WO2003084034A1 - Moteur - Google Patents

Moteur Download PDF

Info

Publication number
WO2003084034A1
WO2003084034A1 PCT/JP2003/003905 JP0303905W WO03084034A1 WO 2003084034 A1 WO2003084034 A1 WO 2003084034A1 JP 0303905 W JP0303905 W JP 0303905W WO 03084034 A1 WO03084034 A1 WO 03084034A1
Authority
WO
WIPO (PCT)
Prior art keywords
stay
teeth
mouth
motor
winding
Prior art date
Application number
PCT/JP2003/003905
Other languages
English (en)
French (fr)
Inventor
Naoyuki Kadoya
Yasuhiro Kondo
Masaki Tagome
Satoshi Tamaki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN03801399.1A priority Critical patent/CN1579043B/zh
Priority to US10/488,534 priority patent/US6984909B2/en
Priority to EP03745431A priority patent/EP1492216A4/en
Priority to AU2003236179A priority patent/AU2003236179A1/en
Publication of WO2003084034A1 publication Critical patent/WO2003084034A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/02Windings characterised by the conductor material

Definitions

  • the present invention is suitable for mobile phones, for example, electric vehicles (PEV), hybrid vehicles (HEV;), fuel cell vehicles (FCEV), etc., and is also suitable for home electric appliances and robots. It is about Morning Evening. Background art
  • FIG. Figure 17 shows a centralized stay consisting of a stay core and its multiple windings, and a motor with an embedded magnet type mouth.
  • a plurality of station terminals 144a, 144b, and 144c, and a station core yoke 144 connecting these are connected to a station core.
  • 4 5a, 1 4 3 a, 1 4 3 b, 1 4 3 c and windings 1 4 6 a, 1 4 6 b, 1 4 6 c Evening 1 4 6 is formed.
  • Stay teeth 1 4 3 a, 1 4 3 b, 1 4 3 c have stay teeth 1 4 3 a on one side and stay teeth 1 4 3 b on the other side.
  • One night tooth 1 4 3c is provided to form a group, and these groups of night teeth 1 4 3a, 1 4 3 b and 1 4 3 c are arranged in the circumferential direction. I have.
  • winding 1 4 6 a is wound in parallel on 3 a, and the winding end of each winding 1 4 6 a is connected by a common terminal (not shown).
  • One terminal connection line is extended.
  • windings 1 4 6 b are wound in parallel, and in addition, for each of the teeth 1 4 3 c, windings 1 4 6 c is wound, and the terminal connection wires of the stay teeth 1 4 3 a, stay teeth 1 4 3 b and stay teeth 1 4 3 c are further common terminals (Fig. (Not shown).
  • a plurality of permanent magnets 149 are arranged so as to face the inner peripheral surfaces of the stays 144, a 1 3 3b, 1 4 3b and 1 4 3c. It is embedded at equal intervals in the circumferential direction.
  • the outer peripheral surface of the mouth 1 minute is minute between the inner peripheral surfaces of the stay teeth 14 3 a, 14 3 b, and 14 3 c. It is arranged facing the outer peripheral surface of the mouth 147 with a gap.
  • the windings 1 4 6 a, 1 4 6 b, and 1 4 6 c constitute three phases, U phase, V phase, and W phase, respectively.
  • Each winding has an electrical angle of 120 degrees. If currents with phases shifted by, for example, trapezoidal waves are supplied, the torque generated between the windings of each phase 1 46 a, 1 46 b, 1 4 6 c and the opening 1 4 7 will be 1 It occurs out of phase by 20 degrees.
  • the combined torque of these three phases is the total torque, and the mouth 147 rotates in a predetermined direction. In other words, a so-called three-phase full-wave drive rotation operation is performed around the rotation axis center 0, and the magnet torque obtained by embedding the permanent magnet 149 inside the rotor 147 is obtained. In addition to reluctance torque, high output (high torque) Can be realized.
  • the common terminal (not shown) and the U-phase, V-phase and W-phase terminals are connected according to the framing right-hand rule.
  • An approximately sinusoidal back electromotive voltage is generated.
  • the back electromotive voltages of each phase are shifted from each other by an electrical angle of 120 degrees, and the combined back electromotive voltages having different phases are the total back electromotive voltage.
  • the above-described motor having a large generated torque including the reluctance torque has an advantage that the torque can be increased by using the concentrated winding motor, and a waveform distortion is observed in the back electromotive force. .
  • the present invention achieves the first object by using a metal having a higher resistivity than a copper wire to an aluminum wire or another copper wire without increasing the size of the motor and without deteriorating the efficiency.
  • the second purpose is to provide a motor with windings. Disclosure of the invention
  • the present invention provides a motor / steering core comprising a plurality of staying teeth, a staying / yoke connecting the plurality of staying teeth, and the above-mentioned core.
  • a stage consisting of a plurality of teeth and a winding wound around it, a mouth core and a mouth consisting of a plurality of permanent magnets embedded in the core.
  • a plurality of groups each comprising a plurality of adjacent stations in which windings to which the same-phase voltage is applied are wound, and a plurality of adjacent stations in the same group. One of the windings is wound in the opposite direction, to which a plurality of adjacent groups are applied with out-of-phase voltages.
  • the reluctance torque is used in addition to the magnet torque, and high torque can be generated.
  • the windings of the adjacent stations in each group are wound so as to have different polarities, the bias of the magnetic field distribution can be reduced, and the mode can be reduced. It is possible to reduce the distortion of the waveform of the back electromotive voltage induced in the winding during the evening drive.Therefore, it is possible to suppress the occurrence of iron loss in the stay core and the mouth core, and The generation of eddy currents is also suppressed for the permanent magnets in the rotor core, which reduces heat generation and prevents demagnetization of the permanent magnets. It is possible to realize an efficient morning and evening.
  • n a positive integer
  • the angle h of the slot opening formed between adjacent teeth in the same group and between adjacent teeth is different from that of adjacent teeth in different groups.
  • the magnetic field distribution becomes uniform, so that it is possible to reduce the waveform distortion of the back electromotive voltage induced in the winding, suppress the occurrence of eddy current, reduce iron loss, and use a permanent magnet.
  • the heat generated by the eddy current can be suppressed, the demagnetization of the permanent magnet can be suppressed, and the motor efficiency can be improved.
  • the center line passing through the center of the direction is a shape shifted in the circumferential direction from the center line passing through the circumferential center of each parallel portion of the stay teeth located at both ends in each of the groups, and
  • the configuration is such that the circumferential end has a shape that is not located inward in the width direction of the parallel portion in any direction.
  • each slot formed between each tooth becomes a space of approximately the same size, and each It is possible to increase the number of windings of the winding wound on the tooth, increase the generated torque as the number of windings increases, and to change the polarity of adjacent windings in the same group.
  • distortion of the generated voltage can be suppressed, and therefore, iron loss can be suppressed, and a very efficient module can be realized.
  • the plurality of stay teeth constituting the stay overnight core are further provided with a face facing the mouth facing the mouth and a face facing the low end at the front end of the stay teeth. Cut-outs are provided so that the spacing is away from the opposing surface of the bed in the vicinity of the circumferential end of the tip.
  • the stay core is further attached to a tip end of at least one of the stay teeth constituting the plurality of groups on the low evening side.
  • the structure has at least one recess.
  • the shape of the concave portion is substantially rectangular or arc-shaped. Of course, other shapes may be used.
  • the magnetic poles at the tips of these steel teeth are apparently subdivided into S, N, and S poles, so that high torque can be obtained and torque ripple can be reduced. It can be kept small.
  • the stay core and the side of the stay yoke opposite to the row evening side are opposite to the row evening side in a plurality of stay teeth.
  • Each stay yoke shall have a shape protruding in the direction opposite to the low side from the circle inscribed on each side surface of the yoke, and the width W of the stay yoke shall be substantially equal over the entire circumference. Further, the width W of the stay yoke is set to be larger than the width W of the parallel portion around which the winding of the stay teeth is wound. And has the following relationship:
  • the permanent magnet has a plurality of permanent magnets, each having a plurality of permanent magnets, and a plurality of slits having substantially the same shape as the permanent magnets and having a width smaller than the thickness of the permanent magnets. On the opposite side of the station.
  • This configuration makes it difficult to pass the magnetic flux generated by the permanent magnet in the slit, that is, increases the magnetic resistance, reduces the d-axis inductance, and increases the difference from the q-axis inductance. As a result, a larger reluctance torque is generated, and the generated torque can be increased.
  • the distance between the stay side of the permanent magnet and the mouth—the opposite side of the stay at the end of the permanent magnet is the end of each side of the stay on the stay side of the permanent magnet.
  • Permanent magnets with a shape larger in the center than in the center are provided in the mouth.
  • the permanent magnet is formed in a substantially V-shape that protrudes in the direction opposite to the side facing the side of the mouth.
  • it has a configuration including a plurality of permanent magnets having a linear shape perpendicular to the radial direction.
  • a plurality of permanent magnets having an arcuate shape protruding in the direction opposite to the side facing the stay are provided over the mouth.
  • mouth—In the evening a plurality of arc-shaped permanent magnets that are convex on the opposite side of the stay and that have a radius larger than the radius of the Provide.
  • the part where the magnetic flux easily passes and the part where the magnetic flux does not easily pass are provided in the q-axis direction.
  • the above-mentioned mooring technique is one mooring and multipolarizing technique, and the relationship between the number of poles at the lower portion and the number of teeth at the stair portion where the winding is to be applied is, for example, a 4-pole 1 2 which is a normal brushless mode. Compared to the poles, there are 10 poles, 9 poles, and a small number of poles, although there are many poles.
  • the back electromotive force waveform can be made closer to a sine wave with a larger torque compared to the conventional model of the same size. Therefore, it is possible to change the winding from a copper wire to an aluminum wire in the above-mentioned mode without increasing the physique and the distortion loss of the back electromotive voltage waveform as compared with the conventional mode. it can.
  • FIG. 1 is a schematic cross-sectional view of a main part for describing a main part of a motor according to the first embodiment of the present invention.
  • FIG. 2 is a schematic development view for explaining the winding direction of the winding wire according to the first embodiment of the present invention.
  • FIG. 3 is a connection diagram showing a connection state of each winding in the first embodiment of the present invention
  • FIGS. 4A to 4C are schematic cross-sectional views each showing another example of the permanent magnet according to the first embodiment of the present invention.
  • FIG. It is a schematic sectional view showing another example of a core
  • FIG. 5 is a schematic sectional view of a stay core for explaining a stay core according to Embodiment 2 of the present invention.
  • FIG. 6A is a partially enlarged view for explaining a stay core in the second embodiment of the present invention
  • FIG. 6B is a view for explaining a modification of the stay core in the embodiment. It is a partially enlarged view of
  • FIG. 7 is a partially enlarged view for explaining an example of the shape of the stay teeth which is not suitable as the present invention.
  • FIG. 8 is a schematic cross-sectional view for explaining a main part of a motor according to Embodiment 3 of the present invention.
  • FIG. 9 is a partially enlarged view for explaining a stay core in Embodiment 3 of the present invention.
  • FIG. 10A is a schematic top view for explaining a stay core in Embodiment 4 of the present invention
  • FIG. 10B is a partial view showing another example of the concave portion in Embodiment 4.
  • FIG. 10C is a partial view showing another example of the shape of the concave portion in the embodiment.
  • FIG. 11 is a schematic cross-sectional view for explaining a stay core in Embodiment 5 of the present invention.
  • FIG. 12 is a schematic cross-sectional view for explaining a main part of a motor according to Embodiment 6 of the present invention.
  • FIG. 13 is a schematic cross-sectional view for explaining a main part of a motor according to Embodiment 7 of the present invention.
  • FIG. 14 is a schematic sectional view showing an aluminum winding according to the eighth embodiment of the present invention.
  • FIG. 15A is a schematic diagram illustrating an end of an aluminum winding according to the eighth embodiment of the present invention
  • FIG. 15B is a schematic diagram illustrating another example of an aluminum winding end according to the embodiment.
  • FIG. 16A is a schematic diagram showing a connection state of a lead wire and an aluminum winding in Embodiment 10 of the present invention.
  • FIG. 16B is a lead wire of another example in the embodiment.
  • Fig. 1 is a schematic KI showing the connection state of the aluminum winding and the aluminum winding.
  • 6C is a schematic diagram showing a connection state of a lead wire and an aluminum winding of still another example in the embodiment,
  • FIG. 17 is a schematic sectional view showing a main part of a conventional motor. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 to 4D are diagrams for explaining a motor according to the first embodiment of the present invention
  • FIG. 1 is a cross-sectional view taken along a plane perpendicular to a rotation axis center axis for explaining a main portion of the motor.
  • Fig. 2 is an exploded view illustrating the winding direction of the winding wound around the teeth
  • Fig. 3 is the space between each winding wound around the teeth.
  • FIG. 4A to FIG. 4D are cross-sectional views showing another example of the shape of the permanent magnet embedded in the mouth core and the raw core.
  • the stay core 1 includes a plurality of stay teeth 2a, 2b, 2c, 3a, 3b, 3c, and 4a, 4b, 4c. And a stay yoke 5 connecting the overnight teeth 2a to 4c at one end.
  • a winding 6 is wound around each of the stay teeth 2 a to 4 c, and a stay 7 is constituted by the stay core 1 and the winding 6.
  • Each of the stage teeth 2a to 4c is applied with the same phase voltage.
  • a plurality of stage teeth adjacent to each other around which the winding is wound are treated as one group. Divide into groups. That is, in the present embodiment, the first group 2 consisting of the stay teeth 2a, 2b, and 2c, and the second group consisting of the stay teeth 3a, 3b, and 3c It is divided into group 3 and a third group 4 consisting of teeth 4a, 4b, and 4c.
  • the slot formed between adjacent stay teeth The angle of the opening of the slot 6a formed between adjacent stations 2a and 2b in the first group 2 will be described as an example.
  • the angle of the other slot opening is the angle between tangents passing through the center of rotation axis 0 and tangent to the opposite ends on the slot side.
  • the angle of the slot opening between each stay tooth is set between the stay teeth 2b and 2c, between the stay teeth 4a and 4b, between the stay teeth 4b and 4c,
  • the angle between the stay teeth 3a and 3b and between the stay teeth 3b and 3c is set to be equal to the angle h of the slot opening between the stay teeth 2a and 2b. I do.
  • the angle of the opening of the slot 6b between adjacent stay teeth 3c and 2a in a different group is set to H, and similarly, between the stay teeth 2c and 4a and the stay
  • the angle of the slot opening between the evening teeth 4c and 3a is also set to be equal to the angle H of the slot opening between the evening teeth 3c and 2a. I do.
  • the angle H is larger than the angle h of the slot opening between the adjacent stay teeth in the same group as described above.
  • the winding 6 wound around each of the teeth 2a to 4c will be described by taking Group 2 as an example.
  • the winding direction of the winding 6 around the stay tooth 2a is the direction of the arrow 21 and the winding direction of the winding 6 around the stay tooth 2b is the arrow 2 1
  • the winding direction of the winding 6 around the tooth 2 c in the direction opposite to that of the arrow 2 2 is opposite to the direction of the arrow 22, that is, in the direction of the arrow 23 in the same direction as the arrow 21.
  • Winding 6 is wound.
  • the winding direction of the winding on the teeth in each group is adjacent to that of the group to which it belongs.
  • winding directions are opposite to each other.
  • the polarities of the windings of adjacent stations are inverted from each other.
  • the winding 6 for each of the teeth 2a, 2b, 2c is wound in parallel. Needless to say, they may be wound in series.
  • windings 6 of groups 3 and 4 are wound in the same manner, and windings 6 of groups 2, 3 and 4 are U-phase, The winding is divided into three phases of V phase and W phase.
  • the winding 6 of the group 2 stay teeth 2a is set to the U phase
  • the adjacent station teeth 2 The winding 6 of b has the inverted polarity of the winding 6 of the stay teeth 2 a, so that the phase becomes the inverted U phase, and the stay teeth adjacent to the stay teeth 2 b
  • the winding 6 of 2c is inverted with respect to the phase of the winding 6 of the tooth 2b, that is, the U phase has the same phase as that of the tooth 2a.
  • the windings of the respective stages in groups 3 and 4 the V phase is inverted from the V phase
  • the W phase is inverted from the W phase.
  • winding ends of the windings 6 of the groups 2, 3, and 4 are connected as shown in the connection diagram of FIG.
  • 15 u, 15 V and 15 w are output terminals of the U phase, V phase and W phase, respectively
  • 16 is a neutral point
  • 17 is a winding of each.
  • This is the wiring that connects line 6.
  • adjacent windings have different polarities, so that the bias of the magnetic field distribution can be reduced, and the mode can be reduced.
  • the distortion of the waveform of the back electromotive force generated between the terminals during evening driving can be reduced, and thus iron loss can be suppressed.
  • the angle h of the slot opening formed between adjacent teeth in the same group is the same as the angle h of the slot opening.
  • the relationship with the angle H of the slot opening formed during the night If h ⁇ H ⁇ 3 h (1) is set, the magnetic field distribution becomes uniform, so that the waveform distortion of the back electromotive voltage can be reduced, and the generation of eddy current is suppressed to reduce iron loss. In addition, heat generation due to eddy currents in the permanent magnets can be suppressed, and the demagnetization can be suppressed.
  • Rho-Yu 8 is composed of Rho-Yu core 9 and a plurality of substantially V-shaped permanent magnets 10 embedded in Rho-Yu core 9 at equal intervals in the circumferential direction.
  • the evening-facing surface is opposed to the mouth-facing surface of stay 7 with a small gap, and is rotatable around the rotation axis center 0.
  • the permanent magnet 10 is almost V-shaped and protrudes in the direction opposite to the side opposite to the side of the stay 8 of the mouth 8 and the side 10 a of the stay 1 side of the permanent magnet 10 and the The distance between the stay and the opposite surface 8a is larger at the center 10d than at the ends 10b and 10c of the side 10a of the permanent magnet 10 on the stay side. ing. Therefore, a portion where the magnetic flux is relatively easy to pass through and a portion where the magnetic flux is relatively hard to pass are provided at the opposite side of the opening and closing portion of the mouth 8, that is, the portion having a low magnetic resistance and the portion having a higher magnetic resistance are provided. By providing this, a difference is created between the inductance in the q-axis direction and the inductance in the d-axis direction, so that reluctance torque can be generated, and the generated torque can be increased.
  • the shape of the permanent magnet 10 is such that the distance between the side surface 10a on the side of the stay 10a and the surface 8a on the side of the mouth is larger at the center than at the end.
  • the shape may be any shape, for example, a linear permanent magnet 31 perpendicular to the radial direction as shown in FIG. 4A, a direction opposite to the stay side as shown in FIG. 4B.
  • Arc-shaped permanent magnet 32 which is convex to the side, or arc-shaped permanent magnet 3 which is convex to the stay side and has a radius equal to or greater than the radius of the core 3 as shown in FIG. 4C. It may be four. Further, as shown in FIG.
  • the shape is almost the same as that of the permanent magnet 36, and the width 3 7 is smaller than the thickness 36 a of the permanent magnet 36.
  • It may be a mouth 38 consisting of a mouth core 35 provided with a slit 37 having a.
  • the difference from the q-axis inductance is made larger, and a larger reluctance torque is generated, so that the generated torque as a motor and a motor can be increased.
  • the shape of the permanent magnet is linear as shown in FIGS. 4A to 4C, and is opposite to the stay side. It goes without saying that the shape may be a convex arc in the direction or a convex arc in the stay.
  • the number of slots formed between the plurality of stay teeth is 9 (the number of stay teeth is also 9), and the number of permanent magnets constituting the mouth is ten.
  • the number of winding sets which is a set of three windings of U ⁇ V and W phases, is one, and the number of teeth in one group is three (three-pronged). That is, the first embodiment describes a three-forked ⁇ winding set of 1 ⁇ 9 slots ⁇ 10 poles, but the present invention provides a three-forked-winding set of 1 ⁇ 9 Slot ⁇
  • the number of windings is not limited to 10 poles.
  • the number of windings may be n or 'slots s ⁇ t Slot'.
  • the slot may be p poles (where n, s, t, and p are Positive integer). In this case, the number of poles per mouth p is a value that satisfies the following equation.
  • the reason for determining the number of poles as above is shown below.
  • each of the stay teeth and the adjacent stay teeth on which the winding to which the in-phase voltage is applied are wound into one group.
  • U-phase, V-phase, and W-phase, and the winding directions of the adjacent stays in the same group are made opposite to each other.
  • the distance between the stay side of the permanent magnets embedded in the row and the opposing face of the mouth is longer at the center than at the end of the permanent magnet.
