JP4134439B2 - 電力変換システム - Google Patents

電力変換システム Download PDF

Info

Publication number
JP4134439B2
JP4134439B2 JP12345399A JP12345399A JP4134439B2 JP 4134439 B2 JP4134439 B2 JP 4134439B2 JP 12345399 A JP12345399 A JP 12345399A JP 12345399 A JP12345399 A JP 12345399A JP 4134439 B2 JP4134439 B2 JP 4134439B2
Authority
JP
Japan
Prior art keywords
motor
drive winding
winding
phase
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12345399A
Other languages
English (en)
Other versions
JP2000324871A (ja
Inventor
正一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP12345399A priority Critical patent/JP4134439B2/ja
Publication of JP2000324871A publication Critical patent/JP2000324871A/ja
Application granted granted Critical
Publication of JP4134439B2 publication Critical patent/JP4134439B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多相交流電動機と複数の直流電源を用いて電力変換を行なうための技術に関するものである。
【0002】
【従来の技術】
従来では、例えば、特開平6−294369号公報に記載されているように、多相交流電動機(具体的には誘導機)のステータに、各々、別個に巻回された高圧巻線と低圧巻線を設け、一方の高圧巻線を第1のインバータを介して第1のバッテリに接続し、他方の低圧巻線を第2のインバータを介して補機用の第2のバッテリに接続すると共に、高圧巻線に関して多相交流電動機を電動機または発電機として作動させている時に、低圧巻線に関して多祖交流電動機を発電機として作動させ、第2のバッテリに電力を充電させる装置が提案されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記した既提案例では、多相交流電動機において、高圧巻線とは別個に、低圧巻線が構成されているため、その低圧巻線を設けるためのスペース分、多相交流電動機全体の体格が大きくなると共に、その低圧巻線の重さ分、多相交流電動機全体の重量が重くなるという問題があった。
【0004】
従って、本発明の目的は、上記した従来技術の問題点を解決し、多相交流電動機の体格や重量を増大させることなく、多相交流電動機と複数の直流電源とを用いて電力の変換を行なうことが可能な電力変換システムを提供することにある。
【0005】
【課題を解決するための手段およびその作用・効果】
上記した目的の少なくとも一部を達成するために、本発明の電力変換システムは、電力を変換することが可能な電力変換システムであって、
ステータに各相毎に、直列に接続された第1及び第2の巻線をそれぞれ備え、前記第1及び第2の巻線によって第1の駆動巻線を構成し、前記第2の巻線によって第2の駆動巻線を構成する多相交流電動機と、
所定の直流電圧を発生することが可能な第1の直流電源と、
所定の直流電圧を発生することが可能であり、電力を充放電することが可能な第2の直流電源と、
前記第1の直流電源と前記多相交流電動機における前記第1の駆動巻線との間に接続され、前記第1の直流電源と前記第1の駆動巻線との間で直流−交流変換を行なうことによって、電力のやり取りを行なわせると共に、前記多相交流電動機における前記第1の駆動巻線について、前記多相交流電動機を駆動することが可能な第1のインバータと、
前記第2の直流電源と前記多相交流電動機における前記第2の駆動巻線との間に接続され、前記第2の直流電源と前記第2の駆動巻線との間で直流−交流変換を行なうことよって、電力のやり取りを行なわせると共に、前記多相交流電動機における前記第2の駆動巻線について、前記多相交流電動機を駆動することが可能な第2のインバータと、
前記第1及び第2のインバータを制御するための制御手段と、
を備えることを要旨とする。
【0006】
このように、本発明の電力変換システムでは、多相交流電動機は、ステータに各相毎に、直列に接続された第1及び第2の巻線をそれぞれ備え、前記第1及び第2の巻線によって第1の駆動巻線を構成し、前記第2の巻線によって第2の駆動巻線を構成している。また、第1のインバータは、第1の直流電源と前記多相交流電動機における第1の駆動巻線との間に接続され、第1の直流電源と第1の駆動巻線との間で直流−交流変換を行なうことによって、電力のやり取りを行なわせると共に、多相交流電動機における第1の駆動巻線について、前記多相交流電動機を駆動することが可能である。第2のインバータも、第2の直流電源と多相交流電動機における第2の駆動巻線との間に接続され、第2の直流電源と第2の駆動巻線との間で直流−交流変換を行なうことよって、電力のやり取りを行なわせると共に、多相交流電動機における第2の駆動巻線について、多相交流電動機を駆動することが可能である。制御手段は第1及び第2のインバータを制御する。
【0007】
従って、本発明の電力変換システムによれば、多相交流電動機は、第1の駆動巻線の一部を構成する第2の巻線を、第2の駆動巻線として用いており、第2の巻線を第1の駆動巻線と第2の駆動巻線とで共用しているため、従来のように第1の駆動巻線と第2の駆動巻線とを別個に構成する場合に比較して、別個に設けていた第2の駆動巻線分のスペースが不要となり、別個に設けていた第2の駆動巻線分の重さだけ、全体の重量が軽減される。従って、多相交流電動機の体格や重量を増大させることなく、多相交流電動機と複数の直流電源を用いた電力変換を行なうことができる。
【0008】
本発明の電力変換システムにおいて、
前記制御手段は、前記第1のインバータを制御して、前記第1の直流電源から出力される電力を前記第1の駆動巻線に供給し、前記多相交流電動機を前記第1の駆動巻線に関して電動機として作動させ、前記第2のインバータを制御して、前記多相交流電動機を前記第2の駆動巻線に関して発電機として作動させ、前記第2の駆動巻線から出力される電力を前記第2の直流電源に充電させることが好ましい。
【0009】
制御手段がこのような制御を行なうことにより、第1の直流電源からの電力によって多相交流電動機を力行させながら、多相交流電動機から回生される電力によって第2の直流電源を充電させることができる。
【0010】
本発明の電力変換システムにおいて、
前記第1の直流電源は、電力を充放電することが可能であると共に、
前記制御手段は、前記第1のインバータを制御して、前記多相交流電動機を前記第1の駆動巻線に関して発電機として作動させ、前記第1の駆動巻線から出力される電力を前記第1の直流電源に充電させ、前記第2のインバータを制御して、前記多相交流電動機を前記第2の駆動巻線に関して発電機として作動させ、前記第2の駆動巻線から出力される電力を前記第2の直流電源に充電させることが好ましい。
【0011】
制御手段がこのような制御を行なうことにより、多相交流電動機から回生される電力によって第1の直流電源及び第2の直流電源を同時に充電させることができる。
【0012】
本発明の電力変換システムにおいて、
前記制御手段は、前記第1のインバータを制御して、前記第1の直流電源から出力される電力を前記第1の駆動巻線に供給し、前記多相交流電動機を前記第1の駆動巻線に関して電動機として作動させ、前記第2のインバータを制御して、前記第2の直流電源から放電される電力を前記第2の駆動巻線に供給し、前記多相交流電動機を前記第2の駆動巻線に関して電動機として作動させることが好ましい。
【0013】
制御手段がこのような制御を行なうことにより、第1の直流電源からの電力と第2の直流電源からの電力とによって多相交流電動機を力行させることができる。従って、例えば、第1の直流電源から出力される電力が制限されている場合でも、多相交流電動機の出力トルクの低下を抑えることができる。
【0014】
本発明の電力変換システムにおいて、
前記第1の直流電源は、電力を充放電することが可能であると共に、
前記制御手段は、前記第1のインバータを制御して、前記多相交流電動機を前記第1の駆動巻線に関して発電機として作動させ、前記第1の駆動巻線から出力される電力を前記第1の直流電源に充電させ、前記第2のインバータを制御して、前記第2の直流電源から放電される電力を前記第2の駆動巻線に供給し、前記多相交流電動機を前記第2の駆動巻線に関して電動機として作動させることが好ましい。
【0015】
制御手段がこのような制御を行なうことにより、第2の直流電源からの電力によって多相交流電動機を力行させながら、多相交流電動機から回生される電力によって第1の直流電源を充電させることができる。
【0016】
本発明の電力変換システムにおいて、
前記制御手段は、前記第1のインバータを制御して、前記第1の駆動巻線に関して前記多相交流電動機で生じるトルクをほぼゼロにしつつ、前記第1の直流電源から出力される電力を前記第1の駆動巻線に伝達し、前記第2のインバータを制御して、前記第2の駆動巻線について前記多相交流電動機で生じるトルクをほぼゼロにしつつ、前記第1の駆動巻線に伝達される前記電力を前記第2の駆動巻線から出力して前記第2の直流電源に充電させることが好ましい。
【0017】
制御手段がこのような制御を行なうことにより、多相交流電動機にトルクを発生させることなく、第1の直流電源からの電力を第2の直流電源に伝達して充電させることができる。
【0018】
本発明の電力変換システムにおいて、
前記第1の直流電源は、電力を充放電することが可能であると共に、
前記制御手段は、前記第2のインバータを制御して、前記第2の駆動巻線に関して前記多相交流電動機で生じるトルクをほぼゼロにしつつ、前記第2の直流電源から放電される電力を前記第2の駆動巻線に伝達し、前記第1のインバータを制御して、前記第1の駆動巻線に関して前記多相交流電動機で生じるトルクをほぼゼロにしつつ、前記第1の駆動巻線に伝達される電力を前記第1の駆動巻線から出力して前記第1の直流電源に充電させることが好ましい。
【0019】
制御手段がこのような制御を行なうことにより、多相交流電動機にトルクを発生させることなく、第2の直流電源からの電力を第1の直流電源に伝達して充電させることができる。
【0020】
本発明の電力変換システムにおいて、
前記制御手段は、少なくとも前記第2の巻線を流れる電流が該第2の巻線の電流容量制限を超えないように、前記第1及び第2のインバータを制御することが好ましい。
【0021】
第2の巻線は第1の駆動巻線と第2の駆動巻線とで共用しているため、第1の巻線に比較して過電流が流れる恐れがある。しかし、制御手段が上記のような制御を行なうことにより、第2の巻線を流れる電流は電流容量制限以下に抑えられるため、過電流の流れる恐れが無くなる。
【0022】
本発明の電力変換システムにおいて、
前記制御手段は、前記第1の直流電源と前記第1のインバータとの間を流れる電流または前記第2の直流電源と前記第2のインバータとの間を流れる電流が所望の電流値となり、かつ、前記多相交流電動機で生じるトルクが所望のトルク値となるように、前記第1及び第2のインバータを制御することが好ましい。
【0023】
制御手段がこのような制御をすることより、多相交流電動機で発生されるトルクを所望の値に維持しながら、第1または第2の直流電源に対し電力を適正に充放電させることができる。
【0024】
本発明の電力変換システムにおいて、
前記制御手段は、前記第1の直流電源と前記第1のインバータとの間に流すべき電流値または前記第2の直流電源と前記第2のインバータとの間に流すべき電流値に基づいて、前記多相交流電動機で生じるべきトルク値を補正することが好ましい。
【0025】
制御手段がこのような補正を行なうことより、上記したように、直流電源とインバータとの間を流れる電流が所望の値となり、かつ、多相交流電動機で生じるトルクが所望の値となるような制御を実現することができる。
【0026】
本発明の電力変換システムにおいて、
前記第1または第2の直流電源は複数の蓄電池を直列に接続した集合電池から成ると共に、
前記制御手段は、前記第1または第2のインバータを制御して、前記第1または第2の直流電源を満充電状態にして前記蓄電池の充電量の均等化を図ることが好ましい。
【0027】
