WO2003080508A1 - Methophase spherule graphatized substance, negative plate material using same, negative plate, and lithium ion secondary cell - Google Patents

Methophase spherule graphatized substance, negative plate material using same, negative plate, and lithium ion secondary cell Download PDF

Info

Publication number
WO2003080508A1
WO2003080508A1 PCT/JP2003/001297 JP0301297W WO03080508A1 WO 2003080508 A1 WO2003080508 A1 WO 2003080508A1 JP 0301297 W JP0301297 W JP 0301297W WO 03080508 A1 WO03080508 A1 WO 03080508A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
graphitized
graphite
mesophase
ion secondary
Prior art date
Application number
PCT/JP2003/001297
Other languages
English (en)
French (fr)
Inventor
Kunihiko Eguchi
Hitomi Hatano
Makiko Ijiri
Yoichi Tajima
Yoshinori Takagi
Original Assignee
Jfe Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002088798A external-priority patent/JP4672955B2/ja
Priority claimed from JP2002297734A external-priority patent/JP4672958B2/ja
Application filed by Jfe Chemical Corporation filed Critical Jfe Chemical Corporation
Priority to KR1020037014627A priority Critical patent/KR100575971B1/ko
Publication of WO2003080508A1 publication Critical patent/WO2003080508A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery excellent in three performances of discharge capacity, initial charge / discharge efficiency, and rapid charge efficiency, and a constituent material thereof.
  • the present invention relates to a lithium ion secondary battery capable of maintaining a discharge capacity and an initial charge / discharge efficiency without reducing a rapid charge efficiency even when a negative electrode manufactured from a water-based negative electrode mixture paste is used.
  • the present invention relates to such a negative electrode and a negative electrode material for a lithium ion secondary battery, a graphitized mesophase sphere constituting the negative electrode and a negative electrode material, and a method for producing the same. Background art
  • a lithium ion secondary battery has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main components. Lithium ions generated from the non-aqueous electrolyte move between the negative electrode and the positive electrode during the discharging / charging process, forming a secondary battery.
  • a carbon material is used as the material for the negative electrode of the above-mentioned lithium ion secondary battery.
  • a carbon material graphite having a laminated structure so as to easily insert and extract lithium ions during charge and discharge, and exhibiting high discharge capacity and potential flatness is mainly used.
  • graphite material artificial graphite such as natural graphite and high-temperature fired body of Kotus Graphitized materials such as lead, pitch-based carbon fibers or mesophase carbon fibers are known. Further, Japanese Patent Application Laid-Open No. 5-290833 discloses a mesophase-based graphitized product obtained by heat-treating a mesophase pitch using tar or pitch as a raw material.
  • natural graphite has the advantage of high discharge capacity, but it has a scale shape, so it is easy to be oriented when forming the negative electrode, and the non-aqueous electrolyte and graphite are incompletely contacted with each other, resulting in rapid charge and discharge. Characteristics (also called rate characteristics) are degraded. In addition, the expansion and contraction of graphite due to charging and discharging becomes unidirectional, and the problem that the contact between graphite cannot be maintained and the cycle characteristics are deteriorated occurs.
  • a graphitized material obtained by heat-treating a mesophase pitch particularly a graphitized mesophase sphere formed in the pitch, has a spherical or nearly spherical shape. Therefore, it is easy to be laminated at random when forming the negative electrode, and the nonaqueous electrolyte can be uniformly contained in the negative electrode. In addition, the direction of expansion and contraction of graphite due to charge and discharge is random. As a result, good rapid charge / discharge characteristics and good cycle characteristics are exhibited. According to JP-A-5-290833, pitches are kept at a heat melting temperature of 350 to 500 ° C. to obtain carbonaceous mesophase microspheres to be generated.
  • a graphitized product obtained by carbonizing this and then graphitizing it at 250 to 900 ° C. is disclosed.
  • the graphitized mesophase spheroids have an average particle size of 25 / Zm and an average lattice spacing d in X-ray diffraction. . 2 0. 3 3 6 5-0.
  • a material having a ratio of 0.2 force and a range of 0.4 has been proposed as a negative electrode material for a lithium ion secondary battery.
  • a negative electrode usually, first, a carbon material and a binder (binder resin) are mixed in a solvent (hereinafter, including a solvent and a solvent or a dispersion medium) to form a paste. Next, the obtained paste (referred to as a negative electrode mixture paste) is applied to a current collecting material such as copper foil, and then pressed to obtain a negative electrode. If a non-aqueous solvent such as an organic solvent is used as a solvent in this paste-forming step, a lithium ion secondary battery having a large discharge capacity, high initial charge / discharge efficiency, and high quick charge efficiency can be obtained.
  • a solvent hereinafter, including a solvent and a solvent or a dispersion medium
  • aqueous solvents that is, aqueous negative electrode mixture pastes
  • battery characteristics such as rapid charging efficiency may be reduced. That is, when the graphitized mesophase spheroid is used as the negative electrode material, the performance of the obtained lithium ion secondary battery depends on the solvent type of the negative electrode mixture paste. In the present application, this is also referred to as the solvent dependence of a lithium ion secondary battery.
  • the inventors of the present application used a graphitized mesophase spheroid disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 5-290833 as a negative electrode material, and used an aqueous or non-aqueous medium.
  • a negative electrode was fabricated by using this method, and the solvent dependence of the lithium ion secondary battery was examined. As a result, it was confirmed that the use of an aqueous medium also deteriorated the rapid charging characteristics.
  • the present invention provides a lithium-ion secondary battery having a large discharge capacity and high initial charge / discharge efficiency and rapid charge efficiency even when an aqueous negative electrode mixture paste is used.
  • the purpose is to obtain.
  • the present invention provides an average lattice spacing d in X-ray diffraction. . 2 is less than 0. 3 3 7 nm, and in Ramansu Bae-vector using Arugonre
  • the first light of a wavelength 5 1 4. 5 nm, present in 1 5 7 0 ⁇ 1 6 3 0 cm one first region is 1 3 5 0 ⁇ 1 3 7 0 cm- 1 peak present in the region of the ratio I D / I G force of intensity I D of 0 - 4 superadditive et 2 or less with respect to the intensity I G of the peak, mesophase small It is a graphitized sphere.
  • the graphitized mesophase spheres preferably have an average particle size in volume of 3 to 50 / im and a specific surface area of l to 20 m 2 Zg.
  • any of the graphitized mesophase spheroids fine particles having a hardness higher than the hardness of the graphitized mesophase spheroids and an average particle size smaller than the average particle size of the graphitized spheroids of the mesophase spherules are present on the surface. It is preferable that the fine particles are embedded, and that the fine particles be at least one selected from the group consisting of silica, alumina and titanium oxide are more preferable.
  • the present invention also provides an invention of a negative electrode material for a lithium ion secondary battery containing any of the graphitized mesophase spherules.
  • the negative electrode material preferably further contains graphite other than the graphitized mesophase spherules. Among them, it is more preferable to further contain graphite coated with a carbon material whose crystallinity is lower than the crystallinity of the graphitized mesomorphic spheroid.
  • the present invention also provides an invention of a negative electrode for a lithium ion secondary battery, comprising the above-mentioned negative electrode material.
  • the present invention also provides a lithium ion secondary battery having any one of the above-described negative electrodes. Furthermore, in the present application, the graphitized mesophase sphere is subjected to a process of simultaneously applying a compressive force and a shearing force to obtain an average lattice spacing d in X-ray diffraction. . In a Raman spectrum using Argon laser light having a wavelength of less than SO.337 nm and a wavelength of 54.5 nm, 157 to 163
  • the present invention also provides a method for producing a graphitized mesophase sphere.
  • the fine particles are at least one selected from the group consisting of silica, alumina, and titanium oxide is more preferable.
  • FIG. 1 is a cross-sectional view showing an evaluation battery for evaluating the characteristics of a graphitized product.
  • FIG. 2 is a schematic explanatory view of an apparatus for performing a process of simultaneously applying a compressive force and a shearing force.
  • FIG. 3 is a schematic explanatory view of another apparatus for performing a process of simultaneously applying a compressive force and a shearing force.
  • FIG. 4 is a graph showing the amount of water permeation (hydrophilicity) of the graphitized mesophase spheres obtained in the examples and comparative examples.
  • the mesophase spheres according to the present invention are generally manufactured from a carbon material whose graphitization is easily promoted by high-temperature heat treatment.
  • carbon materials include petroleum or coal tars and pitches.
  • mesophase microspheres which are optically anisotropic microspheres.
  • Mesophase microspheres can be separated from optically isotropic pitch matrix by an organic solvent such as benzene, toluene, quinoline, medium tar oil, heavy tar oil, or washing oil, and can be purified.
  • the obtained mesophase microspheres are not always spherical, but are often spherical or nearly spherical. Therefore, those skilled in the art are commonly called "mesophase microspheres" and are routinely distinguished from other carbon materials.
  • the separated mesophase spheres are primarily calcined in a non-oxidizing atmosphere at a temperature of 300 ° C. or more and finally subjected to a high temperature treatment at a temperature of more than 200 ° C. to obtain a mesophase, a raw material of the present invention. Can be obtained.
  • the graphitized mesophase spherules often have a spherical shape or a shape close to a sphere because the shape before graphitization is substantially maintained.
  • the graphitized mesophase spheres of the present application may be those obtained by pulverizing mesophase spheres and then subjecting them to a final high-temperature treatment at more than 2000 ° C.
  • mesophase spheres have optical anisotropy, even when crushed and graphitized, there is no orientation problem unlike natural graphite, and excellent battery performance as a negative electrode material is obtained. Express. However, excessive pulverization is not preferred because the irreversible capacity may increase.
  • known pulverization methods and processing methods can be appropriately adopted. The pulverization is preferably performed after primary firing at 300 ° C. or higher and before final high-temperature treatment. In the present application, the ground product of pulverized mesophase It is called a graphitized mesophase sphere.
  • the final high-temperature treatment in a non-oxidizing atmosphere is preferably performed at 250 ° C. or more, more preferably at 2800 ° C. or more.
  • the upper limit temperature of the final high-temperature treatment is usually at most about 3300 ° C. in order to avoid sublimation and decomposition of the graphitized material.
  • the mesophase spheroids are graphitized by final high-temperature treatment at a temperature exceeding 2000 ° C, the average lattice spacing d in X-ray diffraction will be obtained.
  • Graphitized mesophase spherules with 02 less than 0.337 nm have been obtained conventionally.
  • the graphite fluoride, in Ramansu Bae-vector using Arugonre The first light of a wavelength 5 1 4. 5 nm, 1 to the intensity I G of peaks present in 1 5 70 to 1 6 30 cm one first region 3 the ratio I D ZI G intensity I D of peaks present in 50 to 1 3 70 cm- 1 region is 0.3 5 below.
  • the above-mentioned conventional mesophase spheroidal graphitized material (hereinafter sometimes simply referred to as “raw material graphitized material”) is subjected to a surface modification treatment to increase the ID / IG ratio.
  • the present invention performs a process of simultaneously applying a compressive force and a shearing force to the graphitized mesophase sphere to obtain an average lattice spacing d in X-ray diffraction. .
  • the present invention also relates to a method for producing a graphitized mesophase spheroid, which is also an invention of a graphitized mesophase spheroid itself having the requirements of such X-ray diffraction and Raman spectrum.
  • Graphitized mesophase spheres (hereinafter referred to as “modified black Also referred to as lead compound ”) has an average lattice spacing (1 .. 2 in the C-axis direction in the X-ray diffraction is less than 0.
  • the graphitized material having a short length of 2 has high crystallinity, in other words, a high degree of graphitization, and therefore has a high discharge capacity when used as a negative electrode material of a lithium ion secondary battery.
  • the following battery can be obtained.
  • the average lattice spacing d. . 2 is based on the X-ray diffraction method (Sugio Otani, Carbon Fiber, p. 73 3-74 2 (1986), Hyundai Editorial Co., Ltd.) using Cu ⁇ ⁇ - rays as X-rays and using high-purity silicon as a standard substance. Means the measured value.
  • the modified graphitized product of the present invention exhibits a specific Raman spectrum. Specifically, the intensity of the peak existing in the region from 1570 to: 1630 cm- 1 in a Ramans vector using a single beam of argon laser with a wavelength of 54.5 nm is determined by I. And then, the intensity of the peak present in the 1 3 5 0 to 1 3 7 0 cm 1 region I. And peak intensity ratio I. 1. Range from more than 0.4 to 2 or less.
  • the peak intensity referred to in the present application means an intensity based on the peak height.
  • the lithium ion secondary battery has no solvent dependency.
  • the aqueous negative electrode mixture paste is used, the effect of maintaining the discharge capacity and the initial charge / discharge efficiency of the lithium ion secondary battery and not deteriorating the rapid charge characteristics is exhibited.
  • the I D / I C ratio is particularly preferably in the range of 0.4 5-1.
  • the present inventors thus I D / I c ratio to affect in the solvent dependency is understood that Me other by surface modification of the graphite product of mesophase globules as a raw material.
  • the mechanism by which the surface modification effect is obtained is not necessarily clear, but it is considered that the graphitized material surface is polished by applying compressive force and shear force simultaneously. Therefore, it is thought that many hydrophilic groups appear on the surface of the raw material graphitized material, and the hydrophilicity of the graphitized material itself is improved.
  • the treatment of applying a compressive force and a shear force simultaneously performed in the present invention is a kind of mechanochemical in which chemical properties are changed or imparted by mechanical or physical treatment. It can also be called processing.
  • surface modification treatment is a kind of mechanochemical in which chemical properties are changed or imparted by mechanical or physical treatment. It can also be called processing.
  • evaluation is made by measuring the contact angle between the graphitized material after the surface modification treatment and water, or by measuring the permeation rate and permeation amount of water. can do.
  • the device used for the surface modification treatment of the present invention only needs to be able to simultaneously apply a compressive force and a shearing force to an object to be treated, and the structure of the device is not particularly limited.
  • Examples of such a device include kneading machines such as a pressure kneader and a two-roll machine, a rotary ball mill, a hybridization system (manufactured by Nara Machinery Co., Ltd.), Mechano Micros (manufactured by Nara Machinery Co., Ltd.), One John System (manufactured by Hosokawa Micron Corp.) can be used.
  • kneading machines such as a pressure kneader and a two-roll machine, a rotary ball mill, a hybridization system (manufactured by Nara Machinery Co., Ltd.), Mechano Micros (manufactured by Nara Machinery Co., Ltd.), One John System (manufactured by Hosokawa Micron Corp.) can be used.
  • a device that simultaneously applies a shearing and compressive force using a difference in rotation speed is preferably used.
  • a mechanofusion system manufactured by Hosokawa Micron Co., Ltd., whose schematic mechanism is shown in FIGS. 3 (a) and 3 (b).
  • This device consists of a rotating drum (rotor 31) and an internal member (inner piece 3) having a different rotation speed from the drum. 2) and a mechanism for circulating the object to be processed (for example, a circulation blade 33).
  • the symbol 35 is a discharge damper, and 36 is a product.
  • the graphitized raw material 34 supplied between the rotor and the inner piece receives the centrifugal force caused by the rotation of the rotor and simultaneously compresses and shears the shear force caused by the speed difference between the inner piece and the rotor. Will receive it.
  • the raw material graphite is repeatedly subjected to this compressive force and shearing force by the circulation mechanism.
  • FIG. 2 a high predication system manufactured by Nara Machinery Co., Ltd. schematically shown in FIG. 2 can be mentioned.
  • the symbol 23 is a blade
  • 25 is a circulation path
  • 26 is a cooling or heating jacket
  • 27 is a discharge valve
  • 28 is a discharge port.
  • the raw graphite supplied from the inlet 24 receives simultaneously and repeatedly the compressive force and the shear force caused by the speed difference between the high-speed rotating rotor 22 and the fixed drum (stator 21). Will be.
  • the shearing force and the compressive force applied to the raw material graphitized material are usually larger than those of general stirring.
  • these mechanical stresses are preferably applied to the surface of the raw material graphitized material, and it is desirable that the mechanical stress does not break down to the particle skeleton of the graphitized material. If the particle skeleton of the graphitized material is broken, the irreversible capacity of the lithium secondary battery tends to increase.
  • the surface modification treatment is performed so that the reduction rate of the average particle diameter of the raw material graphite is suppressed to 20% or less.
  • the peripheral speed difference between the rotating drum and the internal member is 5 to 5 Om / sec
  • the distance between the two is 1 to 100 mm
  • the processing time is 3 It is preferable to carry out under the conditions of minutes to 90 minutes.
  • the peripheral speed difference between the fixed drum and the rotating rotor is 10 to 100 ms, and the processing time is 3 It is preferable to carry out under the condition of 0 seconds to 10 minutes.
  • a graphitized mesophase spheroid which satisfies both the above-mentioned requirements of X-ray diffraction and Raman spectrum which is the modified graphitized product of the present invention
  • the shape of the modified graphitized product of the present invention is also preferably spherical or nearly spherical. However, since it is also after the treatment of simultaneously applying the compressive force and the shearing force, the particles may be irregular in shape due to granulation or pulverization.
  • the modified graphite of the present invention preferably has an average particle size of 3 to 50 m in terms of volume.
  • the average particle size is 3 / X m or more, the irreversible capacity increases when used as a negative electrode material of a lithium ion secondary battery, and the safety of the battery does not decrease.
  • the length is 50 m or less, a lithium ion secondary battery having good negative electrode adhesion can be obtained.
  • the average particle size is particularly preferably from 5 to 30 ⁇ m.
  • the true specific gravity of the modified graphite is preferably 2.2 or more.
  • the modified graphite of the present invention preferably has a specific surface area of 1 to 20 m 2 / g in terms of the specific surface area of the nitrogen gas adsorption BET method. If it is less than ZO n ⁇ Z g, the irreversible capacity of the battery does not increase, which is advantageous from the viewpoint of safety. 5 m 2 / g or less is more preferable. Further, when the content is 1 m 2 Zg or more, excellent battery characteristics can be easily obtained when an aqueous negative electrode mixture paste is used.
  • the modified graphite of the present invention is one in which fine particles having a hardness higher than the hardness of the modified graphite itself and an average particle diameter smaller than the average particle diameter of the modified graphite are embedded in the surface. preferable.
  • Such a modified graphitized product of the present invention can be obtained by performing the surface modification treatment of the raw material graphitized product in the presence of the fine particles.