  • Mouth in addition to magnet torque, reluctance torque can be utilized, and high torque can be generated, at the same time, the distortion of the generated voltage is suppressed, and thus iron loss is suppressed and permanent
  • the demagnetization of the magnet can also be suppressed, Very efficient morning and evening can be realized.
  • FIGS. 5 to 7 are views for explaining a motor and a motor according to the second embodiment of the present invention.
  • FIG. 5 is a top view of a stay core and
  • FIG. 6A is an enlarged view of a part of FIG.
  • FIG. 6B is a partially enlarged view of a modified example of the stay / night core, and
  • FIG. 7 is an enlarged view showing a modified example of the distal end portion of the stay teeth.
  • the stay overnight core 41 is made up of stay teeth 42a, 42b, 42c, stay teeth 43a, 43b, 43c, and stay teeth.
  • the group 42 is formed by the stay teeth 42a, 42b, and 42c
  • the group is formed by the stay teeth 43a, 43b, and 43c.
  • Group 4 consists of 4 3, and 4 4 a, 4 b, and 44 c, and each group 4 2, 4 3, and 44, which are wound around the evening teeth Lines (not shown) form U, V and W phases, respectively.
  • the winding directions of the windings wound on adjacent stay teeth in the same group are mutually different.
  • the angle h of the slot opening formed between adjacent teeth in the same group and the adjacent station in a different group is set so as to satisfy the above equation (1).
  • the number of windings wound around the teeth at each stage can be increased.
  • the generated torque can be increased as the number of turns increases.
  • FIG. 6A is a partially enlarged view showing the group 42 in the station core 41.
  • represents the center line 51 passing through the circumferential center of the stationary part 42a and the center of rotation axis 0, and the circumferential center of the parallel part of the stay teeth 42b.
  • the angle between the center line 52 passing through the rotation axis center 0 and the center line 52 passing through the center of the rotation axis 0 and the center of the tip of the stay 42 The angle between the circumferential center of the parallel part of the overnight tooth 4 2b and the center line 5 2 passing through the rotation axis 0, and a is the stay tooth in the parallel part of the stay tooth 4 2a.
  • b is the angle formed by the line 54 passing through the side 56 opposite the end, the corner 56 at the front end, the rotation axis center 0, and the center line 51 at the station 42a.
  • is in contact with the circumferential end of the distal end of the stay tooth 42 a on the opposite side of the stay tooth 42 b, and passes through a line 55 passing through the center 0 of the rotation axis.
  • the angle between the circumferential center of the tip of the tooth 4 2a and the center line 5 3 passing through the rotation axis center 0, and the center line 5 1 of the parallel part of the stay teeth 4 2a The shape is shifted from the center line 53 passing through the circumferential center of the tip of the station 42a.
  • the other teeth 4 2 c of the group 4 2 have a shape in which the stay teeth 4 2 a are symmetric with respect to the center line 5 2 of the stay teeth 4 2 b.
  • the width of the parallel part around which the windings of the respective teeth are wound is formed to have substantially the same width in order to make the magnetic flux density generated by the windings substantially the same. Have been. Therefore, in order to make the size of the space formed between the respective stages overnight, that is, the size of the slot space almost the same,
  • FIG. 6B is a partially enlarged view showing a modification of the stay core shape.
  • the basic configuration is the same as that described with reference to FIG. 6A described above, but in this modification, the shape of the tips of the stays 61a and 61c is different.
  • the shape does not protrude in the circumferential direction, that is, the shape is assimilated with the side surface of the parallel portion.
  • the relation of +> ( ⁇ + a) is satisfied by the same method as in the case of stay teeth 42a to 42c.
  • the shape may be any of the following.
  • the circumferential center of the tip of the stay tooth 55a is parallel to the stay tooth 55a.
  • the side surface 56a of the parallel portion protrudes in the circumferential direction from the circumferential protruding end portion 57a of the tip, that is, + ⁇ ( ⁇ + a), and the area of the boundary 58 between the parallel portion of the stay teeth 55 a and the front end of the stay teeth 55 a decreases. If the area of the boundary portion 58 becomes small, the magnetic flux 59 generated in the teeth 55a is narrowed down, the magnetic flux is easily saturated, and the direction of the magnetic flux 59 changes rapidly.
  • a three-forked mode (the number of teeth in one group is three) has been described as an example.
  • the center line passing through the center in the circumferential direction of the tip is deviated from the center line of the parallel portion.
  • a plurality of stay teeth are divided into three groups as in the above-described embodiment, and adjacent to both sides of the center stay teeth in the center of the same group.
  • the center line passing through the center of the rotation axis of the parallel part around which the winding of the stay teeth is wound passes through the circumferential center of the tip end opposite to the yoke of the stay teeth of the stay teeth,
  • the slot space formed by the adjacent stay teeth can be enlarged, and each of the stay teeth can be wound. It is possible to increase the number of windings to be wound.
  • the distance between the side facing the stay and the side of the stay and the side of the stay and the side of the stay and the side of the stay and the side of the stay and the side of the stay and the side of the stay and the side of the stay and the side of the stay and the side of the stay and the side of the stay and the side of the stay and the side of the stay and the side of the stay and the side of the stay and the side of the stay and the side of the stay and the side are set to be larger than the end of the side and side.
  • FIGS. 8 to 9 are views for explaining the mode of operation of the third embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a stay core having a cross section taken along a plane perpendicular to the center axis of the rotating shaft
  • FIG. 9 is a partial enlarged view of the stay core for explaining the stay teeth shape constituting the stay core.
  • the stay overnight core 71 is made up of the stay teeth 72a, 72b, 72c, the stay teeth 73a, 73b, 73c, and the stay teeth. 7a, 7b, 7c, and a stay yoke 75, and as in the first embodiment, a plurality of stay teeth 72a to 74c are provided. It is divided into three groups 72, 73 and 74. Within the same group, the winding directions of the windings 76 wound on adjacent stations are opposite to each other.
  • the staying core 7 1 is composed of the staying core 7 1 and the winding 7 6 wound around the staying teeth 7 2 a to 7 4 c of each of the staying core 7 1.
  • FIG. 9 is a partially enlarged view of the stay core 7 1 taken out of, for example, the group 72 in FIG. Hereinafter, FIG. 9 will be described.
  • the end face of the stay teeth 7 2a facing the opposing surface 8 2 8 The mouth face of the mouth 8 1 is facing.
  • the mouth face 7 2 near the circumferential end of each of them.
  • the facing face of the stay 8 8 8 2 It is formed in a shape having cutouts 83 and 84 separated from it. It is preferable that the cut portion 83 and the cut portion 84 are formed so that their respective sizes are substantially equal.
  • the tips of all the stay teeth are formed so as to have a similar shape to form a stay core 71.
  • the mouth-facing surface of the distal end of the stay teeth is opposed to the circumferential end of the distal end in the vicinity of each circumferential end thereof.
  • FIG. 1OA is a diagram for explaining a motor according to Embodiment 4 of the present invention, and is a schematic top view of a stay core.
  • the stay overnight core 91 is made up of stay night teeth 92a, 92b, 92c, stay overnight teeth 93a, 93b, 93c, And the stay teeth 91 4a, 94 b, 94 c and a stay yoke 95 connecting the stay teeth 92 a-94 c at one end. It is configured. As in the first embodiment described above, the statuses 92a to 94c are divided into three groups 92, 93 and 94, and adjacent statuses in the same group are separated. The winding directions of the windings (not shown) wound on the evening teeth are opposite to each other, and the slots formed between adjacent staying teeth in the same group.
  • the relationship between the angle of the opening and the angle H of the slot opening formed between adjacent stay teeth in different groups is set so as to satisfy the above-mentioned equation (1).
  • the permanent magnet-embedded mouth (not shown) is opposed to each other with a small gap on the side facing the mouth of each of the teeth 92-94c. .
  • a substantially rectangular concave portion 96 is formed such that its circumferential length is approximately equally divided into three.
  • the stay teeth 92b are excited to, for example, the S pole by a winding (not shown) wound around the stay teeth 92b.
  • the concave portion 96 behaves as if it were an N pole in appearance. Therefore, the magnetic pole at the tip of the teeth 92 b is apparently S It is subdivided into poles, N poles and S poles.
  • the stay teeth 93b and stay teeth 94b in the middle of each of the other groups 93 and 94 are the same as the stay teeth 92b.
  • the magnetic poles at the tip are apparently subdivided into S, N, and S poles. As a result, high torque can be generated and torque ripple can be reduced.
  • the recess is not limited to one recess for one stay tooth. As shown in FIG. 10B, two recesses 98 a and 9 are provided at the tip of the stay tooth 97. 8b may be formed, or three or more may be formed. Further, the shape of the concave portion is not limited to a rectangular shape, and may be, for example, an arc-shaped concave portion 99 as shown in FIG. 10C, or may be a plurality of arc-shaped concave portions. Also, it is needless to say that the present invention is not limited to the front end of each group in the center of each group, and that a similar recess may be provided in other stay teeth.
  • Embodiments 1 to 4 described above the so-called inner bite and one-night mode having a structure in which the mouth and the mouth are inside the stay is described. It is needless to say that the same effect can be obtained with the so-called outer row-type model on the outside.
  • the recesses are formed in the stations in the center of each of the three groups, so that the magnets are formed in the same manner as in the first embodiment.
  • reluctance torque in addition to torque, high torque can be generated, at the same time, torque ripple can be suppressed, and distortion of the generated voltage can be suppressed.
  • iron loss can be suppressed and demagnetization of the permanent magnet can be suppressed, and a very efficient motor can be realized.
  • FIG. 11 is a diagram for explaining a motor according to a fifth embodiment of the present invention, and is a schematic top view of a stay core.
  • the stay core 101 is made up of stay teeth 102 a, 102 b, 102 c, and stay teeth 103 a, 103 b. , 103 c, and stay teeth 110 4 a, 104 b, 104 c, and one end of each stay tooth 102 a to l 104 c. It is composed of the connected station yokes 105, and as in the first embodiment, the station teeth 102a to 104c are grouped into three groups 1002. , 1 0 3, 1 0 4
  • a slot 10 is a space in which a winding wire (not shown) is wound between adjacent stage teeth of each stage tooth 102 a to l04 c. 6 is formed.
  • Stay side teeth 1 0 2 a Each side of the parallel part of 10 a 1 0 2 a L, 10 2 a R, and each of them connected to them.
  • the angles formed by 0 5 a L, 1 0 5 a R are such that the windings wound on the stage teeth 102 a are aligned and more windings are applied to the slot space. It is formed to be almost perpendicular to allow for numbers.
  • the angle between the side of the stay teeth 101 b to 104 c in the parallel part thereof and the side of the mouth of the stay yoke 105 near the mouth is as follows. As with evening teeth 102 a, they are almost right angles.
  • the outer side portion 107 s which is opposite to the side surface 10 ⁇ on the low side of the stay yoke 105, is connected to the stay yoke 1 0 5
  • a side surface 107 aR and a side surface 107 bL are formed.
  • the intersection point 1 0 7 a R, 107 b L is parallel to the side surface 105 a R and the side surface 105 b L, respectively.
  • 0 8a may have a round shape.
  • the side surface 109 on the side of the mouth of the mouth is a side surface 105 a L and a side surface 105 c R having a length substantially equal to the length of the aforementioned side surface 105 a R, and the side surface 105. It is formed from a side surface 105c connecting 05aL and a side surface 105cR.
  • the outer side surface portion 109 s which is opposite to the side surface 109 of the stay yoke 105 and is opposite to the slot 106, is formed of the stay yoke 105.
  • the side surface 107 aR in the side surface portion 107 s and the side surface 109 a L in the side surface portion 109 s are aligned.
  • the intersection point 108 b where the side surface 109 a L intersects with the side surface 109 c and the intersection point 108 c where the side surface 109 c R intersects with the side surface 109 c are as described above.
  • a rounded shape may be used.
  • the width w of the stay yoke has substantially the same width over the entire circumference. At this time, the relation between the width w of the stay overnight y and the width W of the parallel portion of the stay teeth
  • the side portion 107 s and the side portion 109 s opposite to the row (not shown) side of the step 105 facing the slot 106 are From the circle 1 1 0 centered on the rotation axis center 0 inscribed on the side opposite to the side of the stay 1 0 5 It has a shape that protrudes in the direction opposite to the mouth side (radially outward).
  • the side portions 107 s and 109 s of the yoke 105 protrude in the direction opposite to the mouth so that the stays on the opposite side to the row side correspond to the slots 106
  • a plurality of stay teeth 101 2a to l04c constituting the stay core 101 are divided into three groups, which are adjacent in the same group.
  • the winding directions of the windings (not shown) wound on the station teeth are opposite to each other, and are formed between adjacent station teeth in the same group.
  • the relationship between the angle h of the slot opening and the angle H of the slot opening formed between adjacent stations in different groups satisfies the above equation (1). It is set to have a small gap on the inner peripheral surface of each of the bases.
  • the configuration in which the ridges (not shown) face each other is the same as in the first embodiment.
  • the configuration of the stay-in-the-night and the mouth-in-the-night is realized by driving the mouth-in-the-night to rotate the substantially sinusoidal waveform voltage as is well known. Needless to say, it will be an efficient generator.
  • the motor of the present invention has been described as an adduction type motor (inner bite one night type motor) for convenience of description in the above-described embodiment, an abduction type motor, a so-called outer-lower type motor, may be used. Similar effects can be obtained. Below, this key evening
  • FIG. 1 An embodiment of a mouth-to-mouth mode is shown in FIG.
  • the positional relationship between Mouth and Night is reversed, except that the inside and outside are reversed, while the others are basically the same.
  • the large-sized type is difficult to make, it is characterized by the fact that the opening of the stage where the winding is applied faces outward, so that the mass-produced upper-line winding is light.
  • 1 1 0 is the stay
  • 1 1 1, 1 1 2 and 1 1 3 are A group having a plurality of stations wound with a winding to which a voltage having the same phase is applied
  • 1 14 is an abduction magnet
  • 1 15 is a fixed frame of the magnet
  • 1 Reference numeral 16 denotes a mouth consisting of a magnet 114 and a frame 115.
  • the frame 1 15 also serves as a magnet yoke.
  • Stay overnight — llla, 1 1 1b, 1 1 1c and stay overnight teeth 1 1 2a, 1 1 2b, 1 1 2c and stay overnight teeth 1 1 3a, 1 1 3b , 1 13 c correspond to the U, V, and W phases, respectively, divided into the above three groups.
  • the stay 110 is connected to an external fixed plate
  • the low 116 is rotatably connected to the stay 110 via a shaft and a bearing.
  • Reference numeral 17 denotes a stationary winding line.
  • Fig. 12 describes the configuration of the embedded magnet type, which was taken as an example of the adduction type motor, the so-called IPM mode, but the surface magnet type mode, the so-called SPM mode. It goes without saying that things are possible.
  • the brushless type module has been described as an example.
  • the motor with a brush commutator has a configuration similar to that of the brushless motor with an outer mouth, and it is common to arrange a magnet with an external magnet and a coil with a winding inside.
  • the rotating portion is on the winding side located inside, and therefore a mechanism for supplying power to the winding via a brush commutator is required.
  • Fig. 13 shows an example of a motor with an SPM brush commutator using the above configuration.
  • 1 18 is the mouth and 1 19, 120, and 1 21 are each.
  • a plurality of stations in which the winding to which the in-phase voltage is applied are wound 1 2 2 is a magnet, 1 2 3 is a fixed frame of magnets,
  • Reference numeral 1 2 4 denotes a stay consisting of a magnet 1 2 2 and a frame 1 2 3.
  • the frame 124 also serves as a magnet yoke.
  • Station teeth 1 18a, 1 18b, 1 18c and station teeth 1 19a, 1 19b, 1 19c and station teeth 1 20a , 120b, and 120c correspond to the U, V, and W phases, respectively, divided into the above three groups.
  • 1 2 6 is a brush for power supply
  • 1 2 7 is a commutator
  • 1 2 8 is a rotating shaft
  • 1 2 9 is a brush holder
  • the stay 1 24 is connected to a fixing plate (not shown) with the outside, and the mouth 1 18 is connected to the rotating shaft 1 28 via a bearing (not shown). And are rotatably connected.
  • Embodiment 8 of the present invention will be described below.
  • the motor according to the present invention can be designed to have a torque per volume that is twice as high as that of a motor having a normal configuration, so that even if an aluminum wire or an aluminum alloy winding is used, a normal copper wire motor can be used. It can be smaller than in the evening, reducing both volume, weight and cost.
  • Aluminum wire or aluminum alloy wire has poor solderability, and is intended to compensate for this disadvantage.
  • FIG. 14 shows a cross section of the aluminum wire or aluminum alloy wire.
  • 1 3 1 is the aluminum wire or aluminum alloy wire, which is the main part of the winding wire of the Mo.
  • 1 3 2 is iron, nickel, zinc, tin or silver, which covers the surface of this aluminum wire or aluminum alloy wire.
  • a combination of two or more of these or an alloy containing these metals as main components, and 133 is an insulating coating film.
  • the above-mentioned metal or alloy may cover only the end when the aluminum wire or aluminum alloy wire is wound around the wire.
  • These metals or alloys can also be fixed to the aluminum wire or aluminum alloy wire by shrink fitting or force crimping before or after winding.
  • the metal or alloy has a cylindrical or polygonal cross section and may be axially interrupted.
  • the above-mentioned metal covering the aluminum wire or aluminum alloy wire only needs to cover the end which is the joint of the winding for the purpose.
  • a metal or alloy that has been shrink-fitted or fixed with caulking may be used. This example will be described with reference to FIGS. 15A to 15B.
  • reference numeral 134a denotes a metal ring fixed by shrink fitting
  • reference numeral 134b denotes a metal ring fixed by caulking
  • reference numeral 135 denotes a crimped portion of the metal ring.
  • the metal need not be a continuous ring, and the same effect can be obtained even if there is a break in a part or the whole in the axial direction of the ring.
  • Embodiment 9 of the present invention will be described below.
  • the ninth embodiment by using a metal other than ordinary copper as the wiring metal of the circuit board and having good solderability as described in the above-described embodiment, the other A brushless motor with a built-in circuit board that is smaller than the structure and completely free of copper is realized.
  • a motor with a brush commutator a motor that does not contain the copper component contained in the brush commutator can be used to achieve a motor completely free of copper. Wear.
  • a copper-free metal can be used for the connector to achieve a copper-free motor.
  • Some lead wires have a structure with lead wires, but in order to make the lead wires completely free of copper, the lead wires must be made of aluminum wire or aluminum alloy wire. At this time, use aluminum or aluminum alloy wire whose surface is coated with a copper-free metal with good solderability, or use an aluminum wire or a metal with good solderability without copper at the end. Attach the aluminum alloy wire by caulking or shrink fitting. As in the above-described embodiment, the metal only needs to have a cylindrical or polygonal cross section, and may be interrupted in the axial direction.
  • reference numeral 1336 denotes an aluminum wire or an aluminum alloy wire covered with the above-described metal, and is used as a lead wire for supplying power to the motor.
  • Reference numeral 137 denotes an insulating coating
  • reference numeral 138 denotes an aluminum wire covered with 132 or 134a or 134b, which is soldered by a winding solder portion 139.
  • 1 40 is a core of aluminum or aluminum alloy lead wire
  • 1 4 1 is a metal with good solderability that is caulked or shrink-fitted to the core 1 40. This is a crimping wire for fixing the core wire 140 and the winding wire 13 8.
  • the motor generator according to the first to tenth embodiments is a PEV (Pure Electric Vehicle) or a HEV. (H brid Electric Vehicle), FCEV (Fue 1 Cell Electric Vehicle hic 1e: Fuel Cell Vehicle), etc. It is no longer necessary to provide two types of motor generators, a high-voltage system and a low-voltage system, and it is not necessary to separately provide a DC-DC converter. As a result, a space-saving and low-cost electric vehicle drive system can be realized. Yes. Therefore, it is possible to provide an electric vehicle that can use the vehicle interior more widely at low cost. The same can be said for the case where the device is used as a driving mode of a device or a robot provided inside a home electric device, a robot, or the like, and the same effect is exerted.
  • Industrial applicability Industrial applicability
  • a high torque as an embedded permanent magnet type concentrated winding motor is generated, and in each of the groups of stay teeth, windings of adjacent stay teeth are formed. Since they have different polarities, they are suitable for alleviating the bias of the magnetic field distribution and suppressing the distortion of the voltage generated between terminals during motor drive. Also suitable for things. In addition, since heat generation due to eddy currents in the permanent magnets is reduced, demagnetization of the permanent magnets can be suppressed, which is suitable for realizing a highly efficient motor.
  • the copper wire is not used for the winding wire, and the volume of the winding is not larger than that of a normal copper wire.
  • main power motors for electric vehicles and various other types of motors for vehicles, such as air conditioners, Useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