制御手段がこのような制御を行なうことにより、第1または第2の直流電源の性能を向上させると共に、寿命を延ばすことができる。
【0028】
本発明の電力変換システムにおいて、
前記制御手段は、前記多相交流電動機をd−q軸モデルで表した場合における、q軸巻線に流れる電流がほぼゼロとなり、d軸巻線に流れる電流がゼロ以外の所望の電流値となるように、前記第1のインバータ及び前記第2のインバータを制御することが好ましい。
【0029】
制御手段がこのような制御を行なうことにより、第1及び第2の駆動巻線に関して多相交流電動機で生じるトルクをほぼゼロにすることができる。
【0030】
本発明の第2の電力変換システムは、電力変換を行なうための電力変換システムであって、
ステータに各相毎に、直列に接続された第1から第nまでのn(nは2以上の任意の整数)個の巻線をそれぞれ備え、それらn個の巻線を用いて第1から第nまでのn個の駆動巻線を、当該駆動巻線がi(iは1からnまでの任意の整数)番目の駆動巻線である場合に、第iから第nまでの一連の(n−i+1)個の巻線によって構成されるように、それぞれ、構成する多相交流電動機と、
所定の直流電圧を発生することが可能な第1から第nまでのn個の直流電源と、
当該インバータがj(jは1からnまでの任意の整数)番目のインバータである場合に、前記第jの直流電源と前記多相交流電動機における前記第jの駆動巻線との間に接続され、前記第jの直流電源と前記第jの駆動巻線との間で直流−交流変換を行なうことによって、電力のやり取りを行なわせると共に、前記多相交流電動機における前記第jの駆動巻線について、前記多相交流電動機を駆動することが可能な第1から第nまでのn個のインバータと、
前記第1から第nまでのインバータを制御するための制御手段と、
を備えることを要旨とする。
【0031】
このように、本発明の電力変換システムでは、多相交流電動機は、ステータに各相毎に、直列に接続された第1から第nまでのn個の巻線をそれぞれ備え、それらn個の巻線を用いて第1から第nまでのn個の駆動巻線をそれぞれ構成している。その際、その駆動巻線がi番目の駆動巻線である場合に、第iから第nまでの一連の(n−i+1)個の巻線によって構成されるようにしている。また、第1から第nまでのn個のインバータは、それぞれ、そのインバータがj番目のインバータである場合に、第jの直流電源と多相交流電動機における第jの駆動巻線との間に接続され、第jの直流電源と第jの駆動巻線との間で直流−交流変換を行なうことによって、電力のやり取りを行なわせると共に、多相交流電動機における第jの駆動巻線について、多相交流電動機を駆動することが可能となっている。制御手段は第1から第nまでのインバータを制御する。
【0032】
従って、本発明の電力変換システムによれば、多相交流電動機において、第p(pは2からnまでの任意の整数)の巻線を第1から第pまでのp個の駆動巻線によって共用しているため、従来のように、各駆動巻線を別個に構成する場合に比較して、別個に設けていた駆動巻線分のスペースが不要となり、別個に設けていた駆動巻線分の重さだけ、全体の重量が軽減される。従って、多相交流電動機の体格や重量を増大させることなく、多相交流電動機と複数の直流電源を用いた電力変換を行なうことができる。
【0033】
本発明の車両は、上記した電力変換システムを備え、前記多相交流電動機で生じるトルクによって、推進力を得ることを要旨とする。
【0034】
このように、上記した電力変換システムを備えることにより、よりコンパクトでより軽量な動力源を備えた車両を実現することができる。
【0035】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。図1は本発明の一実施例としての電力変換システムの構成を示す構成図である。本実施例の電力変換システムは、図1に示すように、高圧電池200と、高圧インバータ300と、モータ400と、低圧インバータ500と、低圧電池600と、制御部700とを主として備えている。なお、この電力変換システムは、電気自動車やハイブリッド車などの車両に搭載されているものとする。
【0036】
このうち、モータ400は三相モータであって、ステータにu相,v相,w相の固定巻線を備えている。u相,v相,w相の各固定巻線は、それぞれ、本実施例の特徴として、2つの巻線が直列に接続して構成されており、さらに、その直列に接続された2つの巻線が共に高圧巻線を構成し、また、その高圧巻線を構成する2つの巻線のうち、Y結線における中点に近い側の巻線が低圧巻線も構成している。即ち、u相の固定巻線では、直列に接続された巻線Lu1と巻線Lu2が共に高圧巻線を構成し、その高圧巻線を構成する一方の巻線Lu2が低圧巻線も構成する。同様に、v相の固定巻線では、直列に接続された巻線Lv1と巻線Lv2が共に高圧巻線を構成し、その高圧巻線を構成する一方の巻線Lv2が低圧巻線も構成し、w相の固定巻線では、直列に接続された巻線Lw1と巻線Lw2が共に高圧巻線を構成し、その高圧巻線を構成する一方の巻線Lw2が低圧巻線も構成する。
【0037】
なお、このモータ400の回転軸(図示せず)は各種ギヤ(図示せず)を介して車両の車軸(図示せず)に結合されている。
【0038】
高圧電池200及び低圧電池600は、それぞれ、二次電池であって、複数のバッテリセルを直列に接続して構成されている。高圧電池200は比較的高い直流電圧を発生し、低圧電池600は高圧電池200よりも低い直流電圧を発生する。高圧電池200は、主にモータ400を駆動するための電源として用いられ、低圧電池600は、主に、車両の電装品(図示せず)に電力を供給するための電源として用いられる。
【0039】
高圧インバータ300及び低圧インバータ500は、それぞれ、6つのトランジスタと6つのダイオードによって構成されている。このうち、高圧インバータ300は、高圧電池200とモータ400との間に接続されており、特に、モータ400側はu相,v相,w相の各高圧巻線にそれぞれ接続されている。一方、低圧インバータ500は低圧電池600とモータ400との間に接続されており、特に、モータ400側はu相,v相,w相の各低圧巻線にそれぞれ接続されている。
【0040】
制御部700は、図示せざるCPUと、ROMと、RAMと、をそれぞれ備えている。CPUは、ROMに記憶されている制御プログラムに従って、種々の演算や制御を行なっている。ROMは、上記制御プログラムの他、後述するマップなど種々のデータを記憶しているメモリである。また、RAMは、CPUによる演算結果などの一時的なデータを記憶するためのメモリである。また、制御部700からは高圧インバータ300及び低圧インバータ500の各トランジスタに制御線が延びている。また、制御部700には、図示せざる各種センサから出力される検出結果が入力される。
【0041】
それでは、本実施例の動作の概要について説明する。制御部700には、各種センサから入力された検出結果に基づいて、高圧インバータ300及び低圧インバータ500をそれぞれ制御する。
【0042】
高圧電池200は、主にモータ400を駆動するために用いられるが、低圧電池600の充電量が少なくなってきた場合には、制御部700による制御によって、低圧電池600を充電するために用いることも可能である。一方、低圧電池600は、前述したように、主に車両内の電装品への電力供給のために用いられるが、モータ400において、高圧電池200からの電力だけではパワーが足りない場合には、制御部700による制御によって、そのモータ400に電力を補うために用いることもできるし、高圧電池200の充電量が少なくなってきた場合には、高圧電池200を充電するために用いることもできる。
【0043】
また、モータ400も、制御部700による制御により、電池からの電力によって力行動作(すなわち、電動機として動作)して、車軸に動力を出力するが、場合によっては、回生動作(すなわち、発電機として動作)して、回生された電力を電池に充電することも可能である。なお、モータ400は、前述したとおり、Y結線における中点に近い側の巻線を共用してはいるものの、高圧巻線と低圧巻線をそれぞれ備えているため、高圧巻線と低圧巻線とで独立した動作を行なうことが可能である。
【0044】
従って、本実施例においては、制御部700による制御によって、主な動作状態として、次のa)〜f)の6つの動作状態を採ることができる。
【0045】
a)高圧電池放電、高圧巻線力行、低圧巻線回生、低圧電池充電
この状態では、制御部700による制御によって、高圧インバータ300は、高圧電池200から電力を放電させ、その電力をモータ400の高圧巻線に供給して、その高圧巻線に関してモータ400を力行動作させる。一方、低圧インバータ500は、低圧巻線に関してモータ400を回生動作させ、その回生された電力を低圧電池600に充電させる。
【0046】
b)高圧電池充電、高圧巻線回生、低圧巻線回生、低圧電池充電
この状態では、制御部700による制御によって、高圧インバータ300は、高圧巻線に関してモータ400を回生動作させ、その回生された電力を高圧電池200に充電させる。同様に、低圧インバータ500も、低圧巻線に関してモータ400を回生動作させ、その回生された電力を低圧電池600に充電させる。この場合、モータ400からの回生される電力によって高圧電池200及び低圧電池600を同時に充電させることができる。
【0047】
c)高圧電池放電、高圧巻線力行、低圧巻線力行、低圧電池放電
この状態では、制御部700による制御によって、高圧インバータ300は、高圧電池200から電力を放電させ、その電力をモータ400の高圧巻線に供給して、その高圧巻線に関してモータ400を力行動作させる。同様に、低圧インバータ500も、低圧電池600から電力を放電させ、その電力をモータ400の低圧巻線に供給して、その低圧巻線に関してモータ400を力行動作させる。この場合、例えば、高圧電池200から出力される電力が制限されていても、低圧電池600から出力される電力によって、モータ400で生じるトルクの低下を抑えることができる。
【0048】
d)高圧電池充電、高圧巻線回生、低圧巻線力行、低圧電池放電
この状態では、制御部700による制御によって、高圧インバータ300は、高圧巻線に関してモータ400を回生動作させ、その回生された電力を高圧電池200に充電させる。一方、低圧インバータ500は、低圧電池600から電力を放電させ、その電力をモータ400の低圧巻線に供給して、その低圧巻線に関してモータ400を力行動作させる。
【0049】
e)高圧電池放電、高圧巻線トルク0、低圧巻線トルク0、低圧電池充電
この状態では、制御部700による制御によって、高圧インバータ300は、高圧巻線に関してモータ400で生じるトルクをゼロにして、高圧電池200から電力を放電させて高圧巻線に与える。一方、低圧インバータ500も、低圧巻線に関してモータ400で生じるトルクをゼロにして、高圧巻線に与えられた電力を低圧巻線から低圧電池600に充電させる。このとき、高圧巻線と低圧巻線は変圧器として動作する。
【0050】
f)高圧電池充電、高圧巻線トルク0、低圧巻線トルク0、低圧電池放電
この状態では、制御部700による制御によって、低圧インバータ500は、低圧巻線に関してモータ400で生じるトルクをゼロにして、低圧電池600から電力を放電させて低圧巻線に与える。一方、高圧インバータ300も、高圧巻線に関してモータ400で生じるトルクをゼロにして、低圧巻線に与えられた電力を高圧巻線から高圧電池200に充電させる。このときも、高圧巻線と低圧巻線は変圧器として動作する。
【0051】
e),f)の場合、モータ400にトルクを発生させることなく、高圧電池200と低圧電池600との間で電力を融通し合うことができる。
【0052】
このように、本実施例においては、制御部700による制御によって、基本的に6つの動作状態が実現される。
【0053】
それでは、制御部700の詳細な構成及び動作について説明する。制御部700は、機能的には、モータ400で生じるトルクの目標値であるのトルク指令値を生成するためのトルク指令生成部と、電池とインバータとの間を流れる電池電流の目標値である電池電流指令値を生成するための電池電流指令生成部と、それら生成された指令値に基づいてインバータを制御するためのインバータ制御部と、に分けることができる。
【0054】
図2は図1における制御部700を構成するトルク指令生成部の構成を示すブロック図である。図2に示すように、トルク指令生成部は、トルク指令演算部702と、トルク指令補正部704と、トルク指令分割部706と、を備えている。
【0055】
トルク指令演算部702には、車両のアクセルペダルポジションセンサ(図示せず)から得られるアクセル開度と、車両の車速センサ(図示せず)から得れる車速と、が入力されている。車両の運転者は、車両にさらなる動力が必要な場合にアクセルペダルを踏み込むため、アクセル開度は、運転者の希望する要求動力に相当する。一方、車両の動力は車速と車軸のトルクの積で表される。従って、トルク指令演算部702は、入力されたアクセル開度と車速とからモータ400で発生させるべきトルク、すなわち、トルク指令値Ta*を演算により求めることができる。
