WO2003082785A1 - Procede de production de bisphenol a - Google Patents

Procede de production de bisphenol a Download PDF

Info

Publication number
WO2003082785A1
WO2003082785A1 PCT/JP2003/003330 JP0303330W WO03082785A1 WO 2003082785 A1 WO2003082785 A1 WO 2003082785A1 JP 0303330 W JP0303330 W JP 0303330W WO 03082785 A1 WO03082785 A1 WO 03082785A1
Authority
WO
WIPO (PCT)
Prior art keywords
bisphenol
phenol
adduct
solution
slurry
Prior art date
Application number
PCT/JP2003/003330
Other languages
English (en)
French (fr)
Inventor
Masahiro Kodama
Kazuyuki Hirano
Norio Ogata
Original Assignee
Idemitsu Petrochemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co., Ltd. filed Critical Idemitsu Petrochemical Co., Ltd.
Priority to US10/508,012 priority Critical patent/US20050222467A1/en
Priority to EP03712759A priority patent/EP1491520A4/en
Priority to BR0308849-9A priority patent/BR0308849A/pt
Priority to KR1020047015107A priority patent/KR100899496B1/ko
Publication of WO2003082785A1 publication Critical patent/WO2003082785A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/84Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by crystallisation

Definitions

  • the present invention relates to a method for producing bisphenol A [2,2-bis (4-hydroxyphenyl) propane], and more particularly to a method for separating an adduct of bisphenol A and phenol in the production method. is there. ⁇ Kagemata f small]
  • Bisphenol A is known to be an important compound as a raw material for engineering plastics such as polycarbonate resin and polyarylate resin, or epoxy resin. It tends to increase.
  • This bisphenol A is produced by condensing excess phenol and acetone in the presence of an acidic catalyst and optionally a cocatalyst such as a sulfur compound.
  • Bisphenol A can be extracted from the reaction mixture by directly separating it from the reaction mixture in the form of crude crystals, or by concentrating and cooling the liquid mixture after removing acetone, water, etc. from the reaction mixture.
  • a method is known in which an adduct of bisphenol A and funinol is precipitated and separated (Japanese Patent Application Laid-Open Nos. 191240/1976, 777-176737, etc.). Have been.
  • the former method in which the crude product is separated directly from the reaction mixture in the form of coarse crystals, is disadvantageous in that bisphenol A is microcrystalline and needs to be washed many times, resulting in large loss.
  • a suction belt filter or a drum filter can be used for separation by a filtration method (Japanese Patent Application Laid-Open No. Hei 6-36002), but in that case, loss due to opening of the filter medium is prevented.
  • a filtration method Japanese Patent Application Laid-Open No. Hei 6-36002
  • loss due to opening of the filter medium is prevented.
  • the separation by the filtration method has a high liquid content, making it difficult to remove the mother liquor and the like contained between the crystals.Furthermore, there is a risk that the mother liquor may enter into the large crystals.
  • the method using a centrifuge reduces the liquid content between crystals to obtain a more dried adduct.
  • centrifugal load is applied, so that the crystal is crushed and the displacement efficiency of the mother liquor and the washing solution is deteriorated as compared with the filtration method. Therefore, when processing a large number of products, it is generally necessary to repeat washing with multiple devices in order to increase purity, resulting in an increase in the number of devices and an increase in operation time, Not economically favorable.
  • the present inventors have conducted intensive studies on a method for producing bisphenol A having the above-mentioned problems, and as a result, conducted a crystallization step in two steps, and used a filtration method for separation after the first step to remove impurities on the crystal surface. After re-dissolving the impurities inside the crystal in the second step, recrystallize the impurities and remove the impurities by centrifugation, and sufficiently remove the washing solution before proceeding to the next step to obtain high-purity bisphenol.
  • the present inventors have found that an adduct of A and phenol can be obtained efficiently, and have reached the present invention.
  • the present invention provides a method for producing a slurry by crystallizing an adduct of bisphenol A and phenol from a phenol solution of bisphenol A obtained by reacting phenol and acetate in the presence of an acid catalyst.
  • a bisphenol A phenol slurry solution containing an adduct of bisphenol A and phenol in a crystalline state ( 1) is filtered to form an adduct layer of bisphenol A and phenol in a crystalline state on the filter, and then the adduct layer is washed with a washing solution, followed by addition after washing.
  • the substance layer is dissolved in a phenol-containing liquid and then crystallized, whereby the phenol A containing bisphenol A and an adduct of phenol in a crystalline state is formed.
  • a bisphenol A which is characterized in that a bisphenol A and a phenol adduct in a crystalline state are separated by producing a slurry slurry (2) and centrifuging the slurry solution (2). This is a method for producing phenol A.
  • an acidic catalyst As the acidic catalyst, an acid-type ion exchange resin can be used.
  • the acid-type ion exchange resin is not particularly limited, and those which are conventionally used as a catalyst for bisphenol A can be used. Positive ion exchange resins are preferred.
  • the sulfonic acid type cation exchange resin is not particularly limited as long as it is a strongly acidic cation exchange resin having a sulfonic acid group.
  • examples thereof include a sulfonated styrene-divinylbenzene copolymer, Examples include a sulfonated crosslinked styrene polymer, a phenolformaldehyde monosulfonic acid resin, and a benzeneformaldehyde sulfonic acid resin. These may be used alone or in combination of two or more.
  • mercaptans are usually used together with the acid-type ion exchange resin as a co-catalyst.
  • These mercaptans refer to compounds having an SH group in a free form in the molecule, such as alkylmercaptan, substitution of a carboxyl group, an amino group, a hydroxyl group, or the like.
  • Alkyl mercaptans having one or more groups for example, mercaptocarboxylic acid, aminoalkanethiol, mercaptoalcohol and the like can be used.
  • Examples of such mercaptans include alkyl mercaptans such as methyl mercaptan, ethyl mercaptan, n-butyl mercaptan, and n-butyl mercaptan, and mercaptans. Glycolic acid, S-thiocarboxylic acid such as mercaptopropionic acid, 2-alkanoalkanethiol such as aminothiolthiol, and mercapto alcohol such as mercaptoethanol.Alkyl mercaptan Are particularly preferred in terms of their effect as cocatalysts. In addition, these mercaptans may be used alone or in combination of two or more.
  • mercaptans can be immobilized on the acid-type ion-exchange resin to function as a promoter.
  • the amount of the mercaptans is generally the raw material of ⁇ Se tons, from 0.1 to 2 0 mole 0/0, preferred details, Ru is selected from the range of 1 to 0 mol%.
  • the condensation reaction between phenol and acetone may be either a batch type or a continuous type.
  • a reaction tower filled with an acid-type ion-exchange resin is charged with phenol, acetone and mercaptan. It is advantageous to use a fixed-bed continuous reaction system in which the compounds (when the mercaptans are not immobilized on the acid-type ion-exchange resin) are continuously supplied and reacted.
  • the number of the reaction towers may be one, or two or more may be arranged in series, but industrially, two or more reaction towers filled with an acid-type ion exchange resin are connected in series, It is particularly advantageous to employ a fixed-bed multistage continuous reaction system.
  • the acetate / phenol molar ratio is usually selected in the range of 1/30 to 1/3, preferably 1115 to 1/5. If the molar ratio is less than 1/30, the reaction rate may be too slow.If the molar ratio is more than 1/3, impurities are generated more and the selectivity of bisphenol A tends to decrease. .
  • the molar ratio of the mercaptans is usually 0.1 / 100 to 200/100, preferably 1/1. It is selected in the range of 0 to 100/100. If the molar ratio is less than 0.1 / 100, the effect of improving the selectivity of bisphenol A may not be sufficiently exhibited. However, there is no noticeable improvement in the effect.
  • the reaction temperature is usually selected in the range of 40 to 150 ° C, preferably 60 to 110 ° C. If the temperature is lower than 40 ° C, the reaction rate is low, and the viscosity of the reaction liquid is extremely high. In some cases, the reaction liquid may be solidified. If the temperature exceeds 150 ° C, reaction control becomes difficult, and The selectivity for bisphenol A (integrated with p and p ') is reduced, and the acid type ion exchange resin of the catalyst may decompose or deteriorate. Further, the LHSV (liquid hourly space velocity) of the raw material mixture is usually selected in the range of 0.2 to 30 hr— ', preferably, in the range of 0.1 Shr— 1 .
  • the reaction mixture containing bisphenol ⁇ obtained in the reaction step ( ⁇ ) is substantially free of an acid-type ion exchange resin, that is, in the case of a batch reaction method.
  • the catalyst is removed by filtration or the like, and in the case of a fixed-bed continuous reaction-system, a low-boiling substance removal treatment is performed as it is.
  • low-boiling substances such as unreacted acetate, by-product water, and alkylmercaptan are usually removed by distillation under reduced pressure using a distillation column.
  • This vacuum distillation is generally carried out under the conditions of a pressure of 6.5 to 80 kPa and a temperature of 70 to 180 ° C.
  • the unreacted phenol azeotropes, and a part of the azeotrope is removed from the distillation column to the outside of the system together with the low-boiling substance.
  • the temperature of the heating source used is desirably set to 190 ° C or lower in order to prevent the thermal decomposition of bisphenol A.
  • 5] 5304, 313316 and 81; 5316L are generally used as materials for the equipment.
  • the bottom liquid from which the low-boiling substances have been removed from the reaction mixture contains bisphenol A, phenol and the like, and the phenol is distilled off under reduced pressure to concentrate bisphenol A.