明 細 書 モ一夕 技術分野
本発明はモ一夕、 たとえば電気自動車 (P E V) や、 ハイブリ ッ ド自 動車 (H E V;)、 燃料電池自動車 ( F C E V) 等に好適なモー夕であり、 家電製品やロボッ ト等にも好適なモー夕に関するものである。 背景技術
従来、 上述のような自動車等に用いられるモ一夕の技術として、 特開 2 0 0 0 - 2 4 5 0 8 5号公報に記載のような、 集中巻き埋め込み磁石 型モ一夕が使用されている例がある。
特開 2 0 0 0— 2 4 5 0 8 5号公報記載の例について、 図 1 7を用い て説明する。 図 1 7は、 ステ一夕コア、 およびその複数のステ一夕ティ 一スに卷かれた卷線で構成される集中巻きステ一夕と、 埋込み磁石型口 一夕とを用いたモー夕の主要部の断面図で、 モー夕の回転軸中心軸に直 交する平面を断面として示す。
図 1 7に示すように、 複数のステ一夕ティ一ス 1 4 3 a , 1 4 3 b , 1 4 3 c、 およびこれらを連結するステ一夕ヨーク 1 4 4でステ一夕コ ァ 1 4 5を構成し、 それそれのステ一夕ティース 1 4 3 a , 1 4 3 b , 1 4 3 cに卷線 1 4 6 a , 1 4 6 b , 1 4 6 cが卷かれてステ一夕 1 4 6が形成されている。 ステ一夕ティ一ス 1 4 3 a , 1 4 3 b , 1 4 3 c は、 ステ一夕ティース 1 4 3 aの一方の側にステ一夕ティース 1 4 3 b が、 他方の側にステ一夕ティース 1 4 3 cがそれそれ設けられて一つの グループを構成し、 これらステ一夕ティース 1 4 3 a , 1 4 3 b , 1 4 3 cのグループが円周方向に配設されている。 各ステ一夕ティ一ス 1 4 3 aにはそれそれ卷線 1 4 6 aが並列に卷回され、 それそれの卷線 1 4 6 aの巻き終り部は共通端子 (図示せず) で接続され、 その共通端子か らは一本の終端接続線が引き出されている。 また、 各ステ一夕ティース 1 4 3 bについては、 それそれ卷線 1 4 6 bが並列に巻かれ、 さらに、 各ステ一夕ティース 1 4 3 cについても並列にそれそれ卷線 1 4 6 cが 巻かれており、 ステ一夕ティース 1 4 3 a、 ステ一夕ティース 1 4 3 b およびステ一夕ティ一ス 1 4 3 cのそれそれの終端接続線はさらに他の 共通端子 (図示せず) にて接続されている。
口一夕 1 47には、 複数の永久磁石 1 4 9が、 ステ一夕 1 4 6のステ 一夕ティース 1 4 3 a, 1 4 3 b , 1 4 3 cの内周面に対向するよう、 周方向に等間隔に埋め込まれている。 そして、 口一夕 1 4 7は、 その外 周面がステ一夕 1 4 6のステ一夕ティース 1 4 3 a , 1 4 3 b, 1 4 3 cの内周面との間に微小な隙間を有して口一夕 1 4 7の外周面と対向さ せて配置されている。 ステ一夕ティース 1 4 3 a , 1 4 3 b, 1 4 3 c の内周面に対向する永久磁石 1 4 9の対向面 1 4 9 aと口一夕 1 4 7の 外周面との間の距離は永久磁石 1 4 9の端部 1 4 9 bより中央部 1 4 9 cの方が広くなるようになされている。
卷線 1 4 6 a , 1 4 6 b , 1 4 6 cは、 それそれ U相, V相, W相の 3相を構成しており、 各相の卷線に電気角で 1 2 0度ずつ位相をずらし た、 たとえば台形波状の電流を供給すると、 各相の卷線 1 4 6 a, 1 4 6 b , 1 4 6 cと口一夕 1 4 7との間に発生する トルクは 1 2 0度ずつ 位相がずれて発生する。 この 3相の発生トルクを合成したのが総合トル クとなり、口一夕 1 4 7は所定の方向へ回転することになる。すなわち、 回転軸中心 0の周りに回転するいわゆる 3相全波駆動の回転動作を行う ことになり、 ロー夕 1 4 7の内部に永久磁石 1 4 9を埋め込むことによ つて得られるマグネッ ト トルクに加えて、 リラクタンス トルクをも利用 することができ、 大きなトルクを発生させる高出力 (高トルク) モ一夕 を実現することができる。
一方、 口一夕 1 4 7が回転駆動されると、 共通端子 (図示せず) と U 相、 V相および W相の各相端子間には、 フレミ ングの右手の法則にした がって、 ほぼ正弦波状の逆起電圧が生ずる。 各相の逆起電圧は周知のよ うに、 互いに電気角で 1 2 0度ずつ位相がずれており、 それらの位相の 異なる逆起電圧を合成したものが総合逆起電圧となる。
また、 環境、 資源対策の面から車載モー夕全般に卷線の省銅線化が求 められている。 自動車のリサイクル時に、 銅線を含むモー夕が混入して いると、 再生された鉄の品位面で問題が残るという問題があり、 自動車 関係では銅線を含まないモ一夕が強く求められている。従来の技術では、 例えば特開 2 0 0 0— 2 4 5 ◦ 8 5号公報に記載のようなモー夕の卷線 を銅線からアルミ線に変更する方法や、 その他一般的な整流子モー夕の 卷線を銅線からアルミ線に変更する等の方法が試みられているが、 実際 の自動車での使用例は見当たらない。
上述のリラクタンス トルクをも加えた発生トルクの大きいモ一夕は、 集中卷きモ一夕とすることによって高トルク化することができるという 利点を有する一面で、 逆起電圧に波形歪が認められる。
逆起電圧の波形歪が大きいと、 渦電流が増大して鉄損が増加して効率 が低下する。 そして、 ロー夕に埋め込まれている永久磁石にも渦電流が 発生することになり、 永久磁石が発熱して温度上昇し、 減磁させてしま う恐れがある。
そこで本発明は、 逆起電圧の波形歪を低減した構造を実現し、 渦電流 の発生を抑制することで高トルクで効率の高いモー夕を提供することを 第 1の目的とするものである。
また、 特閧 2 0 0 0— 2 4 5 0 8 5号公報に記載のモ一夕及び通常の 整流子モー夕やブラシレスモー夕の卷線を銅線からアルミ線に単純に変 更すると、 アルミ線の抵抗率は銅線に比べて約 6 0 %高いために、 導体 損が大きくなつてしまい、 効率の悪いモー夕となる。 一方損失を増やさ ないようにする と、 モ一夕体格を大きく する必要があり、 何れにしても 省エネルギー、 省資源からみた課題が残る。
本発明は、 上記第 1の目的を達成しながらも、 モー夕体格を増大する ことなく、 かつ効率も悪化させることなく、 銅線からアルミ線または他 の銅線よ り抵抗率の大きな金属による卷線を持つモー夕を提供すること を第 2の目的とするものである。 発明の開示
上記目的を達成するために、 本発明のモー夕は、 複数のステ一夕ティ —ス、 それら複数のステ一夕ティ一スを連結するステ一夕ヨークからな るステ一夕コア、 および前記複数のステ一夕ティースのそれそれに卷か れた卷線からなるステ一夕と、 口一夕コア、 およびその口一夕コアに埋 め込まれた複数の永久磁石からなる口一夕とを備え、 同相の電圧が印加 される卷線が卷回された隣接する複数のステ一夕ティ一スによ り構成さ れたグループを複数備え、 同じグループ内において隣接する複数のステ —夕ティ一スの卷線を互いに逆方向に卷回し、 隣接する複数のグループ のそれそれには異相の電圧が印加されたものである。
この構成によって、 永久磁石が埋め込まれた口一夕構成としているの で、マグネッ ト トルク以外にリラクタンス トルクも活用することになり、 高トルクを発生させることができる。 さらに、 各グル一プ内においてそ れそれの隣接するステ一夕ティ一スの卷線が互いに異なる極性となるよ ぅ卷回されているので、 磁界分布の偏重を緩和することができ、 モー夕 駆動時に卷線に誘起される逆起電圧の波形の歪を低減することができる , このため、 ステ一夕コアや口一夕コアにおける鉄損の発生を抑制するこ とができ、 また、 ロータコア中の永久磁石についても、 渦電流の発生が 抑えられるため、 それによる熱発生が軽減され、 永久磁石の減磁を抑止 することができ、 効率のよいモー夕を実現することができる。
上述のモー夕において、 さらに、 ステ一夕のステ一夕ティースを 3 n 個 (ただし、 n =正の整数) のグループに区分し、 各グループのステ一 夕ティースを 3個とした構成とすることによって、各グループ内の U相, V相, W相のそれそれの隣接する卷線が互い'に異なる極性となり、 磁界 分布の偏重を緩和することができ、 モー夕駆動時の端子間発生電圧波形 の歪を低減することができる。 したがって、 鉄損の発生を抑制すること ができ、 モ一夕効率を向上させることができる。
上述モー夕において、 さらにまた、 同じグループ内にあって互いに隣 接するステ一夕ティースの間に形成されたスロッ 卜の開口部の角度 hと. 異なるグループにあって互いに隣接するステ一夕ティースの間に形成さ れたスロッ トの開口部の角度 Hとの関係が、
h < H≤ 3 h
を満足するステ一夕コアを有する。
この構成によって、 磁界分布が均等になるため、 卷線に誘起される逆 起電圧の波形歪を低減することができ、 渦電流の発生を抑えて鉄損を低 減し、 かつ、 永久磁石での渦電流による発熱も抑えて永久磁石の減磁を 抑止することができ、 モー夕効率を向上させることができる。
さらにまた、 上述のモ一夕において、 各グループ内にあって異なるグ ループのステ一夕ティ一スと隣接する各グループ内両端に位置するステ 一夕ティ一スのそれそれの先端部の周方向中心を通る中心線が、 前記各 グループ内両端に位置するステ一夕ティースのそれそれの平行部の周方 向中心を通る中心線から周方向に偏移した形状であり、 前記先端部の周 方向端部が、 いずれの方向においても、 前記平行部の幅方向内方に位置 しない形状となる構成とする。
この構成によって、 それそれのステ一夕ティースの間で形成されるそ れそれのスロッ トがほぼ同等の大きさの空間となり、 それぞれのステー 夕ティ一スに卷回される卷線の卷数を多くすることができ、 卷数の増加 に伴って発生トルクを大きくすることができ、 かつ、 同じグループ内の 隣接する卷線の極性が異なる構成であ り、 発生電圧の歪を抑えることが でき、 したがって、 鉄損も抑えられ、 非常に効率のよいモ一夕を実現す ることができる。
上述のモ一夕において、 さらにまた、 ステ一夕コアを構成する複数の ステ一夕ティースを、 口一夕のステ一夕対向面とステ一夕ティースの先 端部のロー夕対向面との間隔が、 それそれの前記先端部の周方向端部の 近傍においてロー夕のステ一夕対向面から離れるように、 それそれ切除 部を設ける。 このような構成とすることによって、 それそれのステ一夕 ティースにおいて急激な磁界変化を緩和することができ、 モー夕駆動時 に卷線に発生する逆起電圧の波形を一層正弦波に近づけることが可能と なり、 トルク リ ツプルおよびコギングトルクを低減させることができる。 上述のモー夕において、 さらにまた、 ステ一夕コアを、 複数のグルー プを構成するステ一夕ティ一スのうち、 少なく とも 1つのステ一夕ティ ースのロー夕側にある先端部に少なく とも 1個の凹部を有する構成とす る。 また、 凹部の形状をほぼ矩形状あるいは円弧状とする。 無論、 それ 以外の形状としてもよい。
この構成によって、 それらのステ一夕ティ一スの先端部における磁極 が、 見掛け上 S極, N極, S極という ように細分化されるため、 高トル クが得られるとともに、 トルク リ ップルを小さく抑えることができる。 上述のモー夕において、 さらにまた、 ステ一夕コアを、 ロー夕側とは 反対側にあるステ一夕ヨークの側面が、 複数のステ一夕ティースにおけ るロー夕側とは反対側にあるそれそれのステ一夕ヨークの各側面に内接 する円よ りロー夕側とは反対側方向に突出した形状で、 かつ、 ステ一夕 ヨークの幅 Wが全周にわたってほぼ等しい形状とする。 さらにステ一夕 ヨークの幅 Wがステ一夕ティ一スの卷線が巻かれる平行部の幅 Wに対し て、 次式の関係を有する。
W x l / 2≤w≤W x 3 / 2
この構成によって、 磁気抵抗のバランスをよく し、 ほぼ均一な磁束を 発生させ、 安定した効率のよい磁界を得ることができる。
上述のモー夕において、 さらにまた、 ロー夕を、 複数の永久磁石を有 し、 これら永久磁石とほぼ同じ形状であって、 永久磁石の厚さより小さ な幅の複数のスリ ツ トを、 永久磁石のステ一夕側とは反対側に設ける。
この構成によって、 スリ ッ ト部において永久磁石により生じる磁束を 通過させにく く し、 すなわち磁気抵抗を高め、 d軸インダク夕ンスを減 少させて、 q軸インダクタンスとの差をより大きく し、 より大きなリラ クタンス トルクを生じさせることになり、 モ一夕としての発生トルクを 増加させることができる。
上述のモー夕において、 さらにまた、 永久磁石のステ一夕側側面と口 —夕のステ一夕対向面との間の距離が、 永久磁石のステ一夕側側面にお けるそれそれの端部よりも中央部の方が大きい形状をした複数の永久磁 石を、 口一夕に設ける。 また、 永久磁石を、 口一夕のステ一夕対向面側 と反対の方向に突出したほぼ V字状の形状とする。 あるいは、 半径方向 に垂直な直線状の形状をした複数の永久磁石を有するロー夕からなる構 成を有している。 あるいは、 口一夕に、 そのステ一夕対向面側と反対の 方向に凸の円弧状の形状をした複数の永久磁石を設ける。 あるいは、 口 —夕に、 そのステ一夕対向面側に凸で、 かつ、 口一夕を構成する口一夕 コアの半径よりも大きな半径を有する円弧状の形状をした複数の永久磁 石を設ける。
この構成によって、 ロー夕のステ一夕対向部において磁束の通りやす い部分と通りにくい部分、 すなわち磁気抵抗の比較的低い部分とそれに 比べて磁気抵抗の高い部分とを設けることによって、 q軸方向のインダ クタンスと d軸方向のイ ンダク夕ンスとに差を作り、 リラク夕ンス トル クを発生させることができ、発生トルクを高トルク化することができる。 上述のモー夕は、 一つのモー夕多極化技術であり、 ロー夕部の極数と 卷線を施すステ一夕部の歯極数の関係が、 例えば通常のブラシレスモー 夕である 4極 1 2歯極に比較し、 1 0極 9歯極と多極である割には少数 歯極に成し得る。
モー夕 トルクは
(モー夕 トルク) = (ロー夕極対数) X (鎖交磁束数) X (モ一夕電流) で決まるため、 ロー夕極数を多く設定し、 なおかつステ一夕歯極数を増 加させない、 つまりモー夕電流を少なくさせない構成のモー夕である。
さらに上述のスロッ ト開口部やステ一夕ティ一ス幅を設定することに よって、 同一体格の従来モ一夕に比べ、 大トルクで逆起電圧波形が正弦 派に近いものとすることができるので、 上述のモー夕は従来モ一夕に比 較して体格を増大することなく、 逆起電圧波形の歪み損失が増大するこ となく、 卷線を銅線からアルミ線に変更することができる。 図面の簡単な説明
図 1は、 本発明の実施の形態 1を示すモー夕主要部を説明するための 主要部概略断面図であり、
図 2は、 本発明の実施の形態 1における卷線の卷回方向を説明するた めの概略展開図であり、
図 3は、 本発明の実施の形態 1における各卷線の接続状態を示す結線 図であり、
図 4 A〜図 4 Cは、 それそれ本発明の実施の形態 1 における永久磁石 の他の例を示す概略断面図であり、 図 4 Dは、 本発明の実施の形態 1に おける口一夕コアの他の一例を示す概略断面図であり、
図 5は、 本発明の実施の形態 2におけるステ一夕コアを説明するため のステ一夕コア概略断面図であり、 図 6 Aは、 本発明の実施の形態 2におけるステ一夕コアを説明するた めの部分拡大図であり、 図 6 Bは、 同実施の形態におけるステ一夕コア の変形例を説明するための部分拡大図であり、
図 7は、 本発明として適さないステ一夕ティースの形状の一例を説明 するための部分拡大図であり、
図 8は、 本発明の実施の形態 3におけるモー夕主要部を説明するため の概略断面図であり、
図 9は、 本発明の実施の形態 3におけるステ一夕コアを説明するため の部分拡大図であり、
図 1 0 Aは、 本発明の実施の形態 4におけるステ一夕コアを説明する ための概略上面図であり、 図 1 0 Bは、 同実施の形態における凹部の他 の一例を示す部分図であり、 図 1 0 Cは、 同実施の形態における凹部の 形状の他の例を示す部分図であり、
図 1 1は、 本発明の実施の形態 5におけるステ一夕コアを説明するた めの概略断面図であり、
図 1 2は、 本発明の実施の形態 6におけるモータの主要部を説明する ための概略断面図であり、
図 1 3は、 本発明の実施の形態 7におけるモー夕の主要部を説明する ための概略断面図であり、
図 1 4は、 本発明の実施の形態 8におけるアルミ卷線を示す概略断面 図であり、
図 1 5 Aは、 本発明の実施の形態 8におけるアルミ卷線端部を示す概 略図であり、 図 1 5 Bは、 同実施の形態における他の例のアルミ卷線端 部を示す概略図であり、
図 1 6 Aは、 本発明の実施の形態 1 0における リ一ド線及びアルミ卷 線の接続状態を示す概略図であり、 図 1 6 Bは、 同実施の形態における 他の例のリード線及びアルミ卷線の接続状態を示す概略 KIであり、 図 1 6 Cは、 同実施の形態における更に他の例のリード線及びアルミ卷線の 接続状態を示す概略図であり、