【0056】
次に、トルク指令補正部704は、トルク指令演算部702で求めたトルク指令値Ta*から、後述するインバータ制御部から得られるトルク補正量ΔTaを減算して、トルク指令値を補正する。
【0057】
続いて、トルク指令分割部706は、補正したトルク指令値を高圧トルク指令値TCH*と低圧トルク指令値TCL*とに分割する。前述したように、モータ400には、高圧巻線と低圧巻線とが存在し、高圧巻線と低圧巻線とで独立した動作をすることが可能なため、モータ400のトルク指令値も、高圧巻線で生じさせるべきトルク分(すなわち、高圧トルク指令値)と、低圧巻線で生じさせるべきトルク分(すなわち、低圧トルク指令値)と、に分けて与える必要があるからである。なお、トルク指令分割部706では、インバータ300,500やモータ400で生じる損失の和が最小となるように、高圧トルク指令値TCH*と低圧トルク指令値TCL*との分割比を定めている。
【0058】
図3は図1における制御部700を構成する電池電流指令生成部の構成を示すブロック図である。図3に示すように、電池電流指令生成部は、高圧電池電流演算部708と、低圧電池電流演算部710と、優先電池電流指令決定部712と、を備えている。
【0059】
高圧電池電流演算部708には、高圧電池温度センサ(図示せず)から得られる高圧電池200の温度と、高圧電池電圧センサ(図示せず)から得られる高圧電池200の端子間電圧と、高圧電池充電量センサ(図示せず)から得られる高圧電池200の充電量(SOC)と、が入力されている。低圧電池電流演算部710にも、同じように、低圧電池温度センサ(図示せず)から得られる低圧電池600の温度と、低圧電池電圧センサ(図示せず)から得られる低圧電池600の端子間電圧と、低圧電池充電量センサ(図示せず)から得られる低圧電池600の充電量と、が入力されている。
【0060】
高圧電池電流演算部708では、上記検出結果を基にして、高圧電池200と高圧インバータ300との間を流れる電流(高圧電池電流)の目標値である高圧電池電流指令値IBH*と、高圧電池電流として流すことのできる最大値である高圧電池電流最大許容値IBHmaxと、高圧電池電流として流すことのできる最小値である高圧電池電流最小許容値IBHminと、を算出する。低圧電池電流演算部710でも、同様に、低圧電池600とインバータ500との間を流れる電流(低圧電池電流)の目標値である低圧電池電流指令値IBL*と、低圧電池電流として流すことのできる最大値である低圧電池電流最大許容値IBLmaxと、低圧電池電流として流すことのできる最小値である低圧電池電流最小許容値IBLminと、を算出する。
【0061】
すなわち、電池電流演算部708,710では、例えば、電池の充電量が低い場合には電池が積極的に充電されるように、電池の充電量が高い場合には電池が積極的に放電されるように、電池の充電量などに応じて電池電流指令値を決定したり、あるいは、電池の温度が異常に高くなって電池不良とならないように、電池の温度などに応じて電池電流許容値を決定したりしている。
【0062】
なお、電池電流は、電池が放電状態にある場合(すなわち、放電電流である場合)を正、電池が充電状態にある場合(すなわち、充電電流である場合)を負としている。従って、電池電流指令値が正の場合には電池電流として放電電流を流すよう(すなわち、電池を放電するよう)指令することになり、負の場合には充電電流を流すよう(すなわち、電池を充電するよう)指令することになる。また、上記した最大許容値は、電池電流が正の場合(すなわち、放電電流の場合)の最大許容値を意味し、上記した最小許容値は、電池電流が負の場合(すなわち、充電電流の場合)の最大許容値を意味することになる。
【0063】
一方、優先電池電流指令決定部712には、高圧電池200の充電量と低圧電池600の充電量とがそれぞれ入力されている。優先電池電流指令決定部712では、これら2つの充電量に基づいて、高圧電池電流演算部708で算出された高圧電池電流指令値IBH*と低圧電池電流演算部710で算出された低圧電池電流指令値IBL*のうち、何れの電流指令値を優先させるか、あるいは両方の電流指令値とも優先させるかを決定し、その決定結果Seを出力する。
【0064】
本実施例においては、前述したように、指令値として、トルク指令値Ta*と、高圧電池電流指令値IBH*と、低圧電池電流指令値IBL*と、があり、これら3つの指令値がそれぞれ制御変数となっている。しかし、エネルギ保存の法則という規制があるため、これら3つの制御変数を各々独立に用いて同時に制御することは不可能である。そこで、2つの制御変数だけを独立に用いて制御し、残りの1つの制御変数はそれら2つの制御変数に従属させ、上記の制御結果として決定されるようにする必要がある。すなわち、言い換えれば、3つの制御変数のうち、独立の2つの制御変数は従属の1つの制御変数よりも優先して制御に用いることになる。
【0065】
上記した優先電池電流指令決定部712では、高圧電池電流指令値IBH*と低圧電池電流指令値IBL*のうち、何れの電流指令値を優先させるか、あるいは両方の電流指令値とも優先させるかを決定することによって、実質的に、トルク指令値Ta*、高圧電池電流指令値IBH*及び低圧電池電流指令値IBL*のうち、優先して用いるべき独立の2つの制御変数とそれらに従属させる従属の1つの制御変数を決定している。
【0066】
具体的には、優先電池電流指令決定部712は、図4に示すようなマップを用いて、何れを優先させるかを決定している。図4は図3における優先電池電流指令決定部712で用いられる優先順位を決定するためのマップを示す説明図である。図4において、横軸は高圧電池200の充電量を示し、縦軸は低圧電池600の充電量を示している。このマップは、予め、制御部700内のROMに格納され、必要に応じて参照される。
【0067】
原則的には、モータ400で生じるトルクは優先的に制御する必要があるため、トルク指令値Ta*は独立の制御変数の1つとして優先的に用いられる。従って、高圧電池200の充電量が値SOCH1から値SOCH2の間にあるか、低圧電池600の充電量が値SOCL1から値SOCL2の間にある場合には、トルク指令値Ta*を独立の制御変数の1つとするため、高圧電池電流指令値IBH*と低圧電池電流指令値IBL*のうち、何れの電流指令値を残りの独立の制御変数として優先させるかを決定することになる。すなわち、図4に示すように、例えば、高圧電池200の充電量が値SOCH1から値SOCH2の間にある場合には、高圧電池電流指令値IBH*を残りの独立の制御変数として優先させるよう決定し(すなわち、低圧電池電流指令値IBL*が従属の制御変数となる)、高圧電池200の充電量が値SOCH1以下か値SOCH2以上であって、低圧電池600の充電量が値SOCL1から値SOCL2の間にある場合には、低圧電池電流指令値IBL*を残りの独立の制御変数として優先させるよう決定する(すなわち、高圧電池電流指令値IBH*が従属の制御変数となる)。
【0068】
また、それら以外の場合、すなわち、高圧電池200の充電量が値SOCH1以下か値SOCH2以上であって、かつ、低圧電池600の充電量が値SOCL1以下か値SOCL2以上である場合には、高圧電池200及び低圧電池600をそれぞれ積極的に充電または放電させる必要があるため、高圧電池電流指令値IBH*及び低圧電池電流指令値IBL*を共に、独立の制御変数として優先させることを決定する(すなわち、トルク指令値Ta*が従属の制御変数となる)。
【0069】
なお、本実施例では、高圧電池200の充電量が値SOCH1から値SOCH2の間にあり、かつ、低圧電池600の充電量が値SOCL1から値SOCL2の間にある場合は、高圧電池電流指令値IBH*を独立の制御変数として優先させている(すなわち、低圧電池電流指令値IBL*が従属の制御変数となっている)が、場合によっては、低圧電池電流指令値IBL*を独立の制御変数として優先させるよう(すなわち、高圧電池電流指令値IBH*が従属の制御変数となるよう)、マップを作成しても良い。
【0070】
以上のようにして、優先電池電流指令決定部712では、独立の制御変数として優先させるべき電流指令値を何れにするかを決定する。なお、優先電池電流指令決定部712には、その他、充電量均等化指令も入力されているが、これについては後ほど説明する。
【0071】
次に、図5は図1における制御部700を構成するインバータ制御部の構成を示すブロック図である。図5に示すように、インバータ制御部は、高圧比例積分制御部714と、低圧比例積分制御部716と、高圧加減算部718と、低圧加減算部720と、加算部722と、モータ速度演算部724と、高圧トルク制限演算部726と、低圧トルク制限演算部728と、トルク指令調整部730と、高圧モータ電流指令演算部732と、低圧モータ電流指令演算部734と、高圧PWM制御部736と、低圧PWM制御部738と、高圧ゼロトルク判定部739と、低圧ゼロトルク判定部740と、を備えている。
【0072】
これらのうち、低圧比例積分制御部716は図6に示す処理手順に従って処理を行ない、高圧比例積分制御部714は図7に示す処理手順に従って処理を行なう。図6は図5における低圧比例積分制御部716の処理手順を示すフローチャート、図7は図5における高圧比例積分制御部714の処理手順を示すフローチャートである。
【0073】
低圧比例積分制御部716には、図3の低圧電池電流演算部710で算出された低圧電池電流指令値IBL*と、優先電池電流指令決定部712での決定結果Seと、が入力されており、高圧比例積分制御部714にも、同様に、高圧電池電流演算部708で算出された高圧電池電流指令値IBH*と、優先電池電流指令決定部712での決定結果Seと、が入力されている。低圧比例積分制御部716では、図6に示すように、その決定結果Seに基づいて、低圧電池電流指令値IBL*が優先されるべき電流指令値として決定されたか否かを判定し(ステップS102)、高圧比例積分制御部714でも、図7に示すように、決定結果Seに基づいて、高圧電池電流指令値IBH*が優先されるべき電池電流指令値として決定されたか否かを判定する(ステップS202)。
【0074】
例えば、今、低圧電池600の充電量が減っていて値SOCL1以下である場合に、高圧電池200の充電量は値SOCH1から値SOCH2の間にあって適当な量であるとする。この場合、図4から明らかなように、低圧電池600を積極的に充電するために、低圧電池電流指令値IBL*が優先されるべき電池電流指令値として決定されることになる。
【0075】
従って、この場合、低圧比例積分制御部716では、図6のステップS102において、低圧電池電流指令値IBL*が優先であると判定され、ステップS104に進み、高圧比例積分制御部714では、図7のステップS202において、逆に、高圧電池電流指令値IBH*が優先でないと判定されて、ステップS220に進む。
【0076】
次に、低圧比例積分制御部716では、現在、低圧電池600において充電または放電されている電力WLを求める(図6のステップS104)。すなわち、低圧比例積分制御部716は、低圧電池電圧センサ744によって得られる低圧電池600の端子間電圧VLと、低圧電池電流センサ748によって得られる低圧電池600とインバータ500との間を流れる低圧電池電流IBLと、を入力し、次の式(1)に従って、上記した電力WLを算出する。
【0077】
WL=VL・IBL …(1)
【0078】
続いて、低圧比例積分制御部716では、低圧トルク指令値TCL*についての暫定補正量TCL1を求める(ステップS106)。低圧トルク指令値TCL*は、図2におけるトルク指令分割部706において得られたが、この低圧トルク指令値TCL*は、運転者の希望する要求動力に対応した低圧トルク指令値に過ぎない。一方、上述したように低圧電池600に積極的に充電するために、低圧巻線に関してモータ400で回生動作を行なって、回生した電力で低圧電池600の充電を行なうものとすると、その回生動作により低圧巻線で生じるトルクはその分変化する。従って、低圧トルク指令値TCL*をそのまま用いて低圧インバータ500を制御したのでは、車両の車軸に運転者の希望する要求動力に応じたトルク(特に、低圧巻線で生じさせるべきトルク)を発生させることはできない。
【0079】
そこで、本実施例では、ステップS106と次のステップS108において、低圧トルク指令値TCL*を、低圧電池600に充電されるべき電力(すなわち、低圧巻線について回生されるべき電力)に応じて補正するための補正量を求めるようにしている。
【0080】
具体的には、低圧比例積分制御部716は、モータ速度演算部724で得られるモータ400の回転速度Nmを入力し、ステップS102で得られた電力WLを用い、次の式(2)に従って、上記した暫定補正量TCL1を算出する。
