 Xは塩素、 臭素、 またはヨウ素)
置換基 R6、 R 7の具体例としては、 水素、 メチル基、 ェチル基、 n—プロピ ル基、 イソプロピル基、 ブチル基、 ペンチル基、 へキシル基等が挙げられる。 R 6と R 7は他端において連結して環状骨格を形成していてもよい。
一般式 (2) で示される、 アルケニル基を有する有機ハロゲン化物の具体例 としては、
XCH2C (O) O (CH2) nCH=CH2
H3C C (H) (X) C (O) O (CH2) nCH=CH2
(H3C) 2C (X) C (O) O (CH2) nCH=CH2
CH3CH2C (H) (X) C (O) O (CH2) nCH=CH2
Figure imgf000010_0001
(上記の各式において、 Xは塩素、 臭素、 またはヨウ素、 nは 0〜20の整数 )
XCH2C (O) O (CH2) nO (CH2) mCH = CH2
H3CC (H) (X) C (O) O (CH2) nO (CH2) mCH二 CH2、 (H3C) 2C (X) C (O) O (CH2) nO (CH2) mCH = CH2、 CH3CH2C (H) (X) C (O) O (CH2) nO (CH2) mCH = CH2
Figure imgf000010_0002
(上記の各式において、 Xは塩素、 臭素、 またはヨウ素、 nは 1〜20の整数 、 mは 0〜 20の整数)
0 , m, p -XCH2-C6H4- (CH2) n— CH = CH2
o, m, p -CH3C (H) (X) — C6H4— (CH2) n_CH=CH2、 o, m, p -CH3CH2C (H) (X) — C6H4— (CH2) n— CH=CH2 (上記の各式において、 Xは塩素、 臭素、 またはヨウ素、 nは 0〜20の整数
)
o, m, p -XCH2-C6H4- (CH2) n— O— (CH2) m-CH = CH2
o, m, p -CH3C (H) (X) _C6H4_ (CH2) n— O— (CH2) m - CH = CH2
o , m, p -CH3CH2C (H) (X) — C6H4— (CH2) n— O— (CH2 ) mCH=CH2,
(上記の各式において、 Xは塩素、 臭素、 またはヨウ素、 nは 1〜20の整数 、 mは 0〜20の整数)
o , m, p -XCH2-C 6H4-0- (CH2) n_CH = CH2
o, m, p -CH3C (H) (X) — C6H4—◦— (CH2) n— CH=CH2 o, m, p -CH3CH2C (H) (X) —C6H4— O— (CH2) n- CH = CH2
(上記の各式において、 Xは塩素、 臭素、 またはヨウ素、 nは 0〜20の整数
)
o, m, p -XCH2-C6H4-0- (CH2) n_0— (CH2) m— CH=C H2
o, m, p -CH3C (H) (X) _C6H4— O— (CH2) n— O— (CH2 ) m— CH=CH2
o, m, p -CH3CH2C (H) (X) — C6H4— 0— (CH2) n— O— ( CH2) m - CH=CH2
(上記の各式において、 Xは塩素、 臭素、 またはヨウ素、 nは 1〜20の整数 、 mは 0〜20の整数)
アルケニル基を有する有機ハロゲン化物としてはさらに一般式 (3) で示さ れる化合物が挙げられる。
H2C = C (R5) 一 R9_C (R6) (X) -R10-R7 (3)
(式中、 R5、 R6、 R7、 R9、 Xは上記に同じ、 R10は、 直接結合、 _C ( O) O— (エステル基) 、 — C (O) - (ケト基) 、 または、 o— , m—, p 一フエ二レン基を表す)
R9は直接結合、 または炭素数 1〜20の 2価の有機基(1個以上のエーテル 結合を含んでいても良い) であるが、 直接結合である場合は、 ハロゲンの結合 している炭素にビュル基が結合しており、 ハロゲン化ァリル化物である。 この 場合は、 隣接ビュル基によって炭素一ハロゲン結合が活性化されているので、 R10として C (O) O基やフ 二レン基等を有する必要は必ずしもなく、 直接 結合であってもよい。 R 9が直接結合でない場合は、 炭素一ハロゲン結合を活 性化するために、 R10としては C (O) O基、 C (O) 基、 フエ二レン基が好 ましい。
一般式 (3) の化合物を具体的に例示するならば、 CH2 = C (CH3) CH2X、
CH2 = CHC (H) (X) CH3、 CH2 = C (CH3) C (H) (X) CH3
CH2 = CHC (X) (CH3) 2、 CH2 = CHC (H) (X) C2H5、 CH2 = CHC (H) (X) CH (CH3) 2
CH2 = CHC (H) (X) C6H5、 CH2 = CHC (H) (X) CH2C6H5 CH2 = CHCH2C (H) (X) —C02R、 CH2 = CH (CH2) 2C (H) (X) —C02R、
CH2 = CH (CH2) 3C (H) (X) —C02R、
CH2 = CH (CH2) 8C (H) (X) —C02R、
CH2 = CHCH2C (H) (X) — C6H5
CH2 = CH (CH2) 2C (H) (X) — C6H5
CH2 = CH (CH2) 3C (H) (X) 一 C6H5
(上記の各式において、 Xは塩素、 臭素、 またはヨウ素、 Rは炭素数 1〜20 のアルキル基、 ァリール基、 ァラルキル基)
等を挙げることができる。
アルケニル基を有するハロゲン化スルホニル化合物の具体例を挙げるならば o -, m— , p -CH2 = CH- (CH2) n— C6H4— S02X、
o—, m_, p -CH2 = CH- (CH2) n— O— C 6 H4— S O 2 X、
(上記の各式において、 Xは塩素、 臭素、 またはヨウ素、 nは 0〜20の整数 )
等である。
上記架橋性シリル基を有する有機ハロゲン化物としては特に限定されず、 例 えば一般式 (4) に示す構造を有するものが例示される。
R6R7C (X) — R8— R9— C (H) (R5) CH2— [S i (R11) 2_b ( Y) bO] m-S i (R12) 3- a (Y) a (4)
(式中、 R5、 R6、 R7、 R8、 R9、 Xは上記に同じ、 1 1、 R12は、 いずれ も炭素数 1〜 20のアルキル基、 ァリール基、 ァラルキル基、 または (R' ) a S i 0- (R' は炭素数 1〜20の 1価の炭化水素基であって、 3個の R' は同一であってもよく、 異なっていてもよい) で示されるトリオルガノシロキ シ基を示し、 R11または R12が 2個以上存在するとき、 それらは同一であって もよく、 異なっていてもよい。 Yは水酸基または加水分解性基を示し、 Yが 2 個以上存在するときそれらは同一であってもよく、 異なっていてもよい。 aは 0, 1 , 2, または 3を、 また、 bは 0, 1, または 2を示す。 mは 0〜1 9 の整数である。 ただし、 a +mb 1であることを満足するものとする) 一般式 (4) の化合物を具体的に例示するならば、
XCH2C (O) O (CH2) nS i (OCH3) 3、
CH3C (H) (X) C (O) O (CH2) nS i (OCH3) 3
(CH3) 2C (X) C (O) O (CH2) nS i (OCH3) 3
XCH2C (O) O (CH2) nS i (CH3) (OCH3) 2
CH3C (H) (X) C (O) O (CH2) nS i (CH3) (OCH3) 2、 (CH3) 2C (X) C (O) O (CH2) n S i (CH3) (OCH3) 2、 (上記の各式において、 Xは塩素、 臭素、 ヨウ素、 nは 0〜2 0の整数、 ) XCH2C (O) O (CH2) nO (CH2) mS i (OCH3) 3
H3CC (H) (X) C (O) O (CH2) nO (CH2) mS i (OCH3) 3、 (H3C) 2C (X) C (O) O (CH2) nO (CH2) mS i (OCH3) 3、 CH3CH2C (H) (X) C (O) O (CH2) nO (CH2) mS i (OCH3
) 3、
XCH2C (O) O (CH2) nO (CH2) m S i (CH3) (OCH3) 2、 H3CC (H) (X) C (O) O (CH2) nO (CH2) m— S i (CH3) ( OCH3) 2
(H3C) 2C (X) C (O) O (CH2) nO (CH2) m_ S i (CH3) (O C H 3) 2
CH3CH2C (H) (X) C (O) O (CH2) nO (CH2) m— S i (CH3
) (OCH3) 2
(上記の各式において、 Xは塩素、 臭素、 ヨウ素、 nは 1〜20の整数、 mは 0〜 20の整数)
o, m, p -XCH2-C6H4- (CH2) 2 S i (OCH3) 3
o, m, p -CH3C (H) (X) — C6H4— (CH2) 2 S i (OCH3) 3、 o, m, p -CH3CH2C (H) (X) — C6H4— (CH2) 2 S i (OCH3 ) 3
o, m, p -XCH2-C6H4- (CH2) 3 S i (OCH3) 3
o, m, p -CH3C (H) (X) — C6H4_ (CH2) 3 S i (OCH3) 3、 o, m, p -CH3CH2C (H) (X) —C6H4— (CH2) 3 S i (OCH3
) 3、
o, m, p -XCH2-C6H4- (CH2) 2— O— (CH2) 3 S i (OCH3
) 3、
o, m, p -CH3C (H) (X) — C6H4_ (CH2) 2— O— (CH2) 3 S i (OCH3) 3
0, m, p -CH3CH2C (H) (X) — C6H4— (CH2) 2_0_ (CH2 ) 3 S i (OCH3) 3
o , m, p -XCH2-C6H4-0- (CH2) 3 S i (OCH3) 3、 o, m, p -CH3C (H) (X) _C6H4— 0— (CH2) 3 S i (OCH3
) 3、
o, m, p -CH3CH2C (H) (X) — C6H4— O— (CH2) 3— S i ( OCH3) 3
0, m, p -XCH2-C6H4-0- (CH2) 2— O— (CH2) 3_ S i (O C H3) 3
o, m, p -CH3C (H) (X) — C6H4— O— (CH2) 2— O— (CH2 ) 3 S i (OCH3) 3
o , m, p -CH3CH2C (H) (X) — C6H4— O— (CH2) 2— O— ( CH2) 3S i (OCH3) 3
(上記の各式において、 Xは塩素、 臭素、 またはヨウ素)
等が挙げられる。
上記架橋性シリル基を有する有機ハロゲン化物としてはさらに、 一般式 (5 ) で示される構造を有するものが例示される。
( 12) 3-a (Y) aS i - [OS i (R11) 2b (Y) J m— CH2— C (H ) (R5) 一 R9_C (R6) (X) .— R10— R7 (5)
(式中、 R5、 R7、 R8、 R9、 R10、 R11 R12、 a、 b、 m、 X、 Yは上 記に同じ)
このような化合物を具体的に例示するならば、
(CH30) 3 S i CH2CH2C (H) (X) C6H5
(CH3O) 2 (CH3) S i CH2CH2C (H) (X) C6H5
(CH3O) 3 S i (CH2) 2C (H〕 (X) — C02R、
(CH3O) 2 (CH3) S i (CH2, 2C (H) (X) — C02R、
(CH3O) 3 S i (CH2) 3C (H) (X) — C02R、
(CH3O) 2 (CH3) S i (CH2, 3C (H) (X) — C02R、
(CH3O) 3 S i (CH2) 4C (H (X) — CO2R、
(CH3O) 2 (CH3) S i (CH2 4C (H) (X) — C02R、
(CH3O) 3 S i (CH2) 9C (H: (X) — CO2R、
(CH3O) 2 (CH3) S i (CH2, 9C (H) (X) — CO2R、
(CH3O) 3 S i (CH2) 3C (H: (X) _C6H5
(CH3O) 2 (CH3) S i (CH2, 3C (H) (X) - C6H5
(CH3O) 3S i (CH2) 4C (H: (X) — C6H5
(CH3O) 2 (CH3) S i (CH2, 4C (H) (X) 一 C6H5
(上記の各式において、 Xは塩素、 臭素、 またはヨウ素、 Rは炭素数 1〜20 のアルキル基、 ァリール基、 ァラルキル基)
等が挙げられる。
上記ヒドロキシル基を持つ有機ハロゲン化物、 またはハロゲン化スルホニル 化合物としては特に限定されず、 下記のようなものが例示される。
HO- (CH2) n-OC (O) C (H) (R) (X)
(上記の各式において、 Xは塩素、 臭素、 またはヨウ素、 Rは水素原子または 炭素数 1〜20のアルキル基、 ァリール基、 ァラルキル基、 nは 1〜20の整 数)
上記アミノ基を持つ有機ハロゲン化物、 またはハロゲン化スルホニル化合物 としては特に限定されず、 下記のようなものが例示される。
H2N- (CH2) n— OC (O) C (H) (R) (X)
(上記の各式において、 Xは塩素、 臭素、 またはヨウ素、 Rは水素原子また は炭素数 1〜 20のアルキル基、 ァリール基、 ァラルキル基、 nは 1〜20の 整数)
上記エポキシ基を持つ有機ハロゲン化物、 またはハロゲン化スルホニル化合 物としては特に限定されず、 下記のようなものが例示される。
Figure imgf000017_0001
(上記の各式において、 Xは塩素、 臭素、 またはヨウ素、 Rは水素原子または 炭素数 1〜20のアルキル基、 ァリール基、 ァラルキル基、 nは 1〜20の整 数) ハロゲン基を 1分子内に 2つ以上有する重合体を得るためには、 2つ以上の 開始点を持つ有機ハロゲン化物、 またはハロゲン化スルホ二ル化合物が開始剤 として用いるのが好ましい。 具体的に例示するならば、
o,m,p- X— C H2一 C6H4- C H2— X
CH3 CH3 CH3 CH3 o,m,p-x— CH-C6H4-CH— X o,m,p- X— C一 C6H4—C—— X
CH3 CH3 (式中、 C6H4はフエ二レン基、 Xは塩素、 臭素、 またはヨウ素)
H H CH3 CH3
X— C— (CH2)— C X X— C— (CH2)— C—— X
C02R C02R C02R C02R