図 1 7は、 従来のモー夕の主要部を示す概略断面図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を用いて説明する。
(実施の形態 1 )
図 1〜図 4 Dは、 本発明の実施の形態 1のモ一夕を説明するための図 であり、 図 1はモー夕主要部を説明するための回転軸中心軸に垂直な面 で断面にした主要部断面図、 図 2はステ一夕ティースに卷回される卷線 の卷回方向を説明する展開図、 図 3は各ステ一夕ティースに卷回される それそれの卷線間の接続状態を説明する結線図、 図 4 A〜図 4 Dは口一 夕コァに埋め込まれる永久磁石の形状およびロー夕コアの他の例を示す 断面図である。
図 1において、 ステ一夕コア 1は、 複数のステ一夕ティース 2 a , 2 b , 2 c、 同 3 a , 3 b , 3 c、 および同 4 a , 4 b , 4 cと、 これら ステ一夕ティース 2 a〜 4 cを一方の端部で連結するステ一夕ヨーク 5 とで構成されている。 それそれのステ一夕ティース 2 a〜 4 cには卷線 6が卷回され、 ステ一夕コア 1および卷線 6にてステ一夕 7を構成して いる。
それそれのステ一夕ティース 2 a〜 4 cを、 同相の電圧が印加される 卷線が卷回される互いに隣接した複数のステ一夕ティ一スを 1つのグル —プとして、 合計 3つのグループに分ける。 すなわち、 本実施の形態に おいては、 ステ一夕ティース 2 a , 2 b , 2 cからなる第 1のグループ 2、 ステ一夕ティ一ス 3 a , 3 b , 3 cからなる第 2のグループ 3、 お よび、 ステ一夕ティース 4 a , 4 b , 4 cからなる第 3のグループ 4に 分ける。 ここで、 隣り合ったステ一夕ティース間に形成されるスロッ ト の開口部の角度について、 第 1のグループ 2内の隣り合ったステ一夕テ ィ一ス 2 a , 2 b間に形成されるズロ ッ ト 6 aのスロッ ト開口部を一例 として述べるならば、 ステ一夕ティース 2 a , 2 bの、 ステ一夕ヨーク とは反対側のそれそれの先端部における周方向に突出した各端部に接し かつ、 回転軸中心 0を通る接線 2 a t , 2 b t間の角度 hとする。 他の スロ ッ ト開口部の角度についても、 同様に回転軸中心 0を通り、 スロッ 卜側にて対向する各端部に接する接線間の角度とする。
各ステ一夕ティース間のス ロ ヅ ト開口部の角度を、 ステ一夕ティース 2 b , 2 c間、 ステ一夕ティース 4 a , 4 b間、 ステ一夕ティース 4 b , 4 c間、 ステ一夕ティ一ス 3 a , 3 b間、 およびステ一夕ティース 3 b , 3 c間については、 ステ一夕ティース 2 a , 2 b間のスロッ ト開口部の 角度 hと等しくなるよう設定する。 また、 異なるグループにあって隣接 するステ一夕ティース 3 c , 2 a間のスロッ ト 6 bの開口部の角度を H とし、 同様に、 ステ一夕ティース 2 c , 4 a間と、 ステ一夕ティース 4 c , 3 a間にあるスロッ トの開口部についてもそれそれの角度をステ一 夕ティ一ス 3 c , 2 a間のス ロ ヅ 卜開口部の角度 Hと等しくなるように 設定する。 なお、 この角度 Hは、 上述の同じグループにあって隣接し合 うステ一夕ティース間のスロ ッ ト開口部の角度 hより も大きい。
それそれのステ一夕ティース 2 a〜 4 cに卷回される卷線 6 について たとえばグループ 2 を例に説明する。 図 2に示すように、 ステ一夕ティ ース 2 aに対する巻線 6の卷回方向が矢印 2 1の方向、 ステ一夕ティ一 ス 2 bに対する卷線 6の卷回方向は矢印 2 1 とは逆方向の矢印 2 2の方 向、 ステ一夕ティース 2 cに対する卷線 6の卷回方向は矢印 2 2 とは逆 方向すなわち矢印 2 1 と同方向の矢印 2 3の方向にそれぞれの巻線 6が 卷回されている。 すなわち、 各グループ内のステ一夕ティースに尹 る卷線の卷回方向は、 その属するグループ内において、 隣垆
夕ティースには卷回方向が互いに逆方向になるように卷^ 隣接するステ一夕ティ一スの卷線の極性が互いに反転するようになって いる。 それそれのステ一夕ティース 2 a , 2 b , 2 cに対する卷線 6は 並列に卷回されている。 なお、 直列に卷回してもよいのは言うまでもな い。 同様に、 グループ 3およびグループ 4のそれそれのステ一夕ティー スに対しても同じ方法で卷線 6が卷回され、 グループ 2、 グループ 3お よびグループ 4の卷線 6が各々 U相, V相および W相の 3つの相の卷線 になるように分けられ、 たとえば、 グループ 2のステ一夕ティース 2 a の卷線 6を U相とした場合、 隣接するステ一夕ティ一ス 2 bの卷線 6は ステ一夕ティース 2 aの卷線 6 とは極性が反転しているため、 その位相 が反転した U相となり、 ステ一夕ティース 2 bに隣接したステ一夕ティ —ス 2 cの卷線 6はステ一夕ティース 2 bの卷線 6の位相と反転、 すな わち、 ステ一夕ティース 2 aと同じ位相の U相となる。 グループ 3およ びグループ 4におけるそれそれのステ一夕ティ一スの卷線においても同 じであり、 V相と反転した V相、 W相と反転した W相となる。 さらに、 グループ 2、 グループ 3およびグループ 4の卷線 6の卷き終り部が図 3 の結線図にて示されるように接続されている。なお、この図 3において、 1 5 u , 1 5 V , 1 5 wはそれぞれ U相, V相, W相の出力端であり、 1 6は中性点を示し、 1 7はそれそれの卷線 6を接続する配線である。 上記説明の構成により、 各グループ内の U相, V相, W相において、 そ れそれの隣接する卷線が互いに異なる極性となっているため、 磁界分布 の偏重を緩和することができ、 モー夕駆動時に端子間に発生する逆起電 圧の波形の歪を低減することができ、 したがって、 鉄損を抑えることが できる。
さらに、 検討をした結果によれば、 それそれ同じグループ内にあって 隣接するステ一夕ティースの間に形成されるスロヅ ト開口部の角度 hと. それそれ異なるグループにあって互いに隣接するステ一夕ティ一スの間 に形成されるスロッ ト開口部の角度 Hとの関係が h < H≤ 3 h ( 1 ) を満足するように設定すれば、 磁界分布が均等になるため、 逆起電圧の 波形の歪を低減することができ、 渦電流の発生を抑制して鉄損を低減さ せ、 かつ、 永久磁石での渦電流による発熱も抑えてその減磁を抑制する ことができ、 モ一夕効率を向上させることができる。
一方、 ロー夕 8は、 ロー夕コア 9 とロー夕コア 9に周方向等間隔に埋 め込まれた複数のほぼ V字状の永久磁石 1 0 とで構成され、 口一夕 8の ステ一夕対向面がステ一夕 7の口一夕対向面に微小な隙間を有して対向 しており、 回転軸中心 0の周りに回転可能とされている。
永久磁石 1 0は口一夕 8のステ一夕対向面側と反対の方向に突出した ほぼ V字状になっており、 永久磁石 1 0のステ一夕側側面 1 0 aとロー 夕 8のステ一夕対向面 8 aとの間の距離は、 永久磁石 1 0のステ一夕側 側面 1 0 aにおける端部 1 0 b, 1 0 cよりもその中央部 1 0 dの方が 大きくなつている。 したがって、 口一夕 8のステ一夕対向部において磁 束が比較的通りやすい部分と比較的通りにくい部分とを設ける、 すなわ ち磁気抵抗の低い部分とそれよりも磁気抵抗の高い部分とを設けること によって、 q軸方向のィンダク夕ンスと d軸方向のィンダクタンスとに 差を作り、 リラクタンス トルクを発生させることができ、 発生トルクを 高トルク化することができる。
永久磁石 1 0の形状は、 そのステ一夕側側面 1 0 aと口一夕 8のステ —夕対向面 8 aとの間の距離が、 それそれの端部より中央部の方が大き くなるような形状であればよく、 たとえば、 図 4 Aに示すような、 半径 方向に垂直な直線状の永久磁石 3 1、 図 4 Bに示すような、 ステ一夕側 とは反対側の方向に凸の円弧状の永久磁石 3 2、 あるいは、 図 4 Cに示 すような、 ステ一夕側に凸で、 かつ、 ロー夕コア 3 3の半径以上の半径 を有する円弧状の永久磁石 3 4であってもよい。 さらには、 図 4 Dに示 すように、 口一夕コア 3 5に埋め込まれる永久磁石 3 6 と、 永久磁石 3 6の位置よ りもステ一夕 (図示せず) 側とは反対側に永久磁石 3 6 にほ ぼ同じような形状で、 かつ、 永久磁石 3 6の厚さ 3 6 aより小さな幅 3 7 aを有するス リ ツ ト 3 7が設けられた口一夕コア 3 5からなる口一夕 3 8であっても よい。 このように永久磁石の近傍にス リ ッ トを配設する ことによって、 ス リ ッ ト部において永久磁石によ り生じる磁束を通過さ せにく く し、 d軸イ ンダク夕ンスを減少させて、 q軸イ ンダク夕ンスと の差をよ り大き く し、 よ り大きなリラクタンス トルクを生じさせること になり、モー夕としての発生トルクを増加させることができる。そして、 このス リ ツ ト付口一夕コア 3 5の場合においても、 永久磁石の形状は、 図 4 A〜図 4 Cにそれそれ示された直線状、 ステ一夕側とは反対側の方 向に凸の円弧状、 あるいは、 ステ一夕側に凸の円弧状であってもよいの は言うまでもないこ,とである。
なお、 本実施の形態 1 においては、 複数のステ一夕ティース間に形成 されるスロッ ト数が 9 (ステ一夕ティースの数も 9 ) で、 口一夕を構成 する永久磁石が 1 0個であり、 U ■ V · W相の 3相の卷線一式を 1組と した卷線組数が 1で、 かつ、 1 グループにおけるステ一夕ティース数が 3 ( 3叉) である。 すなわち、 本実施の形態 1は、 3叉 · 卷線組数 1 · 9スロッ ト · 1 0極のモ一夕を説明したものであるが、 本発明は 3叉 - 卷線組数 1 · 9 スロッ ト · 1 0極のモ一夕に限るものではなく、 n叉 ' 卷線組数 s · t スロッ ト ' p極のモ一夕としてもよい (ただし、 n、 s、 t、 pは共に正の整数)。 なお、 この場合、 口一夕極数 pは以下の式を満 足する値とする。
p = 2 x ( s ( ± l + 3 k ) )かつ p > t (ただし、 k =正の整数) ( 2 ) ここで、 極数を上記のように決定する理由を以下に示す。 本モ一夕構 造の特徴の 1つは、磁石間ピッチとステ一夕のティースピッチが同一で、 かつ、 ステ一夕にデッ ドスペースができることにある。 そこで、 叉数と 卷線組数が決まれば、機械的に極数を仮決めすることが出来る。例えば、 3相モー夕における「 2叉 '卷線組数 1」のモデルでは、スロヅ ト数( t ) は叉数 ( n) X相数 X卷線組数 ( s)、 すなわち 2 X 3 X 1 = 6スロッ ト になる。 スロッ ト数 ( t ) が 6であることから、 デッ ドスぺ一スを確保 するためには、 上記 ( 2 ) 式を用いたところ、 極数 (p) は 8以上の偶 数となる。
次に、 仮決めしたスロッ ト数と極数とで、 モー夕として成立するかを 見極める。 すなわち電流を U相 · V相 ■ W相の順に流したときにスム一 ズに回転するかを確認する。磁石の極対数を p/ 2とすると、 磁石の誘起 電圧関数は、
B e = s i n (ρ/2 χθ)
と表すことができる。 ここで、 3相モ一夕であることから、 U相 · ν相 · W相は電気角で 1 2 0 ° づっずれている。 そこで、 電気角で 1 2 0 ° ず らして各相を通電したときに、 口一夕が同じ角度で同じ方向に回転すれ ばよいこととなり、 下記の式が成立すればよいことになる。
sin( p/2 x ( 6> + 1 2 O/s)) =sin(p/2 x0± l 2 0 + 3 6 0 k ) ( 3 ) 上記 ( 3 ) 式の意味するところは、 誘起電圧関数 (口一夕) が、 ある 時刻の B e = 0より電気角で 1 2 ◦ ° ずれた位置 (式の表現は機械角) にあるとき、 ステ一夕側の別軸上で、 1 2 0° (U相 · ν相 ' W相のず れ)ずれた位置を同じであれば、 U相から V相、 V相から W相と 1 2 0 ° ずれた位置で通電しても、 口一夕位置 B e (誘起電圧関数) は、 常に電 気的に同じ値をとり、 スムーズに 1回転できることを表している。
上記 ( 3) 式を整理すると、 極対数 p/2は、
p/2 = s (± l + 3 k)
となり、 極数 (p) は以下のようになり、 卷線組数 ( s ) の関数となる。
p = 2 x ( s (± l + 3 k))
この関係式を用いて、 極数を決定する。 なお、 具体例としては以下の表 に示すとおりである。 叉数 卷線組数 スロッ ト数 極数
2 1 6 8
2 2 ' 1 2 1 6
2 3 1 8 2 4
2 4 2 4 3 2
3 1 9 1 0
3 2 1 8 2 0
3 3 2 7 3 0
3 4 3 6 4 0
4 1 1 2 1 4
4 1 1 2 1 6
4 2 2 4 2 8
4 2 2 4 3 2
5 1 1 5 1 6
5 1 1 5 2 0
5 1 1 5 2 2
5 2 3 0 3 2
5 2 3 0 4 0
6 1 1 8 2 0
6 1 1 8 2 2
6 1 1 8 2 6
6 2 3 6 4 0
7 1 2 1 2 2
7 1 2 1 2 6
7 1 2 1 2 8 以上のように本実施の形態 1によれば、 ステ一夕のそれそれのステー 夕ティ一スを同相の電圧が印加される卷線が卷回される隣接するステー 夕ティース同士を 1つのグループとしたものを、 U相, V相おょぴ W相 の 3グループに分け、 同じグループ内にあって隣接するステ一夕ティ一 スの卷線の卷回方向を互いに逆方向とし、 さらに、 ロー夕に埋め込まれ た複数の永久磁石のステ一夕側側面と口一夕のステ一夕対向面との距離 が、 それそれ永久磁石の端部側よりも中央部の方が大きくなるような口 —夕を構成することによって、 マグネッ ト トルク以外にリラクタンス ト ルクも活用することになり、高トルクを発生させることができ、同時に、 発生電圧の歪を抑え、 したがって、 鉄損を抑え、 永久磁石の減磁も抑止 することができ、 非常に効率のよいモー夕を実現することができる。
(実施の形態 2 )
図 5〜図 7は、 本発明の実施の形態 2のモー夕を説明するための図で あり、 図 5はステ一夕コアの上面図、 図 6 Aは図 5の一部を拡大した部 分拡大図、 図 6 Bはステ一夕コアの変形例の部分拡大図、 図 7はステー 夕ティースの先端部の変形例を示す拡大図である。
図 5において、ステ一夕コア 4 1はステ一夕ティース 4 2 a , 4 2 b , 4 2 c、 ステ一夕ティ一ス 4 3 a, 4 3 b , 4 3 c、 およびステ一夕テ ィ一ス 4 4 a, 4 4 b , 4 4 cと、 これらステ一夕ティース 4 2 a〜 4 4 cを一方の端部で連結するステ一夕ヨーク 4 5 とで構成されている。 上述の実施の形態 1 と同様に、 ステ一夕ティース 4 2 a , 4 2 b , 4 2 cでグループ 4 2を、 ステ一夕ティース 4 3 a , 4 3 b , 4 3 cでグル —プ 4 3を、 また、 ステ一夕ティース 4 4 a , 4 b , 44 cでグル一 プ 44をそれそれ構成し、 それぞれのグループ 4 2 , 4 3 , 44のステ —夕ティースに巻かれた巻線 (図示せず) でそれそれ U相, V相および W相を形成する。 また、 前述の実施の形態 1 と同様に、 同一グループ内 において隣接するステ一夕ティースに卷かれた卷線の卷回方向が互いに 逆方向であり、 さらに、 それそれ同じグループ内にあって隣接し合うス テ一夕ティースの間に形成されるスロッ ト開口部の角度 hと、 互いに異 なるグループ内にあって隣接するステ一夕ティースの間に形成されるス ロッ ト開口部の角度 Hとの関係が前記 ( 1 ) 式を満足するように設定さ れている。
それそれのステ一夕ティースの間で形成されるスロヅ トをすベてほぼ 同等の大きさの空間にすることによって、 それそれのステ一夕ティース に卷回される卷線の卷数を多くすることができ、 巻数の増加に伴って発 生トルクを大きくすることができる。
次に、 上述のグループ 4 2を例に取って、 ステ一夕ティ一ス 4 2 a , 4 2 b , 4 2 cの先端部の形状について、 図 6 Aを用いて説明する。