【0081】
TCL1=(WL+ΔL)/Nm …(2)
但し、ΔLは低圧側における電力変換による損失分であり、予め実験などによって求められる値である。
【0082】
なお、モータ速度演算部724では、回転センサ758によって得られたモータ400のロータ位置を示すロータ位置信号Protを入力して、そのロータ位置信号Protから演算によってモータ400の回転速度Nmを算出している。
【0083】
次に、低圧比例積分制御部716では、暫定補正量TCL1を低圧電池電力の比例積分値で補正し、最終的な補正量TCL2を求める(ステップS108)。暫定補正量TCL1は、実測値である低圧電池電流IBLを基にして算出された値であり、その暫定補正量TCL1には、図3の低圧電池電流演算部710で得られた低圧電池電流指令値IBL*は加味されていない。そこで、本実施例では、低圧電池電流指令値IBL*と実測値である低圧電池電流IBLとの偏差がゼロとなるよう制御されるように、低圧電池電力の比例積分値で暫定補正量TCL1を補正する。
【0084】
すなわち、低圧比例積分制御部716は、低圧電池電流演算部710で得られた低圧電池電流指令値IBL*を入力し、式(3)に従って、暫定補正量TCL1を補正し、補正量TCL2を算出する。
【0085】
TCL2=TCL1+{PI(VL・IBL*−VL・IBL)/Nm}…(3)
【0086】
式(3)において、VL・IBLは、実測値である低圧電池電流IBLを基にして得られた実測換算での低圧電池600の電力であり、ステップS102で算出したWLと同じものである。一方、VL・IBL*は、低圧電池電流指令値IBL*を基にして得られた指令値換算での低圧電池600の電力である。従って、VL・IBL*−VL・IBLは、低圧電池600の電圧についての指令値換算と実測換算の偏差である。
【0087】
また、PI()は、()内の値を比例積分演算することを示している。すなわち、その比例積分演算では、上記した偏差に所定の係数をかけて比例部分の値を求めると共に、上記した偏差を時間積分して、その積分値に所定の係数をかけて積分部分の値を求めて、それら求めた値の和を導き出す。
【0088】
式(3)では、以上のようにして求めた低圧電池600の電力についての比例積分値をモータ400の回転速度Nmで除算することにより、トルクに変換し、トルク補正分を得ている。そして、そのトルク補正分をステップS104で求めた暫定補正量TCL1に加算して、最終的な補正量TCL2を得ている。
【0089】
以上のようにして得られた低圧トルク指令値TCL*についての補正量TCL2は、低圧比例積分制御部716から低圧加減算部720に入力される。
【0090】
また、低圧加減算部720には、図2のトルク指令分割部706で得られた低圧トルク指令値TCL*が入力される他、高圧比例積分制御部714で得られる低圧トルク指令値TCL*についての補正量TCL2’が入力される。
【0091】
しかし、高圧比例積分制御部714では、前述したように、高圧電池電流指令値IBH*は優先でない(すなわち、従属の制御変数として用いられる)ため、その高圧電池電流指令値IBH*を基にして補正量を導くことはしない。従って、図7のステップS220において、高圧比例積分制御部714は、低圧トルク指令値についての補正量TCL2’を0に設定する。
【0092】
よって、低圧加減算部720では、高圧比例積分制御部714からの補正量TCL2’が0であるので、低圧トルク指令値TCL*から、低圧比例積分制御部716からの補正量TCL2を減算して、低圧トルク指令値を補正し、新たな低圧トルク指令値TCLh*を導き出す。なお、仮に、高圧比例積分制御部714からの補正量TCL2’が0でない場合には、この補正量TCL2’が加算されることになる。
【0093】
次に、低圧比例積分制御部716では、高圧トルク指令値TCH*についての暫定補正量TCH1’を求める(ステップS110)。高圧トルク指令値TCH*は、前述したようにトルク指令分割部706において、全体のトルク指令値を、低圧トルク指令値TCL*との所望の分割比で分割して得たものである。従って、低圧トルク指令値についてだけ、低圧電池600に充電されるべき電力(すなわち、低圧巻線について回生されるべき電力)に応じた補正を行なうと、モータ400における低圧巻線で生じるトルクと高圧巻線で生じるトルクのバランスが崩れ、車両の車軸に運転者の希望する要求動力に応じたトルクを発生させることはできない。
【0094】
そこで、本実施例では、ステップS110と次のステップS112で、高圧トルク指令値TCH*についても、低圧トルク指令値TCL*と同様に、低圧電池600に充電されるべき電力(すなわち、低圧巻線について回生されるべき電力)に応じて補正するための補正量を求めるようにしている。
【0095】
すなわち、低圧比例積分制御部716は、ステップS102で得られた電力WLを用い、次の式(4)に従って、高圧トルク指令値TCH*についての暫定補正量TCH1’を算出する。
【0096】
TCH1’=(WL+ΔH)/Nm …(4)
但し、ΔHは高圧側における電力変換による損失分であり、予め実験などによって求められる値である。
【0097】
続いて、低圧比例積分制御部716では、暫定補正量TCH1’を低圧電池電力の比例積分値で補正し、最終的な補正量TCH2’を求める(ステップS112)。すなわち、高圧比例積分制御部714は、式(3)とほぼ同様の式(5)に従って、暫定補正量TCL1’を補正し、補正量TCL2’を算出する。
【0098】
TCH2’=TCH1’+{PI(VL・IBL*−VL・IBL)/Nm}…(5)
【0099】
以上のようにして得られた高圧トルク指令値TCH*についての補正量TCH2’は、低圧比例積分制御部716から高圧加減算部718に入力される。
【0100】
また、高圧加減算部718には、図2のトルク指令分割部706で得られた高圧トルク指令値TCH*が入力される他、高圧比例積分制御部714で得られる高圧トルク指令値TCH*についての補正量TCH2が入力される。
【0101】
しかし、高圧比例積分制御部714では、前述したように、高圧電池電流指令値IBH*は優先でないため、その高圧電池電流指令値IBH*を基にして補正量を導くことはしない。従って、図7のステップS222において、高圧比例積分制御部714は、低圧トルク指令値の補正量TCH2についても0に設定する。
【0102】
従って、高圧加減算部718では、高圧比例積分制御部714からの補正量TCL2が0であるので、高圧トルク指令値TCH*に、低圧比例積分制御部716からの補正量TCH2’を加算して、高圧トルク指令値を補正し、新たな高圧トルク指令値TCHh*を導き出す。なお、仮に、高圧比例積分制御部714からの補正量TCH2が0でない場合には、この補正量TCH2が減算されることになる。
【0103】
ところで、低圧比例積分制御部716には、図5に示すように、その他、高圧電池電流センサ746によって得られる高圧電池200と高圧インバータ300との間を流れる高圧電池電流IBHと、高圧電池電流演算部708で得られた高圧電池電流最大許容値IBHmax及び高圧電池電流最小許容値IBHminと、が入力されている。そこで、次に、低圧比例積分制御部716では、図6に示すように、入力された実測値である高圧電池電流IBHが、高圧電池電流最大許容値IBHmaxから高圧電池電流最小許容値IBHminの間の許容範囲に入っているか否かを判定する(ステップS114)。
【0104】
判定の結果、高圧電池電流IBHが上記の許容範囲内に入っている場合には、問題がないので、低圧比例積分制御部716は、トルク指令値Ta*を補正するためのトルク補正量となるΔTaHを0に設定する(ステップS118)。しかし、高圧電池電流IBHが上記の許容範囲内に入っていない場合には、高圧電池電流IBHが許容範囲内に入るよう制御するために、トルク指令値Ta*を補正するためのトルク補正量ΔTaHを次の式(6)に従って算出する(ステップS116)。
【0105】
ΔTaH=PI(IBH−IBHmax) (IBH>IBHmax)
ΔTaH=PI(IBH−IBHmin) (IBH<IBHmin)
…(6)
【0106】
なお、式(6)では、高圧電池電流IBHが高圧電池電流最大許容値IBHmaxより大きくなって許容範囲を超えた場合は上の式を用い、高圧電池電流最小許容値IBHminより小さくなって許容範囲を超えた場合は下の式を用いる。従って、上の式では、高圧電池電流IBHと高圧電池電流最大許容値IBHmaxとの偏差の比例積分値が、求めるべきトルク補正量ΔTaHとなり、下の式では、高圧電池電流IBHと高圧電池電流最小許容値IBHminとの偏差の比例積分値が、求めるべきトルク補正量ΔTaHとなる。
【0107】
以上のようにして得られたトルク補正量ΔTaHは、低圧比例積分制御部716から加算部722に入力される。また、加算部722には、高圧比例積分制御部714で得られるトルク補正量ΔTaLも入力される。加算部722では、入力されたトルク補正量ΔTaHとΔTaLとを加算して、トルク指令値Ta*を補正するための最終的なトルク補正量ΔTaを導き出す。
【0108】
しかしながら、高圧比例積分制御部714では、前述したように、高圧電池電流指令値IBH*は優先でない(すなわち、従属の制御変数として用いられる)ため、トルク指令値Ta*についても補正量を導くことはしない。従って、図7のステップS224において、高圧比例積分制御部714は、トルク補正量ΔTaLを0に設定する。
【0109】
そのため、加算部722では、低圧比例積分制御部716から入力されたトルク補正量ΔTaHがそのまま、最終的なトルク補正量ΔTaとして得られる。
【0110】
加算部722で導き出されたトルク補正量ΔTaは、前述したように、図2におけるトルク指令補正部704に与えられ、トルク指令補正部704において、トルク指令演算部702で求めたトルク指令値Ta*から減算されて、トルク指令値を補正するのに用いられる。この結果、前述したように、例えば、高圧電池電流IBHが上記の許容範囲内に入っていない場合でも、高圧電池電流IBHが許容範囲内に入るように、トルク制御がなされる。
【0111】
以上で、低圧比例積分制御部716における図6に示した処理ルーチンと高圧比例積分制御部714における図7に示した処理ルーチンはそれぞれ終了する。
【0112】
なお、上記した例は、低圧電池600の充電量が値SOCL1以下であり、高圧電池200の充電量は値SOCH1から値SOCH2の間にあって、低圧電池電流指令値IBL*が優先されるべき電池電流指令値として決定された場合(すなわち、高圧電池電流指令値IBH*は従属の制御変数として用いられる場合)であったが、例えば、高圧電池200の充電量が値SOCH1以下であり、低圧電池600の充電量は値SOCL1から値SOCL2の間にあって、高圧電池電流指令値IBH*が優先されるべき電池電流指令値として決定された場合(すなわち、低圧電池電流指令値IBL*は従属の制御変数として用いられる場合)には、前述した低圧比例積分制御部716における処理と高圧比例積分制御部714における処理とが入れ替わる。しかし、処理が入れ替わるだけで、実施質的な処理内容は同じであるため、詳細な説明は省略する。従って、主な点だけ簡単に説明する。
【0113】
今度の例の場合、高圧比例積分制御部714では、図7のステップS202において、高圧電池電流指令値IBH*が優先であると判定され、ステップS204に進み、低圧比例積分制御部716では、図6のステップS102において、低圧電池電流指令値IBL*が優先でないと判定されて、ステップS120に進む。
【0114】
そこで、低圧比例積分制御部716では、図7のステップS204において、高圧電池電圧センサ742によって得られる高圧電池200の端子間電圧VHと、高圧電池電流センサ746によって得られる高圧電池200と高圧インバータ300との間を流れる高圧電池電流指令値IBHと、を入力し、次の式(7)に従って、高圧電池200において充電または放電されている電力WHを求める。
【0115】
WH=VH・IBH …(7)
【0116】
次に、高圧比例積分制御部714は、モータ速度演算部724で得られるモータ400の回転速度Nmを入力し、ステップS202で得られた電力WHを用い、次の式(8)に従って、高圧トルク指令値TCH*についての暫定補正量TCH1を算出する(ステップS206)。
【0117】
TCH1=(WH+ΔH)/Nm …(8)
但し、ΔHは前述した高圧側における電力変換による損失分である。
【0118】
次に、高圧比例積分制御部714は、高圧電池電流演算部708で得られた電力WHを入力し、式(9)に従って、暫定補正量TCH1を補正し、補正量TCH2を算出する(ステップS208)。
【0119】
TCHL2=TCH1+{PI(VH・IBH*−VH・IBH)/Nm}…(9)
【0120】