H H CH3 CH3
X— C— (CH2)— < - -X X— C— (CH2)— C—— X
COR COR COR COR
(式中、 Rは炭素数 1〜2 0のアルキル基、 ァリール基、 またはァラ ルキル基、 nは 0〜2 0の整数、 Xは塩素、 臭素、 またはヨウ素)
Figure imgf000018_0001
C6H5 C6H5
X-CH - (CH2)n-CH—X (式中、 Xは塩素、 臭素、 またはヨウ素、 nは 0〜2 0の整数) X— CH2- CH2-X
Figure imgf000019_0001
CH3 O O CH3
II
X— CH一 C- O- (CH2)n- O- C- C H— X
o c=
CH3 O O CH3
I II II I
X— C ~ C-0-(CH2)n-0— C-C—— X
CH3 CH3 (式中、 nは 1〜2 0の整数、 Xは塩 OH素、 臭素、 またはヨウ素)
CH3 CH3
X— CH2一 C- CH2一 X
II X— CH— C一 C CH— X 0 II II
o 0
CH3 CH3
X— c一 c- -c- C—— X
I II II
CH3 0 o
o
0'm'P— X— CH2 - C— 0-C6H4_0— C—CH2-X CH3 O 0 CH3
I II II I
o'm'P一 X—CH— C_0-C6H4— 0一 C—CH— X
o,m,p- X—
Figure imgf000019_0002
o,m,p - X— S02_C6H4-S02— X
(式中、 Xは塩素、 臭素、 またはヨウ素) 等があげられる。 重合触媒として用いられる遷移金属錯体としては特に限定されないが、 好ま しくは周期律表第 7族、 8族、 9族、 10族、 または 1 1族元素を中心金属と する金属錯体である。 更に好ましいものとして、 0価の銅、 1価の銅、 2価の ルテニウム、 2価の鉄又は 2価のニッケルの錯体が挙げられる。 なかでも、 銅 の錯体が好ましい。 1価の銅化合物を具体的に例示するならば、 塩化第一銅、 臭化第一銅、 ヨウ化第一銅、 シアン化第一銅、 酸化第一銅、 過塩素酸第一銅等 である。 銅化合物を用いる場合、 触媒活性を高めるために 2, 2' —ビビリジ ル若しくはその誘導体、 1, 10—フエナント口リン若しくはその誘導体、 又 はテトラメチルエチレンジァミン、 ペンタメチルジェチレントリアミン若しく はへキサメチルトリス (2—アミノエチル) ァミン等のポリアミン等が配位子 として添加される。 また、 2価の塩化ルテニウムのトリストリフエニルホスフ イン錯体 (RuC l 2 (PPh3) 3) も触媒として好適である。 ルテニウム化 合物を触媒として用いる場合は、 活性化剤としてアルミニウムアルコキシド類 が添加される。 更に、 2価の鉄のビストリフエニルホスフィン錯体 (F e C l 2 (PPh3) 2) 、 2価のニッケルのビス トリフエエルホスフィン錯体 (N i C 12 (P P h 3) 2) 、 及び、 2価のニッケルのビス トリブチルホスフィン錯 体 (N i B r 2 (PBu3) 2) も、 触媒として好適である。
原子移動ラジカル重合において用いられる (メタ) アクリル系モノマーとし ては特に制約はなく、 例えば (メタ) アクリル酸、 (メタ) アクリル酸メチル 、 (メタ) アクリル酸ェチル、 (メタ) アクリル酸一 n—プロピル、 (メタ) アクリル酸イソプロピル、 (メタ) アクリル酸一 n—ブチル、 (メタ) アタリ ル酸イソブチル、 (メタ) アクリル酸 _ t e r t—プチル、 (メタ) アクリル 酸—η—ペンチル、 (メタ) アクリル酸一 n—へキシル、 (メタ) アクリル酸 シクロへキシル、 (メタ) アクリル酸一 n—ヘプチル、 (メタ) アクリル酸一 n—ォクチル、 (メタ) アクリル酸一 2—ェチルへキシル、 (メタ) ァクリノレ 酸ノニル、 (メタ) アクリル酸デシル、 (メタ) アクリル酸ドデシル、 (メタ ) アクリル酸フエニル、 (メタ) アクリル酸トルィル、 (メタ) アクリル酸べ ンジノレ、 (メタ) アクリル酸一 2—メ トキシェチル、 (メタ) アクリル酸一 3 —メ トキシブチル、 (メタ) アクリル酸一 2—ヒ ドロキシェチル、 (メタ) ァ クリル酸一 2—ヒドロキシプロピル、 (メタ) アクリル酸ステアリル、 (メタ ) アクリル酸グリシジル、 (メタ) アクリル酸 2 _アミノエチル、 γ— (メタ クリロイルォキシプロピル) トリメ トキシシラン、 (メタ) アクリル酸のェチ レンオキサイ ド付加物、 (メタ) アクリル酸トリフルォロメチルメチル、 (メ タ) アクリル酸 2—トリフルォロメチルェチル、 (メタ) アクリル酸 2—パー フルォロェチルェチル、 (メタ) アクリル酸 2 _パーフルォロェチル一 2—パ 一フルォロブチルェチル、 (メタ) アクリル酸 2—パーフルォロェチル、 (メ タ) アクリル酸パーフルォロメチル、 (メタ) アクリル酸ジパーフルォロメチ ルメチル、 (メタ) アクリル酸 2—パーフルォロメチル _ 2—パーフルォロェ チルメチル、 (メタ) アクリル酸 2—パーフルォ口へキシルェチル、 (メタ) アクリル酸 2—パーフルォロデシルェチル、 (メタ) アクリル酸 2—パーフル ォ口へキサデシルェチル等が挙げられる。 これらは、 単独で用いても良いし、 複数を共重合させても構わない。 なかでも、 生成物の物性等から、 アクリル酸 エステルモノマーが好ましく、 更に好ましくは、 アクリル酸ブチルである。 本 発明においては、 これらの好ましいモノマーを他のモノマーと共重合、 更には ブロック共重合させても構わなく、 その際は、 これらの好ましいモノマーが重 量比で 4 0 %含まれていることが好ましい。 なお上記表現形式で例えば (メタ ) アクリル酸とは、 アクリル酸および/あるいはメタクリル酸を表す。
原子移動ラジカル重合は、 無溶媒でも可能であるが、 各種の溶媒中で行うこ ともできる。 溶媒の種類としては特に限定されず、 例えば、 ベンジェン、 トル ェン等の炭化水素系溶媒;ジェチルエーテル、 テトラヒ ドロフラン、 ジフエ二 ルエーテル、 ァニソール、 ジメ トキシベンジェン等のエーテル系溶媒;塩化メ チレン、 クロ口ホルム、 クロ口ベンジェン等のハロゲン化炭化水素系溶媒;ァ セトン、 メチルェチルケトン、 メチルイソブチルケトン等のケトン系溶媒;メ タノ一ノレ、 エタノール、 プロパノール、 イソプロパノール、 n—ブチルアルコ ール、 t e r t—プチルアルコール等のアルコール系溶媒; ァセトニトリル、 プロピオ二トリル、 ベンゾニトリル等の二トリル系溶媒;酢酸ェチル、 酢酸ブ チル等のエステル系溶媒;エチレンカーボネート、 プロピレンカーボネート等 のカーボネート系溶媒; N , N—ジメチルホルムアミ ド、 N, N—ジメチルァ セトアミ ド等のアミ ド系溶媒等が挙げられる。 これらは、 単独でもよく、 2種 以上を併用してもよい。 また、 ェマルジヨン系もしくは超臨界流体 c o 2を媒 体とする系においても重合を行うことができる。
限定はされないが、 重合は、 0〜2 0 0 °Cの範囲で行うことができ、 好まし くは、 室温〜 1 5 0 °C、 より好ましくは 5 0〜 1 2 0 °Cの範囲である。
原子移動ラジカル重合を利用して製造される (メタ) アクリル系重合体とは 、 原子移動ラジカル重合により製造される (メタ) アクリル系重合体若しくは その変性体である。 (メタ) アクリル系重合体としては既に例示した (メタ) アクリル系モノマーの重合体であるが、 生成物の物性等から、 アクリル酸エス テル系 (共) 重合体が好ましく、 より好ましくは、 アクリル酸ブチル系 (共) 重合体である。
(メタ) アクリル系重合体の分子量は特に限定されないが、 数平均分子量と して 1 0 0 0以上 1 0 0 0 0 0以下が好ましく、 5 0 0 0以上 5 0 0 0 0以下 がより好ましい。 (メタ) アクリル系重合体の分子量分布は特に限定されない が 1 . 0 5以上1 . 5 0以下が好ましく、 1 . 1 0以上1 . 4 0以下がより好 ましい。
末端にアルケニル基を有する (メタ) アクリル系重合体の製造法としては特 に限定されず、 様々な方法が利用される。 例えば、
( 1 ) (メタ) アクリル系モノマーの側鎖エステル部にアルケニル基を有する (メタ) アクリル系モノマーを原子移動ラジカル重合条件下で所定の (メタ) ァクリル系モノマーと共重合させる方法、
( 2 ) ラジカル重合性の低いアルケニル基を 2つ以上持つ化合物を (メタ) ァ クリル系重合体の末端ハ口ゲン基に原子移動ラジカル重合条件下で反応させる 方法、
( 3 ) アルケニル基を有する特定の化合物により (メタ) アクリル系重合体の 末端ハ口ゲン基を置換する方法、
等が例示される。 (メタ) アクリル系重合体の分子量、 分子量分布、 官能基数 等の制御が可能で目的に応じた (メタ) アクリル系重合体の分子設計が可能で あるという点で特に (2 ) の方法が好ましい。
次に末端にアルケニル基を有する (メタ) アクリル系重合体の製造法 (2 ) について詳述する。
原子移動ラジカル重合の最中又は終点において、 ラジカル重合性の低いアル ケニル基を 2つ以上持つ化合物を添加すると、 末端にほぼ 1つづつ付加し、 そ の結果としてアルケニル基が重合体の末端に導入される。 重合の終点とは、 単 量体の好ましくは 8 0 %以上が反応した時点、 さらに好ましくは 9 0 %以上、 特に好ましくは 9 5 %以上、 特別に好ましくは 9 9 %以上が反応した時点であ る。
アルケニル基を導入するために用いられる、 ラジカル重合性の低いアルケニル 基を 2つ持つ化合物としては一般式 9に示される化合物から選ばれる。 (9)
Figure imgf000024_0001
(上の式中、 R13は上述と同じ基であり、 R14及び R15は水素原子あるいは メチル基であり同じでも異なっていてもよい)
一般式 9の化合物に特に制約はないが、 なかでも、 R13が炭素数 1〜20の 2 価の炭化水素基である場合、 好ましいものとして、 以下のものが例示される。
Figure imgf000024_0002
nは 1〜20の整数であるが、 原料入手の容易さから、 nは 2、 4、 6のもの が好ましい。 すなわち、 1, 5—へキサジェン、 1, 7—ォクタジェン、 1, 9—デカジエンが好ましい。
末端にアルケニル基を導入するするために用いられるラジカル重合性の低い アルケニル基を 2つ以上持つ化合物を添加する量は、 重合成長末端に対して過 剰量であることが好ましい。 等量あるいは末端より少量の場合、 2つのアルケ ニル基の両方ともが反応し、 重合末端をカツプリングしてしまう可能性がある 。 2つのアルケニル基の反応性が等しい化合物の場合、 カップリングの起こる 確率は、 過剰に添加する量に応じて統計的に決まってくる。 よって、 好ましく は 1. 5倍以上、 さらに好ましくは 3倍以上、 特に好ましくは 5倍以上である 続いて原子移動ラジカル重合を利用して製造される末端にアルケニル基を有 する (メタ) アクリル系重合体 (A) の後処理方法について詳述する。 ここで 「後処理」 とは、 原子移動ラジカル重合の後に (メタ) アクリル系重合体又は その混合物に対して行われる処理であって、 (メタ) アクリル系重合体の物理 的若しくは化学的変性物又はその混合物に対して行われる処理であつてもよい 。 処理としては例えば、 重合等で使用される溶媒の除去、 重合触媒等の不溶成 分の除去、 水による抽出 ·吸着剤処理等による精製、 加熱処理等が例示される 。 また、 ハロゲン基等の除去、 官能基導入等の化学的変性も処理の一つである 。 本発明では後処理方法は特に限定されず、 様々な方法が利用されるが、 例え ば以下の工程 1及び工程 2を経る後処理方法を挙げることができる。 工程 1及 び工程 2について詳述する。
工程 1 (加熱処理工程) :原子移動ラジカル重合を利用して製造される (メタ ) アクリル系重合体を 1 4 0 °C以上 2 5 0 °C以下に加熱する工程。
工程 2 (固液分離工程) :工程 1を経た (メタ) アクリル系重合体に対する処 理工程であって、 (メタ) アクリル系重合体中に存在する不溶成分を (メタ) アクリル系重合体中から分離除去する工程。
工程 1及び工程 2を経ることにより重合体中に存在する不純物 (すなわちヒ ドロシリル化の触媒毒) を減らすことができるので、 ヒ ドロシリル化触媒量を 减らすことが可能になる。 また、 工程 1及び工程 2を経る方法では、 精製工程 で使用される吸着剤を減らすことができ、 さらに精製工程を簡略化できる。 本 発明では、 工程 1の後に工程 2を実施するのがよい。 工程 1と工程 2の間に別 の処理がなされてもよいが、 工程 1に引き続いて工程 2が実施されることが好 ましい。
工程 1は (メタ) アクリル系重合体の加熱処理工程である。 処理温度は高い 方が好ましいが、 処理温度が高すぎると (メタ) アクリル系重合体の熱による 劣化が起こるので、 好ましい処理温度は 1 4 0 °C以上 2 5 0 °C以下、 より好ま しくは 1 7 0 °C以上 2 5 0 °C以下、 特に好ましくは 1 9 0 °C以上で 2 5 0で以 下である。 処理時間は特に限定されず、 通常、 数分から数十時間の範囲である 力 あまり長時間加熱すると (メタ) アクリル系重合体の熱劣化が起こるため 、 必要以上に長時間加熱することは避けるべきである。 なお、 処理温度を高く することによって処理に要する時間を短縮することができる場合がある。 また 、 工程 1により、 重合体中の固形分の粒径が大きくなる傾向がある。
工程 1の際には、 溶媒は存在しても存在しなくてもよいが、 できれば存在し ない方が好ましい。 また、 加熱処理の際に重合体に加えられる圧力は特に限定 されないが、 減圧下で加熱処理するのが好ましい。 加熱処理の際の圧力は、 通 常、 7 0 O T o r r以下であり、 1 0 0 T o r r以下が好ましく、 2 0 T o r r以下がより好ましく、 1 O T o r r以下が特に好ましい。 減圧下で加熱処理 を行う場合は、 表面更新の程度が、 不純物の除去効率に大きく影響する。 減圧 下で加熱処理する場合は、 攪拌等により、 良好な表面更新状態を確保するのが 好ましい。
(メタ) アクリル系重合体がハロゲン基を有する場合には、 工程 1の際に脱 ハロゲン化反応をおこなうことができる。 脱ハロゲン化反応についても、 上記 の処理条件が有効であるが、 脱ハロゲン化反応により比較的沸点の低いハロゲ ン化物が発生するので、 ハロゲン化物を減圧除去しながら加熱処理することが 好ましい。 特に上記の末端にアルケニル基を有する (メタ) アクリル系重合体 の製造法 (2 ) により製造される (メタ) アクリル系重合体は、 分子中ハロゲ ン基を有するので、 減圧下で加熱処理して脱ハロゲン化反応をおこなうことが 好ましい。
工程 2は (メタ) アクリル系重合体中に存在する不溶成分の除去工程 (固液 分離工程) である。 固液分離方法としては特に限定されず、 濾過法、 沈降法等 の一般的な分離方法が利用される。
濾過法としては例えばヌツチェ等による減圧濾過方法、 フィルタープレス方 式等の加圧濾過方法等が例示される。 不溶成分の量が少なく、 濾過性がよい場 合にはカートリッジフィルター、 バッグフィルタ一等による簡易濾過、 砂濾過 等が簡便である。 沈降法としては静置分離法、 デカンター、 分離盤型遠心沈降 機等による遠心沈降法等が例示される。 濾過と沈降を組み合わせた方法として は例えば、 バスケッ ト型遠心濾過機等による遠心濾過法、 水平盤式濾過機等の 沈降濾過法等が例示される。
工程 2において不溶成分の粒子径ゃ、 その量に応じて濾過助剤を使用しても よい。 濾過助剤は特に限定されないが、 珪藻土等の一般的なものを使用するこ とができる。 (メタ) アクリル系重合体の粘度が高く、 固液分離の操作性が悪 くなる場合には、 (メタ) アクリル系重合体を溶剤で希釈してもよい。 希釈溶 剤としては特に限定されず一般的な溶剤を使用することができるが、 (メタ) アクリル系重合体よりも極性の高い溶剤を使用すると重合触媒等の溶解性を高 めてしまうので、 (メタ) アクリル系重合体よりも極性の低い溶剤を使用する ことが好ましい。 極性が低すぎると (メタ) アクリル系重合体の溶解が困難と なるので、 (メタ) アクリル系重合体の極性に応じて、 適切な溶剤を選択する ことが好ましい。 溶剤の極性を調整するために 2種以上の溶剤を混合して使用 してもよい。 (メタ) アクリル系重合体が (メタ) アクリル酸エステル系重合 体である場合にはトルエン、 キシレン、 へキサン、 メチルシクロへキサン等の 炭化水素系化合物を用いることが好ましい。 (メタ) アクリル系重合体若しく はその混合物を加温した状態で固液分離処理を行ってもよい。
次に吸着処理法について詳述する。 本発明においては、 上記工程 1と同時に 、 又は上記工程 1と別な工程として、 吸着処理をおこなって (メタ) ァク リノレ 系重合体中の不純物を除去することができる。 本発明においては、 より精製度 の高い (メタ) アクリル系重合体 〔すなわち、 より不純物の少ない (メタ) ァ クリル系重合体〕 を得るために、 必要に応じて吸着剤による処理をおこなうこ とができる。
重合時に使用される遷移金属及び (重合活性を高めるために添加される) 配 位子は、 ともに重合体の着色の原因となる。 また、 これらはともにヒ ドロシリ ル化反応の触媒毒でもある。 配位子は塩基性化合物であるため酸性吸着剤によ る除去が好ましい。 また一般に、 塩基性吸着剤は遷移金属の吸着能が高い。 し たがって酸性吸着剤及びノ又は塩基性吸着剤を使用することにより、 末端にァ ルケ-ル基を有する (メタ) アクリル系重合体がを効率的に精製することがで き、 その結果、 重合体をヒ ドロシリル化する際のヒ ドロシリル化触媒の使用量 を抑えることができる。
本発明で使用される吸着剤は、 例えば酸性吸着剤、 又は塩基性吸着剤である 。 ここにおける 「酸性吸着剤」 の定義は、 「塩基性化合物に対して吸着能を有 する吸着剤」 又は 「カチオン交換能を有する吸着剤」 である。 また、 ここにお ける 「塩基性吸着剤」 の定義は、 「酸性化合物に対して吸着能を有する吸着剤 」 又は 「ァニオン交換能を有する吸着剤」 である。
吸着剤としては活性炭、 イオン交換樹脂等の合成樹脂系吸着剤、 ゼォライ ト 等の無機系吸着剤なども使用することができる。
活性炭とは大部分が炭素質の炭であり、 吸着性は高い。 製法は、 例えば木材 、 褐炭、 泥炭などを活性化剤として塩化亜鉛やリン酸などで処理して乾留する 力、 あるいは木炭などを水蒸気で活性化する。 通常は粉状あるいは粒状であり 、 いずれも使用することができる。 活性炭の製造過程の結果として、 化学賦活 炭は酸性を示し、 本来水蒸気賦活炭は塩基性を示す。
合成樹脂系吸着剤としてイオン交換樹脂を用いることができる。 イオン交換 樹脂としては酸性、 塩基性イオン交換樹脂の一般的なものが使用されてよい。 また、 キレート型イオン交換樹脂も使用されてよい。 酸性イオン交換樹脂の官 能基としては、 例えばカルボン酸基、 スルホン酸基等が、 塩基性イオン交換樹 脂の官能基としては、 例えばアミノ基等が、 キレート型イオン交換樹脂の官能 基としては、 例えばイミノジ酢酸基、 ポリアミン基等が例示される。
無機系吸着剤は、 一般的に固体酸、 固体塩基を有し、 粒子は多孔質構造を持 つているため、 吸着能は非常に高い。 また、 低温から高温まで使用可能である ことも特徴の一つである。 無機系吸着剤としては特に限定されないが、 代表的 なものとしてアルミニウム、 マグネシウム、 珪素等を主成分とする単独もしく はこれらを組み合わせたもの等がある。 例えば二酸化珪素;酸化マグネシウム ; シリカゲル; シリカ ' ァノレミナ、 アルミニウムシリケ一ト ;マグネシウムシ リケート ;活性アルミナ;水酸化アルミニウム ;酸性白土、 活性白土等の粘土 系吸着剤;珪酸アルミニウムナトリゥム等の含水アルミノ珪酸塩鉱物群で総称 されるゼォライ ト系吸着剤; ドーソナイ ト類化合物;ハイドロタルサイ ト類化 合物等が例示される。
ゼォライ トには天然産と合成品があるがレ、ずれも使用されてよい。
二酸化珪素は、 結晶性、 無定形、 非晶質、 ガラス状、 合成品、 天然品などの 種類が知られるが、 ここでは、 粉体状であれば使用することができる。 二酸化 珪素としては、 活性白土を酸処理して得られる粘土鉱物から作られる珪酸、 力 —プレックス B S 3 0 4、 カープレックス B S 3 0 4 F、 カープレックス # 6 7、 カープレックス # 8 0 (いずれもシオノギ製薬) などの合成珪酸が挙げら れるカ S、 これらに限定されるわけではない。
アルミニウムシリケートは、 珪酸の珪素の一部がアルミニウムに置換された もので、 軽石、 フライアッシュ、 カオリン、 ベントナイ ト、 活性白土、 ケイソ ゥ土等が知られている。 この中でも、 合成のアルミニウムシリケ一トは比表面 積も大きく吸着能力が高い。 合成アルミニウムシリケートとしてはキョーヮ一 ド 700シリーズ (協和化学製) などが挙げられるが、 これらに限定されるわ けではない。
ハイ ド口タルサイ ト類化合物は、 2価の金属 (Mg2 +, Mn 2 + , F e 2 + , C o2 +, N i 2 + , Cu2 +, Z n2+等) と 3価の金属 (A 13 + , F e 3 + , C r 3 +, C o 3 + , I n3+等) の含水水酸化物又は前記水酸化物の水酸基の一部を ハロゲンイオン、 NO3— , C03 2", SO4 2—, F e (CN) 6 3", CH3CO 2一, シユウ酸イオン、 サリチル酸イオン等の陰イオンに交換したものである。 これらのうち、 2価の金属が Mg2 +、 3価の金属が A 13 +であって、 水酸基の 一部を co3 2 に交換したハイドロタルサイ トが好ましく、 例えば合成品とし てはキヨ一ワード 500シリーズ、 キヨ一ワード 1◦ 00シリーズ (いずれも 協和化学 (株) 製) などが挙げられるが、 これらに限定されるわけではない。 また、 上記ハイ ドロタルサイ ト類を焼成して得られる吸着剤も好適に使用され る。 そのなかでも 2価の金属が Mg 2 +、 3価の金属が A 13 +であるハイ ドロタ ルサイ ト類を焼成して得られる MgO— A 103系固溶体が好ましく、 例えば キヨ一ワード 2000 (協和化学 (株) 製) などが挙げられるが、 これらに限 定されるわけではない。 ここでは、 ハイ ド口タルサイ ト類の焼成品についても ハイ ドロタノレサイ ト類として分類する。
酸性吸着剤及び または塩基性吸着剤を使用するかわりに、 固体酸、 固体塩 基の両方を併せ持つ吸着剤を使用してもよい。 このような吸着剤としては、 例 えばマグネシウムシリケートが挙げられる。 マグネシウムシリゲートは、 固体 酸、 固体塩基の両方を有し、 酸及び塩基の両方の吸着能を有する。 マグネシゥ ムシリケートとしては、 キヨ一ワード 600 s (2Mg O - 6 S i 02 · XH2 O ;協和化学 (株) 製) 、 ミズ力ライフ P— 1 G (水澤化学 (株) 製) 等が挙 げられるが、 これらに限定されるわけではない。 キヨ一ワード 600 sは、 酸 及び塩基の両方を吸着する性質を有するため、 酸性及び塩基性吸着剤の両方に 分類されるが、 ミズ力ライフ P— 1 Gは、 塩基の吸着能が高いため酸性吸着剤 として分類される。
水酸化アルミニウムは両性であるため、 条件によっては塩基の吸着能を示す 力 主として酸に対する吸着剤であるため、 塩基性吸着剤として分類される。
A 1 ( O H) 3 · N a H C O 3は別名ドーソナイ トと称し、 塩基性吸着剤に分 類される。
酸性の無機系吸着剤としては、 例えば、 酸性白土、 活性白土、 ァノレミニゥム シリケート、 シリカゲル等が挙げられ、 塩基性の無機系吸着剤としては、 例え ば、 酸化マグネシウム、 活性アルミナ、 珪酸アルミニウムナトリウム等の含水 アルミノ珪酸塩鉱物群で総称されるゼォライト系吸着剤、 ハイ ドロタルサイ ト 類化合物等が挙げられる。
ァクリル系重合体の吸着処理に用いる吸着剤としては、 上記のなかでも無機系 吸着剤が好ましい。 それらのなかでも、 酸性吸着剤としては酸性白土、 活性白 土、 アルミニウムシリケートがより好ましく、 活性白土、 ァノレミニゥムシリケ ートがさらに好ましく、 アルミニウムシリゲートが特に好ましレ、。 塩基性吸着 剤としては活性アルミナ、 珪酸アルミニウムナトリゥム等の含水アルミノ珪酸 塩鉱物群で総称されるゼォライ ト系吸着剤、 ハイ ドロタルサイ ト類化合物がよ り好ましく、 活性アルミナ、 ハイド口タルサイ ト類化合物がさらに好ましく、 ハイドロタルサイ ト類化合物が特に好ましい。
吸着剤は単独で用いても 2種以上を混合して用いてもかまわない。
原子移動ラジカル重合により製造されるアクリル系重合体は、 酸性吸着剤及 び または塩基性吸着剤と接触させることにより精製することができる。 酸性 吸着剤と塩基性吸着剤は混合して接触させることもできるが、 それぞれ別々の 工程で接触させてもよい。 また吸着処理工程は (メタ) アクリル系重合体の後処理工程においていずれの 段階で行ってもよい。 例えば、
( 1 ) 工程 1よりも以前の段階で吸着処理を行う方法
( 2 ) 吸着剤存在下で工程 1の加熱処理を行う方法
( 3 ) 工程 1の加熱処理の後に吸着処理を行い、 吸着剤の分離回収操作を兼ね て工程 2の固液分離操作を行う方法
( 4 ) 工程 2の固液分離工程よりも以後の段階で吸着処理を行う方法 等が例示される。
原子移動ラジカル重合により製造されるアクリル系重合体を吸着剤と接触させ る際は、 無溶剤でもよいし、 溶剤で希釈したり、 反応混合物を濃縮して溶剤を 留去しても構わない。 溶剤を用いると、 通常は溶剤をリサイクルする必要があ るので、 溶剤を用いないのが最も好ましい。 溶剤を用いる場合は、 溶剤量を少 なくすること (すなわちアクリル系重合体の濃度を高くすること) が好ましい 。 しかしながらアクリル系重合体の粘度が高く、 取り扱いが困難な場合等は、 少量の溶剤で希釈して溶液状態で吸着剤に接触させてもよいが、 この場合のァ クリル系重合体の濃度としては、 好ましくは 6 0重量%以上、 より好ましくは 7 0重量%以上、 更に好ましくは 8 0重量%、 特に好ましくは 9 0重量%以上 である。 希釈溶剤としては一般的なものが使用されてよい。
吸着処理の温度については特に制限はないが、 一般に 0 °C〜2 0 0 °C、 好まし くは室温〜 1 8 0 °Cで行うのがよい。 なお、 無溶剤の場合には、 高温で行う方 が好ましく、 一般に 0 °C〜 2 5 0 °C、 好ましくは室温〜 2 0 0 °C、 より好まし くは 1 0 0 °C〜1 8 0 °Cで吸着処理をおこなう。
また、 吸着剤を多く使用することは、 経済的でないし、 操作も難しくなる。 し たがって吸着剤の使用量は、 通常、 アクリル系重合体 1 0 0重量部に対して 0 . 0 1〜1 0重量部であるが、 好ましくは 0 . 1〜1 0重量部、 より好ましく は 0 . 5〜1 0重量部、 さらに好ましくは 0 . 5〜 5重量部、 特に好ましくは 0 . 5〜 2重量部である。
吸着剤と重合体又は重合体溶液の固液接触には様々な実施態様が可能である 力 撹拌混合と固液分離を回分操作で行う回分式のほか、 吸着剤を容器に充填 し重合体溶液を通液する固定層方式、 吸着剤の移動層に液を通じる移動層式、 吸着剤を液で流動化して吸着を行う流動層式等も利用できる。 さらに必要に応 じて撹拌による混合分散に加えて、 容器の振とう、 超音波の利用など、 分散効 率を向上させる諸操作を取り入れることができる。
重合体又は重合体溶液を吸着剤に接触させた後、 濾過、 遠心分離、 沈降分離 等の方法で吸着剤を除去し、 必要に応じて希釈、 水洗を加え、 目的とする清澄 な重合体溶液を得ることができる。
吸着処理はアルケニル基を有する (メタ) アクリル系重合体に対して行えば よいが、 アルケニル基を有する (メタ) アクリル系重合体の前駆体に対して行 つてもよい。 例えば、 原子移動ラジカル重合により得られるアルケニル基を有 する (メタ) アクリル系重合体については (ィ) 該重合体、 又は (口) 該ァク リル系重合体を製造するための中間生成物である反応性の高い炭素ハロゲン結 合を有する (メタ) アクリル系重合体、 に対しても吸着処理を行うことができ る。
本発明において、 末端にアルケニル基を有する (メタ) アクリル系重合体中に 残存する遷移金属の量は、 重合体 1 k gに対して 1 0 m g以下であり且つ、 ハ ロゲンの量は重合体 1 k gに対して 5 0 O m g以下である。 以上の工程 1 (加 熱処理工程) 及び工程 2 (固液分離工程) を経る後処理方法、 及び/又は吸着 処理を経た重合体中に残存する遷移金属の量は、 通常、 重合体 l k gに対して 1 O m g以下に減少し、 ハロゲンの量も、 通常、 重合体 1 k gに対して 5 0 0 m g以下に減少する。 さらに上記重合体中に残存する重合触媒由来の遷移金属 の量は、 吸着条件などの変更により、 重合体 1 k gに対して 3 m g以下にまで 減少し、 及び/又はハロゲンの量は重合体 1 k gに対して 30 Omg以下にま で減少させることができる。
本発明における架橋性シリル基を有するヒドロシラン化合物 (B) とは、 シ ラノール縮合反応等により架橋することが可能なケィ素含有基 (架橋性シリル 基) 、 及び S i— H基 (ヒ ドロシリル基) をともに有する化合物をいう。
本発明における架橋性シリル基を有するヒ ドロシラン化合物 (B) としては特 に制限はないが、 代表的なものを示すと、 一般式 14
H- [S i (R16) 2_b (Y) bO] m-S i (R17) 3- . (Y) a (14) (式中、 R 16および R 17は、 いずれも炭素数 1〜 20のアルキル基、 炭素数 6 〜20のァリール基、 または炭素数 7〜 20のァラルキル基、 または (R,) 3 S i— (R, は炭素数 1〜20の 1価の炭化水素基であって、 3個の R, は同 一であってもよく、 異なっていてもよい) で示されるトリオルガノシロキシ基 を示し、 R16または R17が 2個以上存在するとき、 それらは同一であってもよ く、 異なっていてもよい。 Yは水酸基または加水分解性基を示し、 Yが 2個以 上存在するとき、 それらは同一であってもよく、 異なっていてもよい。 aは 0 , 1, 2, または 3を、 また、 bは 0, 1, または 2を示す。 mは 1〜1 9の 整数である。 ただし、 a +mb≥ 1であることを満足するものとする。) で表される化合物が例示される。
上記 Yで示される加水分解性基としては、 特に限定されず、 従来公知のもの を用いることができ、 具体的には、 水素、 ハロゲン原子、 アルコキシ基、 ァシ ルォキシ基、 ケトキシメート基、 アミノ基、 アミ ド基、 酸アミ ド基、 アミノォ キシ基、 メルカプト基、 アルケニルォキシ基等が挙げられ、 加水分解性がマイ ルドで取り扱いやすいという点から、 アルコキシ基が特に好ましい。 該加水分 解性基や水酸基は 1個のケィ素原子に 1〜 3個の範囲で結合することができ、 a +mb、 すなわち、 加水分解性基の総和は、 1〜5の範囲が好ましい。 加水 分解性基や水酸基が反応性ケィ素基中に 2個以上結合するときは、 それらは同 一であっても、 異なっていてもよい。 架橋性ケィ素化合物を構成するケィ素原 子は、 1個でもよく、 2個以上であってもよいが、 シロキサン結合により連結 されたケィ素原子の場合には 20個程度まであってもよい。
一般式 14における R16や R17の具体例としては、 例えば、 メチル基ゃェチ ル基などのアルキル基、 シクロへキシル基等のシクロアルキル基、 フエニル基 などのァリール基、 ベンジル基などのァラノレキル基、 R, がメチル基やフエ二 ル基等である (R') 3S i O—で示される トリオルガノシリル基等が挙げられ る。
これらヒ ドロシラン化合物 (B) の中でも、 特に一般式 1 5
H-S i (R17) (Y) (1 5)
(式中、 R17、 Y、 aは前記と同じ。) で表される架橋性基を有するヒ ドロシ ラン化合物 (B) 力 S、 入手容易な点から好ましい。 一般式 14または 1 5で示 される架橋性基を有するヒ ドロシラン化合物 (B) の具体例としては、 HS i C l 3、 HS i (CH3) C I 2、 HS i (CH3) 2C 1、
HS i (OCH3) 3、 HS i (CH3) (OCH3) 2、 HS i (CH3) 2OCH 3、 HS i (OC2H5) 3、 HS i (CH3) (OC2H5) 2
HS i (CH3) 2OC2H5、 HS i (OC3H7) 3
HS i (C2H5) (OCH3) 2、 HS i (C2H5) 2OCH3
HS i (C6H5) (OCH3) 2、 HS i (C6H5) 2 (OCH3)、
HS i (CH3) (OC (O) CH3) 2
HS i (CH3) 20— [S i (CH3) 2θ] 2— S i (CH3) (OCH3) 2、 HS i (CH3) [0-N = C (CH3) 2] 2
(但し、 上記化学式中、 C6HSはフエ二ル基を示す) 等が挙げられる。
本発明の白金触媒 (C) とは、 白金を含有する物質であって、 架橋性シリル 基を有するヒ ドロシラン化合物 (B) を、 末端にアルケニル基を有する (メタ ) アクリル系重合体 (A) に付加させる際に使用するものをいう。 白金触媒 ( C) としては、 白金単体、 アルミナ、 シリカ、 カーボンブラック等の担体に白 金固体を分散させたもの、 塩化白金酸、 塩化白金酸とアルコール、 アルデヒ ド 、 ケトン等との錯体、 白金一ォレフイン錯体、 白金 (0) — 1, 1, 3, 3- テトラメチル一 1, 3—ジビュルジシロキサン錯体が挙げられ、 活性の高さか ら白金 (0) — 1, 1, 3, 3—テトラメチル一 1, 3—ジビニルジシロキサ ン錯体が好ましい。 これらの触媒は単独で用いてもよく、 2種類以上を併用し てもかまわない。 本発明においては、 使用するヒ ドロシリル化白金触媒 (C) の使用量は、 通常は、 白金金属量として、 末端にアルケニル基を有する (メタ
) アクリル系重合体 (A) 1 k gに対して 0. 1から 3 Om gの範囲である。 さらに反応が速やかに進行しかつ経済的であることから 0. 5から l Omgの 範囲であることが好ましい。
架橋性シリル基を有するヒ ドロシラン化合物 (B) を、 末端にアルケニル基 を有する (メタ) アクリル系重合体 (A) に付加させる際には、 例えば、 末端 にアルケニル基を有する (メタ) アクリル系重合体に上記所定範囲量のヒ ドロ シリル化白金触媒 (C) を混合しておき、 架橋性シリル基を有するヒ ドロシラ ン化合物 (B) を滴下、 分割添加して反応させてもよいし、 上記の成分を一括 で仕込み、 反応させてもよい。
架橋性シリル基を有するヒ ドロシラン化合物 (B) を、 末端にアルケニル基を 有する (メタ) アクリル系重合体 (A) に付カ卩させる際には、 不活性ガス雰囲 気下であってもなくてもよいが、 架橋性シリル基を有するヒ ドロシラン化合物 (B) の消費を抑制するためにも窒素雰囲気下であることが好ましい。 架橋性シリル基を有するヒ ドロシラン化合物 (B ) を、 末端にアルケニル基を 有する (メタ) アクリル系重合体 (A) に付加させる際には、 反応温度は特に 制限しないが、 5 0から 1 5 0度の範囲が好ましく、 7 0から 1 2 0度の範囲 がより好ましい。
架橋性シリル基を有するヒ ドロシラン化合物 (B ) を、 末端にアルケニル基を 有する (メタ) アクリル系重合体 (A) に付加させる際には、 加水分解性エス テル化合物、 およびノまたはアルキルアルコールを添加すればゲル化が抑制さ れることから、 必要に応じて加水分解性エステル化合物、 および/またはアル キノレアノレコーノレを添加してもよレヽ。
加水分解性のエステル化合物としてはォノレトギ酸トリメチル、 オルトギ酸トリ ェチル、 オルトギ酸トリプロピル、 オルトギ酸トリブチル等のオルトギ酸トリ アルキル、 オルト酢酸トリメチル、 オルト酢酸トリェチル、 オルト酢酸トリプ 口ピル、 オルト酢酸トリブチル等のオルト醉酸トリアルキルが例示される。 加水分解性のエステル化合物の他の例としては、 式 R 4n S i Y n (式中、 Υ は加水分解可能な基、 Rは 1価の有機基で官能基を含んでいても含まなくとも よい。 ηは 1〜4の整数であり、 好ましくは 3または 4である) で示される加 水分解性有機シリコン化合物が挙げられ、 その具体例としては、 メチルトリエ トキシシラン、 ェチルトリエトキシシラン、 フエニルトリエトキシシラン、 メ チルトリァセトキシシラン、 ビュルトリメ トキシシラン、 γ—メタクリロキシ プロビルトリメ トキシシラン、 γ—メルカプトプロビルトリメ トキシシラン、 オルトケィ酸テトラメチル、 オルトケィ酸テトラエチル、 オルトケィ酸テトラ プロピル、 オルトケィ酸テトラブチル等が挙げられる。
加水分解性エステル化合物の使用量は、 末端にアルケニル基を有する (メタ ) アクリル系重合体 1 0 0重量部に対し、 0 . 1〜5 0重量部、 好ましくは 0 . 1〜3 0重量部である。 また、 本発明に用いられるアルキルアルコールとしては炭素数が 1〜 1 0のァ ノレコールが好ましく、 メタノール、 エタノール、 プロパノール、 イソプロパノ 一ノレ、 ブタノーノレ、 イソブチルァノレコール、 s e c—ブチノレアルコーノレ、 t e r t一ブチルアルコール、 n—ァミルアルコール、 へキサノール、 ォクタノー ル、 セロソルブ等が挙げられる。 アルキルアルコールは、 末端にアルケニル基 を有する (メタ) アク リル系重合体 1 0 0重量部に対し、 0 . 1〜1 0 0重量 部用いるのが好ましい。
加水分解性エステル化合物、 およびアルキルアルコールは、 それぞれ単独で 用いても、 2種以上を混合して用いてもよい。 また、 加水分解性エステル化合 物とアルキルアルコールを混合して用いてもかまわない。
加水分解性エステル化合物、 および またはアルキルアルコールは、 ヒ ドロ シリル化反応中だけでなく、 該反応が終了してから添加しても、 充分にゲル化 を抑制する効果を有する。
上記のようにして得られた末端に架橋性シリル基を有する (メタ) アクリル 系重合体はそのまま硬化性組成物として用いることができる。
末端に加水分解性シリル基を有する (メタ) アクリル系重合体は水分と接触 すると架橋反応により 3次元化して硬化する。 加水分解性エステル化合物また はアルキルアルコールは、 上で述べたように、 ヒ ドロシリル化の反応中、 およ び反応後に、 架橋性シリル基の加水分解を抑制する。 しかし高温条件下や、 後 述する縮合触媒の存在下に加水分解を完全に抑制するほどの強い阻害効果は示 さない。
加水分解速度は温度、 湿度、 加水分解性基の種類により変化するので、 使用 条件に応じて適切な加水分解性基を選択しなければならない。 また、 加水分解 性シリル基を末端に有する (メタ) アクリル系重合体は、 保存時には水分との 接触を可能な限り断つ必要がある。 硬化性組成物を硬化させるにあたっては縮合触媒を使用してもしなくてもよ レ、。 縮合触媒としてはアルキルチタン酸塩、 有機ケィ素チタン酸塩、 テトラブ チルチタネート、 テトラプロピルチタネート等のチタン酸エステル; ジブチル 錫ジラウレート、 ジブチル錫ジァセチルァセトナート、 ジブチル錫マレエート 、 ジブチル錫ジアセテート、 ジブチル錫ジメ トキシド、 ォクチル酸錫、 ナフテ ン酸錫等の有機錫化合物;ォクチル酸鉛、 プチルァミン、 ォクチルァミン、 ジ ブチノレアミン、 モノエタノールァミン、 ジエタノールァミン、 トリエタノーノレ ァミン、 ジエチレントリアミン、 トリエチレンテトラミン、 ォレイルァミン、 ォクチルァミン、 シクロへキシルァミン、 ベンジルァミン、 ジェチルアミノプ 口ピルァミン、 キシリ レンジァミン、 トリエチレンジァミン、 グァニジン、 ジ フエニルダァェジン、 2, 4 , 6— トリス (ジメチルアミノメチル) フエノー ノレ、 モルホリン、 N—メチノレモルホリン、 1, 3—ジァザビシクロ (5, 4 , 6 ) ゥンデセン一 7等のァミン系化合物あるいはそれらのカルボン酸塩; ラゥ リルァミンとォクチル酸錫の反応物あるいは混合物のようなアミン系化合物と 有機錫化合物との反応物および混合物;過剰のポリアミンと多塩基酸から得ら れる低分子量ポリアミ ド樹脂;過剰のポリアミンとエポキシ化合物の反応生成 物;アミノ基を有するシランカップリング剤、 例えば、 " 一アミノプロピノレト リメ トキシシラン、 N— ( ]3—アミノエチル) ァミノプロピルメチルジメ トキ シシラン等の公知のシラノール触媒 1種または 2種以上を必要に応じて用いれ ばよい。 使用量は末端に架橋性シリル基を有する (メタ) アクリル系重合体に 対し、 0〜 1 0重量%で使用するのが好ましい。 加水分解性基 Yとしてアルコ キシ基が使用される場合は、 この重合体のみでは硬化速度が遅いので、 硬化触 媒を使用することが好ましい。
硬化条件としては特に制限はないが、 一般に 0〜 1 0 0 °C、 好ましくは 1 0〜 5 0 °Cで 1時間〜 1週間程度である。 硬化物の性状は用いる重合体の主鎖骨格 や分子量に依存するが、 ゴム状のものから樹脂状のものまで幅広く作成するこ とができる。
く硬化性組成物 >
上記硬化性組成物には、 物性を調整するために各種の添加剤、 例えば、 難燃 剤、 老化防止材、 充填材、 可塑剤、 物性調整剤、 反応希釈剤、 接着性付与剤、 貯蔵安定性改良剤、 溶剤、 ラジカル禁止剤、 金属不活性化剤、 オゾン劣化防止 剤、 リン系過酸化物分解剤、 滑剤、 顔料、 発泡剤、 光硬化性樹脂などを必要に 応じて適宜配合してもよい。 これらの各種添加剤は単独で用いてもよく、 2種 類以上を併用してもよレ、。
また、 (メタ) アクリル系重合体は本来、 耐久性に優れた重合体であるので 、 老化防止剤は必ずしも必要ではないが、 従来公知の酸化防止剤、 紫外線吸収 剤、 光安定剤等を適宜用いることができる。
<充填材>
配合できる充填材としては、 特に限定されないが、 強度などの物性を付与す るために例えば、 微粉末シリカ、 炭酸カルシウム、 タノレク、 酸化チタン、 珪藻 土、 硫酸バリウム、 カーボンブラック、 表面処理微細炭酸カルシウム、 焼成ク レー、 クレーおよび活性亜鉛華等の補強性充填材などが挙げられる。 補強性充 填材は単独で用いてもよく、 2種以上を併用してもよい。 これらの中でもシリ カ微粉末が好ましく、 湿式製造法等から得られる含水シリカ、 および乾式製造 法等から得られる乾式シリカなどが用いることができる。 これらのうちで組成 物に水分が多く含まれると硬化反応時に副反応等が起こる可能性があるため、 無水シリカが特に好ましい。 更に無水シリカの表面を疎水処理したものが成形 に適した流動性を発現しやすいため特に好ましい。 また他に、 増量あるいは物 性調整のために補強性のあまり強くない充填材も用いることができる。
<可塑剤〉 配合できる可塑剤としては特に限定されないが、 物性の調整、 性状の調節等 の目的により、 例えば、 ジブチルフタレート、 ジヘプチルフタレート、 ジ (2 —ェチノレへキシノレ) フタレート、 ブチノレべンジルフタレート等のフタル酸エス テノレ類;ジォクチルアジべ一ト、 ジォクチルセバケート、 ジブチルセバケート 、 コハク酸ィソデシル等の非芳香族二塩基酸エステル類;ォレイン酸ブチル、 ァセチルリシリノール酸メチル等の脂肪族エステル類;ジエチレングリコール ジベンゾエート、 トリエチレングリコーノレジべンゾエート、 ペンタエリスリ ト 一ノレエステノレ等のポリァノレキレングリコーノレのエステノレ類; トリクレジノレホス フェート、 トリブチルホスフェート等のリン酸エステル類; トリメリット酸ェ ステル類;ポリスチレンやポリ一 α—メチルスチレン等のポリスチレン類;ポ リブタジエン、 ポリブテン、 ポリイソブチレン、 ブタジエン一アタリロニトリ ル、 ポリクロ口プレン;塩素化パラフィン類;アルキルジフエ二ル、 部分水添 ターフェニル、 等の炭化水素系油;プロセスオイル類;ポリエチレンダリコ一 ノレ、 ポリプロピレングリコール、 ポリテトラメチレングリコール等のポリエー テルポリオールとこれらポリエーテルポリオールの水酸基をエステル基、 エー テル基などに変換した誘導体等のポリエーテル類;エポキシ化大豆油、 ェポキ システアリン酸ベンジル等のエポキシ可塑剤類;セバシン酸、 アジピン酸、 ァ ゼライン酸、 フタル酸等の 2塩基酸とエチレングリコール、 ジエチレングリコ 一ノレ、 トリエチレングリコール、 プロピレングリコール、 ジプロピレングリコ —ル等の 2価アルコールから得られるポリエステル系可塑剤類;アクリル系可 塑剤を始めとするビュル系モノマ一を種々の方法で重合して得られる (メタ) アクリル系重合体類等を単独、 または 2種以上混合して使用することができる 力 必ずしも必要とするものではない。 なおこれら可塑剤は、 重合体製造時に 配合することも可能である。
<貯蔵安定性改良剤 > 配合できる貯蔵安定性改良剤は、 本組成物の貯蔵時の増粘および貯蔵後の硬 化速度の著しい変化を抑えることができるものであれば特に限定されず、 例え ば、 ベンゾチアゾール、 ジメチルマレート等が挙げられる。
<溶剤>
配合できる溶剤としては、 例えばトルエン、 キシレン等の芳香族炭化水素系 溶剤、 酢酸ェチノレ、 酢酸ブチル、 酢酸ァミル、 酢酸セロソルブ等のエステル系 溶剤、 メチルェチルケトン、 メチルイソブチルケトン、 ジィソブチルケトン等 のケトン系溶剤等が挙げられる。 それらの溶剤は重合体の製造時に用いてもよ レ、。
ぐ接着性付与剤 >
配合できる接着性付与剤としては硬化物に接着性を付与するものであれば特 に限定されないが、 架橋性シリル基含有化合物が好ましく、 更にはシランカツ プリング剤が好ましい。 これらを具体的に例示すると、 メチルトリメ トキシシ ラン、 ジメチルジメ トキシシラン、 トリメチルメ トキシシラン、 n—プロピノレ トリメ トキシシラン等のアルキルアルコキシシラン類;ジメチルジイソプロべ ノキシシラン、 メチルトリイソプロぺノキシシラン等のアルキルィソプロぺノ キシシラン; ビュルトリメ トキシシラン、 ビュルジメチルメ トキシシラン、 ビ ニルトリエトキシシラン、 γ —メタクリロイルォキシプロピルメチルジメ トキ シシラン、 γ—ァクロィルォキシプロピルメチルトリエトキシシラン等のビニ ル型不飽和基含有シラン類;シリコーンワニス類;ポリシロキサン類等が挙げ られる。
それらの中でも分子中にエポキシ基、 (メタ) アクリル基、 イソシァネート 基、 イソシァヌレート基、 力ルバメート基、 アミノ基、 メルカプト基、 カルボ キシル基等の炭素原子および水素原子以外の原子を有する有機基と架橋性シリ ル基を併せ持つシランカップリング剤が好ましい。 これらを具体的に例示する と、 イソシァネート基を有するアルコキシシラン類としては、 γ—イソシァネ ートプロピルトリメ トキシシラン、 γ—ィソシァネートプロピルトリエトキシ シラン、 γ—イソシァネートプロピルメチルジェトキシシラン、 γ—イソシァ ネートプロピルメチルジメ トキシシラン等のィソシァネート基含有シラン類、 ;イソシァヌレート基を有するアルコキシシラン類としては、 トリス (トリメ トキシシリル) ィソシァヌレート等のィソシァヌレートシラン類;アミノ基を 有するアルコキシシラン類としては、 γ—ァミノプロピゾレトリメ トキシシラン 、 γ—ァミノプロピルトリエトキシシラン、 γ—ァミノプロピルメチルジメ ト キシシラン、 γ—アミノプロピルメチルジェトキシシラン、 Ν— ( β —ァミノ ェチル) 一 Τ —ァミノプロビルトリメ トキシシラン、 Ν— ( ]3—アミノエチノレ ) 一 γ—アミノプロピルメチルジメ トキシシラン、 Ν— ( 3—アミノエチル) 一 γ—ァミノプロピルトリエトキシシラン、 Ν— ( ]3—アミノエチル) 一 γ— ァミノプロピルメチルジェトキシシラン、 γ—ゥレイ ドプロピルトリメ トキシ シラン、 Ν—フエニル _ γ—アミノプロビルトリメ トキシシラン、 Ν—ベンジ ノレ _ γ—ァミノプロビルトリメ トキシシラン、 Ν—ビニルベンジル _ γ—アミ ノプロピルトリエトキシシラン等のアミノ基含有シラン類;メルカプト基を有 するアルコキシシラン類としては、 " 一メルカプトプロビルトリメ トキシシラ ン、 γ—メルカプトプロピルトリエトキシシラン、 γ—メルカプトプロピルメ チルジメ トキシシラン、 y—メルカプトプロピルメチルジェトキシシラン等の メルカプト基含有シラン類;カルボキシル基を有するアルコキシシラン類とし ては、 ]3—カルボキシェチノレト リエ トキシシラン、 ]3—カルボキシェチノレフエ ニルビス (2—メ トキシエトキシ) シラン、 N— /3— (カルボキシメチル) ァ ミノェチル一 γ—ァミノプロビルトリメ トキシシラン等のカルボキシシラン類 ;ハロゲン基を有するアルコキシシラン類としては、 "/—クロ口プロピルトリ メ トキシシラン等のハロゲン含有シラン類等が挙げられる。 また、 これらを変性した誘導体である、 ァミノ変性シリルポリマー、 シリル 化ァミノポリマー、 不飽和アミノシラン錯体、 フエニルァミノ長鎖アルキルシ ラン、 アミノシリル化シリコーン、 シリル化ポリエステル等もシランカツプリ ング剤として用いることができる。
更にこれらの中でも、 硬化性及び接着性の点から、 分子中にエポキシ基ある いは (メタ) アクリル基を有するアルコキシシラン類がより好ましい。 これら を更に具体的に例示すると、 エポキシ基を有するアルコキシシラン類としては 、 γ—グリシドキシプロピルメチルジメ トキシシラン、 " 一グリシドキシプロ ビルトリメ トキシシラン、 γ—グリシドキシプロピルトリエトキシシラン、 β 一 (3, 4—エポキシシクロへキシル) ェチルトリメ トキシシラン、 β— ( 3 , 4一エポキシシクロへキシル) ェチルトリエトキシシラン、 γ—グリシドキ シプロピルメチルジイソプロぺノキシシラン等が、 (メタ) アクリル基を有す るアルコキシシラン類としては、 γ—メタクリロキシプロビルトリメ トキシシ ラン、 γ—メタクリロキシプロピルトリエトキシシラン、 ァクリロキシプ 口ビルトリメ トキシシラン、 γ _アタリロキシプロピルトリエトキシシラン、 メタクリロキシメチルトリメ トキシシラン、 メタタリロキシメチルトリエトキ シシラン、 ァクリロキシメチルトリメ トキシシラン、 アタリロキシメチルトリ エトキシシラン等が挙げられる。 これらは単独で用いてもよく、 また 2種以上 を併用してもよレ、。
また、 接着性を更に向上させるために、 架橋性シリル基縮合触媒を上記接着 性付与剤とともに併用することができる。 架橋性シリル基縮合触媒としては、 ジブチル錫ジラゥレート、 ジブチル錫ジァセチルァセトナート、 ジブチル錫ジ メ トキシド、 ォクチル酸錫等の有機錫化合物、 アルミニウムァセチルァセトナ ート等の有機アルミニウム化合物、 テトライソプロポキシチタン、 テトラブト キシチタン等の有機チタン化合物などが挙げられる。 シランカップリング剤以外の具体例としては、 特に限定されないが、 例えば 、 エポキシ樹脂、 フエノール樹脂、 硫黄、 アルキルチタネート類、 芳香族ポリ ィソシァネート等が挙げられる。
上記接着性付与剤は、 (メタ) アクリル系重合体 1 0 0重量部に対して、 0 . 0 1〜2 0重量部配合するのが好ましい。 0 . 0 1重量部未満では接着性の 改善効果が小さく、 2 0重量部を越えると硬化物物性に悪影響を与える。 好ま しくは 0 . 1〜1 0重量部であり、 更に好ましくは 0 . 5〜5重量部である。 上記接着性付与剤は 1種類のみで使用しても良いし、 2種類以上混合使用し ても良い。 これら接着性付与剤は添加することにより被着体に対する接着性を 改善することができる。
ぐ成形方法〉
本発明の硬化性組成物を成形体として用いる場合の成形方法としては、 特に 限定されず、 一般に使用されている各種の成形方法を用いることができる。 例 えば、 注型成形、 圧縮成形、 トランフファー成形、 射出成形、 押し出し成形、 回転成形、 中空成形、 熱成形などが挙げられる。 特に自動化、 連続化が可能で 、 生産性に優れるという観点から射出成形によるものが好ましい。 また、 ガス ケットとして用いる場合等には、 フランジ面等に塗布した硬化性組成物を未硬 化状態で両面から挟み付けた後、 硬化させるウエットタイプと、 硬化させてか ら挟み付けるドライタイプの両者が可能である。
く用途〉
本発明の硬化性組成物は、 限定はされないが、 建築用弾性シーリング材ゃ複 層ガラス用シーリング材等におけるシーリング材、 太陽電池裏面封止材などの 電気 ·電子部品材料、 電線 · ケーブル用絶縁被覆材などの電気絶縁材料、 粘着 剤、 接着剤、 弾性接着剤、 塗料、 粉体塗料、 コーティング材、 発泡体、 電気電 子用ポッティング材、 フィルム、 ガスケット、 注型材料、 人工大理石、 各種成 形材料、 および、 網入りガラスや合わせガラス端面 (切断部) の防鲭 '防水用 封止材等の様々な用途に利用可能である。
更に、 本発明の硬化性組成物から得られたゴム弾性を示す成形体は、 ガスケ ット、 パッキン類を中心に広く使用することができる。 例えば自動車分野では ボディ部品として、 気密保持のためのシール材、 ガラスの振動防止材、 車体部 位の防振材、 特にウィンドシールガスケット、 ドアガラス用ガスケットに使用 することができる。 シャーシ部品として、 防振、 防音用のエンジンおよびサス ペンジョンゴム、 特にエンジンマウントラバーに使用することができる。 ェン ジン部品としては、 冷却用、 燃料供給用、 排気制御用などのホース類、 ェンジ ンオイル用シール材などに使用することができる。 また、 排ガス清浄装置部品
、 ブレーキ部品にも使用できる。 家電分野では、 パッキン、 oリング、 ベルト などに使用できる。 具体的には、 照明器具用の飾り類、 防水パッキン類、 防振 ゴム類、 防虫パッキン類、 クリーナ用の防振 '吸音と空気シール材、 電気温水 器用の防滴カバ一、 防水パッキン、 ヒータ部パッキン、 電極部パッキン、 安全 弁ダイァフラム、 酒かん器用のホース類、 防水パッキン、 電磁弁、 スチームォ ーブンレンジ及びジャー炊飯器用の防水パッキン、 給水タンクパッキン、 吸水 バルブ、 水受けパッキン、 接続ホース、 ベルト、 保温ヒータ部パッキン、 蒸気 吹き出し口シールなど燃焼機器用のオイルパッキン、 Oリング、 ドレインパッ キン、 加圧チューブ、 送風チューブ、 送 '吸気パッキン、 防振ゴム、 給油ロバ ッキン、 油量計パッキン、 送油管、 ダイアフラム弁、 送気管など、 音響機器用 のスピーカーガスケッ ト、 スピーカーエッジ、 ターンテープノレシート、 ベノレト 、 プーリー等が挙げられる。 建築分野では、 構造用ガスケット (ジッパーガス ケット) 、 空気膜構造屋根材、 防水材、 定形シーリング材、 防振材、 防音材、 セッティングブロック、 摺動材等に使用できる。 スポーツ分野では、 スポーツ 床として全天候型舗装材、 体育館床等、 スポーツシューズとして靴底材、 中底 材等、 球技用ボールとしてゴルフボール等に使用できる。 防振ゴム分野では、 自動車用防振ゴム、 鉄道車両用防振ゴム、 航空機用防振ゴム、 防舷材等に使用 できる。 海洋 ·土木分野では、 構造用材料として、 ゴム伸縮継手、 支承、 止水 板、 防水シート、 ラバーダム、 弾性舗装、 防振パット、 防護体等、 工事副材料 としてゴム型枠、 ゴムパッカー、 ゴムスカート、 スポンジマッ ト、 モルタルホ ース、 モルタルストレーナ等、 工事補助材料としてゴムシート類、 エアホース 等、 安全対策商品としてゴムブイ、 消波材等、 環境保全商品としてオイルフエ ンス、 シノレトフエンス、 防汚材、 マリンホース、 ドレツジングホース、 オイノレ スキマー等に使用できる。 その他、 板ゴム、 マット、 フォーム板等にも使用で きる。 発明を実施するための最良の形態
以下に、 この発明の具体的な実施例を比較例と併せて説明するが、 この発明 は、 下記実施例に限定されない。
下記実施例および比較例中 「部」 および 「%」 は、 それぞれ 「重量部」 およ び 「重量%」 を表す。
下記実施例中、 「数平均分子量」 および 「分子量分布 (重量平均分子量と数 平均分子量の比) 」 は、 ゲルパーミエーシヨンクロマトグラフィー (G P C ) を用いた標準ポリスチレン換算法により算出した。 ただし、 G P Cカラムとし てポリスチレン架橋ゲルを充填したもの ( s h o d e X G P C K—8 0 4 ;昭和電工 (株) 製) 、 G P C溶媒としてクロ口ホルムを用いた。 重合体 1分 子当たりに導入された反応性官能基 (反応性官能基: 「アルケニル基の数」 ま たは 「シリル基の数」 ) は1 H— NMRによる濃度分析を行い、 G P Cにより 求まる数平均分子量により算出した。
重合体中に残存する銅の定量は、 吸着処理済の重合体に超高純度硝酸、 超高純 度硫酸を混合し、 マイクロウエーブ分解した。 I CP質量分析装置 (横河アナ リティカルシステムズ (株) 製 HP— 4500) を用いて分解物中の銅量を測 定、 定量した。
重合体中に残存する臭素の定量は、 イオンクロマトグラム (ダイォネスク製 D X— 500 (GP40、 ED40) ) を用いて酸素フラスコ燃焼法により行つ た。
以下に、 実施例、 比較例を示す。
製造例 1
(ァクリル酸 n—プチルの重合)
攪拌機付き反応槽に CuB r (4. 2部) 、 ァセトニトリル (27. 3部) を加え、 窒素雰囲気下で 65 °Cで 1 5分間攪拌した。 これにアクリル酸 n—ブ チル (100部) 、 2、 5 _ジブロモアジピン酸ジェチル (8. 8部) 、 ァセ トニトリル (1 6. 6部) を添カ卩し、 よく攪拌混合した。 ペンタメチルジェチ レントリアミン (0. 1 7部) を添加し、 重合を開始させた。 70°Cで加熱攪 拌しながら、 アクリル酸 n—ブチル (400部) を連続的に滴下した。 アタリ ル酸 n—ブチルの滴下途中にトリアミン (0. 68部) を分割添加した。
( (メタ) アクリル系重合体へのアルケニル基導入反応)
モノマー反応率が 96%に達した時点で残モノマー、 ァセトニトリルを 80°C で脱揮した後、 1, 7—ォクタジェン (53. 7部) 、 ァセトニトリノレ ( 1 3 2部) 、 トリアミン (1. 69部) を添カ卩し、 引き続き 70°Cで加熱攪拌し、 アルケニル基を有する重合体を含有する混合物を得た。
(重合触媒の粗取り除去)
混合物中のァセトニトリル、 未反応の 1, 7—才クタジェンを加熱脱揮し、 メチルシク口へキサンで希釈した。 不溶な重合触媒を遠心分離機で沈降させ除 去した。 重合体 100部に対して吸着剤 6部 (キヨ一ワード 500 SH 3部 Zキヨ一ワード 700 S L 3部:共に協和化学 (株) 製) を重合体のメチル シクロへキサン溶液に加え、 酸素 ·窒素混合ガス雰囲気下で加熱攪拌した。 不 溶分を除去し、 重合体溶液を濃縮することでアルケニル基を有する重合体 (重 合体 [ 1 ] ) を得た。
重合体 [1] の数平均分子量は 25800、 分子量分布は 1. 26であった 。 重合体 1分子当たりに導入されたアルケニル基の数は 1. 8個であった。
(工程 1 :加熱処理工程)
得られた重合体 [1] を 160°Cで 12時間攪拌しながら加熱脱揮 (減圧度 1 0 t o r r以下) した。
(工程 2 : 固液分離工程)
上記工程 1で得られた重合体 1 00部をメチルシクロへキサン 400部で希 釈し、 固形分を除去した後、 溶液を濃縮して重合体を得た。 この重合体の数平 均分子量は 26800、 分子量分布は 1. 34であった。 重合体 1分子当たり に導入されたアルケニル基の数は 1. 8個であった。 またこの重合体中に含ま れる銅量は、 重合体 1 k gに対し 7m gであった。 またこの重合体中に含まれ る臭素量は元素分析の結果、 重合体 1 k gに対し 28 Omgであった。
実施例 1
(アルケニル基を有する (メタ) アクリル系重合体 (A) に、 架橋性シリル基 を有するヒ ドロシラン化合物 (B) を付加させる反応)
上記工程 1及び工程 2で得られた重合体に、 オルトギ酸メチル (アルケニル 基に対して 3モル当量) 、 白金触媒 [ビス (1, 3—ジビュル— 1, 1, 3, 3—テトラメチルジシロキサン) 白金錯体触媒のキシレン溶液:以下白金触媒 という] (白金金属量として重合体 1 k gに対して 3 Omg) 、 メチルジメ ト キシシラン (アルケニル基に対して 3モル当量) を順に加え混合し、 窒素雰囲 気下、 80でで 2時間加熱攪拌した。 アルケニル基が反応により消失したこと を1 H— NMRで確認し、 反応混合物を濃縮して目的とするメ トキシシリル基 含有重合体を得た。 数平均分子量は 28900、 分子量分布は 1. 47であつ た。 重合体 1分子当たりに導入されたシリル基の数は 1. 8個であった。 比較例 1
製造例 1の工程 1において 160°Cで 3時間攪拌しながら加熱脱揮 (減圧度 1 0 t o r r以下) し、 工程 2は同様の操作をして得られた重合体の数平均分子 量は 26100、 分子量分布は 1. 3 1であった。 重合体 1分子当たりに導入 されたアルケニル基の数は 1. 8個であった。 またこの重合体中に含まれる銅 量は、 重合体 1 k gに対し 7m gであった。 またこの重合体中に含まれる臭素 量は元素分析の結果、 重合体 1 k gに対し 99 Omgであった。
(アルケニル基を有する (メタ) アクリル系重合体 (A) に、 架橋性シリル基 を有するヒ ドロシラン化合物 (B) を付加させる反応)
実施例 1と全く同じ反応条件で上記重合体のヒ ドロシリル化を試みた。 その結 果、 加熱開始 1時間後にはメチルジメ トキシシランが消失していること力 H — NMRで確認された。 そこでメチルジメ トキシシラン (アルケニル基に対し て 3モル当量) を追加しさらに 2時間 80°Cで加熱攪拌したが、 アルケニル基 は消失しなかった。
製造例 2
(アクリル酸 n—ブチル、 アクリル酸ェチル、 アクリル酸 2—メ トキシェチル の重合)
攪拌機付き反応槽に CuB r (4. 6部) 、 ァセトニトリル (41. 6部) を 加え、 窒素雰囲気下で 65 °Cで 1 5分間攪拌した。 これにアクリル酸エステル (100部) (内訳はアクリル酸 n—プチル (27. 6部) 、 アクリル酸ェチ ル (39. 8部) 、 ァクリル酸 2—メ トキシェチル (32. 6部) ) 、 2、 5 —ジプロモアジピン酸ジェチル (1 3. 0部) を添カ卩し、 よく攪拌混合した。 ペンタメチルジェチレントリアミン (以後トリアミンと称す) (0. 09部) を添加し、 重合を開始させた。 70°Cで加熱攪拌しながら、 アクリル酸エステ ノレ (400部) (内訳はァクリル酸 n—ブチル ( 1 1 1部) 、 ァクリル酸ェチ ノレ ( 159部) 、 アタリル酸 2—メ トキシェチル ( 130部) ) を連続的に滴 下した。 アクリル酸エステルの滴下途中にトリアミン (0. 84部) を分割添 加した。
( (メタ) アクリル系重合体へのアルケニル基導入反応)
モノマー反応率が 96%に達した時点で残モノマー、 ァセトニトリルを 80°C で脱揮した後、 1, 7—ォクタジェン (1 19部) 、 ァセトニトリノレ (125 部) 、 トリアミン (1. 87部) を添加し、 引き続き 70°Cで加熱攪拌し、 ァ ルケ二ル基を有する重合体を含有する混合物を得た。
(重合触媒の粗取り除去)
混合物中のァセトニトリル、 未反応の 1, 7—ォクタジェンを加熱脱揮し、 メチルシク口へキサンで希釈した。 不溶な重合触媒を遠心分離機で沈降させ除 去した。 重合体 100部に対して吸着剤 4部 (キヨ一ワード 500 SH 2部 /キヨ一ワード 700 S L 2部:共に協和化学 (株) 製) を重合体のメチルシ クロへキサン溶液に加え、 酸素 ·窒素混合ガス雰囲気下で加熱攪拌した。 不溶 分を除去し、 重合体溶液を濃縮することでアルケニル基を有する重合体 (重合 体 [2] ) を得た。
重合体 [2] の数平均分子量は 18400、 分子量分布は 1. 15であった 。 重合体 1分子当たりに導入されたアルケニル基の数は 2. 0個であった。
(工程 1 :加熱処理工程)
得られた重合体 [2] を 180°Cで 12時間攪拌しながら加熱脱揮 (減圧度 1 0 t o r r以下) した。
(工程 2 : 固液分離工程) 上記工程 1で得られた重合体 100部をトルエン 400部で希釈し、 重合体 100部に対して吸着剤 6部 (キヨ一ワード 500 SH 3部 Zキヨ一ワード 700 S L 3部:共に協和化学 (株) 製) を重合体のトルエン溶液に加え、 酸素 ·窒素混合ガス雰囲気下で加熱攪拌した。 固形分を除去した後、 溶液を濃 縮して重合体を得た。 この重合体の数平均分子量は 1 8800、 分子量分布は 1. 1 7であった。 重合体 1分子当たりに導入されたアルケニル基の数は 2. 0個であった。 またこの重合体中に含まれる銅量は、 重合体 l k gに対し 2m g以下であった。 またこの重合体中に含まれる臭素量は元素分析の結果、 重合 体 1 k gに対し 26 Omg以下であった。
実施例 2
(アルケニル基を有する (メタ) アクリル系重合体 (A) に、 架橋性シリル基 を有するヒ ドロシラン化合物 (B) を付加させる反応)
製造例 2の後処理 (工程 1及び工程 2の処理) を行って得られた重合体に、 オルトギ酸メチル (アルケニル基に対して 1モル当量) 、 白金触媒 (白金金属 量として重合体 1 k gに対して 1 Omg) 、 メチルジメ トキシシラン (ァルケ ニル基に対して 3モル当量) を順に加え混合し、 窒素雰囲気下、 100°0で0 . 5時間加熱攪拌した。 アルケニル基が反応により消失したことを1 H— NM Rで確認し、 反応混合物を濃縮して目的とするメ トキシシリル基含有重合体を 得た。 数平均分子量は 1 9400、 分子量分布は 1 · 24であった。 重合体 1 分子当たりに導入されたシリル基の数は 1. 9個であった。
比較例 2
製造例 2の工程 2において吸着剤を使用しない他は全く同じ操作をして得られ た重合体の数平均分子量は 18600、 分子量分布は 1. 16であった。 重合 体 1分子当たりに導入されたアルケニル基の数は 2. 0個であった。 またこの 重合体中に含まれる銅量は、 重合体 1 k gに対し 1 6mgであった。 またこの 重合体中に含まれる臭素量は元素分析の結果、 重合体 1 k gに対し 260mg であった。
(アルケニル基を有する (メタ) アクリル系重合体 (A) に、 架橋性シリル基 を有するヒ ドロシラン化合物 (B) を付加させる反応)
実施例 2と全く同じ反応条件で上記重合体のヒ ドロシリル化を試みた。 その結 果、 加熱開始 2時間後でもアルケニル基は全く反応していないこと力 H— N MRで確認された。
製造例 3
(ァクリル酸 n—ブチルの重合)
( (メタ) アクリル系重合体へのアルケニル基導入反応)
いずれも製造例 1と全く同様。
(重合触媒の粗取り除去)
混合物中のァセトニトリル、 未反応の 1, 7—ォクタジェンを加熱脱揮し、 メチルシク口へキサンで希釈した。 不溶な重合触媒を遠心分離機で沈降させ除 去した。 重合体 (1 1 3 k g) 100部に対して吸着剤 4部 (キヨ一ワード 5 00 SH 2部 キヨ一ワード 700 S L 2部:共に協和化学 (株) 製) を 重合体のメチルシク口へキサン溶液に加え、 酸素 ·窒素混合ガス雰囲気下で加 熱攪拌した。 不溶分を除去し、 重合体溶液を濃縮することでアルケニル基を有 する重合体 (重合体 [3] ) を得た。
重合体 [3] の数平均分子量は 26400、 分子量分布は 1. 23であった 。 重合体 1分子当たりに導入されたアルケニル基の数は 1. 9個であった。
(工程 1 :加熱処理工程)
得られた重合体 [3] を 1 80°Cで 1 2時間攪拌しながら加熱脱揮 (減圧度 1 0 t o r r以下) した。
(工程 2 :固液分離工程) 上記工程 1で得られた重合体 100部をメチルシク口へキサン 100部で希 釈し、 重合体 100部に対して吸着剤 6部 (キヨ一ワード 500 SH 3部// キヨ一ワード 700 S L 3部:共に協和化学 (株) 製) を重合体のメチルシ クロへキサン溶液に加え、 酸素 ·窒素混合ガス雰囲気下で加熱攪拌した。 固形 分を除去した後、 溶液を濃縮して重合体 (63 k g) を得た。 この重合体の数 平均分子量は 25300、 分子量分布は 1. 3 1であった。 重合体 1分子当た りに導入されたアルケニル基の数は 1. 8個であった。 またこの重合体中に含 まれる銅量は、 重合体 1 k gに対し 6mg以下であった。 またこの重合体中に 含まれる臭素量は元素分析の結果、 重合体 1 k gに対し 24 Omgであった。 実施例 3
(アルケニル基を有する (メタ) アクリル系重合体 (A) に、 架橋性シリル基 を有するヒ ドロシラン化合物 (B) を付加させる反応:基本的なヒ ドロシリノレ 化の一例)
製造例 3の後処理 (工程 1及び工程 2の処理) を行って得られた重合体に、 オルトギ酸メチル (アルケニル基に対して 1モル当量) 、 白金触媒 (白金金属 量として重合体 1 k gに対して 1 Omg) 、 メチルジメ トキシシラン (ァルケ ニル基に対して 2モル当量) を順に加え混合し、 窒素雰囲気下、 80°Cで 4時 間加熱攪拌した。 アルケニル基が反応により消失したことを1 H _ NM Rで確 認し、 反応混合物を濃縮して目的とするメ トキシシリル基含有重合体を得た。 数平均分子量は 28200、 分子量分布は 1. 44であった。 重合体 1分子当 たりに導入されたシリル基の数は 1. 8個であった。
実施例 4
(アルケニル基を有する (メタ) アクリル系重合体 (A) に、 架橋性シリル基 を有するヒドロシラン化合物 (B) を付加させる反応:反応温度 100度) 実施例 3において反応温度 100度で 0. 5時間加熱攪拌した他は全く同様な 反応条件で製造例 1で得られた重合体へのヒドロシリル化を試みた。 アルケニ ル基が反応により消失したことを1 H— NMRで確認した。 得られた重合体の 数平均分子量は 2 8 2 0 0、 分子量分布は 1 . 4 0であった。 重合体 1分子当 たりに導入されたシリル基の数は 1 . 8個であった。
実施例 5
(アルケニル基を有する (メタ) アクリル系重合体 (A) に、 架橋性シリル基 を有するヒ ドロシラン化合物 (B ) を付加させる反応:オルトギ酸メチルなし )
実施例 3においてオルトギ酸メチルを添加せずにメチルジメ トキシシラン (ァ ルケニル基に対して 3モル当量) で 2時間加熱攪拌した他は全く同様な反応条 件で製造例 1で得られた重合体へのヒ ドロシリル化を試みた。 アルケニル基が 反応により消失したことを1 H— NM Rで確認した。 得られた重合体の数平均 分子量は 2 7 8 0 0、 分子量分布は 1 . 4 1であった。 重合体 1分子当たりに 導入されたシリル基の数は 1 . 8個であった。
実施例 6
(アルケニル基を有する (メタ) アクリル系重合体 (A) に、 架橋性シリル基 を有するヒ ドロシラン化合物 (B ) を付加させる反応: メチルジメ トキシシラ ンの分割添加)
製造例 3で得られた重合体に、 オルトギ酸メチル (アルケニル基に対して 1 モル当量) 、 白金触媒 (白金金属量として重合体 1 k gに対して 5 m g ) 、 メ チルジメ トキシシラン (アルケニル基に対して 1 . 5モル当量) を順に加え混 合し、 窒素雰囲気下、 8 0 °Cで 5時間加熱攪拌後、 メチルジメ トキシシラン ( アルケニル基に対して 1 . 5モル当量) を添カ卩し 8 0 °Cでさらに 1時間加熱攪 拌した。 アルケニル基が反応により消失したことを1 H— NM Rで確認し、 反 応混合物を濃縮して目的とするメ トキシシリル基含有重合体を得た。 数平均分 子量は 28000、 分子量分布は 1. 37であった。 重合体 1分子当たりに導 入されたシリル基の数は 1. 6個であった。
比較例 3
実施例 3において白金触媒を用いない他は全く同様な反応条件で製造例 1で得 られた重合体へのヒ ドロシリル化を試みた。 アルケニル基数の減少は1 H— N MRで見られず、 メ トキシシリル基含有重合体は得られなかった。
製造例 4
(アクリル酸 n—ブチル、 アクリル酸ェチル、 アクリル酸 2—メ トキシェチル の重合)
( (メタ) アクリル系重合体へのアルケニル基導入反応)
いずれも製造例 2と全く同様。
(重合触媒の粗取り除去)
混合物中のァセトニトリル、 未反応の 1, 7—ォクタジェンを加熱脱揮し、 トルエンで希釈した。 不溶な重合触媒を遠心分離機で沈降させ除去した。 重合 体 (1 25 k g) 100部に対して吸着剤 4部 (キヨ一ワード 500 SH 2 部/キヨ一ワード 700 S L 2部:共に協和化学 (株) 製) を重合体のトル ェン溶液に加え、 酸素,窒素混合ガス雰囲気下で加熱攪拌した。 不溶分を除去 し、 重合体溶液を濃縮することでアルケニル基を有する重合体 (重合体 [4] ) を得た。
重合体 [4] の数平均分子量は 1 7700、 分子量分布は 1. 1 1であった 。 重合体 1分子当たりに導入されたアルケニル基の数は 2. 0個であった。
(工程 1 :加熱処理工程)
得られた重合体 [4] を 180°Cで 1 2時間攪拌しながら加熱脱揮 (減圧度 1 0 t o r r以下) した。
(工程 2 :固液分離工程) 上記工程 1で得られた重合体 100部をトルエン 100部で希釈し、 重合体 100部に対して吸着剤 6部 (キヨ一ワード 500 SH 3部 Zキヨ一ワード 700 S L 3部:共に協和化学 (株) 製) を重合体のトルエン溶液に加え、 酸素 ·窒素混合ガス雰囲気下で加熱攪拌した。 固形分を除去した後、 溶液を濃 縮して重合体 (1 1 3 k g) を得た。 この重合体の数平均分子量は 1 7800、 分子量分布は 1. 1 5であった。 重合体 1分子当たりに導入されたアルケニル 基の数は 2. 1個であった。 またこの重合体中に含まれる銅量は、 重合体 l k gに対し 3 m gであった。 またこの重合体中に含まれる臭素量は元素分析の結 果、 重合体 1 k gに対し 28 Omgであった。
実施例 7
(アルケニル基を有する (メタ) アクリル系重合体 (A) に、 架橋性シリル基 を有するヒ ドロシラン化合物 (B) を付加させる反応: 白金触媒 (白金金属量 として重合体 1 k gに対して 10 m g ) 使用)
製造例 4の後処理 (工程 1及び工程 2の処理) を行って得られた重合体に、 オルトギ酸メチル (アルケニル基に対して 1モル当量) 、 白金触媒 (白金金属 量として重合体 1 k gに対して 1 Omg) 、 メチルジメ トキシシラン (ァルケ ニル基に対して 2モル当量) を順に加え混合し、 窒素雰囲気下、 100でで0 . 5時間加熱攪拌した。 アルケニル基が反応により消失したことを1 H— NM Rで確認し、 反応混合物を濃縮して目的とするメ トキシシリル基含有重合体を 得た。 数平均分子量は 18600、 分子量分布は 1. 1 7であった。 重合体 1 分子当たりに導入されたシリル基の数は 1. 8個であった。
実施例 8
(アルケニル基を有する (メタ) アクリル系重合体 (A) に、 架橋性シリル基 を有するヒ ドロシラン化合物 (B) を付加させる反応: 白金触媒 (白金金属量 として重合体 1 k gに対して 5 m g ) 使用) 実施例 7において白金触媒 (白金金属量として重合体 1 k gに対して 5 m g ) にした他は全く同様な反応条件で製造例 4で得られた重合体へのヒ ドロシリル 化を試みた。 アルケニル基が反応により消失したことを1 H— NMRで確認し た。 得られた重合体の数平均分子量は 1 8 6 0 0、 分子量分布は 1 . 1 9であ つた。 重合体 1分子当たりに導入されたシリル基の数は 1 . 9個であった。 実施例 9
(アルケニル基を有する (メタ) アクリル系重合体 (A) に、 架橋性シリル基 を有するヒドロシラン化合物 (B ) を付加させる反応: 白金触媒 (白金金属量 として重合体 1 k gに対して 1 m g ) 使用)
実施例 7において白金触媒 (白金金属量として重合体 1 k gに対して l m g ) にした他は全く同様な反応条件で製造例 4で得られた重合体へのヒドロシリノレ 化を試みた。 アルケニル基が反応により消失したことを1 H— NM Rで確認し た。 得られた重合体の数平均分子量は 1 8 8 0 0、 分子量分布は 1 . 1 9であ つた。 重合体 1分子当たりに導入されたシリル基の数は 1 . 9個であった。 実施例 1 0
実施例 7において、 白金触媒量 (白金金属量として重合体 1 k gに対して 4 0 m gとした) 、 及びメチルジメ トキシシラン量 (アルケニル基に対して 6モル 当量とした) 、 及び反応時間 (8時間とした) を変更した他は全く同様な反応 条件で製造例 4で得られた重合体へのヒ ドロシリル化を試みた。 アルケニル基 が反応により消失したことを1 H— NMRで確認した。 得られた重合体の数平 均分子量は 1 9 1 0 0、 分子量分布は 1 . 2 2であった。 重合体 1分子当たり に導入されたシリル基の数は 1 . 8個であった。 この得られたメ トキシシリル 基含有重合体は実施例 5から 7で得られたいずれの重合体より濃い褐色を呈し た。
比較例 4 実施例 7において白金触媒を用いない他は全く同様な反応条件で製造例 2で得 られた重合体へのヒ ドロシリル化を試みた。 アルケニル基数の減少は1 H— N MRで見られず、 メ トキシシリル基含有重合体は得られなかった。
製造例 5
(アクリル酸 n_ブチルの重合)
( (メタ) アクリル系重合体へのァルケエル基導入反応)
いずれも製造例 1と全く同様。
得られた重合体は、 数平均分子量は 23600、 分子量分布は 1. 2 1であつ た。 重合体 1分子当たりに導入されたアルケニル基の数は 2. 0個であった。 (重合触媒の粗取り除去)
混合物中のァセトニトリル、 未反応の 1, 7—ォクタジェンを加熱脱揮し、 重合体 100部 (1 24 k g) に対して 100部 (1 24 k g) のメチルシク 口へキサンで希釈し、 重合体 100部 (1 24 k g) に対して吸着剤 1部 (キ ョーワード 500 SH 0. 5部 (0. 62 k g) キヨ一ワード 700 S L 0. 5部 (0. 62 k g) :共に協和化学 (株) 製) 、 ろ過助剤 1部 (1. 24 k g) を加え、 酸素 ·窒素混合ガス雰囲気下、 100°Cで加熱攪拌した。 不溶分を除去し、 溶液を 100°Cで濃縮し、 重合体 [5] を得た。
(工程 1 :加熱処理工程)
得られた重合体 [5] を炭素ラジカル捕捉剤として重合体 100部に対してス ミライザ一 GS (住友化学 (株) 製) 0. 1部添加し、 重合体 100部に対し て吸着剤 1部 (キヨ一ワード 500 SH 0. 5部 Zキヨ一ワード 700 S L 0. 5部:共に協和化学 (株) 製) 存在下で 1 70〜1 76°Cで減圧 (8 T o r Γ以下) 下、 1 2時間加熱し、 脱ハロゲン化処理を行ったところ、 数平均 分子量 24900、 分子量分布 1. 27の重合体が得られた。
(工程 2 : 固液分離工程) 上記工程 1で得られた重合体 100部 (1 10 k g) に対してヒンダードフ ェノール系酸化防止剤 0. 0 1部 (l l g) ( I r g a n o x l O l O ;チバ スぺシャリティケミカルズ) 、 吸着剤 2部 (キヨ一ワード 500 SH 1部 ( 1. 1 k g) キヨ一ワード 700 S L 1部 (1. 1 k g) :共に協和化学 (株) 製) を添加し、 酸素 ·窒素混合ガス雰囲気下、 1 50°Cで 4時間加熱攪 拌した。 トルエン 100部で希釈し固形分を除去した後、 溶液を濃縮して重合 体 (82 k g) を得た。 この重合体の数平均分子量は 24000、 分子量分布 は 1. 26であった。 重合体 1分子当たりに導入されたアルケニル基の数は 1 . 9個であった。 またこの重合体中に含まれる銅量は、 重合体 l k gに対し 2 mg以下であった。 またこの重合体中に含まれる臭素量は元素分析の結果、 重 合体 l k gに対し 1 7 Om gであった。
実施例 1 1
(アルケニル基を有する (メタ) アクリル系重合体 (A) に、 架橋性シリル基 を有するヒ ドロシラン化合物 (B) を付加させる反応: 白金触媒 (白金金属量 として重合体 l k gに対して 10mg) 使用)
製造例 5の後処理 (工程 1及び工程 2の処理) を行って得られた重合体に、 オルトギ酸メチル (アルケニル基に対して 1モル当量) 、 白金触媒 (白金金属 量として重合体 1 k gに対して 1 Omg) 、 メチルジメ トキシシラン (ァルケ ニル基に対して 2モル当量) を順に加え混合し、 窒素雰囲気下、 100でで1 時間加熱攪拌した。 アルケニル基が反応により消失したことを1 H— NMRで 確認し、 反応混合物を濃縮して目的とするメ トキシシリル基含有重合体を得た 。 数平均分子量は 24800、 分子量分布は 1. 29であった。 重合体 1分子 当たりに導入されたシリル基の数は 1. 9個であつた。
製造例 6
(アクリル酸 n—ブチル、 アクリル酸ェチル、 アクリル酸 2—メ トキシェチル の重合)
( (メタ) アクリル系重合体へのアルケニル基導入反応)
いずれも製造例 2と全く同様。 得られた重合体は、 数平均分子量は 1 7000 、 分子量分布は 1. 1 1であった。 重合体 1分子当たりに導入されたァルケ二 ル基の数は 1. 9個であった。
(重合触媒の粗取り除去)
混合物中のァセトニトリル、 未反応の 1, 7—ォクタジェンを加熱脱揮し、 重合体 100部 (1 25 k g) に対して 100部 (1 25 k g) のトルエンで 希釈し、 重合体 100部 (1 25 k g) に対して吸着剤 1部 (キヨーヮード 5 00 S H 0. 5部 (0. 66 k g) ノキヨ一ワード 700 S L 0. 5部 ( 0. 66 k g) :共に協和化学 (株) 製) 、 ろ過助剤 1部 (1. 32 k g) を 加え、 酸素 ·窒素混合ガス雰囲気下、 10 o°cで加熱攪拌した。 不溶分を除去 し、 溶液を 100°Cで濃縮し、 重合体 [6] を得た。
(工程 1 :加熱処理工程)
得られた重合体 [6] を炭素ラジカル捕捉剤として重合体 100部に対してス ミライザ一 GS (住友化学 (株) 製) 0. 1部添加し、 重合体 100部に対し て吸着剤 2部 (キヨ一ワード 500 SH 1部 キヨ一ワード 700 S L 1 部:共に協和化学 (株) 製) 存在下で 1 75〜1 77°Cで減圧 (9T o r r以 下) 下、 1 2時間加熱し、 脱ハロゲン化処理を行った。
(工程 2 :固液分離工程)
上記工程 1で得られた重合体 100部 (103 k g) に対してヒンダードフ ェノール系酸化防止剤 0. 05部 (53 g) (I r g a n o x l O l O ;チバ スぺシャリティケミカルズ) 、 吸着剤 2部 (キヨ一ワード 500 SH 1部 ( 1. 0 k g) Zキヨ一ワード 700 S L 1部 (1. 0 k g) :共に協和化学 (株) 製) を添加し、 酸素 ·窒素混合ガス雰囲気下、 1 50°Cで 4時間加熱攪 拌した。 トルエン 100部で希釈し固形分を除去した後、 溶液を濃縮して重合 体 (98 k g) を得た。 この重合体の数平均分子量は 1 6800、 分子量分布 は 1. 1 3であった。 重合体 1分子当たりに導入されたアルケニル基の数は 1 • 9個であった。 またこの重合体中に含まれる銅量は、 重合体 l k gに対し 2 mg以下であった。 またこの重合体中に含まれる臭素量は元素分析の結果、 重 合体 1 k gに対し 29 Omgであった。
実施例 1 2
(アルケニル基を有する (メタ) アクリル系重合体 (A) に、 架橋性シリル基 を有するヒ ドロシラン化合物 (B) を付加させる反応: 白金触媒 (白金金属量 として重合体 1 k gに対して 5 m g ) 使用)
製造例 6の後処理 (工程 1及び工程 2の処理) を行って得られた重合体に、 オルトギ酸メチル (アルケニル基に対して 1モル当量) 、 白金触媒 (白金金属 量として重合体 1 k gに対して 5mg) 、 メチルジメ トキシシラン (アルケェ ル基に対して 3モル当量) を順に加え混合し、 窒素雰囲気下、 100でで1時 間加熱攪拌した。 アルケニル基が反応により消失したことを1 H— N M Rで確 認し、 反応混合物を濃縮して目的とするメ トキシシリル基含有重合体を得た。 数平均分子量は 17800、 分子量分布は 1. 17であった。 重合体 1分子当 たりに導入されたシリル基の数は 1. 9個であった。
上記の製造例、 実施例、 及び比較例について、 以下の表にまとめておく。 アルケニル基を有する重合体 ヒドロシリル化反応
銅量 臭素量 精製 Pt量 シリル基の その他
(mg) (mg) 法1) (mg) 数 (個)
製造例 1 (7) (280) 精製法 一 一 一
実施例 1 7 280 30 1.8
比較例 1 7 990 30 アルケこル基残 製造例 2 (2以下) (260以下) 精製法 一 一 一
実施例 2 2以下 260以下 10 1.9
比較例 2 16 260 10 アルケこル基反応せず 製造例 3 (6以下) (240) 精製法 一 ― ―
実施例 3 6以下 240 10 1.8
実施例 4 6以下 240 30 1.8
実施例 5 6以下 240 30 1.8
実施例 6 6以下 240 5 1.6
比較例 3 6以下 240 0 (0) アルケこル基反応せず 製造例 4 (3) (280) 精製法
実施例 7 2以下 280 10 1.8
実施例 8 2以下 280 5 1.9
実施例 9 2以下 280 1 1.9
実施例 1 0 2以下 280 40 1.8 着色大 比較例 4 2以下 280 0 (0) アルケこル基反応せず 製造例 5 (2以下) (170) 精製法
実施例 1 1 2以下 170 10 1.9
製造例 6 (2以下) (290) 精製法
実施例 1 2 2以下 290 5 1.9
1 ) 精製法 1 :遠心分離、 吸着、 固形分除去、 加熱、 固形分除去
精製法 2 :遠心分離、 吸着、 固形分除去、 加熱、 吸着、 固形分除去 精製法 3 :吸着、 固形分除去、 加熱、 吸着、 固形分除去 産業上の利用可能性
本発明によれば、 高価なヒ ドロシリル化白金触媒の使用量を制限することで 、 原子移動ラジカル重合を利用して製造される末端にアルケニル基を有する ( メタ) アクリル系重合体 (A) から経済的に末端に架橋性シリル基を有する ( メタ) アクリル系重合体を製造することができる。 本発明により、 着色成分の 少ない、 末端に架橋性シリル基を有する (メタ) アクリル系重合体が得られる

Claims

請 求 の 範 囲
1. 下記 (A) 〜 (C) を混合してヒ ドロシリル化反応をおこなうことを特徴 とする、 末端に架橋性シリル基を有する (メタ) アクリル系重合体の製造方法 。
(A) 原子移動ラジカル重合を利用して製造され、 重合体中に含まれる遷移金 属の量が重合体 1 k gに対して 1 Omg以下であり、 かつ、 重合体中に含まれ るハロゲンの量が重合体 1 k gに対して 50 Omg以下である、 末端にァルケ 二ル基を有する (メタ) アクリル系重合体
(B) 架橋性シリル基を有するヒ ドロシラン化合物
(C) 白金触媒
2. 重合体 (A) に含まれる遷移金属の量が重合体 (A) 1 k gに対して 3m g以下である請求の範囲第 1項に記載の製造方法。
3. 重合体 (A) に含まれるハロゲンの量が重合体 (A) 1 k gに対して 30 Omg以下であることを特徴とする請求の範囲第 1項又は第 2項に記載の製造 方法。
4. 重合体 (A) 1 k gに対して、 白金金属量として 0. 11118以上3 01118 以下の白金触媒 (C) を用いる請求の範囲第 1項〜第 3項のいずれかに記載の 製造方法。
5. 重合体 (A) 1 k gに対して、 白金金属量として 0. 5mg以上 10mg 以下の白金触媒 (C) を用いる請求の範囲第 1項〜第 3項のいずれかに記載の 製造方法。
6. ヒ ドロシリル化反応の際に、 加水分解性のエステル化合物およびノまたは アルキルアルコールを共存させることを特徴とする請求の範囲第 1項〜第 5項 のいずれかに記載の製造方法。
7. 加水分解性のエステル化合物がオルトギ酸トリアルキルである請求の範囲 第 6項に記載の製造方法。
8. ヒ ドロシリル化反応を、 不活性ガス雰囲気下でおこなうことを特徴とする 請求の範囲第 1項〜第 7項のいずれかに記載の製造方法。
9. 不活性ガスが窒素ガスである請求の範囲第 8項に記載の製造方法。
10. ヒ ドロシリル化反応を、 50°C以上 150°C以下でおこなうことを特徴 とする請求の範囲第 1項〜第 9項のいずれかに記載の製造方法。
1 1. ヒ ドロシリル化反応を、 70°C以上 120°C以下でおこなうことを特徴 とする請求の範囲第 1項〜第 9項のいずれかに記載の製造方法。
12. 架橋性シリル基を有するヒ ドロシラン化合物 (B) を分割添加すること を特徴とする請求の範囲第 1項〜第 1 1項のいずれかに記載の製造方法。
13. 架橋性シリル基を有するヒ ドロシラン化合物 (B) がメチルジメ トキシ シランであることを特徴とする請求の範囲第 1項〜第 1 2項のいずれかに記載 の製造方法。
14. 白金触媒 (C) 力 白金 (0) — 1, 1, 3, 3—テトラメチル一 1, 3—ジビュルジシ口キサン錯体であることを特徴とする請求の範囲第 1項〜第 13項のいずれかに記載の製造方法。
1 5. 重合体 (A) 1S 下記 (1) 〜 (3) の工程により製造されるものであ ることを特徴とする請求の範囲第 1項〜第 14項のいずれかに記載の製造方法 。
(1) 有機ハロゲン化物、 またはハロゲン化スルホニル化合物を開始剤、 遷移 金属錯体を触媒として (メタ) アクリル系モノマーを重合することによって末 端にハロゲン基を有する (メタ) アクリル系重合体を製造する工程
(2) ハロゲン基と、 アルケニル基を分子内に複数個有する化合物とを反応さ せる工程 ( 3 ) 加熱処理により脱ハロゲン化反応をおこなう工程
1 6. ハロゲンが塩素、 臭素、 ヨウ素からなる群より選択されるものである請 求の範囲第 1項〜第 15項のいずれかに記載の製造方法。
1 7. (メタ) アクリル系重合体が、 (メタ) アクリル酸エステル系重合体で ある請求の範囲第 1項〜第 1 6項のいずれかに記載の製造方法。
1 8. (メタ) アクリル系重合体が、 アクリル酸エステル系重合体である請求 の範囲第 1項〜第 17項のいずれかに記載の製造方法。
1 9. アルケニル基を分子内に複数個有する化合物が、 非共役ジェン化合物で ある請求の範囲第 15項に記載の製造方法。
20. アルケニル基を分子内に複数個有する化合物がアルケニル基含有脂肪族 炭化水素系化合物である請求の範囲第 1 5項に記載の製造方法。
2 1. アルケニル基を分子内に複数個有する化合物が 1 , 7—才クタジェンで ある請求の範囲第 15項に記載の製造方法。
22. 重合体 (A) 1 一度に 100 k g以上の重合体を処理することにより 得られたものである請求の範囲第 1項〜第 21項のいずれかに記載の製造方法
23. 請求の範囲第 1項〜第 22項のいずれかに記載の製造方法により製造さ れる末端に架橋性シリル基を有する (メタ) アクリル系重合体。
24. 請求の範囲第 23項に記載の (メタ) アクリル系重合体を含む硬化性組 成物。
PCT/JP2003/005018 2002-04-25 2003-04-18 Procede de production de polymere (meth)acrylique termine par un groupe silyle reticulable WO2003091291A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/506,103 US7439308B2 (en) 2002-04-25 2003-04-18 Process for producing (meth)acrylic polymer terminated by crosslinkable silyl group
EP03719143A EP1498433A4 (en) 2002-04-25 2003-04-18 PROCESS FOR THE PRODUCTION OF (METH) ACRYLIC POLYMER COMPRISING A CROSS-LINKABLE SILYL GROUP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002123400 2002-04-25
JP2002-123400 2002-04-25

Publications (1)

Publication Number Publication Date
WO2003091291A1 true WO2003091291A1 (fr) 2003-11-06

Family

ID=29267484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005018 WO2003091291A1 (fr) 2002-04-25 2003-04-18 Procede de production de polymere (meth)acrylique termine par un groupe silyle reticulable

Country Status (4)

Country Link
US (1) US7439308B2 (ja)
EP (1) EP1498433A4 (ja)
CN (1) CN100447166C (ja)
WO (1) WO2003091291A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075562A1 (ja) * 2004-02-03 2005-08-18 Kaneka Corporation 硬化性組成物
CN100341937C (zh) * 2004-03-24 2007-10-10 株式会社日本触媒 散热材料用树脂组合物以及散热材料
DE102007049859A1 (de) 2007-10-18 2009-04-23 Construction Research & Technology Gmbh Verfahren zur Herstellung von silanmodifizierten Copolymeren

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1966251A1 (en) * 2005-12-22 2008-09-10 Dupont Electronic Polymers L.P. Process for preparing stable photoresist compositions
WO2007094445A1 (ja) * 2006-02-17 2007-08-23 Du Pont-Mitsui Polychemicals Co. Ltd. 太陽電池封止材
US7691225B2 (en) * 2007-01-15 2010-04-06 Nitto Denko Corporation Thermal-release double-coated pressure-sensitive adhesive tape or sheet and method of processing adherend
GB0714257D0 (en) * 2007-07-23 2007-08-29 Dow Corning Sealant for insulating glass unit
WO2009033974A1 (de) * 2007-09-12 2009-03-19 Construction Research & Technology Gmbh Verfahren zur herstellung von silanmodifizierten copolymeren
CN102239198B (zh) 2008-12-05 2015-01-21 巴斯夫欧洲公司 作为粘合剂和密封剂用增塑剂的环己烷多羧酸衍生物
WO2011054782A1 (de) 2009-11-05 2011-05-12 Basf Se Kleb- und dichtstoffe enthaltend ester auf basis von 2-propylheptanol
CN101805449B (zh) * 2010-04-12 2012-07-11 东北林业大学 含羧基微孔纳米硅氧烷固体颗粒的制备方法
US8791185B2 (en) 2010-06-21 2014-07-29 Basf Se 2-ethylhexyl methyl terephthalate as plasticizer in adhesives and sealants
CN102959031B (zh) 2010-06-21 2016-02-10 巴斯夫欧洲公司 在粘合剂和密封剂中作为增塑剂的对苯二甲酸2-乙基己基·甲基酯
US9376602B2 (en) 2010-06-29 2016-06-28 Construction Research & Technology Gmbh Process for preparing a thixotroping agent and use thereof
US9416282B2 (en) 2011-05-20 2016-08-16 Purdue Research Foundation Antifouling by adhesion suppression
US9102870B1 (en) 2011-12-05 2015-08-11 Entact, Llc Additives for soil, soil compositions and methods of making
JP6531651B2 (ja) * 2013-12-04 2019-06-19 株式会社スリーボンド 湿気硬化性組成物
CN103923583A (zh) * 2014-04-11 2014-07-16 苏州之诺新材料科技有限公司 一种单组份端硅烷基聚丙烯酸酯胶粘剂及其制备方法
CN107361983A (zh) * 2016-05-25 2017-11-21 罗嘉妤 一种手术床的绝缘层
CN115851187A (zh) * 2017-07-28 2023-03-28 艾利丹尼森公司 具有超支化倍半硅氧烷核心的压敏粘合剂和制品及其制备方法
JP7469311B2 (ja) * 2018-12-21 2024-04-16 ダウ シリコーンズ コーポレーション シリコーン-ポリアクリレートコポリマー、それを含むシーラント、および関連する方法
US11760841B2 (en) 2018-12-21 2023-09-19 Dow Silicones Corporation Silicone-polycarbonate copolymer, sealants comprising same, and related methods
EP3898780A2 (en) 2018-12-21 2021-10-27 Dow Silicones Corporation Silicone-organic copolymer, sealants comprising same, and related methods
CN112574701A (zh) * 2019-09-30 2021-03-30 莱施菲公司 用于将人造睫毛粘附到眼睛区域的粘合剂及其制造方法
JP2023507605A (ja) 2019-12-19 2023-02-24 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 湿気硬化性ポリアクリレート組成物およびその使用
CN111019171B (zh) * 2019-12-27 2021-04-27 福州大学 一种改性硅铝酸盐掺杂羧基化壳聚糖的抗菌阻隔性pet保护膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128924A (ja) * 1998-10-21 2000-05-09 Kanegafuchi Chem Ind Co Ltd 末端にアルケニル基を有する重合体の製造方法及び該重合体を用いた硬化性組成物
EP1000951A1 (en) * 1997-07-08 2000-05-17 Kaneka Corporation Hydrosilylation process and polymers produced by the process
JP2001206908A (ja) * 2000-01-24 2001-07-31 Kanegafuchi Chem Ind Co Ltd ヒドロシリル化反応の促進方法
JP2001240617A (ja) * 2000-03-01 2001-09-04 Kanegafuchi Chem Ind Co Ltd 新規なヒドロシリル化触媒及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552118B2 (en) * 1997-07-28 2003-04-22 Kaneka Corporation Curable adhesive composition
CA2346357A1 (en) * 1998-10-08 2000-04-13 Kaneka Corporation Curable compositions
US7030194B1 (en) 1999-04-02 2006-04-18 Kaneka Corporation Method of treating polymer
US7141646B2 (en) * 2000-05-12 2006-11-28 Kaneka Corporation Method of purifying vinyl polymer
EP1449855A4 (en) * 2001-10-17 2006-06-07 Kaneka Corp PROCESS FOR PREPARING VINYL POLYMER
EP1469013B1 (en) * 2002-01-21 2010-03-24 Kaneka Corporation Process for producing vinyl polymer, vinyl polymer, and curable composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1000951A1 (en) * 1997-07-08 2000-05-17 Kaneka Corporation Hydrosilylation process and polymers produced by the process
JP2000128924A (ja) * 1998-10-21 2000-05-09 Kanegafuchi Chem Ind Co Ltd 末端にアルケニル基を有する重合体の製造方法及び該重合体を用いた硬化性組成物
JP2001206908A (ja) * 2000-01-24 2001-07-31 Kanegafuchi Chem Ind Co Ltd ヒドロシリル化反応の促進方法
JP2001240617A (ja) * 2000-03-01 2001-09-04 Kanegafuchi Chem Ind Co Ltd 新規なヒドロシリル化触媒及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1498433A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075562A1 (ja) * 2004-02-03 2005-08-18 Kaneka Corporation 硬化性組成物
JPWO2005075562A1 (ja) * 2004-02-03 2007-10-11 株式会社カネカ 硬化性組成物
US7807746B2 (en) 2004-02-03 2010-10-05 Kaneka Corporation Curable composition
CN100341937C (zh) * 2004-03-24 2007-10-10 株式会社日本触媒 散热材料用树脂组合物以及散热材料
DE102007049859A1 (de) 2007-10-18 2009-04-23 Construction Research & Technology Gmbh Verfahren zur Herstellung von silanmodifizierten Copolymeren

Also Published As

Publication number Publication date
CN1646577A (zh) 2005-07-27
US20050107547A1 (en) 2005-05-19
US7439308B2 (en) 2008-10-21
CN100447166C (zh) 2008-12-31
EP1498433A4 (en) 2007-12-05
EP1498433A1 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
WO2003091291A1 (fr) Procede de production de polymere (meth)acrylique termine par un groupe silyle reticulable
US6794461B2 (en) Method for purification of vinyl polymers
JP4499260B2 (ja) ビニル系重合体の精製方法
US7276574B2 (en) Process for producing vinyl polymer
JP2012211216A (ja) ビニル系重合体の着色低減方法
EP1288230B1 (en) Method of purifying vinyl polymer
WO2003066689A1 (fr) Procédé de production de polymère de vinyle, polymère de vinyle et composition durcissable
JP4251480B2 (ja) 末端に架橋性シリル基を有する(メタ)アクリル系重合体の製造方法
JP4582880B2 (ja) ビニル系重合体の精製方法
JP4745486B2 (ja) ビニル系重合体の精製方法
JP4750246B2 (ja) ビニル系重合体の精製方法
JP2003096130A (ja) ビニル系重合体の精製方法
JP5182876B2 (ja) (メタ)アクリル酸エステル系重合体の製造方法
JP4174330B2 (ja) ビニル系重合体の製造方法、ビニル系重合体及び硬化性組成物
JP5302064B2 (ja) 末端に架橋性シリル基を有する(メタ)アクリル酸エステル系重合体の製造方法
JP3985890B2 (ja) アクリル系重合体の精製方法
JP4289037B2 (ja) ハロゲン基含有ビニル系重合体を含有する溶液からの溶剤の回収
JP2004075855A (ja) 精製ビニル系重合体の製造方法、該方法により得られた精製ビニル系重合体、該ビニル系重合体を用いたヒドロシリル化反応性組成物、該ヒドロシリル化反応性組成物から得られた架橋性シリル基を有するビニル系重合体およびそれを含有する硬化性組成物
JP4265739B2 (ja) ビニル系重合体の精製方法
JP2001323011A (ja) ビニル系重合体の精製方法
JP2001323012A (ja) ビニル系重合体の精製方法
JP2003119219A (ja) アクリル系重合体の精製方法
JP2004075728A (ja) ビニル系重合体の製造方法
JP2010047673A (ja) 架橋性シリル基含有(メタ)アクリル酸エステル系重合体、架橋性シリル基含有(メタ)アクリル酸エステル系重合体の製造方法、および硬化性組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10506103

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038083221

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2003719143

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003719143

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003719143

Country of ref document: EP