図 6 Aは、 ステ一夕コア 4 1におけるグループ 4 2を示す部分拡大図 である。 図 6 Aにおいて、 Θ はステ一タティ一ス 4 2 a平行部の周方向 中心と回転軸中心 0を通る中心線 5 1 と、 ステ一夕ティース 4 2 bの平 行部の周方向中心と回転軸中心 0を通る中心線 5 2 とのなす角度であり - ø はステ一夕ティ一ス 4 2 aの先端部の周方向中心と回転軸中心 0を通 る中心線 5 3 と、 ステ一夕ティース 4 2 bの平行部の周方向中心と回転 軸中心 0を通る中心線 5 2 とのなす角度であり、 a はステ一夕ティース 4 2 aの平行部におけるステ一夕ティース 4 2 bとは反対側の側面と先 端部の角部 5 6 と回転軸中心 0を通る線 5 4と、 前記ステ一夕ティ一ス 4 2 aにおける中心線 5 1 とのなす角度であり、 β はステ一夕ティ一ス 4 2 aの先端部におけるステ一夕ティース 4 2 bとは反対側の周方向端 部に接し、 かつ、 回転軸中心 0を通る線 5 5 と、 ステ一夕ティ一ス 4 2 aの先端部の周方向中心と回転軸中心 0を通るの中心線 5 3とのなす角 度であって、 ステ一夕ティース 4 2 aの平行部の中心線 5 1 とステ一夕 ティ一ス 4 2 aの先端部の周方向中心を通る中心線 5 3 とを偏移させた 形状にする。 つまり、 + > ( θ + ) の関係が満たされることと なる。 一方、 グループ 4 2のもう一つのステ一夕ティ一ス 4 2 cはステ —夕ティース 4 2 bの中心線 5 2に対してステ一夕ティース 4 2 aを線 対称になるようにした形状とする。
一般的に、 それそれのステ一夕ティ一スの巻線が卷回される平行部の 幅は、 卷線により発生する磁束密度をほぼ同一にするためにほぼ同等の 幅を有するように形成されている。 したがって、 それそれのステ一夕テ ィース間で形成される空間、 すなわち、 スロッ ト空間の大きさをほぼ同 一にするには
0 = 6>。= 3 6 O / n 度 (n =スロッ ト数)
= 3 6 0 / 9 度 (本実施の形態 2においては n = 9 )
= 4 0 度
となるように設定すればよい。
一方、図 6 Bは、ステ一夕コア形状の変形例を示す部分拡大図である。 図 6 Bにおいて、 基本的な構成は前述の図 6 Aを用いて説明したものと 同様であるが、 本変形例においてはステ一夕ティ一ス 6 1 a, 6 1 cの 先端部の形状が、 周方向両側に突出した先の例とは異なり、 ステ一夕テ ィ一ス 6 1 bの反対側においては周方向に突出しない、 すなわち平行部 の側面と同化した形状となっている。 これにより、 ステ一夕ティース 6 1 aの平行部におけるステ一夕ティ一ス 6 1 bとは反対側の側面の最先 端部 6 7と回転軸中心 0を通る線 6 8 と、 ステ一夕ティース 6 1 aの先 端部におけるステ一夕ティース 6 1 bとは反対側の周方向端部に接し、 かつ、 回転軸中心 0を通る接線 6 8 とが同一のものになる。 この構成の 場合には、 それそれの角度の関係が ( 0 + ^ ) = ( Θ + a ) となり、 ス テ一夕ティース 6 l bの周方向中心と回転軸中心 0を通る中心線 6 3に 対して線対称となるステ一夕ティース 6 1 a , 6 1 cそれそれの先端部 の周方向中心と回転軸中心 0を通る中心線 6 4 , 6 4 aが、 ステ一夕テ ィース 6 1 a , 6 1 cのそれそれの平行部の周方向中心と回転軸中心 0 を通る中心線 6 2 a , 6 2 bから偏移することとなり、 ステ一夕ティー ス 6 l bとそれに隣接したステ一夕ティース 6 1 a, 6 1 cとの間の各 スロッ トの空間 6 6は、 互いにその容積が等しくなり、 かつ比較的大き な空間 6 6 となるので、 巻線の卷数を増加させることができる。 なお、 このとき、 それそれ同じグループ内にあって隣接するステ一夕ティース の間に形成されるスロッ ト開口部の角度 hと、 それそれ異なるグループ 内にあって隣接するステ一夕ティースの間に形成されるスロッ ト開口部 の角度 Hとの関係が、 前述の実施の形態 1における ( 1 ) 式を満足する ように設定する。
また、 他のグループにおけるそれそれのステ一夕ティースの先端部の 形状についても、 ステ一夕ティース 4 2 a〜4 2 cの場合と同様の方法 により + > ( Θ + a ) の関係が満たされる形状とすればよい。 また、 ステ一夕ティース 6 1 a〜 6 1 cの形状のモ一夕を構成する場合 には、 他のグループにおけるそれそれのステ一夕ティ一スの先端部の形 状が ( 0 + ^ ) = ( 6> + ひ) の関係を満たすように決定すればよい。
しかしながら、 図 7にて示されるような形状のステ一夕ティースを構 成した場合には、 ステ一夕ティース 5 5 aの先端部の周方向中心がステ —夕ティ一ス 5 5 aの平行部の周方向中心から偏移した形状となってい るものの、 平行部の側面 5 6 aが、 先端部の周方向突出端部 5 7 aより も周方向にはみ出した状態、 すなわち、 + < ( Θ + a ) の関係と なり、 ステ一夕ティース 5 5 aの平行部とステ一夕ティース 5 5 aの先 端部との境界部分 5 8の面積が小さくなる。 この境界部分 5 8の面積が 小さくなると、 ステ一夕ティース 5 5 aに発生する磁束 5 9が絞り込ま れて磁束が飽和しやすくなり、 かつ、 磁束 5 9の方向が急激に変化する とになり、 その変化が急激になる境界部分 5 8での磁気抵抗が増して磁 束の流れが非効率的となる。 したがって、 平行部と先端部との偏移の関 係が、 + < ( θ + α ) の関係となる形状は好ましくない。 ステ一夕コアとステ一夕コアの複数のステ一夕ティースに卷回された 卷線からなるステ一夕の口一夕対向面に、 微小な隙間を有して回転軸中 心の周りに回転可能で、 かつ、 ロー夕コアと口一夕コアに周方向に等間 隔に埋め込まれた複数の永久磁石とからなるロー夕のステ一夕対向面が 対向した構成については、 前述の実施の形態 1 と同様である。
なお、 本実施の形態においては、 3叉 ( 1グループにおけるステ一夕 ティース数が 3本) のモ一夕を例として説明したが、 実施の形態 1 にて 述べたように n叉 (ただし、 n =正の整数) とした構成も実現可能であ る。 その場合、 叉数の偶数 ·奇数にかかわらず、 1グループにおける両 端の 2本のステ一夕ティースのみ、 すなわち、 同じグループにおいて他 のグループのステ一夕ティースと隣接するステ一夕ティ一スのみ、 先端 部の周方向中心を通る中心線が平行部の中心線から偏移した形状とすれ ばよい。 なお、 その際、 先端部の周方向中心を通る中心線と、 平行部の 周方向中心を通る中心線とが、 ≥ ( Θ + ) の範囲内において 偏移した形状とすることが好ましい。
以上のように本実施の形態 2によれば、 前述の実施の形態と同様に複 数のステ一夕ティースを 3つのグループに分け、 同じグループ内の中央 にあるステ一夕ティースの両側に隣接したそれそれのステ一夕ティース の卷線が卷かれる平行部の回転軸中心を通る中心線をそれそれのステー 夕ティースのステ一夕ヨークとは反対側の先端部の周方向中心を通り、 かつ、 回転軸中心を通る中心線から偏移させたことにより、 隣接するス テ一夕ティースで形成されるスロッ ト空間を大きくすることができ、 そ れそれのステ一夕ティ一スに巻かれる卷線の卷数を増加させることがで きる。 また、 前述の実施の形態 1 と同様に、 口一夕のステ一夕対向面と ステ一夕側側面との距離がステ一夕側側面の端部よりも中央部の方が大 きくなるような形状の複数の永久磁石が埋め込まれたロー夕 (以下、 永 久磁石埋込型ロー夕と言う) の構成とすることによって、 マグネッ ト ト ルク以外にリラクタンス トルクも活用することになり、 よ り一層高い ト ルクを発生させることができる。 そして、 同じグループ内にあって隣接 するステ一夕ティ一スの巻線の卷回方向が互いに逆方向となった構成と することによって、 発生電圧の歪を抑えることができ、 したがって、 鉄 損も抑えられ、 非常に効率のよいモー夕を実現することができる。
(実施の形態 3 )
図 8〜図 9は、 本発明の実施の形態 3のモ一夕を説明するための図で あり、 図 8は回転軸中心軸に S直な面で断面にしたステ一夕コアとその 内周面に対向する口一夕の概略断面図、 図 9はステ一夕コアを構成する ステ一夕ティ一ス形状を説明するためのステ一夕コアの部分拡大図であ o
図 8において、ステ一夕コア 7 1はステ一夕ティース 7 2 a , 7 2 b , 7 2 c、 ステ一夕ティース 7 3 a , 7 3 b , 7 3 c、 およびステ一夕テ ィ一ス 7 4 a , 7 4 b, 7 4 cと、 ステ一夕ヨーク 7 5 とからなり、 前 述の実施の形態 1 と同様に、 複数のステ一夕ティース 7 2 a〜 7 4 cが それそれ 3つのグループ 7 2、 グループ 7 3およびグループ 7 4に分け られる。 同じグループ内では、 隣接するステ一夕ティ一スに卷回される 巻線 7 6の卷回方向が互いに逆方向になるように構成されている。 ステ 一夕コア 7 1 と、 ステ一夕コア 7 1のそれそれのステ一夕ティース 7 2 a〜 7 4 cに卷かれた卷線 7 6 とでステ一夕 7 7が構成され、 それそれ のステ一夕ティースのステ一夕ヨークとは反対側の先端部の口一夕対向 面に小さな隙間を有して回転軸中心◦の周りに回転可能に永久磁石埋込 型ロー夕 7 8のステ一夕対向面が対向している。 また、 前述の実施の形 態 1 と同様に、 それそれ同じグループ内にあって隣接するステ一夕ティ —スの間に形成されるスロ ッ ト開口部の角度]!と、 それそれ異なるグル ープにあって隣接するステ一夕ティースの間に形成されるスロッ ト開口 部の角度 Hとの関係が前述の( 1 )式を満足するように設定されている。 図 9は、 図 8のたとえばグループ 7 2を取り出したステ一夕コア 7 1 の部分拡大図である。 以下、 図 9について説明する。 ステ一夕コア 7 1 を構成するステ一夕ティ一ス 7 2 aのステ一夕ヨークとは反対側の先端 部 8 1のそれそれの周方向端部において、 ロー夕 7 8のステ一夕対向面 8 2に対向するステ一夕ティース 7 2 aの先端部 8 1の口一夕対向面が. それそれの周方向端部の近傍で口一夕 7 8のステ一夕対向面 8 2から離 れるような切除部 8 3 , 8 4を有する形状に形成されている。 なお、 切 除部 8 3 と切除部 8 4のそれそれの大きさはほぼ同等になるように形成 するのがよい。 すべてのステ一夕ティースの先端部が同様な形状を有す るように形成されてステ一夕コア 7 1を構成している。 それそれのステ —夕ティ一スの先端部をこのような形状にすることによ り、 それそれの ステ一夕ティースにおいて急激な磁界変化を緩和することができるため、 逆起電圧の波形を一層正弦波に近づけることになり、 トルクリ ツプルお よびコギングトルクを低減させる。
また、 それそれのステ一夕ティースの形状、 配置を、 前述の実施の形 態 2と同様のステ一夕ティースの形状、 配置とすることによって、 前述 の実施の形態 2 と同様の効果が得られることは言うまでもないことであ
Ό o
以上のように本実施の形態 3によれば、 ステ一夕ティ一スの先端部の 口一夕対向面が、 その先端部のそれそれの周方向端部近傍においてロー 夕のステ一夕対向面から離れるような形状を有するように、 ステ一夕コ ァを構成するそれそれのステ一夕ティ一スを形成することによって、 そ れそれのステ一夕ティースにおいて急激な磁界変化を緩和することがで きるため、 高トルクを発生させることができると同時に、 発生電圧の波 形をより正弦波に近づけ、 トルクリ ップルおよびコギングトルクを低減 させることができ、 さらに、 発生電圧の歪を抑えることができ、 したが つて、 鉄損も抑えられ、 非常に効率のよいモー夕を実現することができ る o
(実施の形態 4 )
図 1 O Aは、 本発明の実施の形態 4のモー夕を説明するための図であ り、 ステ一夕コアの概略上面図である。
図 1 O Aに示すように、 ステ一夕コア 9 1は、 ステ一夕ティース 9 2 a , 9 2 b , 9 2 c、 ステ一夕ティ 一ス 9 3 a , 9 3 b , 9 3 c、 およ ぴステ一夕ティース 9 4 a , 9 4 b , 9 4 c と、 これらステ一夕ティ一 ス 9 2 a〜 9 4 cを一方の端部で連結するステ一夕ヨーク 9 5 とで構成 されている。 前述の実施の形態 1 と同様に、 それそれのステ一タティ一 ス 9 2 a〜 9 4 cを 3つのグループ 9 2、 グループ 9 3およびグループ 9 4に分け、 同一グループ内において隣接するステ一夕ティースに巻か れた卷線 (図示せず) の卷回方向が互いに逆方向であり、 また、 それそ れ同じグループ内にあって隣接するステ一夕ティースの間に形成される スロッ ト開口部の角度 と、 それそれ異なるグループにあって隣接する ステ一夕ティースの間に形成されるスロ ヅ ト開口部の角度 Hとの関係が 前述の ( 1 ) 式を満足するように設定されており、 さらに、 それそれの ステ一夕ティース 9 2 a〜 9 4 cの口一夕対向面に小さな隙間を有して 永久磁石埋込型口一夕 (図示せず) が対向している。
ここで、 グループ 9 2のステ一夕ティ一スについて詳細を説明する。 グループ 9 2の中央部にあるステ一夕ティース 9 2 bのステ一夕ヨーク 9 5 とは反対側の先端部の口一夕 (図示せず) に対向する面に、 その口 一夕対向面の周方向の長さが略 3等分されるような形でほぼ矩形形状の 凹部 9 6が形成されている。 ステ一夕ティース 9 2 bに凹部 9 6を形成 することによって、 ステ一夕ティース 9 2 bに巻かれた卷線(図示せず) によってステ一夕ティース 9 2 bがたとえば S極に励磁されたとき、 凹 部 9 6は見掛け上 N極であるかのように振舞う。 したがって、 凹部 9 6 によってステ一夕ティース 9 2 bの先端部における磁極が、 見掛け上 S 極, N極および S極に細分化されたものとなる。 他のグループ 9 3およ びグループ 9 4のそれそれの中央部にあるステ一夕ティース 9 3 bおよ びステ一夕ティ一ス 9 4 bもステ一夕ティ一ス 9 2 bと同様の凹部が形 成されており、 それそれについても、 その先端部における磁極が見掛け 上 S極, N極, S極に細分化される。 これによつて、 高トルクを発生さ せると同時に、 トルクリ ップルを小さ く抑えることができる。
なお、凹部は 1個のステ一夕ティースに 1個の凹部に限ることはなく、 図 1 0 Bに示すように、 ステ一夕ティース 9 7の先端部に 2個の凹部 9 8 a , 9 8 bを形成してもよいし、 さらに、 3個以上であってもよい。 また、 凹部の形状は、 矩形形状に限るものではなく、 図 1 0 Cに示すよ うに、 たとえば円弧状の凹部 9 9であってもよく、 当然複数個の円弧状 凹部でもよい。 また、 それそれのグループの中央部にあるそれそれの先 端部に限ることはなく、 他のステ一夕ティースに同様の凹部を設けても よいのは言うまでもないことである。
なお、 前述の実施の形態 2 と同様のステ一夕ティースの配置、 あるい は、 前述の実施の形態 3 と同様の先端部の形状を、 本実施の形態 3のそ れそれのステ一夕ティ一スの形状とすることによって、 同様の効果が得 られることは言うまでもない。
また、 上述の実施の形態 1〜実施の形態 4において、 口一夕がステー 夕の内側にある構造のいわゆるインナ一口一夕型モー夕について説明し ているが、 口一夕がステ一夕の外側にあるいわゆるアウターロー夕型モ 一夕の構造としても同様の効果が発揮されるのは言うまでもない。
以上のように本実施の形態 4によれば、 3つのグループのそれそれの 中央部にあるステ一夕ティ一スに凹部を形成することによって、 前述の 実施の形態 1 と同様に、 マグネッ ト トルク以外にリラクタンス トルクも 活用して、 高トルクを発生させることができ、 同時に、 トルクリ ップル も抑えることができ、 さらに、 発生電圧の歪を抑えることができ、 した がって、 鉄損を抑え、 永久磁石の減磁も抑止することができて、 非常に 効率のよいモー夕を実現することができる。
(実施の形態 5 )
図 1 1は、本発明の実施の形態 5のモー夕を説明するための図であり、 ステ一夕コアの概略上面図である。
図 1 1 に示すように、 ステ一夕コア 1 0 1はステ一夕ティ一ス 1 0 2 a, 1 0 2 b , 1 0 2 c、 ステ一夕ティース 1 0 3 a , 1 0 3 b, 1 0 3 c、 およびステ一夕ティ一ス 1 0 4 a , 1 0 4 b , 1 0 4 cと、 これ らステ一夕ティース 1 0 2 a〜 l 0 4 cの一方の端部を連結したステ一 夕ヨーク 1 0 5 とで構成されており、 前述の実施の形態 1 と同様に、 そ れらのステ一夕ティース 1 0 2 a〜 l 0 4 cが 3つのグループ 1 0 2 , 1 0 3 , 1 0 4のそれそれに分けられている。 また、 それそれのステ一 夕ティ一ス 1 0 2 a〜 l 0 4 cの互いに隣接するステ一夕ティース間に は卷線 (図示せず) が卷回される空間となるスロヅ ト 1 0 6が形成され る。 ステ一夕ティース 1 0 2 aの平行部のそれぞれの側面 1 0 2 a L , 1 0 2 a Rと、 それらに連結したそれそれのステ一夕ヨーク 1 0 5の口 —夕側の側面 1 0 5 a L , 1 0 5 a Rのなすそれそれの角度は、 ステ一 夕ティース 1 0 2 aに卷かれる卷線が整列卷きされ、 スロッ ト空間に対 してより多くの卷線卷数を可能とするために、 ほぼ直角となるように形 成されている。 また、 ステ一夕ティース 1 0 2 b〜 1 0 4 cのそれそれ の平行部における側面と、 ステ一夕ヨーク 1 0 5のそれそれの口一夕側 の側面とのなす角は、 ステ一夕ティース 1 0 2 aと同様に、 それそれほ ぼ直角である。 ステ一夕ヨーク 1 0 5の口一夕側の側面 1 0 5 a Rと側 面 1 0 5 b Lとは交点 1 0 5 a bにおいて交叉し、 扁平したほぼ V字状 の形状を有し、 スロッ ト 1 0 6を構成するステ一夕ヨーク 1 0 5の口一 夕側の側面 1 0 7を形成する。 さらに、 ステ一夕ヨーク 1 0 5のロー夕 側の側面 1 0 Ίに相対する外側の側面部 1 0 7 sは、 ステ一夕ヨーク 1 0 5のロー夕側の側面 1 0 5 a Rと側面 1 0 5 b Lにそれそれ平行で、 かつ、 口一夕回転軸中心 0を中心とした円 1 1 0の外周に接する線によ り、 それそれ側面 1 0 7 a R、 側面 1 0 7 b Lが形成される。 なお、 こ のとき、 側面部 1 0 7 sにおける、 側面 1 0 5 a Rと側面 1 0 5 b Lと にそれそれ平行な面 1 0 7 a R、 1 0 7 b Lが互いに交わる交点 1 0 8 aに、 アールをつけた形状としても良い。