一方、今度の例の場合、低圧比例積分制御部716では、低圧電池電流指令値IBL*は優先でない(すなわち、従属の制御変数として用いられる)ため、その低圧電池電流指令値IBL*を基にして補正量を導くことはしない。従って、図6のステップS120において、低圧比例積分制御部716は、高圧トルク指令値についての補正量TCH2’を0に設定する。
【0121】
よって、高圧加減算部718では、低圧比例積分制御部716からの補正量TCH2’が0であるので、高圧トルク指令値TCH*から、高圧比例積分制御部714からの補正量TCH2を減算して、高圧トルク指令値を補正し、新たな高圧トルク指令値TCHh*を導き出す。
【0122】
次に、高圧比例積分制御部714は、ステップS202で得られた電力WHを用い、次の式(10)に従って、低圧トルク指令値TCL*についての暫定補正量TCL1’を算出する(ステップS210)。
【0123】
TCL1’=(WH+ΔL)/Nm …(10)
但し、ΔLは前述の低圧側における電力変換による損失分である。
【0124】
続いて、高圧比例積分制御部714では、式(11)に従って、暫定補正量TCL1’を高圧電池電力の比例積分値で補正し、最終的な補正量TCH2’を算出する(ステップS212)。
【0125】
TCL2’=TCL1’+{PI(VH・IBH*−VH・IBH)/Nm}
…(11)
一方、低圧比例積分制御部716では、低圧電池電流指令値IBL*は優先でない(すなわち、従属の制御変数として用いられる)ため、前述したとおり、その低圧電池電流指令値IBL*を基にして補正量を導くことはなく、従って、図6のステップS122において、低圧比例積分制御部716は、低圧トルク指令値についての補正量TCL2も0に設定する。
【0126】
よって、高圧加減算部718では、低圧比例積分制御部716からの補正量TCL2が0であるので、低圧トルク指令値TCL*から、高圧比例積分制御部714からの補正量TCL2’を減算して、低圧トルク指令値を補正し、新たな低圧トルク指令値TCLh*を導き出す。
【0127】
ところで、高圧比例積分制御部714にも、図5に示すように、その他、低圧電池電流センサ748によって得られる低圧電池600と低圧インバータ500との間を流れる低圧電池電流指令値IBLと、低圧電池電流演算部710で得られた低圧電池電流最大許容値IBLmax及び低圧電池電流最小許容値IBLminと、が入力されている。そこで、次に、高圧比例積分制御部714では、実測値である低圧電池電流指令値IBLが、低圧電池電流最大許容値IBLmaxから低圧電池電流最小許容値IBLminの間の許容範囲に入っているか否かを判定する(ステップS214)。判定の結果、低圧電池電流指令値IBLが上記の許容範囲内に入っている場合には、高圧比例積分制御部714は、トルク補正量ΔTaLを0に設定する(ステップS218)が、低圧電池電流指令値IBLが上記の許容範囲内に入っていない場合には、低圧電池電流指令値IBLが許容範囲内に入るよう制御するために、トルク補正量ΔTaLを次の式(12)に従って算出する(ステップS216)。
【0128】
ΔTaL=PI(IBL−IBLmax) (IBL>IBLmax)
ΔTaL=PI(IBL−IBLmin) (IBL<IBLmin)
…(12)
【0129】
一方、低圧比例積分制御部716では、低圧電池電流指令値IBL*は優先でない(すなわち、従属の制御変数として用いられる)ため、トルク指令値Ta*についても補正量を導くことはなく、従って、図6のステップS124において、低圧比例積分制御部716は、トルク補正量ΔTaHを0に設定する。
【0130】
そのため、加算部722では、高圧比例積分制御部714から入力されたトルク補正量ΔTaLがそのまま、最終的なトルク補正量ΔTaとして得られる。
【0131】
以上で、低圧比例積分制御部716における図6に示した処理ルーチンと高圧比例積分制御部714における図7に示した処理ルーチンはそれぞれ終了する。
【0132】
なお、上記した2つの例は、低圧電池電流指令値IBL*または高圧電池電流指令値IBH*の何れかが優先されるべき電池電流指令値として決定された場合であったが、例えば、高圧電池200の充電量が値SOCH1以下であり、低圧電池600の充電量も値SOCL1以下であって、低圧電池電流指令値IBL*も高圧電池電流指令値IBH*も優先されるべき電池電流指令値として決定された場合(すなわち、トルク指令値Ta*が従属の制御変数として用いられる場合)には、低圧比例積分制御部716における処理は前者の例(すなわち、低圧電池電流指令値IBL*が優先の場合)と同様の処理となり、高圧比例積分制御部714における処理は後者の例(すなわち、高圧電池電流指令値IBH*が優先の場合)と同様の処理となる。従って、処理内容は前述したものとほぼ同様であるので、詳細な説明は省略する。従って、特徴的な点だけ簡単に説明する。
【0133】
今度の例の場合、低圧比例積分制御部716では、図6のステップS102において、低圧電池電流指令値IBL*が優先であると判定され、ステップS104に進み、高圧比例積分制御部714でも、同様に、図7のステップS202において、高圧電池電流指令値IBH*が優先であると判定され、ステップS204に進む。
【0134】
従って、結果的に、低圧比例積分制御部716では、ステップS104〜S112において、低圧トルク指令値TCL*についての補正量TCL2と高圧トルク指令値TCH*についての補正量TCH2’が得られ、高圧比例積分制御部714では、ステップS204〜S212において、高圧トルク指令値TCH*についての補正量TCH2と低圧トルク指令値TCL*についての補正量TCL2’が得られる。よって、低圧加減算部720では、低圧トルク指令値TCL*に対し、低圧比例積分制御部716からの補正量TCL2を減算し、高圧比例積分制御部714からの補正量TCL2’を加算して、低圧トルク指令値を補正し、新たな低圧トルク指令値TCLh*を導き出す。高圧加減算部718では、高圧トルク指令値TCH*に対し、高圧比例積分制御部714からの補正量TCH2を減算し、低圧比例積分制御部716からの補正量TCH2’を加算して、高圧トルク指令値を補正し、新たな高圧トルク指令値TCHh*を導き出す。
【0135】
また、低圧比例積分制御部716では、ステップS116またはS118でトルク補正量ΔTaHを得て、高圧比例積分制御部714では、ステップS216またはS218でトルク補正量ΔTaLを得るため、加算部722では、それら両者を加算して、最終的なトルク補正量ΔTaを導き出す。
【0136】
以上で、高圧比例積分制御部714及び低圧比例積分制御部716の処理についての説明を終える。
【0137】
次に、高圧トルク制限演算部726には、高圧インバータ温度センサ(図示せず)から得られる高圧インバータ300の温度と、モータ高圧部温度センサ(図示せず)から得られるモータ400の高圧巻線部分の温度と、モータ低圧部温度センサ(図示せず)から得られるモータ400の低圧巻線部分の温度と、が入力されている。また、低圧トルク制限演算部728にも、同じように、低圧インバータ温度センサ(図示せず)から得られる低圧インバータ500の温度と、上記のモータ高圧部温度センサから得られるモータ400の高圧巻線部分の温度と、上記のモータ低圧部温度センサから得られるモータ400の低圧巻線部分の温度と、が入力されている。
【0138】
高圧トルク制限演算部726では、上記検出結果を基にして、モータ400における高圧巻線で生じさせることのできるトルクの最大値である高圧トルク最大許容値TCHmaxと、同じく高圧巻線で生じさせることのできるトルクの最小値である高圧トルク最小許容値TCHminと、を算出する。また、低圧トルク制限演算部728でも、同様に、モータ400における低圧巻線で生じさせることのできるトルクの最大値である低圧トルク最大許容値TCLmaxと、同じく低圧巻線で生じさせることのできるトルクの最小値である低圧トルク最小許容値TCLminと、を算出する。
【0139】
一般に、モータの巻線の温度は、その巻線を流れる電流の値に関係している。従って、モータの巻線の温度を測定すれば、その巻線を流れる電流の値を検出することができる。
【0140】
一方、本実施例においては、前述したように、モータ400は、直列に接続された2つの巻線が共に高圧巻線を構成し、その高圧巻線を構成する2つの巻線のうち、Y結線における中点に近い側の巻線が低圧巻線も構成している。従って、Y結線における中点に近い側の巻線Lu2,Lv2,Lw2(すなわち、低圧巻線)には、低圧インバータ500によって供給される低圧巻線用のモータ電流と、高圧インバータ300によって供給される高圧巻線用のモータ電流と、が流れることになる。よって、Y結線における中点に近い側の巻線Lu2,Lv2,Lw2には、Y結線における中点から遠い側の巻線Lu1,Lv1,Lw1に比較して、過電流が流れやすいため、少なくとも、Y結線における中点に近い側の巻線Lu2,Lv2,Lw2については、その巻線を流れるモータ電流がその巻線の電流容量を超えないように、モータ電流を制御する必要がある。
【0141】
そこで、本実施例では、モータ400における低圧巻線部分の温度を測定し、その測定結果から低圧巻線(巻線Lu2,Lv2,Lw2)に流れる電流の値を得て、その値が電流容量制限を超えないように、モータ400の低圧巻線で生じるトルクの許容範囲(低圧トルク最大許容値TCLmaxと低圧トルク最小許容値TCLmin)と高圧巻線で生じるトルクの許容範囲(高圧トルク最大許容値TCHmaxと高圧トルク最小許容値TCHmin)を決定している。
【0142】
なお、モータ400の低圧巻線で生じるトルクの許容範囲と高圧巻線で生じるトルクの許容範囲の決定にあたっては、モータ400における高圧巻線部分の温度も併せて測定し、その測定結果から高圧巻線に流れる電流の値を得て、高圧巻線についても、高圧巻線に流れる電流の値が高圧巻線の電流容量制限を超えないように配慮している。
【0143】
また、モータ400で生じるトルクは、モータが力行動作している場合を正、回生動作をしている場合を負としている。従って、上記したトルクの最大許容値は、モータが力行動作している場合の最大許容値を意味し、上記した最小許容値は、モータが回生動作をしている場合の最大許容値を意味することになる。
【0144】
次に、トルク指令調整部730では、高圧加減算部718で得られた高圧トルク指令値TCHh*と、低圧加減算部720で得られた低圧トルク指令値TCLh*と、高圧トルク制限演算部726で得られた高圧トルク許容範囲(高圧トルク最大許容値TCHmax及び高圧トルク最小許容値TCHmin)と、低圧トルク制限演算部728で得られた低圧トルク許容範囲(低圧トルク最大許容値TCLmax及び低圧トルク最小許容値TCLmin)を入力する。そして、高圧トルク指令値TCHh*が高圧トルク許容範囲を超えているか、または、低圧トルク指令値TCLh*が低圧トルク許容範囲を超えている場合には、高圧モータ電流指令演算部732は、その許容範囲内になるようにトルク指令値を調整し、最終的な高圧トルク指令値TCHh*’と低圧トルク指令値TCLh*’を導き出す。
【0145】
図8は図5におけるトルク指令調整部730でのトルク指令値の調整方法を説明するための説明図である。図8において、横軸は高圧トルク指令値TCHh*を示し、縦軸は低圧トルク指令値TCLh*を示している。また、高圧トルク最大許容値TCHmax及び高圧トルク最小許容値TCHminと低圧トルク最大許容値TCLmax及び低圧トルク最小許容値TCLminとで囲まれた斜線領域がモータ400全体のトルク許容範囲である。
【0146】
今、高圧トルク指令値TCHh*として値TCHh1を、低圧トルク指令値TCLh*として値TCLh1を得たとすると、トルク指令値としては黒丸の点を得たことになる。しかし、高圧トルク指令値である値TCHh1は高圧トルク最大許容値TCHmaxを超えているため、トルク指令調整部730では、高圧トルク指令値TCHh*と低圧トルク指令値TCLh*との和が一定(TCHh*+TCLh*=const.)となり、かつ、高圧トルク指令値TCHh*と低圧トルク指令値TCLh*の何れもが、上記したトルク許容範囲内に納まるように、調整がなされる。すなわち、図8において、TCHh*+TCLh*=const.の直線上で斜線領域に入る部分が、トルク指令値として選択可能な範囲であるので、その範囲の中から、新たなトルク指令値を見い出す。図8の例では、高圧トルク指令値TCHh*を高圧トルク最大許容値であるTCHmaxに調整し、低圧トルク指令値TCLh*を値TCLh2に調整して、星印の点を新たなトルク指令値としている。
【0147】
以上のようにして調整された高圧トルク指令値TCHh*’は、高圧モータ電流指令演算部732に入力され、低圧トルク指令値TCLh*’は、低圧モータ電流指令演算部734に入力される。
【0148】