  • the concentration conditions are not particularly limited, but the concentration is usually performed at a temperature of about 100 to 170 ° C and a pressure of 5 to 70 kPa. If this temperature is lower than 100 ° C, a high vacuum is required, and if it is higher than 170 ° C, extra heat removal is required in the next crystallization step, which is not preferable.
  • the concentration of Bisufuwenoru A in the concentrated residual liquid, the preferred properly 2 0-5 0 weight 0/0, and more preferable properly is the range of 2 0-4 0 weight 0/0. This concentration is less than 2 0% by weight low recovery of Bisufuwenoru A, there is you being 5 0 wt 0/0 by weight, the difficulty slurries transfer after crystallization.
  • a 1: 1 adduct of bisphenol A and phenol (hereinafter, may be referred to as a phenol adduct) may be obtained from the concentrated residual liquid obtained in the concentration step (C). ) Is a process of crystallization and separation.
  • the concentrated residue is cooled to about 40 to 70 ° C., and phenol adduct is crystallized to form a slurry.
  • the cooling at this time may be performed using an external heat exchanger, or a vacuum cooling crystallization method in which water is added to the concentrated residue and cooled using the latent heat of evaporation of water under reduced pressure. Yo You may go.
  • this vacuum cooling crystallization method about 3 to 20% by weight of water is added to the concentrated residue, and crystallization is carried out at a normal temperature of 40 to 70 ° C and a pressure of 4 to 16 kPa. Processing is performed.
  • Amount of 3 wt% non Mitsurude of the water is not sufficient heat removal capability, dissolution loss of Bisufuwe no Le A exceeds 2 0 weight 0/0 size no longer, undesirable.
  • the crystallization temperature is lower than 40 ° C, the viscosity of the crystallization liquid may increase or solidify, and if the crystallization temperature exceeds 70 ° C, the dissolution loss of bisphenol A may be reduced. Is large and not good.
  • the slurry containing the crystallized phenol adduct is separated into a phenol adduct and a crystallization mother liquor containing a reaction by-product by a filtration method in the present invention.
  • the filtration method can provide a higher solvent replacement ratio than the centrifugation method during washing, so that impurities contained in the crystal surface and between the crystals can be effectively removed.
  • the crystallization mother liquor containing microcrystals that have escaped from the filter medium is partially recycled to the reactor as it is, or at least partially decomposed with alcohol, and recovered as phenol and isopro- phenylphenol. Is also good. Further, a part or all of the compound can be isomerized and recycled to a crystallization raw material.
  • the phenol slurry solution (1) of bisphenol A containing the adduct of bisphenol A and phenol in the form of a filter By filtering the phenol slurry solution (1) of bisphenol A containing the adduct of bisphenol A and phenol in the form of a filter through the filter, the crystalline form of bisphenol A and phenol Then, the adduct layer is washed with a washing liquid.
  • a washing liquid For this washing solution, use the recovered phenol obtained in the concentration step of the above-mentioned step (C) or the washing water used in the dissolution and crystallization-solid-liquid separation step of the following (E) phenol adduct. be able to.
  • the aperture of the filter may be large enough to separate crystals, but too large or too small.
  • the efficiency of filtration and separation deteriorates.
  • the phenolic product crystallized and separated in the step (D) is dissolved using a phenol-containing solution.
  • a phenol-containing solution there is no particular limitation on the phenol-containing solution used in this step, and for example, the recovered finolol obtained in the concentration step in the above-mentioned (C) step, and the phenol / solid-liquid separation step in the (D) step
  • the washing solution include a mother liquor, a washing solution for the phenol adduct, and a washing solution for the phenol adduct in the solid-liquid separation of the crystallized phenol adduct formed in the steps after the step (E).
  • the above-mentioned phenol-containing solution is added to the phenol adduct obtained in the step (D), the mixture is heated to about 80 to 110 ° C., and the phenol adduct is heated and dissolved to form a crystal.
  • the adduct layer after washing is dissolved in phenol and then crystallized, whereby a phenol slurry of bisphenol A containing an adduct of bisphenol A and phenol in a crystalline state is obtained.
  • a solution (2) is obtained.
  • the thus prepared phenol slurry solution of bisphenol A (2) has a low viscosity even at a relatively low temperature and is relatively easy to handle, and is suitable for filtration with a filter or centrifugation.
  • the liquid content can be reduced by using the centrifugal separation method, and the load in the following steps (F) and (G), particularly step (G), is reduced. Can be reduced.
  • the centrifugal force used in this centrifugation method is in the range of 200 to 1200 G, preferably 300 to 1000 G.
  • the centrifugal force used If it is larger than 120 OG, crushing of the crystal and accompanying entrainment into the mother liquor generated by the crystallization significantly occur, which is not preferable. On the other hand, if it is smaller than 200 G, the liquid content in the crystal becomes extremely high, which is not preferable.
  • the recovered phenol obtained in the concentration step of the above-mentioned step (C) can also be used as the washing solution of the phenol adduct separated by the centrifugation method.
  • the heating and melting step is a step of heating and melting the phenol adduct crystallized and separated in the above step (E). In this step, the phenol adduct is heated and melted to about 100 to 160 ° C. to form a liquid mixture.
  • the phenol removal step is a step of removing the phenol by distillation under reduced pressure to recover the bisphenol A in a molten state.
  • the above-mentioned vacuum distillation is generally carried out under the conditions of a pressure of 3 to 13.3 kPa and a temperature of 150 to 190 ° C. Residual phenol can be further removed by steam stripping.
  • the bisphenol A in a dissolved state obtained in the above step (G) is formed into droplets by a granulation device such as a spray drier, and then cooled and solidified into a product.
  • the droplets are formed by spraying, spraying, etc., and cooled by nitrogen, air, or the like.
  • the feature of the method for producing bisphenol A of the present invention is that (D) the crystallization and the solid-liquid separation step are carried out by a filtration method, Is to clean the adduct layer of bisphenol A and phenol in a clean state using a cleaning solution, which increases the solvent substitution rate and effectively removes impurities contained in the crystal surface and between crystals. Can be removed. Further, by using the centrifugal separation method in the following (E) dissolving, crystallizing, and solid-liquid separation steps of the phenol product, the liquid content is reduced, and the (F) heat melting step and (G) bisphenol A The load in the phenol removal process can be reduced.
  • the present invention when bisphenol A is removed from the reaction mixture, the adduct of bisphenol A and phenol can be efficiently recovered from the reaction mother liquor with high purity.
  • the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
  • phenol was heated at a rate of 460 g / hr, acetone at a rate of 280 g / hr, and ethyl mercaptan at a rate of 16 g / hr.
  • the reaction mixture was sent to a low-boiling substance component removal step for removing low-boiling substances mainly composed of unreacted acetate, and low-boiling decrements mainly composed of unreacted acetate were removed.
  • a reaction product mainly composed of bisphenol A and unreacted huninol produced from the low boiling point decrementation removal process was obtained at 460 g / hr.
  • This reaction product was partially concentrated under conditions of 1650 ° C and 53.3 kPa, and the concentration was adjusted so that the concentration of bisphenol A was 30% by weight. .
  • Water was added to the bisphenol A concentrate, and the mixture was cooled and crystallized under stirring at 45 ° C. to crystallize an adduct of bisphenol A and ethanol.
  • the slurry obtained in Production Example 1 was placed in the centrifuge tube described in Example 1 and rotated at a maximum centrifugal force of 400 G for 20 seconds.
  • the liquid content of the obtained wet cake was 5.7%, and the replacement ratio was 82%.
  • the wet cake was re-dissolved in 250 g of ethanol and 6 g of water at 95 ° C, cooled and crystallized at 45 ° C with stirring, and then centrifuged at a maximum of 400 G for 20 seconds. Rotated. As a result of measuring the liquid content of the obtained wet cake, it was 4.3%.
  • the slurry obtained in Production Example 1 was filtered by the method described in Example 1.
  • the resulting wet off the cake again We Nord 2 5 5 g was dissolved in 9 5 water 6 g, and cooling crystallization with stirring 4 5 a C, and filtered using the same mesh of wire mesh, one Washed twice.
  • the liquid content of the obtained wet cake was 23.8%, and the amount of the 2,4-isomer in bisphenol A after removing phenol by vacuum distillation as in Example 1 was 0.0. 20%.
  • Example 2 Instead of the stainless steel wire mesh used in Example 1, the filtration at the previous stage of Example 1 was replaced with polypropylene 3 mm thick and air permeability of 73 m 1 / cm 2. A filter cloth (manufactured by Daiwa Spinning Co., Ltd.) was used. The liquid content of the obtained wet cake was 25.4%, and the substitution ratio of the 2,4-isomer was 99%. The liquid content in the adduct of bisphenolinol A and phenol after centrifugation was 4.0%, and the 2,4-content in bisphenol A after removal of phenol by vacuum distillation as in Example 1. The isomer amount was 0.03%. Industrial applicability
  • the solvent substitution rate is increased in the crystallization / solid-liquid separation step, and impurities contained in the crystal surface and between the crystals can be effectively removed.
  • the liquid content is reduced in the following (E) dissolving, crystallizing, and solid-liquid separation steps of vinyl alcohol, (F) a heat melting step, and (G) a bisphenol A dephenoling step. Can be reduced.
  • an adduct of bisphenol A and phenol can be efficiently recovered from the reaction mother liquor with high purity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

明細書 ビスフヱ ノール Aの製造方法 技術分野
本発明は、 ビスフヱ ノール A 〔 2 , 2 — ビス ( 4 — ヒ ドロキシフ ェニル) プロパン〕 の製造方法に関し、 詳しく は該製造方法における ビスフヱ ノール Aとフヱ ノールとの付加物の分離方法に関するもので ある。 冃景又 f小]
ビスフヱ ノール Aはポリ カーボネー ト樹脂ゃポリアリ レー ト樹脂な どのエンジニア リ ングプラスチッ ク、 あるいはェポキシ樹脂などの原 料と して重要な化合物であることが知られており、 近年その需要はま すます増大する傾向にある。
このビスフヱノール Aは、 酸性触媒及び場合により用いられる硫黄 化合物などの助触媒の存在下に、 過剰のフエノールとァセ 卜 ンとを縮 合させるこ とによ り製造される。
反応混合物からビスフユ ノール Aを取出す方法と しては、 反応混合 物から直接に粗結晶状で分離する方法や、 反応混合物からァセ ト ン、 水等を除去した後の液状混合物を濃縮 · 冷却するこ とでビスフエ ノー ル Aとフニノールとの付加物を析出させ分離する方法 (特開昭 5 1 一 9 1 2 4 0号、 特開昭 5 7 — 7 7 6 3 7号等) が知られている。
前者の反応混合物から直接に粗結晶状で分離する方法ではビスフ ノール Aが微結晶質で何回も洗浄する必要があり、 ロスが多い等の欠 点がある。
このため現状では、 後者のビスフヱ ノール Aと フヱ ノールとの付加 物を析出させ分離する方法が主流となっている。 この場合、 ビスフエ ノール Aとフヱノールとの付加物を晶析させ、 濾過や遠心分離機を用 いる公知の固液分離法により、 母液からの結晶の分離が行なわれてい る (特開昭 5 7— 7 7 6 3 7号、 特開平 5— 3 3 1 0 8 8号、 特開昭 6 3— 2 7 5 5 3 9号、 特開平 6 — 1 0 7 5 7 8号、 特開平 6— 3 0 6 0 0 2号等) 。
上記の固液分離法において、 濾過法による分離では吸引式ベルトフ ィルターやドラムフィルターが使用出来るが (特開平 6— 3 0 6 0 0 2号) 、 その際に濾材の目開きによるロスを防いだり高純度化のため に、 大きな結晶とし、 表面積を小さくする必要がある (特開平 5— 3 3 1 0 8 8号) 。 また、 濾過法による分離では含液率が高く、 結晶間 に含まれる母液等が充分除かれ難く、 更に、 大きな結晶内に母液を嚙 み込む危険性もあり、 それを防ぐために結晶を小さくすると、 結晶層 中を母液が通り難くなったり、 濾材の目詰まりが起こり、 処理効率の 著しい低下を来たす。
遠心分離機を使用する方法 (特開平 6 — 1 0 7 5 7 8号、 特開平 6 — 3 0 6 0 0 2号) は結晶間にある含液量を下げ、 より乾燥した付加 体を得る上では好ましいが、 遠心負荷がかかるため、 結晶の破砕など が起こり母液や洗浄液等の置換効率が濾過法に比べて悪くなる。 従つ て、 大量の製品を処理する際に、 純度を上げるために一般的には複数 個の機器を用いて洗浄を繰返すことが必須で、 機器数の増加や運転時 間の延長をもたらし、 経済的に好ましくない。
純度を上げるために複数段の晶析処理することは、 特開平 1 — 2 3 0 5 3 8号ゃ特開平 7 - 2 5 7 9 7 8号等に記載されている。 発明の開示
本発明の目的は、 以上の如き状況から、 ビスフヱノール Aの製造方 法において、 反応混合物からビスフヱノール Aを取出す際に、 ビスフ ェノール Aとフユノールとの付加物を高純度で効率良く反応母液から 回収することにある。
発明者らは、 上記課題を有するビスフユ ノール Aの製造方法につい て鋭意検討した結果、 晶析工程を二段で行ない、 第一工程後の分離に 濾過法を用い、 結晶表面の不純物を除き、 第二工程で結晶内部の不純 物を再溶解した後、 再結晶させて不純物を除去したものを遠心分離機 にかけ、 洗浄液を充分除去してから次工程に進むこ とで、 高純度のビ スフヱノール Aとフヱノールとの付加物を効率的に得ることができる ことを見出し、 本発明に到達した。
即ち本発明は、 酸触媒の存在下にフェノールとァセ ト ンを反応させ て得られるビスフエノール Aのフエノール溶液からビスフヱ ノール A とフエノールとの付加物を晶析させ、 生成したスラ リ一の固液分離後 、 固体成分からフヱ ノールを除去するビスフヱノール Aの製造方法に おいて、 ビスフヱノール Aとフヱノールとの付加物が結晶状態で含有 するビスフヱ ノール Aのフ ヱ ノ一ルスラ リ一溶液(1 ) をフィ ルター濾 過することによ り、 該フィルター上に結晶状態のビスフヱノール Aと フェ ノールとの付加物層を形成させ、 次いで該付加物層を洗浄液にて 洗浄し、 洗浄後の付加物層をフユノール含有液に溶解後、 晶析させる ことによ り、 ビスフヱ ノール Aとフヱノールとの付加物を結晶状態で 含有するビスフヱ ノール Aのフヱ ノ一ルスラ リ一溶液(2 ) を製造し、 該スラ リ一溶液(2 ) を遠心分離させることによ り結晶状態のビスフエ ノール Aとフヱノールとの付加物を分離することを特徴とするビスフ ヱノール Aの製造方法である。 発明を実施するための最良の形態
本発明のビスフヱノール Aの製造方法においては、 (A ) フヱノ一 ルとアセ ト ンの反応工程、 ( B ) 副生水および未反応原料の低沸点物 質除去工程、 ( C ) ビスフ ノール Aの濃縮工程、 ( D ) 晶析 · 固液 分離工程、 ( E ) ビスフエ ノール Aとフ ヱ ノールとの付加物の溶解、 晶析 · 固液分離工程、 (F ) 加熱溶融工程、 ( G ) ビスフ エ ノール A の脱フヱノール工程および ( H ) 造粒工程を経てビスフヱノール Aが 製造される。
次に、 ビスフヱノール Aの製造方法における各工程について説明す る。
( A ) 反応工程
この反応工程においては、 酸性触媒の存在下、 過剰のフエノールと アセ ト ンを縮合させて、 ビスフヱノール Aを生成させる。 上記酸性触 媒と しては、 酸型イオン交換樹脂を用いることができる。 この酸型ィ オン交換樹脂と しては、 特に制限はなく、 従来ビスフヱ ノール Aの触 媒と して慣用されているものを用いることができるが、 特に触媒活性 などの点から、 スルホン酸型陽ィォン交換樹脂が好適である。
該スルホン酸型陽ィ才ン交換樹脂については、 スルホン酸基を有す る強酸性陽イオン交換樹脂であればよ く 、 特に制限されず、 例えばス ルホン化スチ レン一ジ ビュルべンゼンコポリマー、 スルホン化架橋ス チレンポリマー、 フヱ ノールホルムアルデヒ ド一スルホン酸樹脂、 ベ ンゼンホルムアルデヒ ドースルホン酸樹脂などが挙げられる。 これら はそれぞれ単独で用いてもよ く 、 二種以上を組み合わせて用いてもよ い。
本工程においては、 上記酸型イオン交換樹脂と共に、 通常助触媒と して、 メルカブタン類が併用される。 このメルカプ夕ン類は、 分子内 に S H基を遊離の形で有する化合物を指し、 このようなものと しては 、 アルキルメルカブタンや、 カルボキシル基、 アミ ノ基、 ヒ ドロキシ ル基などの置換基一種以上を有するアルキルメルカプタ ン類、 例えば メルカプトカルボン酸、 アミ ノアルカンチオール、 メルカプトアルコ ールなどを用いることができる。 このよ うなメルカプタ ン類の例と し ては、 メチルメルカプタン、 ェチルメルカプタン、 n —ブチルメル力 プタ ン、 n —才クチルメルカプタンなどのアルキルメルカプタン、 チ ォグリ コール酸、 S —メルカプトプロピオン酸などのチォカルボン酸 、 2 —アミ ノエ夕ンチオールなどのアミ ノアルカンチオール、 メルカ プトエタノールなどのメルカプトアルコールなどが挙げられるが、 こ れらの中で、 アルキルメルカブタンが助触媒と しての効果の点で、 特 に好ま しい。 また、 これらのメルカプタン類は、 単独で用いてもよく 、 二種以上を組み合わせて用いてもよい。
これらのメルカブタ ン類は、 前記酸型ィォン交換樹脂上に固定化さ せ、 助触媒と して機能させることもできる。
前記メルカプタン類の使用量は、 一般に原料のァセ ト ンに対して、 0 . 1 〜 2 0モル0 /0、 好ま しく は、 1 〜 1 0モル%の範囲で選定され る。
また、 フヱ ノールとァセ ト ンとの使用割合については特に制限はな いが、 生成する ビスフヱノール Aの精製の容易さや経済性などの点か ら、 未反応のアセ ト ンの量はできるだけ少ないことが望ましく 、 従つ て、 フヱノールを化学量論的量よ り も過剰に用いるのが有利である。 通常、 アセ ト ン 1 モル当たり、 3〜 3 0モル、 好ま しく は 5〜 1 5モ ルのフヱノールが用いられる。 また、 このビスフヱノール Aの製造に おいては、 反応溶媒は、 反応液の粘度が高すぎたり、 凝固して運転が 困難になるような低温で反応させる以外は、 一般に必要ではない。
フ ノールとァセ ト ンとの縮合反応は、 回分式及び連続式のいずれ であってもよいが、 酸型ィォン交換樹脂を充填した反応塔に、 フエ ノ ールとァセ ト ンとメルカブタン類 (メルカブタン類が酸型ィオン交換 樹脂に固定化されない場合) を連続的に供給して反応させる固定床連 続反応方式を用いるのが有利である。 この際、 反応塔は 1基でもよ く 、 また 2基以上を直列に配置してもよいが、 工業的には、 酸型イオン 交換樹脂を充填した反応塔を 2基以上直列に連結し、 固定床多段連続 反応方式を採用するのが、 特に有利である。
この固定床連続反応方式における反応条件について説明する。 まず、 アセ ト ン/フヱ ノールモル比は、 通常 1 / 3 0〜 1 / 3、 好 ま しく は 1 1 5〜 1 / 5の範囲で選ばれる。 このモル比が 1 / 3 0 よ り小さい場合、 反応速度が遅く なりすぎるおそれがあり、 1 / 3 よ り大きいと不純物の生成が多く なり、 ビスフヱ ノール Aの選択率が低 下する傾向がある。 一方、 メ ルカブタ ン類が酸型イオン交換樹脂に固 定化されない場合、 メルカプタ ン類ノァセ 卜 ンモル比は、 通常 0. 1 / 1 0 0〜 2 0 / 1 0 0、 好ま しく は 1 / 1 0 0〜 1 0 / 1 0 0の範 囲で選ばれる。 このモル比が 0. 1 / 1 0 0よ り小さい場合、 反応速 度ゃビスフヱノール Aの選択率の向上効果が十分に発揮されないおそ れがぁり、 2 0 / 1 0 0より大きいとその量の割りには効果の向上は あま り認められない。
また、 反応温度は、 通常 4 0〜 1 5 0 °C、 好ま しく は 6 0〜 1 1 0 での範囲で選ばれる。 該温度が 4 0 °C未満では反応速度が遅い上、 反 応液の粘度が極めて高く、 場合によ り、 固化するおそれがあり、 1 5 0 °Cを超えると反応制御が困難となり、 かつビスフエ ノール A ( p , p ' 一体) の選択率が低下する上、 触媒の酸型イオン交換樹脂が分解 又は劣化することがある。 さ らに、 原料混合物の L H S V (液空間速 度) は、 通常 0. 2〜 3 0 h r—'、 好ま しく は 0. S l O h r—1の 範囲で選ばれる。
(Β ) 低沸点物質除去工程
低沸点物質除去工程においては、 前記の (Α) 工程の反応工程で得 られたビスフエ ノール Αを含む反応混合液を、 実質上酸型イオン交換 樹脂が含まれない状態、 すなわち回分反応方式の場合は該触媒を濾過 などによ り除去し、 固定床連続反応—方式の場合は、 そのままの状態で 低沸点物質除去処理が施される。
この工程においては、 通常、 まず、 蒸留塔を用いた減圧蒸留によ り 、 未反応アセ ト ン、 副生水及びアルキルメ ルカプタ ンなどの低沸点物 質を除去することが行われる。 この減圧蒸留は、 一般に圧力 6 . 5〜 8 0 k P a、 温度 7 0〜 1 8 0 °Cの条件で実施される。 この際、 未反応フヱ ノールが共沸し、 その 一部が上記低沸点物質と共に、 蒸留塔の塔頂よ り系外へ除かれる。 こ の蒸留においては、 ビスフヱノール Aの熱分解を防止するために、 使 用する加熱源の温度は 1 9 0 °C以下とすることが望ま しい。 また、 機 器の材料と しては、 一般に 5 ] 5 3 0 4、 3 13 3 1 6及び 81; 5 3 1 6 Lが用いられる。
( C ) 濃縮工程
反応混合物から低沸点物質を除いた塔底液には、 ビスフユ ノール A及びフヱ ノールなどが含まれており、 減圧蒸留によ り フヱノールを 留去させ、 ビスフヱノール Aを濃縮する。 この濃縮条件については特 に制限はないが、 通常温度 1 0 0〜 1 7 0 °C程度及び圧力 5〜 7 0 k P aの条件で行なわれる。 この温度が 1 0 0 °Cよ り低いと高真空が必 要となり、 1 7 0 °Cよ り高いと次の晶析工程で余分の除熱が必要とな り、 好ま しく ない。 また、 濃縮残液中のビスフヱノール Aの濃度は、 好ま しく は 2 0〜 5 0重量0 /0、 より好ま しく は 2 0〜 4 0重量0 /0の範 囲である。 この濃度が 2 0重量%未満ではビスフヱノール Aの回収率 が低く 、 5 0重量0 /0を超えると晶析後のスラ リー移送が困難となるお それがある。
( D ) 晶析 · 固液分離工程
晶析 · 固液分離工程は、 上記 ( C ) 工程の濃縮工程で得られた濃縮 残液からビスフヱノール Aとフヱ ノールとの 1 : 1付加物 (以下、 フ ェノールァダク 卜と称することがある。 ) を晶析 · 分離する工程であ る。
この工程においては、 まず、 上記濃縮残液を 4 0〜 7 0 °C程度に冷 却し、 フヱノールァダク トを晶析させ、 スラ リーとする。 この際の冷 却は、 外部熱交換器を用いて行ってもよく 、 また、 濃縮残液に水を加 え、 減圧下での水の蒸発潜熱を利用して冷却する真空冷却晶析法によ つて行ってもよい。 この真空冷却晶析法においては、 該濃縮残液に、 水を 3 〜 2 0重量%程度添加し、 通常温度 4 0〜 7 0 °C、 圧力 4〜 1 6 k P aの条件で晶析処理が行われる。 上記水の添加量が 3重量%未 満では除熱能力が十分ではなく 、 2 0重量0 /0を超えると ビスフヱ ノー ル Aの溶解ロスが大き くなり、 好ましく ない。 このような晶析操作に おいて、 晶析温度が 4 0 °C未満では晶析液の粘度の増大や固化をもた らすおそれがあり、 7 0 °Cを超えると ビスフヱノール Aの溶解ロスが 大き く なり、 好ま しく ない。
次に、 晶析されたフヱノ一ルァダク トを含むスラ リーを、 本発明で は濾過法によ り、 フエノールァダク ト と、 反応副生物を含む晶析母液 とに分離する。 濾過法は洗浄の際に遠心分離法よ り も溶媒置換率が高 く できるので、 結晶の表面や結晶間に含まれている不純物を効果的に 除去することができる。 濾材から抜け出た微結晶を含む晶析母液は、 そのまま一部を反応器へリサイ クルしたり、 少なく とも一部をアル力 リ分解処理して、 フヱノールとイソプロべ二ルフヱノールと して回収 してもよい。 また、 一部又は全部を異性化して、 晶析原料にリサイ ク ルすること もできる。
このようにビスフヱノール Aとフヱ ノールとの付加物が結晶状態で 含有するビスフヱノール Aのフヱノールスラ リ一溶液(1 ) をフィル夕 一で濾過することにより該フィルタ一上に結晶状態のビスフヱノール Aとフニノールとの付加物層を形成させ、 次いで該付加物層を洗浄液 にて洗浄する。 この洗浄液には、 前記 ( C ) 工程の濃縮工程で得られ た回収フヱ ノールや、 次の ( E ) のフヱノールァダク トの溶解、 晶析 - 固液分離工程で用いた後の洗浄水を用いることができる。
なお、 溶媒置換率を高めるために上記のフィルター濾過および洗浄 を 4 0〜 9 0 k P a程度の減圧下で行なう ことが好ま しい。
用いられるフィルタ一と しては、 フィルターの目開きは、 結晶分離 できる程度の大きさであれば良いが、 大きすぎてもまた逆に小さすぎ ても濾過分離の効率が悪く なる。
晶析 · 固液分離は、 高純度の製品を得るために、 複数回繰り返すこ とが有効である。 すなわち、 本発明では、 ( D) 晶析 · 固液分離工程 と、 次の ( E ) フニノールァダク 卜の溶解、 晶析 · 固液分離工程とを 1 回以上繰り返したのち、 (F ) 工程を経て (G) の脱フヱノールェ 小王に移る。
( E ) スニノールァダク トの溶解、 晶析 · 固液分離工程
( D ) 工程で晶析 ' 分離されたフヱ ノ一ルァダク ト を、 フヱ ノール 含有溶液を用いて溶解する。 この工程において用いられるフヱ ノール 含有溶液と しては特に制限はなく 、 例えば前記 ( C ) 工程の濃縮工程 で得られた回収フニノール、 (D ) 工程の晶析 · 固液分離工程で生成 するフエノールァダク 卜の洗浄液、 本 ( E ) 工程以降の工程で生成す る、 晶析したフヱノールァダク トの固液分離における母液ゃ該フヱノ —ルァダク 卜の洗浄液などを挙げることができる。
この工程においては、 ( D ) 工程で得られたフヱノールァダク 卜に 上記フヱ ノール含有溶液を加え、 8 0〜 1 1 0 °C程度に加熱し、 該フ 二ノールァダク 卜を加熱溶解させ、 晶析操作に好ま しいビスフユノー ル A濃度を有するビスフヱ ノール A含有溶液を調製する。 このよ う に 洗浄後の付加物層をフユ ノールに溶解後、 晶析させることによ り、 ビ スフヱノ一ル Aとフヱノールとの付加物を結晶状態で含有するビスフ ヱノール Aのフヱ ノールスラ リー溶液(2) が得られる。
こ う して調製されたビスフヱ ノール Aのフヱ ノ一ルスラ リ一溶液(2 ) は、 比較的低い温度でも粘度が低く て取扱いが比較的容易であり、 フィルタ一での濾過や遠心分離に適しているが、 本発明では遠心分離 法を用いるこ とによ り 、 含液率を少なくするこ とができ、 次の ( F ) 及び (G) 工程、 特に (G) 工程での負荷を軽減することができる。
この遠心分離法で使用される遠心力は、 2 0 0〜 1 2 0 0 G、 好ま しく は 3 0 0〜 1 0 0 0 Gの範囲で用いられる。 用いられる遠心力が 1 2 0 O Gより大きいと、 結晶の破砕やそれに伴って発生する母液へ の同伴による結晶口スが著しく起こるようになり、 好ま しくない。 ま た、 2 0 0 Gよ り小さいと結晶中の含液率が著しく高く なり、 好ま し く ない。
この遠心分離法で分離されたフヱノールァダク 卜の洗浄液には、 前 記 ( C ) 工程の濃縮工程で得られた回収フエノールを用いることもで きる。
このようにビスフエノール A含有溶液から、 フヱノールァダク 卜を 晶析 · 固液分離し、 さらに当該フユノールァダク トをフエノール含有 溶液を用いて溶解したのち、 晶析 · 固液分離する操作を 1 回以上繰り 返す。
( F ) 加熱溶融工程
加熱溶融工程は、 上記 ( E ) 工程で晶析 · 分離されたフエノールァ ダク トを加熱溶融する工程である。 この工程では、 フヱ ノールァダク 卜を 1 0 0 〜 1 6 0 °C程度に加熱 · 溶融して液状混合物となる。
( G ) 脱フエノール工程
脱フヱ ノール工程は減圧蒸留によってフヱノールを留去し、 溶融状 態のビスフヱノール Aを回収する工程である。 上記減圧蒸留は、 一般 に圧力 し 3 〜 1 3 . 3 k P a、 温度 1 5 0 〜 1 9 0 °Cの範囲の条件 で実施される。 残存フエノールは、 さ らにスチームス ト リ ツ ビングに よ り除去することができる。
( H ) 造粒工程
造粒工程においては、 上記 ( G ) 工程で得られた溶解状態のビスフ ヱノール Aを、 スプレー ドライヤーなどの造粒装置によ り、 液滴にし 、 冷却固化して製品とする工程である。 該液滴は噴霧、 散布などによ り形成され、 窒素や空気などによって冷却される。
本発明のビスフエノール Aの製造方法における特徴は、 前記 ( D ) 晶析 · 固液分離工程において濾過法を用い、 該フィルター上に結晶状 態のビスフヱノール Aとフヱ ノールとの付加物層を洗浄液を用いて洗 浄することであり、 これによ り溶媒置換率が高められ、 結晶の表面や 結晶間に含まれている不純物を効果的に除去することができる。 また 、 次の ( E ) フユノールァダク トの溶解、 晶析 · 固液分離工程で遠心 分離法を用いることによ り、 含液率を少なく し、 ( F ) 加熱溶融工程 と ( G) ビスフヱノール Aの脱フヱノール工程での負荷を軽減するこ とができる。
このよ う に して、 本発明によ り 、 反応混合物からビスフヱ ノール A を取出す際に、 ビスフヱノール Aとフエ ノールとの付加物を高純度で 効率良く反応母液から回収することができる。 次に、 本発明を実施例によ り さ らに詳細に説明するが、 本発明は、 これらの例によってなんら限定されるものではない。
〔製造例 1 〕
陽ィォン交換樹脂が 6 0 0 g充填された反応器に、 フエノールを 4 6 0 0 g /h r、 アセ ト ンを 2 8 0 g /h r及びェチルメルカプ夕 ン を 1 6 g /h rの速度で温度を 7 5 tに維持しながら、 連続的に供給 した。 反応混合物は、 未反応アセ ト ンを主と した低沸点物質を除去す るための低沸点物質成分除去工程に送り、 未反応ァセ ト ンを主と した 低沸点減分が除去された。 低沸点減分除去工程から生成したビスフエ ノール A及び未反応フニノールを主と した反応生成物が 4 6 4 0 g / h rで得られた。 この反応生成物は、 1 6 5 °C、 5 3. 3 k P aの条 件でフヱ ノールを一部除去して、 ビスフヱ ノール Aの濃度が 3 0重量 %となるように濃縮調整した。 このビスフヱノール A濃縮液に水を加 え、 攪拌下 4 5 °Cの条件で冷却晶析し、 ビスフ ヱ ノール Aとフヱ ノー ルとの付加物 (ァダク 卜) を晶析した。 〔実施例 1 〕
製造例 1 で得られたビスフ ヱ ノール Aとフヱ ノールとのスラ リ ー液 3 0 0 0 gを、 6 3 mのステン レス金網を敷いた約 6 0 °Cに加熱し た濾過器に注いで、 8 0 k P aで 6 0秒吸引濾過した。 得られた湿潤 ケーキの厚みは約 8 3 m mであった。 この湿潤ケーキの一部採取し、 等重量のへキサンで洗浄し、 室温で 2 4時間減圧乾燥した後、 乾燥付 加体の重量を測定した。 その結果含液率は 2 4 . 6 %であった。 一方 、 湿潤ケーキ 3 0 0 g採り、 ふるい目開き 6 3 w mのステン レス金網 を敷いた約 4 5 t に加熱した濾過器に約 5 0 °Cの溶融フ ヱ ノール 7 5 gをほぼ均一に注ぎ、 1 0秒保持後 8 0 k P aで吸引濾過し、 更に同 様の操作を一回繰返した。 濾液および湿潤ケーキを溶解した液中の 2, 4-異性体の量を液体ク口マ ト グラフィ一で定量した結果から 9 8 . 4 %以上置換されたことが分かった。 この湿潤ケーキをフヱノール 2 5 0 g と水 6 gに 9 5 tで再溶解した。 得られた溶液のハ一ゲン指数は 1 7 5 °C、 2 0分で A P H A 5であった。 これを攪拌下 4 5 °Cで冷却 晶析し、 ビスフヱ ノール Aと フヱ ノールとの付加物を含有するスラ リ —を得た。
得られたスラ リー液を予め 5 0 ΐに加熱してあるステンレス製の筒 にふるい目開き 1 0 0 の金網を取り付け、 ここにスラ リ ー液を入 れて最大 4 0 0 Gの遠心力で 4 0秒間回転した。 所定時間経過し、 停 止した後、 含液率を測定した結果、 4 . 2重量%であった。 更にスラ リ一液の約半分量の溶融フエノ一ル ( 5 0 t ) で浸し、 最大 4 0 0 G の遠心力で 2 0秒間回転した。 分離液中の 2, 4-異性体量を測定した結 果、 ビスフヱノール Aとフヱノールとの付加物中の 2, 4-異性体量はほ ぼ 1 0 0 %除去されていた。 圧力 1 0 k P aの減圧蒸留 (温度 1 6 7 t ) によ り フヱノールを除去した後、 ビスフヱノール A中の異性体量 を測定した結果、 0 . 0 2 5 %であった。 〔比較例 1 〕
製造例 1 で得られたスラ リ一液を実施例 1 に記載した遠心筒に入れ て最大 4 0 0 Gの遠心力で 2 0秒間回転した。 得られた湿潤ケーキの 含液率は 5 . 7 %、 置換率は 8 2 %であった。 この湿潤ケーキをフヱ ノール 2 5 0 g と水 6 gに 9 5 °Cで再溶解し、 攪拌下 4 5 °Cで冷却晶 析した後、 最大 4 0 0 Gの遠心力で 2 0秒間回転した。 得られた湿潤 ケーキの含液率を測定した結果、 4 . 3 %であった。
また実施例 1 と同様の減圧蒸留でフヱノールを除去した後、 ビスフ ェノール A中の 2, 4-異性体の量を測定したところ 0 . 1 %であつた。 このよ う に ( D ) 工程と ( E ) 工程の固液分離を遠心分離法によ り 行なつた場合には、 反応母液からビスフヱノール Aとフヱノールとの 付加物を高純度で回収することができない。
〔比較例 2 〕
製造例 1 で得られたスラ リ一液を実施例 1 に記載した方法で濾過し た。 得られた湿潤ケーキを再度フヱ ノール 2 5 5 gを水 6 gに 9 5 で溶解し、 攪拌下 4 5 aCで冷却晶析し、 同様の目開きの金網を用いて 濾過し、 一回洗浄した。 得られた湿潤ケーキの含液率は 2 3 . 8 %、 実施例 1 と同様の減圧蒸留でフエ ノールを除去した後のビスフエ ノー ル A中の 2, 4-異性体の量は 0 . 0 2 0 %であった。
このよ う に ( D ) 工程と ( E ) 工程の固液分離を共に濾過法によ り 行なった場合には、 得られたビスフヱ ノール Aとフエ ノールとの付加 物中の含液率が高く 、 ( F ) 加熱溶融工程および特に ( G ) ビスフ エ ノール Aの脱フヱノール工程の負荷が増大する。
〔実施例 2 〕
実施例 1 の前段の濾過を実施例 1 で使用したステン レス製金網の代 わり に、 厚さ し 3 m m、 通気度 7 3 m 1 / c m 2 のポリ プロ ピレン 製濾布 (大和紡績 (株) 製) を用いた。 得られた湿潤ケーキの含液率 は 2 5 . 4 %、 2, 4-異性体の置換率は 9 9 %であった。 遠心分離の後 のビスフニノール Aとフヱノールとの付加物中の含液率は 4 , 0 %で あり、 実施例 1 と同様の減圧蒸留でフヱノールを除去した後のビスフ ヱノール A中の 2, 4-異性体量は 0 . 0 3 %であった。 産業上の利用可能性
本発明のビスフユノール Aの製造方法によれば、 ( D ) 晶析 · 固液 分離工程において溶媒置換率が高められ、 結晶の表面や結晶間に含ま れている不純物を効果的に除去することができ、 また、 次の ( E ) フ 二ノールァダク 卜の溶解、 晶析 · 固液分離工程において含液率を少な く し、 ( F ) 加熱溶融工程および (G ) ビスフヱノール Aの脱フヱノ ール工程での負荷を軽減することができる。
従って、 本発明によ り、 ビスフヱノール Aとフヱ ノールとの付加物 を高純度で効率良く反応母液から回収することができる。

Claims

請求の範囲
1 . 酸触媒の存在下にフヱノールとァセ ト ンを反応させて得られるビ スフエ ノール Aのフ エ ノール溶液から ビスフエ ノール Aと フエ ノール との付加物を晶析させ、 生成したスラ リ一の固液分離後、 固体成分か らフエノールを除去するビスフヱノール Aの製造方法において、 ビス フヱノール Aとフヱ ノールとの付加'物が結晶状態で含有するビスフヱ ノール Aのフヱノールスラ リ一溶液(1 ) をフィルター濾過することに よ り、 該フィルタ一上に結晶状態のビスフヱノール Aとフヱノールと の付加物層を形成させ、 次いで該付加物層を洗浄液にて洗浄し、 洗浄 後の付加物層をフ二ノール含有液に溶解後、 晶析させることによ り、 ビスフヱ ノール Aとフヱ ノールとの付加物が結晶状態で含有するビス フヱ ノール Aのフヱノールスラ リ一溶液(2 ) を製造し、 該スラ リ一溶 液(2 ) を遠心分離させることによ り結晶状態のビスフヱ ノール Aとフ ヱノールとの付加物を分離することを特徴とするビスフヱ ノール Aの 製造方法。
2 . フヱ ノ一ルスラ リ一溶液(1 ) のフィル夕一濾過および/またはビ スフユノール Aとフェノールとの付加物層の洗浄を減圧条件下にて行 う請求項 1 に記載のビスフュ ノール Aの製造方法。
3 . フヱ ノ一ルスラ リー溶液(1 ) のフィルタ一濾過および/またはビ スフヱノール Aとフヱノールとの付加物層の洗浄を 4 0 〜 9 0 k P a で行なう請求項 1 に記載のビスフユノール Aの製造方法。
4 . 洗浄液と してビスフヱ ノール Aの濃縮工程で得られた回収フヱノ —ルを用いる請求項 1 に記載のビスフユノール Aの製造方法。
5 . 洗浄液と してフエ ノールァダク 卜の溶解、 晶析 · 固液分離工程で 用いた後の洗浄水を用いる請求項 1 に記載のビスフニ ノール Aの製造 方法。
6 . 晶析母液の一部をフヱノールとァセ ト ンの反応器にリサイ クルす る請求項 1 に記載のビスフユ ノール Aの製造方法。
7 . 晶析母液の少なく とも一部をアルカ リ分解処理して、 フヱ ノール とイソプロべ二ルフヱノールと して回収する請求項 1 に記載のビスフ ュ ノール Aの製造方法。
8 . 晶析母液の少なく とも一部を異性化して晶析原料にリサイ クルす る請求項 1 に記載のビスフエ ノール Aの製造方法。
9 . フ ィル夕一がステンレス金網又はポリプロピレン製濾布である請 求項 1 に記載のビスフユ ノール Aの製造方法。
1 0 . 遠心分離で使用される遠心力が 2 0 0 〜 1 1 0 0 Gの範囲であ る請求項 1 に記載のビスフエノール Aの製造方法。
PCT/JP2003/003330 2002-03-29 2003-03-19 Procede de production de bisphenol a WO2003082785A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/508,012 US20050222467A1 (en) 2002-03-29 2003-03-19 Process for production of bisphenol a
EP03712759A EP1491520A4 (en) 2002-03-29 2003-03-19 PROCESS FOR PREPARING BISPHENOL A
BR0308849-9A BR0308849A (pt) 2002-03-29 2003-03-19 Processo para produção de bisfenol a
KR1020047015107A KR100899496B1 (ko) 2002-03-29 2003-03-19 비스페놀 a의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002096701A JP4152655B2 (ja) 2002-03-29 2002-03-29 ビスフェノールaの製造方法
JP2002-96701 2002-03-29

Publications (1)

Publication Number Publication Date
WO2003082785A1 true WO2003082785A1 (fr) 2003-10-09

Family

ID=28671842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003330 WO2003082785A1 (fr) 2002-03-29 2003-03-19 Procede de production de bisphenol a

Country Status (8)

Country Link
US (1) US20050222467A1 (ja)
EP (1) EP1491520A4 (ja)
JP (1) JP4152655B2 (ja)
KR (1) KR100899496B1 (ja)
CN (1) CN1296336C (ja)
BR (1) BR0308849A (ja)
TW (1) TWI339201B (ja)
WO (1) WO2003082785A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1728777A1 (de) 2005-06-04 2006-12-06 Bayer MaterialScience AG Verfahren zur Herstellung von 2,2-bis(4-hydroxyphenyl)Propan (Bisphenol A)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5014773B2 (ja) * 2006-12-26 2012-08-29 三井化学株式会社 ビスフェノール類の製造方法
KR100893080B1 (ko) * 2007-12-05 2009-04-10 현대자동차주식회사 커튼 에어백 시스템의 테더 가이드 구조
JP5247184B2 (ja) * 2008-02-21 2013-07-24 三井化学株式会社 ビスフェノールaの製造方法
JP5857730B2 (ja) * 2011-12-22 2016-02-10 三菱化学株式会社 遠心分離機、ビスフェノールaの製造方法
KR101812838B1 (ko) 2013-07-11 2017-12-27 주식회사 엘지화학 비스페놀a 제조 장치 및 제조 방법
JPWO2015129640A1 (ja) * 2014-02-28 2017-03-30 出光興産株式会社 ビスフェノールaの製造方法
CN108137456B (zh) 2015-11-19 2021-01-12 株式会社Lg化学 制备双酚a的装置和方法
KR102039127B1 (ko) * 2016-09-21 2019-10-31 주식회사 엘지화학 비스페놀 a의 제조 방법
US11260378B2 (en) 2017-04-24 2022-03-01 Badger Licensing Llc Catalyst system and process for producing bisphenol-A
CN112739676A (zh) 2018-07-06 2021-04-30 巴杰许可有限责任公司 来自双酚制造的残余料流的处理
CN113004144B (zh) * 2021-03-09 2022-09-30 西安瑞联新材料股份有限公司 一种全氟双酚a的合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331088A (ja) * 1991-10-30 1993-12-14 Chiyoda Corp ビスフェノールaの製造方法及びビスフェノールaを含むフェノール溶液の晶析生成物から分離された母液の処理方法
JPH06309002A (ja) * 1991-04-11 1994-11-04 Asahi Breweries Ltd プラント制御装置
JPH0725798A (ja) * 1993-07-08 1995-01-27 Idemitsu Petrochem Co Ltd 高純度ビスフェノールaの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954661A (en) * 1988-03-11 1990-09-04 Mitsui Toatsu Chemicals, Inc. Process for preparing high-purity bisphenol A
CA2027714C (en) * 1990-07-13 2003-01-28 Kenneth W. Turtletaub Method of measurement in biological systems
JPH0597746A (ja) * 1991-10-11 1993-04-20 Chiyoda Corp ビスフエノールa・フエノール結晶アダクト粉末の製造方法
JP3348737B2 (ja) * 1993-04-21 2002-11-20 月島機械株式会社 ビスフェノールaのフェノール付加物の遠心濾過分離方法
JP4039534B2 (ja) * 1997-11-19 2008-01-30 Sabicイノベーティブプラスチックスジャパン合同会社 ビスフェノール類の製造方法
WO2004020377A1 (ja) * 2002-08-28 2004-03-11 Idemitsu Kosan Co., Ltd. ビスフェノールaの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06309002A (ja) * 1991-04-11 1994-11-04 Asahi Breweries Ltd プラント制御装置
JPH05331088A (ja) * 1991-10-30 1993-12-14 Chiyoda Corp ビスフェノールaの製造方法及びビスフェノールaを含むフェノール溶液の晶析生成物から分離された母液の処理方法
JPH0725798A (ja) * 1993-07-08 1995-01-27 Idemitsu Petrochem Co Ltd 高純度ビスフェノールaの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1491520A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1728777A1 (de) 2005-06-04 2006-12-06 Bayer MaterialScience AG Verfahren zur Herstellung von 2,2-bis(4-hydroxyphenyl)Propan (Bisphenol A)
US7427694B2 (en) 2005-06-04 2008-09-23 Bayer Materialscience Ag Process for the preparation of high-purity bisphenol A

Also Published As

Publication number Publication date
KR100899496B1 (ko) 2009-05-26
US20050222467A1 (en) 2005-10-06
CN1646458A (zh) 2005-07-27
JP4152655B2 (ja) 2008-09-17
EP1491520A1 (en) 2004-12-29
EP1491520A4 (en) 2006-06-07
EP1491520A9 (en) 2005-07-20
JP2003286214A (ja) 2003-10-10
KR20040111433A (ko) 2004-12-31
TWI339201B (en) 2011-03-21
BR0308849A (pt) 2005-01-04
TW200305561A (en) 2003-11-01
CN1296336C (zh) 2007-01-24

Similar Documents

Publication Publication Date Title
JP4969007B2 (ja) ビスフェノール/フェノール付加物
RU2422429C2 (ru) Способ получения бисфенола а высокой чистоты и производственная установка
WO2001053238A1 (fr) Procede de preparation de bisphenol a
WO2003082785A1 (fr) Procede de production de bisphenol a
CA1291170C (en) Process for washing and obtaining solids of slurry
JP4658355B2 (ja) ビスフェノールaの製造方法
WO2007094124A1 (ja) ビスフェノールaの製造方法
JPWO2014010510A1 (ja) ビスフェノールaの製造方法
KR101011878B1 (ko) 비스페놀 a의 제조 방법
JP4388893B2 (ja) ビスフェノールaの製造方法
JP4918264B2 (ja) ビスフェノールaの回収方法および回収設備
WO2004108643A1 (ja) ビスフェノールaの製造方法
JP3981334B2 (ja) ビスフェノールaの製造方法
JP4615831B2 (ja) ビスフェノールaの製造におけるフェノールの回収方法
JP2003160524A (ja) ビスフェノールaの製造方法及びその装置
WO2007046434A1 (ja) 色相の良好なビスフェノールaの製造方法
JP2003160523A (ja) ビスフェノールaの製造方法及びその装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN ID IN KR SG US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003712759

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047015107

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2133/CHENP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 20038074915

Country of ref document: CN

Ref document number: 200407857

Country of ref document: ZA

WWP Wipo information: published in national office

Ref document number: 2003712759

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047015107

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10508012

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003712759

Country of ref document: EP