一方、 隣り合うグループ 1 0 3およびグループ 1 0 4にあって、 それ それ隣り合ったステ一夕ティース 1 0 3 a , 1 0 4 c間のスロヅ ト 1 0 6におけるステ一夕ヨーク 1 0 5の口一夕側の側面 1 0 9は、 前述の側 面 1 0 5 a Rの長さとそれそれほぼ等しい長さを有する側面 1 0 5 a L と側面 1 0 5 c R、 およびこれら側面 1 0 5 a Lと側面 1 0 5 c Rとを 結ぶ側面 1 0 5 cから形成される。 ここで、 ステ一夕ヨーク 1 0 5の側 面 1 0 9に相対し、 スロッ ト 1 0 6 とは反対側に位置する外側の側面部 1 0 9 sは、 ステ一夕ヨーク 1 0 5の側面 1 0 5 a Lに平行で、 かつ、 ロー夕回転軸中心 0を中心とした円 1 1 0の外周に接する側面 1 0 9 a Lと、 ステ一夕ヨーク 1 0 5の側面 1 0 5 c Rに平行で、 かつ、 回転軸 中心 0を中心とした円 1 1 0の外周に接する側面 1 0 9 c R、 ならびに 側面 1 0 5 cに平行な側面 1 0 9 cから形成される。 このとき、 側面 1 0 5 c と側面 1 0 9 cとの間隔は、 側面 1 0 5 a Lと側面 1 0 9 a Lと の間隔 (側面 1 0 5 c Rと側面 1 0 9 c Rとの間隔とも同じ) と同一の 間隔になるように形成される。 このように形成することにより、 前述の 側面部 1 0 7 sにおける側面 1 0 7 a Rと側面部 1 0 9 sにおける側面 1 0 9 a Lとが一直線になる。 なお、 側面 1 0 9 a Lと側面 1 0 9 cと が交差する交点 1 0 8 b、 ならびに側面 1 0 9 c Rと側面 1 0 9 cとが 交差する交点 1 0 8 cに、 前述の交点 1 0 8 aと同様にアールをつけた 形状としても良い。
それそれのステ一夕ティース間に形成されるそれそれのスロッ トに相 対するステ一夕ヨークの口一夕側とは反対側の側面を、 上述と同様に形 成することによって、 ステ一夕ヨークの幅 wは全周にわたってほぼ等し い幅を有することになる。 このとき、 ステ一夕ヨークの幅 wとステ一夕 ティースの平行部の幅 Wとの関係を、
W X 1 / 2≤w≤Wx 3/2
の範囲とすることが望ましい。
また、 スロッ ト 1 0 6に対向しているステ一夕ョ一ク 1 05のロー夕 (図示せず) 側とは反対側の側面部 1 0 7 sおよび側面部 1 0 9 sは、 それそれのステ一夕ティース 10 2 a〜 l 04 cにおけるステ一夕ョ一 ク 1 0 5の口一夕側とは反対側の側面に内接する回転軸中心 0を中心と した円 1 1 0より、 口一夕側とは反対側 (半径方向外側) の方向に突出 した形状になっている。
このようにスロッ ト 1 0 6に対応してロー夕側とは反対側のステ一夕 ヨーク 1 0 5の側面部 1 07 s, 1 0 9 sを口一夕とは反対側の方向に 突出した形状になるようにし、 かつ、 ステ一夕ヨークの幅 wを全周にわ たってほぼ等しいものになるようにすることによって、 磁気抵抗のバラ ンスをよく し、 ほぼ均一な磁束を発生させ、 安定した効率のよい磁界を 得ることができる。
上述のステ一夕コァ 1 0 1を用いて、 ステ一夕コア 1 0 1を構成する 複数のステ一夕ティース 1 0 2 a〜 l 04 cを 3つのグループに分け、 同一グループ内において隣接するステ一夕ティ一スに巻かれた卷線 (図 示せず) の卷回方向が互いに逆方向であり、 また、 それそれ同じグルー プ内にあって隣接するステ一夕ティースの間に形成されるスロッ ト開口 部の角度 hと、 それそれ異なるグループにあって隣接するステ一夕ティ —スの間に形成されるスロヅ ト開口部の角度 Hとの関係が前述の ( 1 ) 式を満足するように設定されており、 さらに、 それそれのステ一夕ティ —ス 1 02 a〜 1 04 cの内周面に小さな隙間を有して永久磁石埋込型 ロー夕 (図示せず) が対向している構成は前述の実施の形態 1 と同様で ある。
なお、 前述の実施の形態 2〜実施の形態 4におけるステ一夕コアのそ れそれのステ一夕ティ一スの形状あるいは配置を適用することができる のは言うまでもない。
また、 上述の実施の形態 1〜実施の形態 5において説明されたような ステ一夕と口一夕の構成は、 口一夕を回転駆動することによって周知の ようにほぼ正弦波波形の電圧を発生することになり、 効率のよい発電機 となることは言うまでもない。
以上のように本実施の形態 5によれば、 複数のステ一夕ティ一ス 1 0
2 a〜 l 0 4 c と、 幅がほぼ均一なステ一夕ヨーク 1 0 5 とによりステ
—夕コア 1 0 1を構成することによつて、磁気抵抗のバランスをよく し、 ほぼ均一な磁束を発生させ、安定した効率のよい磁界を得ることができ、 かつ、前述の実施の形態 1 と同様に、高トルクを発生させることができ、 同時に、 発生電圧の歪を小さく して鉄損を抑え、 永久磁石の減磁も抑止 することができ、 非常に効率のよいモ一夕を実現することができる。
(実施の形態 6 )
以下に、 本発明の実施の形態 6について説明する。
本発明のモー夕は上述した実施形態では説明の便宜上内転型モー夕 (インナ一口一夕型モー夕) で説明したが、 外転型モー夕、 いわゆるァ ウタ—ロー夕型モ—夕でも同様の効果が得られる。 以下に、 このァゥ夕
—口一夕型モ一夕の実施形態を図 1 2に示す。 口一夕とステ一夕の位置 関係は内外が逆になつただけで、 他のものは基本的に同一である。 ァゥ 夕—ロー夕型モ—夕は、 大型のものは作りにくいが、 卷線を施すステ一 夕の開口部が外向きとなるため、 量産上線巻がしゃすいという特徴があ る。
図 1 2において、 1 1 0はステ一夕、 1 1 1, 1 1 2, 1 1 3はそれ それ同相の電圧が印加される卷線が卷回された複数のステ一夕ティ一ス を有するグループであり、 1 14は外転磁石、 1 1 5は磁石の固定フレ —ムであり、 1 1 6は磁石 1 14とフレーム 1 1 5とからなる口一夕で ある。 通常、 フレーム 1 1 5は磁石ヨークも兼ねている。 ステ一夕ティ —ス l l l a、 1 1 1 b, 1 1 1 cとステ一夕ティース 1 1 2 a、 1 1 2 b、 1 1 2 c及びステ一夕ティース 1 1 3 a、 1 1 3 b、 1 1 3 cは それそれ上記の 3グループに区分された U、 V、 W相に相当する。 ここ でステ一夕 1 1 0は外部との固定板に結合され、 ロー夕 1 1 6は軸、 軸 受けを介してステ一夕 1 1 0と回転自在に結合される。 1 17はステ一 夕卷線である。
なお、 図 1 2では内転型モ一夕で例として取り上げた埋め込み磁石型 の構成、 いわゆる I P Mモー夕を例にとって説明しているが、 表面磁石 型モー夕、 いわゆる S PMモ一夕とすることも可能であることはいうま でもない。
(実施の形態 7 )
以下に、 本発明の実施の形態 7について説明する。
上述してきた説明ではブラシレスタイプモ一夕を例にとって説明して いるが、 ブラシ整流子付きモ一夕でも同様の構成が可能であり、 上述し た実施形態と同様の効果が得られる。 本実施形態はまさにその構成にて 実現されるものである。 ブラシ整流子付きモー夕はアウター口一夕ブラ シレスモー夕と似た構成であり、 外部に磁石、 内部に卷線を有するステ —夕を配することが一般的である。 ただ、 本実施形態はアウター口一夕 ブラシレスモー夕と異なり、 回転する部分は内側に位置する卷線側であ り、 このため巻線にブラシ整流子を介して給電する機構を必要とする。 以上の構成を用いた S P Mブラシ整流子付きモ一夕の例を図 1 3に示す, 図 1 3において、 1 1 8は口一夕、 1 1 9, 1 20 , 1 2 1はそれそ れ同相の電圧が印加される卷線が卷回される複数のステ一夕ティ一スを 有するグループ、 1 2 2は磁石、 1 2 3は磁石の固定フレームであり、
1 2 4は磁石 1 2 2とフレーム 1 2 3 とからなるステ一夕である。通常、 フレーム 1 2 4は磁石ヨークも兼ねている。ステ一夕ティ一ス 1 1 8 a、 1 1 8 b、 1 1 8 cとステ一夕ティ一ス 1 1 9 a、 1 1 9 b、 1 1 9 c 及びステ一夕ティース 1 2 0 a、 1 2 0 b, 1 2 0 cはそれそれ上記の 3グループに区分された U、 V、 W相に相当する。 1 2 6は給電のため のブラシ、 1 2 7は整流子、 1 2 8は回転軸、 1 2 9はブラシ保持器、
1 3 0は給電線である。 ステ一夕 1 2 4は外部との固定板 (図示せず) に結合され、 口一夕 1 1 8は回転軸 1 2 8、 軸受け (図示せず) を介し て、 ステ一夕 1 2 4と回転自在に結合される。
(実施の形態 8 )
以下に、 本発明の実施の形態 8について説明する。
モ一夕の軽量化のためにアルミまたはアルミ合金を卷線に使用するこ とは一般的であるが、 通常、 モー夕に使用する銅線をアルミ線に変更し ようとする場合、 アルミ線の抵抗値は銅線の約 1.6倍であるため、 モー 夕の温度上昇を変えないようにするためには、 ステ一夕口一夕部を銅線 モー夕の約 2 6 %増しの体格とする必要がある。 本発明のモー夕は体積 当たりの トルクが通常構成のモー夕の 2倍程度と高く設計することが可 能であるため、 アルミ線またはアルミ合金卷線を使用しても、 通常の銅 線モー夕より小型化が可能であり、 体積、 重量、 コス ト共に低減するこ とができる。
アルミ線またはアルミ合金線は半田付け性が悪い、 この欠点を補う目 的で、 本実施形態においては、 銅を含まない半田付け性の良好な金属、 例えば鉄、 ニッケル、 亜鉛、 錫または銀、 あるいはこれら 2つ以上の組 み合わせ、 もしくはこれらの金属を主成分とする合金でアルミ線または アルミ合金線を被覆したものを使用する。
図 1 4は上記アルミ線またはアルミ合金線の断面を示すものである。 1 3 1はアルミ線またはアルミ合金線で、 モー夕の卷線主要部であり、 1 3 2はこのアルミ線またはアルミ合金線の表面を覆った、 鉄、 ニッケ ル、 亜鉛、 錫または銀、 あるいはこれら 2つ以上の組み合わせ、 もしく はこれらの金属を主成分とする合金であり、 1 3 3は絶縁被覆膜である。 上記した金属または合金は、 アルミ線またはアルミ合金線をモ一夕に 卷線した際の端部のみを覆うようにしてもかまわない。 これらの金属ま たは合金は、 卷線前または卷線後に焼き嵌めまたは力シメでアルミ線ま たはアルミ合金線に固定することもできる。 この金属または合金は円筒 状または多角形上の断面を持つものであり、 軸方向に途切れていてもか まわない。 アルミ線またはアルミ合金線を覆う上記金属は、 その目的か らして卷線の結合部である端部を覆っていれば良い訳であるから、 モ一 夕に巻線した際の端部に前記金属または合金を焼き嵌め、 またはカシメ で固定したものを使用すればいい。 この例を図 1 5 A〜図 1 5 Bを用い て説明する。 図 1 5 A〜図 1 5 Bにおいて、 1 3 4 aは焼き嵌めで固定 された金属環であり、 1 3 4 bはカシメ固定された金属環、 1 3 5はそ の力シメ部を示す。 なお、 この金属は切れ目のない環状物である必要は なく、 環の軸方向に一部または全部に切れ目があっても同様の効果を得 ることは可能である。
(実施の形態 9 )
以下に、 本発明の実施の形態 9について説明する。
ブラシレスモ一夕は駆動回路用基板を内蔵するものが多い。 よって、 本実施の形態 9では、 この回路基板の配線用金属を通常の銅以外の金属 で、 上述してきた実施形態にて述べたような半田性の良好なものを使用 することによって、 他の構造に比べて小型でかつ完全に銅を含まない回 路基板内蔵型ブラシレスモー夕を実現する。 また、 ブラシ整流子付きモ 一夕の場合は、 通常、 ブラシ整流子に含まれる銅成分を含まないものを 使用することによって、 完全に銅を含まないモー夕を実現することがで きる。 また、 コネクタを持つ構造のモー夕についても、 同様にコネクタ に銅を含まない金属を使用することによって、 完全に銅を含まないモー 夕を実現することができる。
(実施の形態 1 0 )
以下に、 本発明の実施の形態 1 0について説明する。
モー夕にはリ一ド線をつけた構造のものもあるが、 完全に銅を含まな いモー夕とする為には、 このリード線もアルミ線またはアルミ合金線で 構成する必要がある。 このとき、 銅を含まない半田付け性の良好な金属 でアルミ線またはアルミ合金線の表面を被覆したものを使用するか、 端 部に銅を含まない半田付け性の良好な金属でアルミ線またはアルミ合金 線をカシメまたは焼き嵌めで装着する。 前述の実施の形態と同様に、 こ の金属は円筒状または多角形上の断面を持つものであればよく、 軸方向 に途切れていてもかまわない。
図 1 6 A〜図 1 6 Cにおいて、 1 3 6は上述した金属で覆われたアル ミ線またはアルミ合金線であり、 モータに給電のためのリード線として 使用される。 1 37は絶縁被覆、 1 3 8は 1 3 2または 1 34 a、 1 3 4 bで覆われたアルミ線であり、 巻き付け半田部 1 3 9で半田付けされ る。 1 40はアルミまたはアルミ合金リード線の心線、 1 4 1は心線 1 40にカシメまたは焼き嵌め固定された半田付け性の良好な金属璟、 1 4 2はアルミまたはアルミ合金リ一ド線の心線 1 40と卷線 1 3 8を固 定するカシメ用の璟である。
なお、 上記した説明では、 アルミ線またはアルミ合金卷線を例にとつ て説明したが、 銅線を使わないモー夕という意味ではアルミ以外の金属 や合金を使用することも可能なことはいうまでもない。
以上、 実施の形態 1〜実施の形態 1 0について説明した。 なお、 上記 実施の形態 1〜実施の形態 1 0のモータジェネレータを P EV (Pu r e E l e c t r i c Ve h i c l e :純粋電気自動車) や、 H E V (H b r i d E l e c t r i c V e h i c l e :ノヽィプリ ヅ ド電 気自動車)、 F C E V ( F u e 1 C e l l E l e c t r i c V Θ h i c 1 e :燃料電池自動車) 等の自動車駆動用モー夕として使用するこ とにより、 従来のように高圧系と低圧系の 2種類のモー夕ジェネレータ を備える必要や D C— D Cコンバ一夕を別途備える必要がなくなるので. 省スペースでかつ低コス トな電気自動車駆動システムにすることができ. 従って、 低コス トで、 車室内をより広く活用することのできる電気自動 車を提供することができる。 このことは、 家電機器、 ロボッ ト等の内部 に設けられる、 機器やロボヅ 卜の駆動用モー夕として用いた場合にも同 様のことがいえ、 同様の効果が発揮される。 産業上の利用可能性
以上のように本発明によれば、 埋込み永久磁石型集中卷きモータとし ての高トルクを発生させるとともに、 ステ一夕ティースの各グループに おいて、 隣り合ったステ一夕ティースの卷線が互いに異なる極性である ことから、 磁界分布の偏重の緩和と、 モー夕駆動時の端子間発生電圧の 歪を抑えることに適しており、 渦電流の発生を低減させて鉄損の発生を 抑制することにも適している。 また、 永久磁石での渦電流による熱発生 が小さ くなることから、 永久磁石の減磁を抑止することができ、 非常に 効率の高いモ一夕を実現することにも適している。
さらに、 モー夕卷線に銅線を用いず、 かつモー夕体積が通常の銅線モ —夕より大きくならず、 また誘起電圧波形の歪みも少なく効率のいい、 省資源性に優れたモー夕を実現することができることから、 ハイプリッ ド自動車のエンジン内蔵モー夕や、 電気自動車用主動力モータ、 さらに は車載用の各種モ一夕、 例えば空調用モー夕の省銅線化を実現するうえ で有用である。