高圧モータ電流指令演算部732及び低圧モータ電流指令演算部734では、それぞれ、入力されたトルク指令値から、まず、モータ400をd−q軸モデルで表した場合における、d軸巻線に流れる電流の目標値であるd軸電流指令値と、q軸巻線に流れる電流の目標値であるq軸電流指令値と、を算出し、次に、その算出したd軸電流指令値及びq軸電流指令値から、2相−3相変換によって、u相巻線に流すべき電流の目標値であるu相電流指令値、v相巻線に流すべき電流の目標値であるv相電流指令値、及びw相巻線に流すべき電流の目標値であるw相電流指令値をそれぞれ導き出す。
【0149】
その結果、高圧モータ電流指令演算部732からは、高圧PWM制御部736に対し、u相,v相,w相の高圧巻線に流すべき目標値である高圧u相電流指令値、高圧v相電流指令値及び高圧w相電流指令値が入力され、低圧モータ電流指令演算部734からは、低圧PWM制御部738に対し、u相,v相,w相の低圧巻線に流すべき目標値である低圧u相電流指令値、低圧v相電流指令値及び低圧w相電流指令値が入力される。
【0150】
一方、高圧PWM制御部736には、その他、u相の高圧巻線に流れるモータ電流の値が高圧u相モータ電流センサ750によって、v相の高圧巻線に流れるモータ電流の値が高圧v相モータ電流センサ752によって、それぞれ検出されて入力され、同じく、低圧PWM制御部738には、u相の低圧巻線に流れるモータ電流の値が低圧u相モータ電流センサ754によって、v相の低圧巻線に流れるモータ電流の値が低圧v相モータ電流センサ756によって、それぞれ検出されて入力される。
【0151】
そして、高圧PWM制御部736では、検出されたu相,v相の高圧巻線を流れるモータ電流が高圧u相電流指令値、高圧v相電流指令値に等しくなるように、高圧インバータ300を構成する各トランジスタのオン/オフのデューティを制御する。同様に、低圧PWM制御部738では、検出されたu相,v相の低圧巻線を流れるモータ電流が低圧u相電流指令値、低圧v相電流指令値に等しくなるように、低圧インバータ500を構成する各トランジスタのオン/オフのデューティを制御する。
【0152】
以上のようにして、制御部700が、各種センサからの検出結果を基にして高圧インバータ300及び低圧インバータ500を制御することにより、前述したa)〜f)の6つの動作状態を実現することができる。
【0153】
例えば、トルク指令調整部730から出力される最終的な高圧トルク指令値TCHh*’が正であれば、高圧電池200から放電された電力によって高圧巻線に関してモータ400は力行動作を行ない、負であれば、高圧巻線に関してモータ400は回生動作を行なって、回生された電力を高圧電池200に充電する。同様に、最終的な低圧トルク指令値TCLh*’が正であれば、低圧電池600から放電された電力によって低圧巻線に関してモータ400は力行動作を行ない、負であれば、低圧巻線に関してモータ400は回生動作を行なって、回生された電力を高圧電池200に充電する。
【0154】
また、図2におけるトルク指令分割部706で得られた高圧トルク指令値TCH*と低圧トルク指令値TCL*の何れもがゼロの場合は、高圧巻線に関してモータ400で生じるトルクと低圧巻線に関してモータ400で生じるトルクは共にゼロとなる。
【0155】
理論的には、高圧トルク指令値TCH*と低圧トルク指令値TCL*の何れもがゼロで、さらに、高圧加減算部718及び低圧加減算部720において、それらトルク指令値に補正がされなければ、トルク指令調整部730から出力される最終的な高圧トルク指令値TCHh*’,低圧トルク指令値TCLh*’もゼロとなり、高圧モータ電流指令演算部732及び低圧モータ電流指令演算部734において、q軸巻線に流れる電流の目標値であるq軸電流指令値がゼロとなるため、モータ400で生じるトルクは何れもゼロとなる。
【0156】
しかしながら、本実施例では、高圧トルク指令値TCH*と低圧トルク指令値TCL*が共にゼロとなった場合に、モータ400で生じるトルクが高圧巻線,低圧巻線共に確実にゼロとなるように、高圧ゼロトルク判定部739及び低圧ゼロトルク判定部740を設けている。
【0157】
この高圧ゼロトルク判定部739及び低圧ゼロトルク判定部740では、それぞれ、トルク指令分割部706で得られた高圧トルク指令値TCH*または低圧トルク指令値TCL*を入力し、そのトルク指令値がゼロであるか否かを判定する。そして、判定の結果、トルク指令値がゼロである場合には、高圧PWM制御部736または低圧PWM制御部738にその旨を伝える。高圧PWM制御部736及び低圧PWM制御部738では、トルク指令値がゼロであることが伝えられると、高圧モータ電流指令演算部732または低圧モータ電流指令演算部734から入力されたu相,v相,w相の電流指令値のうち、例えば、u相の電流指令値をゼロに置き換えて、高圧インバータ300または低圧インバータ500の制御を行なう。この結果、モータ400のu相の高圧巻線及び低圧巻線を流れるモータ電流はゼロとなるため、例え、v相,w相の巻線にモータ電流が流れていたとしても、モータ400全体では回転磁界とならないので、モータ400で生じるトルクはゼロとなる。
【0158】
ところで、高圧電池200及び低圧電池600は、前述したように、複数のバッテリセルを直列に接続して構成されている。しかし、これら電池を長期に使用していると、各バッテリセルの充電量にばらつきを生じ、電池性能が低下する場合がある。そこで、本実施例では、必要に応じて、各バッテリセルの充電量の均等化を図って、電池性能を向上させるようにしている。すなわち、制御部700は、外部からの指示や、高圧電池200及び低圧電池600の充電状態の検出結果などから、バッテリセルの充電量の均等化が必要であると認識した場合には、図3に示したように、充電量均等化指令を優先電池電流指令決定部712に発する。この充電量均等化指令には、高圧電池200及び低圧電池600の何れの電池を均等化するかの情報も含まれている。
【0159】
優先電池電流指令決定部712では、充電量均等化指令が入力されると、図4に示したマップに関わらず、均等化の対象となった電池に関わる電池電流指令値を優先して用いるべき電池電流指令として決定する。これにより、均等化の対象となった電池に関わる電池電流指令値が優先されて、上記電池に対しモータ400から充電がなされる。その後、その電池が満充電状態となって、各バッテリセルの充電量にばらつきがなくなり、均等になったら、処理を終了する。
【0160】
このようにして、高圧電池200または低圧電池600に対し、必要に応じて、各バッテリセルの充電量の均等化を行なうことによって、電池性能を向上させると共に、電池の寿命を延ばすことができる。
【0161】
さて、以上説明したように、本実施例では、モータ400は、直列に接続された2つの巻線が共に高圧巻線を構成し、その高圧巻線を構成する2つの巻線のうち、Y結線における中点に近い側の巻線が低圧巻線も構成している。従って、本実施例によれば、Y結線における中点に近い側の巻線を高圧巻線と低圧巻線とでで共用しているため、従来のように高圧巻線と低圧巻線とを別個に構成する場合に比較して、別個に設けていた低圧巻線分のスペースが不要となり、別個に設けていた低圧巻線分の重さだけ、全体の重量が軽減される。従って、モータ400の体格や重量を増大させることなく、モータ400と高圧電池200及び低圧電池600を用いて電力の変換を行なうことができる。
【0162】
なお、本発明は上記した実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様にて実施することが可能である。
【0163】
上記した実施例においては、直流電源が高圧電池200及び低圧電池600の2つであり、それら直流電源に対応するインバータも2つであり、さらに、それら直流電源に対応するモータ400の駆動巻線も高圧巻線及び低圧巻線の2つであったが、本発明はこれに限定されるものではない。すなわち、直流電源を3つ以上用い、それに対応して、インバータもその直流電源の数だけ用い、さらに、モータ400を構成する駆動巻線も直流電源の数だけ用意するようにしても良い。但し、その場合、モータ400における各巻線とインバータとの結線は、例えば、図9に示す通りにする。
【0164】
図9は本発明の他の実施例として電力変換システムの構成を示す構成図である。図9に示す電力変換システムは、第1電池1200と、第1インバータ1300と、モータ1400と、第2インバータ1500と、第2電池1600と、第3インバータ1800と、第3電池1900と、制御部と、を主として備えている。なお、制御部は図9では省略されている。
【0165】
モータ1400は三相モータであって、ステータにu相,v相,w相の固定巻線を備えている。u相,v相,w相の各固定巻線は、それぞれ、3つの巻線が直列に接続して構成されており、さらに、その直列に接続された3つの巻線が共に第1駆動巻線を構成し、また、その第1駆動巻線を構成する3つの巻線のうち、Y結線における中点に近い側の2つの巻線が第2駆動巻線も構成し、さらに、その第2駆動巻線を構成する2つの巻線のうち、Y結線における中点に最も近い側の巻線が第3駆動巻線も構成している。即ち、例えば、u相の固定巻線では、直列に接続された巻線Lu1,Lu2、Lu3が共に第1駆動巻線を構成し、その第1駆動巻線を構成する巻線Lu2,Lu3が第2駆動巻線も構成し、さらに、その第2駆動巻線を構成する巻線Lu3が第3駆動巻線も構成する。なお、v相,w相の固定巻線についても同様である。
【0166】
第1電池1200,第2電池1600及び第3電池1900はそれぞれ、二次電池である。第1インバータ1300は、第1電池1200とモータ1400との間に接続され、特に、モータ400側はu相,v相,w相の各第1駆動巻線にそれぞれ接続される。また、第2インバータ1500は第2電池1600とモータ1400との間に接続され、特に、モータ400側はu相,v相,w相の各第2駆動巻線にそれぞれ接続される。また、第3インバータ1800は第3電池1900とモータ1400との間に接続され、特に、モータ400側はu相,v相,w相の各第3駆動巻線にそれぞれ接続される。
【0167】
以上のようにして、モータ400における各巻線とインバータとの結線を行なうことによって、上記した実施例と同様の効果を奏することができる。
【0168】
また、上記した実施例においては、モータは三相モータであったが、三相以上のモータを用いるようにしても良い。また、モータの種類としては、多相交流電動機であれば良く、同期電動機、誘導電動機、リアクタンスモータなど各種モータを用いることができる。
【0169】
また、上記した実施例においては、電力変換システムを車両に搭載するものとして説明したが、本発明はそれに限定されるものではなく、船舶、航空機などの他の交通手段や、事業用または家庭用電気設備などにも適用することができる。
【図面の簡単な説明】
【図1】本発明の一実施例としての電力変換システムの構成を示す構成図である。
【図2】図1における制御部700を構成するトルク指令生成部の構成を示すブロック図である。
【図3】図1における制御部700を構成する電池電流指令生成部の構成を示すブロック図である。
【図4】図3における優先電池電流指令決定部712で用いられる優先順位を決定するためのマップを示す説明図である。
【図5】図1における制御部700を構成するインバータ制御部の構成を示すブロック図である。
【図6】図5における低圧比例積分制御部716の処理手順を示すフローチャートである。
【図7】図5における高圧比例積分制御部714の処理手順を示すフローチャートである。
【図8】図5におけるトルク指令調整部730でのトルク指令値の調整方法を説明するための説明図である。
【図9】本発明の他の実施例として電力変換システムの構成を示す構成図である。
【符号の説明】
1200…第1電池
1300…第1インバータ
1400…モータ
1500…第2インバータ
1600…第2電池
1800…第3インバータ
1900…第3電池
200…高圧電池
300…高圧インバータ
400…モータ
500…低圧インバータ
600…低圧電池
700…制御部
702…トルク指令演算部
704…トルク指令補正部
706…トルク指令分割部
708…高圧電池電流演算部
710…低圧電池電流演算部
712…優先電池電流指令決定部
714…高圧比例積分制御部
716…低圧比例積分制御部
718…高圧加減算部
720…低圧加減算部
722…加算部
724…モータ速度演算部
726…高圧トルク制限演算部
728…低圧トルク制限演算部
730…トルク指令調整部
732…高圧モータ電流指令演算部
734…低圧モータ電流指令演算部
736…高圧PWM制御部
738…低圧PWM制御部
739…高圧ゼロトルク判定部
740…低圧ゼロトルク判定部
742…高圧電池電圧センサ
744…低圧電池電圧センサ
746…高圧電池電流センサ
748…低圧電池電流センサ
750…高圧u相モータ電流センサ
752…高圧v相モータ電流センサ
754…低圧u相モータ電流センサ
756…低圧v相モータ電流センサ
758…回転センサ

