WO2003085391A1 - Technique d'inspection aux rayons x d'un pneumatique et appareil a cet effet - Google Patents

Technique d'inspection aux rayons x d'un pneumatique et appareil a cet effet Download PDF

Info

Publication number
WO2003085391A1
WO2003085391A1 PCT/JP2003/004329 JP0304329W WO03085391A1 WO 2003085391 A1 WO2003085391 A1 WO 2003085391A1 JP 0304329 W JP0304329 W JP 0304329W WO 03085391 A1 WO03085391 A1 WO 03085391A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
tire
image
transmitted
irradiating means
Prior art date
Application number
PCT/JP2003/004329
Other languages
English (en)
French (fr)
Inventor
Norimichi Uchida
Takao Kokubu
Original Assignee
Kabushiki Kaisha Bridgestone
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Bridgestone filed Critical Kabushiki Kaisha Bridgestone
Priority to EP03745916A priority Critical patent/EP1494018B1/en
Priority to US10/509,956 priority patent/US7076022B2/en
Publication of WO2003085391A1 publication Critical patent/WO2003085391A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/028Tyres using X-rays

Definitions

  • the present invention relates to a method and an apparatus for inspecting the inside of a tire by X-rays. Background art
  • a tire is taken out of a line, a transmission X-ray image of the tire is taken by an X-ray imaging device, and an operator determines a tire component from the transmission X-ray image of the tire obtained above.
  • the quality of the tire is judged by visually checking the condition of the beat wire and the intrusion of foreign matters such as minute metals and pebbles into the tire. In this way, removing tires one by one requires stopping the product line for each inspection, which reduces productivity.
  • internal inspection of tires is not a sampling inspection. Did not get.
  • the pass / fail judgment work is visually inspected by the worker, so that the judgment result is liable to be influenced by the proficiency of the worker and the like, and there is also a problem that individual differences are likely to occur.
  • the inventors have proposed in Japanese Patent Application Laid-Open No. 2000-249665 a method of automatically performing an internal inspection of all the tires.
  • the X-ray tube 2 and the X-ray tube 2 are driven to a predetermined position above the roll conveyor 1 for transporting the vulcanized tire 10.
  • the X-ray generator 3 is arranged, and the X-ray line sensor 4 is arranged along the gap between the adjacent ports 1R, 1R below the roll conveyor 1, corresponding to the X-ray tube 2.
  • X-rays emitted from the X-ray tube 2 and transmitted through the tire 10 conveyed by the roll conveyor 1 are detected by the X-ray line sensor 4 so that the transmitted X-ray image of the above-mentioned X-ray is continuously obtained.
  • the transmitted X-ray image obtained above is sent to the image processing section 50a of the tire internal image inspection means 50 for image processing, and stored in the storage means 5Ob in advance by the determination section 50c.
  • the X-ray image of a normal tire is compared with the obtained image to determine the quality of the tire 10.
  • 6 is a slit for narrowing the optical path of the irradiated X-ray
  • 7 and 8 are a lead shield box and a lead force that are installed to prevent the X-ray from leaking out of the measurement area.
  • the blind spot area of the above metal member is a shadow on the image processing, as shown by the black part in the figure, the blind spot area 1 lx ⁇ ⁇ ⁇ blind spot area 12 x by the tread belt 12 shown by the beat wire 11.
  • the transport of the tire 10 is temporarily stopped, the tire 10 to be inspected is gripped by the chuck 15, and a transmission X-ray image is taken while rotating the tire 10.
  • a method of separately taking a transmission X-ray image of the part that has entered the blind spot area llx, 12X is conceivable, it is not a practical method because the inspection time is significantly increased.
  • the present invention has been made in view of the conventional problems, and provides a tire X-ray inspection method and apparatus capable of accurately and efficiently inspecting the inside of a tire even with a tire having a small flatness. The purpose is to. Disclosure of the invention
  • FIG. 10 As a result of intensive studies, as shown in FIG. 10, when the present inventors irradiate X-rays from directly above the tire end 10a, the half of the transmitted X-ray image of the tire 10 is shown in FIG. — It has been found that the blind spot areas 1 lx and 12 x due to the tread 11 tread belt 12 have been minimized, and have arrived at the present invention. That is, the invention described in claim 1 of the present invention inspects the inside of the tire using a transmitted X-ray image of the tire obtained by irradiating the conveyed tire with X-rays by X-ray irradiating means.
  • the X-ray inspection method for a tire is characterized in that the X-ray is irradiated from at least two places on the tire as an object to take a transmission X-ray image of the tire. This makes it possible to obtain an X-ray image with few shadows such as a beat wire and a tread belt, so that the inside of the tire can be inspected accurately.
  • the invention according to claim 2 provides the X-ray inspection method for evening tires according to claim 1, wherein the outer diameter of the transported tire is measured, and the X-ray inspection is performed in accordance with the measurement result. The position of the line irradiation means is changed.
  • the invention according to claim 3 is the tire X-ray inspection method according to claim 2, wherein the X-ray irradiating means is located at a predetermined distance inside a position corresponding to the measured outer diameter of the tire. It is characterized by being arranged in.
  • the invention described in claim 4 is a method for inspecting an X-ray of a tire according to any one of claims 1 to 3, wherein two of the photographed transmitted X-ray images of the tire are obtained. Then, a transmission X-ray image of the entire tire is created by combining the transmission X-ray images of the half near the X-ray irradiating means, and the inside of the tire is inspected using the combined transmission X-image of the tire. It is characterized by doing so.
  • the invention according to claim 5 is the X-ray inspection method for a tire according to claim 1, wherein the step of measuring an outer diameter of a tire to be conveyed includes: Positioning the X-ray irradiating means on the basis of data on the outer diameter of the tire, at positions facing each other by a distance of 2 to 3 cm inside the measured outer diameter of the tire, Take two steps of the step of taking the transmitted X-ray image of the above-mentioned tire by X-ray irradiating means and the above-mentioned transmitted X-ray image of the tire, and take the half on the side close to the X-ray irradiating means.
  • a transmission X-ray image of the entire tire by combining the transmission X-ray images of the tires, and a step of inspecting the inside of the tire based on the synthesized transmission X-ray image of the entire tire. .
  • the invention according to claim 6 is a means for transporting the tire, an X-ray irradiating means for irradiating the transported X-ray to the conveyor, and an X-ray for capturing a transmitted X-ray image of the tire.
  • An X-ray inspection apparatus for inspecting the inside of the tire using a transmitted X-ray image obtained by imaging with the X-ray sensor, wherein the X-ray irradiating means is a conveyed roller. It is installed at and opposite to at least two locations to capture transmitted X-ray images of the tire.
  • the invention according to claim 7 is the tire X-ray inspection apparatus according to claim 6, in which two of the photographed transmitted X-ray images of the tire are taken and are close to the X-ray irradiating means.
  • Image combining means for combining the transmitted X-ray images on the side, and determining means for judging the quality of the tire using the transmitted X image of the entire tire combined by the image combining means.
  • the invention according to claim 8 is the tire X-ray inspection apparatus according to claim 6 or ⁇ , wherein a means for measuring a diameter of a tire to be conveyed is provided, and the X-ray irradiation means is moved. Means for causing the X-ray irradiating means to be disposed at a predetermined distance inside the measured outer diameter of the tire.
  • the invention according to claim 9 is the tire X-ray inspection apparatus according to any one of claims 6 to 8, in order to minimize the influence of the tread belt portion having the largest effect on the blind spot area.
  • each of the X-ray irradiating means is disposed at a position opposed to a position inside the inner peripheral portion of the tread belt.
  • the invention according to claim 10 is the tire X-ray inspection apparatus according to any one of claims 6 to 9, wherein one of the X-ray irradiating means and the tire by the X-ray irradiating means are used.
  • the X-ray sensor that captures the transmitted X-ray image is located at a predetermined distance from the position of the other X-ray irradiating means and X-ray sensor in the evening conveyance direction. Since the irradiation areas of the rays do not overlap, a more accurate transmission X-ray image of the tire can be obtained.
  • the invention according to claim 11 is the tire X-ray inspection apparatus according to any one of claims 6 to 10, wherein the X-ray sensor is an X-ray line sensor.
  • the X-ray irradiating means is provided with a shield plate having a slit extending from the center to the inside of the tire and having a slit parallel to the extending direction of the X-ray line sensor. Can be minimized, and the overlap of the X-ray irradiation areas from the two X-ray irradiation means can be eliminated.
  • the invention according to Claim 12 is the tire X-ray inspection apparatus according to any one of Claims 6 to 11, wherein the X-ray irradiating means includes: It is located at a height that includes the entire tire, so that even if one X-ray irradiating unit fails, the other X-ray irradiating unit is placed above or at the other end of the tire. It is possible to cover the above failure by moving it to the lower part.
  • the invention according to claim 13 is the tire X-ray inspection apparatus according to any one of claims 6 to 12, wherein the interval between the two X-ray irradiation means can be changed. Thus, it becomes possible to easily perform internal inspection of tires of various sizes. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a diagram showing an outline of an X-ray inspection apparatus for a sunset according to the best mode of the present invention.
  • FIG. 2 is a diagram showing an example of the arrangement of X-ray irradiation means according to the present best mode.
  • FIG. 3 is a flowchart showing a method of X-ray inspection of a tire according to the best mode of the present invention.
  • FIG. 4 is a diagram showing a transmission X-ray image of a sunset according to the best mode.
  • FIG. 5 is a diagram showing an example of a method for evaluating a blind spot area.
  • FIG. 6 is a diagram showing evaluation results of a blind spot area.
  • FIG. 7 is a diagram showing an outline of a conventional tire X-ray inspection apparatus.
  • FIG. 8 is a view showing a transmitted X-ray image of a tire by a conventional X-ray inspection apparatus.
  • FIG. 9 is a diagram showing another example of the X-ray inspection method for evening waves.
  • FIG. 10 is a diagram showing the measurement principle of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • BEST MODE FOR CARRYING OUT THE INVENTION the best mode of the present invention will be described with reference to the drawings.
  • FIG. 1 is a diagram showing an outline of a tire X-ray inspection apparatus according to the best mode of the present invention.
  • reference numeral 1 denotes a roll conveyer for transporting vulcanized tires 10, and 7 denotes irradiation described later.
  • X-rays and reflections A lead shield box installed so as to surround the roll conveyor 1 from above so as not to leak X-rays from the measurement area to the outside.8 is a passage for the tire 10 of the lead shield box 7 It is a lead curtain provided in the section.
  • 2a and 2b are a pair of X-ray tubes installed at predetermined positions on the X-ray source mounting base 9 installed on the ceiling of the lead shield box 7, and 3 is placed on the X-ray source mounting base 9 X-ray generators for driving the X-ray tubes 2a and 2b are provided.
  • 4a and 4b correspond to the X-ray tubes 2a and 2b and are adjacent rolls below the roll conveyor 1.
  • An X-ray line sensor 5 arranged along the gap between 1R and 1R is an image processing unit 5 for combining and transmitting the transmitted X-ray images obtained by the X-ray line sensors 4a and 4b.
  • a storage means 5b for storing an X-ray image of a normal tire
  • a determination unit 5 for comparing the X-ray image of the normal tire with the obtained image to determine the quality of the tire 10
  • the relative distance between the X-ray tubes 2a and 2b can be changed so as to be able to cope with the internal inspection of tires of various sizes.
  • Each of the tires 10 is installed so as to be located immediately above the opposing ends thereof, that is, immediately above the passing point of the opposing tire ends of the transported tire.
  • the outer diameter of the transported tire 10 before inspection is measured by, for example, a length measuring means such as a distance sensor S, S and the like.
  • the X-ray tubes 2a and 2b are arranged inside by 2 to 3 cm from the outer diameter of the tire by a moving means that does not move. Since this position is almost directly above the inside of the inner peripheral portion of the tread belt, which has the greatest influence on the blind spot area, the influence of the tread belt can be minimized.
  • the position of one X-ray tube 2b is shifted by a predetermined distance in the transport direction from the position of the other X-ray tube 2a so that the irradiation areas of the X-rays from the X-ray tubes 2 & and 2b do not overlap. Stagger At the same time, the position of the X-ray line sensor 4b that captures the transmitted X-ray image by the X-ray tube 2b is adjusted accordingly. It is installed shifted by a predetermined distance in the transport direction from the position.
  • the X-ray tubes 2a, 2b are not shown.
  • the X-ray irradiation range can be reduced to the minimum necessary, and the overlap of the X-ray irradiation areas from the X-ray tubes 2a and 2b can be eliminated, so that clear X-rays can be transmitted. Images can be obtained.
  • the outer diameter of the transported tire 10 is measured by length measuring means such as distance sensors S, S (step S1), and based on the measured outer diameter of the tire 10, the X-ray is measured.
  • Each of the tubes 2a and 2b is almost directly above the inner circumference of the tread belt and almost 2 to 3 cm above the position where the measured maximum outer diameter of the above-mentioned sheather is located.
  • Step S2 a transmission X-ray image of the tire 10 transported into the lead shield box 7, which is the inspection location, is taken.
  • the tires 10 conveyed from the X-ray tubes 2a and 2b installed immediately above the tire ends facing each other are irradiated with X-rays, respectively.
  • the line sensors 4a and 4b respectively capture the transmitted X-ray images 10L and 10R of the left and right halves of the tire 10 and send them to the image processing unit 5a of the tire internal image means 5 (step S3). ).
  • step S4 of the transmitted X-ray images of the two tires captured above.
  • the transmitted X-ray images of the half near the X-ray tubes 2a and 2b are combined with each other to create a transmitted X image of the entire tire (step S4).
  • the transmitted X-ray images 10 L, 1 OR taken by irradiating X-rays from directly above the tire ends 10 a, 1 Ob are, as shown in FIG. ⁇
  • the blind spot areas 1 lx, 1 2 x are synthesized by synthesizing the transmission X-ray images 10 L, 1 OR. It is possible to obtain an image inside the tire with the size of the tire minimized.
  • the determination unit 5c of the tire internal image inspection unit 5 compares the X-ray image of a normal tire stored in the storage unit 5b with the obtained image in the determination unit 5c of the tire (5).
  • the quality of the tire 10 is determined by determining whether there is a foreign substance having a size equal to or larger than a predetermined value (step S6).
  • the transmitted X-ray image 10 L in this image p ' can be detected as a q 5, it is possible to significantly improve the accuracy of the internal inspection of the tire (X-ray examination).
  • all the internal inspections of the tires can be automatically performed accurately without stopping the line, so that the X-ray inspection of the tire can be efficiently performed. Since the blind spot area increases as the tire becomes flatter, the X-ray inspection method for a tire according to the present invention is particularly effective for a flat tire.
  • the storage means 5b of the tire internal image inspection means 5 is omitted, and the size and the number of foreign substances and the like in the tire internal image are calculated by the image processing unit 5a, and are determined by the determination unit 5c.
  • the quality of the tire 10 may be determined by determining whether the size or the number of the foreign matter or the like satisfies a preset standard.
  • the evening image inspection means 5 is only the image processing section 5a, and the inside image of the tire is displayed on a display or the like, and the worker uses the displayed inside image of the tire to display the tire image. May be determined.
  • X-ray tubes may be arranged at three or more places, and the transmitted tire 10 may be irradiated with X-rays to photograph a transmitted X-ray image to generate a transmitted X-ray image of the entire tire.
  • the X-ray tubes 2a and 2b are arranged at a height at which the X-ray irradiation range includes at least the entire tire 10.
  • the other X-ray irradiating unit is moved to a position immediately above the center of the tire 10 so that the entire image of the tire 10 is photographed. Can be covered.
  • the above X-ray tubes 2a and 2b Is located at a position that is approximately 1.3 m from the cross-sectional position where the tire 10 has the maximum outer diameter.
  • FIG. 6 (a) shows a transmitted X-ray image of the tire 10Z taken by the X-ray inspection apparatus according to the present invention.
  • Fig. 6 (b) shows a transmitted X-ray image of the same tire 10Z taken by a conventional X-ray inspection apparatus with one X-ray source.
  • the X-ray transmitted through the tire is photographed by an X-ray sensor to inspect the inside of the tire, Radiated from at least two places on the subject's sunset, and a transmission X-ray image of the tire was taken.
  • An X-ray image with few easy-to-access points can be obtained, and the inside of the tire can be inspected accurately. Therefore, the internal inspection of all the tires can be performed accurately and efficiently without stopping the line.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

明 細 書 タイヤの X線検査方法及びその装置
技術分野
本発明は、 X線によるタイヤの内部検査方法とその装置に関するものである。 背景技術
従来、 タイヤの内部検査においては、 タイヤをラインから取り出し、 X線撮影 装置によりタイヤの透過 X線像を撮影し、 作業者が上記得られたタイヤの透過 X 線像から、 タイヤ構成部材であるビートワイヤの状態や、 タイヤへの微小な金属 や小石等の異物の侵入等を目視にてチェックして、 上記タイヤの良否を判定する ようにしていた。 このように、 タイヤを 1本ずつ取り出す方法では、 検査の度毎 に製品ラインを停止しなければならないため、 生産性が低下することから、 一般 には、 タイヤの内部検査は抜き取り検査にならざるを得なかった。 その上、 良否 の判定作業は作業者の目視によることから、 判定結果が作業者の習熟度等に左右 されやすく、 また、 個人差が入りやすいといった問題点があった。
そこで、 発明者らは特開 2 0 0 0 - 2 4 9 6 6 5号公報において、 タイヤの全 数内部検査を自動的に行う方法を提案している。 これは、 第 7図 (a), (b ) に示すように、 加硫済みのタイヤ 1 0を搬送するロールコンペャ 1の上方の所定 の位置に X線管 2及びこの X線管 2を駆動する X線発生装置 3を配置するととも に、 上記 X線管 2に対応して、 上記ロールコンペャ 1下方の隣接する口一ル 1 R , 1 R間の空隙に沿って、 X線ラインセンサ 4を配置し、 上記 X線管 2から照射 され、 ロールコンペャ 1で搬送されるタイヤ 1 0を透過した X線を上記 X線ライ ンセンサ 4で検出することにより、 上記夕ィャの透過 X線像を連続的に撮影し、 上記得られた透過 X線像をタイヤ内部画像検査手段 5 0の画像処理部 5 0 aに送 つて画像処理し、 判定部 5 0 cにて、 記憶手段 5 O bに予め記憶されている正常 なタイヤの X線画像と上記得られた画像とを比較して当該タイヤ 1 0の良否を判 定するもので、 これにより、 ラインを停止することなく、 自動的にタイヤの全数 内部検査を効率よく行うことができる。 なお、 同図において、 6は照射 X線の光 路を絞るためのスリット、 7 , 8は X線を測定域から外部に漏らさないために設 置された鉛シールドボックスと鉛力一テンである。 ところで、 近年、 乗用車用タイヤにおいては、 コーナリングパワーを高めて高 速性 ·操縦性を向上させるため、 タイヤを偏平化する傾向にある。 しかしながら 、 上記方法では、 例えば、 2 0 5 / 5 5 R 1 6, 2 1 5 / 5 0 Z R 1 7など のような偏平タイヤの内部を検査した場合には、 第 8図に示すように、 金属部材 であるビートワイヤ 1 1やトレツドベルト 1 2の像と重なってしまう領域が広く なる。 上記金属部材の死角領域となる箇所は、 同図の黒い部分で示した、 ビート ワイヤ 1 1による死角領域 1 l xゃトレツドベルト 1 2による死角領域 1 2 xの ように、 画像処理上は影となってしまうので、 例えば、 ビートワイヤ 1 1とトレ ッドベルト 1 2間に金属等の異物 p , qがあった場合でもこれを識別できず、 そ のため検査精度が低下してしまうといった問題点があった。
そこで、 第 9図に示すように、 タイヤ 1 0の搬送を一時停止し、 検査するタイ ャ 1 0をチャック 1 5で把持し、 上記タイヤ 1 0を回転させながら透過 X線像を 撮影して、 上記死角領域 l l x , 1 2 Xに入ってしまった部分の透過 X線像を別 途撮影する方法も考えられるが、 検査時間が大幅にかかってしまうため実用的な 方法とはいえなかった。 本発明は、 従来の問題点に鑑みてなされたもので、 偏平率の小さなタイヤでも 夕ィャ内部の検査を正確にかつ効率よく行うことのできるタイャの X線検査方法 とその装置を提供することを目的とする。 発明の開示
本発明者らは、 鋭意検討した結果、 第 1 0図に示すように、 タイヤ端部 1 0 a の直上から X線を照射した場合、 タイヤ 1 0の透過 X線像の半分については、 ビ —トワイヤ 1 1ゃトレツドベルト 1 2による死角領域 1 l x, 1 2 Xが最も小さ くなることを見いだし、 本発明に到ったものである。 すなわち、 本発明の請求の範囲 1に記載の発明は、 搬送されるタイヤに X線照 射手段により X線を照射して得られたタイヤの透過 X線像を用いてタイヤの内部 を検査するタイヤの X線検査方法において、 上記 X線を被検体であるタイヤの少 なくとも 2箇所から照射して夕ィャの透過 X線像を撮影するようにしたことを特 徴とするもので、 これにより、 ビートワイヤやトレッドベルトなどの影になり易 い箇所の少ない X線画像を得ることができるので、 タイヤの内部を正確に検査す ることが可能となる。
請求の範囲 2に記載の発明は、 請求の範囲 1に記載の夕ィャの X線検査方法に おいて、 搬送されるタイヤの外径を測定するとともに、 上記測定結果に応じて上 記 X線照射手段の位置を変更するようにしたことを特徴とする。
請求の範囲 3に記載の発明は、 請求の範囲 2に記載のタイヤの X線検査方法に おいて、 上記 X線照射手段を上記測定されたタイヤの外径となる位置よりも所定 距離だけ内側に配置したことを特徴とする。
請求の範囲 4に記載の発明は、 請求の範囲 1〜請求項 3のいずれかに記載の夕 ィャの X線検査方法において、 上記撮影されたタイヤの透過 X線像のうちの 2つ をとり、 上記 X線照射手段に近い側の半分の透過 X線像を合成してタイヤ全体の 透過 X像を作成し、 この合成されたタイヤ全体の透過 X像を用いてタイヤの内部 を検査するようにしたことを特徴とする。
請求の範囲 5に記載の発明は、 請求の範囲 1に記載の夕ィャの X線検査方法で あって、 搬送される被検タイヤの外径を測定するステップと、 上記測定された夕 ィャの外径データに基づいて、 上記 X線照射手段を上記測定されたタイャの外径 となる位置よりも 2〜3 c mだけ内側となる位置に対向する位置にそれそれ配置 するステップと、 上記 X線照射手段により上記夕ィャの透過 X線像を撮影するス テツプと、 上記撮影されたタイヤの透過 X線像のうちの 2つをとり、 上記 X線照 射手段に近い側の半分の透過 X線像を合成してタイヤ全体の透過 X像を作成する ステップと、 上記合成されたタイヤ全体の透過 X像に基づいてタイヤの内部を検 査するステップとを含むことを特徴とする。
また、 請求の範囲 6に記載の発明は、 タイヤを搬送する手段と、 搬送される夕 ィャに X線を照射する X線照射手段と、 上記タイヤの透過 X線像を撮影する X線 センサとを備え、 上記 X線センサで撮影して得られた透過 X線像を用いてタイヤ の内部を検査する X線検査装置であって、 上記 X線照射手段を上記搬送される夕 ィャの少なくとも 2箇所に対向する位置それそれに設置してタイャの透過 X線像 を撮影するようにしたものである。 このように、 少なくとも 2つの X線照射手段 を用いて 2方向以上から夕ィャの透過 X線画像を撮影することにより、 死角領域 を最小限に抑えたタイヤ内部画像を得ることができ、 タイヤ内部検査の精度を向 上させることが可能となる。
請求の範囲 7に記載の発明は、 請求の範囲 6に記載のタイャの X線検査装置に おいて、 上記撮影されたタイヤの透過 X線像の 2つをとり、 上記 X線照射手段に 近い側の透過 X線像を合成する画像合成手段と、 上記画像合成手段で合成された タイヤ全体の透過 X像を用いて当該タイヤの良否を判定する判定手段とを設けた ものである。
請求の範囲 8に記載の発明は、 請求の範囲 6または請求項 Ίに記載のタイャの X線検査装置において、 搬送されるタイヤの径を測定する手段を設けるとともに 、 上記 X線照射手段を移動させる手段を設けて、 上記 X線照射手段を上記測定さ れたタイャの外径となる位置よりも所定距離だけ内側に配置するようにしたもの である。
請求の範囲 9に記載の発明は、 死角領域に対する影響が最も大きなトレッドべ ルト部の影響を最小限に抑えるため、 請求の範囲 6〜請求項 8のいずれかに記載 のタイヤの X線検査装置において、 上記各 X線照射手段をトレツドベルトの内周 部内側となる位置に対向する位置にそれそれ配置するようにしたものである。 請求の範囲 1 0に記載の発明は、 請求の範囲 6〜請求項 9のいずれかに記載の タイヤの X線検査装置において、 一方の X線照射手段及び当該 X線照射手段によ るタイヤの透過 X線像を撮影する X線センサを、 他方の X線照射手段及び X線セ ンサの位置から夕ィャ搬送方向にそれそれ所定距離だけ離れた位置に設置したも ので、 これにより、 X線の照射領域が重ならないので、 より正確なタイヤの透過 X線像を得ることが可能となる。
請求の範囲 1 1に記載の発明は、 請求の範囲 6〜請求項 1 0のいずれかに記載 のタイヤの X線検査装置において、 上記 X線センサを X線ラインセンサとすると ともに、 上記 X線照射手段に、 中心部からタイヤの内側方向に延長する、 上記 X 線ラインセンサの延長方向に平行なスリットを有する遮蔽板を取付けたもので、 これにより、 X線の照射範囲を必要最小限にすることができるとともに、 2つの X線照射手段からの X線の照射領域の重なりをなくすこと可能となる。
請求の範囲 1 2に記載の発明は、 請求の範囲 6〜請求項 1 1のいずれかに記載 のタイヤの X線検査装置において、 上記 X線照射手段を、 X線の照射範囲が少な くともタイヤ全 ¼を含む位置になる高さに配置したもので、 これにより、 一方の X線照射手段が故障した場合でも、 他方の X線照射手段を夕ィャの他の端部の上 部または下部に移動させるなどして、 上記故障をカバーすることが可能となる。 請求の範囲 1 3に記載の発明は、 請求の範囲 6〜請求項 1 2のいずれかに記載 のタイヤの X線検査装置において、 上記 2つの X線照射手段間の間隔を変更可能 としたもので、 これにより、 種々の大きさのタイヤの内部検査を容易に行うこと が可能となる。 図面の簡単な説明
第 1図は、 本発明の最良の形態に係る夕ィャの X線検査装置の概要を示す図で ある。
第 2図は、 本最良の形態に係る X線照射手段の配置例を示す図である。
第 3図は、 本発明の最良の形態に係るタイヤの X線検査方法を示すフローチヤ —トである。
第 4図は、 本最良の形態に係る夕ィャの透過 X線像を示す図である。
第 5図は、 死角領域の評価方法の一例を示す図である。
第 6図は、 死角領域の評価結果を示す図である。
第 7図は、 従来のタイヤの X線検査装置の概要を示す図である。
第 8図は、 従来の X線検査装置によるタイヤの透過 X線像を示す図である。 第 9図は、 夕ィャの X線検査方法の他の例を示す図である。
第 1 0図は、 本発明の測定原理を示す図である。 発明を実施するための最良の形態 以下、 本発明の最良の形態について、 図面に基づき説明する。
なお、 以下の説明中、 従来例と共通する部分については同一符号を用いて説明 する。
第 1図は、 本発明の最良の形態に係るタイヤの X線検査装置の概要を示す図で 、 同図において、 1は加硫済みのタイヤ 1 0を搬送するロールコンペャ、 7は後 述する照射 X線、 反射 X線を測定域から外部に漏らさないように、 上記ロールコ ンべャ 1を上方から囲むように設置された鉛シールドボックス、 8は上記鉛シー ルドボックス 7のタイヤ 1 0の通路部に設けられた鉛カーテンである。
2 a, 2 bは上記鉛シールドボックス 7の天井部に設置された X線源取付台 9 の所定の位置に設置された一対の X線管、 3は上記 X線源取付台 9上に配置され た、 上記 X線管 2 a , 2 bを駆動するための X線発生装置、 4 a , 4 bは上記 X 線管 2 a, 2 bに対応して、 上記ロールコンペャ 1下方の隣接するロール 1 R , 1 R間の空隙に沿って配置された X線ラインセンサ、 5は上記 X線ラインセンサ 4 a, 4 bで得られた透過 X線像を合成して画像処理する画像処理部 5 aと、 正 常なタイヤの X線画像を記憶する記憶手段 5 bと、 上記正常なタイヤの X線画像 と得られた画像とを比較して当該タイヤ 1 0の良否を判定する判定部 5 cとを備 えたタイャ内部画像検査手段である。
本例では、 種々の大きさのタイヤの内部検査に対応可能なように、 上記 X線管 2 a , 2 b間の相対距離を変更可能とし、 測定時には、 X線管 2 a, 2 bがそれ それ当該タイヤ 1 0の互いに対向する端部の直上、 すなわち、 搬送されるタイヤ の互いに対向するタイヤ端部の通過点の直上にくるように設置する。 このとき、 第 2図 (a) , (b ) に示すように、 搬送される検査前のタイヤ 1 0の外径を、 例えば、 距離センサ S, S等の長さ計測手段により測定し、 図示しない移動手段 により、 上記 X線管 2 a , 2 bを上記タイヤの外径よりも 2〜3 c mだけ内側に 配置する。 この位置は、 上述した死角領域に対する影響が最も大きなトレッドべ ルトの内周部内側の略直上であるので、 トレッドベルトの影響を最小限に抑える ことが可能となる。
また、 乂線管2 & , 2 bからの X線の照射領域が重ならないように、 一方の X 線管 2 bの位置を他方の X線管 2 aの位置よりも搬送方向に所定距離だけずらし て設置するとともに、 それに応じて、 X線管 2bによる透過 X線像を撮影する X 線ラインセンサ 4bの位置も、 X線管 2 aによる透過 X線像を撮影する X線ライ ンセンサ 4 aの位置よりも搬送方向に所定距離だけずらして設置する。 これによ り、 上記 X線管 2 a, 2bによる X線の照射領域が重ならないので、 より正確な タイヤの透過 X線像を得ることができるとともに、 X線ラインセンサ 4a, 4b を長くできるので、 2つの X線ラインセンサ 4 a, 4bのどちらでもタイヤ中央 部の透過 X線像が得られる。 したがって、 タイヤ中央部の透過 X線像が欠落する ことがない。
また、 本例では、 線管2&, 2bからの照射 X線の光路を所定の範囲に絞る ため、 第 2 (b)図に示すように、 上記 X線管 2 a, 2 bに、 図示しない X線照 射窓の中心部からタイヤ 10の内側方向に延長する、 上記 X線ラインセンサ 4 a , 4 bの延長方向に平行なスリット 2 sを有する遮蔽板 2 zを取付けている。 こ れにより、 X線の照射範囲を必要最小限に絞ることができるとともに、 上記 X線 管 2 a, 2 bからの X線の照射領域の重なりをなくすことできるので、 鮮明な透 過 X線画像を得ることができる。
次に、 本発明によるタイヤの X線検査方法について、 第 3図のフローチャート を参照して説明する。
まず、 距離センサ S, S等の長さ計測手段により、 搬送されるタイヤ 10の外 径を測定し (ステップ S1)、 上記測定されたタイヤ 10の外径デ一夕に基づい て、 上記 X線管 2 a, 2 bをそれそれ、 トレッドベルトの内周部内側のほぼ直上 にあたる、 上記測定された夕ィャの最大外径となる位置よりも 2〜 3 c mだけ内 側の位置のほぼ直上に配置する (ステップ S 2)。 そして、 検査箇所である鉛シ —ルドボックス 7内に搬送されたタイヤ 10の透過 X線像を撮影する。 具体的に は、 第 4図に示すように、 互いに対向するタイヤ端部の直上に設置された X線管 2 a, 2 bから搬送されるタイヤ 10にそれそれ X線を照射し、 X線ラインセン サ 4a, 4bにより、 タイヤ 10の左半分及び右半分の透過 X線像 10L, 10 Rをそれそれ撮影し、 これをタイヤ内部画像手段 5の画像処理部 5 aに送る (ス テツプ S 3)。
画像処理部 5 aでは、 上記撮影された 2つのタイヤの透過 X線像のうち、 上記 X線管 2 a , 2 bに近い側の半分の透過 X線像同士を合成してタイヤ全体の透過 X像を作成する (ステップ S 4 )。
タイヤ端部 1 0 a , 1 O bの直上からそれそれ X線を照射して撮影した透過 X 線像 1 0 L, 1 O Rは、 第 1 0図にも示したように、 ビートワイヤ 1 1ゃトレツ ドベルト 1 2のために死角となる領域 1 l x , 1 2 Xが最も小さくなるので、 上 記透過 X線像 1 0 L, 1 O Rを合成することにより、 死角領域 1 l x , 1 2 xの 大きさを最小限に抑えたタイヤ内部画像を得ることができる。
最後に、 タイヤ内部画像検査手段 5の判定部 5 cにおいて、 上記タイヤ内部画 像を記憶手段 5 bに予め記憶しておいた正常なタイヤの X線画像と得られた画像 とを比較し (ステップ S 5 ) 、 一定値以上の大きさの異物があるかどうかを判定 することにより、 当該タイヤ 1 0の良否を判定する (ステップ S 6 )。
したがって、 例えば、 第 4図に示すように、 タイヤ 1 0の右半分のビートワイ ャ 1 1とトレッドベルト 1 2間に金属等の異物 p, qがあった場合でも、 透過 X 線像 1 0 Lではこれを像 p ' , q 5 として検出することができるので、 タイヤ の内部検査 (X線検査) の精度を著しく向上させることができる。 このように、 本発実施の形態では、 ラインを停止することなく、 自動的にタイ ャの全数内部検査を正確に行うことができるので、 効率よくタイヤの X線検査を 行うことができる。 なお、 上記死角領域はタイヤが偏平化するほど大きくなるの で、 本発明のタイヤの X線検査方法は偏平タイヤに特に有効である。
なお、 上記タイヤ内部画像検査手段 5の記憶手段 5 bを省略して、 画像処理部 5 aにて、 上記タイヤ内部画像中の異物等の大きさやその数を演算し、 判定部 5 cにて、 上記異物等の大きさやその数が予め設定された基準を満たすかどうかを 判定して当該タイヤ 1 0の良否を判定するようにしてもよい。 あるいは、 上記夕 ィャ内部画像検査手段 5を画像処理部 5 aのみとし、 上記タイヤ内部画像をディ スプレイ等に表示して、 作業員がこの表示されたタイヤ内部画像用いて当該タイ ャ 1 0の良否を判定するようにしてもよい。
なお、 上記例では、 2つの X線管 2 a , 2 bを用い、 搬送されるタイヤ 1 0の 上部から X線を照射した場合について説明したが、 タイヤの搬送方法によっては 、 3箇所以上の箇所に X線管を配置し、 搬送されるタイヤ 1 0に X線を照射して 透過 X線像を撮影し、 タイャ全体の透過 X像を作成するようにしてもよい。 また、 本例では、 上記 X線管 2 a , 2 bを、 X線の照射範囲が少なくともタイ ャ 1 0全体を含む位置になる高さに配置してある。 これにより、 一方の X線照射 手段が故障した場合でも、 他方の X線照射手段をタイヤ 1 0の中心部直上に移動 させて、 タイヤ 1 0の全体像を撮影するようにすれば、 上記故障をカバ一するこ とができる。 具体的には、 X線管 2 a, 2 bの X線照射範囲が角度にして 3 4 ° で、 タイヤ 1 0の最大外径が 8 0 c mの場合、 上記 X線管 2 a , 2 bの高さ を、 タイヤ 1 0の最大外径となる断面位置からほぼ 1 . 3 mの高さとなる位置に 配置する。
<実験例>
第 5図 (a) , ( b ) に示すように、 偏平率が 5 0 ( ) のタイヤ (2 1 5 / 5 0 Z R 1 7 ) 1 0 Zの側面の周上に、 等間隔に一列に配置された 4個の金属 製のヮッシャ 2 1を 2枚のアクリル板 2 2 , 2 2で挟んだ 1 2個のテストピース 2 0を、 上記タイヤ 1 0 Zの中心に対して対称に配置し、 このタイヤ 1 0 Zの透 過 X線像を本発明による X線検査装置により撮影した透過 X線像を第 6図 ( a ) に示す。 また、 同じタイヤ 1 0 Zを従来の X線源が 1個である X線検査装置によ り撮影した透過 X線像を第 6図 (b ) に示す。 第 6図 (a ) , ( b ) を比較して 明らかなように、 従来装置では、 トレッドベルト 1 2による死角領域が大きいた め、 4個あるヮヅシャ 2 1の内 1個のヮヅシャしか検出できない部分があつたが 、 本発明による装置ではヮッシャ 2 1が 4個とも検出されることから、 本発明に よる透過 X線像は死角領域が著しく小さくなつていることが確認された。 産業上の利用可能性
以上説明したように、 本発明によれば、 搬送されるタイヤに X線を照射し、 上記タイヤを透過した X線を X線センサで撮影してタイヤの内部を検査する際に 、 上記 X線を被検体である夕ィャの少なくとも 2箇所から照射してタイャの透過 X線像を撮影するようにしたので、 ビートワイヤやトレヅドベルトなどの影にな り易い箇所の少ない X線画像を得ることができ、 タイヤの内部を正確に検査する ことができる。 したがって、 ラインを停止することなく、 タイヤの全数内部検査 を正確にかつ効率よく行うことができる。

Claims

請 求 の 範 囲
搬送されるタイヤに X線照射手段により X線を照射して得られたタイヤの 透過 X線像を用いてタイヤの内部を検査するタイヤの X線検査方法におい て、 上記 X線を被検体であるタイヤの少なくとも 2箇所から照射してタイ ャの透過 X線像を撮影するようにしたことを特徴とするタイヤの X線検査 方法。
上記搬送されるタイヤの外径を測定するとともに、 上記測定結果に応じて 上記 X線照射手段の位置を変更するようにしたことを特徴とする請求の範 囲 1に記載のタイヤの X線検査方法。
上記 X線照射手段を、 上記測定されたタイヤの外径となる位置よりも所定 距離だけ内側に配置したことを特徴とする請求の範囲 2に記載のタイヤの X線検査方法。
上記撮影されたタイヤの透過 X線像のうちの 2つをとり、 上記 X線照射手 段に近い側の半分の透過 X線像を合成してタイヤ全体の透過 X像を作成し 、 この合成されたタイヤ全体の透過 X像を用いてタイヤの内部を検査する ようにしたことを特徴とする請求の範囲 1〜請求項 3のいずれかに記載の タイヤの X線検査方法。
搬送される被検タイヤの外径を測定するステップと、 上記測定されたタイ ャの外径データに基づいて、 上記 X線照射手段を上記測定されたタイヤの 外径となる位置よりも 2〜 3 c mだけ内側となる位置に対向する位置にそ れそれ配置するステツプと、 上記 X線照射手段により上記夕ィャの透過 X 線像を撮影するステップと、 上記撮影されたタイヤの透過 X線像のうちの 2つをとり、 上記 X線照射手段に近い側の半分の透過 X線像を合成して夕 ィャ全体の透過 X像を作成するステップと、 上記合成されたタイヤ全体の 透過 X像に基づいてタイヤの内部を検査するステップとを含むことを特徴 とする請求の範囲 1に記載のタイヤの X線検査方法。
タイヤを搬送する手段と、 搬送されるタイヤに X線を照射する X線照射手 段と、 上記タイヤの透過 X線像を撮影する X線センサとを備え、 上記 X線 センサで撮影して得られた透過 X線像を用いてタイヤの内部を検査する X 線検査装置であって、 上記 X線照射手段を上記搬送されるタイヤの少なく とも 2箇所に対向する位置にそれそれ設置したことを特徴とするタイヤの 上記撮影されたタイヤの透過 X線像のうちの 2つをとり、 上記 X線照射手 段に近い側の透過 X線像を合成する画像合成手段と、 上記画像合成手段で 合成されたタイヤ全体の透過 X像を用いて当該タイヤの良否を判定する判 定手段とを設けたことを特徴とする請求の範囲 6に記載のタイヤの X線検 搬送されるタイヤの径を測定する手段を設けるとともに、 上記 X線照射手 段を移動させる手段を設けて、 上記 X線照射手段を上記測定されたタイヤ の外径となる位置よりも所定距離だけ内側に配置するようにしたことを特 徴とする請求の範囲 6または請求項 Ίに記載のタイヤの X線検査装置。 上記各 X線照射手段をトレツドペルトの内周部内側となる位置に対向する 位置にそれそれ配置するようにしたことを特徴とする請求の範囲 6〜請求 項 8のいずれかに記載の夕ィャの X線検査装置。
. 一方の X線照射手段及び当該 X線照射手段によるタイヤの透過 X線像を 撮影する X線センサを、 他方の X線照射手段及び X線センサの位置から夕 ィャ搬送方向にそれそれ所定距離だけ離れた位置に設置したことを特徴と する請求の範囲 6〜請求項 9のいずれかに記載のタイャの X線検査装置。. 上記 X線センサを X線ラインセンサとするとともに、 上記 X線照射手段 に、 中心部からタイヤの内側方向に延長する、 上記 X線ラインセンサの延 長方向に平行なスリッ トを有する遮蔽板を取付けたことを特徴とする請求 の範囲 6〜請求項 1 0のいずれかに記載のタイャの X線検査装置。
. 上記 X線照射手段を、 X線の照射範囲が少なくともタイャ全体を含む位 置になる高さに配置したことを特徴とする請求の範囲 6〜請求項 1 1のい ずれかに記載のタイャの X線検査装置。
. 上記 2つの X線照射手段間の間隔を変更可能としたことを特徴とする請 求の範囲 6〜請求項 1 2のいずれかに記載のタイャの X線検査装置。
PCT/JP2003/004329 2002-04-05 2003-04-04 Technique d'inspection aux rayons x d'un pneumatique et appareil a cet effet WO2003085391A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03745916A EP1494018B1 (en) 2002-04-05 2003-04-04 Method and device for x-ray inspection of tire
US10/509,956 US7076022B2 (en) 2002-04-05 2003-04-04 Method and device for X-ray inspection of tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002103263A JP4184694B2 (ja) 2002-04-05 2002-04-05 タイヤのx線検査方法及びその装置
JP2002-103263 2002-04-05

Publications (1)

Publication Number Publication Date
WO2003085391A1 true WO2003085391A1 (fr) 2003-10-16

Family

ID=28786292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004329 WO2003085391A1 (fr) 2002-04-05 2003-04-04 Technique d'inspection aux rayons x d'un pneumatique et appareil a cet effet

Country Status (5)

Country Link
US (1) US7076022B2 (ja)
EP (1) EP1494018B1 (ja)
JP (1) JP4184694B2 (ja)
ES (1) ES2367107T3 (ja)
WO (1) WO2003085391A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020111099A (ja) * 2019-01-09 2020-07-27 横浜ゴム株式会社 空気入りタイヤの検査方法及び空気入りタイヤの検査装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632812B2 (ja) * 2005-03-03 2011-02-16 株式会社ブリヂストン タイヤ側壁部の内部欠陥検査装置
CN101173907B (zh) * 2006-11-02 2010-06-23 张芝泉 工程轮胎x光检测机
JP5559471B2 (ja) * 2008-11-11 2014-07-23 浜松ホトニクス株式会社 放射線検出装置、放射線画像取得システム、放射線検査システム、及び放射線検出方法
DE102010051774B4 (de) * 2010-11-18 2018-07-19 Yxlon International Gmbh Röntgenzeilendetektor
DE102011013513A1 (de) * 2011-03-10 2012-09-13 Yxlon International Gmbh Räderprüfanlage mit mehreren Prüfvorrichtungen sowie Verfahen zur Prüfung von Rädern
RU2618571C2 (ru) * 2012-04-11 2017-05-04 Пирелли Тайр С.П.А. Способ и устройство контроля шин в производственной линии
JP5943810B2 (ja) * 2012-10-31 2016-07-05 三菱重工マシナリーテクノロジー株式会社 タイヤの電気抵抗測定装置
KR101263750B1 (ko) * 2012-12-07 2013-05-13 주식회사 이이더불유코리아 파이프의 용접라인 검사용 x선 비파괴 검사 장치
JP6909136B2 (ja) * 2017-11-30 2021-07-28 Toyo Tire株式会社 ゴム材料の接触状態解析方法
CN110243292B (zh) * 2019-06-13 2022-03-18 无锡先导智能装备股份有限公司 分切系统及分切检测方法
JP7411984B2 (ja) * 2019-09-24 2024-01-12 株式会社イシダ 検査装置
CN110672021B (zh) * 2019-10-28 2021-08-13 金迪(聊城市)知识产权运营有限公司 钢管分区段壁厚测量系统
ZA202100747B (en) * 2020-09-18 2022-12-21 Eclectic Services Company Pty Ltd A low-cost system for inspecting the integrity of a wheel rim
JP2024083129A (ja) * 2022-12-09 2024-06-20 株式会社ブリヂストン タイヤ無線タグ位置検査方法、タイヤ無線タグ位置検査装置、及びタイヤ無線タグ位置検査プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329790A (en) * 1976-09-01 1978-03-20 Toshiba Corp Nonndestructive inspecting apparatus
JPH10267867A (ja) * 1997-03-25 1998-10-09 Hitachi Medical Corp X線検査装置
JP2000241367A (ja) * 1999-02-23 2000-09-08 Stabic:Kk X線検査装置
JP2000249665A (ja) * 1999-03-03 2000-09-14 Bridgestone Corp タイヤの内部検査方法及び装置
JP2000338057A (ja) * 1999-05-26 2000-12-08 Hitachi Eng Co Ltd タイヤプライコード検査装置および検査方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843888A (en) * 1972-05-19 1974-10-22 Picker Corp Method and apparatus for inspecting tires
US4032785A (en) * 1974-03-28 1977-06-28 United States Steel Corporation Tire inspection machine presenting an x-ray image of the entire width of the tire
DE3843408C2 (de) * 1988-12-23 1995-07-20 Collmann Gmbh & Co Vorrichtung zum Röntgenprüfen von KFZ-Reifen
US5687209A (en) * 1995-04-11 1997-11-11 Hewlett-Packard Co. Automatic warp compensation for laminographic circuit board inspection
EP1043578B1 (de) * 1999-04-09 2004-10-13 Steinbichler Optotechnik Gmbh Optisches Prüfgerät für Reifen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329790A (en) * 1976-09-01 1978-03-20 Toshiba Corp Nonndestructive inspecting apparatus
JPH10267867A (ja) * 1997-03-25 1998-10-09 Hitachi Medical Corp X線検査装置
JP2000241367A (ja) * 1999-02-23 2000-09-08 Stabic:Kk X線検査装置
JP2000249665A (ja) * 1999-03-03 2000-09-14 Bridgestone Corp タイヤの内部検査方法及び装置
JP2000338057A (ja) * 1999-05-26 2000-12-08 Hitachi Eng Co Ltd タイヤプライコード検査装置および検査方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020111099A (ja) * 2019-01-09 2020-07-27 横浜ゴム株式会社 空気入りタイヤの検査方法及び空気入りタイヤの検査装置
JP7218580B2 (ja) 2019-01-09 2023-02-07 横浜ゴム株式会社 空気入りタイヤの検査方法及び空気入りタイヤの検査装置

Also Published As

Publication number Publication date
US20050175146A1 (en) 2005-08-11
JP4184694B2 (ja) 2008-11-19
ES2367107T3 (es) 2011-10-28
JP2003294655A (ja) 2003-10-15
EP1494018A4 (en) 2006-07-05
EP1494018A1 (en) 2005-01-05
US7076022B2 (en) 2006-07-11
EP1494018B1 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
WO2003085391A1 (fr) Technique d&#39;inspection aux rayons x d&#39;un pneumatique et appareil a cet effet
TWI471542B (zh) Tire shape inspection device and tire shape inspection method
KR20190013014A (ko) 내부 결함 및 접합 부위의 검사가 가능한 엑스레이 검사 장치
US20210181125A1 (en) Radiation transmission inspection method and device, and method of manufacturing microporous film
US20090116003A1 (en) Apparatus for detecting joints in rubber sheets
JP3926055B2 (ja) タイヤの内部検査方法及び装置
JP4632812B2 (ja) タイヤ側壁部の内部欠陥検査装置
KR102257984B1 (ko) 다층 물품 검사용 엑스레이 검사 장치 및 그에 의한 검사 방법
JP2006162335A (ja) X線検査装置、x線検査方法およびx線検査プログラム
JP3572191B2 (ja) X線ctスキャナ装置
KR101761793B1 (ko) 회전 및 평면 이동 구조의 엑스레이 장치
JP2003156453A (ja) 側面検査方法
JP2013185960A (ja) デジタル・ラジオグラフィ検査の調整方法
JP4023295B2 (ja) 表面検査方法及び表面検査装置
JP3219565B2 (ja) 欠陥深さ位置検出装置及びその方法
JP2010230559A (ja) X線検査装置
JP2000205847A (ja) 表面疵検査方法および装置
JP2004340606A (ja) X線異物位置検出装置及び方法
JP2838248B2 (ja) 電力ケーブルのx線検査方法
JPWO2019003329A1 (ja) X線インライン検査方法および装置
JP2000111501A (ja) 透視検査装置
JP2007194888A (ja) 固体撮像素子検査方法
JP7226179B2 (ja) 周溶接部の検査方法及び検査装置
WO2018092256A1 (ja) X線インライン検査システム及びx線インライン検査システムの撮像方法
JP2004264144A (ja) 不織布等の厚み検出方法及び検出装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003745916

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003745916

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10509956

Country of ref document: US