Claims

請 求 の 範 囲
1. 複数のステ一夕ティ一ス ( 2 a〜4 c )、 前記複数のステ一 夕ティース ( 2 a〜4 c) を連結するステ一夕ヨーク ( 5 ) からなるス テ一夕コア ( 1 )、 および前記複数のステ一夕ティ一ス (2 a〜 4 c) の それそれに卷かれた卷線 ( 6 ) からなるステ一夕 (7 ) と、 ロー夕コア ( 9 ) と前記ロー夕コア ( 9) に埋め込まれた複数の永久磁石 ( 1 0) からなる口一夕 (8 ) とを備え、
同相の電圧が印加される卷線 ( 6 ) が卷回された隣接する複数のステ —夕ティ一ス ( 2 a〜2 c、 3 a〜 3 c、 4 a〜 4 c ) により構成され たグループ ( 2、 3、 4) を複数備え、 同じグループ ( 2、 3、 4) 内 において隣接する複数のステ一夕ティ一ス ( 2 a〜2 c、 3 a〜3 c、 4 a〜 4 c ) の巻線の卷回方向を互いに逆方向とし、 隣接する複数のグ ループ ( 2、 3、 4) にはそれそれに異相の電圧が印加されることを特 徴とするモー夕。
2. 3 s個 (ただし、 s =正の整数) のグループを備え、 各グ ループはそれそれ n個 (ただし、 n =正の整数) のステ一夕ティースに より構成されていることを特徴とする請求の範囲第 1項に記載のモー夕, 3. 前記ロー夕 ( 8) の極数を p、 前記ステ一夕ティースの総 数を tとし、 U ' V 'Wの 3相の卷線 1式を 1組とした卷線組数を s (た だし、 p、 t、 sは共に正の整数) としたときに、
p = 2 x ( s (± l + 3 k)) かつ p> t (ただし、 k=正の整 数)
の関係を満たすことを特徴とする請求の範囲第 2項に記載のモー夕。
4. それそれ同じグループ ( 2 ) 内にあって互いに隣接するス テ—夕ティース ( 2 a, 2 b、 2 b, 2 c) の間に形成されるスロッ ト 開口部の角度 hと、 それぞれ異なるグループ ( 2、 3 ) にあって互いに 隣接するステ一夕ティース ( 2 a、 3 c ) の間に形成されるスロッ ト開 口部の角度 Hとが
h<H≤ 3 h
の関係にあることを特徴とする請求の範囲第 3項に記載のモー夕。
5. 前記グループ内において異なるグループのステ一夕ティー スと隣接する、 各グループ ( 4 2 ) 内の両端に位置するステ一夕ティー ス ( 4 2 a ) のそれそれの先端部の周方向中心を通る中心線( 5 3 ) が、 前記各グループ ( 4 2 ) 内の両端に位置するステ一夕ティ一ス ( 4 2 a) のそれそれの平行部の周方向中心を通る中心線 ( 5 1 ) から周方向に偏 移した形状であることを特徴とする請求の範囲第 1項に記載のモー夕。
6. 前記各グループ内の両端に位置するステ一夕ティース ( 6 1 a、 6 1 c ) のそれそれの先端部の周方向端部 ( 6 7 ) が、 前記各グ ループ内の両端に位置するステ一夕ティース ( 6 1 a、 6 1 c ) のそれ それの平行部の幅方向内方に位置しない形状であることを特徴とする請 求の範囲第 5項に記載のモ一夕。
7. 前記ステ一夕コア ( 7 1 ) を構成する前記複数のステ一夕 ティ一ス ( 7 2 a) において、 前記ロー夕 ( 7 8 ) のステ一夕対向面 ( 8 2 ) に対向するそれそれのステ一夕ティース ( 7 2 a) の先端部の周方 向端部の近傍に、 前記口一夕 ( 7 8 ) のステ一夕対向面 ( 8 2 ) から離 れるように、 切除部 ( 8 3、 8 4 ) がそれそれ設けられたことを特徴と する請求の範囲第 1項に記載のモー夕。
8. 前記グループを構成する複数のステ一夕ティース ( 9 2 a 〜 9 2 c ) のうち、 少なく とも 1つのステ一夕ティ一ス ( 9 2 b ) の前 記ロー夕側にある先端部に、 少なく とも 1個の凹部 ( 9 6、 9 8 a、 9 8 b、 9 9 ) を設けたことを特徴とする請求の範囲第 1項に記載のモ一 タ。
9. 前記凹部 ( 9 6、 9 8 a、 9 8 b、 9 9 ) は、 少なく とも 矩形状および円弧状 ( 9 9 ) のいずれか一方の形状であることを特徴と する請求の範囲第 8項に記載のモ一夕。
1 0. 前記ステ一夕における前記ステ一夕ヨーク ( 1 0 5 ) の 口一夕側とは反対側の側面 ( 1 0 7 aR、 1 0 7 b L、 1 0 9 a L、 1 0 9 c R、 1 0 9 c ) が、 モ一夕の回転軸中心から前記複数のステ一夕 ティース ( 1 0 2 a〜 1 04 c) の口一夕側とは反対側の側面までを半 径とした円 ( 1 1 0 ) よりも口一夕側とは反対側に突出した形状で、 か つ、 前記複数のステ一夕ティ一ス ( 1 0 2 a〜 1 04 c) 間を連結する それそれのステ一夕ヨーク ( 1 0 5 ) の幅 wが前記ステ一夕コア ( 1 0 1 ) 全周にわたって等しいことを特徴とする請求の範囲第 1項に記載の モ一夕。
1 1. 前記ステ一夕ヨーク ( 1 0 5 ) の幅 wは、 前記ステ一夕 ティ一ス ( 1 0 2 a〜 1 04 c) の卷線が巻かれる平行部の幅 Wに対し て、
Wx l/2≤w≤Wx 3/2
の関係にあることを特徴とする請求の範囲第 1 0項に記載のモ一夕。
1 2. 前記口一夕 ( 8 ) が表面磁石型ロー夕であることを特徴 とする請求の範囲第 1項に記載のモー夕。
1 3. 前記ロー夕 ( 8) が埋め込み磁石型口一夕であることを 特徴とする請求の範囲第 1項に記載のモー夕。
1 . 前記ロー夕 ( 3 8) に備えられる複数の永久磁石 ( 3 6 ) とほぼ同じ形状を有し、 かつ、 前記永久磁石 ( 3 6) の厚さ ( 3 6 a) より小さな幅 ( 3 7 a) を有する複数のスリ ッ ト ( 3 7 ) が、 前記複数 の永久磁石 ( 3 6 ) のステ一夕側とは反対側に設けられた構成の口一夕 コア ( 3 5 ) を有することを特徴とする請求の範囲第 1項に記載のモー 夕。
1 5. 前記複数の永久磁石 ( 1 0 ) を備える前記ロー夕 ( 8 ) において、 それそれの永久磁石 ( 1 0 ) のステ一夕側側面 ( 1 0 a) と 前記ロータ ( 8 ) のステ一夕対向面 ( 8 a) との間の距離が、 前記複数 の永久磁石 ( 1 0 ) のそれそれの端部 ( 1 0 b、 1 0 c ) よりも中央部 ( 1 0 d) の方が大きい形状であることを特徴とする請求の範囲第 1項 に記載のモータ。
1 6. 前記ロータ ( 8 ) を構成する前記複数の永久磁石 ( 1 0 ) の形状は、 前記ロー夕 ( 8 ) のステ一夕対向面側 ( 8 a) とは反対の方 向に突出したほぼ V字状であることを特徴とする請求の範囲第 1 5項に 記載のモー夕。
1 7. 前記口一夕 ( 8 ) を構成する前記複数の永久磁石 ( 3 1 ) の形状は、 前記ロータ ( 8 ) の半径方向に垂直な直線状であることを特 徴とする請求の範囲第 1 5項に記載のモー夕。
1 8. 前記口一夕 ( 8 ) を構成する前記複数の永久磁石 ( 3 2 ) の形状は、 前記口一夕 ( 8 ) のステ一夕対向面側 ( 8 a) とは反対の方 向に突出した円弧状であることを特徴とする請求の範囲第 1 5項に記載 のモ一夕。
1 9. 前記口一夕 ( 8 ) を構成する前記複数の永久磁石 ( 3 4 ) の形状は、 前記ロー夕 ( 8 ) のステ一夕対向面側 ( 8 a) に突出し、 か つ、 前記ロー夕 ( 8 ) を構成する前記口一夕コア ( 3 3 ) の半径よりも 大きな半径を有する円弧状であることを特徴とする請求の範囲第 1 5項 に記載のモ一夕。
2 0. 前記各グループ ( 2、 3、 4 ) はそれそれ 3個のステ一 夕ティース ( 2 a〜 2 c、 3 a〜 3 c、 4 a〜 4 c ) で構成され、 総ス テ一夕ティース数が 9 s個、 口一夕極数が p = 1 0 sであることを特徴 とする請求の範囲第 3項に記載のモ一夕。
2 1. 前記口一夕 ( 8 ) がァゥ夕一ロー夕構造であることを特 徴とする請求の範囲第 1項に記載の乇一夕。
2 2. 前記口一夕 ( 1 1 8 ) に電機子卷線を設け、 前記電機子 卷線にブラシ ( 1 2 6)、 整流子 ( 1 2 7 ) を介して給電されることを特 徴とする請求の範囲第 1項に記載のモー夕。
2 3. 電機子巻線としてアルミ線またはアルミ合金線 ( 1 3 1 ) を用いたことを特徴とする請求の範囲第 1項に記載のモー夕。
24. 半田付け性の良好な金属または合金 ( 1 3 2 ) によって 表面が覆われたアルミ線またはアルミ合金線 ( 1 3 1 ) を電機子卷線と して用いたことを特徴とする請求の範囲第 1項に記載のモー夕。
2 5. 半田付け性の良好な金属または合金 ( 1 3 2 ) によって 端部表面が覆われたアルミ線またはアルミ合金線 ( 1 3 1 ) を電機子卷 線として用いたこと特徴とする請求の範囲第 1項に記載のモー夕。
2 6. 前記半田付け性の良好な金属または合金 ( 1 32 ) によ つて端部表面が覆われたアルミ線またはアルミ合金線 ( 1 3 1 ) におい て、 前記半田付け性の良好な金属または合金 ( 1 32 ) はカシメまたは 焼き嵌め固定されていることを特徴とする請求の範囲第 2 5項に記載の モー夕。
2 7. 回路基板を内蔵し、前記回路基板の配線パターンとして、 鉄、 ニッケル、 亜鉛、 錫または銀、 あるいはこれら 2つ以上の組み合わ せ、 もしくはこれらの金属を主成分とする合金を用いたことを特徴とす る請求の範囲第 1項に記載のモー夕。
2 8. ブラシ ( 1 2 6 ) や整流子 ( 1 2 7 ) として、 鉄、 ニヅ ケル、 亜鉛、 錫または銀、 あるいはこれら 2つ以上の組み合わせ、 もし くはこれらの金属を主成分とする合金またはこれらの金属と炭素の混合 物、 もしくは炭素を用いたことを特徴とする請求の範囲第 22項に記載 のモ一夕。
2 9. 鉄、 ニッケル、 亜鉛、 錫または銀、 あるいはこれら 2つ 以上の組み合わせ、 もしくはこれらの金属を主成分とする合金から構成 されるコネク夕を更に具備したことを特徴とする請求の範囲第 1項に記 載のモ一夕。
3 0. 半田付け性の良好な金属または合金 ( 1 3 2 ) によって 端部が被覆されたアルミ線またはアルミ合金線 ( 1 3 1 ) を給電用リ一 ド線として用いたことを特徴とする請求の範囲第 1項に記載のモ一夕。
3 1. 半田付け性の良好な金属または合金 ( 1 3 2 ) が端部に 力シメまたは焼き嵌め固定されたアルミ線またはアルミ合金線( 1 3 1 ) を給電用リード線として用いたことを特徴とする請求の範囲第 1項に記 載のモ一夕。
3 2. 前記半田付け性の良好な金属または合金( 1 32 ) とは、 鉄、 ニッケル、 亜鉛、 錫または銀、 あるいはこれら 2つ以上の組み合わ せ、 もしくはこれらの金属を主成分とする合金であることを特徴とする 請求の範囲第 24から第 2 6項および第 30から第 3 1項のいずれか 1 項に記載のモー夕。
3 3. 請求の範囲第 1項に記載のモー夕を自動車駆動用モー夕 として具備したことを特徴とする自動車。
34. 請求の範囲第 1項に記載のモー夕を自動車駆動用モ一夕 として具備したことを特徴とするハイプリ ッ ド自動車。
3 5. 請求の範囲第 1項に記載のモー夕を自動車駆動用モー夕 として具備したことを特徴とする電気自動車。
3 6. 請求の範囲第 1項に記載のモー夕を自動車駆動用モ一夕 として具備したことを特徴とする燃料電池電気自動車。
3 7. 請求の範囲第 1項に記載のモー夕を機器の駆動用モー夕 として具備したことを特徴とする家電機器。
3 8. 請求の範囲第 1項に記載のモー夕を駆動用モ一夕として 具備したことを特徴とするロボツ 卜。
PCT/JP2003/003905 2002-03-29 2003-03-27 Moteur WO2003084034A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN03801399.1A CN1579043B (zh) 2002-03-29 2003-03-27 电动机
US10/488,534 US6984909B2 (en) 2002-03-29 2003-03-27 Motor
EP03745431A EP1492216A4 (en) 2002-03-29 2003-03-27 ENGINE
AU2003236179A AU2003236179A1 (en) 2002-03-29 2003-03-27 Motor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-096447 2002-03-29
JP2002096447 2002-03-29
JP2002329454 2002-11-13
JP2002-329454 2002-11-13

Publications (1)

Publication Number Publication Date
WO2003084034A1 true WO2003084034A1 (fr) 2003-10-09

Family

ID=28677587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003905 WO2003084034A1 (fr) 2002-03-29 2003-03-27 Moteur

Country Status (5)

Country Link
US (1) US6984909B2 (ja)
EP (1) EP1492216A4 (ja)
CN (1) CN1579043B (ja)
AU (1) AU2003236179A1 (ja)
WO (1) WO2003084034A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1487089A2 (en) * 2003-06-13 2004-12-15 Matsushita Electronics Corporation Permanent magnet motor
US7288868B2 (en) 2003-08-27 2007-10-30 Matsushita Electric Industrial Co., Ltd. Motor generator

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3672919B1 (ja) * 2004-08-17 2005-07-20 山洋電気株式会社 永久磁石型回転モータ
KR100677280B1 (ko) * 2005-06-15 2007-02-05 엘지전자 주식회사 부등슬롯형 스테이터 및 이를 구비한 하이브리드 인덕션모터
US20100270100A1 (en) * 2006-02-02 2010-10-28 Hirotatsu Ikeno Electric Power Steering Device
DE102006016249A1 (de) * 2006-03-31 2007-10-04 Robert Bosch Gmbh Stator für eine Elektromaschine und Verfahren zur Herstellung
US9130418B2 (en) * 2006-12-15 2015-09-08 Valeo Equipements Electriques Moteur Direct current rotating electric machine with stator having magnetised structure
US7598645B2 (en) * 2007-05-09 2009-10-06 Uqm Technologies, Inc. Stress distributing permanent magnet rotor geometry for electric machines
US7969058B2 (en) * 2007-06-07 2011-06-28 GM Global Technology Operations LLC Permanent magnet motor with stator having asymmetric slots for reducing torque ripple
EP3540915B1 (en) * 2007-11-15 2022-05-11 Mitsubishi Electric Corporation Permanent magnet type rotating electrical machine and electric power steering device
WO2009100022A2 (en) * 2008-02-01 2009-08-13 University Of Florida Research Foundation, Inc. A method and apparatus for motional/vibrational energy harvesting via electromagnetic induction
US20090224624A1 (en) * 2008-03-06 2009-09-10 Ajith Kuttannair Kumar Rotor structure for interior permanent magnet electromotive machine
CN101676135B (zh) * 2008-09-19 2014-11-19 德昌电机(深圳)有限公司 汽车发动机冷却系统及其马达
US8222788B2 (en) * 2009-09-01 2012-07-17 Emerson Electric Co. Electric machine
US8749192B2 (en) * 2009-09-03 2014-06-10 Protean Electric Limited Electric motor and electric generator
DE102009048116A1 (de) 2009-10-02 2011-04-07 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Bürstenloser Synchronmotor
JP5589345B2 (ja) * 2009-10-21 2014-09-17 富士電機株式会社 永久磁石式回転電機
JP5292271B2 (ja) * 2009-12-24 2013-09-18 株式会社日立製作所 永久磁石式回転電機
US8294320B2 (en) * 2010-02-17 2012-10-23 GM Global Technology Operations LLC Interior permanent magnet machine
EP2388890A1 (en) * 2010-05-19 2011-11-23 Siemens Aktiengesellschaft Generator with aluminium winding and wind turbine
JP5550525B2 (ja) * 2010-10-29 2014-07-16 ビアメカニクス株式会社 ガルバノスキャナ及びレーザ加工機
JP2012120326A (ja) * 2010-11-30 2012-06-21 Fujitsu General Ltd 磁石埋め込み型回転子、電動機及び電動機の組立方法
JP5620806B2 (ja) * 2010-12-22 2014-11-05 オークマ株式会社 電動機
KR20130021210A (ko) * 2011-08-22 2013-03-05 삼성전기주식회사 스위치드 릴럭턴스 모터
FR2987184B1 (fr) 2012-02-20 2016-07-29 Moteurs Leroy-Somer Rotor de machine electrique tournante a concentration de flux.
US20130293043A1 (en) * 2012-05-04 2013-11-07 General Electric Company Electro-mechanical rotating machine spacer block
US9246364B2 (en) * 2012-10-15 2016-01-26 Regal Beloit America, Inc. Radially embedded permanent magnet rotor and methods thereof
US9831727B2 (en) 2012-10-15 2017-11-28 Regal Beloit America, Inc. Permanent magnet rotor and methods thereof
US9362792B2 (en) 2012-10-15 2016-06-07 Regal Beloit America, Inc. Radially embedded permanent magnet rotor having magnet retention features and methods thereof
US9882440B2 (en) 2012-10-15 2018-01-30 Regal Beloit America, Inc. Radially embedded permanent magnet rotor and methods thereof
US9099905B2 (en) 2012-10-15 2015-08-04 Regal Beloit America, Inc. Radially embedded permanent magnet rotor and methods thereof
US20140154115A1 (en) * 2012-11-30 2014-06-05 Emerson Electric Co. Scroll Compressor Having A Single Phase Induction Motor With Aluminum Windings
EP2950431B1 (en) * 2013-01-24 2018-09-12 Mitsubishi Electric Corporation Synchronous electric motor
US9407194B2 (en) 2013-03-15 2016-08-02 Emerson Climate Technologies, Inc. System and method for protection of a compressor with an aluminum winding motor
JP6154637B2 (ja) * 2013-03-26 2017-06-28 株式会社ミツバ 磁石式発電機
CN103259351A (zh) * 2013-05-13 2013-08-21 广东威灵电机制造有限公司 永磁电机
CN105474512B (zh) * 2013-09-02 2018-02-13 三菱电机株式会社 同步电动机
DE102013109522B4 (de) * 2013-09-02 2015-06-18 Rausch & Pausch Gmbh Spaltrohrmotor mit hochdruckfestem Spaltrohr
JP6270876B2 (ja) * 2014-01-09 2018-01-31 三菱電機株式会社 同期電動機の駆動回路および、その駆動回路により駆動される同期電動機および、その同期電動機を用いた送風機および、その送風機を用いた空気調和機
WO2016031054A1 (ja) 2014-08-29 2016-03-03 三菱電機株式会社 圧縮機のモータ、冷凍サイクル装置
WO2016203579A1 (ja) * 2015-06-17 2016-12-22 三菱電機株式会社 永久磁石同期電動機
JP6391826B2 (ja) * 2015-06-17 2018-09-19 三菱電機株式会社 固定子コア及び永久磁石同期電動機
JP6662740B2 (ja) * 2016-08-31 2020-03-11 シナノケンシ株式会社 三相dcブラシレスモータ
WO2018044027A1 (ko) * 2016-09-05 2018-03-08 엘지이노텍 주식회사 스테이터 및 이를 포함하는 모터
EP3602744A1 (en) * 2017-03-31 2020-02-05 Koninklijke Philips N.V. Permanent magnet three phase machine for high speed applications having low vibration and low resistive losses
DE102017110841A1 (de) * 2017-05-18 2018-11-22 Minebea Mitsumi Inc. Elektromotor und Verfahren
EP3648319A4 (en) * 2017-06-30 2020-06-24 Guangdong Meizhi Compressor Co., Ltd. PERMANENT MAGNETIC MOTOR, COMPRESSOR AND COOLING SYSTEM
JP2019103294A (ja) * 2017-12-05 2019-06-24 マブチモーター株式会社 単相モータ
US11139722B2 (en) 2018-03-02 2021-10-05 Black & Decker Inc. Motor having an external heat sink for a power tool
US20200044497A1 (en) * 2018-08-06 2020-02-06 GM Global Technology Operations LLC Electric motor
KR102323758B1 (ko) * 2018-09-18 2021-11-08 재단법인대구경북과학기술원 스테이터 및 이를 포함하는 모터 어셈블리
DE102019207471A1 (de) 2019-05-22 2020-11-26 Robert Bosch Gmbh Stator einer elektrischen Maschine
EP3985836A4 (en) * 2019-06-11 2022-08-10 LG Innotek Co., Ltd. ENGINE
US11183890B2 (en) * 2019-10-02 2021-11-23 Fca Us Llc Permanent magnet vehicle traction motor having improved vibration, torque ripple, and total harmonic distortion
US11984763B2 (en) 2020-03-12 2024-05-14 Regal Beloit America, Inc. Electric machines having a radially embedded permanent magnet rotor and methods thereof
US11522427B2 (en) 2020-08-28 2022-12-06 Emerson Electric Co. Single phase induction motors including aluminum windings and high permeability low coreloss steel
US20220200414A1 (en) 2020-12-23 2022-06-23 Black & Decker Inc. Brushless dc motor having high power density for power tool
CN112803632B (zh) * 2021-01-22 2022-05-10 珠海格力电器股份有限公司 电机定子、电机

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123953A (ja) * 1988-10-31 1990-05-11 Mitsubishi Electric Corp 永久磁石電動機
JPH04101270U (ja) * 1991-02-20 1992-09-01 国産電機株式会社 フライホイール磁石発電機
JPH0638415A (ja) * 1992-07-22 1994-02-10 Hitachi Metals Ltd 永久磁石式ロータ
JPH0847793A (ja) * 1994-08-04 1996-02-20 Furukawa Electric Co Ltd:The Zn−Sn基合金、前記合金を被覆した電子機器用導体、及び前記電子機器用導体の製造方法
US6034460A (en) * 1996-04-12 2000-03-07 Hitachi, Ltd. Permanent magnet rotating electric machine and electrically driven vehicle employing same
US6044737A (en) * 1997-04-02 2000-04-04 Industrial Technology Research Institute Stator of and arc shaping method for brushless motor
JP2000152538A (ja) * 1998-11-06 2000-05-30 Matsushita Electric Ind Co Ltd 永久磁石埋め込みモータ
JP2000156958A (ja) * 1998-11-18 2000-06-06 Hitachi Ltd 永久磁石モータ及びそれを用いたディスク装置
WO2000072427A1 (en) * 1999-05-21 2000-11-30 Matsushita Electric Industrial Co., Ltd. Motor with permanent magnet
JP2001309625A (ja) * 2000-04-20 2001-11-02 Mitsubishi Electric Corp 永久磁石型電動機

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847526A (en) * 1985-07-11 1989-07-11 Nippon Ferrofluidics Corporation Variant-pole electric motor
JP2799033B2 (ja) 1990-03-05 1998-09-17 株式会社東芝 電気車制御装置
JPH04101270A (ja) 1990-08-20 1992-04-02 Nec Software Ltd N次元データ入力方式
JPH04289759A (ja) * 1991-03-18 1992-10-14 Matsushita Electric Ind Co Ltd ブラシレスモータ
JPH06105512A (ja) 1992-09-24 1994-04-15 Nippondenso Co Ltd 車両用電源装置
JPH07274421A (ja) 1994-03-25 1995-10-20 Mitsuba Electric Mfg Co Ltd 磁石発電機の回転子
JP3290542B2 (ja) 1994-06-20 2002-06-10 マツダ株式会社 電動車両のハイブリッド電源装置
JPH0993976A (ja) 1995-09-25 1997-04-04 Sony Corp 回転駆動装置
US6049153A (en) 1996-02-23 2000-04-11 Matsushita Electric Industrial Co., Ltd. Motor
JPH1042531A (ja) 1996-05-24 1998-02-13 Matsushita Electric Ind Co Ltd 電動機
JPH10234144A (ja) * 1997-02-19 1998-09-02 Hitachi Ltd 集中巻回転電機
KR100411500B1 (ko) * 1998-05-29 2003-12-18 가부시키가이샤 리코 직류 브러쉬리스 모터, 다면 스캐너 및 이를 포함하는 화상형성장치
JP2000245085A (ja) 1998-12-25 2000-09-08 Matsushita Electric Ind Co Ltd モータ
JP4134439B2 (ja) 1999-04-30 2008-08-20 トヨタ自動車株式会社 電力変換システム
JP2001204103A (ja) 2000-01-17 2001-07-27 Yanmar Diesel Engine Co Ltd 充電装置及び充電方法
JP4399943B2 (ja) * 2000-02-29 2010-01-20 株式会社富士通ゼネラル 永久磁石電動機
JP2002044887A (ja) 2000-07-19 2002-02-08 Nippon Densan Corp モータ用ロータ
DE10049883A1 (de) * 2000-10-10 2002-04-25 Bob Boboloski Gmbh Mehrphasenmotoren mit Wicklungen ohne Spulenüberlappung
DE20021736U1 (de) * 2000-12-21 2001-05-10 Hemead Elsayed Bürstenlose elektrische Maschine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123953A (ja) * 1988-10-31 1990-05-11 Mitsubishi Electric Corp 永久磁石電動機
JPH04101270U (ja) * 1991-02-20 1992-09-01 国産電機株式会社 フライホイール磁石発電機
JPH0638415A (ja) * 1992-07-22 1994-02-10 Hitachi Metals Ltd 永久磁石式ロータ
JPH0847793A (ja) * 1994-08-04 1996-02-20 Furukawa Electric Co Ltd:The Zn−Sn基合金、前記合金を被覆した電子機器用導体、及び前記電子機器用導体の製造方法
US6034460A (en) * 1996-04-12 2000-03-07 Hitachi, Ltd. Permanent magnet rotating electric machine and electrically driven vehicle employing same
US6044737A (en) * 1997-04-02 2000-04-04 Industrial Technology Research Institute Stator of and arc shaping method for brushless motor
JP2000152538A (ja) * 1998-11-06 2000-05-30 Matsushita Electric Ind Co Ltd 永久磁石埋め込みモータ
JP2000156958A (ja) * 1998-11-18 2000-06-06 Hitachi Ltd 永久磁石モータ及びそれを用いたディスク装置
WO2000072427A1 (en) * 1999-05-21 2000-11-30 Matsushita Electric Industrial Co., Ltd. Motor with permanent magnet
JP2001309625A (ja) * 2000-04-20 2001-11-02 Mitsubishi Electric Corp 永久磁石型電動機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1492216A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1487089A2 (en) * 2003-06-13 2004-12-15 Matsushita Electronics Corporation Permanent magnet motor
EP1487089A3 (en) * 2003-06-13 2005-04-27 Matsushita Electronics Corporation Permanent magnet motor
US7288868B2 (en) 2003-08-27 2007-10-30 Matsushita Electric Industrial Co., Ltd. Motor generator

Also Published As

Publication number Publication date
CN1579043A (zh) 2005-02-09
US20040245881A1 (en) 2004-12-09
EP1492216A1 (en) 2004-12-29
EP1492216A4 (en) 2011-03-23
US6984909B2 (en) 2006-01-10
CN1579043B (zh) 2010-05-05
AU2003236179A1 (en) 2003-10-13

Similar Documents

Publication Publication Date Title
WO2003084034A1 (fr) Moteur
JP7136272B2 (ja) 回転電機
US8643247B2 (en) Electric motor and reduction motor
US20210234415A1 (en) Rotating electric machine
JP2004215479A (ja) モータ
US20110025162A1 (en) Rotating Electrical Machine
WO2003100949A1 (fr) Moteur-generateur
EP2555395B1 (en) Dc motor
JP2001186738A (ja) 車両用交流発電機の固定子
JP2009118618A (ja) 車両用交流発電機及びそれを用いた自動車,車両用交流発電機の製造方法、及び車両用回転電機
JPWO2007088598A1 (ja) 回転電機
JP2018534901A (ja) 回転電機
JP2000166149A (ja) 車両用交流発電機の固定子
JP2014050207A (ja) 回転電機及びその製造方法
JP2009540781A (ja) 自動車用のオルタネータ
JP2010110111A (ja) 電動モータ
US20220320932A1 (en) Coil, and stator, rotor, and motor equipped with same, and manufacturing method for coil
JP2006280188A (ja) ステータおよびモータ
JP4468740B2 (ja) モータ
JP7091946B2 (ja) 回転電機
JP7031539B2 (ja) 回転電機
JP2001169517A (ja) コンデンサ電動機
JP5805046B2 (ja) 車両用電動機および車両用発電機
Yang et al. Flux-concentrated external-rotor switched flux memory machines for direct-drive applications
JP7081400B2 (ja) 回転電機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10488534

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038013991

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003745431

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003745431

Country of ref document: EP