Claims (10)

  1. 電力変換を行なうための電力変換システムであって、
    ステータに各相毎に、直列に接続された第1及び第2の巻線をそれぞれ備え、前記第1及び第2の巻線によって第1の駆動巻線を構成し、前記第2の巻線によって第2の駆動巻線を構成する多相交流電動機と、
    所定の直流電圧を発生することが可能な第1の直流電源と、
    所定の直流電圧を発生することが可能であり、電力を充放電することが可能な第2の直流電源と、
    前記第1の直流電源と前記多相交流電動機における前記第1の駆動巻線との間に接続され、前記第1の直流電源と前記第1の駆動巻線との間で直流−交流変換を行なうことによって、電力のやり取りを行なわせると共に、前記多相交流電動機における前記第1の駆動巻線について、前記多相交流電動機を駆動することが可能な第1のインバータと、
    前記第2の直流電源と前記多相交流電動機における前記第2の駆動巻線との間に接続され、前記第2の直流電源と前記第2の駆動巻線との間で直流−交流変換を行なうことよって、電力のやり取りを行なわせると共に、前記多相交流電動機における前記第2の駆動巻線について、前記多相交流電動機を駆動することが可能な第2のインバータと、
    前記第1及び第2のインバータを制御するための制御手段と、
    を備え
    前記第1の直流電源は、電力を充放電することが可能であると共に、
    前記制御手段は、前記第1のインバータを制御して、前記多相交流電動機を前記第1の駆動巻線に関して発電機として作動させ、前記第1の駆動巻線から出力される電力を前記第1の直流電源に充電させ、前記第2のインバータを制御して、前記多相交流電動機を前記第2の駆動巻線に関して発電機として作動させ、前記第2の駆動巻線から出力される電力を前記第2の直流電源に充電させることを特徴とする電力変換システム。
  2. 電力変換を行なうための電力変換システムであって、
    ステータに各相毎に、直列に接続された第1及び第2の巻線をそれぞれ備え、前記第1及び第2の巻線によって第1の駆動巻線を構成し、前記第2の巻線によって第2の駆動巻線を構成する多相交流電動機と、
    所定の直流電圧を発生することが可能な第1の直流電源と、
    所定の直流電圧を発生することが可能であり、電力を充放電することが可能な第2の直流電源と、
    前記第1の直流電源と前記多相交流電動機における前記第1の駆動巻線との間に接続され、前記第1の直流電源と前記第1の駆動巻線との間で直流−交流変換を行なうことによって、電力のやり取りを行なわせると共に、前記多相交流電動機における前記第1の駆動巻線について、前記多相交流電動機を駆動することが可能な第1のインバータと、
    前記第2の直流電源と前記多相交流電動機における前記第2の駆動巻線との間に接続され、前記第2の直流電源と前記第2の駆動巻線との間で直流−交流変換を行なうことよって、電力のやり取りを行なわせると共に、前記多相交流電動機における前記第2の駆動巻線について、前記多相交流電動機を駆動することが可能な第2のインバータと、
    前記第1及び第2のインバータを制御するための制御手段と、
    を備え
    前記制御手段は、前記第1のインバータを制御して、前記第1の直流電源から出力される電力を前記第1の駆動巻線に供給し、前記多相交流電動機を前記第1の駆動巻線に関して電動機として作動させ、前記第2のインバータを制御して、前記第2の直流電源から放電される電力を前記第2の駆動巻線に供給し、前記多相交流電動機を前記第2の駆動巻線に関して電動機として作動させることを特徴とする電力変換システム。
  3. 電力変換を行なうための電力変換システムであって、
    ステータに各相毎に、直列に接続された第1及び第2の巻線をそれぞれ備え、前記第1及び第2の巻線によって第1の駆動巻線を構成し、前記第2の巻線によって第2の駆動巻線を構成する多相交流電動機と、
    所定の直流電圧を発生することが可能な第1の直流電源と、
    所定の直流電圧を発生することが可能であり、電力を充放電することが可能な第2の直流電源と、
    前記第1の直流電源と前記多相交流電動機における前記第1の駆動巻線との間に接続され、前記第1の直流電源と前記第1の駆動巻線との間で直流−交流変換を行なうことによって、電力のやり取りを行なわせると共に、前記多相交流電動機における前記第1の駆動巻線について、前記多相交流電動機を駆動することが可能な第1のインバータと、
    前記第2の直流電源と前記多相交流電動機における前記第2の駆動巻線との間に接続され、前記第2の直流電源と前記第2の駆動巻線との間で直流−交流変換を行なうことよって、電力のやり取りを行なわせると共に、前記多相交流電動機における前記第2の駆動巻線について、前記多相交流電動機を駆動することが可能な第2のインバータと、
    前記第1及び第2のインバータを制御するための制御手段と、
    を備え
    前記第1の直流電源は、電力を充放電することが可能であると共に、
    前記制御手段は、前記第1のインバータを制御して、前記多相交流電動機を前記第1の駆動巻線に関して発電機として作動させ、前記第1の駆動巻線から出力される電力を前記第1の直流電源に充電させ、前記第2のインバータを制御して、前記第2の直流電源から放電される電力を前記第2の駆動巻線に供給し、前記多相交流電動機を前記第2の駆動巻線に関して電動機として作動させることを特徴とする電力変換システム。
  4. 電力変換を行なうための電力変換システムであって、
    ステータに各相毎に、直列に接続された第1及び第2の巻線をそれぞれ備え、前記第1及び第2の巻線によって第1の駆動巻線を構成し、前記第2の巻線によって第2の駆動巻線を構成する多相交流電動機と、
    所定の直流電圧を発生することが可能な第1の直流電源と、
    所定の直流電圧を発生することが可能であり、電力を充放電することが可能な第2の直流電源と、
    前記第1の直流電源と前記多相交流電動機における前記第1の駆動巻線との間に接続され、前記第1の直流電源と前記第1の駆動巻線との間で直流−交流変換を行なうことによって、電力のやり取りを行なわせると共に、前記多相交流電動機における前記第1の駆動巻線について、前記多相交流電動機を駆動することが可能な第1のインバータと、
    前記第2の直流電源と前記多相交流電動機における前記第2の駆動巻線との間に接続され、前記第2の直流電源と前記第2の駆動巻線との間で直流−交流変換を行なうことよって、電力のやり取りを行なわせると共に、前記多相交流電動機における前記第2の駆動巻線について、前記多相交流電動機を駆動することが可能な第2のインバータと、
    前記第1及び第2のインバータを制御するための制御手段と、
    を備え
    前記制御手段は、前記第1のインバータを制御して、前記第1の駆動巻線に関して前記多相交流電動機で生じるトルクをほぼゼロにしつつ、前記第1の直流電源から出力される電力を前記第1の駆動巻線に伝達し、前記第2のインバータを制御して、前記第2の駆動巻線について前記多相交流電動機で生じるトルクをほぼゼロにしつつ、前記第1の駆動巻線に伝達される前記電力を前記第2の駆動巻線から出力して前記第2の直流電源に充電させることを特徴とする電力変換システム。
  5. 電力変換を行なうための電力変換システムであって、
    ステータに各相毎に、直列に接続された第1及び第2の巻線をそれぞれ備え、前記第1及び第2の巻線によって第1の駆動巻線を構成し、前記第2の巻線によって第2の駆動巻線を構成する多相交流電動機と、
    所定の直流電圧を発生することが可能な第1の直流電源と、
    所定の直流電圧を発生することが可能であり、電力を充放電することが可能な第2の直流電源と、
    前記第1の直流電源と前記多相交流電動機における前記第1の駆動巻線との間に接続さ れ、前記第1の直流電源と前記第1の駆動巻線との間で直流−交流変換を行なうことによって、電力のやり取りを行なわせると共に、前記多相交流電動機における前記第1の駆動巻線について、前記多相交流電動機を駆動することが可能な第1のインバータと、
    前記第2の直流電源と前記多相交流電動機における前記第2の駆動巻線との間に接続され、前記第2の直流電源と前記第2の駆動巻線との間で直流−交流変換を行なうことよって、電力のやり取りを行なわせると共に、前記多相交流電動機における前記第2の駆動巻線について、前記多相交流電動機を駆動することが可能な第2のインバータと、
    前記第1及び第2のインバータを制御するための制御手段と、
    を備え
    前記第1の直流電源は、電力を充放電することが可能であると共に、
    前記制御手段は、前記第2のインバータを制御して、前記第2の駆動巻線に関して前記多相交流電動機で生じるトルクをほぼゼロにしつつ、前記第2の直流電源から放電される電力を前記第2の駆動巻線に伝達し、前記第1のインバータを制御して、前記第1の駆動巻線に関して前記多相交流電動機で生じるトルクをほぼゼロにしつつ、前記第1の駆動巻線に伝達される電力を前記第1の駆動巻線から出力して前記第1の直流電源に充電させることを特徴とする電力変換システム。
  6. 請求項1ないし請求項5のうちの任意の一つに記載の電力変換システムにおいて、
    前記制御手段は、少なくとも前記第2の巻線を流れる電流が該第2の巻線の電流容量制限を超えないように、前記第1及び第2のインバータを制御することを特徴とする電力変換システム。
  7. 請求項1ないし請求項5のうちの任意の一つに記載の電力変換システムにおいて、
    前記制御手段は、前記第1の直流電源と前記第1のインバータとの間を流れる電流または前記第2の直流電源と前記第2のインバータとの間を流れる電流が所望の電流値となり、かつ、前記多相交流電動機で生じるトルクが所望のトルク値となるように、前記第1及び第2のインバータを制御することを特徴とする電力変換システム。
  8. 請求項7に記載の電力変換システムにおいて、
    前記制御手段は、前記第1の直流電源と前記第1のインバータとの間に流すべき電流値または前記第2の直流電源と前記第2のインバータとの間に流すべき電流値に基づいて、前記多相交流電動機で生じるべきトルク値を補正することを特徴とする電力変換システム。
  9. 請求項1請求項3または請求項5に記載の電力変換システムにおいて、
    前記第1または第2の直流電源は複数の蓄電池を直列に接続した集合電池から成ると共に、
    前記制御手段は、前記第1または第2のインバータを制御して、前記第1または第2の直流電源を満充電状態にして前記蓄電池の充電量の均等化を図ることを特徴とする電力変換システム。
  10. 請求項4または請求項5に記載の電力変換システムにおいて、
    前記制御手段は、前記多相交流電動機をd−q軸モデルで表した場合における、q軸巻線に流れる電流がほぼゼロとなり、d軸巻線に流れる電流がゼロ以外の所望の電流値となるように、前記第1のインバータ及び前記第2のインバータを制御することを特徴とする電力変換システム。
JP12345399A 1999-04-30 1999-04-30 電力変換システム Expired - Fee Related JP4134439B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12345399A JP4134439B2 (ja) 1999-04-30 1999-04-30 電力変換システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12345399A JP4134439B2 (ja) 1999-04-30 1999-04-30 電力変換システム