  • the fine particles have an average particle size smaller than the average particle size of the modified graphitized material and are hard. Anything can be used without any particular restrictions. When the fine particles are aggregates, it is sufficient that the primary particles have a particle size smaller than that of the modified graphite.
  • the shape and average particle diameter of the fine particles are not specified. If the force S is about 1 nm or more, the surface modification effect of the raw material graphite can be obtained.
  • the upper limit is preferably about 100 nm so as not to hinder contact between the obtained modified graphitized products of the present invention and not to adversely affect the charge / discharge characteristics.
  • the fine particles may or may not contribute to conductivity or charge / discharge.
  • Specific examples include metals, metal oxides, metal nitrides, metal borides, metal carbides, and the like.
  • hard fine particles having hydrophilicity are desirable.
  • fine particles of silica, alumina and various metal oxides are preferable.
  • at least one type of fine particles selected from the group consisting of silica, alumina and titanium oxide is preferably used.
  • Silica, alumina and titanium oxide are preferably produced by a gas phase method.
  • the silica is preferably anhydrous silica.
  • the resulting modified graphitized material has further improved hydrophilicity.
  • the fine particles can usually be used in an amount of about 0.01 to 10% by mass based on the raw material graphite.
  • the fine particles may be subjected to the surface modification treatment by dry blending with the raw material graphitized material in advance, or may be added during the raw material graphitized material treatment.
  • the fine particles used are preferably embedded in an amount of about 0.01 to 5% by mass, more preferably about 0.01 to 0.5% by mass, based on the graphitized product, and are integrated. It is desirable to have been.
  • a modified graphitized material whose surface is finely roughened in addition to hydrophilicity can be obtained.
  • the effect of the present invention is also enhanced when the polishing effect is enhanced and the fine particles are embedded near the surface of the raw material graphite.
  • various additives such as known conductive materials, ion conductive materials, surfactants, and high molecular compounds can be added as long as the effects of the present invention are not impaired.
  • the timing of this addition may be before, during, or after the surface modification treatment.
  • the present application also provides a negative electrode material for a lithium ion secondary battery containing the above-described modified graphite of the present invention.
  • a negative electrode for a lithium ion secondary battery first, a carbon material and a binder are mixed in a solvent (including a solvent and / or a dispersion medium) to form a paste. Next, after the obtained paste (referred to as a negative electrode mixture paste) is applied to the current collector, the solvent is removed, and the paste is solidified and / or shaped by a press or the like to obtain a negative electrode.
  • the negative electrode material of the present invention means all materials up to the solidification and Z or shaping steps. That is, it is required that the negative electrode material contains at least the above-mentioned modified graphite.
  • the modified graphite of the present invention itself is also a negative electrode material for a lithium ion secondary battery of the present invention. Further, a negative electrode mixture obtained by mixing the modified graphitized material of the present invention and a binder, a negative electrode mixture paste obtained by further adding a solvent, and a paste obtained by applying this to a current collector are also included in the negative electrode material of the present invention. Range.
  • the rapid charging efficiency of the lithium secondary battery does not decrease even if the aqueous negative electrode mixture paste method is used. .
  • the reason why the excellent rapid charge characteristics are exhibited is that the raw material graphite has been surface-modified by making its surface hydrophilic and roughening. Therefore, even if the modified graphite is water-based, it adheres firmly to the binder, and even if charge and discharge are repeated, the modified graphite, the water-based binder, and the current collector are firmly connected. It seems that you can now make contact. In addition, it is considered that the binder can be uniformly thinned and intervened between the modified graphitized materials, and that factors that inhibit conductivity, ionic conductivity, electrolyte permeability, etc. are considered to be suppressed.
  • the negative electrode material of the present invention is used by adding graphite (hereinafter, also referred to as “other graphite”) other than the modified graphitized product of the present invention (graphite of surface-modified mesophase spheroids). You can also.
  • a combination of a spherical modified graphite of the present invention with scaly and / or fibrous other graphite, a scaly modified graphite of the present invention, and a spherical And / or in combination with other fibrous graphite When they are spherical with each other, for example, the modified graphite of the present invention having an average particle size of about 30 ⁇ m is combined with another graphite having an average particle size of about 10 ⁇ m.
  • the other graphite is not particularly limited, and specific examples include graphitized conventional mesophase spheroids (raw material graphitized) which have not been subjected to a compressive force and a shear force at the same time. Furthermore, coal-based tar, mesophase calcined carbon obtained by heating pitch (parc mesophase), and coke (raw coke, green coke, pitch coke, needle cotas, petroleum coke, etc.) 2 5 0 0. Graphite that has been heat-treated at C or higher can also be exemplified. Or oil-based tar And pitch are heat treated to be graphitized. Examples of the other graphite bells include artificial graphite and natural graphite. Other graphite may be a combination of the above-described graphite materials.
  • graphite coated with a carbon material whose crystallinity is lower than the crystallinity of the modified graphitized material of the present invention is used. Is preferred.
  • graphite having a low crystallinity coating means graphite whose core material is relatively high in the coating material.
  • the carbon material (hereinafter, also referred to as a coating material), which is a coating material, has lower crystallinity than the graphite of the core material (hereinafter, also referred to as the core material), and has a modified graphite (the mesophase having undergone the surface modification treatment). It is a carbonaceous or graphitic carbon material with lower crystallinity than small spheres (graphitized).
  • the coating material only needs to be present inside the core particles and on the Z or surface, and it is preferable that more than half of the coating material be present on the surface of the core material.
  • the crystallinity of the coating material is the average lattice spacing d in X-ray diffraction obtained when the coating material is heat-treated alone. .
  • Specified in 2 That is, an average lattice spacing (1 .. 2 of the dressing is a 0.3 3 7 nm or more, more preferably 0.3 4 illustrates a more 0 nm.
  • Said intensity ratio in the Raman analysis ( ID / IG) generally indicates 0.15 or more.
  • an organic compound can be adhered to a core material and Z or impregnated, and this can be obtained by final high temperature treatment at a temperature of 900 or more and less than 280 O. . Particularly preferred is one obtained by performing a final high-temperature treatment at a temperature of at least 115 ° C. and less than 230 ° C. If the final high-temperature treatment is lower than 900 ° C or higher than 280 ° C, good rapid charging efficiency cannot be obtained.
  • the core material can be selected from various types of natural graphite and artificial graphite. Flake graphite, lump graphite, spheroidal graphite and the like are preferred.
  • the core material preferably has an appropriate gap.
  • the particle size of the core material is preferably in the range of 1 to 30 ⁇ m.
  • the specific surface area of the core material is not particularly limited, but is preferably 0.5 m 2 / g or more.
  • the crystallinity of the core material is the average lattice spacing d in X-ray diffraction. . It indicates less than 2 force SO.337 nm.
  • an organic compound in which the carbon content remains after heat treatment is selected. It is preferable that the material does not substantially include a heavy metal or a light metal element that inhibits the charge / discharge reaction or accelerates the decomposition of the electrolytic solution.
  • thermosetting resin, thermoplastic resin, coal-based or petroleum-based heavy oil, tar, pitch, and the like are preferable.
  • those containing carbon fine particles coal fine powder, primary QI (QI is a quinoline-insoluble matter), carbon black, carbon or graphite fine particles, etc.
  • the raw material of these coating materials can be heat-treated as it is or after being dissolved or dispersed in a solvent and then mixed with the graphite of the core material.
  • the mixing ratio of the coating material to the core material is preferably 0.5 to 30% by mass, more preferably 3 to 20% by mass, based on the total amount after the final high-temperature treatment. If the coating material is excessive, the discharge capacity decreases. If the coating material is too small, the initial charge / discharge efficiency decreases.
  • the addition amount of the other graphite varies depending on the shape and the average particle size of the other graphite and the modified graphite of the present invention, but the total amount of the other graphite and the modified graphite of the present invention is: It is preferably about 0.5 to 90% by mass. When the upper limit of the addition is preferably about 70% by mass, the rapid charging efficiency can be further improved.
  • the modified graphite of the present invention has an average particle size of 20 to 30 m
  • the other graphite may be 5 to 40 mass% of flaky shape (dimension of a plane portion: 3 to 15 m).
  • Natural graphite and no or artificial graphite are natural graphite and no or artificial graphite.
  • the modified graphite of the present invention has an average particle size of 5 to 15 m
  • the method of mixing the modified graphite with the other graphite is not particularly limited, but it is common to use various mixers in a dry state as powder.
  • an organic binder having chemical stability and electrochemical stability with respect to the electrolyte as the binder used for the negative electrode mixture paste.
  • fluororesins such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene, polyvinyl alcohol, phenolic methoxy / reserose, styrene butadiene rubber and the like are used. These can be used in combination.
  • a binder such as carboxymethylcellulose (water-soluble), polyvinyl alcohol (water-soluble), and styrene-butadiene rubber (water-dispersible) is used in order to achieve the object of the present invention and maximize the effects. It is particularly preferred to use.
  • the binder is preferably used in an amount of about 0.5 to 20% by mass based on the whole amount of the negative electrode mixture.
  • the negative electrode material will be further described with reference to a method for manufacturing the negative electrode.
  • the modified graphite of the present invention is adjusted to an appropriate particle size by classification or the like, and mixed with a binder to prepare a negative electrode mixture.
  • This negative electrode mixture is dispersed in a solvent to form a paste, and is usually applied to one or both surfaces of the current collector. Then, if this is dried, the negative electrode mixture layer is uniformly and firmly adhered to the current collector to form the negative electrode mixture layer. it can.
  • a solvent such as water or alcohol
  • a fluororesin powder such as polytetrafluoroethylene or poly (vinylidene fluoride) is added to isopropyl alcohol,
  • binders such as carboxymethylcellulose and styrene-butadiene rubber are dissolved and dissolved or dispersed in water or aqueous alcohol. It is desirable to use a water-based negative electrode mixture paste.
  • the paste can be prepared by stirring using a known stirrer, mixer, kneader, kneader, or the like.
  • the thickness of the negative electrode mixture paste applied to the current collector is 10 to 200 m.
  • the modified graphite of the present invention may be dry-mixed with a resin powder such as polyethylene or polyvinyl alcohol, and hot-pressed in a mold to form a negative electrode.
  • a resin powder such as polyethylene or polyvinyl alcohol
  • the discharge capacity and rapid charge / discharge efficiency of a lithium ion secondary battery may decrease when the amount of binder is excessive. Since the dry mixing requires a large amount of binder in order to obtain sufficient strength of the negative electrode, the above-mentioned wet method (a method of dispersing the binder in a solvent) is preferable.
  • the adhesive strength between the negative electrode mixture layer and the current collector can be further increased.
  • the shape of the current collector used for the negative electrode is not particularly limited. Foil, oh Or a mesh-like material such as mesh or expanded metal is used. Examples of the current collector include copper, stainless steel, nickel, and the like. The thickness of the current collector in the case of foil, 5 to 2 0 mu about ⁇ are preferred. Negative electrode for lithium ion secondary batteries>
  • the present application also provides an invention of a negative electrode for a lithium ion secondary battery comprising the negative electrode material of the present invention.
  • the negative electrode of the present invention is obtained by solidifying or shaping the above-described negative electrode material of the present invention.
  • the formation of the negative electrode can be carried out in accordance with a usual molding method.However, it is necessary to obtain a chemically and electrochemically stable negative electrode that sufficiently draws out the performance of the graphitized material and has a high formability to powder. There are no restrictions as long as the method can be used.
  • the modified graphite of the present invention is particularly suitable as a negative electrode material and a negative electrode of the above-mentioned lithium ion secondary battery, but can be diverted to uses other than the negative electrode material by utilizing its features.
  • the present invention further provides a lithium ion secondary battery using the negative electrode.
  • a lithium-ion secondary battery usually has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main battery components.
  • the positive electrode and the negative electrode serve as lithium ion carriers, respectively.
  • This is a battery mechanism in which lithium ions are doped into the negative electrode during charging and dedoped from the negative electrode during discharging.
  • the lithium ion secondary battery of the present invention is not particularly limited except that a negative electrode obtained from a negative electrode material containing the modified graphitized product of the present invention is used.
  • the other components are the same as those of a general lithium ion secondary battery.
  • the material of the positive electrode positive electrode active material
  • examples of such a positive electrode active material include a complex chalcogenide of lithium and a transition metal, in particular, a complex oxide of lithium and a transition metal.
  • a composite oxide of lithium and a transition metal may be a solid solution of lithium and two or more transition metals.
  • L i M d) — x M (2) x 0 2 (where X is a number in the range 0 ⁇ X ⁇ 1, and M (1) and M (2) are at least one type of Or a transition metal element.)
  • L i M (1) 2 — ⁇ M (2) 0 4 (where Y is a number in the range of 0 ⁇ Y ⁇ 1, and ⁇ (1) and ⁇ (2) are It consists of at least one kind of transition metal element.
  • examples of the transition metal element represented by ⁇ include Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, and Sn.
  • L i C O_ ⁇ 2 and ix N iv Mx-v O 2 (M is the transition metal elements excluding N i, preferably C o, F e, Mn, T i, C r, V, At least one kind selected from A 1 satisfies 0.05 ⁇ x ⁇ l.10 and 0.5 ⁇ Y ⁇ 1.0.)).
  • the lithium-containing transition metal oxide as described above is prepared, for example, by using Li or a transition metal oxide or a salt as a starting material, and mixing these starting materials according to the composition. It can be obtained by firing in the temperature range of 000 ° C.
  • the starting materials are not limited to oxides or salts, and can be synthesized from hydroxides and the like.
  • the positive electrode active material the above compounds may be used alone or in combination of two or more.
  • a carbonate such as lithium carbonate can be added to the positive electrode.
  • a positive electrode is formed from such a positive electrode material.
  • a positive electrode mixture layer composed of a positive electrode material, a binder, and a conductive agent for imparting conductivity to the electrode is applied to both surfaces of the current collector to form a positive electrode mixture layer.
  • the binder any of those exemplified for the negative electrode can be used.
  • Graphite is used as the conductive agent, for example.
  • the shape of the current collector is not particularly limited, and a foil shape, a mesh shape, a net shape such as expanded metal, or the like is used.
  • a material of the current collector aluminum, stainless steel, nickel, and the like can be given.
  • the thickness is preferably from 10 to 40 / m.
  • the positive electrode mixture is dispersed in a solvent to form a paste, and the paste-shaped positive electrode mixture is applied to a current collector and dried to dry the positive electrode mixture.
  • a layer may be formed.
  • pressure bonding such as pressurization may be further performed. Thereby, the positive electrode mixture layer is uniformly and firmly adhered to the current collector.
  • an organic electrolyte composed of a solvent and an electrolyte salt a polymer electrolyte composed of a polymer and an electrolyte salt, and the like can be used.
  • the electrolyte salt include L i PF 6 and L i BF 4
  • the concentration of the electrolyte salt in the organic electrolyte is preferably from 0.1 to 5 mol / liter, more preferably from 0.5 to 3.0 mol / liter.
  • solvent for the organic electrolyte examples include ethylene carbonate, propylene carbonate, dimethyl carbonate, dimethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2—jetoxetane, tetrahydrofuran, 2-methyltetrahydrofuran, and ⁇ -.
  • a non-aqueous electrolyte When a non-aqueous electrolyte is used as a polymer electrolyte, it contains a matrix polymer gelled with a plasticizer (a non-aqueous electrolyte), and the matrix polymer is a polyethylene oxide. Or cross-linked polymers such as ether-based polymers, polymethacrylates, polyacrylates, polyvinylidenefluoride, vinylidenefluoride, hexafluoropropylene copolymers, etc. Can be used.
  • ether-based polymers polymethacrylates, polyacrylates, polyvinylidenefluoride, vinylidenefluoride, hexafluoropropylene copolymers, etc.
  • a fluorine-based polymer such as polyvinylidene fluoride / vinylidene fluoride hexafluoropropylene copolymer.
  • electrolyte salt and the solvent constituting the plasticizer contained in the polymer electrolyte any of those described above can be used.
  • electrolytes that are plasticizers The electrolyte salt concentration is preferably 0.1 to 5 mol / liter, more preferably 0.5 to 2.0 mol / liter.
  • the method for producing such a polymer electrolyte is not particularly limited, and examples thereof include a method in which a polymer compound that forms a matrix and a lithium salt solvent are mixed, and the mixture is heated and melted. Furthermore, a method in which a polymer compound, a lithium salt and a solvent are dissolved in an appropriate organic solvent for mixing, and then the organic solvent for mixing is evaporated. Further, a method of mixing a monomer, a lithium salt and a solvent and irradiating the mixture with an ultraviolet ray, an electron beam, a molecular beam, or the like to form a polymer can be exemplified.
  • the addition ratio of the solvent in the polymer electrolyte is preferably from 10 to 90% by mass, and more preferably from 30 to 80% by mass.
  • the content is 10 to 90% by mass, the conductivity is high, the mechanical strength is high, and the film is screened.
  • a separator can also be used.
  • the separator is not particularly limited.
  • a woven fabric, a nonwoven fabric, a synthetic resin microporous membrane and the like can be mentioned.
  • a synthetic resin microporous membrane is preferably used.
  • polyolefin-based microporous membranes are preferred in terms of thickness, membrane strength, and membrane resistance.
  • it is a microporous membrane made of polyethylene or polypropylene, or a microporous membrane obtained by combining these. .
  • a polymer electrolyte can be used because of its high initial charge / discharge efficiency.
  • a lithium ion secondary battery using a polymer electrolyte is generally called a polymer battery. It can be composed of a negative electrode containing the modified graphite of the present invention, a positive electrode and a polymer electrolyte.
  • a negative electrode, a polymer monoelectrolyte, and a positive electrode are stacked in this order and housed in a battery exterior material. It is.
  • a polymer electrolyte may be further provided outside the negative electrode and the positive electrode.
  • propylene carbonate can be contained in the polymer electrolyte. Generally, propylene carbonate has a severe electrolysis reaction with graphite, but has a low decomposition reactivity with the modified graphitized product of the present invention.
  • the structure of the lithium ion secondary battery according to the present invention is arbitrary, and its shape and form are not particularly limited. It can be arbitrarily selected from among cylindrical, square, coin, and button types.
  • a structure in which the battery is sealed in a laminate film may be used.
  • a graphitized material was evaluated by producing a button-type secondary battery for evaluation having a configuration as shown in FIG.
  • the actual battery can be manufactured according to a known method based on the concept of the present invention.
  • the working electrode was expressed as a negative electrode
  • the counter electrode was expressed as a positive electrode.
  • the physical properties of the particles were measured as follows.
  • the average particle size was measured by a laser diffraction type particle size distribution meter.
  • the average lattice spacing was determined by X-ray diffraction.
  • the specific surface area is the BET specific surface area by nitrogen gas adsorption.
  • Hardness was measured by the following method. 5 g of the graphitized material was filled in a cylindrical container (20 mm in inner diameter), and tapping was performed 200 times. Thereafter, a steel round bar having the inner diameter of a cylindrical container is pushed in from above the sample filling surface, and a compression test is performed at a constant speed. The inflection point of the detected load (the point at which the detected load is reduced based on the destruction of particles) The load at was expressed as a relative value. That is, the inflection point load of the graphitized material used in Example 1 described later was set to 1, and the relative value of the inflection point load of each of the graphitized material and the hard fine particles was shown.
  • a compressing force and a shearing force are simultaneously applied to the graphitized material under the following conditions by using a processing apparatus having a schematic structure as shown in Fig. 2 (manufactured by Nara Machinery Co., Ltd .: Hybridization System). Added processing to apply. That is, by performing the treatment at a peripheral speed of the rotary rotor of 40 m / sec under the treatment time of 6 minutes, the compressive force and the shear force were simultaneously and repeatedly applied while dispersing the graphitized material charged into the device.
  • the graphitized product after the simultaneous application of the compressive force and the shearing force was spherical, and had an average particle size of 24 ⁇ . It said intensity ratio by Raman analysis (IDZI c ratio) was 0.4 7. The average lattice spacing d. . 2 is 0.3336 nm was maintained as it was.
  • a negative electrode mixture base of an aqueous solvent and an organic solvent was prepared using the graphitized material (modified graphitized material) subjected to the simultaneous application of the compressive force and the shearing force obtained above.
  • the negative electrode mixture paste was applied on a copper foil (current collector) in a uniform thickness, and the solvent was evaporated in a vacuum at 90 ° C. and dried. Next, the negative electrode mixture applied on the copper foil was pressed by a roller press. Thereafter, by punching out into a circular shape having a diameter of 15.5 mm, a negative electrode 2 including a negative electrode mixture layer adhered to the current collector 7b was produced.
  • the lithium metal foil was pressed against a nickel net, integrated into a circular shape with a diameter of 15.5 mm, and punched out to produce a positive electrode 4 made of the lithium metal foil adhered to the nickel net current collector 7a.
  • a button secondary battery having the structure shown in FIG. 1 was produced as an evaluation battery.
  • a separator 5 impregnated with an electrolyte solution is laminated between the negative electrode 2 closely attached to the current collector 7b and the positive electrode 4 closely adhered to the current collector 7a.
  • the outer package 1 and the outer can 3 are combined so that the negative electrode current collector 7b side is accommodated in the outer can 1 and the positive electrode current collector 7a side is accommodated in the outer can 3.
  • an insulating gasket 6 was interposed between the outer edges of the outer cup 1 and the outer can 3, and both outer edges were caulked to seal.
  • the hydrophilicity of the obtained negative electrode material was evaluated as follows. 15 g of the modified graphite of the present invention was filled into a cylindrical container having a bottom made of a wire mesh and filter paper, and tapped 160 times. Thereafter, the bottom of the container was brought into contact with the water surface, and the change with time in the amount of permeated water was measured.
  • Table 1 shows the values of the discharge capacity (mAhZ g), initial charge / discharge efficiency (%), and rapid charge efficiency (%) measured per 1 g of the modified graphite.
  • FIG. 4 shows the evaluation results of hydrophilicity.
  • Example 1 The step (1) of Example 1 was carried out in the presence of the following anhydrous silica to prepare a negative electrode material.
  • the other conditions were the same as in Example 1.
  • Example 1 100 parts by mass of the raw material graphitized product and anhydrous silica (AER0SIL 300 manufactured by Nippon Aerosil Co., Ltd., average particle diameter 7 nm, hardness relative value 4.2) were set to 0. And 2 parts by mass, and the mixture was charged into a processing apparatus, and a process of simultaneously applying a compressive force and a shearing force was performed in the same manner as in Example 1 except that the processing time was set to 2 minutes.
  • AER0SIL 300 manufactured by Nippon Aerosil Co., Ltd., average particle diameter 7 nm, hardness relative value 4.2
  • the graphitized product after the surface modification treatment was spherical, and the average particle size was 23 m.
  • the intensity ratio (1./1. Ratio) in Raman analysis is 0.57.
  • the average lattice spacing d in X-ray diffraction. 0 2 was 0. 33 62nm.
  • Example 3 This negative electrode material was evaluated in the same manner as in Example 1. Table 1 shows the battery characteristics, and Fig. 4 shows the hydrophilicity of the negative electrode material. Example 3
  • Example 1 a device for performing a process of simultaneously applying a compressive force and a shearing force at the time of preparing a negative electrode material was a processing device (Hosokawa Micron (Hosokawa Micron) having a schematic structure as shown in FIGS. Example 1 was carried out in the same manner as in Example 1 except that the surface modification treatment was performed under the following conditions in place of the Mechanofusion System manufactured by Co., Ltd.).
  • a processing device Hosokawa Micron (Hosokawa Micron) having a schematic structure as shown in FIGS.
  • Example 1 was carried out in the same manner as in Example 1 except that the surface modification treatment was performed under the following conditions in place of the Mechanofusion System manufactured by Co., Ltd.).
  • the graphitized material was subjected to a compressive force and a shearing force simultaneously and repeatedly at a distance of 5 mm between the rotating drum and the internal member, a peripheral speed of the rotating drum of 2 OmZ seconds, and a processing time of 60 minutes.
  • the graphitized product after the surface modification treatment was spherical, and the average particle size was 25 ⁇ m.
  • the intensity ratio (IDZI ratio) in Raman analysis was 0.45.
  • the average lattice spacing d in X-ray diffraction. . 2 was 0.3362nra.
  • a negative electrode mixture paste, a negative electrode, and a lithium ion secondary battery were manufactured.
  • Example 4 This negative electrode material was evaluated in the same manner as in Example 1. Table 1 shows the battery characteristics, and Fig. 4 shows the hydrophilicity of the negative electrode material. Example 4
  • Example 3 To 100 parts by mass of the same graphitized raw material as in Example 3, 0.5 parts by mass of titanium oxide (P25 manufactured by Nippon Aerosil Co., Ltd., average particle size 21 nm, relative hardness value 4.6) was added. The same surface modification treatment as in Example 3 was performed with a treatment time of 10 minutes. The graphitized product after the surface modification treatment has a spherical shape, The average particle size was 24 m.
  • the intensity ratio ( ⁇ . ⁇ . ratio) in Raman analysis was 0.63.
  • the average lattice spacing d in X-ray diffraction. . 2 was 0.3362 nm.
  • a negative electrode mixture paste, a negative electrode, and a lithium ion secondary battery were manufactured.
  • This negative electrode material was evaluated in the same manner as in Example 1.
  • Table 1 shows the battery characteristics
  • Fig. 4 shows the hydrophilicity of the negative electrode material.
  • the lithium ion secondary battery using the negative electrode material of the present invention for the negative electrode not only uses the organic negative electrode mixture paste but also uses the aqueous negative electrode mixture paste. It was confirmed that a large discharge capacity, a high initial charge / discharge efficiency were maintained, and a high rapid charge efficiency was obtained even when the agent paste was used.
  • the amount of permeation of water was greatly increased by the treatment of simultaneously applying a compressive force and a shear force. Further, by performing the treatment in the presence of hard fine particles, the amount of permeated water is further increased.
  • the raw material graphite was pulverized to prepare a material having the same specific surface area as the modified graphite of the present invention. A similar water absorption test was performed on this, but no increase in water penetration was observed. From this, it was considered that the negative electrode material of the present invention was highly hydrophilized. Comparative Example 1
  • Figure 4 shows the hydrophilicity of this raw material graphitized product. Table 1 shows the results of the battery characteristics. As shown in FIG. 4, the negative electrode material shows almost no hydrophilicity. Also, as shown in Table 1, in lithium-ion secondary batteries that use graphitized mesophase spheroids (raw material graphitized) that are not subjected to the simultaneous application of compressive force and shear force as the negative electrode material, an organic negative electrode mixture is used.
  • Example 2 The graphitized raw material and anhydrous silica in Example 2 were mixed for 30 minutes at a stirring rotational speed of 700 rpm using a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.). A negative electrode material was prepared in the same manner as in Example 2 using the obtained mixture. In this mixing process, compressive force and shear force cannot be applied simultaneously.
  • the intensity ratio (1.1. Ratio) in the Raman analysis of the mixture was 0.21.
  • the average lattice spacing d in X-ray diffraction. 0 2 was 0. 3362nm.
  • the silica and the graphite were separated by an air classifier, and the intensity ratio (ID / Io ratio) in Raman analysis of the graphite alone and the average lattice spacing d in X-ray diffraction. .
  • the analysis value was the same as that of the mixture containing anhydrous silica.
  • a negative electrode mixture paste was prepared in the same manner as in Example 1 except that the mixture of the graphitized product and anhydrous silica obtained above was used, and further, a negative electrode and a lithium ion secondary battery were produced. Table 1 shows the battery characteristics.
  • Example 4 a graphitized product (average particle diameter of 17 / m) of a pulverized mesophase sphere obtained by previously pulverizing the mesophase sphere and then graphitizing with 300 O was used.
  • Example 4 Other conditions were the same as in Example 4, in which a compressive force and a shear force were simultaneously applied.
  • the graphitized product of the pulverized mesophase spheres before the surface modification treatment had a mixed shape of spherical and amorphous.
  • Average lattice spacing d. . 2 was 0.3336 nm, the true specific gravity was 2.228, and the specific surface area was 0.95 m 2 / g.
  • the relative value of hardness was 0.9.
  • the graphitized product after the surface modification treatment was also in the form of a mixture of spherical and amorphous shapes, and the average particle diameter was unchanged at 17 m.
  • the specific surface area was 3.45 m 2 / g, and the intensity ratio (1. Z lc) in Raman analysis was 0.75.
  • the average lattice spacing d in X-ray diffraction. . 2 was 0.3362 nm.
  • a negative electrode mixture paste was prepared in the same manner as in Example 4, and further, a negative electrode and a lithium ion secondary battery were produced.
  • Table 1 shows the battery characteristics evaluated in the same manner as in Example 4. Comparative Example 3
  • a negative electrode material was prepared in the same manner as in Example 5, except that a process of simultaneously applying a compressive force and a shearing force was not performed, and a negative electrode and a lithium ion secondary battery were produced.
  • Table 1 shows the battery characteristics evaluated in the same manner as in Example 5.
  • Example 5 enhanced the said intensity ratio (I D ZI c) in the Raman analysis by process of applying compressive force and shear force at the same time, rapid charging efficiency even in the case of using the water-based negative electrode mixture paste each Improved step by step.
  • the initial charge / discharge efficiency has also been improved. It should be noted that even when an organic negative electrode mixture paste is used, the effects of further improving the quick charge efficiency and the initial charge / discharge efficiency are recognized. Examples 6 to 11
  • a mixture of the modified graphitized product produced by any of the methods of Examples 1 to 4 and the other graphitized product shown in Table 2 was used for a negative electrode of a lithium ion secondary battery.
  • a negative electrode mixture paste was prepared in the same manner as in Example 1, and further, a negative electrode and a lithium ion secondary battery were produced. The same evaluation as in Example 1 was performed. Table 2 shows the results. Comparative Example 4
  • a mixture of the raw material graphitized product of Example 1 and natural graphite (SNO—10 manufactured by SSI Corporation) was used as a negative electrode material of a lithium ion secondary battery.
  • a negative electrode mixture paste was prepared in the same manner as in Example 1, and further, a negative electrode and a lithium ion secondary battery were produced. The same evaluation as in Example 1 was performed. Table 2 shows the results.
  • a specific example of a negative electrode material containing graphite coated with a carbon material having lower crystallinity than the modified graphite of the present invention together with the modified graphite will be described.
  • the oil in the tar was removed by distillation under reduced pressure to obtain graphite having pitch adhered to or impregnated on the surface and / or inside. Then, this was placed in a stainless steel crucible and fired at 500 in a firing furnace under an inert gas flow. Then, it was pulverized with an atomizer. Further, this was fired at 1300 ° C. to obtain graphite coated with a carbon material having a lower crystallinity than the modified graphite of the present invention (hereinafter also referred to as “coated graphite”).
  • the pitch is finally heat-treated at 1300 ° C. for the carbon material coated with graphite, and has lower crystallinity than the modified graphite of the present invention.
  • coal tar pitch was placed alone in a stainless steel crucible and fired in a firing furnace at 500 ° C. with flowing inert gas. Then, it was crushed with an atomizer. This was fired at 1300 to obtain a carbon material.
  • the average lattice spacing d in X-ray diffraction was obtained. . 2 was 0.343 nm.
  • the crystallinity of the carbon material alone coated with graphite is lower than the crystallinity of the modified graphite of the present invention.
  • the coverage of this carbon material was equivalent to 8% by mass of the whole.
  • the intensity ratio (1. No. Ie ratio) in the Raman analysis of the coated graphite was 0.28, and the average particle size was 13 / m.
  • Example 3 Using this negative electrode material, a negative electrode and a lithium ion secondary battery were produced in the same manner as in Example 1. The same evaluation as in Example 1 was performed on the characteristics of the obtained lithium ion secondary battery. The following rapid discharge efficiency was also newly measured. The results are summarized in Table 3.
  • the mesophase microspheres having an average particle size of 25 / m (made by Kawasaki Steel Co., Ltd.) used in Example 1 were pulverized to an average particle size of 14 zm using an atomizer and then graphitized at 300 ° C. to obtain a raw material.
  • a graphitized product was obtained. This was subjected to a process of simultaneously applying a compressive force and a shearing force under the same conditions as in Example 1 to obtain a modified graphite.
  • the obtained modified graphite had an average particle size of 13 / zm and an intensity ratio (1.8: 1) in Raman analysis of 0.83.
  • the modified graphite was used in place of the modified graphite used in the negative electrode material of Example 12.
  • Example 12 The other conditions were the same as in Example 12, to produce a negative electrode material, a negative electrode mixture paste, a negative electrode, and a lithium ion secondary battery.
  • the characteristics of the obtained lithium ion secondary battery were evaluated in the same manner as in Example 12. Table 3 shows the results. Comparative Example 5
  • Example 1 The raw graphite material used in Example 1 was used instead of the modified graphite material used in the negative electrode material of Example 12.
  • a negative electrode material, a negative electrode mixture paste, a negative electrode, and a lithium ion secondary battery were produced in the same manner as in Example 12 except for the other conditions.
  • the same evaluation as in Example 12 was performed on the characteristics of the obtained lithium ion secondary battery. Table 3 shows the results.
  • the lithium ion secondary battery using unmodified raw graphite and coated graphite instead of the negative electrode material (modified graphite) of the present invention is an organic material. While the use of an aqueous negative electrode mixture paste has excellent characteristics, the use of an aqueous negative electrode mixture paste reduces the discharge capacity, rapid charging efficiency and rapid discharge efficiency. Comparative Example 6
  • Example 12 the coated graphite was used alone without using the modified graphite.
  • the other conditions were the same as in Example 12 to produce a negative electrode material, a negative electrode mixture base, a negative electrode, and a lithium ion secondary battery.
  • the same evaluation as in Example 12 was performed on the characteristics of the obtained lithium ion secondary battery. Table 3 shows the results.
  • the lithium ion secondary battery using the coated graphite alone without using the negative electrode material (modified graphite) of the present invention is a water-based negative electrode mixture paste.
  • it has high discharge capacity and high initial charge / discharge efficiency, but low quick charge efficiency and rapid discharge efficiency.
  • the cause is considered to be that the coated graphite uses scaly natural graphite as a core material, so that the coated graphite in the negative electrode is oriented, and the contact between the nonaqueous electrolyte and the coated graphite is incomplete. .
  • a lithium ion secondary battery using the negative electrode material (a mixture of modified graphite and coated graphite) of the present invention is an organic negative electrode paste. It was confirmed that a large discharge capacity, high initial charge / discharge efficiency, and high rapid charge efficiency were maintained not only in the case of using but also in the case of using an aqueous negative electrode mixture base. In particular, it was confirmed that mixing graphite coated with a low-crystalline carbon material has a higher discharge capacity and maintains high rapid charging efficiency, rapid discharging efficiency, and initial charging and discharging efficiency. By using a mixture of the modified graphite of the present invention and coated graphite as the negative electrode material, the problems of low rapid charging efficiency and low rapid discharging efficiency when using the coated graphite alone (Comparative Example 6) are reduced. Solved.
  • Example 6 Example 7 Example 8 Example 9 Example 10 Example 11 Comparative Example 4
  • the novel modified graphite obtained by the surface modification treatment of the present invention has high crystallinity, but has disorder in the outermost surface, and has improved surface properties such as wettability.
  • This modified graphite is suitable as a negative electrode and a negative electrode material of a lithium ion secondary battery.
  • a negative electrode is manufactured using an aqueous negative electrode mixture paste instead of an organic mixture paste, a high discharge capacity and a high initial charge / discharge efficiency can be maintained while a high rapidity which has not been achieved conventionally can be achieved.
  • a lithium ion secondary battery having fast charging efficiency can be obtained. Therefore, not only environmental and safety demands, but also recent demands for higher energy density of batteries can be satisfied. As a result, it can contribute to downsizing and higher performance of the equipment to be mounted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

明 細 書 メソフ ズ小球体の黒鉛化物、 それを用いた負極材料、 負極おょぴ リチウムイオン二次電池 技術分野
本発明は、 放電容量、 初期充放電効率および急速充電効率の 3性能 に優れるリチウムイオン二次電池およびその構成材料に関する。 特に は、 水系の負極合剤ペース トから作製された負極を用いても、 急速充 電効率を低下させることなく放電容量および初期充放電効率が維持で きるリチウムイオン二次電池に関する。 さらには、 このようなリチウ ムイオン二次電池用の負極および負極材料、 並びにこれらを構成する メソフェーズ小球体の黒鉛化物とその製造方法に関する。 背景技術
近年、 電子機器の小型化あるいは高性能化に伴い、 電池の高工ネル ギー密度化に対する要望はますます高まっている。 リチウムイオン二 次電池は、 他の二次電池に比べて高電圧化が可能なのでエネルギー密 度を高められるため注目されている。 リチウムイオン二次電池は、 負 極、 正極および非水電解質を主たる構成要素とする。 非水電解質から 生じるリチウムイオンは、 放電/充電過程で負極および正極間を移動 し、 二次電池となる。
通常、 上記のリチウムイオン二次電池の負極用材料には、 炭素材が 使用される。 このような炭素材として、 充電 放電時にリチウムィォ ンを吸蔵 放出し易いように積層構造を有し、 高い放電容量と電位平 坦性とを示す黒鉛を用いることが主流となっている。
黒鉛材料として、 天然黒鉛、 コータスの高温焼成体などの人造黒 鉛、 ピッチ系炭素繊維またはメソフェーズ炭素繊維などの黒鉛化物が 知られている。 さらに、 特開平 5— 2 9 0 8 3 3号公報には、 タール またはピッチを原料としたメソフェーズピッチを熱処理して得られる メソフェーズ系の黒鉛化物なども開示されている。
上記の黒鉛材料のうち天然黒鉛は、 放電容量が高い利点はあるもの の、 鱗片形状を有するため負極を形成した際に配向し易く、 非水電解 質と黒鉛の接触が不完全となり急速充放電特性 (レート特性とも呼 ぶ) が低下する。 また、 充放電に伴う黒鉛の伸縮が一方向になり、 黒 鉛間の接触を保持することができずサイクル特性が低下するという課 題が発生する。 これに対し、 メソフェーズピッチを熱処理して得られ る黒鉛化物、 特にはピッチ中に生成したメソフェーズ小球体の黒鉛化 物は、 球状あるいは球状に近い形状を有する。 よって、 負極形成時に ランダムに積層され易く、 負極内で非水電解質を均一に含有すること ができる。 また、 充放電に伴う黒鉛の伸縮の方向がランダムとなる。 この結果、 良好な急速充放電特性およびサイクル特性を発揮する。 特開平 5 - 2 9 0 8 3 3号公報によれば、 ピッチ類を 3 5 0〜 5 0 0 °Cの熱溶融温度に保持し、 生成する炭素質メソフェーズ小球体を得 る。 これを炭素化したのち、 2 5 0 0〜 2 9 0 0 °Cで黒鉛化して得ら れる黒鉛化物が開示されている。 該公報では、 上記メソフェーズ小球 体の黒鉛化物は、 平均粒径が 2 5 /Z mであり、 X線回折における平均 格子面間隔 d。。2が 0 . 3 3 6 5〜0 . 3 3 9 0 n mであり、 かつァ ルゴンレーザー . ラマン分光における 1 5 8 0 c m—1のピーク強度 に対する 1 3 6 0 c m _ 1のピ一ク強度の比が 0 . 2力、ら 0 . 4の範 囲にあるものが、 リチウムイオン二次電池の負極材料として提案され ている。
しかしながら、 メソフェーズ小球体の黒鉛化物を用いて負極を作製 し、 この負極を用いてリチウムイオン二次電池を構成すると、 負極作 製時の使用溶媒の種類によっては該電池の性能が充分に引き出せない 場合がある。
通常、 負極を作製するには、 まず炭素材料と結合剤 (バインダー樹 脂) を溶媒 (以下、 溶媒およびノまたは分散媒を含む) 中で混合して ペースト化する。 つぎに得られたペース ト (これを負極合剤ペース ト と呼ぶ) を銅箔などの集電材に塗布した後、 プレスして負極を得る。 このペースト化工程で、 溶媒として有機溶剤などの非水系溶媒を用い れば、 放電容量が大きく、 初期充放電効率および急速充電効率とも高 い優れたリチウムイオン二次電池が得られる。
一方、 近年、 環境面、 安全面などの観点から、 水系溶媒すなわち水 系の負極合剤ペース トの使用が望まれている。 ところが、 該溶媒とし て水系溶媒 (水を含有する媒体) を用いた場合には、 急速充電効率な どの電池特性が低下してしまうことがある。 すなわち、 メソフェーズ 小球体の黒鉛化物を負極材料とした場合、 得られるリチウムイオン二 次電池の性能は、 負極合剤ペース トの溶媒種に左右されてしまう。 本 願では、 これをリチウムイオン二次電池の溶媒依存性とも呼ぶ。
本願発明者らは、 上記特開平 5 - 2 9 0 8 3 3号公報などに開示さ れている公知のメソフェーズ小球体の黒鉛化物を負極材料に用い、 水 系あるいは非水系の媒体を使用して負極を作製、 リチウムイオン二次 電池の溶媒依存性を検討した。 その結果、 水系媒体を用いるとやはり 急速充電特性が低下してしまうことが確認された。
本発明は、 このような状況に鑑み、 水系負極合剤ペース トを使用す る場合であっても、 放電容量が大きく、 初期充放電効率および急速充 電効率とも高い優れたリチウムイオン二次電池を得ることを目的とす る。 さらには、 このような 3性能に優れるリチウムイオン二次電池用 の負極および負極材料、 並びにこれらを構成するメソフェーズ小球体 の黒鉛化物とその製造方法を提供することも目的とする。 発明の開示
すなわち、 本発明は、 X線回折における平均格子面間隔 d。。2が 0. 3 3 7 n m未満であり、 かつ波長 5 1 4. 5 nmのアルゴンレー ザ一光を用いたラマンスぺク トルにおいて、 1 5 7 0〜 1 6 3 0 c m 一 1の領域に存在するピークの強度 I Gに対する 1 3 5 0〜 1 3 7 0 c m—1の領域に存在するピークの強度 I Dの比 I D/ I G力 0 · 4超か ら 2以下である、 メソフェーズ小球体の黒鉛化物である。
なお、 このメソフェーズ小球体の黒鉛化物は、 体積換算の平均粒径 が 3〜 5 0 /i mであり、 比表面積が l〜 2 0 m2Zgであるものが好 ましい。
また、 いずれの上記メソフェーズ小球体の黒鉛化物は、 硬度が該メ ソフェーズ小球体の黒鉛化物の硬度より高くかつ平均粒径が該メソフ エーズ小球体の黒鉛化物の平均粒径より小さい微粒子が表面に埋設さ れているものが好ましく、 該微粒子がシリカ、 アルミナおよび酸化チ タンからなる群より選ばれる少なく と 1種であるものがより好まし レ、。
さらに、 本願では、 上記メソフェーズ小球体の黒鉛化物のいずれか を含有するリチウムイオン二次電池用の負極材料の発明も提供する。 なお、 この負極材料は、 該メソフェーズ小球体の黒鉛化物以外の黒 鉛をさらに含有するのが好ましい。 なかでも、 結晶性が該メソフエ一 ズ小球体の黒鉛化物の結晶性より低い炭素材料で被覆されている黒鉛 をさらに含有するのがより好ましい。
さらに、 本願では、 上記負極材料のいずれかからなるリチウムィォ ン二次電池用の負極の発明も提供する
また、 本願では、 上記負極のいずれかを有するリチウムイオン二次 電池の発明も提供する。 さらに、 本願では、 メソフェーズ小球体の黒鉛化物に圧縮力と剪断 力を同時にかける処理を施して、 X線回折における平均格子面間隔 d 。。2力 S O . 3 3 7 n m未満であり、 かつ波長 5 1 4 . 5 n mのァルゴ ンレーザー光を用いたラマンスぺク トルにおいて、 1 5 7 0〜 1 6 3
0 c m—1の領域に存在するピークの強度 I Gに対する 1 3 5 0〜 1 3 7 0 c m—1の領域に存在するピークの強度 I Dの比 I DZ I Gが 0 . 4超から 2以下である、 メソフェーズ小球体の黒鉛化物を製造する方 法の発明も提供する。
なお、 この製造方法においては、 硬度が該メソフェーズ小球体の黒 鉛化物の硬度より高くかつ平均粒径が該メソフェーズ小球体の平均粒 径より小さい微粒子の共存下に、 前記処理を施す方法が好ましく。 な かでも、 前記微粒子がシリカ、 アルミナおよび酸化チタンからなる群 より選ばれる少なく とも 1種である製造方法がより好ましい。 図面の簡単な説明
図 1は、 黒鉛化物の特性を評価するための評価電池を示す断面図で ある。
図 2は、 圧縮力と剪断力を同時にかける処理を行うための装置の概 略説明図である。
図 3は、 圧縮力と剪断力を同時にかける処理を行うための他の装置 の概略説明図である。
図 4は、 実施例および比較例で得られたメソフェーズ小球体の黒鉛 化物の水浸透量 (親水性) を示す図である。 発明を実施するための最良の形態
以下、 本発明をより具体的に説明する。
まず本発明に係るメソフェーズ小球体の黒鉛化物について説明する。 くメソフェーズ小球体の黒鉛化物〉
本発明に係るメソフェーズ小球体は、 一般的には、 高温熱処理によ り黒鉛化が促進され易い炭素材料から製造される。 このような炭素材 料としては、 石油系または石炭系のタール類、 ピッチ類が挙げられ る。 たとえばコールタールを 3 5 0〜 5 0 0 °Cに加熱すると、 多環芳 香族分子が重縮合反応して巨大化し、 光学異方性を有する小球体であ るメソフェーズ小球体が発生する。 メソフェーズ小球体は、 光学等方 性を有するピッチマトリ ックスからベンゼン、 トルエン、 キノ リン、 タール中油、 タール重油あるいは洗浄油などの有機溶剤によって分離 され、 精製することができる。 得られるメソフェーズ小球体は、 必ず しも球状とは限らないが、 球状あるいは球状に近い形状のことが多 い。 したがって、 当業者間では 「メソフェーズ小球体」 と通称され、 他の炭素材料と日常的に区別されている。
分離されたメソフェーズ小球体を、 非酸化性雰囲気下、 3 0 0 °C以 上で一次焼成し、 最終的に 2 0 0 0 °C超えで高温処理すると、 本発明 の原料であるメソフ-ーズ小球体の黒鉛化物を得ることができる。 メ ソフェーズ小球体の黒鉛化物は、 実質的に黒鉛化前の形状が保持され るので、 球状あるいは球状に近い形状のことが多い。 本願のメソフエ ーズ小球体の黒鉛化物は、 メソフェーズ小球体を粉砕したのちに、 20 00°C超えで最終高温処理をしたものであってもよい。 メソフェーズ小 球体は光学異方性を有していることから、 これを粉砕して黒鉛化した 場合においても、 天然黒鉛のような配向上の問題はなく、 負極材料と して優れた電池性能を発現する。 ただし、 過度に粉砕した場合には、 不可逆容量が増大することがあり好ましくない。 粉砕は、 公知の粉砕 方法、 加工方法を適宜採用することができる。 粉砕は、 300°C以上で 一次焼成したのちで、 最終高温処理する前に行うことが好ましい。 本 願では、 メソフェーズ小球体の粉砕品を黒鉛化したものについても、 メソフェーズ小球体の黒鉛化物と称する。
なお、 非酸化性雰囲気下での最終高温処理は、 好ましくは 2 5 0 O 以上、 より好ましくは 28 00°C以上で行われる。 しかし、 該最 終高温処理の上限温度は、 黒鉛化物の昇華や分解等を避けるために、 通常、 高くても約 3 300°C程度である。
メソフェーズ小球体を、 2000°Cを超える温度で最終高温処理し て黒鉛化すれば、 X線回折における平均格子面間隔 d。02が 0. 3 3 7 nm未満であるメソフェーズ小球体の黒鉛化物が従来から得られて いる。 しかし、 この黒鉛化物は、 波長 5 1 4. 5 nmのアルゴンレー ザ一光を用いたラマンスぺク トルにおいて、 1 5 70〜 1 6 30 c m 一1の領域に存在するピークの強度 I Gに対する 1 3 50〜 1 3 70 c m— 1の領域に存在するピークの強度 I Dの比 I DZ I Gは、 0. 3 5 以下である。 本発明では、 上述した従来のメソフェーズ小球体の黒鉛化物 (以 下、 単に 「原料黒鉛化物」 と呼ぶこともある) に表面改質処理を施し て、 上記 I D/ I G比を増大させた。
すなわち、 本発明は、 メソフェーズ小球体の黒鉛化物に圧縮力と剪 断力を同時にかける処理をして、 X線回折における平均格子面間隔 d 。。2力 SO. 3 3 7 n m未満であり、 かつ波長 5 1 4. 5 nmのァルゴ ンレーザー光を用いたラマンスぺク トルにおいて、 1 5 70〜 1 6 3
0 c m—1の領域に存在するピークの強度 I (Jに対する 1 350〜 1 3 7 0 c m—1の領域に存在するピークの強度 I Dの比 I D / I Gが 0. 4超から 2以下である、 メソフェーズ小球体の黒鉛化物を製造する方 法の発明である。 また、 かかる X線回折とラマンスペク トルの要件を 兼備するメソフェーズ小球体の黒鉛化物そのものの発明でもある。 得られる本発明のメソフェーズ小球体の黒鉛化物 (以下、 「改質黒 鉛化物」 とも呼ぶ) は、 X線回折における C軸方向の平均格子面間隔 (1。。2は0. 3 3 7 n m未満であり、 好ましくは 0. 3 36 5 n m未 満である。 このように平均格子面間隔 d。。2の短い黒鉛化物は、 結晶 性が高く、 言い換えれば黒鉛化度も高い。 したがって、 リチウムィォ ン二次電池の負極材料として使用した時に放電容量の高いリチウムィ オン二次電池を得ることができる。
なお、 平均格子面間隔 d。。2は、 X線として C u Κ α線を用い、 高 純度シリ コンを標準物質とする X線回折法 〔大谷杉郎、 炭素繊維、 p. 73 3 - 74 2 (1986) 近代編集社〕 によって測定された値を意味す る。
本発明の改質黒鉛化物は、 特定のラマンスペク トルを呈する。 具体 的には、 波長 5 1 4. 5 nmのアルゴンレ一ザ一光を用いたラマンス ベク トルにおいて、 1 570〜: 1 6 30 c m—1の領域に存在するピー クの強度を I。とし、 1 3 5 0〜 1 3 7 0 c m 1の領域に存在するピ ークの強度を I。とするときのピーク強度比 I。 1。が 0. 4超から 2以下の範囲にある。
なお、 本願で言うピーク強度は、 ピーク高さによる強度を意味す る。
上述の X線回折とラマンスぺク トルの両要件を満足する該改質黒鉛 化物を用いて負極を作製し、 リチウムイオン二次電池に用いると、 リ チウムイオン二次電池の溶媒依存性がなくなる。 すなわち、 水系の負 極合剤ペーストを使用しても、 リチウムイオン二次電池の放電容量と 初期充放電効率は維持されたまま、 急速充電特性も低下しないという 効果を奏する。 なお、 この場合、 上記 Ι。Ζ Ι。比が 0. 4以下では、 急速充電特性が低下することがある。 一方、 Ι。Ζ Ι。比が 2を超える と、 放電容量が低下する傾向にある。 本発明の改質黒鉛化物は、 上記 I D/ I C比は、 0. 4 5〜 1の範囲にあることが特に好ましい。 本発明者らは、 このように I D / I c比が該溶媒依存性に影響する のは、 原料であるメソフェーズ小球体の黒鉛化物の表面改質によるた めと理解している。 表面改質効果が得られる機構は、 必ずしも明確で はないが、 圧縮力と剪断力を同時にかけることにより、 黒鉛化物表面 が研磨されるためであると考えられる。 そのため、 原料黒鉛化物の表 面に親水基が多く出現し、 黒鉛化物自体の親水性が向上すると考えて いる。 したがって、 本発明で行う圧縮力と剪断力を同時にかける処理 (以下、 単に 「表面改質処理」 とも呼ぶ) は、 機械的あるいは物理的 処理により化学的性質が変化あるいは付与される一種のメカノケミカ ル処理とも言える。 原料黒鉛化物の表面への親水性付与を確認する手 段としては、 該表面改質処理後の黒鉛化物と水との接触角の測定、 あ るいは水の浸透速度、 浸透量測定などによって評価することができ る。 本発明の表面改質処理に用いる装置は、 被処理物に圧縮力と剪断力 とを同時にかけることができればよく、 装置構造は特に限定されな レ、。
このような装置として、 たとえば加圧ニーダー、 二本ロールなどの 混練機、 回転ボールミル、 ハイブリダィゼ一シヨンシステム ( (株) 奈良機械製作所製) 、 メカノマイクロス ( (株) 奈良機械製作所 製) 、 メカノフユ一ジョンシステム (ホソカワミクロン (株) 製) な どを使用することができる。
上記のうちでも、 回転速度差を利用して剪断おょぴ圧縮力を同時に 付与する装置が好ましく用いられる。 例えば、 図 3 (a) 〜(b)に模式 的機構を示すホソカワミクロン (株) 製メカノフユ一ジョンシステム を挙げることが出来る。 この装置は、 回転する ドラム (ローター 3 1 ) と、 該ドラムと回転速度の異なる内部部材 (インナーピース 3 2 ) と、 被処理物の循環機構 (たとえば循環用ブレード 3 3 ) とを有 する。 記号 3 5は排出ダンバ、 3 6は製品である。 ローターとインナ 一ピースとの間に供給された原料黒鉛化物 3 4は、 ローターの回転に よる遠心力を受けながら、 ィンナーピースとロータ一との速度差に起 因する圧縮力と剪断力とを同時に受けることになる。 しかも、 原料黒 鉛化物は、 循環機構によりこの圧縮力と剪断力を繰返し受けることに なる。
他の例として、 図 2に模式的に示した (株) 奈良機械製作所製ハイ プリダイゼーションシステムを挙げることが出来る。 記号 2 3はブレ ード、 2 5は循環路、 2 6は冷却あるいは加熱用のジャケッ ト、 2 7 は排出弁、 2 8は排出口である。 投入口 2 4より供給された原料黒鉛 化物は、 高速回転するローター 2 2と固定ドラム (ステ一ター 2 1 ) との間の速度差に起因する圧縮力と剪断力とを同時にかつ繰り返し受 けることになる。
本発明の方法で、 原料黒鉛化物に同時にかける剪断力と圧縮力は、 通常、 一般の撹拌よりも大きい。 しかし、 これら機械的応力は、 原料 黒鉛化物の表面にかけられることが好ましく、 黒鉛化物の粒子骨格ま では破壊しない程度であるのが望ましい。 黒鉛化物の粒子骨格が破壊 されると、 リチウム二次電池の不可逆容量の増大を招く傾向がある。 具体的に例示すれば、 該表面改質処理は、 原料黒鉛化物の平均粒子径 の減少率が 2 0 %以下に抑えられるよう行うのが好ましい。
たとえば回転ドラムと内部部材を備えた装置を用いる場合には、 回 転ドラムと内部部材との周速度差: 5〜5 O m /秒、 両者間の距離 1 〜 1 0 0 m m、 処理時間 3分〜 9 0分の条件下で行なうことが好まし い。
また固定ドラム Z高速回転ロータ一を備える装置の場合には、 固定 ドラムと回転ローターとの周速度差 1 0〜 1 0 0 m 秒、 処理時間 3 0秒〜 1 0分の条件下で行なうことが好ましい。
以上に例示した本発明の製造方法により、 本発明の改質黒鉛化物で ある、 前記の X線回折とラマンスぺク トルの両要件を満足するメソフ ェ一ズ小球体の黒鉛化物が得られる。 本発明の改質黒鉛化物の形状は、 やはり球状あるいは球状に近い形 状が好ましい。 しかし、 圧縮力と剪断力を同時にかける処理をした後 でもあるので、 粒状、 粉砕による不定形の粒子であってもよい。 本発明の改質黒鉛化物は、 体積換算による平均粒径が 3〜 5 0 m であるものが好ましい。 平均粒径が 3 /X m以上であれば、 リチウムィ オン二次電池の負極材料として使用した時に、 不可逆容量の増大ゃ電 池の安全性の低下を招くことがない。 また 5 0 m以下であれば、 負 極の密着性のよいリチウムイオン二次電池を得ることができる。 上記平均粒径は、 5〜 3 0 μ mが特に好ましい。 また改質黒鉛化物 の真比重は 2 . 2以上が好ましい。
また本発明の改質黒鉛化物の比表面積は、 窒素ガス吸着 B E T法の 比表面積で 1〜 2 0 m 2 / gであるのが好ましい。 Z O n^ Z g以下 であれば、 電池の不可逆容量が増大せず、 安全性からも好都合であ る。 5 m 2/ g以下がより好ましい。 また 1 m 2 Z g以上であれば、 水系の負極合剤ペーストを使用した場合に優れた電池特性が得られ易 レ、。
本発明の改質黒鉛化物は、 硬度が該改質黒鉛化物自体の硬度より高 くかつ平均粒径が該改質黒鉛化物の平均粒径よりも小さい微粒子が表 面に埋設されているものが好ましい。
このよ うな本発明の改質黒鉛化物は、 原料黒鉛化物の該表面改質処 理を、 該微粒子の共存下に行えば得られる。 該微粒子としては、 改質 黒鉛化物の平均粒径よりも小さい平均粒径を有し、 かつ硬いものであ れば、 どのようなものでも特に制限なく使用可能である。 該微粒子が 凝集物である場合には、 一次粒子の粒子径が改質黒鉛化物よりも小さ いものであればよい。 該微粒子の形態および平均粒径に規定はない 力 S、 1 n m程度以上であれば原料黒鉛化物の表面改質効果を得ること ができる。 また得られる本発明の改質黒鉛化物同士の接触を妨げず、 充放電特性に悪影響を及ぼさないように 1 0 0 n m程度を上限とする ことが望ましい。
該微粒子は、 導電性あるいは充放電に寄与するものであってもよ く、 寄与しないものであってもよい。 具体的には、 金属、 金属酸化 物、 金属窒化物、 金属硼化物、 金属炭化物などが例示される。
これらのうちでも、 親水性を有する硬質微粒子が望ましい。 なかで もシリカ、 アルミナや各種金属酸化物の微粒子が好ましい。 特に、 シ リカ、 アルミナおよび酸化チタンからなる群より選ばれる少なく とも 1種の微粒子が好適に用いられる。 シリカ、 アルミナおよび酸化チタ ンは、 気相法によって製造されたものが好ましい。 シリカは、 無水の シリカが好ましい。
これら親水性を有する硬質微粒子の存在下に、 原料黒鉛化物の表面 改質をすると、 得られる改質黒鉛化物はさらに親水性が向上する。
このような表面改質処理時には、 通常、 該微粒子を、 原料黒鉛化物 に対して 0 . 0 1〜 1 0質量%程度用いることができる。 また、 該微 粒子は、 予め原料黒鉛化物と ドライブレンドしたものを該表面改質処 理に供してもよいし、 原料黒鉛化物の該処理中に添加してもよい。 なお、 使用された該微粒子は、 好ましくは製品黒鉛化物に対し、 0 . 0 1〜 5質量%程度、 より好ましくは 0 . 0 1 ~ 0 . 5質量%程 度の量で埋設され、 一体化されていることが望ましい。
上記の該微粒子を共存させる該表面改質処理では、 親水性に加え、 表面が微細に粗面化された改質黒鉛化物が得られる。 黒鉛化物表面の 研磨効果が高くなるとともに、 該微粒子が原料黒鉛化物の表面近傍に 埋設されることも本発明の効果を高めると考えられる。
本発明では、 本発明の効果を損なわない範囲において、 公知の導電 性材料、 イオン伝導性材料、 界面活性剤、 高分子化合物などの各種添 加材を添加することができる。 この添加時期は、 該表面改質処理前、 処理中、 処理後のいずれでもよい。
<リチウムイオン二次電池用の負極材料 >
, 本願では、 上述の本発明の改質黒鉛化物を含有するリチウムイオン 二次電池用の負極材料も提供する。
通常、 リチウムイオン二次電池用の負極を作製するには、 まず炭素 材料と結合剤を溶媒 (溶媒および または分散媒を含む) 中で混合し てペース ト化する。 つぎに得られたペース ト (これを負極合剤ペース トと呼ぶ) を集電材に塗布した後、 溶媒を除去し、 プレスなどにより 固化および または賦形して負極を得る。 本願発明の負極材料とは、 この固化および Zまたは賦形工程までの材料の全てを意味する。 すな わち、 この負極材料に、 少なく とも上述の改質黒鉛化物が含有される ことを要件とする。 したがって、 本発明の改質黒鉛化物そのものも本 発明のリチウムイオン二次電池用の負極材料である。 また、 本発明の 改質黒鉛化物と結合剤を混合した負極合剤、 さらに溶媒を加えて得ら れる負極合剤ペースト、 さらにはこれを集電材に塗布したもの等も本 発明の負極材料の範囲である。
本発明では、 負極材料に上記本発明の改質黒鉛化物のいずれかを用 いれば、 水系の負極合剤ペース ト法を用いても、 リチウム二次電池の 急速充電効率は低下することがない。
優れた急速充電特性を発現するのは、 原料黒鉛化物が、 その表面の 親水化、 さらには粗面化などにより表面改質されたためと思われる。 そのため、 改質黒鉛化物は、 水系であっても結合剤と強固に密着し、 充放電を繰り返しても、 改質黒鉛化物、 水系結合剤およぴ集電体との 三者間が強固に接触できるようになったと思われる。 さらに結合剤が 改質黒鉛化物間に均一に薄膜化して介在できるようになり、 導電性、 イオン伝導性、 電解液浸透性などを阻害する要因が抑制されたと考え られる。
以下に本発明のリチウムイオン二次電池用の負極材料について、 さ らに詳細に説明する。
本発明の負極材料は、 本発明の改質黒鉛化物 (表面改質処理された メソフェーズ小球体の黒鉛化物) 以外の黒鉛 (以下、 「他の黒鉛」 と 称することもある) を添加して使用することもできる。
他の黒鉛を併用する場合には、 形状およびノまたは平均粒径が本発 明の改質黒鉛化物とは異なる他の黒鉛を組合わせると、 急速充電効率 が向上するので好ましい。
具体的に例示すれば、 球状の本発明の改質黒鉛化物と、 リン片状お よび/または繊維状の他の黒鉛との組合わせ、 リン片状の本発明の改 質黒鉛化物と、 球状および または繊維状の他の黒鉛との組合わせな どである。 また互いに球状同士である場合には、 たとえば平均粒径 3 0 μ m程度の本発明の改質黒鉛化物には、 平均粒径 1 0 μ m程度の他 の黒鉛を組合わせるなどである。
該他の黒鉛は特に限定されないが、 具体的には圧縮力と剪断力を同 時にかける処理がされていない従来のメソフェーズ小球体の黒鉛化物 (原料黒鉛化物) などが挙げられる。 さらには、 石炭系のタール、 ピ ツチを加熱して得られるメソフェーズ焼成炭素 (パルクメ ソフエー ズ) 、 コークス類 (生コ一クス、 グリーンコークス、 ピッチコーク ス、 ニードルコータス、 石油コークスなど) を最終的に 2 5 0 0。C以 上で熱処理して黒鉛化したものも例示できる。 あるいは石油系ター ル、 ピッチを熱処理して黒鉛化したものが挙げられる。 また該他の黒 鈴として、 人造黒鉛、 天然黒鉛なども例示することができる。 他の黒 鉛は、 上記例示した黒鉛質材料の組み合わせであってもよい。
上述した他の黒鉛のうち、 結晶性が本発明の改質黒鉛化物 (該表面 改質処理されたメソフェーズ小球体の黒鉛化物) の結晶性よりも低い 炭素材料で被覆されている黒鉛を用いるのが好ましい。
ここでいう低結晶性の被覆を有する黒鉛とは、 芯材が被覆材ょりも 相対的に高結晶性の黒鉛である。 被覆材である炭素材料 (以下、 被覆 材とも呼ぶ) は、 芯材の黒鉛 (以下、 芯材とも呼ぶ) よりも低結晶性 であり、 かつ改質黒鉛化物 (該表面改質処理されたメソフェーズ小球 体の黒鉛化物) よりも低結晶性の炭素質または黒鉛質の炭素材料であ る。 被覆材は、 芯材の粒子内部および Zまたは表面に存在すればよい 力 s、 被覆材の半分以上が、 芯材の表面に存在するのが好ましい。
被覆後の該黒鉛の X線回折においては、 芯材の結晶性と被覆材の結 晶性を個別に判断することはできない。 そこで被覆材の結晶性は、 該 被覆材を単独で熱処理して得たときの X線回折における平均格子面間 隔 d。。2で規定する。 すなわち、 該被覆材の好ましい平均格子面間隔 (1。。2は0 . 3 3 7 n m以上であり、 より好ましくは 0 . 3 4 0 n m 以上を示すものである。 ラマン分析における該強度比 ( I D/ I G) は、 一般に 0 . 1 5以上を示す。
前記被覆黒鉛の製造方法としては、 芯材に、 有機化合物を付着およ び Zまたは含浸させ、 これを 9 0 0で以上、 2 8 0 O 未満の温度で 最終高温処理して得ることができる。 特に好ましいのは、 1 1 5 0 °C 以上、 2 3 0 O ^C未満の温度で最終高温処理して得たものである。 最 終高温処理が 9 0 0 °C未満または 2 8 0 0 °C以上の場合には、 良好な 急速充電効率が得られない。
芯材は、 各種天然黒鉛、 人造黒鉛の中から選ぶことができるが、 り ん片状黒鉛、 塊状黒鉛、 球状黒鉛などが好ましい。 芯材は適度な空隙 を有するものが好ましい。 芯材の粒径は、 1 〜 3 0 μ mの範囲である のが好ましい。 芯材の比表面積は特に問わないが、 0 . 5 m2/g以上で あるのが好ましい。 芯材の結晶性は、 X線回折における平均格子面間 隔 d。。2力 S O . 3 3 7 n m未満を示すものである。
被覆材の原料としては、 熱処理によって炭素分が残留する有機化合 物を選定する。 充放電反応を阻害または電解液の分解を促進させるよ うな重金属、 軽金属元素をほとんど含まないものが好ましい。 特に、 熱硬化性樹脂、 熱可塑性樹脂、 石炭系あるいは石油系の重質油、 ター ル、 ピッチなどが好ましい。 特に、 炭素質微粒子 (石炭の微粉、 一次 QI (QIはキノ リン不溶分) 、 カーボンブラック、 炭素または黒鉛の微 粒子など) を含むものが好ましい。 これらの被覆材の原料をそのま ま、 または溶剤に溶解または分散してから芯材の黒鉛と混合したの ち、 熱処理することができる。
被覆材の芯材に対する混合割合は、 最終高温処理後の合計量に対し て、 被覆材が 0 . 5 〜 3 0質量%、 特に、 3 〜 2 0質量%が好まし レ、。 被覆材が過剰であると放電容量が低下する。 被覆材が過少である と初期充放電効率が低下する。
該他の黒鉛の添加量は、 他の黒鉛と本発明の改質黒鉛化物の形状や 平均粒径などによっても異なるが、 他の黒鉛と本発明の改質黒鉛化物 の合計量に対して、 0 . 5 〜 9 0質量%程度であるのがよい。 添加上 限を、 好ましくは 7 0質量%程度にすると、 急速充電効率をより優れ たものとすることができる。
たとえば本発明の改質黒鉛化物が平均粒径 2 0〜 3 0 mの場合に は、 該他の黒鉛として、 5 〜 4 0質量%のリン片状 (平面部の寸法: 3 〜 1 5 m ) の天然黒鉛およびノまたは人造黒鉛を用いる。
あるいは、 本発明の改質黒鉛化物が平均粒径 5 〜 1 5 mの場合に は、 該他の黒鉛として、 2 0 〜 7 0質量%の被覆黒鉛 (平均粒径 1 5 〜 3 0 /X mの低結晶性の被覆材を有する黒鉛) を用いる。
該改質黒鉛化物と該他の黒鉛の混合方法は、 特に限定されないが、 粉体のままドライで各種混合機を用いるのが一般的である。
さらに本発明の目的を損なわない範囲であれば、 他の炭素材料 (非 晶質ハードカーボンなどを含む) 、 有機物、 金属化合物との混合物、 造粒物、 被覆物、 積層物であってもよい。 また液相、 気相、 固相にお ける各種化学的処理、 熱処理、 酸化処理などを施したものであっても よい。
なお、 本発明で、 負極合剤ペース トに用いる結合剤としては、 電解 質に対して化学的安定性、 電気化学的安定性を有する有機パインダー を用いるのが望ましい。 例えばポリフッ化ビニリデン、 ポリテトラフ ルォロエチレンなどのフッ素系樹脂、 ポリエチレン、 ポリビニルアル コーノレ、 力ノレボキシメチ/レセ ロース、 スチレンブタジエンラバ一な どが用いられる。 これらを併用することもできる。
上記のうちでも、 本発明の目的を達成し、 効果を最大限に活かす上 で、 カルボキシメチルセルロース (水溶性) 、 ポリ ビニルアルコール (水溶性) 、 スチレンブタジエンラバー (水分散性) などの結合剤を 用いることが特に好ましい。
結合剤は、 通常、 負極合剤全量中 0 . 5 〜 2 0質量%程度の量で用 いるのが好ましい。
つぎに、 負極の作製方法にも言及し、 負極材料についてさらに説明 する。 例えば、 本発明の改質黒鉛化物を分級等によって適当な粒径に 調整し、 結合剤と混合することによって負極合剤を調製する。 この負 極合剤を、 溶媒中に分散させ、 ペース ト状とした後、 通常、 集電体の 片面もしくは両面に塗布する。 ついで、 これを乾燥すれば、 負極合剤 層が均一かつ強固に集電体に接着され、 負極合剤層を形成することが できる。
より具体的には、 本発明の改質黒鉛化物のいずれかと、 例えば、 力 ルボキシメチルセルロース、 スチレンブタジエンラパー等を結合剤と して用い、 水、 アルコール等の溶媒と混合してスラリーとした後、 塗 布することができる。 あるいはポリテトラフルォロエチレン、 ポリフ ッ化ビ二リデン等のフッ素系樹脂粉末を、 ィソプロピルアルコール、
N—メチルピロリ ドン、 ジメチルホルムアミ ド等の溶媒と混合してス ラリーとした後、 塗布することができる。
なかでも、 溶媒の乾燥除去における安全面、 環境面への影響を配慮 し、 水あるいは含水アルコール等を溶媒として、 カルボキシメチルセ ルロース、 スチレンブタジエンラバ一等の結合剤を溶解およびノまた は分散させてなる水系の負極合剤ペース トを用いることが望ましい。 ペース トは、 公知の撹拌機、 混合機、 混練機、 ニーダ一等を用いて 撹拌することにより調製することができる。
本発明では、 負極合剤ペース トを集電体に塗布する際の塗布厚は 1 0〜 2 0 0 mとするのが適当である。
なお、 本発明の改質黒鉛化物は、 ポリエチレン、 ポリビュルアルコ ールなどの樹脂粉末とを乾式混合し、 金型内でホッ トプレス成型して 負極とすることもできる。 この場合、 リチウムイオン二次電池に溶媒 依存性が無くなるのは当然である。 リチウムイオン二次電池の放電容 量や急速充放電効率は、 結合剤が過多の場合は低下することがある。 乾式混合では、 十分な負極の強度を得るために多くの結合剤を必要と するので、 前述の湿式 (溶媒に結合剤を分散させる方法) の方が好ま しい。
負極合剤層を形成した後、 プレス加圧等の圧着を行うと、 負極合剤 層と集電体との接着強度をさらに高めることができる。
負極に用いる集電体の形状としては、 特に限定されない。 箔状、 あ るいはメッシュ、 エキスパンドメタル等の網状のもの等が用いられ る。 集電材としては、 例えば銅、 ステンレス、 ニッケル等を挙げるこ とができる。 集電体の厚みは、 箔状の場合、 5〜2 0 μ πι程度が好適 である。 くリチウムイオン二次電池用の負極〉
本願では、 本発明の負極材料からなるリチウムイオン二次電池用の 負極の発明も提供する。
本発明の負極は、 上述の本発明の負極材料を固化おょぴ Ζまたは賦 形して得られる。 該負極の形成は、 通常の成形方法に準じて行うこと ができるが、 黒鉛化物の性能を充分に引き出し、 かつ粉末に対する賦 形性が高く、 化学的、 電気化学的に安定な負極を得ることができる方 法であれば何ら制限されない。
本発明の改質黒鉛化物は、 特に上記したリチウムイオン二次電池の 負極用材料および負極として好適であるが、 その特徴を活かして負極 材料以外の用途に転用することもできる。 本発明では、 さらにこの負 極を用いたリチウムイオン二次電池が提供される。
<リチウムイオン二次電池 >
リチウムイオン二次電池は、 通常、 負極、 正極および非水系の電解 質を主たる電池構成要素とする。 正極および負極はそれぞれリチウム イオンの担持体となる。 充電時にはリチウムイオンが負極中にドープ され、 放電時には負極から脱ドープする電池機構である。
本発明のリチウムイオン二次電池は、 本発明の改質黒鉛化物を含有 する負極材料から得られた負極を用いること以外は特に限定されな レ、。 他の構成要素については一般的なリチウムイオン二次電池の要素 に準じる。 正極の材料 (正極活物質) としては、 充分量のリチウムをドープノ 脱ドープし得るものを選択するのが好ましい。 そのような正極活物質 としては、 リチウムと遷移金属の複合カルコゲン化物、 なかでもリチ ゥムと遷移金属の複合酸化物が例示される。
リチウムと遷移金属との複合酸化物 (リチウム含有遷移金属酸化物 とも呼ぶ) は、 リチウムと 2種類以上の遷移金属を固溶したものであ つてもよレヽ。 具体的には、 L i M d ) — x M ( 2 ) x 02 (式中 X は 0≤X≤ 1の範囲の数値であり、 M ( 1 ) 、 M (2) は少なく とも 一種の遷移金属元素からなる。 ) あるいは L i M ( 1) 2— γ M (2) 04 (式中 Yは 0≤ Y≤ 1の範囲の数値であり、 Μ ( 1 ) 、 Μ (2) は少なく とも一種の遷移金属元素からなる。 ) で示される。 上記において、 Μで示される遷移金属元素としては、 C o、 N i、 Mn、 C r、 T i、 V、 F e、 Z n、 A l、 I n、 S nなどが挙げら れ。
より具体的に、 L i C o〇2 や i x N i v Mx-v O2(Mは N i を 除く上記遷移金属元素、 好ましくは C o、 F e、 Mn、 T i、 C r、 V、 A 1 から選ばれる少なく とも一種、 0. 0 5≤ x≤ l . 1 0、 0. 5≤ Y≤ 1. 0である。 ) で示されるリチウムとの複合酸化物が 挙げられる。
上記のようなリチウム含有遷移金属酸化物は、 たとえば、 L i、 遷 移金属の酸化物または塩類を出発原料とし、 これら出発原料を組成に 応じて混合し、 酸素存在雰囲気下 6 00^〜 1 000°Cの温度範囲で 焼成することにより得ることができる。 なお出発原料は酸化物または 塩類に限定されず、 水酸化物等からも合成可能である。
本発明では、 正極活物質は、 上記化合物を単独で使用しても 2種類 以上併用してもよい。 たとえば正極中には、 炭酸リチウム等の炭酸塩 を添加することもできる。 このような正極材料によって正極を形成する。 例えば正極材料と結 合剤および電極に導電性を付与するための導電剤よりなる正極合剤を 集電体の両面に塗布することで正極合剤層を形成する。 結合剤として は、 負極で例示したものがいずれも使用可能である。 導電剤としては 例えば黒鉛化物が用いられる。
集電体の形状は特に限定されず、 箔状、 あるいはメッシュ、 エキス パンドメタル等の網状等のものが用いられる。 たとえば集電体の材料 としては、 アルミニウム、 ステンレス、 ニッケル等を挙げることがで きる。 その厚さとしては、 1 0〜 40 / mのものが好適である。
また正極の場合も負極と同様に、 正極合剤を溶剤中に分散させるこ とでペース ト状にし、 このペース ト状の正極合剤を集電体に塗布、 乾 燥することによって正極合剤層を形成しても好い。 正極合剤層を形成 した後、 さらにプレス加圧等の圧着を行っても構わない。 これにより 正極合剤層が均一且つ強固に集電体に接着される。
以上のような正極を形成するに際しては、 従来公知の導電剤や結合 剤などの各種添加剤を適宜に使用することができる。
本発明に用いられる電解質としては、 溶媒と電解質塩からなる有機 系電解質や、 高分子と電解質塩からなるポリマー電解質などを用いる ことができる。 電解質塩としては、 たとえば L i P F6 、 L i B F4
、 L i A s F6 、 L i C 1 04 、 L i B (C6 H5 ) 、 L i C l、 L i B r、 L i C F3 S〇3 、 L i C H3 S O3 、 L i N (C F3 S 02 ) 2 、 L i C (C F3 S Oa ) 3 、 L i N (C F3 CH2 O S 02
) 2 、 L i N (C F3 C F2 0 S 02 ) 2 、 L i N (HC F2 C F2 CH2 0 S 02 ) 2 、 L i N ( (C F3 ) 2 CHO S 02 ) 2 、 L i B [Ce H3 (C F 、 L i A 1 C 14 L i S i F6 など を用いることができる。 特に、 L i P F6 、 L i B F4 が酸化安定性 の点から好ましく用いられる。 有機系電解質中の電解質塩濃度は、 0 . 1〜 5モル/リ ッ トルが好 ましく、 0 . 5〜3 . 0モル Zリ ッ トルがより好ましい。
有機系電解質の溶媒としては、 エチレンカーボネート、 プロ ピレン カーボネート、 ジメチルカーボネート、 ジェチルカーボネート、 1, 1—または 1, 2 —ジメ トキシエタン、 1, 2 —ジェトキシェタン、 テトラヒ ドロフラン、 2—メチルテトラヒ ドロフラン、 γ—ブチロラ ク トン、 1 , 3—ジォキソラン、 4 —メチル _ 1 , 3 —ジォキソラ ン、 ァュソ一ノレ、 ジェチ /レエ一テノレ、 スノレホラン、 メチルスノレホラ ン、 ァセ トニ ト リル、 クロロュ ト リル、 プロピオ二 ト リル、 ホウ酸ト リメチル、 ケィ酸テ トラメチル、 ニトロメタン、 ジメチルホルムアミ ド、 Ν—メチルピロリ ドン、 酢酸ェチル、 トリメチルオルトホルメー ト、 ニトロベンゼン、 塩化べンゾィル、 臭化べンゾィル、 テトラヒ ド ロチォフェン、 ジメチルスルホキシド、 3 —メチルー 2—ォキサゾリ ドン、 エチレンダリ コール、 ジメチルサルフアイ ト等の非プロ トン性 有機溶媒を用いることができる。
非水電解質をポリマー電解質とする場合には、 可塑剤 (非水電解 液) でゲル化されたマ ト リ クス高分子を含むが、 このマ ト リ クス高分 子としては、 ポリエチレンォキサイ ドやその架橋体等のエーテル系高 分子、 ポリメタクリ レート系、 ポリアク リ レート系、 ポリ ビニリデン フルオラィ ドゃビ二リデンフルオラィ ドーへキサフルォロプロピレン 共重合体等のフッ素系高分子等を単独、 もしくは混合して用いること ができる。
これらの中で、 酸化還元安定性の観点等から、 ポリ ビニリデンフル ォライ ドゃビ二リデンフルオラィ ドーへキサフルォロプロピレン共重 合体等のフッ素系高分子を用いることが望ましい。
ポリマー電解質に含有される可塑剤を構成する電解質塩や溶媒とし ては、 前述のものがいずれも使用可能である。 可塑剤である電解液中 の電解質塩濃度は、 0 . 1〜 5モルノリッ トルが好ましく、 0 . 5 ~ 2 . 0モル/リ ッ トルがより好ましレヽ。
このよ うなポリマー電解質の作製方法としては特に制限はないが、 例えば、 マ ト リ ックスを形成する高分子化合物、 リチウム塩おょぴ溶 媒を混合し、 加熱して溶融する方法が挙げられる。 さらには、 適当な 混合用の有機溶剤に高分子化合物、 リチウム塩および溶媒を溶解させ た後、 混合用の有機溶剤を蒸発させる方法。 並びにモノマー、 リチウ ム塩および溶媒を混合し、 それに紫外線、 電子線または分子線などを 照射してポリマーを形成させる方法等を挙げることができる。
また、 ポリマー電解質中の溶媒の添加割合は、 1 0〜9 0質量%が 好ましく、 さらに好ましくは、 3 0〜8 0質量%でぁる。 上記 1 0〜 9 0質量%であると、 導電率が高く、 かつ機械的強度が高く、 フィル ム化しゃすい。
本発明のリチウムイオン二次電池においては、 セパレーターを使用 することもできる。
セパレーターとしては、 特に限定されるものではない。 例えば織 布、 不織布、 合成樹脂製微多孔膜等が挙げられる。 特に合成樹脂製微 多孔膜が好適に用いられる。 その中でもポリオレフィン系微多孔膜 力 厚さ、 膜強度、 膜抵抗の面で好適である。 具体的には、 ポリェチ レンおよびポリプロピレン製微多孔膜、 またはこれらを複合した微多 孔膜等である。.
本発明のリチウムイオン二次電池においては、 初期充放電効率が高 いことから、 ポリマー電解質を用いることも可能である。
ポリマー電解質を用いたリチウムイオン二次電池は、 一般にポリマ 一電池と呼ばれる。 本発明の改質黒鉛化物を含有する負極と、 正極お よびポリマ一電解質から構成することができる。 例えば負極、 ポリマ 一電解質、 正極の順で積層し、 電池外装材内に収容することで構成さ れる。 なお、 これに加えてさらに負極と正極の外側にポリマー電解質 を配するようにしても良い。 本発明の改質黒鉛化物を負極材料に用い るポリマ一電池では、 ポリマー電解質にプロピレンカーボネートを含 有させることができる。 一般にプロピレンカーボネートは黒鉛に対し て電気的分解反応が激しいが、 本発明の改質黒鉛化物に対しては分解 反応性が低い。
さらに、 本発明に係るリチウムイオン二次電池の構造は任意であ り、 その形状、 形態について特に限定されるものではない。 円筒型、 角型、 コイン型、 ボタン型等の中から任意に選択することができる。 より安全性の高い密閉型非水電解液電池を得るためには、 過充電等の 異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたもの であることが望ましい。 ポリマー電解質を用いたポリマー電池の場合 には、 ラミネートフイルムに封入した構造とすることもできる。 実施例
次に本発明を実施例により具体的に説明するが、 本発明はこれら実 施例に限定されるものではない。 また以下の実施例および比較例で は、 黒鉛化物を、 図 1に示すような構成の評価用のボタン型二次電池 を作製して評価した。 しかし、 実電池は、 本発明の概念に基づき、 公 知の方法に準じて作製することができる。 該評価用電池においては、 作用極を負極、 対極を正極と表現した。 なお以下の実施例および比較例において、 粒子の物性は以下により 測定した。
平均粒径はレーザー回折式粒度分布計により測定した。
平均格子面間隔は X線回折により求めた。
比表面積は窒素ガス吸着による B E T比表面積である。 硬さは以下に方法で測定した。 黒鉛化物を円筒状容器 (内径 2 0 m m) に 5 g充填し、 2 0 0回タッピングした。 その後、 円筒状容器の 内径を有する鋼鉄製丸棒を試料充填面上部から押込み、 定速で圧縮試 験を行い、 検出荷重の変曲点 (粒子の破壊に基づき、 検出荷重が低下 した点) における荷重を相対値で表した。 すなわち後述する実施例 1 で用いた黒鉛化物の変曲点荷重を 1 とし、 各黒鉛化物および硬質微粒 子の変曲点荷重の相対値を示した。
黒鉛化物のラマン分析は、 日本分光社製 N R— 1 8 0 0により、 波 長 5 1 4. 5 n mのァノレゴンレーザー光を用いて行った。 実施例 1
( 1 ) 負極材料の調製
コールタールピッチを熱処理してなるメソフェーズ小球体 (川崎製 鉄 (株) 製、 平均粒径: 2 5 // m) を 3 0 0 0 :で黒鉛化し、 メ ソフ エーズ小球体の黒鉛化物 (原料黒鉛化物) を得た。 この黒鉛化物は球 状を呈しており、 平均格子面間隔 d。。2 が 0. 3 3 6 2 n m、 真比重 が 2. 2 2 8 (密度 2. 2 2 8 g c m3 ) であった。 また比表面積 は 0. 4 5 m2 ノ gであった。 硬さの相対値は 1である。
次いで、 この黒鉛化物に、 図 2に示すような概略構造の処理装置 ( (株) 奈良機械製作所製:ハイブリダィゼーシヨ ンシステム) を用 いて、 以下の条件で圧縮力と剪断力を同時にかける処理を加えた。 すなわち回転ローターの周速 4 0 m /秒で処理時間 6分の条件下で 処理することにより、 該装置内に投入された黒鉛化物を分散しながら 圧縮力と剪断力を同時に繰返し付与した。
上記圧縮力と剪断力を同時にかける処理後の黒鉛化物は球状を呈し ており、 平均粒子径は 24 μ πιであった。 ラマン分析による該強度比 ( I D Z I c 比) は、 0. 4 7であった。 該平均格子面間隔 d。。2 は そのまま 0. 3 3 6 2 nmが維持されていた。
(2) 負極合剤ペース トの調製
上記で得られた圧縮力と剪断力を同時にかける処理後の黒鉛化物 (改質黒鉛化物) を用いて、 水系溶媒および有機系溶媒の負極合剤べ ース トをそれぞれ調製した。
<水系の負極合剤ペーストの調製 >
改質黒鉛化物 9 7質量%と、 結合剤としてカルボキシメチルセル口 ース 1質量%、 スチレンブタジエンラバ一 2質量%とを水を溶媒とし て混合し、 ホモミキサーを用いて 5 00 r p mで 5分間攪拌し、 水系 の負極合剤ペーストを調製した。
<有機系の負極合剤ペーストの調製 >
改質黒鉛化物 9 0質量%と、 結合剤としてポリフツイヒビニリデン 1 0質量%とを、 N—メチルピロリ ドンを溶媒として混合し、 ホモミキ サーを用いて 5 0 0 r p mで 5分間攪拌し、 有機系の負極合剤ペース トを調製した。
(3) 負極の作製
上記負極合剤ペース トを、 銅箔 (集電材) 上に均一な厚さで塗布 し、 さらに真空中で 9 0°Cで溶剤を揮発させて乾燥した。 次に、 この 銅箔上に塗布された負極合剤をローラープレスによって加圧した。 そ の後、 直径 1 5. 5 mmの円形状に打ち抜く ことで、 集電体 7bに密 着した負極合剤層からなる負極 2を作製した。
(4) 正極の作製
リチウム金属箔を、 二ッケルネッ トに押付け、 直径 1 5. 5 mmの 円形状に一体化して打ち抜いて、 ニッケルネットの集電体 7 aに密着 したリチウム金属箔からなる正極 4を作製した。
(5) 電解質
エチレンカーボネート 3 3 mol%、 メチルェチルカーボネート 6 7 mol%の割合で混合した溶媒に、 L i P Fe を 1 molZd m3 の濃度 になるように溶解させ、 非水電解液を調製した。 得られた非水電解液 をポリプロピレン多孔質体に含浸させたセパレータ 5を作製した。
(6) 評価電池の作製
評価電池として図 1の構造を有するボタン型二次電池を作製した。 まず、 集電体 7 bに密着した負極 2と集電体 7 aに密着した正極 4 との間に、 電解質溶液を含浸させたセパレータ 5を挟んで積層する。 その後、 負極集電体 7b側が外装カップ 1内に、 正極集電体 7a側が外 装缶 3内に収容されるように、 外装力ップ 1 と外装缶 3とを合わせ る。 その際、 外装カップ 1と外装缶 3との周縁部に絶縁ガスケット 6 を介在させ、 両周縁部をかしめて密閉した。
以上のようにして作製された評価電池について、 2 5 °Cの温度下で 下記のような充放電試験を行った。
(7) 充放電試験
ぐ初期放電効率 >
回路電圧が 0 mVに達するまで 0. 9 mAの定電流充電を行う。 つ ぎに、 定電圧充電に切り替え、 さらに電流値が 20 / Aになるまで充 電を続ける。 その後、 1 20分休止した。
次に 0. 9mAの電流値で、 回路電圧が 1. 5 Vに達するまで定電 流放電を行った。 このとき第 1サイクルにおける通電量から充電容量 と放電容量を求め、 次式から初期充放電効率を計算した。
初期充放電効率 (%) = (放電容量ノ充電容量) X 1 00 なおこの試験では、 リチウムイオンを黒鉛化物中にドープする過程 を充電、 黒鉛化物から脱ド一プする過程を放電とした。
<急速充電効率〉
上記に引き続き、 第 2サイクルにて高速充電を行なった。
電流値を 5倍の 4. 5 mAとして、 回路電圧が 0 mVに達するまで 定電流充電を行う。 得られた充電容量から、 次式を用いて急速充電効 率を計算した。
(第 2サイクルにおける定電流充電容量) 急速充電効率 (%) = X 100
(第 1サイクルにおける放電容量)
(8) 負極材料の親水性評価
得られた負極材料の親水性を次のように評価した。 本発明の改質黒 鉛化物 1 5 gを、 底部が金網およびろ紙からなる円筒容器に充填し、 1 6 0回タッピングした。 その後、 該容器の底部を水面に接触させ、 水の浸透量の経時変化を測定した。
上記で測定された改質黒鉛化物 1 g当たりの放電容量 (mAhZ g) と初期充放電効率 (%) 、 急速充電効率 (%) の値を表 1に示 す。 また親水性の評価結果を図 4に示す。 実施例 2
実施例 1の(1 ) 工程を、 以下のような無水シリカの共存下で行 レ、、 負極材料を調製した。 それ以外の条件は、 実施例 1と同様に行つ た。
すなわち実施例 1の(1 ) 工程において、 原料黒鉛化物 1 0 0質量 部と、 無水シリカ (日本ァエロジル (株) 製 AER0SIL 300、 平均粒 子径 7 nm、 硬さ相対値 4. 2) を 0. 2質量部とを混合して処理装 置に投入し、 処理時間を 2分間とした以外は、 実施例 1と同様にして 圧縮力と剪断力を同時にかける処理を加えた。
該表面改質処理後の黒鉛化物は球状を呈しており、 平均粒子径は 2 3 mであった。 ラマン分析における該強度比 ( 1。 / 1。 比) は、 0 . 5 7であった。 X線回折における該平均格子面間隔 d。0 2は 0. 33 62nmであった。
この負極材料について、 実施例 1 と同様に評価した。 電池特性を表 1に、 負極材料の親水性を図 4に示す。 実施例 3
実施例 1において、 (1 ) 負極材料調製の際、 圧縮力と剪断力を同 時にかける処理を行う装置を、 図 3 (a) 〜(b)に示すような概略構造 の処理装置 (ホソカワミクロン (株) 製メカノフュージョンシステ ム) に代え、 以下の条件で表面改質処理を行った以外は、 実施例 1 と 同様に行った。
すなわち、 黒鉛化物を、 回転ドラムと内部部材との距離 5 m m、 回 転ドラムの周速 2 O mZ秒および処理時間 6 0分間で、 圧縮力と剪断 力を同時に繰返してかける処理をした。 該表面改質処理後の黒鉛化物 は球状を呈しており、 平均粒子径は 2 5 μ mであった。
ラマン分析における該強度比 ( I D Z I。 比) は、 0 . 4 5であつ た。 X線回折における該平均格子面間隔 d。。 2は 0. 3362nraであった。 次いで負極合剤ペース ト、 負極、 リチウムイオン二次電池を作製し た。
この負極材料について、 実施例 1 と同様に評価した。 電池特性を表 1に、 負極材料の親水性を図 4に示す。 実施例 4
実施例 3と同じ原料黒鉛化物 1 0 0質量部に、 酸化チタン (日本ァ エロジル (株) 製 P 2 5、 平均粒子径 2 1 n m、 硬さ相対値 4 . 6 ) を 0 . 5質量部共存させ、 処理時間 1 0分で実施例 3と同じ表面改質 処理を行った。 該表面改質処理後の黒鉛化物は球状を呈しており、 平 均粒子径は 2 4 mであった。
ラマン分析における該強度比 ( Ι。 Ζ Ι。 比) は、 0 . 6 3であつ た。 X線回折における該平均格子面間隔 d。。2は 0. 3362nmであった。 次いで負極合剤ペース ト、 負極、 リチウムイオン二次電池を作製し た。
この負極材料について、 実施例 1 と同様に評価した。 電池特性を表 1に、 負極材料の親水性を図 4に示す。
表 1の実施例 1〜4に示されるように、 負極に本発明の負極材料を 用いたリチウムイオン二次電池は、 有機系の負極合剤ペーストを用い た場合だけでなく、 水系の負極合剤ペース トを用いても、 大きい放電 容量と高い初期充放電効率が維持されるとともに、 高い急速充電効率 を有することが確認された。
また図 4 (実施例 1〜 4 ) に示されるように、 本発明の負極材料 は、 圧縮力と剪断力を同時にかける処理によって、 水の浸透量が大き く増加した。 さらに、 該処理を硬質の微粒子の共存下で行うことによ り、 水の浸透量がさらに増加している。 なお、 比較のために、 原料黒 鉛化物を粉砕し、 本発明の改質黒鉛化物の比表面積と同じものを作成 した。 これに同様の吸水テス トを行ったが、 水の浸透量の増加は認め られなかった。 このことから、 本発明の負極材料は、 高度に親水化さ れていると考察した。 比較例 1
実施例 1の原料黒鉛化物 (ラマン分析値 I。 I。 比 = 0 . 2 0 ) を、 該表面改質処理することなく、 実施例 1の改質黒鉛化物に代えて 用いた。 それ以外は、 実施例 1 と同様にして負極合剤を調製し、 負極 およびリチウムイオン二次電池を作製した。 この原料黒鉛化物の親水 性を図 4に示す。 電池特性の結果を表 1に示す。 図 4に示されるように、 負極材料はほとんど親水性を示さない。 また表 1に示されるように、 圧縮力と剪断力を同時にかける処理を 施さないメソフェーズ小球体の黒鉛化物 (原料黒鉛化物) を負極材料 として用いたリチウムイオン二次電池では、 有機系負極合剤ペースト を用いた場合には、 実施例 1 と同等に大きい放電容量、 高い初期充放 電効率と高い急速充電効率を示すものの、 水系負極合剤ペース トを用 いた場合には、 急速充電効率が低下してしまうことがわかる。 比較例 2
実施例 2における原料黒鉛化物と無水シリカを、 ヘンシェルミキサ 一 (三井鉱山 (株) 製) を用い、 攪拌回転数 7 0 0 r p mで 3 0分間 混合した。 得られた混合物を用い、 実施例 2と同様にして負極材料を 調製した。 なお、 この混合処理では、 圧縮力と剪断力を同時にかける ことはできない。
撹拌混合後、 該混合物のラマン分析における該強度比 ( 1。 1。 比) は、 0 . 2 1であった。 X線回折における該平均格子面間隔 d。 0 2は 0. 3362nmであった。 なお、 風力分級機によってシリカと黒鉛化 物を分離し、 黒鉛化物単体のラマン分析における該強度比 ( I D / I o 比) および X線回折における該平均格子面間隔 d。。2を測定した結 果、 無水シリカを含む混合物と同一の分析値であった。
上記で得られた黒鉛化物と無水シリカの混合物を用いた以外は、 実 施例 1 と同様にして負極合剤ペーストを調製し、 さらに負極およびリ チウムイオン二次電池を作製した。 電池特性を表 1に示す。
表 1に示されるように、 無水シリカ共存下で混合しても、 圧縮力と 剪断力を同時にかける処理を施してない黒鉛化物を負極材料として用 いたリチウムイオン二次電池は、 水系負極合剤ペーストを用いた場合 は、 急速充電効率が低いことがわかる。 実施例 5
実施例 4の原料黒鉛化物に代えて、 メソフェーズ小球体を予め粉砕 してから 3 0 0 O で黒鉛化して得られたメソフェーズ小球体粉砕物 の黒鉛化物 (平均粒子径 1 7 / m) を用いた。 それ以外の条件は、 実 施例 4と同様にして圧縮力と剪断力を同時にかける処理も行った。 該表面改質処理前のメソフェーズ小球体粉砕物の黒鉛化物は、 球状 と不定形が混在した形状であった。 平均格子面間隔 d。。2 が 0. 3 3 6 2 nm、 真比重が 2. 2 2 8、 比表面積が 0. 9 5 m2 / gであつ た。 硬さの相対値は 0. 9であった。
該表面改質処理後の黒鉛化物は、 やはり球状と不定形が混在した形 状であり、 平均粒子径は 1 7 mと変化しなかった。 しかし、 比表面 積は 3. 4 5 m2 /g , ラマン分析における該強度比 ( 1。 Z l c ) は、 0. 7 5であった。 X線回折における該平均格子面間隔 d。。2は 0.3362nmであった。
実施例 4と同様にして負極合剤ペース トを調製し、 さらに負極およ ぴリチウムイオン二次電池を作製した。 実施例 4と同様に評価した電 池特性を表 1に示す。 比較例 3
実施例 5において、 圧縮力と剪断力を同時にかける処理を行わなか つた以外は、 実施例 5と同様にして負極材料を調製し、 さらに負極お よびリチウムイオン二次電池を作製した。 実施例 5と同様に評価した 電池特性を表 1に示す。
表 1に示されるように、 ラマン分析における該強度比 ( 1。 / I G ) の低い比較例 3の黒鉛化物を負極に用いたリチウムイオン二次電 池では、 水系負極合剤ペーストを用いた場合には、 急速充電効率が低 い。 これに対し、 圧縮力と剪断力を同時にかける処理によってラマン 分析における該強度比 ( I D Z I c ) を高めた実施例 5では、 水系負 極合剤ペーストを用いた場合でも急速充電効率が各段に向上した。 ま た、 初期充放電効率も改善されている。 なお、 有機系負極合剤ペース トを用いた場合にも、 急速充電効率および初期充放電効率のさらなる 改善効果が認められる。 実施例 6〜 1 1
実施例 1〜 4のいずれかの方法で製造した改質黒鉛化物と、 表 2に 示す該他の黒鉛化物との混合物をリチウムイオン二次電池の負極に用 いた。 実施例 1と同様にして負極合剤ペーストを調製し、 さらに負極 およびリチウムイオン二次電池を作製した。 実施例 1 と同様の評価を 行なった。 結果を表 2に示す。 比較例 4
実施例 1の原料黒鉛化物と、 天然黒鉛 (エスィーシ一社製 S N O— 1 0 ) との混合物を、 リチウムイオン二次電池の負極材料に用いた。 実施例 1 と同様にして負極合剤ペーストを調製し、 さらに負極および リチウムイオン二次電池を作製した。 実施例 1 と同様の評価を行なつ た。 結果を表 2に示す。 以下に、 結晶性が本発明の改質黒鉛化物の結晶性より低い炭素材料 で被覆されている黒鉛を、 該改質黒鉛化物と共に含有した負極材料に ついて具体的に例示する。
実施例 12
( 1 ) 結晶性が本発明の改質黒鉛化物の結晶性より低い炭素材料で 被覆されている黒鉛の調製 オートクレーブに芯材として天然黒鉛 (中越黒鉛 (株) 製 BF 1 0 A、 平均粒径 10 /z m、 平均格子面間隔 d002が 0. 3356nm、 ラマン分析に おける該強度比 ( I D Z I C 比) が 0. 09) を 100質量部入れ、 さらに 芯材を被覆する炭素材料の原料として、 コールタールピッチ 20質量部 をタール中油 100質量部に溶解させた溶液を入れ、 攪拌下に 140°Cに加 熱した。 加熱を継続した後、 減圧蒸留によってタール中油を除去し、 ピッチが表面および/または内部に付着おょぴ または含浸した黒鉛 を得た。 ついで、 これをステンレス製るつぼに入れ、 焼成炉にて不活 性ガス流通下、 500でで焼成した。 その後、 ア トマイザ一で粉砕し た。 さらに、 これを 1300°Cで焼成し、 結晶性が本発明の改質黒鉛化物 の結晶性より低い炭素材料で被覆されている黒鉛 (以下、 「被覆黒 鉛」 とも呼ぶ) を得た。
黒鉛を被覆している炭素材料は、 ピッチを最終的に 1300°Cで熱処理 したものであり、 結晶性が本発明の改質黒鉛化物よりも低い。 これを 確かめるために、 コールタールピツチのみを単独でステンレス製るつ ぼに入れ、 焼成炉にて不活性ガス流通下、 500¾:で焼成した。 その 後、 アトマイザ一で粉砕した。 さらに、 これを 1300 で焼成して、 炭 素材料を得た。 この炭素材料の結晶性を分析した結果、 X線回折にお ける該平均格子面間隔 d。。2は 0. 343nmであった。 このように黒鉛を 被覆している炭素材料単体の結晶性は、 本発明の改質黒鉛化物の結晶 性より低いことが判る。 また、 この炭素材料の被覆率は、 全体の 8質 量%に相当した。 該被覆黒鉛のラマン分析における該強度比 ( 1。 ノ I e 比) は 0. 28、 平均粒径は 13 / mであった。
( 2 ) 負極材料および負極合剤ペース トの調製
上記で得られた被覆黒鉛と、 実施例 1の方法で製造した改質黒鉛化 物を、 該改質黒鉛化物 : 該被覆黒鉛 = 6 0 : 4 0の質量割合で混合 し、 実施例 1 と同様にして水系溶媒および有機系溶媒の負極合剤べ一 ス トをそれぞれ調製した。
この負極材料を用いて、 実施例 1 と同様にして負極およびリチウム イオン二次電池を作製した。 得られたリチウムイオン二次電池の特性 についても実施例 1 と同様の評価を行った。 なお、 新たに下記の急速 放電効率も測定した。 結果を表 3にまとめて示す。
<急速放電効率 >
初期充放電に引き続き、 第 2サイクルにて高速放電を行なった。 初 回と同様にして充電したのち、 電流値を 2 0倍の 1 8 m Aとして、 回 路電圧が 1 . 5 Vに達するまで定電流放電を行った。 得られた放電容 量から、 次式を用いて急速放電効率を計算した。
(第 2サイクルにおける放電容量)
急速放電効率 (%) = X 1 0 0
(第 1サイクルにおける放電容量) 実施例 13
実施例 1で用いた平均粒径 25 / mのメソフェーズ小球体 (川崎製鉄 ㈱製) を、 アトマイザ一を用いて平均粒径 14 z mに粉砕したのち、 3 0 0 0 °Cで黒鉛化して原料黒鉛化物を得た。 これに、 実施例 1 と同じ 条件で圧縮力と剪断力を同時にかける処理を行い、 改質黒鉛化物を得 た。 得られた改質黒鉛化物は、 平均粒径が 13 /z m、 ラマン分析におけ る該強度比 ( 1。 ノ 1。 比) が 0. 83であった。 該改質黒鉛化物を、 実 施例 1 2の負極材料に用いた改質黒鉛化物に代えて用いた。 他の条件 は実施例 12と同様にして、 負極材料、 負極合剤ペース ト、 負極および リチウムイオン二次電池を作製した。 得られたリチウムイオン二次電 池の特性について、 実施例 1 2と同様の評価を行った。 結果を表 3に 示す。 比較例 5
実施例 1で用いた原料黒鉛化物を、 実施例 1 2の負極材料に用いた 改質黒鉛化物に代えて用いた。 他の条件は実施例 12と同様にして、 負 極材料、 負極合剤ペースト、 負極およびリチウムイオン二次電池を作 製した。 得られたリチウムイオン二次電池の特性について実施例 1 2 と同様の評価を行った。 結果を表 3に示す。
表 3の比較例 5に示されるように、 本発明の負極材料 (改質黒鉛化 物) に代えて、 改質していない原料黒鉛と、 被覆黒鉛を用いたリチウ ムイオン二次電池は、 有機系の負極合剤ペーストを用いた場合には優 れた特性を有するのに対して、 水系の負極合剤ペーストを用いると、 放電容量、 急速充電効率および急速放電効率が低下する。 比較例 6
実施例 12において、 該改質黒鉛化物を使用せず、 該被覆黒鉛を単独で 使用した。 他の条件は実施例 12と同様にして、 負極材料、 負極合剤べ 一スト、 負極およびリチウムイオン二次電池を作製した。 得られたリ チウムイオン二次電池の特性について実施例 1 2と同様の評価を行つ た。 結果を表 3に示す。
表 3の比較例 6に示されるように、 本発明の負極材料 (改質黒鉛化 物) を用いずに、 被覆黒鉛を単独で用いたリチウムイオン二次電池 は、 水系の負極合剤ペーストを用いた場合に、 高い放電容量と高い初 期充放電効率を有するものの、 急速充電効率および急速放電効率が低 い。 この原因は、 該被覆黒鉛が芯材として鱗片状の天然黒鉛を使用し ているため、 負極中の該被覆黒鉛が配向し、 非水電解質と被覆黒鉛の 接触が不完全になったためと考えられる。 表 3の実施例 12〜13に示されるように、 本発明の負極材料 (改質黒 鉛化物と被覆黒鉛の混合物) を用いたリチウムイオン二次電池は、 有 機系の負極合剤ペース トを用いた場合だけでなく、 水系の負極合剤べ ーストを用いても、 大きい放電容量と高い初期充放電効率が維持され るとともに、 高い急速充電効率も有することが確認された。 特に、 低 結晶性の炭素材料で被覆された被覆黒鉛を混合すると、 さらに高い放 電容量を有するとともに、 高い急速充電効率、 急速放電効率、 初期充 放電効率を維持することが確認された。 負極材料として本発明の改質 黒鉛化物と被覆黒鉛の混合物を使用することにより、 該被覆黒鉛を単 独で使用した場合 (比較例 6 ) の低い急速充電効率および低い急速放 電効率の課題が解決された。
実施例 1実施例 2実施例 3実施例 4実施例 5 比較例 1 比較例 2 比較例 3 メ 種類 改 質 未改質
フ X線回折 dooijdim) 0.3362
黒ェ
鉛 1 比表面積 (m2/g) 1.45 1.95 1.1 2.35 3.45 0.45 1.05 0.95 化ズ
物小 平均粒径 ( μ πι) 24 23 25 24 17 25 25 17 球
の ¾ZIG 0.47 0.57 0.45 0.63 0.75 0.2 0.21 0.23 水 放電容量
系 332 332 333 333 335 333 332 332 負 (mAh/g)
CO
oo 合
初期充放電効率 (%) 93 93 94 94 94 94 94 90 剤
I
ス 急速充電効率 (%) 43 47 45 48 54 15 17 32 卜
有 放電容量
332 333 333 333 334 333 332 332 系 (mAh/g)
合 初期充放電効率 (%) 93 94 94 95 92 94 94 89 剤
ス 急速充電効率 (%) 42 46 47 47 51 45 45 47 卜
表 2
実施例 6実施例 7実施例 8実施例 9実施例 10実施例 11比較例 4 メ
ソ 平均粒径 (/x m) 24 23 25 24 25 のフ
黒ェ
鉛 1 0.47 0.57 0.45 0.63 0.2 化ズ
物小
球比表面積 (m2/g) 1.45 1.95 1.1 2.35 0.45 体
ジン片状天然黒鉛
SNO-10 SNG-5 BF10A
品番 SNO-10
0.04 0.05 0.09 0.04 比表面積 (m2/g) 8.16 13.5 6.31 8.16 他の黒鉛の含有率 (%) 10 20 20 25 25 25 25 水 放電容量
337 339 340 34丄 342 340 337 系 (mAh/g)
初期充放電効率
93 93 93 93 94 94 92 剤 (%)
]
ス 急速充電効率
47 48 52 52 50 53 32 卜 (%) 有 放電容量
機 337 340 340 341 342 340 337 系 (mAh/g)
極 初期充放電効率
Π 92 92 92 92 93 93 92 剤 (%)
1
ス 急速充電効率
41 40 42 44 47 47 40 卜 (%) 表 3
実施例 12実施例 13比較例 5 比較例 6 メ
ソ 平均粒径 ( μ ΐη) 24 1 3 25
のフ
鉛 1 Τ /Τ 0.47 0.83 0.2
化ズ
球 比表面積 (m2/g) 1.45 3.68 0.45 ― 体
芯材黒鉛 BF- 10A BF- 10A BF- 10A BF- 10A 被
芯材黒鉛の ID,IG 0.09 0.09 0.09 0.09 覆
被覆黒鉛の ID,IG 0.28 0.28 0.28 0.28 鉛
波覆材の含有率 (%〕 8 8 8 8 被覆黒鉛の含有率 (%) 40 40 40 100 放電容量
353
水 (mAh/g)
負 初期充放電効率
94 94 93 94 極 (%)
ベ 急速充電効率
リ 50
] (%)
卜 急速放電効率 OA on 70 OXJ
(%)
有 放電容量
機 347 351 350
系 (mAh/g)
極 初期充放電効率
合 93 92 93
(%)
1 急速充電効率
ス 50 50 48
(%)
卜 産業上の利用可能性
本発明の表面改質処理により得られる新規な改質黒鉛化物は、 高結 晶性であるが、 最表面には乱れがあり、 濡れ性などの表面特性が改善 されている。 この改質黒鉛化物は、 リチウムイオン二次電池の負極お よび負極材料として好適である。 特に、 有機系合剤ペース トに代え て、 水系負極合剤ペース トを用いて負極を作製しても、 大きい放電容 量と高い初期充放電効率を維持しつつ、 従来達成できなかった高い急 速充電効率も有するリチウムイオン二次電池を得ることができる。 よ つて、 環境面、 安全面からの要望のみならず、 近年の電池の高工ネル ギー密度化に対する要望も満足できる。 延いては、 搭載する機器の小 型化および高性能化にも貢献できる。

Claims

請 求 の 範 囲
1. X線回折における平均格子面間隔 d。02が 0. 3 3 7 nm未 満であり、 かつ波長 5 1 4. 5 nmのアルゴンレーザ一光を用いたラ マンスペク トルにおいて、 1 5 7 0〜 1 6 3 0 c m_ 1の領域に存在 するピークの強度 I Gに対する 1 3 5 0〜 1 3 70 c m 1の領域に存 在するピークの強度 I Dの比 I DZ I G力 0. 4超から 2以下である、 メソフェーズ小球体の黒鉛化物。
2. 体積換算の平均粒径が 3〜 50;/ mであり、 比表面積が 1〜 2 0 m2Zgである、 請求項 1に記載のメソフェーズ小球体の黒鉛化 物。
3. 硬度が該メソフェーズ小球体の黒鉛化物の硬度より高くかつ平 均粒径が該メソフェーズ小球体の黒鉛化物の平均粒径より小さい微粒 子が表面に埋設されている、 請求項 1に記載のメソフェーズ小球体の 黒鉛化物。
4. 前記微粒子がシリカ、 アルミナおよび酸化チタンからなる群よ り選ばれる少なく とも 1種である、 請求項 3に記載のメソフ-ーズ小 球体の黒鉛化物。
5. 請求項 1に記載のメソフェーズ小球体の黒鉛化物を含有する リチウムイオン二次電池用の負極材料。
6. 請求項 1に記載のメソフェーズ小球体の黒鉛化物以外の黒鉛 をさらに含有する、 請求項 5に記載の負極材料。
7. 結晶性が該メソフェーズ小球体の黒鉛化物の結晶性より低い 炭素材料で被覆されている黒鉛をさらに含有する、 請求項 5に記載の 負極材料。
8. 請求項 5〜 7のいずれかに記載の負極材料からなるリチウム イオン二次電池用の負極。
9. 請求項 8に記載の負極を有するリチウムイオン二次電池。
10. メソフェーズ小球体の黒鉛化物に圧縮力と剪断力を同時にか ける処理を施して、 X線回折における平均格子面間隔 d。。2が 0. 3 3 7 nm未満であり、 かつ波長 5 1 4. 5 n mのアルゴンレーザー光 を用いたラマンスぺク トノレにおいて、 1 5 7 0〜 1 6 3 0 c m— 1の 領域に存在するピークの強度 I cに対する 1 3 5 0〜 1 3 70 c m—1 の領域に存在するピークの強度 I Dの比 I DZ I G力 S 0. 4超から 2以 下である、 メソフェーズ小球体の黒鉛化物を製造する方法。
11. 硬度が該メソフェーズ小球体の黒鉛化物の硬度より高くかつ平 均粒径が該メソフェーズ小球体の平均粒径より小さい微粒子の共存下 に、 前記処理を施す請求項 10に記載の製造方法。
12. 前記微粒子がシリカ、 アルミナおよび酸化チタンからなる群 より選ばれる少なく とも 1種である、 請求項 10に記載の製造方法。
PCT/JP2003/001297 2002-03-27 2003-02-07 Methophase spherule graphatized substance, negative plate material using same, negative plate, and lithium ion secondary cell WO2003080508A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020037014627A KR100575971B1 (ko) 2002-03-27 2003-02-07 메소상 소구체의 흑연화물, 그를 사용한 음극 재료, 음극및 리튬 이온 2차 전지

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-88798 2002-03-27
JP2002088798A JP4672955B2 (ja) 2001-08-10 2002-03-27 リチウムイオン二次電池用負極材料およびその製造方法
JP2002297734A JP4672958B2 (ja) 2002-10-10 2002-10-10 黒鉛質粒子、リチウムイオン二次電池、そのための負極材料および負極
JP2002-297734 2002-10-10

Publications (1)

Publication Number Publication Date
WO2003080508A1 true WO2003080508A1 (en) 2003-10-02

Family

ID=28456287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001297 WO2003080508A1 (en) 2002-03-27 2003-02-07 Methophase spherule graphatized substance, negative plate material using same, negative plate, and lithium ion secondary cell

Country Status (4)

Country Link
KR (1) KR100575971B1 (ja)
CN (1) CN100564253C (ja)
TW (1) TWI223465B (ja)
WO (1) WO2003080508A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008143A (ja) * 2014-07-22 2015-01-15 日本ケミコン株式会社 金属化合物ナノ粒子を分散担持したカーボン

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100805104B1 (ko) * 2005-08-31 2008-02-21 삼성에스디아이 주식회사 높은 비표면적과 전도성을 갖는 탄소 재료 및 이의 제조방법
KR100719716B1 (ko) * 2005-09-27 2007-05-17 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2007069664A1 (ja) * 2005-12-14 2007-06-21 Mitsui Mining Co., Ltd. 黒鉛粒子、炭素-黒鉛複合粒子及びそれらの製造方法
EP2081243B1 (en) * 2006-11-10 2012-08-08 Tokai Carbon Co., Ltd. Negative electrode material for lithium ion secondary battery and method for producing the same
JP5196149B2 (ja) * 2008-02-07 2013-05-15 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
CN103477476B (zh) * 2011-03-29 2017-09-08 三菱化学株式会社 非水系二次电池用负极碳材料、负极以及非水系二次电池
JP5207006B2 (ja) * 2011-10-04 2013-06-12 戸田工業株式会社 球形炭素材及び球形炭素材の製造方法
JP5917361B2 (ja) * 2011-12-16 2016-05-11 Jfeケミカル株式会社 非晶質炭素粒子の製造方法、非晶質炭素粒子、リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
CN103855397B (zh) * 2012-12-05 2018-07-20 宁波杉杉新材料科技有限公司 一种天然石墨材料的预处理方法及所得产品和应用
CN103482606B (zh) * 2013-09-23 2015-06-17 大连宏光锂业股份有限公司 一种中间相炭负极材料的生产方法
KR102461344B1 (ko) 2015-11-10 2022-10-28 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR20190074290A (ko) * 2016-11-14 2019-06-27 히타치가세이가부시끼가이샤 리튬이온 2차전지용 음극재, 리튬이온 2차전지용 음극 및 리튬이온 2차전지
CN107482203B (zh) * 2017-08-21 2020-12-18 北方奥钛纳米技术有限公司 石墨负极材料的包覆改性方法及石墨负极材料和应用
CN112996749A (zh) * 2019-09-17 2021-06-18 杰富意化学株式会社 石墨材料的制造方法
CN113066977B (zh) * 2021-03-18 2022-09-23 宁德新能源科技有限公司 负极材料及包含其的电化学装置和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272725A (ja) * 1994-03-31 1995-10-20 Kawasaki Steel Corp 二次電池負極用炭素材料の製造方法
US5522127A (en) * 1994-02-10 1996-06-04 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a non-aqueous electrolyte secondary cell
JPH10255800A (ja) * 1997-03-07 1998-09-25 Mitsui Kozan Kasei Kk リチウム二次電池用負極材
JP2000012034A (ja) * 1998-06-17 2000-01-14 Petoca Ltd リチウム二次電池用黒鉛材及びその製造方法
EP1134827A2 (en) * 2000-03-16 2001-09-19 Sony Corporation Non-aqueous electrolyte secondary battery and method of preparing carbon-based material for negative electrode
JP2002063902A (ja) * 2000-08-16 2002-02-28 Kawasaki Steel Corp 炭素材料の製造方法およびリチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522127A (en) * 1994-02-10 1996-06-04 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a non-aqueous electrolyte secondary cell
JPH07272725A (ja) * 1994-03-31 1995-10-20 Kawasaki Steel Corp 二次電池負極用炭素材料の製造方法
JPH10255800A (ja) * 1997-03-07 1998-09-25 Mitsui Kozan Kasei Kk リチウム二次電池用負極材
JP2000012034A (ja) * 1998-06-17 2000-01-14 Petoca Ltd リチウム二次電池用黒鉛材及びその製造方法
EP1134827A2 (en) * 2000-03-16 2001-09-19 Sony Corporation Non-aqueous electrolyte secondary battery and method of preparing carbon-based material for negative electrode
JP2002063902A (ja) * 2000-08-16 2002-02-28 Kawasaki Steel Corp 炭素材料の製造方法およびリチウムイオン二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008143A (ja) * 2014-07-22 2015-01-15 日本ケミコン株式会社 金属化合物ナノ粒子を分散担持したカーボン

Also Published As

Publication number Publication date
KR100575971B1 (ko) 2006-05-02
CN100564253C (zh) 2009-12-02
KR20040007548A (ko) 2004-01-24
TWI223465B (en) 2004-11-01
CN1514805A (zh) 2004-07-21
TW200403879A (en) 2004-03-01

Similar Documents

Publication Publication Date Title
KR101957074B1 (ko) 리튬 이온 2차 전지 부극 재료용 흑연질 입자, 리튬 이온 2차 전지 부극 및 리튬 이온 2차 전지
KR101633206B1 (ko) 리튬 이온 이차 전지용 부극 재료, 리튬 이온 이차 전지용 부극 및 리튬 이온 이차 전지
JP5348878B2 (ja) リチウムイオン二次電池用負極材料およびその製造方法、リチウムイオン二次電池用負極ならびにリチウムイオン二次電池
JP5543533B2 (ja) リチウムイオン二次電池用負極材料
JP5473886B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池負極およびリチウムイオン二次電池
JP4666876B2 (ja) 複合黒鉛質材料およびその製造方法、ならびにリチウムイオン二次電池用負極材料およびリチウムイオン二次電池
JP4040381B2 (ja) 複合黒鉛質粒子およびその製造方法ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
KR101661050B1 (ko) 복합 흑연질 재료 및 그 제조 방법, 리튬 이온 2차 전지용 부극 재료, 리튬 이온 2차 전지용 부극 및 리튬 이온 2차 전지
JP4672955B2 (ja) リチウムイオン二次電池用負極材料およびその製造方法
JP4996830B2 (ja) リチウムイオン二次電池負極用金属−黒鉛質系粒子およびその製造方法、ならびにリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR20070017510A (ko) 흑연질 재료와 그 제조방법, 리튬이온 이차전지용 음극재료, 리튬이온 이차전지용 음극 및 리튬이온 이차전지
WO2003080508A1 (en) Methophase spherule graphatized substance, negative plate material using same, negative plate, and lithium ion secondary cell
JP4104561B2 (ja) リチウムイオン二次電池用負極材料、負極およびリチウムイオン二次電池
JP4672958B2 (ja) 黒鉛質粒子、リチウムイオン二次電池、そのための負極材料および負極
JP5394721B2 (ja) リチウムイオン二次電池、そのための負極材料および負極
JP4839180B2 (ja) 炭素粉末およびその製造方法、リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極ならびにリチウムイオン二次電池
JP4171259B2 (ja) 黒鉛質材料の製造方法、リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
JP4542352B2 (ja) リチウムイオン二次電池用負極、およびリチウムイオン二次電池
TWI389379B (zh) 介相小球體及碳材料之製造方法暨鋰離子二次電池
JP2003263982A (ja) 黒鉛質粒子の製造方法およびリチウムイオン二次電池用負極材料
JP4870419B2 (ja) リチウムイオン二次電池用負極材料およびその製造方法、リチウムイオン二次電池負極ならびにリチウムイオン二次電池
JP6085259B2 (ja) リチウムイオン二次電池負極用の炭素質被覆黒鉛粒子の製造方法、リチウムイオン二次電池負極及びリチウムイオン二次電池
KR20210098965A (ko) 탄소질 재료, 탄소질 재료의 제조 방법, 리튬 이온 2차 전지용 부극 및 리튬 이온 2차 전지

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

WWE Wipo information: entry into national phase

Ref document number: 1020037014627

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 038003333

Country of ref document: CN