Publications (2)

Publication Number Publication Date
JP2000324871A JP2000324871A (ja) 2000-11-24
JP4134439B2 true JP4134439B2 (ja) 2008-08-20

Family

ID=14860998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12345399A Expired - Fee Related JP4134439B2 (ja) 1999-04-30 1999-04-30 電力変換システム

Country Status (1)

Country Link
JP (1) JP4134439B2 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003084034A1 (fr) 2002-03-29 2003-10-09 Matsushita Electric Industrial Co., Ltd. Moteur
KR20040105698A (ko) 2002-05-29 2004-12-16 마츠시타 덴끼 산교 가부시키가이샤 전동발전기
JP4498827B2 (ja) * 2004-06-03 2010-07-07 トヨタ自動車株式会社 電力変換装置およびそれを備えた車両
JP4572610B2 (ja) * 2004-07-14 2010-11-04 日産自動車株式会社 モータ駆動システムの制御装置
JP4725709B2 (ja) * 2004-10-29 2011-07-13 日産自動車株式会社 モータ駆動システムの制御装置
JP4765700B2 (ja) * 2005-06-01 2011-09-07 日産自動車株式会社 電力変換装置
JP4844051B2 (ja) * 2005-08-30 2011-12-21 日産自動車株式会社 電力変換装置
DE102006010357A1 (de) * 2006-03-07 2007-09-13 Zf Lenksysteme Gmbh Elektromotorisch unterstützte Lenkvorrichtung
JP4380772B2 (ja) * 2007-10-16 2009-12-09 トヨタ自動車株式会社 電源装置およびそれを備えた車両、電源装置の制御方法、ならびにその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
EP3576276A1 (en) * 2009-07-31 2019-12-04 Thermo King Corporation Bi-directional battery voltage converter
US8115434B2 (en) * 2010-05-28 2012-02-14 General Electric Company High-speed self-cascaded electric machine
JP5395021B2 (ja) * 2010-09-28 2014-01-22 本田技研工業株式会社 電気自動車の制御装置
JP5338853B2 (ja) * 2011-06-03 2013-11-13 日産自動車株式会社 電力変換装置
JP6026952B2 (ja) * 2013-05-17 2016-11-16 株式会社日本自動車部品総合研究所 電力変換装置
JP2015167463A (ja) * 2014-03-04 2015-09-24 東洋電機製造株式会社 回転機高速駆動装置
JP6971649B2 (ja) * 2017-06-15 2021-11-24 株式会社東芝 同期電動機システム及び同期電動機システムの制御装置
DE102017210739A1 (de) * 2017-06-27 2018-12-27 Bayerische Motoren Werke Aktiengesellschaft Antriebsstrang sowie Verfahren zum Betreiben eines Antriebsstrangs
JP6850267B2 (ja) * 2018-02-06 2021-03-31 株式会社Soken 回転電機の駆動装置
JP7040197B2 (ja) 2018-03-22 2022-03-23 株式会社デンソー モータシステム
JP7035684B2 (ja) 2018-03-22 2022-03-15 株式会社デンソー システム
JP7028008B2 (ja) 2018-03-22 2022-03-02 株式会社デンソー システム
JP7040192B2 (ja) 2018-03-22 2022-03-23 株式会社デンソー 電動機駆動装置
US10784806B2 (en) 2018-03-22 2020-09-22 Denso Corporation Electric motor driving apparatus
JP7114968B2 (ja) 2018-03-22 2022-08-09 株式会社デンソー 電動機駆動装置
JP7003768B2 (ja) 2018-03-22 2022-01-21 株式会社デンソー モータシステム
JP2019170045A (ja) 2018-03-22 2019-10-03 トヨタ自動車株式会社 システム
CN112787390B (zh) * 2021-01-27 2022-04-22 华南理工大学 电动汽车驱动与充电一体化电路及其转矩消除控制方法

Also Published As

Publication number Publication date
JP2000324871A (ja) 2000-11-24

Similar Documents

Publication Publication Date Title
JP4134439B2 (ja) 電力変換システム
US7891451B2 (en) Power controller and vehicle equipped with power controller
US9555714B2 (en) Power supply system of electric-powered vehicle
JP4193704B2 (ja) 電源装置およびそれを搭載する自動車
JP5104723B2 (ja) 電動機制御装置,駆動装置およびハイブリッド駆動装置
US9077269B2 (en) Control system for AC electric motor
JP4561616B2 (ja) モータ駆動システム
JP4232789B2 (ja) 内燃機関の停止制御装置および停止制御方法
US7486036B2 (en) Power control apparatus, electrically powered vehicle and power control method of power system
JP5751334B2 (ja) 電源システムおよびその制御方法
JP5987846B2 (ja) ハイブリッド車両
JP2000125411A (ja) モータ駆動装置
JP6102841B2 (ja) 電源システム
JP2009219200A (ja) ハイブリッド車両の電源システム
JP2019054673A (ja) 電源装置
CN113491063A (zh) 电动机驱动装置
JP2012110189A (ja) 電動車両の電気システムおよびその制御方法
US7084589B1 (en) Vehicle and method for controlling power to wheels in a vehicle
JP6922820B2 (ja) 電源制御装置
JP2009112164A (ja) 電動機制御装置,駆動装置およびハイブリッド駆動装置
JP2000166009A (ja) シリーズハイブリッド電気自動車
Rossi et al. Generation system for series hybrid powertrain based on the dual two-level inverter
JP7099132B2 (ja) 回転電機制御システム
JP7452164B2 (ja) 車両用制御装置、プログラム、車両用制御方法
JP2017112726A (ja) 交流電動機の制御システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees