WO2003074597A1 - Protonenleitende elektrolytmembran mit geringer methanoldurchlässigkeit und deren anwendung in brennstoffzellen - Google Patents

Protonenleitende elektrolytmembran mit geringer methanoldurchlässigkeit und deren anwendung in brennstoffzellen Download PDF

Info

Publication number
WO2003074597A1
WO2003074597A1 PCT/EP2003/002397 EP0302397W WO03074597A1 WO 2003074597 A1 WO2003074597 A1 WO 2003074597A1 EP 0302397 W EP0302397 W EP 0302397W WO 03074597 A1 WO03074597 A1 WO 03074597A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
membrane
substituted
halogen
aryl
Prior art date
Application number
PCT/EP2003/002397
Other languages
English (en)
French (fr)
Inventor
Joachim Kiefer
Oemer Uensal
Gordon Calundann
James Crivello
Original Assignee
Pemeas Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10209685A external-priority patent/DE10209685A1/de
Priority claimed from DE10210499A external-priority patent/DE10210499A1/de
Application filed by Pemeas Gmbh filed Critical Pemeas Gmbh
Priority to CA002478530A priority Critical patent/CA2478530A1/en
Priority to JP2003573059A priority patent/JP2005519428A/ja
Priority to KR1020047013965A priority patent/KR100993157B1/ko
Priority to US10/506,387 priority patent/US7846982B2/en
Priority to DE50308216T priority patent/DE50308216D1/de
Priority to DK03743390T priority patent/DK1483316T3/da
Priority to EP03743390A priority patent/EP1483316B1/de
Publication of WO2003074597A1 publication Critical patent/WO2003074597A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04197Preventing means for fuel crossover
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a proton-conducting electrolyte membrane with low methanol permeability based on polyvinylsulfonic acid, which can be used in many ways due to its excellent chemical properties and is particularly suitable as a polymer electrolyte membrane (PEM) in so-called PEM fuel cells.
  • PEM polymer electrolyte membrane
  • a fuel cell usually contains an electrolyte and two electrodes separated by the electrolyte.
  • one of the two electrodes is supplied with a fuel, such as hydrogen gas or a methanol / water mixture, and the other electrode with an oxidizing agent, such as oxygen gas or air, and chemical energy from the fuel oxidation is thereby converted directly into electrical energy. Protons and electrons are formed in the oxidation reaction.
  • the electrolyte is for hydrogen ions, i.e. Protons, but not for reactive ones
  • Fuels such as hydrogen gas or methanol and the oxygen gas are permeable.
  • a fuel cell typically includes a plurality of single cells, so-called MEA 's (membrane electrode assembly), which in each case an electrolyte and two by the
  • Electrolytes contain separate electrodes.
  • Solids such as electrolyte for the fuel cell come
  • Polymer electrolyte membranes or liquids such as phosphoric acid are used. Recently, polymer electrolyte membranes have been used as electrolytes for
  • the first category includes cation exchange membranes consisting of a polymer backbone which covalently binds acid groups
  • sulfonic acid groups Contains sulfonic acid groups.
  • the sulfonic acid group changes into an anion with the release of a hydrogen ion and therefore conducts protons.
  • the mobility of the proton and thus the proton conductivity is directly linked to the water content. Due to the very good miscibility of methanol and water, such Cation exchange membranes have a high methanol permeability and are therefore unsuitable for applications in a direct methanol fuel cell. If the membrane dries out, for example as a result of high temperature, the conductivity of the membrane and consequently the performance of the fuel cell decrease drastically.
  • Cation exchange membranes are thus limited to the boiling point of the water.
  • the humidification of the fuels represents a major technical challenge for the use of polymer electrolyte membrane fuel cells (PEMBZ), in which conventional, sulfonated membranes such as e.g. National used.
  • PEMBZ polymer electrolyte membrane fuel cells
  • perfluorosulfonic acid polymers are used as materials for polymer electrolyte membranes.
  • the perfluorosulfonic acid polymer (such as National) generally has a perfluorocarbon backbone, such as a copolymer of tetrafluoroethylene and trifluorovinyl, and a side chain attached thereto with a sulfonic acid group, such as a side chain with a sulfonic acid group attached to a perfluoroalkylene group.
  • the cation exchange membranes are preferably organic polymers with covalently bonded acid groups, in particular
  • This polymer can be brought into solution as described in US Pat. No. 4,453,991 and then used as an ionomer.
  • Cation exchange membranes are also obtained by filling a porous support material with such an ionomer.
  • Expanded Teflon is preferred as the carrier material (US 5635041).
  • Another perfluorinated cation exchange membrane can, as described in US5422411, be copolymerized from trifluorostyrene and sulfonyl-modified
  • Trifuorostyrol are produced.
  • Composite membranes consisting of a porous carrier material, in particular expanded Teflon, filled with ionomers consisting of such sulfonyl-modified trifluorostyrene copolymers are in
  • US6110616 describes copolymers of butadiene and styrene and their subsequent sulfonation for the production of cation exchange membranes for fuel cells.
  • Another class of partially fluorinated cation exchange membranes can by
  • Radiation plugs and subsequent sulfonation can be produced.
  • a grafting reaction is preferably carried out on a previously irradiated polymer film using styrene.
  • the sulfonation of the side chains then takes place in a subsequent sulfonation reaction.
  • Crosslinking can also be carried out at the same time as the grafting, and the mechanical properties can thus be changed.
  • Polyphenylene sulfide (DE19527435) is known. Ionomers made from sulfonated polyether ketones are described in WO 00/15691.
  • acid-base blend membranes are known which are produced as described in DE19817374 or WO 01/18894 by mixtures of sulfonated polymers and basic polymers.
  • a cation exchange membrane known from the prior art can be mixed with a high-temperature stable polymer.
  • the production and properties of cation exchange membranes consisting of blends of sulfonated PEK and a) polysulfones (DE4422158), b) aromatic polyamides (42445264) or c) polybenzimidazole (DE19851498) are described.
  • the polymer membrane fulfills further essential functions, in particular it must have high mechanical stability and serve as a separator for the two fuels mentioned at the beginning.
  • Membrane is the fact that a fuel cell, in which such a polymer electrolyte membrane is used, can be operated at temperatures above 100 ° C. without the fuels otherwise having to be humidified. This is due to the property of phosphoric acid that the protons can be transported without additional water using the so-called Grotthus mechanism (K.-D. Kreuer, Chem. Mater. 1996, 8, 610-641).
  • CO is produced as a by-product in the reforming of the hydrogen-rich gas from carbon-containing compounds, such as natural gas, methanol or gasoline, or as an intermediate in the direct oxidation of methanol.
  • carbon-containing compounds such as natural gas, methanol or gasoline
  • the CO content of the fuel must be less than 100 ppm at temperatures ⁇ 100 ° C. At temperatures in the range of 150-200 ° C, however, 10,000 ppm CO or more can also be tolerated (NJ Bjerrum et. Al. Journal of Applied Electrochemistry, 2001, 31, 773-779).
  • a major advantage of fuel cells is the fact that the energy of the fuel is converted directly into electrical energy and heat during the electrochemical reaction.
  • the reaction product is water at the cathode.
  • As a by-product of the electrochemical reaction 5 heat is generated.
  • Electric motors such as For automotive applications or as a diverse replacement for battery systems, the heat must be dissipated to prevent the system from overheating. Additional energy-consuming devices are then required for cooling, which reduce the overall electrical
  • phosphoric acid or polyphosphoric acid is present as an electrolyte, which is not permanently bound to the basic polymer due to ionic interactions and can be washed out by water.
  • the water formed condenses and can lead to increased washing out of the electrolyte, highly concentrated phosphoric acid or polyphosphoric acid. This can lead to a constant loss of conductivity and cell performance in the above-described mode of operation of the fuel cell, which can reduce the service life of the fuel cell.
  • DMBZ direct methanol fuel cell
  • the present invention is therefore based on the object of providing a novel polymer electrolyte membrane in which washing out of the electrolyte is prevented.
  • a fuel cell containing a polymer electrolyte membrane according to the invention is said to be suitable for pure hydrogen and for numerous carbon-containing fuels, in particular natural gas, gasoline, methanol and biomass.
  • a membrane according to the invention should be able to be produced inexpensively and simply.
  • a polymer electrolyte membrane should be created which has a high mechanical stability, for example a high modulus of elasticity, high tensile strength, low creep and high fracture toughness.
  • a polymer electrolyte membrane according to the invention has a very small one
  • Methanol permeability and is particularly suitable for use in a DMBZ.
  • This enables permanent operation of a fuel cell with a variety of fuels such as hydrogen, natural gas, gasoline, methanol or biomass.
  • the membranes enable a particularly high activity of these fuels. Due to the high temperatures, the methanol oxidation can take place with high activity.
  • membranes of the present invention show a high mechanical stability, in particular a high modulus of elasticity, a high one Tear resistance, low creep and high fracture toughness. Furthermore, these membranes have a surprisingly long service life.
  • the present invention therefore relates to a stable proton-conducting electrolyte membrane which can be obtained by a process comprising the steps
  • step A Polymerization of the vinyl-containing sulfonic acid present in step A).
  • the polymer film used in step A) is a film which has a swelling of at least 3% in the liquid containing vinylsulfonic acid.
  • Swelling means an increase in weight of the film of at least 3% by weight.
  • the swelling is preferably at least 5%, particularly preferably at least 10%.
  • Determination of the swelling Q is determined gravimetrically from the mass of the film before swelling m 0 and the mass of the film after the polymerization according to step B), m 2 .
  • Q (m 2 -m 0 ) / m 0 x 100
  • the swelling is preferably carried out at a temperature above 0 ° C., in particular between room temperature (20 ° C.) and 180 ° C. in a liquid containing vinylsulfonic acid and containing at least 5% by weight of vinylsulfonic acid.
  • the swelling can also be carried out at elevated pressure. The limits result from economic considerations and technical possibilities.
  • the polymer film used for swelling generally has a thickness in the range from 5 to 3000 ⁇ m, preferably 10 to 1500 ⁇ m and particularly preferably.
  • the production of such films from polymers is generally known, some of which are commercially available.
  • the term polymer film means that the film to be used for swelling comprises polymers, wherein this film can contain further generally customary additives.
  • the preferred polymers include polyolefins such as
  • Polymers with C-O bonds in the main chain for example polyacetal, polyoxymethylene, polyether, polypropylene oxide, polyepichlorohydrin, polytetrahydrofuran, polyphenylene oxide, polyether ketone, polyester, in particular polyhydroxyacetic acid, polyethylene terephthalate, polybutylene terephthalate, polyhydroxybenzoate, polyhydroxyproponactonic acid, polypivalolactone acid, polypivalolactonate, polypivalolactonate
  • Polymeric C-S bonds in the main chain for example polysulfide ether, polyphenylene sulfide, polyether sulfone;
  • Polymeric C-N bonds in the main chain for example polyimines, polyisocyanides, polyetherimine, polyetherimides, polyaniline, polyaramides,
  • Liquid-crystalline polymers in particular Vectra and inorganic polymers, for example polysilanes, polycarbosilanes, polysiloxanes, polysilicic acid, polysilicates, silicones, polyphosphazenes and polythiazyl.
  • Vectra and inorganic polymers for example polysilanes, polycarbosilanes, polysiloxanes, polysilicic acid, polysilicates, silicones, polyphosphazenes and polythiazyl.
  • high-temperature-stable polymers which contain at least one nitrogen, oxygen and / or sulfur atom in one or in different repeating units.
  • High-temperature stable in the sense of the present invention is a polymer which, as a polymer electrolyte, can be operated continuously in a fuel cell at temperatures above 120 ° C.
  • Permanently means that a membrane according to the invention can be operated for at least 100 hours, preferably at least 500 hours at at least 120 ° C., preferably at least 160 ° C., without the power that can be measured according to the method described in WO 01/18894 A2, decreases by more than 50% based on the initial output.
  • the polymers used in step A) are preferably polymers which have a glass transition temperature or Vicat softening temperature VST / A / 50 of at least 100 ° C., preferably at least 150 ° C. and very particularly preferably at least 180 ° C.
  • Polymers which contain at least one nitrogen atom in a repeating unit are particularly preferred.
  • Particularly preferred are polymers which contain at least one aromatic ring with at least one nitrogen heteroatom per repeat unit.
  • Polymers based on polyazoles are particularly preferred within this group. These basic polyazole polymers contain at least one aromatic ring with at least one nitrogen heteroatom per repeat unit.
  • the aromatic ring is preferably a five- or six-membered ring with one to three nitrogen atoms, which can be fused with another ring, in particular another aromatic ring.
  • Polymers based on polyazole contain recurring azole units of the general formula (I) and / or (II) and / or (III) and / or (IV) and / or (V) and / or (VI) and / or (VII) and / or (VIII) and / or (IX) and / or (X) and / or (XI) and / or (XIII) and / or (XIV) and / or (XV) and / or (XVI) and / or (XVII) and / or (XVIII) and / or (XIX) and / or (XX) and / or (XXII) and / or (XVIII) and / or (XIX) and / or (XX) and / or (XXI) and / or (XVIII) and / or (XIX) and / or (XX) and / or (XXI) and / or (XXII)
  • Ar are the same or different and, for a tetra-bonded aromatic or heteroaromatic group which may be mono- or polynuclear, Ar 1 are the same or different and for a divalent aromatic or heteroaromatic group which may be mono- or polynuclear, Ar 2 are the same or different are and for a two or three-membered aromatic or heteroaromatic group, which may be mono- or polynuclear, Ar 3 are the same or different and for a three-membered aromatic or heteroaromatic group, which may be mono- or polynuclear,
  • Ar 4 are identical or different and, the one for a trivalent aromatic or heteroaromatic group, or may be polynuclear
  • Ar 5 are identical or different and for a tetravalent aromatic or heteroaromatic group, which may be mono- or polynuclear
  • Ar 6 are identical or are different and for a divalent aromatic or heteroaromatic group which may be mono- or polynuclear
  • Ar 7 are the same or different and for a divalent aromatic or heteroaromatic group which may be mono- or polynuclear
  • Ar 8 are the same or different and for a three-membered aromatic or heteroaromatic group which can be mononuclear or polynuclear
  • Ar 9 are the same or different and for a two- or three- or four-membered aromatic or heteroaromatic group, which can be mono- or polynuclear
  • Ar 10 are the same or different and for a bi- or three-membered aromatic or heteroaromatic group, the or can be multi-core
  • Ar 11 are the same or different and for a divalent aromatic or heteroaromatic group, which may be mononuclear or polynuclear, X is the same or different and for oxygen, sulfur or one
  • Amino group which has a hydrogen atom, a group having 1-20 carbon atoms, preferably a branched or unbranched
  • R carries the same or different for hydrogen, an alkyl group and an aromatic group
  • Aromatic or heteroaromatic groups preferred according to the invention are derived from benzene, naphthalene, biphenyl, diphenyl ether, diphenyl methane, diphenyldimethyl methane, bisphenone, diphenyl sulfone, thiophene, furan, pyrrole, thiazole, oxazole, imidazole, isothiazole, isoxazole, 3,4-oxazole, pyrazole , 2,5-diphenyl-1, 3,4-oxadiazole, 1, 3,4-thiadiazole, 1,3,4-triazole, 2,5-diphenyl-1, 3,4-triazole, 1, 2,5-triphenyl-1, 3,4-triazole, 1, 2,4-oxadiazole, 1, 2,4-thiadiazoi, 1, 2,4-triazole, 1, 2,3
  • the substitution pattern of Ar 1 , Ar 4 , Ar 6 , Ar 7 , Ar 8 , Ar 9 , Ar 10 , Ar 11 is arbitrary, in the case of phenylene, for example, Ar 1 , Ar 4 , Ar 6 , Ar 7 , Ar 8 , Ar 9 , Ar 10 , Ar 11 are ortho-, meta- and para-phenylene. Particularly preferred groups are derived from benzene and biphenylene, which may also be substituted.
  • Preferred alkyl groups are short-chain alkyl groups with 1 to 4 carbon atoms, such as. B. methyl, ethyl, n- or i-propyl and t-butyl groups.
  • Preferred aromatic groups are phenyl or naphthyl groups.
  • the alkyl groups and the aromatic groups can be substituted.
  • Preferred substituents are halogen atoms such as. B. fluorine, amino groups, hydroxy groups or short-chain alkyl groups such as. B. methyl or ethyl groups.
  • the polyazoles can also have different recurring units which differ, for example, in their X radical. However, it preferably has only the same X radicals in a recurring unit.
  • the polymer containing recurring azole units is a copolymer or a blend which contains at least two units of the formulas (I) to (XXII) which are different from one another differ.
  • the polymers can be present as block copolymers (diblock, triblock), statistical copolymers, periodic copolymers and / or alternating polymers.
  • the number of repeating azole units in the polymer is preferably an integer greater than or equal to 10.
  • Particularly preferred polymers contain at least 100 repeating azole units.
  • polymers containing recurring benzimidazole units are preferred.
  • Polymers containing recurring benzimidazole units are represented by the following formulas:
  • n and m is an integer greater than or equal to 10, preferably greater than or equal to 100.
  • the polyazoles used in step A), but especially the polybenzimidazoles, are distinguished by a high molecular weight. Measured as intrinsic viscosity, this is preferably at least 0.2 dl / g, in particular 0.8 to 10 dl / g, particularly preferably 1 to 5 dl / g.
  • polyazole polymers are polyimidazoles, polybenzthiazoles, polybenzoxazoles, polytriazoles, polyoxadiazoles, polythiadiazoles, polypyrazoles, polyquinoxalines, poly (pyridines), poly (pyrimidines), and poly (tetrazapyrenes).
  • Celazole from Celanese is particularly preferred, in particular one in which the screened polymer described in German patent application No. 10129458.1 is used.
  • the preferred polymers include polysulfones, in particular polysulfones with aromatic and / or heteroaromatic groups in the main chain.
  • preferred polysulfones and polyether sulfones have a melt volume rate MVR 300/21, 6 is less than or equal to 40 cm 3/10 min, especially less than or equal to 30 cm 3/10 min and particularly preferably less than or equal to 20 cm 3 / 10 min measured according to ISO 1133.
  • Polysulfones with a Vicat softening temperature VST / A / 50 of 180 ° C. to 230 ° C. are preferred.
  • the number average molecular weight is from
  • Polysulfone-based polymers include, in particular, polymers which have recurring units with linking sulfone groups corresponding to the general formulas A, B, C, D, E, F and / or G:
  • radicals R independently of one another, represent the same or different aromatic or heteroaromatic groups, these radicals being explained in more detail above. These include in particular 1, 2-phenylene, 1, 3-phenylene, 1, 4-phenylene, 4,4'-biphenyl, pyridine, quinoline, naphthalene, phenanthrene.
  • polysulfones preferred in the context of the present invention include homopolymers and copolymers, for example statistical copolymers.
  • Particularly preferred polysulfones comprise repeating units of the formulas H to N:
  • the polysulfones described above can be obtained commercially under the trade names ® Victrex 200 P, ® Victrex 720 P, ® Ultrason E, ® Ultrason S, ® Mindel, ® Radel A, ® Radel R, ® Victrex HTA, ® Astrel and ® Udel.
  • polyether ketones polyether ketone ketones
  • polyether ether ketones polyether ketone ketones
  • polyaryl ketones are particularly preferred. These high-performance polymers are known per se and can be obtained commercially under the trade names Victrex® PEEK TM, ® Hostatec, ® Kadel.
  • Blends containing polyazoles and / or polysulfones are particularly preferred.
  • the use of blends can improve the mechanical properties and reduce the material costs.
  • the polymer film can have further modifications, for example by crosslinking as in German patent application No. 10110752.8 or in WO 00/44816.
  • the polymer film used for swelling consists of a basic polymer and at least one blend component additionally contains a crosslinking agent as described in German patent application No. 10140147.7.
  • the polyazole-containing polymer membranes can also be used as described in German patent applications No. 10117686.4, 10144815.5, 10117687.2. For this purpose, they are freed of the polyphosphoric acid and / or phosphoric acid and used in step A).
  • the polymer membrane according to the invention can also have further additions of fillers and / or auxiliaries.
  • fillers in particular proton-conducting fillers, and additional acids can also be added to the membrane.
  • the addition can take place, for example, in step A).
  • these additives if they are in liquid form, can also be added after the polymerization in step B).
  • Non-limiting examples of proton-conducting fillers are:
  • Sulfates such as: CsHSO 4 , Fe (SO 4 ) 2 , (NH 4 ) 3 H (SO 4 ) 2 , LiHSO 4 , NaHSO 4 , KHSO 4 ,
  • Oxides such as Al 2 O 3 , Sb 2 O 5 , ThO 2 , SnO 2 , ZrO 2 , MoO 3
  • Silicates such as zeolites, zeolites (NH +), layered silicates, framework silicates, H-natrolites, H-mordenites, NH 4 -analyses, NH 4 -sodalites, NH 4 -galates, H-montmorillonites acids such as HCIO 4 , SbF 5
  • Fillers such as carbides, in particular SiC, Si 3 N 4 , fibers, in particular glass fibers, glass powders and / or polymer fibers, preferably based on polyazoles.
  • the membrane after the polymerization in step B) comprises at most 80% by weight, preferably at most 50% by weight and particularly preferably at most 20% by weight of additives.
  • this membrane can also contain perfluorinated sulfonic acid additives (preferably 0.1-20% by weight, preferably 0.2-15% by weight, very preferably 0.2- 10 wt .-%) included. These additives improve performance, increase proximity to the cathode to increase oxygen solubility and diffusion, and decrease the adsorption of phosphoric acid and phosphate to platinum.
  • perfluorinated sulfonic acid additives preferably 0.1-20% by weight, preferably 0.2-15% by weight, very preferably 0.2- 10 wt .-%) included.
  • These additives improve performance, increase proximity to the cathode to increase oxygen solubility and diffusion, and decrease the adsorption of phosphoric acid and phosphate to platinum.
  • Trifluomethanesulfonic acid potassium trifluoromethanesulfonate, sodium trifluoromethanesulfonate, lithium trifluoromethanesulfonate, ammonium trifluoromethanesulfonate, potassium perfluorohexanesulfonate, sodium perfluorohexanesulfonate, lithium perfluorohexanesulfonate, ammonium perfluorohexanesulfonate, peroxide
  • Potassium nonafluorobutane sulfonate sodium nonafluorobutane sulfonate, lithium nonafluorobutane sulfonate, ammonium nonafluorobutane sulfonate, cesium nonafluorobutane sulfonate, triethylammonium perfluorohexasulfonate and perflurosulfoimide.
  • Vinyl-containing phosphonic acids are known in the art. These are compounds which have at least one carbon-carbon double bond and at least one phosphonic acid group.
  • the two carbon atoms which form the carbon-carbon double bond preferably have at least two, preferably 3, bonds to groups which are of a low steric nature
  • the polyvinylphosphonic acid results from the polymerization product which is obtained by polymerizing the vinyl-containing phosphonic acid alone or with further monomers and / or crosslinking agents.
  • the vinyl-containing sulfonic acid can comprise one, two, three or more carbon-carbon double bonds. Furthermore, the vinyl-containing sulfonic acid can contain one, two, three or more sulfonic acid groups.
  • the vinyl-containing sulfonic acid contains 2 to 20, preferably 2 to 10, carbon atoms.
  • the vinyl-containing sulfonic acid used in step A) is preferably a compound of the formula
  • R is a bond, a C1-C15-alkyl group, C1-C15-alkoxy group,
  • R represents a bond, a C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, the above radicals in turn being substituted by halogen, -OH, COOZ, -CN, NZ 2 , Z independently of one another hydrogen, C1-C15-alkyl group, C1-C15-
  • A represents a group of the formulas COOR 2 , CN, CONR 2 2 , OR 2 and / or R 2 , wherein R 2 is hydrogen, a C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, the above radicals in turn being substituted by halogen, -OH, COOZ, -CN, NZ 2 R is a bond, a divalent C1-C15 alkylene group, divalent C1-C15-
  • Alkyleneoxy group for example ethyleneoxy group or divalent C5-C20-aryl or heteroaryl group, where the above radicals may in turn be substituted with halogen, -OH, COOZ, -CN, NZ 2 , Z independently of one another hydrogen, C1-C15-alkyl group, C1 -C15- alkoxy group, ethyleneoxy group or C5-C20 aryl or heteroaryl group, where the above radicals can in turn be substituted by halogen, -OH, -CN, and x is an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 means.
  • the preferred vinyl-containing sulfonic acids include alkenes, the
  • sulfonic acid groups such as ethene sulfonic acid, propene sulfonic acid, butene sulfonic acid; Acrylic acid and / or methacrylic acid compounds which have sulfonic acid groups, such as, for example, 2-sulfomethyl-acrylic acid, 2-sulfomethyl-methacrylic acid, 2-sulfomethyl-acrylic acid amide and 2-sulfomethyl-methacrylic acid amide.
  • vinyl sulfonic acid ethene sulfonic acid
  • Aldrich or Clariant GmbH is particularly preferably used.
  • a preferred vinyl sulfonic acid has a purity of more than 70%, in particular 90% and particularly preferably more than 97% purity.
  • the vinyl-containing sulfonic acids can also be used in the form of derivatives which can subsequently be converted into the acid, the conversion to the acid also being able to take place in the polymerized state.
  • derivatives include, in particular, the salts, the esters, the amides and the
  • Halides of vinyl-containing sulfonic acids are halides of vinyl-containing sulfonic acids.
  • the swollen polymer film produced in step A) preferably comprises at least 1% by weight, in particular at least 10% by weight and particularly preferably at least 30% by weight, based on the total weight, of vinyl-containing sulfonic acid.
  • the swollen polymer film produced in step A) comprises at most 60% by weight of polymer film, in particular at most 50% by weight of polymer film and particularly preferably at most 30% by weight of polymer film, based on the Total weight. This size can be determined from the weight gain caused by the swelling.
  • the mixture according to step A) comprises vinyl-containing phosphonic acids.
  • Vinyl-containing phosphonic acid can surprisingly improve the high temperature properties of the membrane. Even with a relatively low use of these phosphonic acids, a membrane according to the invention can be operated for a short time without moistening, without the membrane being destroyed thereby. If the proportion of vinyl-containing phosphonic acid is increased, the
  • a polymer electrolyte membrane according to the invention has a very low methanol permeability and is particularly suitable for use in a DMBZ. This enables permanent operation of a fuel cell with a variety of fuels such as hydrogen, natural gas, gasoline, methanol or biomass.
  • the membranes enable a particularly high activity of these fuels. At high temperatures, the methanol oxidation can take place with high activity.
  • these membranes are suitable for operation in a so-called vapor DMBZ, in particular at temperatures in the range from 100 to 200 ° C.
  • CO is produced as a by-product in the reforming of the hydrogen-rich gas from carbon-containing compounds, such as natural gas, methanol or gasoline, or as an intermediate in the direct oxidation of methanol.
  • the CO content of the fuel can be greater than 5000 ppm at temperatures above 120 ° C. without the catalytic effect of the Pt catalyst being drastically reduced.
  • temperatures in the range of 150-200 ° however, 10,000 ppm CO or more can also be tolerated (NJ Bjerrum et. Al. Journal of Applied Electrochemistry, 2001, 31, 773-779).
  • a membrane according to the invention with a high phosphonic acid content shows a high conductivity over a large temperature range, which is also achieved without additional moistening.
  • a fuel cell that is equipped with a membrane according to the invention can also be operated at low temperatures, for example at 5 ° C., with humidification if the
  • Sulfonic acid content is relatively high.
  • Vinyl-containing phosphonic acids are known in the art. These are compounds which have at least one carbon-carbon double bond and at least one phosphonic acid group. Preferably the two
  • Carbon atoms which form a carbon-carbon double bond have at least two, preferably 3 bonds to groups which lead to a slight steric hindrance of the double bond. These groups include hydrogen atoms and halogen atoms, especially fluorine atoms.
  • the polyvinylphosphonic acid results from the
  • Polymerization product obtained by polymerizing the vinyl-containing phosphonic acid alone or with other monomers and / or crosslinkers.
  • the vinyl-containing phosphonic acid can comprise one, two, three or more carbon-carbon double bonds. Furthermore, the vinyl containing
  • Phosphonic acid contain one, two, three or more phosphonic acid groups.
  • the vinyl-containing phosphonic acid contains 2 to 20, preferably 2 to 10, carbon atoms.
  • the vinyl-containing phosphonic acid used in step A) is preferably a compound of the formula
  • R is a bond, a C1-C15-alkyl group, C1-C15-alkoxy group,
  • ethyleneoxy group or C5-C20-aryl or heteroaryl group where the above radicals may in turn be substituted with halogen, -OH, COOZ, -CN, NZ 2 , Z independently of one another hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, Ethyleneoxy group or C5-C20 aryl or heteroaryl group means, where the above radicals may in turn be substituted by halogen, -OH, -CN, and x is an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 y is an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 means
  • R represents a bond, a C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, the above radicals in turn being substituted by halogen, -OH, COOZ, -CN, NZ 2 , Z independently of one another hydrogen, C1-C15-alkyl group, C1-C15-
  • A represents a group of the formulas COOR 2 , CN, CONR 2 2 , OR 2 and / or R 2 , wherein R 2 is hydrogen, a C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group means, where the above radicals themselves can be substituted with halogen, -OH, COOZ, -CN, NZ 2
  • R denotes a bond, a divalent C1-C15-alkylene group, divalent C1-C15-alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20-aryl or heteroaryl group, the above radicals in turn with halogen, -OH, COOZ, -CN, NZ 2 can be substituted, Z independently of one another hydrogen, C1-C15-alkyl group, C1-C15-
  • the preferred vinyl-containing phosphonic acids include alkenes which have phosphonic acid groups, such as ethenephosphonic acid, propenephosphonic acid, butenephosphonic acid; Acrylic acid and / or methacrylic acid compounds which have phosphonic acid groups, such as, for example, 2-phosphonomethyl-acrylic acid, 2-phosphonomethyl-methacrylic acid,
  • vinylphosphonic acid ethenephosphonic acid
  • Aldrich or Clariant GmbH is particularly preferably used.
  • a preferred vinylphosphonic acid has one
  • the vinyl-containing phosphonic acids can also be used in the form of derivatives, which can subsequently be converted into the acid, the conversion to the acid also being able to take place in the polymerized state.
  • derivatives include in particular the salts, the esters, the amides and the halides of the vinyl-containing phosphonic acids.
  • step A) The use of vinyl-containing phosphonic acid is optional.
  • the swelling liquid used preferably comprises at least 20% by weight, in particular at least 30% by weight and particularly preferably at least 50% by weight, based on the total weight of the liquid, of vinyl-containing phosphonic acid.
  • the liquid used for swelling in step A) may additionally contain further organic and / or inorganic solvents.
  • the organic solvents include, in particular, polar aprotic solvents, such as dimethyl sulfoxide (DMSO), esters, such as ethyl acetate, and polar protic solvents, such as alcohols, such as ethanol, propanol, isopropanol and / or butanol.
  • polar aprotic solvents such as dimethyl sulfoxide (DMSO)
  • esters such as ethyl acetate
  • polar protic solvents such as alcohols, such as ethanol, propanol, isopropanol and / or butanol.
  • the inorganic solvents include in particular water, phosphoric acid and polyphosphoric acid.
  • the solubility of the polymer can be improved by adding the organic solvent.
  • the content of vinyl-containing sulfonic acid in such solutions is generally at least 5% by weight, preferably at least 10% by weight, particularly preferably between 10 and 97% by weight.
  • the content of vinyl-containing phosphonic acid in such solutions is preferably at least 5% by weight, preferably at least 10% by weight, particularly preferably between 10 and 97
  • the weight ratio of vinyl-containing phosphonic acid to vinyl-containing sulfonic acid can be in a wide range.
  • the ratio of vinyl-containing phosphonic acid to vinyl-containing sulfonic acid is preferably in the range from 1: 100 to 99: 1, in particular in the range from 1:10 to 10: 1.
  • the liquid comprising vinyl-containing sulfonic acid contains further monomers capable of crosslinking. These are in particular compounds which have at least 2 carbon-carbon double bonds. Dienes, trienes, tetraenes, dimethylacrylates, trimethylacrylates, tetramethylacrylates, diacrylates, triacrylates, tetraacrylates are preferred.
  • R represents a C1-C15-alkyl group, C5-C20-aryl or heteroaryl group, NR ' , -SO 2 , PR ' , Si (R ' ) 2 , where the above radicals can in turn be substituted,
  • R ' independently of one another is hydrogen, a C1-C15-alkyl group, C1-C15-alkoxy group, C5-C20-aryl or heteroaryl group and n is at least 2.
  • the substituents of the above radical R are preferably halogen, hydroxyl, carboxy, carboxyl, carboxyl esters, nitriles, amines, silyl, siloxane radicals.
  • crosslinkers are allyl methacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate and tetra-, 1, 3-butanediol dimethacrylate, glycerol dimethacrylate, diurethane dimethacrylate, trimethylolpropane trimethacrylate, epoxy acrylates, for example Ebacryl, N '.N-methylenebisacrylamide, carbinol, butadiene, isoprene, chloroprene, divinylbenzene and / or bisphenol A dimethylacrylate.
  • Ebacryl N '.N-methylenebisacrylamide
  • carbinol, butadiene isoprene, chloroprene, divinylbenzene and / or bisphenol A dimethylacrylate.
  • crosslinkers are optional, these compounds usually being in the range between 0.05 to 30% by weight, preferably 0.1 to 20% by weight, particularly preferably 1 to 10% by weight, based on the weight vinyl-containing sulfonic acid and optionally vinyl-containing phosphonic acid can be used.
  • the liquid comprising vinyl-containing sulfonic acid can be a solution, wherein the liquid can also contain suspended and / or dispersed constituents.
  • the viscosity of the liquid comprising vinyl-containing sulfonic acid can be in wide ranges, solvents being added or the temperature being increased in order to adjust the viscosity.
  • the dynamic viscosity is preferably in the range from 0.1 to 10000 mPa * s, in particular 0.2 to 2000 mPa * s, these values being able to be measured, for example, in accordance with DIN 53015.
  • the swelling of the film in step A) is preferably carried out at temperatures above
  • 0 ° C particularly preferably between room temperature (20 ° C) and 160 ° C.
  • swelling can also take place at lower temperatures, but the time required for swelling is increased and thus the economy is reduced. If the temperature is too high, the film used for swelling can be damaged become.
  • the duration of the swelling depends on the selected temperature. The duration of treatment should be chosen so that the desired swelling is achieved.
  • the polymerization of the vinyl-containing sulfonic acid and optionally vinyl-containing phosphonic acid in step C) is preferably carried out by free radicals.
  • the radical formation can take place thermally, photochemically, chemically and / or electrochemically.
  • a starter solution which contains at least one substance capable of forming radicals can be added to the liquid according to step A).
  • a starter solution can be applied to the swollen sheet-like structure. This can be done by means of measures known per se (e.g. spraying, dipping, etc.) which are known from the prior art.
  • Suitable radical formers include azo compounds, peroxy compounds, persulfate compounds or azoamidines. Not limiting
  • Examples include dibenzoyl peroxide, dicumyl peroxide, cumene hydroperoxide, diisopropyl peroxydicarbonate, bis (4-t-butylcycIohexyl) peroxydicarbonate, Dikaliumpersulfat, ammonium peroxydisulfate, 2,2'-azobis (2-methylpropionitrile) (AIBN), 2,2 'azobis- (isobutterklamidin) hydrochloride , Benzpinacol, dibenzyl derivatives, methyl ethylene ketone peroxide, 1, 1-azobiscyclohexane carbonitrile,
  • radical formers can also be used which form radicals when irradiated.
  • the preferred compounds include ⁇ , ⁇ -diethoxyacetophenone (DEAP, Upjon Corp), n-butylbenzoin ether (®Trigonal-14,
  • AKZO 2,2-dimethoxy-2-phenylacetophenone
  • ®lgacure 651 and 1-benzoylcyclohexanol (®lgacure 184), bis (2,4,6-trimethylbenzoyl) - phenylphosphine oxide (®lrgacure 819) and 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy- 2-phenylpropan-1-one ( ⁇ Irgacure 2959), each from Ciba Geigy Corp. are commercially available.
  • radical formers usually between 0.0001 and 5% by weight, in particular 0.01 to 3% by weight (based on the sum of vinyl-containing sulfonic acid and optionally vinyl-containing phosphonic acid) are added to radical formers.
  • the amount of radical generator can be varied depending on the desired degree of polymerization.
  • IR InfraRot, ie light with a wavelength of more than 700 nm
  • NIR Near IR, ie light with a wavelength in the range from approx. 700 to 2000 nm or an energy in the range of approx. 0.6 to 175 eV).
  • the polymerization can also be carried out by exposure to UV light with a wavelength of less than 400 nm.
  • This polymerization method is known per se and is described, for example, in Hans Joerg Elias, Macromolecular Chemistry, ⁇ .auflage, Volume 1, p.492-511; D. R. Arnold, N. C. Baird, J. R. Bolton, J. C. D. Brand, P. W. M Jacobs, P.de Mayo, W. R. Ware, Photochemistry-An Introduction, Academic Press, New York and M.K. Mishra, Radical Photopolymerization of Vinyl Monomers, J. Macromol. Sci.-Revs. Macromol. Chem. Phys. C22 (1982-1983) 409.
  • a membrane is irradiated with a radiation dose in the range from 1 to 300 kGy, preferably from 3 to 200 kGy and very particularly preferably from 20 to 100 kGy.
  • the polymerization of the vinyl-containing sulfonic acid and optionally the vinyl-containing phosphonic acid in step B) is preferably carried out at temperatures above room temperature (20 ° C.) and below 200 ° C., in particular at
  • the polymerization is preferably carried out under normal pressure, but can also be carried out under the action of pressure.
  • the polymerization leads to a solidification of the swollen polymer film according to step A), this solidification being able to be followed by microhardness measurement.
  • the membranes have high mechanical stability. This size results from the hardness of the membrane, which is determined by means of microhardness measurement in accordance with DIN 50539.
  • the membrane is successively loaded with a Vickers diamond up to a force of 3 mN within 20 s and the depth of penetration is determined.
  • the hardness at room temperature is at least 0.01 N / mm 2 , preferably at least 0.1 N / mm 2 and very particularly preferably at least 1 N / mm 2 , without any intention that this should impose a restriction.
  • the force is then kept constant at 3 mN for 5 s and the creep is calculated from the penetration depth.
  • the creep is Cm. 0.003 / 20/5 among them
  • the module determined by means of microhardness measurement is YHU at least 0.5 MPa, in particular at least 5 MPa and very particularly preferably at least 10 MPa, without this being intended to impose a restriction.
  • the flat structure which is obtained by the swelling of the polymer film and subsequent polymerization, is a self-supporting membrane.
  • the degree of polymerization is preferably at least 2, in particular at least 5, particularly preferably at least 30
  • Repetition units in particular at least 50 repetition units, very particularly preferably at least 100 repetition units.
  • This degree of polymerization is determined by the number average molecular weight M n , which can be determined by GPC methods. Because of the problems of isolating the polyvinylphosphonic acid contained in the membrane without degradation, it becomes
  • the polymer membrane according to the invention preferably contains between 1 and 90% by weight of the polymer and between 99 and 0.5% by weight of polyvinylsulfonic acid.
  • the polymer membrane according to the invention preferably contains between 3 and 85% by weight of the polymer and between 70 and 1% by weight of polyvinylsulfonic acid, particularly preferably between 5 and 50% by weight of the polymer and between 50 and 5% by weight of polyvinylsulfonic acid, in each case based on the total weight of the Polymer membrane.
  • the proportion of polyvinylphosphonic acid is preferably in the range from 5 to 97% by weight, in particular in the range from 20 to 95% by weight, in each case based on the total weight of the polymer membrane.
  • the polymer membrane according to the invention can also contain further fillers and / or auxiliaries.
  • the membrane can be crosslinked thermally, photochemically, chemically and / or electrochemically on the surface. This hardening of the membrane surface additionally improves the properties of the membrane.
  • the membrane can be heated to a temperature of at least 150 ° C, preferably at least 200 ⁇ C and particularly preferably at least 250 ° C to be heated.
  • the thermal crosslinking is preferably carried out in the presence of oxygen.
  • the oxygen concentration is at this
  • the method step is usually in the range from 5 to 50% by volume, preferably 10 to 40% by volume, without any intention that this should impose a restriction.
  • IR InfraRot, ie light with a wavelength of more than 700 nm
  • NIR Near IR, ie light with a wavelength in the range from approx. 700 to 2000 nm or an energy in the range of approx. 0.6 to 1.75 eV
  • UV light / or UV light.
  • Another method is radiation with ⁇ , ⁇ and / or electron beams.
  • the radiation dose is preferably between 5 and 200 kGy, in particular 10 to 100 kGy. Irradiation can take place in air or under inert gas. This will make the
  • the duration of the crosslinking reaction can be in a wide range. In general, this reaction time is in the range from 1 second to 10 hours, preferably 1 minute to 1 hour, without this being intended to impose any restriction.
  • the polymer membrane according to the invention has improved material properties - compared to the previously known doped polymer membranes. If the membranes according to the invention comprise a high proportion of polyvinylphosphonic acid, they already show an intrinsic conductivity in comparison with known undoped polymer membranes.
  • the intrinsic conductivity of the membrane according to the invention at temperatures of 80 ° C., optionally with moistening, is generally at least 0.1 mS / cm, preferably at least 1 mS / cm, in particular at least 2 mS / cm and particularly preferably at least 5 mS / cm.
  • the membranes With a weight fraction of polyvinylphosphonic acid of more than 10%, based on the total weight of the membrane, the membranes generally have a conductivity at temperatures of 160 ° C. of at least 1 mS / cm, preferably at least 3 mS / cm, in particular at least 5 mS / cm and particularly preferably at least 10 mS / cm. These values are achieved without humidification.
  • the specific conductivity is measured by means of impedance spectroscopy in a 4-pole arrangement in potentiostatic mode and using platinum electrodes (wire, 0.25 mm diameter). The distance between the current-consuming electrodes is 2 cm.
  • the spectrum obtained is evaluated using a simple model consisting of a parallel arrangement of an ohmic resistance and a capacitor.
  • the sample cross-section of the phosphoric acid-redoped membrane is measured immediately before sample assembly. To measure the temperature dependency, the measuring cell is brought to the desired temperature in an oven and immediately in one
  • thermocouple positioned close to the sample controlled. After reaching the temperature, the sample is kept at this temperature for 10 minutes before starting the measurement.
  • the polymer membrane according to the invention has improved material properties compared to the previously known doped polymer membranes. If the membranes according to the invention comprise a high proportion of polyvinylphosphonic acid, they already show an intrinsic conductivity in comparison with known undoped polymer membranes.
  • the passage current density is preferably less than 100 mA / cm 2 , in particular less than 70 mA / cm 2, particularly preferably less than 50 mA / cm 2 and when operating with 0.5 M methanol solution and 90 ° C. in a so-called liquid direct methanol fuel cell very particularly preferably less than 10 mA / cm 2 .
  • the passage current density when operating with a 2 M methanol solution and 160 ° C. in a so-called gaseous direct methanol fuel cell is preferably less than 100 mA / cm 2 , in particular less than 50 mA / cm 2, very particularly preferably less than 10 mA / cm 2 .
  • the amount of carbon dioxide released at the cathode is measured using a CO 2 sensor. From the value of the amount of CO 2 obtained in this way, as by P. Zelenay, SC Thomas, S. Gottesfeld in S. Gottesfeld, TF filler "Proton Conducting Membrane Fuel Cells II" ECS Proc. Vol. 98-27 p. 300 -308 described the
  • the polymer membranes according to the invention Possible areas of application of the polymer membranes according to the invention include use in fuel cells, in electrolysis, in capacitors and in battery systems. Due to their property profile, the polymer membranes are preferably used in fuel cells.
  • the present invention also relates to a membrane electrode assembly which has at least one polymer membrane according to the invention.
  • the membrane electrode unit has a high performance even with a low one
  • catalytically active substances such as platinum, ruthenium or palladium.
  • gas diffusion layers provided with a catalytically active layer can be used.
  • the gas diffusion layer generally shows electron conductivity.
  • Flat, electrically conductive and acid-resistant structures are usually used for this. These include, for example, carbon fiber papers, graphitized carbon fiber papers, carbon fiber fabrics, graphitized carbon fiber fabrics and / or flat structures which have been made conductive by adding carbon black.
  • the catalytically active layer contains a catalytically active substance.
  • a catalytically active substance include noble metals, in particular platinum, palladium, rhodium, iridium and / or ruthenium. These substances can also be used with one another in the form of alloys. Furthermore, these substances can also be alloyed with base metals, such as Cr, Zr, Ni,
  • the catalytically active compounds are used in the form of particles which preferably have a size in the range from 1 to 1000 nm, in particular 10 to 200 nm and preferably 20 to
  • the catalytically active particles which comprise the aforementioned substances, can be used as metal powder, so-called black noble metal, in particular platinum and / or platinum alloys can be used.
  • black noble metal in particular platinum and / or platinum alloys can be used.
  • Such particles generally have a size in the range from 5 nm to 200 nm, preferably in the range from 10 nm to 100 nm.
  • the metals can also be used on a carrier material.
  • This carrier preferably comprises carbon, which can be used in particular in the form of carbon black, graphite or graphitized carbon black.
  • the metal content of these supported particles based on the total weight of the particles, is generally in the range from 1 to 80% by weight, preferably 5 to 60% by weight and particularly preferably 10 to 50% by weight, without this resulting in a Restriction should take place.
  • the particle size of the carrier in particular the size of the carbon particles, is preferably in the range from 20 to 100 nm, in particular 30 to 60 nm.
  • the size of the metal particles located thereon is preferably in the range from 1 to 20 nm, in particular 1 to 10 nm and particularly preferably 2 to 6 nm.
  • the sizes of the different particles represent mean values of the weight average and can be determined using transmission electron microscopy.
  • the catalytically active particles set out above can generally be obtained commercially.
  • the catalytically active layer can contain conventional additives. These include fluoropolymers such as Polytetrafluoroethylene (PTFE) and surface-active substances.
  • fluoropolymers such as Polytetrafluoroethylene (PTFE) and surface-active substances.
  • the surface-active substances include in particular ionic surfactants, for example fatty acid salts, in particular sodium laurate, potassium oleate; and alkyl sulfonic acids, alkyl sulfonic acid salts, in particular sodium perfluorohexane sulfonate, lithium perfluorohexane sulfonate,
  • ionic surfactants for example fatty acid salts, in particular sodium laurate, potassium oleate
  • alkyl sulfonic acids, alkyl sulfonic acid salts in particular sodium perfluorohexane sulfonate, lithium perfluorohexane sulfonate
  • Fluoropolymers are particularly preferred additives, in particular
  • the weight ratio of fluoropolymer to catalyst material comprising at least one noble metal and optionally one or more carrier materials, greater than 0.1, this ratio preferably being in the range from 0.2 to 0.6.
  • the catalyst layer has a thickness in the range from 1 to 1000 ⁇ m, in particular from 5 to
  • This value represents an average value that can be determined by measuring the layer thickness in the cross section of images that can be obtained with a scanning electron microscope (SEM).
  • Precious metal content of the catalyst layer 0.1 to 10.0 mg / cm 2 , preferably 0.3 to 6.0 mg / cm 2 and particularly preferably 0.3 to 3.0 mg / cm 2 . These values can be determined by elemental analysis of a flat sample.
  • the manufacture of a membrane electrode unit can be carried out, among other things, by
  • the composite of electrode consisting of gas diffusion layers provided with catalytically active layers, and a membrane are heated to a temperature in the range from 50 ° C. to 200 ° C. and pressed at a pressure of 0.1 to 5 MPa. In general, a few seconds are sufficient to connect the catalyst layer to the membrane. This time is preferably in the
  • Range from 1 second to 5 minutes, especially 5 seconds to 1 minute.
  • the present invention also relates to a proton-conducting polymer membrane according to the invention coated with a catalyst layer.
  • a support can be used which is provided with a coating containing a catalyst in order to provide the membrane according to the invention with a catalyst layer.
  • the membrane can be provided with a catalyst layer on one or both sides. If the membrane is only provided with a catalyst layer on one side, the opposite side of the membrane must be pressed with an electrode that has a catalyst layer. If both sides of the
  • the membrane is to be provided with a catalyst layer
  • the following methods can also be used in combination in order to achieve an optimal result.
  • the catalyst layer can be applied by a method in which a catalyst suspension is used. Powders comprising the catalyst can also be used.
  • the catalyst suspension contains a catalytically active substance.
  • the catalyst suspension can contain conventional additives. These include fluoropolymers such as Polytetrafluoroethylene (PTFE),
  • Thickeners especially water-soluble polymers such as e.g. Cellulose derivatives, polyvinyl alcohol, polyethylene glycol, and surface-active substances, which were previously explained in connection with the catalytically active layer.
  • water-soluble polymers such as e.g. Cellulose derivatives, polyvinyl alcohol, polyethylene glycol, and surface-active substances, which were previously explained in connection with the catalytically active layer.
  • the surface-active substances include in particular ionic surfactants, for example fatty acid salts, in particular sodium laurate, potassium oleate; and alkyl sulfonic acids, alkyl sulfonic acid salts, in particular sodium perfluorohexane sulfonate, lithium perfluorohexane sulfonate, ammonium perfluorohexane sulfonate, perfluorohexane sulfonic acid, potassium nonafluorobutane sulfonate, as well as nonionic surfactants, especially ethoxylated fatty alcohols and polyethylene glycols.
  • ionic surfactants for example fatty acid salts, in particular sodium laurate, potassium oleate
  • alkyl sulfonic acids, alkyl sulfonic acid salts in particular sodium perfluorohexane sulfonate, lithium perfluorohexane sulfonate
  • the catalyst suspension can comprise constituents which are liquid at room temperature. These include, among others, organic solvents, which can be polar or non-polar, phosphoric acid, polyphosphoric acid and / or
  • the catalyst suspension preferably contains 1 to 99% by weight, in particular 10 to 80% by weight, of liquid constituents.
  • the polar, organic solvents include in particular alcohols, such as ethanol, propanol, isopropanol and / or butanol.
  • the organic, non-polar solvents include known thin-film thinners, such as thin-film thinner 8470 from DuPont, which comprises turpentine oils.
  • Particularly preferred additives are fluoropolymers, in particular tetrafluoroethylene polymers.
  • the weight ratio of fluoropolymer to catalyst material comprising at least one noble metal and, if appropriate, one or more carrier materials, greater than 0.1, this ratio preferably being in the range from 0.2 to 0.6.
  • the catalyst suspension can be applied to the membrane according to the invention using customary methods. Depending on the viscosity of the suspension, which is also in
  • the viscosity can be influenced by the solids content, in particular the proportion of catalytically active particles, and the proportion of additives.
  • the one to be set is influenced by the solids content, in particular the proportion of catalytically active particles, and the proportion of additives.
  • Viscosity depends on the method of application of the catalyst suspension, the optimum values and their determination being familiar to the person skilled in the art.
  • the binding of catalyst and membrane can be improved by heating and / or pressing.
  • the catalyst layer is applied using a powder process.
  • a catalyst powder is used, which may contain additional additives, which have been set out above by way of example.
  • Spray and sieve processes can be used to apply the catalyst powder.
  • the powder mixture is sprayed onto the membrane using a nozzle, for example a slot nozzle.
  • the membrane provided with a catalyst layer is then heated in order to improve the connection between the catalyst and membrane. Heating can take place, for example, using a hot roller.
  • Such methods and devices for applying the powder are described in DE 195 09 748, DE 195 09 749 and DE 197 57 492, among others.
  • the catalyst powder is applied to the membrane with a vibrating sieve.
  • a device for applying a catalyst powder to a membrane is described in WO 00/26982.
  • the catalyst and membrane can be bound by heating be improved.
  • the membrane provided with at least one catalyst layer can be heated to a temperature in the range from 50 to 200 ° C., in particular 100 to 180 ° C.
  • the catalyst layer can be applied by a process in which a coating containing a catalyst is applied to a support and then the coating containing a catalyst on the support is transferred to the membrane according to the invention.
  • a coating containing a catalyst is applied to a support and then the coating containing a catalyst on the support is transferred to the membrane according to the invention.
  • the carrier provided with a catalyst coating can be produced, for example, by producing a previously described catalyst suspension. This catalyst suspension is then applied to a carrier film, for example made of polytetrafluoroethylene. After the suspension has been applied, the volatile constituents are removed.
  • the coating containing a catalyst can be transferred, inter alia, by hot pressing.
  • the composite comprising a catalyst layer and a membrane and a carrier film is heated to a temperature in the range from 50 ° C. to 200 ° C. and pressed at a pressure of 0.1 to 5 MPa. In general, a few seconds are sufficient to connect the catalyst layer to the membrane. This time is preferably in the range from 1 second to 5 minutes, in particular 5 seconds to 1 minute.
  • Catalyst layer has a thickness in the range from 1 to 1000 ⁇ m, in particular from 5 to 500, preferably from 10 to 300 ⁇ m. This value represents an average value that can be determined by measuring the layer thickness in the cross section of images that can be obtained with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the membrane provided with at least one catalyst layer comprises 0.1 to 10.0 mg / cm 2 , preferably 0.3 to 6.0 mg / cm 2 and particularly preferably 0.3 to 3.0 mg / cm 2 . These values can be determined by elemental analysis of a flat sample.
  • the membrane obtained can be crosslinked thermally, photochemically, chemically and / or electrochemically.
  • This hardening of the membrane additionally improves the properties of the membrane.
  • the membrane can be heated to a temperature of at least 150 ° C, preferably at least 200 ° C. and particularly preferably at least 250 ° C.
  • the crosslinking takes place in the presence of oxygen.
  • the oxygen concentration in this process step is usually in the range from 5 to 50% by volume, preferably 10 to 40% by volume, without any intention that this should impose a restriction.
  • IR InfraRot, ie light with a wavelength of more than 700 nm
  • NIR Near IR, ie light with a wavelength in the range from approx. 700 to 2000 nm or an energy in the range of approx. 0.6 to 1.75 eV
  • Irradiation with ß, ⁇ and / or electron beams is preferably between 5 and 200 kGy, in particular 10 to 100 kGy. Irradiation can take place in air or under inert gas. This improves the performance properties of the membrane, in particular its durability.
  • the duration of the crosslinking reaction can be in a wide range. In general, this reaction time is in the range from 1 second to 10 hours, preferably 1 minute to 1 hour, without this being intended to impose any restriction.
  • the polymer membrane coated with catalyst according to the invention has improved material properties compared to the previously known doped polymer membranes. In particular, they perform better than known doped polymer membranes. This is due in particular to better contact between the membrane and the catalyst.
  • the membrane according to the invention can be connected to a gas diffusion layer. If the membrane is provided with a catalyst layer on both sides, the gas diffusion layer does not have to have a catalyst before pressing.
  • a membrane-electrode unit according to the invention shows a surprisingly high power density.
  • preferred membrane electrode units have a current density of at least 0.1 A / cm 2 , preferably 0.2 A / cm 2 , particularly preferably 0.3 A / cm 2 . This current density is in the
  • the stoichiometry is less than or equal to 2, preferably less than or equal to 1.5, very particularly preferably less than or equal to 1.2.
  • the catalyst layer has a low noble metal content.
  • the noble metal content of a preferred catalyst layer which is comprised by a membrane according to the invention is preferably at most 2 mg / cm 2 , in particular at most 1 mg / cm 2 , very particularly preferably at most 0.5 mg / cm 2 .
  • one side of a membrane has a higher metal content than the opposite side of the membrane.
  • Metal content on one side is at least twice as high as the metal content on the opposite side.
  • a catalytically active layer can be applied to the membrane according to the invention and this can be connected to a gas diffusion layer.
  • a membrane is formed in accordance with steps A) and B) and the catalyst is applied.
  • the catalyst can be applied before or together with the starter solution.
  • the membrane according to steps A) and B) can also be formed on a support or a support film which already has the catalyst. After removal of the carrier or the carrier film, the catalyst is on the membrane according to the invention.
  • the present invention also relates to a membrane-electrode unit which contains at least one polymer membrane according to the invention, optionally in combination with a further polymer membrane based on polyazoles or a polymer blend membrane.
  • the polymer membranes according to the invention Possible areas of application of the polymer membranes according to the invention include use in fuel cells, in electrolysis, in Capacitors and in battery systems. Due to their property profile, the polymer membranes are preferably used in fuel cells.
  • a column column with a diameter of 5.5 cm is filled with an ion exchange resin consisting of cross-linked sulfonated polystyrene of the type
  • the vinylsulfonic acid solution from Example 1 is mixed together with 56g of a 90% vinylphosphonic acid and in the oven at a temperature of 70 ° C during
  • Polybenzimidazole which was produced from a PBI-DMAc solution according to DE 10052237.8 and by selection of suitable polymer granules according to DE 10129458.1.
  • the solution is covered with an aluminum foil as light protection and is kept in the oven at 80 ° C. for 3 hours. Excess liquid is dabbed off the membrane surface.
  • the film obtained in this way is then placed between 2 transparent films made of oriented polypropylene and excess air is removed by rolling it several times as described above.
  • This laminate is then transferred to a chamber and there each side is irradiated for 1 minute with a 300 W mercury arc lamp of the type H3T7 from General Electric and this process is repeated once.
  • the polypropylene film is carefully removed from the membrane. This process is facilitated by gentle heating with a hot air dryer. A typical weight gain after this treatment is 350 wt%.
  • Example 3 Example 3:

Abstract

Die vorliegende Erfindung betrifft eine protonenleitende Elektrolytmembran erhältlich durch ein Verfahren umfassend die Schritte A) Quellen einer Polymerfolie mit einer Vinylhaltigen Sulfonsäure umfassenden Flüssigkeit und B) Polymerisation der in Schritt A) eingebrachten Flüssigkeit vorhandenen Vinylhaltigen Sulfonsäure. Eine erfindungsgemässe Membran kann aufgrund ihrer hervorragenden chemischen und thermischen Eigenschaften vielfältig eingesetzt werden kann und eignet sich insbesondere als Polymer-Elektrolyt-Membran (PEM) in sogenannten PEM-Brennstoffzellen.

Description

Beschreibung
Protonenleitende Elektrolytmembran mit geringer Methanoldurchlässigkeit und deren Anwendung in Brennstoffzellen
Die vorliegende Erfindung betrifft eine protonenleitende Elektrolytmembran mit geringer Methanoldurchlässigkeit auf Basis von Polyvinylsulfonsäure, die aufgrund ihrer hervorragenden chemischen Eigenschaften vielfältig eingesetzt werden kann und sich insbesondere als Polymer-Elektrolyt-Membran (PEM) in sogenannten PEM- Brennstoffzellen eignet.
Eine Brennstoffzelle enthält üblicherweise einen Elektrolyten und zwei durch den Elektrolyten getrennte Elektroden. Im Fall einer Brennstoffzelle wird einer der beiden Elektroden ein Brennstoff, wie Wasserstoffgas oder ein Methanol-Wasser-Gemisch, und der anderen Elektrode ein Oxidationsmittel, wie Sauerstoffgas oder Luft, zugeführt und dadurch chemische Energie aus der Brennstoffoxidation direkt in elektrische Energie umgewandelt. Bei der Oxidationsreaktion werden Protonen und Elektronen gebildet.
Der Elektrolyt ist für Wasserstoffionen, d.h. Protonen, aber nicht für reaktive
Brennstoffe wie das Wasserstoffgas oder Methanol und das Sauerstoffgas durchlässig.
Eine Brennstoffzelle weist in der Regel mehrere Einzelzellen sogenannte MEE's (Membran-Elektroden-Einheit) auf, die jeweils einen Elektrolyten und zwei durch den
Elektrolyten getrennte Elektroden enthalten.
Als Elektrolyt für die Brennstoffzelle kommen Feststoffe wie
Polymerelektrolytmembranen oder Flüssigkeiten wie Phosphorsäure zur Anwendung. In jüngster Zeit haben Polymerelektrolytmembranen als Elektrolyte für
Brennstoffzellen Aufmerksamkeit erregt. Prinzipiell kann man zwischen 2 Kategorien von Polymermembranen unterscheiden.
Zu der ersten Kategorie gehören Kationenaustauschermembranen bestehend aus einem Polymergerüst, welches kovalent gebunden Säuregruppen, bevorzugt
Sulfonsäuregruppen enthält. Die Sulfonsäuregruppe geht unter Abgabe eines Wasserstoffions in ein Anion über und leitet daher Protonen. Die Beweglichkeit des Protons und damit die Protonenleitfähigkeit ist dabei direkt an den Wassergehalt verknüpft. Durch die sehr gute Mischbarkeit von Methanol und Wasser weisen solche Kationenaustauschermembranen eine hohe Methanolpermeabilität auf und sind deshalb für Anwendungen in einer Direkt-Methanol-Brennstoffzelle ungeeignet. Trocknet die Membran, z.B. in Folge hoher Temperatur, aus, so nimmt die Leitfähigkeit der Membran und folglich die Leistung der Brennstoffzelle drastisch ab. Die Betriebstemperaturen von Brennstoffzellen enthaltend solche
Kationenaustauschermembranen ist somit auf die Siedetemperatur des Wassers beschränkt. Die Befeuchtung der Brennstoffe stellt eine grosse technische Herausforderung für den Einsatz von Polymerelektrolytmembranbrennstoffzellen (PEMBZ) dar, bei denen konventielle, sulfonierte Membranen wie z.B. Nation verwendet werden.
So verwendet man als Materialien für Polymerelektrolytmembranen beispielsweise Perfluorsulfonsäurepolymere. Das Perfluorsulfonsäurepolymer (wie z.B. Nation) weist im allgemeinen ein Perfluorkohlenwasserstoffgerüst auf, wie ein Copolymer aus Tetrafluorethylen und Trifluorvinyl, und eine daran gebundene Seitenkette mit einer Sulfonsäuregruppe, wie eine Seitenkette mit einer an eine Perfluoralkylengruppe gebundenen Sulfonsäuregruppe.
Bei den Kationenaustauschermembranen handelt es sich vorzugsweise um organische Polymere mit kovalent gebundenen Säuregruppen, insbesondere
Sulfonsaure. Verfahren zur Sulfonierung von Polymeren sind in F. Kucera et. al. Polymer Engineering and Science .988, Vol. 38, No 5, 783-792 beschrieben.
Im Folgenden sind die wichtigsten Typen von Kationenaustauschmembranen aufgeführt die zum Einsatz in Brennstoffzellen kommerzielle Bedeutung erlangt haben.
Der wichtigste Vertreter ist das Perfluorosulfonsäurepolymer Nation® (US 3692569).
Dieses Polymer kann wie in US 4453991 beschrieben in Lösung gebracht und dann als lonomer eingesetzt werden. Kationenaustauschermembranen werden auch erhalten durch Füllen eines porösen Trägermaterials mit einem solchen lonomer. Als
Trägermaterial wird dabei expandiertes Teflon bevorzugt (US 5635041).
Eine weitere perfluorinierte Kationenaustauschermembran kann wie in US5422411 beschrieben durch Copolymerisation aus Trifluorostyrol und sulfonylmodifiziertem
Trifuorostyrol hergestellt werden. Kompositmembranen bestehend aus einem porösen Trägermaterial, insbesondere expandiertes Teflon, gefüllt mit lonomeren bestehend aus solchen sulfonylmodifizierten Trifluorostyrol-Copolymeren sind in
US5834523 beschrieben. US6110616 beschreibt Copolymere aus Butadien und Styrol und deren anschliesende Sulfonierung zur Herstellung von Kationenaustauschermembranen für Brennstoffzellen.
Eine weitere Klasse von teilfluorierten Kationenaustauschermembranen kann durch
Strahlenpfropfen und nachfolgende Sulfonierung hergestellt werden. Dabei wird, wie in EP667983 oder DE19844645 beschrieben, an einem zuvor bestrahlten Polymerfilm eine Pfropfungsreaktion vorzugsweise mit Styrol durchgeführt. In einer nachfolgenden Sulfonierungsreaktion erfolgt dann die Sulfonierung der Seitenketten. Gleichzeitig mit der Pfropfung kann auch eine Vernetzung durchgeführt und somit die mechanischen Eigenschaften verändert werden.
Neben obigen Membranen wurde eine weitere Klasse nichtfluorierter Membranen durch Sulfonierung von hochtemperaturstabilen Thermoplasten entwickelt. So sind Membranen aus sulfonierten Polyetherketonen (DE4219077, EP96/01177), sulfoniertem Polysulfon (J. Membr. Sei. 83 (1993) p.211) oder sulfoniertem
Polyphenylensulfid (DE19527435) bekannt. lonomere hergestellt aus sulfonierten Polyetherketonen sind in WO 00/15691 beschrieben.
Desweiteren sind Säure-Base-Blendmembranen bekannt, die wie in DE19817374 oder WO 01/18894 beschrieben durch Mischungen von sulfonierten Polymeren und basischen Polymeren hergestellt werden.
Zur weiteren Verbesserung der Membraneigenschaften kann eine aus dem Stand der Technik bekannte Kationenaustauschermembran mit einem hochtemperaturstabilen Polymer gemischt werden. Die Herstellung und Eigenschaften von Kationenaustauschermembranen bestehend aus Blends aus sulfoniertem PEK und a) Polysulfonen (DE4422158), b) aromatischen Polyamiden (42445264) oder c) Polybenzimidazol (DE19851498) sind beschrieben.
Nachteil all dieser Kationenaustauschermembranen ist die Tatsache, dass die Membran befeuchtet werden muss, die Betriebstemperatur auf 100°C beschränkt ist, und die Membranen eine hohe Methanolpermeabilität aufweisen. Ursache für diese Nachteile ist der Leitfähigkeitsmechanismus der Membran, bei der der Transport der Protonen an den Transport des Wassermoleküls gekoppelt ist. Dies bezeichnet man als „Vehicle-Mechanismus" (K.-D. Kreuer, Chem. Mater. 1996, 8, 610-641).
Als zweite Kategorie sind Polymerelektrolytmembranen mit Komplexen aus basischen Polymeren und starken Säuren entwickelt worden. So beschreibt WO96/13872 und die korrespondierende US-PS 5,525,436 ein Verfahren zur Herstellung einer protonenleitenden Polymerelektrolytmembranen, bei dem ein basisches Polymer, wie Polybenzimidazol, mit einer starken Säure, wie Phosphorsäure, Schwefelsäure usw., behandelt wird.
In J. Electrochem. Soc, Band 142, Nr. 7, 1995, S. L121-L123 wird die Dotierung eines Polybenzimidazols in Phosphorsäure beschrieben.
Bei den im Stand der Technik bekannten basischen Polymermembranen wird die - zum Erzielen der erforderlichen Protonenleitfähigkeit - eingesetzte Mineralsäure
(meist konzentrierte Phosphorsäure) entweder nach der Formgebung eingesetzt oder alternativ dazu die basische Polymermembran direkt aus Polyphosphorsäure wie in der deutschen Patentanmeldung Nr. 10117686.4, Nr. 10144815.5 und Nr. 10117687.2 hergestellt. Das Polymer dient dabei als Träger für den Elektrolyten bestehend aus der hochkonzentrierten Phosphorsäure, respektive
Polyphosphorsäure. Die Polymermembran erfüllt dabei weitere wesentliche Funktionen insbesondere muss sie eine hohe mechanische Stabilität aufweisen und als Separator für die beiden eingangs genannten Brennstoffe dienen.
Wesentliche Vorteile einer solchen Phosphorsäure oder Polyphosphorsäure dotierten
Membran ist die Tatsache, dass eine Brennstoffzelle, bei der eine derartige Polymerelektrolytmembran eingesetzt wird, bei Temperaturen oberhalb 100°C ohne eine sonst notwendige Befeuchtung der Brennstoffe betrieben werden kann. Dies liegt in der Eigenschaft der Phosphorsäure begründet die Protonen ohne zusätzliches Wasser mittels des sog. Grotthus Mechanismus transportieren zu können (K.-D. Kreuer, Chem. Mater. 1996, 8, 610-641 ).
Durch die Möglichkeit des Betriebes bei Temperaturen oberhalb 100°C ergeben sich weitere Vorteile für das Brennstoffzellensystem. Zum Einen wird die Empfindlichkeit des Pt-Katalysators gegenüber Gasverunreinigungen, insbesondere CO, stark verringert. CO entsteht als Nebenprodukt bei der Reformierung des wasserstoffreichen Gases aus Kohlenstoffhaltigen Verbindungen, wie z.B. Erdgas, Methanol oder Benzin oder auch als Zwischenprodukt bei der direkten Oxidation von Methanol. Typischerweise muss der CO-Gehalt des Brennstoffes bei Temperaturen <100°C kleiner als 100 ppm sein. Bei Temperaturen im Bereich 150-200°C können jedoch auch 10000 ppm CO oder mehr toleriert werden (N. J. Bjerrum et. al. Journal of Applied Electrochemistry, 2001 ,31 , 773-779). Dies führt zu wesentlichen Vereinfachungen des vorgeschalteten Reformierungsprozesses und somit zu Kostensenkungen des gesamten Brennstoffzellensystems. Ein grosser Vorteil von Brennstoffzellen ist die Tatsache, dass bei der elektrochemischen Reaktion die Energie des Brennstoffes direkt in elektrische Energie und Wärme umgewandelt wird. Als Reakionsprodukt entsteht dabei an der Kathode Wasser. Als Nebenprodukt bei der elektrochemischen Reaktion entsteht 5 also Wärme. Für Anwendungen bei denen nur der Strom zum Antrieb von
Elektromotoren genutzt wird, wie z.B. für Automobilanwendungen, oder als vielfältiger Ersatz von Batteriesystemen muss die Wärme abgeführt werden, um ein Überhitzen des Systems zu vermeiden. Für die Kühlung werden dann zusätzliche, Energie verbrauchende Geräte notwendig, die den elektrischen Gesamt-
10 Wirkungsgrad der Brennstoffzelle weiter verringern. Für stationäre Anwendungen wie zur zentralen oder dezentralen Erzeugung von Strom und Wärme lässt sich die Wärme effizient durch vorhandene Technologien wie z.B. Wärmetauscher nutzen. Zur Steigerung der Effizienz werden dabei hohe Temperaturen angestrebt. Liegt die Betriebstemperatur oberhalb 100°C und ist die Temperaturdifferenz zwischen der
15 Umgebungstemperatur und der Betriebstemperatur groß, so wird es möglich das
Brennstoffzellensystem effizienter zu kühlen beziehungsweise kleine Kühlflächen zu verwenden und auf zusätzliche Geräte zu verzichten im Vergleich zu Brennstoffzellen, die aufgrund der Membranbefeuchtung bei unter 100°C betrieben werden müssen.
20.
Neben diesen Vorteilen weist ein solches Brennstoffzellensystem einen entscheidenden Nachteil auf. So liegt Phosphorsäure oder Polyphosphorsäure als Elektrolyt vor, die durch ionische Wechselwirkungen nicht permanent an das basische Polymer gebunden ist und durch Wasser ausgewaschen werden kann.
25 Wasser wird wie oben beschrieben bei der elektrochemischen Reaktion an der
Kathode gebildet. Liegt die Betriebstemperatur oberhalb 100°C so wird das Wasser zum Grossteil als Dampf durch die Gasdiffusionselektrode abgeführt und der Säureverlust ist sehr gering. Fällt die Betriebstemperatur jedoch unter 100°C, z.B. beim An- und Abfahren der Zelle oder in Teillastbetrieb wenn eine hohe
30 Stromausbeute angestrebt wird, so kondensiert das gebildete Wasser und kann zu einem verstärkten Auswaschen des Elektrolyten, hochkonzentrierte Phosphorsäure oder Polyphosphorsäure, führen. Dies kann bei der vorstehend beschriebenen Fahrweise der Brennstoffzelle zu einem stetigen Verlust der Leitfähigkeit und Zellleistung führen, welche die Lebensdauer der Brennstoffzelle vermindern kann.
35
Weiterhin können die bekannten mit Phosphorsäure dotierten Membranen nicht in der sogenannten Direkt-Methanol-Brennstoffzelle (DMBZ) eingesetzt werden. Derartige Zellen sind jedoch von besonderem Interesse, da ein Methanol-Wasser- Gemisch als Brennstoff eingesetzt wird. Wird eine bekannte Membran auf Basis von Phosphorsäure verwendet, so versagt die Brennstoffzelle nach einer recht kurzen Zeit.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine neuartige Polymerelektrolytmembran bereitzustellen, bei der ein Auswaschen des Elektrolyten verhindert wird. Eine Brennstoffzelle enthaltend eine erfindungsgemasse Polymerelektrolytmembran soll sich eignen für reinen Wasserstoff sowie für zahlreiche kohlenstoffhaltige Brennstoffe insbesondere Erdgas, Benzin, Methanol und Biomasse.
Des weiteren soll eine erfindungsgemäße Membran kostengünstig und einfach hergestellt werden können. Darüber hinaus war es mithin Aufgabe der vorliegenden Erfindung Polymerelektrolytmembranen zu schaffen, die eine hohe Leistungsfähigkeit, insbesondere eine hohe Leitfähigkeit zeigen.
Des weiteren sollte eine Polymerelektrolytmembran geschaffen werden, die eine hohe mechanische Stabilität, beispielsweise einen hohen E-Modul, eine hohe Reißfestigkeit, ein geringes Kriechen und eine hohe Bruchzähigkeit aufweist.
Darüber hinaus war es mithin Aufgabe der vorliegenden Erfindung eine Membran zur
Verfügung zu stellen, die auch im Betrieb eine geringe Durchlässigkeit gegen die verschiedensten Brennstoffe, wie beispielsweise Wasserstoff oder Methanol aufweist, wobei diese Membran auch eine geringe Sauerstoffpermeabilität zeigen sollte.
Gelöst werden diese Aufgaben durch die Herstellung einer Vinylhaltigen Sulfonsaure umfassenden Flüssigkeit und ein Verfahren zur Herstellung einer Polymerelektrolytmembran durch Quellen eines Filmes aus einem Polymer in dieser Flüssigkeit, und anschliessende Polymerisation zu einer Polyvinylsulfonsäure. Eine erfindungsgemasse Polymerelektrolytmembran besitzt eine sehr geringe
Methanolpermeabilität und eignet sich insbesondere für den Einsatz in einer DMBZ. Somit ist ein dauerhafter Betrieb einer Brennstoffzelle mit einer Vielzahl von Brennstoffen wie Wasserstoff, Erdgas, Benzin, Methanol oder Biomasse möglich. Hierbei ermöglichen die Membranen eine besonders hohe Aktivität dieser Brennstoffe. Bedingt durch die hohen Temperaturen kann die Methanoloxidation hierbei mit hoher Aktivität erfolgen.
Darüber hinaus zeigen Membranen der vorliegenden Erfindung eine hohe mechanische Stabilität, insbesondere einen hohen E-Modul, eine hohe Reißfestigkeit, ein geringes Kriechen und eine hohe Bruchzähigkeit. Des weiteren zeigen diese Membranen eine überraschend lange Lebensdauer.
Gegenstand der vorliegenden Erfindung ist daher eine stabile protonenleitende Elektrolytmembran erhältlich durch ein Verfahren umfassend die Schritte
A) Quellen einer Polymerfolie mit einer Vinylhaltigen Sulfonsaure umfassenden . Flüssigkeit und
B) Polymerisation der in Schritt A) eingebrachten Flüssigkeit vorhandenen Vinylhaltigen Sulfonsaure.
Bei der in Schritt A) eingesetzten Polymerfolie handelt es sich um eine Folie die eine Quellung von mindestens 3 % in der Vinylsulfonsäurehaltigen Flüssigkeit aufweist. Als Quellung wird eine Gewichtszunahme der Folie von mindestens 3 Gew.-% verstanden. Bevorzugt beträgt die Quellung mindestens 5 %, besonders bevorzugt mindestens 10%.
Bestimmung der Quellung Q wird gravimetrisch bestimmt aus der Masse des Filmes vor der Quellung m0 und der Masse des Filmes nach der Polymerisation gemäß Schritt B), m2. Q = (m2-m0)/m0 x 100
Die Quellung erfolgt vorzugsweise bei einer Temperatur oberhalb 0°C, insbesondere zwischen Raumtemperatur (20°C) und 180°C in einer vinylsulfonsäurehaltigen Flüssigkeit, die mindestens 5 Gew.-% Vinylsulfonsäure enthält. Des weiteren kann die Quellung auch bei erhöhtem Druck durchgeführt werden. Hierbei ergeben sich die Grenzen aus wirtschaftlichen Überlegungen und technischen Möglichkeiten.
Die zur Quellung eingesetzte Polymerfolie weist im allgemeinen eine Dicke im Bereich von 5 bis 3000μm, vorzugsweise 10 bis 1500 μm und besonders bevorzugt auf. Die Herstellung derartiger Folien aus Polymeren ist im allgemeinen bekannt, wobei diese teilweise kommerziell erhältlich sind. Der Begriff Polymerfolie bedeutet, dass die zum Quellen einzusetzende Folie Polymere umfasst, wobei diese Folie weitere allgemein übliche Additive enthalten kann.
Zu den bevorzugten Polymeren gehören unter anderem Polyolefine, wie
Poly(chloropren), Polyacetylen, Polyphenylen, Poly(p-xylylen), Polyarylmethylen, Polystyrol, Polymethylstyrol, Polyvinylalkohol, Polyvinylacetat, Polyvinylether, Polyvinylamin, Poly(N-vinylacetamid), Polyvinylimidazol, Polyvinylcarbazol, Polyvinylpyrrolidon, Polyvinylpyridin, Polyvinylchlorid, Polyvinylidenchlorid, Polytetrafluorethylen, Polyhexafluorpropylen, Copolymere von PTFE mit Hexafluoropropylen, mit Perfluorpropylvinylether, mit Trifluoronitrosomethan, mit Carbalkoxy-perfluoralkoxyvinylether, Polychlortrifluorethylen, Polyvinylfluorid, Polyvinylidenfluorid, Polyacrolein, Polyacrylamid, Polyacrylnitril, Polycyanacrylate, PolymethaciNlimid, Cycloolefinische Copolymere, insbesondere aus Norbomen;
Polymere mit C-O-Bindungen in der Hauptkette, beispielsweise Polyacetal, Polyoxymethylen, Polyether, Polypropylenoxid, Polyepichlorhydrin, Polytetrahydrofuran, Polyphenylenoxid, Polyetherketon, Polyester, insbesondere Polyhydroxyessigsäure, Polyethylenterephthalat, Polybutylenterephthalat, Polyhydroxybenzoat, Polyhydroxypropionsäure, Polypivalolacton, Polycaprolacton,
Polymalonsäure, Polycarbonat;
Polymere C-S-Bindungen in der Hauptkette, beispielsweise Polysulfidether, Polyphenylensulfid, Polyethersulfon; Polymere C-N-Bindungen in der Hauptkette, beispielsweise Polyimine, Polyisocyanide.Polyetherimin, Polyetherimide, Polyanilin, Polyaramide,
Polyamide, Polyhydrazide, Polyurethane, Polyimide, Polyazole, Polyazoletherketon, Polyazine;
Flüssigkristalline Polymere, insbesondere Vectra sowie Anorganische Polymere, beispielsweise Polysilane, Polycarbosilane, Polysiloxane, Polykieselsäure, Polysilikate, Silicone, Polyphosphazene und Polythiazyl.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung werden hochtemperaturstabile Polymere eingesetzt, die mindestens ein Stickstoff-, Sauerstoff- und/oder Schwefelatom in einer oder in unterschiedlichen Wiederholungseinheit enthalten.
Hochtemperaturstabil im Sinne der vorliegenden Erfindung ist ein Polymer, welches als Polymerer Elektrolyt in einer Brennstoffzelle bei Temperaturen oberhalb 120°C dauerhaft betrieben werden kann. Dauerhaft bedeutet, dass eine erfindungsgemäße Membran mindestens 100 Stunden, vorzugsweise mindestens 500 Stunden bei mindestens 120°C, vorzugsweise mindestens 160°C betrieben werden kann, ohne dass die Leistung, die gemäß der in WO 01/18894 A2 beschriebenen Methode gemessen werden kann, um mehr als 50%, bezogen auf die Anfangsleistung abnimmt.
Bei den in Schritt A) eingesetzten Polymeren handelt es sich vorzugsweise um Polymere, die eine Glasübergangstemperatur oder Vicat-Erweichungstemperatur VST/A/50 von mindestens 100°C, bevorzugt mindestens 150°C und ganz besonders bevorzugt mindestens 180°C haben. Besonders bevorzugt sind Polymere die mindestens ein Stickstoffatom in einer Wiederholungseinheit enthalten. Insbesondere bevorzugt sind Polymere, die mindestens einen aromatischen Ring mit mindestens einem Stickstoffheteroatom pro Wiederholungseinheit enthalten. Innerhalb dieser Gruppe sind insbesondere Polymere auf Basis von Polyazolen bevorzugt. Diese basischen Polyazol-Polymere enthalten mindestens einen aromatischen Ring mit mindestens einem Stickstoffheteroatom pro Wiederholungseinheit.
Bei dem aromatischen Ring handelt es sich vorzugsweise um einen fünf- oder sechsgliedrigen Ring mit eins bis drei Stickstoffatomen, der mit einem anderen Ring, insbesondere einem anderen aromatischen Ring, anelliert sein kann.
Polymere auf Basis von Polyazol enthalten wiederkehrende Azoleinheiten der allgemeinen Formel (I) und/oder (II) und/oder (III) und/oder (IV) und/oder (V) und/oder (VI) und/oder (VII) und/oder (VIII) und/oder (IX) und/oder (X) und/oder (XI) und/oder (XII) und/oder (XIII) und/oder (XIV) und/oder (XV) und/oder (XVI) und/oder (XVI) und/oder (XVII) und/oder (XVIII) und/oder (XIX) und/oder (XX) und/oder (XXI) und/oder (XXII)
"H> . >-Ar1H- (I)
N X n
(ii) X n
Figure imgf000010_0001
N-N
-f-Ar6-^ -Ar6-h (V) X n
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0003
Figure imgf000011_0004
Figure imgf000011_0005
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0003
Figure imgf000012_0004
Figure imgf000012_0005
Figure imgf000013_0001
Figure imgf000013_0002
(XVIII)
Figure imgf000013_0003
Figure imgf000013_0004
Figure imgf000013_0005
Figure imgf000013_0006
worin
Ar gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar1 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar2 gleich oder verschieden sind und für eine zwei oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar3 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar4 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar5 gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar6 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar7 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar8 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar9 gleich oder verschieden sind und für eine zwei- oder drei- oder vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar10 gleich oder verschieden sind und für eine zwei- oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar11 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, X gleich oder verschieden ist und für Sauerstoff, Schwefel oder eine
Aminogruppe, die ein Wasserstoffatom, eine 1- 20 Kohlenstoffatome aufweisende Gruppe, vorzugsweise eine verzweigte oder nicht verzweigte
Alkyl- oder Alkoxygruppe, oder eine Arylgruppe als weiteren Rest trägt R gleich oder verschieden für Wasserstoff, eine Alkylgruppe und eine aromatische
Gruppe steht und n, m eine ganze Zahl größer gleich 10, bevorzugt größer gleich 100 ist. Erfindungsgemäß bevorzugte aromatische oder heteroaromatische Gruppen leiten sich von Benzol, Naphthalin, Biphenyl, Diphenylether, Diphenylmethan, Diphenyldimethylmethan, Bisphenon, Diphenylsulfon, Thiophen, Furan, Pyrrol, Thiazol, Oxazol, Imidazol, Isothiazol, Isoxazol, Pyrazol, 1 ,3,4-Oxadiazol, 2,5- Diphenyl-1 ,3,4-oxadiazol, 1 ,3.4-Thiadiazol, 1,3,4-Triazol, 2,5-Diphenyl-1 ,3,4-triazol, 1 ,2,5-Triphenyl-1 ,3,4-triazol, 1 ,2,4-Oxadiazol, 1 ,2,4-Thiadiazoi, 1 ,2,4-Triazol, 1 ,2,3- Triazol, 1 ,2,3,4-Tetrazol, Benzo[b]thiophen, Benzo[b]furan, Indol, Benzo[c]thiophen, Benzo[c]furan, Isoindol, Benzoxazol, Benzothiazol, Benzimidazol, Benzisoxazol, Benzisothiazol, Benzopyrazol, Benzothiadiazol, Benzotriazol, Dibenzofuran, Dibenzothiophen, Carbazol, Pyridin, Bipyridin, Pyrazin, Pyrazol, Pyrimidin, Pyridazin,
1 ,3,5-Triazin, 1 ,2,4-Triazin, 1 , 2,4, 5-Triazin, Tetrazin, Chinolin, Isochinolin, Chinoxalin, Chinazolin, Cinnolin, 1 ,8-Naphthyridin, 1 ,5-Naphthyridin, 1,6-Naphthyridin, 1 ,7- Naphthyridin, Phthalazin, Pyridopyrimidin, Purin, Pteridin oder Chinolizin, 4H- Chinolizin, Diphenylether, Anthracen, Benzopyrrol, Benzooxathiadiazol, Benzooxadiazol, Benzopyridin, Benzopyrazin, Benzopyrazidin, Benzopyrimidin,
Benzotriazin, Indolizin, Pyridopyridin, Imidazopyrimidin, Pyrazinopyrimidin, Carbazol, Aciridin, Phenazin, Benzochinolin, Phenoxazin, Phenothiazin, Acridizin, Benzopteridin, Phenanthrolin und Phenanthren ab, die gegebenenfalls auch substituiert sein können.
Dabei ist das Substitionsmuster von Ar1 , Ar4, Ar6, Ar7, Ar8, Ar9, Ar10, Ar11 beliebig, im Falle vom Phenylen beispielsweise kann Ar1, Ar4, Ar6, Ar7, Ar8, Ar9, Ar10, Ar11 ortho-, meta- und para-Phenylen sein. Besonders bevorzugte Gruppen leiten sich von Benzol und Biphenylen, die gegebenenfalls auch substituiert sein können, ab.
Bevorzugte Alkylgruppen sind kurzkettige Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, wie z. B. Methyl-, Ethyl-, n- oder i-Propyl- und t-Butyl-Gruppen.
Bevorzugte aromatische Gruppen sind Phenyl- oder Naphthyl-Gruppen. Die Alkylgruppen und die aromatischen Gruppen können substituiert sein.
Bevorzugte Substituenten sind Halogenatome wie z. B. Fluor, Aminogruppen, Hydroxygruppen oder kurzkettige Alkylgruppen wie z. B. Methyl- oder Ethylgruppen.
Bevorzugt sind Polyazole mit wiederkehrenden Einheiten der Formel (I) bei denen die Reste X innerhalb einer wiederkehrenden Einheit gleich sind.
Die Polyazole können grundsätzlich auch unterschiedliche wiederkehrende Einheiten aufweisen, die sich beispielsweise in ihrem Rest X unterscheiden. Vorzugsweise jedoch weist es nur gleiche Reste X in einer wiederkehrenden Einheit auf.
In einer weiteren Ausführungsform der vorliegenden Erfindung ist das Polymer enthaltend wiederkehrende Azoleinheiten ein Copolymer oder ein Blend, das mindestens zwei Einheiten der Formel (I) bis (XXII) enthält, die sich voneinander unterscheiden. Die Polymere können als Blockcopolymere (Diblock, Triblock), statistische Copolymere, periodische Copolymere und/oder alternierende Polymere vorliegen.
Die Anzahl der wiederkehrende Azoleinheiten im Polymer ist vorzugsweise eine ganze Zahl größer gleich 10. Besonders bevorzugte Polymere enthalten mindestens 100 wiederkehrende Azoleinheiten.
Im Rahmen der vorliegenden Erfindung sind Polymere enthaltend wiederkehrenden Benzimidazoleinheiten bevorzugt. Einige Beispiele der äußerst zweckmäßigen
Polymere enthaltend wiederkehrende Benzimidazoleinheiten werden durch die nachfolgende Formeln wiedergegeben:
Figure imgf000016_0001
Figure imgf000016_0002
Figure imgf000017_0001
Figure imgf000017_0002
Figure imgf000017_0003
Figure imgf000017_0004
Figure imgf000017_0005
10
Figure imgf000018_0001
H
Figure imgf000018_0002
Figure imgf000018_0003
Figure imgf000018_0004
Figure imgf000018_0005
10
Figure imgf000018_0006
Figure imgf000018_0007
Figure imgf000019_0001
Figure imgf000019_0002
Figure imgf000019_0003
Figure imgf000019_0004
Figure imgf000019_0005
Figure imgf000019_0006
wobei n und m eine ganze Zahl größer gleich 10, vorzugsweise größer gleich 100 ist. Die in Schritt A) eingesetzten Polyazole, insbesondere jedoch die Polybenzimidazole zeichnen sich durch ein hohes Molekulargewicht aus. Gemessen als Intrinsische Viskosität beträgt dieses vorzugsweise mindestens 0,2 dl/g, insbesondere 0,8 bis 10 dl/g, besonders bevorzugt 1 bis 5 dl/g.
Weitere bevorzugte Polyazol-Polymere sind Polyimidazole, Polybenzthiazole, Polybenzoxazole, Polytriazole, Polyoxadiazole, Polythiadiazole, Polypyrazole, Polyquinoxalines, Poly(pyridine), Poly(pyrimidine), und Poly(tetrazapyrene).
Besonders bevorzugt ist Celazole der Fa. Celanese, insbesondere ein solches bei dem das in der deutschen Patentanmeldung Nr. 10129458.1 beschriebene durch Sieben aufgearbeitete Polymer eingesetzt wird.
Darüber hinaus sind Polyazole bevorzugt, die gemäß der in der deutschen Patentanmeldung Nr. 10117687.2 beschriebenen Methoden erhalten wurden.
Zu den bevorzugten Polymeren gehören Polysulfone, insbesondere Polysulfon mit aromatischen und/oder heteroaromatischen Gruppen in der Hauptkette. Gemäß einem besonderen Aspekt der vorliegenden Erfindung weisen bevorzugte Polysulfone und Polyethersulfone eine Schmelzvolumenrate MVR 300/21 ,6 kleiner oder gleich 40 cm3/ 10 min, insbesondere kleiner oder gleich 30 cm3/ 10 min und besonders bevorzugt kleiner oder gleich 20 cm3/ 10 min gemessen nach ISO 1133 auf. Hierbei sind Polysulfone mit einer Vicat-Erweichungstemperatur VST/A/50 von 180°C bis 230°C bevorzugt. In noch einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das Zahlenmittel des Molekulargewichts von den
Polysulfonen größer als 30.000 g/mol.
Zu den Polymeren auf Basis von Polysulfon gehören insbesondere Polymere, welche wiederkehrende Einheiten mit verknüpfenden Sulfon-Gruppen entsprechend den allgemeinen Formeln A, B, C, D, E, F und/oder G aufweisen:
— O— R-SO2-R — (A)
— O— R-SO2-R— O— R — (ß)
— O— R-SO2-R-O— R— R — (°)
Figure imgf000021_0001
— 0— R-SO2-R— R-SO2-R — (E)
— 0— R-SO2-R— R-SO2-R— 0— R-SO2-] (F)
+0— R-SO2-R-J- S02-R— R+ (G),
worin die Reste R unabhängig voneinander gleich oder verschieden eine aromatische oder heteroaromatische Gruppen darstellen, wobei diese Reste zuvor näher erläutert wurden. Hierzu gehören insbesondere 1 ,2-Phenylen, 1 ,3-Phenylen, 1 ,4-Phenylen, 4,4'-Biphenyl, Pyridin, Chinolin, Naphthalin, Phenanthren.
Zu den im Rahmen der vorliegenden Erfindung bevorzugten Polysulfone gehören Homo- und Copolymere, beispielsweise statistische Copolymere. Besonders bevorzugte Polysulfone umfassen wiederkehrende Einheiten der Formeln H bis N:
Figure imgf000021_0002
Figure imgf000021_0003
Figure imgf000021_0004
Figure imgf000021_0005
Figure imgf000022_0001
mit n < o
Figure imgf000022_0002
Die zuvor beschriebenen Polysulfone können unter den Handelsnamen ®Victrex 200 P, ®Victrex 720 P, ®Ultrason E, ®Ultrason S, ®Mindel, ®Radel A, ®Radel R, ®Victrex HTA, ®Astrel und ®Udel kommerziell erhalten werden.
Darüber hinaus sind Polyetherketone, Polyetherketonketone, Polyetheretherketone, Polyetheretherketonketone und Polyarylketone besonders bevorzugt. Diese Hochleistungspolymere sind an sich bekannt und können unter den Handelsnamen Victrex® PEEK™, ®Hostatec, ®Kadel kommerziell erhalten werden.
Die vorstehend genannten Polymeren können einzeln oder als Mischung (Blend) eingesetzt werden. Hierbei sind insbesondere Blends bevorzugt, die Polyazole und/oder Polysulfone enthalten. Durch die Verwendung von Blends können die mechanischen Eigenschaften verbessert und die Materialkosten verringert werden.
Zusätzlich kann der Polymerfilm weitere Modifizierungen, beispielsweise durch Vernetzung wie in der deutschen Patentanmeldung Nr. 10110752.8 oder in WO 00/44816 aufweisen. In einer bevorzugten Ausführungsform enthält die zur Quellung eingesetzte Polymerfolie aus einem basischen Polymer und mindestens einer Blendkomponente zusätzlich einem Vernetzer wie in der deutschen Patentanmeldung Nr. 10140147.7 beschrieben.
Zusätzlich ist es von Vorteil, wenn die zur Quellung eingesetzte Polymerfolie zuvor wie in der deutschen Patentanmeldung Nr. 10109829.4 beschrieben behandelt wird. Diese Variante ist vorteilhaft um die Quellung der Polymerfolie zu erhöhen.
Anstelle der mittels klassischer Verfahren hergestellten Polymerfolien können auch die polyazolhaltigen Polymermembranen wie in den deutschen Patentanmeldungen Nr. 10117686.4, 10144815.5, 10117687.2 beschrieben, eingesetzt werden. Hierzu werden diese von der Polyphoshorsäure und/oder Phosphorsäure befreit und in Schritt A) eingesetzt. Die erfindungsgemäße Polymermembran kann noch weitere Zusätze an Füll- und/oder Hilfsstoffen aufweisen.
Zur weiteren Verbesserung der anwendungstechnischen Eigenschaften können der Membran zusätzlich noch Füllstoffe, insbesondere protonenleitende Füllstoffe, sowie zusätzliche Säuren zugesetzt werden. Die Zugabe kann beispielsweise bei Schritt A) erfolgen. Des weiteren können diese Additive, falls diese in flüssiger Form vorliegen, auch nach der Polymerisation gemäß Schritt B) beigefügt werden.
Nicht limitierende Beispiele für Protonenleitende Füllstoffe sind
Sulfate wie: CsHSO4, Fe(SO4)2, (NH4)3H(SO4)2, LiHSO4, NaHSO4, KHSO4,
RbSO l LiN2H5SO4, NH4HSO , Phosphate wie Zr3(PO4)4, Zr(HPO4)2, HZr2(PO4)3, UO2PO4.3H2O, H8UO2PO4,
Ce(HPO4)2, Ti(HPO4)2, KH2PO4, NaH2PO4, LiH2PO4, NH4H2PO4, CsH2PO4, CaHPO4, MgHPO4, HSbP2O8, HSb3P2Oι , H5Sb5P2O2o,
Polysäure wie H3PWι2O40.nH2O (n=21 -29), H3SiWι2O40.nH2O (n=21-29), HxWO3, HSbWO6, H3PMθι2O40, H2Sb4On, HTaWO6, HNbO3, HTiNbO5, HTiTaO5, HSbTeO6, H5Ti4O9, HSbO3, H2MoO4 Selenite und Arsenide wie (NH4)3H(SeO4)2, UO2AsO4, (NH4)3H(SeO4)2l KH2AsO4, Cs3H(SeO4)2, Rb3H(SeO4)2,
Oxide wie AI2O3, Sb2O5, ThO2, SnO2, ZrO2, MoO3
Silikate wie Zeolithe, Zeolithe(NH +), Schichtsilikate, Gerüstsilikate, H-Natrolite, H-Mordenite, NH4-Analcine, NH4-Sodalite, NH4-Gallate, H- Montmorillonite Säuren wie HCIO4, SbF5
Füllstoffe wie Carbide, insbesondere SiC, Si3N4, Fasern, insbesondere Glasfasern, Glaspulvern und/oder Polymerfasern, bevorzugt auf Basis von Polyazolen.
Diese Additive können in der protonenleitenden Polymermembran in üblichen
Mengen enthalten sein, wobei jedoch die positiven Eigenschaften, wie hohe Leitfähigkeit, hohe Lebensdauer und hohe mechanische Stabilität der Membran durch Zugabe von zu großen Mengen an Additiven nicht allzu stark beeinträchtigt werden sollten. Im allgemeinen umfaßt die Membran nach der Polymerisation gemäß Schritt B) höchstens 80 Gew.-%, vorzugsweise höchstens 50 Gew.-% und besonders bevorzugt höchstens 20 Gew.-% Additive.
Als weiteres kann diese Membran auch perfluorierte Sulfonsäure-Additive (vorzugsweise 0,1-20 Gew.-%, bevorzugt 0,2-15 Gew.-%, ganz bevorzugt 0,2- 10 Gew.-%) enthalten. Diese Additive führen zur Leistungsverbesserung, in der Nähe der Kathode zur Erhöhung der Sauerstofflöslichkeit und Sauerstoffdiffusion und zur Verringerung der Adsorbtion von Phosphorsäure und Phosphat zu Platin. (Electrolyte additives for phosphoric acid fuel cells. Gang, Xiao; Hjuler, H. A.; Olsen, C; Berg, R. W.; Bjerrum, N. J.. Chem. Dep. A, Tech. Univ. Denmark, Lyngby, Den. J.
Electrochem. Soc. (1993), 140(4), 896-902 und Perfluorosulfonimide as an additive in phosphoric acid fuel cell. Razaq, M.; Razaq, A.; Yeager, E.; DesMarteau, Darryl D.; Singh, S. Case Cent. Electrochem. Sei., Case West. Reserve Univ., Cleveland, OH, USA. J. Electrochem. Soc. (1989), 136(2), 385-90.) Nicht limitierende Beispiele für persulfonierte Additive sind:
Trifluomethansulfonsäure, Kaliumtrifluormethansulfonat, Natriumtrifluormethansulfonat, Lithiumtrifluormethansulfonat, Ammoniumtrifluormethansulfonat, Kaliumperfluorohexansulfonat, Natriumperfluorohexansulfonat, Lithiumperfluorohexansulfonat, Ammoniumperfluorohexansulfonat, Perfluorohexansulfonsäure,
Kaliumnonafluorbutansulfonat, Natriumnonafluorbutansulfonat, Lithiumnonafluorbutansulfonat, Ammoniumnonafluorbutansulfonat, Cäsiumnonafluorbutansulfonat, Triethylammoniumperfluorohexasulfonat und Perflurosulfoimide.
Vinylhaltige Phosphonsäuren sind in der Fachwelt bekannt. Es handelt sich hierbei um Verbindungen, die mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung und mindestens eine Phosphonsäuregruppe aufweisen. Vorzugsweise weisen die zwei Kohlenstoffatome, die Kohlenstoff-Kohlenstoff-Doppelbindung bilden, mindestens zwei, vorzugsweise 3 Bindungen zu Gruppen auf, die zu einer geringen sterischen
Hinderung der Doppelbindung führen. Zu diesen Gruppen gehören unter anderem Wasserstoffatome und Halogenatome, insbesondere Fluoratome. Im Rahmen der vorliegenden Erfindung ergibt sich die Polyvinylphosphonsäure aus dem Polymerisationsprodukt, das durch Polymerisation der Vinylhaltigen Phosphonsäure allein oder mit weiteren Monomeren und/oder Vernetzern erhalten wird.
Die Vinylhaltige Sulfonsaure kann ein, zwei, drei oder mehr Kohlenstoff-Kohlenstoff- Doppelbindungen umfassen. Des weiteren kann die Vinylhaltige Sulfonsaure ein, zwei, drei oder mehr Sulfonsäuregruppen enthalten.
Im allgemeinen enthält die Vinylhaltige Sulfonsaure 2 bis 20, vorzugsweise 2 bis 10 Kohlenstoffatome. Bei der in Schritt A) verwendeten vinylhaltigen Sulfonsaure handelt es sich vorzugsweise Verbindungen der Formel
^iy— R— (so3z)x
worin R eine Bindung, eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe,
Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können, Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet y eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet
und/oder der Formel
Figure imgf000025_0001
worin
R eine Bindung, eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können, Z unabhängig voneinander Wasserstoff, C1 -C15-Alkylgruppe, C1 -C15-
Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet und/oder der Formel
R-(S03Z)x
=
A worin
A eine Gruppe der Formeln COOR2, CN, CONR2 2, OR2 und/oder R2 darstellt, worin R2 Wasserstoff, eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können R eine Bindung, eine zweibindige C1-C15-Alkylengruppe, zweibindige C1-C15-
Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5- C20-Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können, Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet.
Zu den bevorzugten Vinylhaltigen Sulfonsäuren gehören unter anderem Alkene, die
Sulfonsäuregruppen aufweisen, wie Ethensulfonsäure, Propensulfonsäure, Butensulfonsäure; Acrylsäure- und/oder Methacrylsäure-Verbindungen, die Sulfonsäuregruppen aufweisen, wie beispielsweise 2-Sulfomethyl-acrylsäure, 2-Sulfomethyl-methacrylsäure, 2-Sulfomethyl-acrylsäureamid und 2-Sulfomethyl- methacrylsäureamid.
Besonders bevorzugt wird handelsübliche Vinylsulfonsäure (Ethensulfonsäure), wie diese beispielsweise von der Firma Aldrich oder Clariant GmbH erhältlich ist, eingesetzt. Eine bevorzugte Vinylsulfonsäure weist eine Reinheit von mehr als 70%, insbesondere 90 % und besonders bevorzugt mehr als 97% Reinheit auf.
Die Vinylhaltigen Sulfonsäuren können des weiteren auch in Form von Derivaten eingesetzt werden, die anschließend in die Säure überführt werden können, wobei die Überführung zur Säure auch in polymerisiertem Zustand erfolgen kann. Zu diesen Derivaten gehören insbesondere die Salze, die Ester, die Amide und die
Halogenide der Vinylhaltigen Sulfonsäuren.
Die in Schritt A) hergestellte gequollene Polymerfolie umfasst nach der Quellung vorzugsweise mindestens 1 Gew.-%, insbesondere mindestens 10 Gew.-% und besonders bevorzugt mindestens 30 Gew.-%, bezogen auf das Gesamtgewicht, vinylhaltige Sulfonsaure. Gemäß einem besonderen Aspekt der vorliegenden Erfindung umfasst die in Schritt A) hergestellte gequollene Polymerfolie höchstens 60 Gew.-% Polymerfolie, insbesondere höchstens 50 Gew.-% Polymerfolie und besonders bevorzugt höchstens 30 Gew.-% Polymerfolie, bezogen auf das Gesamtgewicht. Diese Größe kann aus der durch die Quellung bedingten Gewichtszunahme bestimmt werden.
Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung umfasst die Mischung gemäß Schritt A) Vinylhaltige Phosphonsäuren. Durch den Zusatz von
Vinylhaltiger Phosphonsäure können die Hochtemperatureigenschaften der Membran überraschend verbessert werden. Selbst einem relativ geringen Einsatz dieser Phosphonsäuren kann eine erfindungsgemäße Membran kurzfristig auch ohne Befeuchtung betrieben werden, ohne dass die Membran hierdurch zerstört werden würde. Wird der Anteil an Vinylhaltiger Phosphonsäure erhöht, so steigt die
Leistungsfähigkeit bei zunehmender Temperatur an, wobei diese Leistungsfähigkeit auch ohne Befeuchtung erzielt wird.
Die in der Membran enthaltene Polyvinylphosphonsäure, die durch reaktive Gruppen auch vernetzt werden kann, bildet mit dem hochtemperaturstabilen Polymeren ein interpenetrierendes Netzwerk. Daher wird die Auswaschung des Elektrolyten durch gebildetes Produktwasser oder im Falle einer DMBZ durch den wässrigen Brennstoff deutlich vermindert. Eine erfindungsgemasse Polymerelektrolytmembran besitzt eine sehr geringe Methanolpermeabilität und eignet sich insbesondere für den Einsatz in einer DMBZ. Somit ist ein dauerhafter Betrieb einer Brennstoffzelle mit einer Vielzahl von Brennstoffen wie Wasserstoff, Erdgas, Benzin, Methanol oder Biomasse möglich. Hierbei ermöglichen die Membranen eine besonders hohe Aktivität dieser Brennstoffe. Bei hohen Temperaturen kann die Methanoloxidation hierbei mit hoher Aktivität erfolgen. In einer besonderen Ausführungsform eignen sich diese Membranen für den Betrieb in einer sogenannten dampfförmigen DMBZ, insbesondere bei Temperaturen im Bereich von 100 bis 200°C.
Durch die Möglichkeit des Betriebes bei Temperaturen oberhalb 100°C nimmt Empfindlichkeit des Pt-Katalysators gegenüber Gasverunreinigungen, insbesondere CO, stark ab. CO entsteht als Nebenprodukt bei der Reformierung des wasserstoffreichen Gases aus Kohlenstoffhaltigen Verbindungen, wie z.B. Erdgas, Methanol oder Benzin oder auch als Zwischenprodukt bei der direkten Oxidation von Methanol. Typischerweise kann der CO-Gehalt des Brennstoffes bei Temperaturen oberhalb 120°C größer als 5000 ppm sein, ohne dass die katalytische Wirkung des Pt-Katalysators drastisch reduziert wird. Bei Temperaturen im Bereich 150-200° können jedoch auch 10000 ppm CO oder mehr toleriert werden (N. J. Bjerrum et. al. Journal of Applied Electrochemistry, 2001 ,31 , 773-779). Dies führt zu wesentlichen Vereinfachungen des vorgeschalteten Reformierungsprozesses und somit zu Kostensenkungen des gesamten Brennstoffzellensystems. Eine erfindungsgemäße Membran mit hohem Phosphonsäuregehalt zeigt über einen großen Temperaturbereich eine hohe Leitfähigkeit, die auch ohne eine zusätzliche Befeuchtung erzielt wird. Des weiteren kann eine Brennstoffzelle, die mit einer erfindungsgemäßen Membran ausgestattet ist, auch bei tiefen Temperaturen, beispielsweise bei 5°C mit Befeuchtung betrieben werden, falls der
Sulfonsäuregehalt relativ hoch ist.
Vinylhaltige Phosphonsäuren sind in der Fachwelt bekannt. Es handelt sich hierbei um Verbindungen, die mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung und mindestens eine Phosphonsäuregruppe aufweisen. Vorzugsweise weisen die zwei
Kohlenstoffatome, die Kohlenstoff-Kohlenstoff-Doppelbindung bilden, mindestens zwei, vorzugsweise 3 Bindungen zu Gruppen auf, die zu einer geringen sterischen Hinderung der Doppelbindung führen. Zu diesen Gruppen gehören unter anderem Wasserstoffatome und Halogenatome, insbesondere Fluoratome. Im Rahmen der vorliegenden Erfindung ergibt sich die Polyvinylphosphonsäure aus dem
Polymerisationsprodukt, das durch Polymerisation der Vinylhaltigen Phosphonsäure allein oder mit weiteren Monomeren und/oder Vernetzern erhalten wird.
Die Vinylhaltige Phosphonsäure kann ein, zwei, drei oder mehr Kohlenstoff- Kohlenstoff-Doppelbindungen umfassen. Des weiteren kann die Vinylhaltige
Phosphonsäure ein, zwei, drei oder mehr Phosphonsäuregruppen enthalten.
Im allgemeinen enthält die Vinylhaltige Phosphonsäure 2 bis 20, vorzugsweise 2 bis 10 Kohlenstoffatome.
Bei der in Schritt A) verwendeten vinylhaltigen Phosphonsäure handelt es sich vorzugsweise um Verbindungen der Formel
Figure imgf000028_0001
worin R eine Bindung, eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe,
Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können, Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet y eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet
und/oder der Formel
Figure imgf000029_0001
worin
R eine Bindung, eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können, Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15-
Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet und/oder der Formel
R-(P03Z2)x
=
A worin
A eine Gruppe der Formeln COOR2, CN, CONR2 2, OR2 und/oder R2 darstellt, worin R2 Wasserstoff, eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können
R eine Bindung, eine zweibindige C1-C15-Alkylengruppe, zweibindige C1-C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5- C20-Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können, Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15-
Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet. Zu den bevorzugten Vinylhaltigen Phosphonsäuren gehören unter anderem Alkene, die Phosphonsäuregruppen aufweisen, wie Ethenphosphonsäure, Propenphosphonsäure, Butenphosphonsäure; Acrylsäure- und/oder Methacrylsäure- Verbindungen, die Phosphonsäuregruppen aufweisen, wie beispielsweise 2-Pfιosphonomethyl-acrylsäure, 2-Phosphonomethyl-methacrylsäure,
2-Phosphonomethyl-acrylsäureamid und 2-Phosphonomethyl-methacrylsäureamid.
Besonders bevorzugt wird handelsübliche Vinylphosphonsäure (Ethenphosphonsäure), wie diese beispielsweise von der Firma Aldrich oder Clariant GmbH erhältlich ist, eingesetzt. Eine bevorzugte Vinylphosphonsäure weist eine
Reinheit von mehr als 70%, insbesondere 90 % und besonders bevorzugt mehr als 97% Reinheit auf.
Die Vinylhaltigen Phosphonsäuren können des weiteren auch in Form von Derivaten eingesetzt werden, die anschließend in die Säure überführt werden können, wobei die Überführung zur Säure auch in polymerisiertem Zustand erfolgen kann. Zu diesen Derivaten gehören insbesondere die Salze, die Ester, die Amide und die Halogenide der Vinylhaltigen Phosphonsäuren.
Der Einsatz von Vinylhaltiger Phosphonsäure ist optional. Die in Schritt A) zur
Quellung eingesetzte Flüssigkeit umfasst vorzugsweise mindestens 20 Gew.-%, insbesondere mindestens 30 Gew.-% und besonders bevorzugt mindestens 50 Gew.-%, bezogen auf das Gesamtgewicht der Flüssigkeit, vinylhaltige Phosphonsäure.
Die in Schritt A) zur Quellung verwendete Flüssigkeit kann zusätzlich noch weitere organische und/oder anorganische Lösungsmittel enthalten. Zu den organischen Lösungsmitteln gehören insbesondere polar aprotische Lösungsmittel, wie Dimethylsulfoxid (DMSO), Ester, wie Ethylacetat, und polar protische Lösungsmittel, wie Alkohole, wie Ethanol, Propanol, Isopropanol und/oder Butanol. Zu den anorganischen Lösungsmittel zählen insbesondere Wasser, Phosphorsäure und Polyphosphorsäure.
Diese können die Verarbeitbarkeit positiv beeinflussen. Insbesondere kann durch Zugabe des organischen Lösungsmittels die Löslichkeit des Polymeren verbessert werden. Der Gehalt an vinylhaltiger Sulfonsaure in solchen Lösungen beträgt im allgemeinen mindestens 5 Gew.-%, vorzugsweise mindestens 10 Gew.-%, besonders bevorzugt zwischen 10 und 97 Gew.-%. Der Gehalt an vinylhaltiger Phosphonsäure in solchen Lösungen beträgt vorzugsweise mindestens 5 Gew.-%, vorzugsweise mindestens 10 Gew.-%, besonders bevorzugt zwischen 10 und 97
G--ew.- o%/
Das Gewichtsverhältnis von Vinylhaltiger Phosphonsäure zu Vinylhaltiger Sulfonsaure kann in weiten Bereichen liegen. Vorzugsweise liegt das Verhältnis von Vinylhaltiger Phosphonsäure zu Vinylhaltiger Sulfonsaure im Bereich von 1 :100 bis 99:1 , insbesondere im Bereich von 1 :10 bis 10:1. Bei einem Verhältnis größer oder gleich 1 :1 , insbesondere größer oder gleich 3:1 , besonders bevorzugt größer oder gleich 5:1 kann die Membran auch bei Temperaturen größer als 100°C ohne Befeuchtung betrieben werden.
In einer weiteren Ausführungsform der Erfindung enthält die Flüssigkeit umfassend vinylhaltige Sulfonsaure weitere zur Vernetzung befähigte Monomere. Bei diesen handelt es sich insbesondere um Verbindungen, die mindestens 2 Kohlenstoff- Kohlenstoff Doppelbindungen aufweisen. Bevorzugt werden Diene, Triene, Tetraene, Dimethylacrylate, Trimethylacrylate, Tetramethylacrylate, Diacrylate, Triacrylate, Tetraacrylate.
Besonders bevorzugt sind Diene, Triene, Tetraene der Formel
Figure imgf000031_0001
Dimethylacrylate, Trimethylycrylate, Tetramethylacrylate der Formel
Figure imgf000031_0002
Diacrylate, Triacrylate, Tetraacrylate der Formel
Figure imgf000031_0003
worin R eine C1-C15-Alkylgruppe, C5-C20-Aryl oder Heteroarylgruppe, NR', -SO2, PR', Si(R')2 bedeutet, wobei die vorstehenden Reste ihrerseits substituiert sein können,
R' unabhängig voneinander Wasserstoff, eine C1 -C15-Alkylgruppe, C1 -C15- Alkoxygruppe, C5-C20-Aryl oder Heteroarylgruppe bedeutet und n mindestens 2 ist.
Bei den Substituenten des vorstehenden Restes R handelt es sich vorzugsweise um Halogen, Hydroxyl, Carboxy, Carboxyl, Carboxylester, Nitrile, Amine, Silyl, Siloxan Reste.
Besonders bevorzugte Vernetzer sind Allylmethacrylat, Ethylenglykoldimethacrylat, Diethylenglykoldimethacrylat, Triethylenglykoldimethacrylat, Tetra- und Polyethylenglykoldimethacrylat, 1 ,3-Butandioldimethacrylat, Glycerindimethacrylat, Diurethandimethacrylat, Trimethylpropantrimethacrylat, Epoxyacrylate, beispielsweise Ebacryl, N'.N-Methylenbisacrylamid, Carbinol, Butadien, Isopren, Chloropren, Divinylbenzol und/oder Bisphenol-A-dimethylacrylat. Diese Verbindungen sind beispielsweise von Sartomer Company Exton, Pennsylvania unter den Bezeichnungen CN-120, CN104 und CN-980 kommerziell erhältlich.
Der Einsatz von Vernetzern ist optional, wobei diese Verbindungen üblich im Bereich zwischen 0,05 bis 30 Gew.-%, vorzugsweise 0,1 bis 20 Gew.-%, besonders bevorzugt 1 und 10 Gew.-%, bezogen auf das Gewicht aus vinylhaltiger Sulfonsaure und gegebenenfalls vinylhaltiger Phosphonsäure, eingesetzt werden können.
Die Vinylhaltige Sulfonsaure umfassende Flüssigkeit kann eine Lösung darstellen, wobei die Flüssigkeit auch suspendierte und/oder dispergierte Bestandteile enthalten kann. Die Viskosität der Vinylhaltigen Sulfonsaure umfassenden Flüssigkeit kann in weiten Bereichen liegen, wobei zur Einstellung der Viskosität eine Zugabe von Lösungsmitteln oder eine Temperaturerhöhung erfolgen kann. Vorzugsweise liegt die dynamische Viskosität im Bereich von 0,1 bis 10000 mPa*s, insbesondere 0,2 bis 2000 mPa*s, wobei diese Werte beispielsweise gemäß DIN 53015 gemessen werden können.
Die Quellung der Folie in Schritt A) erfolgt vorzugsweise bei Temperaturen oberhalb
0°C, besonders bevorzugt zwischen Raumtemperatur (20°C) und 160°C. Prinzipiell kann die Quellung auch bei niedrigeren Temperaturen erfolgen, jedoch wird die zur Quellung erforderliche Zeitspanne erhöht und somit die Wirtschaftlichkeit reduziert. Bei zu hohen Temperaturen kann die zur Quellung eingesetzte Folie geschädigt werden. Die Dauer der Quellung ist von der gewählten Temperatur abhängig. Die Behandlungsdauer ist so zu wählen, daß die gewünschte Quellung erzielt wird.
Die Polymerisation der vinylhaltigen Sulfonsaure und gegebenenfalls vinylhaltiger Phosphonsäure in Schritt C) erfolgt vorzugsweise radikalisch. Die Radikalbildung kann thermisch, photochemisch, chemisch und/oder elektrochemisch erfolgen.
Beispielsweise kann eine Starterlösung, die mindestens eine zur Bildung von Radikalen befähigte Substanz enthält, der Flüssigkeit gemäß Schritt A) beigefügt werden. Des weiteren kann eine Starterlösung auf das gequollene flächige Gebilde aufgebracht werden. Dies kann mittels an sich bekannter Maßnahmen (z.B. Sprühen, Tauchen etc.) die aus dem Stand der Technik bekannt sind, erfolgen.
Geeignete Radikalbildner sind unter anderem Azoverbindungen, Peroxyverbindungen, Persulfatverbindungen oder Azoamidine. Nicht limitierende
Beispiele sind Dibenzoylperoxid, Dicumolperoxid, Cumolhydroperoxid, Diisopropylperoxidicarbonat, Bis(4-t-butylcycIohexyl)peroxidicarbonat, Dikaliumpersulfat, Ammoniumperoxidisulfat, 2,2'-Azobis(2-methylpropionitril) (AIBN), 2,2'-Azobis-(isobuttersäureamidin)hydrochlorid, Benzpinakol, Dibenzylderivate, Methylethylenketonperoxid, 1 ,1-Azobiscyclohexancarbonitril,
Methylethylketonperoxid, Acetylacetonperoxid, Dilaurylperoxid, Didecanoylperoxid, tert.-Butylper-2-ethylhexanoat, Ketonperoxid, Methylisobutylketonperoxid, Cyclohexanonperoxid, Dibenzoylperoxid, tert.-Butylperoxybenzoat, tert- Butylperoxyisopropylcarbonat, 2,5-Bis(2-ethylhexanoyl-peroxy)-2,5-dimethylhexan, tert.-Butylperoxy-2-ethylhexanoat, tert.-Butylperoxy-3,5,5-trimethylhexanoat, tert.-
Butylperoxyisobutyrat, tert.-Butylperoxyacetat, Dicumylperoxid, 1 ,1 -Bis(tert.-butylperoxy)cyclohexan, 1 ,1-Bis(tert.-butylperoxy)3,3,5- trimethylcyclohexan, Cumylhydroperoxid, tert.-Butylhydroperoxid, Bis(4-tert.-butylcyclohexyl)peroxydicarbonat, sowie die von der Firma DuPont unter dem Namen ®Vazo, beispielsweise ®Vazo V50 und ©Vazo WS erhältlichen
Radikalbildner.
Des weiteren können auch Radikalbildner eingesetzt werden, die bei Bestrahlung Radikale bilden. Zu den bevorzugten Verbindungen gehören unter anderem α,α- Diethoxyacetophenon (DEAP, Upjon Corp), n-Butylbenzoinether (®Trigonal-14,
AKZO) und 2,2-Dimethoxy-2-phenylacetophenon (®lgacure 651 ) und 1-Benzoylcyclohexanol (®lgacure 184), Bis(2,4,6-trimethylbenzoyl)- phenylphosphinoxid (®lrgacure 819) und 1-[4-(2-Hydroxyethoxy)phenyl]-2-hydroxy- 2-phenylpropan-1-on (©Irgacure 2959), die jeweils von der Fa. Ciba Geigy Corp. kommerziell erhältlich sind.
Üblicherweise werden zwischen 0,0001 und 5 Gew.-%, insbesondere 0,01 bis 3 Gew.-% (bezogen auf die Summe aus vinylhaltiger Sulfonsaure und gegebenenfalls vinylhaltiger Phosphonsäure) an Radikalbildner zugesetzt. Die Menge an Radikalbildner kann je nach gewünschten Polymerisationsgrad variiert werden.
Die Polymerisation kann auch durch Einwirken von IR bzw. NIR (IR = InfraRot, d. h. Licht mit einer Wellenlänge von mehr als 700 nm; NIR = Nahes IR, d. h. Licht mit einer Wellenlänge im Bereich von ca. 700 bis 2000 nm bzw. einer Energie im Bereich von ca. 0.6 bis 175 eV) erfolgen.
Die Polymerisation kann auch durch Einwirken von UV-Licht mit einer Wellenlänge von weniger als 400 nm erfolgen. Diese Polymerisationsmethode ist an sich bekannt und beispielsweise in Hans Joerg Elias, Makromolekulare Chemie, δ.Auflage, Band 1 , s.492-511 ; D. R. Arnold, N. C. Baird, J. R. Bolton, J. C. D. Brand, P. W. M Jacobs, P.de Mayo, W. R. Ware, Photochemistry-An Introduction, Academic Press , New York und M.K.Mishra, Radical Photopolymerization of Vinyl Monomers, J. Macromol. Sci.-Revs. Macromol. Chem. Phys. C22(1982-1983) 409 beschrieben.
Die Polymerisation kann auch durch Einwirken von ß-,γ- und/oder Elektronen Strahlen erzielt werden. Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung wird eine Membran mit einer Strahlungsdosis im Bereich von 1 bis 300 kGy, bevorzugt von 3 bis 200 kGy und ganz besonders bevorzugt von 20 bis 100 kGy bestrahlt.
Die Polymerisation der Vinylhaltigen Sulfonsaure und gegebenenfalls der Vinylhaltigen Phosphonsäure in Schritt B) erfolgt vorzugsweise bei Temperaturen oberhalb Raumtemperatur (20°C) und kleiner 200°C, insbesondere bei
Temperaturen zwischen 40°C und 150°C, besonders bevorzugt zwischen 50°C und 120°C. Die Polymerisation erfolgt vorzugsweise unter Normaldruck, kann aber auch unter Einwirkung von Druck erfolgen. Die Polymerisation führt zu einer Verfestigung der gequollenen Polymerfolie gemäß Schritt A) , wobei diese Verfestigung durch Mikrohärtemessung verfolgt werden kann. Vorzugsweise beträgt die durch die
Polymerisation bedingte Zunahme der Härte mindestens 20%, bezogen auf die Härte der in Schritt A) gequollenen Polymerfolie. Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung weisen die Membranen eine hohe mechanische Stabilität auf. Diese Größe ergibt sich aus der Härte der Membran, die mittels Mikrohärtemessung gemäss DIN 50539 bestimmt wird. Dazu wird die Membran mit einem Vickersdiamant innerhalb von 20 s sukzessive bis zu einer Kraft von 3 mN belastet und die Eindringtiefe bestimmt.
Demnach beträgt die Härte bei Raumtemperatur mindestens 0,01 N/mm2, bevorzugt mindestens 0,1 N /mm2 und ganz besonders bevorzugt mindestens 1 N /mm2, ohne dass hierdurch eine Beschränkung erfolgen soll. In der Folge wird die Kraft während 5 s konstant bei 3 mN gehalten und das Kriechen aus der Eindringtiefe berechnet. Bei bevorzugten Membranen beträgt das Kriechen Cm. 0,003/20/5 unter diesen
Bedingungen weniger als 20%, bevorzugt weniger als 10% und ganz besonders bevorzugt weniger als 5%. Der mittels Mikrohärtemessung bestimmte Modul beträgt YHU mindestens 0,5 MPa, insbesondere mindestens 5 MPa und ganz besonders bevorzugt mindestens 10 MPa, ohne dass hierdurch eine Beschränkung erfolgen soll.
Je nach gewünschten Polymerisationsgrad ist das flächige Gebilde, welches durch die Quellung der Polymerfolie und anschließende Polymerisation erhalten wird, eine selbsttragende Membran. Bevorzugt beträgt der Polymerisationsgrad mindestens 2, insbesondere mindestens 5, besonders bevorzugt mindestens 30
Wiederholeinheiten, insbesondere mindestens 50 Wiederholeinheiten, ganz besonders bevorzugt mindestens 100 Wiederholeinheiten. Dieser Polymerisationsgrad bestimmt sich über das Zahlenmittel des Molekulargewichts Mn, das durch GPC-Methoden ermittelt werden kann. Aufgrund der Probleme die in der Membran enthaltene Polyvinylphosphonsäure ohne Abbau zu isolieren, wird dieser
Wert anhand einer Probe bestimmt, die durch Polymerisation von Vinylphosphonsäure ohne Lösungsmittel und ohne Zusatz von Polymer durchgeführt wird. Hierbei wird der Gewichtsanteil an Vinylphosphonsäure und an Radikalstarter im Vergleich zu den Verhältnissen nach Lösen der Membran konstant gehalten. Der Umsatz, der bei einer Vergleichspolymerisation erzielt wird, ist vorzugsweise größer oder gleich 20%, insbesondere größer oder gleich 40% und besonders bevorzugt größer oder gleich 75%, bezogen auf die eingesetzte vinylhaltige Phosphonsäure.
Die erfindungsgemäße Polymermembran enthält vorzugsweise zwischen 1 und 90 Gew.-% des Polymeren sowie zwischen 99 und 0,5 Gew.-% Polyvinylsulfonsäure.
Bevorzugt enthält die erfindungsgemäße Polymermembran zwischen 3 und 85 Gew.-% des Polymeren sowie zwischen 70 und 1 Gew.-% Polyvinylsulfonsäure, besonders bevorzugt zwischen 5 und 50 Gew.-% des Polymeren sowie zwischen 50 und 5 Gew.-% Polyvinylsulfonsäure, jeweils bezogen auf das Gesamtgewicht der Polymermembran. Der Anteil an Polyvinylphosphonsäure liegt vorzugsweise im Bereich von 5 bis 97 Gew.-%, insbesondere im Bereich von 20 bis 95 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Polymermembran. Zusätzlich kann die erfindungsgemäße Polymermembran noch weitere Füll- und/oder Hilfsstoffe enthalten.
Im Anschluss an die Polymerisation gemäß Schritt C) kann die Membran thermisch, photochemisch, chemisch und/oder elektrochemisch an der Oberfläche vernetzt werden. Diese Härtung der Membranoberfläche verbessert die Eigenschaften der Membran zusätzlich.
Gemäß einem besonderen Aspekt kann die Membran auf eine Temperatur von mindestens 150°C, vorzugsweise mindestens 200αC und besonders bevorzugt mindestens 250°C erwärmt werden. Vorzugsweise erfolgt die thermische Vernetzung in Gegenwart von Sauerstoff. Die Sauerstoffkonzentration liegt bei diesem
Verfahrensschritt üblich im Bereich von 5 bis 50 Vol.-%, vorzugsweise 10 bis 40 Vol.-%, ohne dass hierdurch eine Beschränkung erfolgen soll.
Die Vernetzung kann auch durch Einwirken von IR bzw. NIR (IR = InfraRot, d. h. Licht mit einer Wellenlänge von mehr als 700 nm; NIR = Nahes IR, d. h. Licht mit einer Wellenlänge im Bereich von ca. 700 bis 2000 nm bzw. einer Energie im Bereich von ca. 0.6 bis 1.75 eV) und/oder UV-Licht erfolgen. Eine weitere Methode ist die Bestrahlung mit ß-,γ- und/oder Elektronen Strahlen. Die Strahlungsdosis beträgt hierbei vorzugsweise zwischen 5 und 200 kGy, insbesondere 10 bis 100 kGy. Die Bestrahlung kann an Luft oder unter Inertgas erfolgen. Hierdurch werden die
Gebrauchseigenschaften der Membran, insbesondere deren Haltbarkeit verbessert.
Je nach gewünschtem Vernetzungsgrad kann die Dauer der Vernetzungsreaktion in einem weiten Bereich liegen. Im allgemeinen liegt diese Reaktionszeit im Bereich von 1 Sekunde bis 10 Stunden, vorzugsweise 1 Minute bis 1 Stunde, ohne dass hierdurch eine Beschränkung erfolgen soll.
Die erfindungsgemäße Polymermembran weist verbesserte Materialeigenschaften - gegenüber den bisher bekannten dotierten Polymermembranen auf. Umfassen die erfindungsgemäßen Membranen einen hohen Anteil an Polyvinylphosphonsäure, zeigen sie im Vergleich mit bekannten undotierten Polymermembranen bereits eine intrinsische Leitfähigkeit. Die Eigenleitfähigkeit der erfindungsgemäßen Membran beträgt bei Temperaturen von 80°C, gegebenenfalls mit Befeuchtung, im allgemeinen mindestens 0,1 mS/cm, bevorzugt mindestens 1 mS/cm, insbesondere mindestens 2 mS/cm und besonders bevorzugt mindestens 5 mS/cm.
Bei einem Gewichtsanteil an Polyvinylphosphonsäure größer als 10%, bezogen auf das Gesamtgewicht der Membran, zeigen die Membranen im allgemeinen eine Leitfähigkeit bei Temperaturen von 160°C von mindestens 1 mS/cm, bevorzugt mindestens 3 mS/cm, insbesondere mindestens 5 mS/cm und besonders bevorzugt mindestens 10 mS/cm. Diese Werte werden hierbei ohne Befeuchtung erzielt.
Die spezifische Leitfähigkeit wird mittels Impedanzspektroskopie in einer 4-Pol- Anordnung im potentiostatischen Modus und unter Verwendung von Platinelektroden (Draht, 0,25 mm Durchmesser) gemessen. Der Abstand zwischen den stromabnehmenden Elektroden beträgt 2 cm. Das erhaltene Spektrum wird mit einem einfachen Modell bestehend aus einer parallelen Anordnung eines ohm'schen Widerstandes und eines Kapazitators ausgewertet. Der Probenquerschnitt der phosphorsäu redotierten Membran wird unmittelbar vor der Probenmontage gemessen. Zur Messung der Temperaturabhängigkeit wird die Messzelle in einem Ofen auf die gewünschte Temperatur gebracht und über eine in unmittelbarer
Probennähe positioniertes Pt-100 Thermoelement geregelt. Nach Erreichen der Temperatur wird die Probe vor dem Start der Messung 10 Minuten auf dieser Temperatur gehalten.
Die erfindungsgemäße Polymermembran weist verbesserte Materialeigenschaften gegenüber den bisher bekannten dotierten Polymermembranen auf. Umfassen die erfindungsgemäßen Membranen einen hohen Anteil an Polyvinylphosphonsäure, zeigen sie im Vergleich mit bekannten undotierten Polymermembranen bereits eine intrinsische Leitfähigkeit.
Die Durchtritts-Stromdichte beträgt bei Betrieb mit 0,5 M Methanollösung und 90°C in einer so genannten flüssigen Direktmethanolbrennstoffzelle vorzugsweise weniger als 100 mA/cm2, insbesondere weniger als 70 mA/cm2 besonders bevorzugt weniger als 50 mA/cm2 und ganz besonders bevorzugt weniger als 10 mA/cm2. Die Durchtritts-Stromdichte beträgt bei Betrieb mit einer 2 M Methanollösung und 160°C in einer so genannten gasförmigen Direktmethanolbrennstoffzelle vorzugsweise weniger als 100 mA/cm2, insbesondere weniger als 50 mA/cm2 ganz besonders bevorzugt weniger als 10 mA/cm2. Zur Bestimmung der Durchtritts-Stromdichte (cross over current density) wird die Kohlendioxid menge, die an der Kathode freigesetzt wird, mittels eines CO2-Sensors gemessen. Aus dem so erhaltenen Wert der CO2-Menge wird, wie von P. Zelenay, S.C. Thomas, S. Gottesfeld in S. Gottesfeld, T.F. Füller „Proton Conducting Membrane Fuel Cells II" ECS Proc. Vol. 98-27 S. 300-308 beschrieben, die
Durchtritts-Stromdichte berechnet.
Zu möglichen Einsatzgebieten der erfindungsgemäßen Polymermembranen gehören unter anderem die Verwendung in Brennstoffzellen, bei der Elektrolyse, in Kondensatoren und in Batteriesystemen. Aufgrund ihres Eigenschaftsprofils werden die Polymermembranen vorzugsweise in Brennstoffzellen verwendet.
Die vorliegende Erfindung betrifft auch eine Membran-Elektroden-Einheit, die mindestens eine erfindungsgemäße Polymermembran aufweist. Die Membran- Elektroden-Einheit weist eine hohe Leistungsfähigkeit auch bei einem geringen
Gehalt an katalytisch aktiven Substanzen, wie beispielsweise Platin, Ruthenium oder Palladium, auf. Hierzu können mit einer katalytisch aktiven Schicht versehene Gasdiffusionslagen eingesetzt werden.
Die Gasdiffusionslage zeigt im allgemeinen eine Elektronenleitfähigkeit. Üblich werden hierfür flächige, elektrisch leitende und säureresistente Gebilde eingesetzt. Zu diesen gehören beispielsweise Kohlefaser-Papiere, graphitisierte Kohlefaser- Papiere, Kohlefasergewebe, graphitisierte Kohlefasergewebe und/oder flächige Gebilde, die durch Zugabe von Ruß leitfähig gemacht wurden.
Die katalytisch aktive Schicht enthält eine katalytisch aktive Substanz. Zu diesen gehören unter anderem Edelmetalle, insbesondere Platin, Palladium, Rhodium, Iridium und/oder Ruthenium. Diese Substanzen können auch in Form von Legierungen unter einander eingesetzt werden. Des weiteren können diese Substanzen auch in Legierung mit unedlen Metallen, wie beispielsweise Cr, Zr, Ni,
Co und/oder Ti verwendet werden. Darüber hinaus können auch die Oxide der zuvor genannten Edelmetalle und/oder unedlen Metalle eingesetzt werden Gemäß einem besonderen Aspekt der vorliegenden Erfindung werden die katalytisch aktiven Verbindungen in Form von Partikeln eingesetzt, die vorzugsweise eine Größe im Bereich von 1 bis 1000 nm, insbesondere 10 bis 200 nm und bevorzugt 20 bis
100 nm aufweisen.
Die katalytisch aktiven Partikel, die die zuvor genannten Substanzen umfassen, können als Metallpulver, sogenanntes schwarzes Edelmetall, insbesondere Platin und/oder Platinlegierungen, eingesetzt werden. Derartige Partikel weisen im allgemeinen eine Größe im Bereich von 5 nm bis 200 nm, vorzugsweise im Bereich von 10 nm bis 100 nm auf.
Darüber hinaus können die Metalle auch auf einem Trägermaterial eingesetzt werden. Vorzugsweise umfasst dieser Träger Kohlenstoff, der insbesondere in Form von Ruß, Graphit oder graphitisierter Ruß, eingesetzt werden kann. Der Metallgehalt dieser geträgerten Partikel, bezogen auf das Gesamtgewicht der Partikel, liegt im allgemeinen im Bereich von 1 bis 80 Gew.-%, vorzugsweise 5 bis 60 Gew.-% und besonders bevorzugt 10 bis 50 Gew.-%, ohne dass hierdurch eine Beschränkung erfolgen soll. Die Partikelgröße des Trägers, insbesondere die Größe der Kohlenstoffpartikel, liegt vorzugsweise im Bereich von 20 bis 100 nm, insbesondere 30 bis 60 nm. Die Größe der sich hierauf befindlichen Metallpartikel liegt vorzugsweise im Bereich von 1 bis 20 nm, insbesondere 1 bis 10 nm und besonders bevorzugt 2 bis 6 nm.
Die Größen der unterschiedlichen Partikel stellen Mittelwerte des Gewichtsmittels dar und können über Transmissionselektronenmikroskopie bestimmt werden.
Die zuvor dargelegten katalytisch aktiven Partikel können im allgemeinen kommerziell erhalten werden.
Des weiteren kann die katalytisch aktive Schicht übliche Additive enthalten. Hierzu gehören unter anderem Fluorpolymere wie z.B. Polytetrafluorethylen (PTFE) und oberflächenaktive Substanzen.
Zu den oberflächenaktiven Substanzen gehören insbesondere ionische Tenside, beispielsweise Fettsäuresalze, insbesondere Natriumlaurat, Kaliumoleat; und Alkylsulfonsäuren, Alkylsulfonsäuresalze, insbesondere Natriumperfluorohexansulfonat, Lithiumperfluorohexansulfonat,
Ammoniumperfluorohexansulfonat, Perfluorohexansulfonsäure, Kaliumnonafluorbutansulfonat, sowie nichtionische Tenside, insbesondere ethoxylierte Fettalkohole und Polyethylenglykole.
Besonders bevorzugte Additive stellen Fluorpolymere, insbesondere
Tetrafluorethylenpolymere dar. Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung ist das Gewichtsverhältnis von Fluorpolymer zu Katalysatormaterial, umfassend mindestens ein Edelmetall und gegebenenfalls ein oder mehrere Trägermaterialien, größer als 0,1 , wobei dieses Verhältnis vorzugsweise im Bereich von 0,2 bis 0,6 liegt.
Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung weist die Katalysatorschicht eine Dicke im Bereich von 1 bis 1000 μm, insbesondere von 5 bis
500, vorzugsweise von 10 bis 300 μm auf. Dieser Wert stellt einen Mittelwert dar, der durch Messung der Schichtdicke im Querschnitt von Aufnahmen bestimmt werden kann, die mit einem Rasterelektronenmikroskop (REM) erhalten werden können.
Nach einer besonderen Ausführungsform der vorliegenden Erfindung beträgt der
Edelmetallgehalt der Katalysatorschicht 0,1 bis 10,0 mg/cm2, vorzugsweise 0,3 bis 6,0 mg/cm2 und besonders bevorzugt 0,3 bis 3,0 mg/cm2. Diese Werte können durch Elementaranalyse einer flächigen Probe bestimmt werden.
Die Herstellung einer Membran-Elektroden-Einheit kann unter anderem durch
Heißpressen erfolgen. Hierzu wird der Verbund aus Elektrode, bestehend aus mit katalytisch aktiven Schichten versehene Gasdiffusionslagen, und eine Membran auf eine Temperatur im Bereich von 50°C bis 200°C erhitzt und mit einem Druck von 0,1 bis 5 MPa verpresst. Im allgemeinen genügen einige Sekunden, um die Katalysatorschicht mit der Membran zu verbinden. Vorzugsweise liegt diese Zeit im
Bereich von 1 Sekunde bis 5 Minuten, insbesondere 5 Sekunden bis 1 Minute.
Gegenstand der vorliegenden Erfindung ist ebenfalls eine mit einer Katalysatorschicht beschichtete erfindungsgemasse protonenleitende Polymermembran.
Zum Aufbringen einer Katalysatorschicht auf die Membran können verschiedene Methoden eingesetzt werden. So kann beispielsweise ein Träger verwendet werden, der mit einer einen Katalysator enthaltenden Beschichtung versehen ist, um die erfindungsgemasse Membran mit einer Katalysatorschicht zu versehen.
Hierbei kann die Membran einseitig oder beidseitig mit einer Katalysatorschicht versehen werden. Wird die Membran nur mit einseitig einer Katalysatorschicht versehen, so muß die gegenüberliegende Seite der Membran mit einer Elektrode verpresst werden, die eine Katalysatorschicht aufweist. Falls beide Seiten der
Membran mit einer Katalysatorschicht versehen werden sollen, können die nachfolgenden Methoden auch kombiniert angewendet werden, um ein optimales Ergebnis zu erzielen. Erfindungsgemäß kann die Katalysatorschicht durch ein Verfahren aufgebracht werden, bei dem eine Katalysator-Suspension eingesetzt wird. Darüber hinaus können auch Pulver verwendet werden, die den Katalysator umfassen.
Die Katalysatorsuspension enthält eine katalytisch aktive Substanz. Diese
Substanzen wurden zuvor im Zusammenhang mit der katalytisch aktiven Schicht näher ausgeführt.
Des weiteren kann die Katalysatorsuspension übliche Additive enthalten. Hierzu gehören unter anderem Fluorpolymere wie z.B. Polytetrafluorethylen (PTFE),
Verdickungsmittel, insbesondere wasserlösliche Polymere wie z.B. Cellulosederivate, Polyvinylalkohol, Polyethylenglykol, und oberflächenaktive Substanzen, die zuvor im Zusammenhang mit der katalytisch aktiven Schicht dargelegt wurden.
Zu den oberflächenaktiven Substanzen gehören insbesondere ionische Tenside, beispielsweise Fettsäuresalze, insbesondere Natriumlaurat, Kaliumoleat; und Alkylsulfonsäuren, Alkylsulfonsäuresalze, insbesondere Natriumperfluorohexansulfonat, Lithiumperfluorohexansulfonat, Ammoniumperfluorohexansulfonat, Perfluorohexansulfonsäure, Kaliumnonafluorbutansulfonat, sowie nichtionische Tenside, insbesondere ethoxylierte Fettalkohole und Polyethylenglykole.
Des weiteren kann die Katalysator-Suspension bei Raumtemperatur flüssige Bestandteile umfassen. Hierzu gehören unter anderem organische Lösungsmittel, die polar oder unpolar sein können, Phosphorsäure, Polyphosphorsäure und/oder
Wasser. Die Katalysatorsuspension enthält vorzugsweise 1 bis 99 Gew.-%, insbesondere 10 bis 80 Gew.-% flüssige Bestandteile.
Zu den polaren, organischen Lösungsmitteln gehören insbesondere Alkohole, wie Ethanol, Propanol, Isopropanol und/oder Butanol.
Zu den organischen, unpolaren Lösungsmittel gehören unter anderem bekannte Dünnschichtverdünner, wie Dünnschichtverdünner 8470 der Firma DuPont, der Terpentinöle umfasst.
Besonders bevorzugte Additive stellen Fluorpolymere, insbesondere Tetrafluorethylenpolymere dar. Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung ist das Gewichtsverhältnis von Fluorpolymer zu Katalysatormaterial, umfassend mindestens ein Edelmetall und gegebenenfalls ein oder mehrere Trägermaterialien, größer als 0,1 , wobei dieses Verhältnis vorzugsweise im Bereich von 0,2 bis 0,6 liegt.
Die Katalysatorsuspension kann mit üblichen Verfahren auf die erfindungsgemasse Membran aufgebracht werden. Je nach Viskosität der Suspension, die auch in
Pastenform vorliegen kann, sind verschiedene Methoden bekannt mit denen die Suspension aufgebracht werden kann. Geeignet sind Verfahren zum Beschichten von Folien, Geweben, Textilien und/oder Papieren, insbesondere Sprühverfahren und Druckverfahren, wie beispielsweise Schablonen- und Siebdruckverfahren, Inkjet- Verfahren, Walzenauftrag, insbesondere Rasterwalzen, Schlitzdüsenauftrag und
Rakeln. Das jeweilige Verfahren sowie die Viskosität der Katalysatorsuspension ist abhängig von der Härte der Membran.
Die Viskosität kann durch den Feststoffgehalt, insbesondere den Anteil an katalytisch aktiven Partikeln, und den Anteil an Additiven beeinflusst werden. Die einzustellende
Viskosität ist abhängig von der Auftragsmethode der Katalysatorsuspension, wobei die optimalen Werte sowie deren Bestimmung dem Fachmann geläufig sind.
Je nach Härte der Membran kann eine Verbesserung der Bindung von Katalysator und Membran durch Erhitzen und/oder Pressen erfolgen.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung wird die Katalysatorschicht mit einem Pulver-Verfahren aufgebracht. Hierbei wird ein Katalysatorpulver eingesetzt, das zusätzliche Additive, die beispielhaft zuvor dargelegt wurden, enthalten kann.
Zum Aufbringen des Katalysatorpulver können unter anderem Sprühverfahren und Siebverfahren eingesetzt werden. Beim Sprühverfahren wird die Pulvermischung mit einer Düse, beispielsweise einer Schlitzdüse auf die Membran gesprüht. Im allgemeinen wird anschließend die mit einer Katalysatorschicht versehene Membran erhitzt, um die Verbindung zwischen Katalysator und Membran zu verbessern. Das Erhitzen kann beispielsweise über eine heiße Walze erfolgen. Derartige Methoden sowie Vorrichtungen zum Auftragen des Pulvers sind unter anderem in DE 195 09 748, DE 195 09 749 und DE 197 57 492 beschrieben.
Beim Siebverfahren wird das Katalysatorpulver mit einem rüttelnden Sieb auf die Membran aufgetragen. Eine Vorrichtung zum Aufbringen eines Katalysatorpulvers, auf eine Membran ist in WO 00/26982 beschrieben. Nach dem Auftragen des Katalysatorpulvers kann die Bindung von Katalysator und Membran durch Erhitzen verbessert werden. Hierbei kann die mit mindestens einer Katalysatorschicht versehene Membran auf eine Temperatur im Bereich von 50 bis 200°C, insbesondere 100 bis 180°C erhitzt werden.
Darüber hinaus kann die Katalysatorschicht durch ein Verfahren aufgebracht werden, bei dem man eine einen Katalysator enthaltende Beschichtung auf einen Träger aufbringt und anschließend die auf dem Träger befindliche Beschichtung enthaltend einen Katalysator auf die erfindungsgemasse Membran überträgt. Beispielhaft ist ein derartiges Verfahren in WO 92/15121 beschrieben.
Der mit einer Katalysatorbeschichtung versehene Träger kann beispielsweise dadurch hergestellt werden, dass eine zuvor beschriebene Katalysatorsuspension hergestellt wird. Diese Katalysatorsuspension wird anschließend auf eine Trägerfolie, beispielsweise aus Polytetrafluorethylen, aufgetragen. Nach dem Auftragen der Suspension werden die flüchtigen Bestandteile entfernt.
Das Übertragen der Beschichtung enthaltend einen Katalysator kann unter anderem durch Heißpressen erfolgen. Hierzu wird der Verbund umfassend eine Katalysatorschicht und eine Membran sowie eine Trägerfolie auf eine Temperatur im Bereich von 50°C bis 200°C erhitzt und mit einem Druck von 0,1 bis 5 MPa verpresst. Im allgemeinen genügen einige Sekunden, um die Katalysatorschicht mit der Membran zu verbinden. Vorzugsweise liegt diese Zeit im Bereich von 1 Sekunde bis 5 Minuten, insbesondere 5 Sekunden bis 1 Minute.
Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung weist die
Katalysatorschicht eine Dicke im Bereich von 1 bis 1000 μm, insbesondere von 5 bis 500, vorzugsweise von 10 bis 300 μm auf. Dieser Wert stellt einen Mittelwert dar, der durch Messung der Schichtdicke im Querschnitt von Aufnahmen bestimmt werden kann, die mit einem Rasterelektronenmikroskop (REM) erhalten werden können.
Nach einer besonderen Ausführungsform der vorliegenden Erfindung umfasst die mit mindestens einer Katalysatorschicht versehene Membran 0,1 bis 10,0 mg/cm2, vorzugsweise 0,3 bis 6,0 mg/cm2 und besonders bevorzugt 0,3 bis 3,0 mg/cm2. Diese Werte können durch Elementaranalyse einer flächigen Probe bestimmt werden.
Im Anschluss an die Beschichtung mit einem Katalysator kann die erhaltene Membran thermisch, photochemisch, chemisch und/oder elektrochemisch vernetzt werden. Diese Härtung der Membran verbessert die Eigenschaften der Membran zusätzlich. Hierzu kann die Membran auf eine Temperatur von mindestens 150°C, vorzugsweise mindestens 200°C und besonders bevorzugt mindestens 250°C erwärmt werden. Gemäß einer besonderen Ausführungsform erfolgt die Vernetzung in Gegenwart von Sauerstoff. Die Sauerstoffkonzentration liegt bei diesem Verfahrensschritt üblich im Bereich von 5 bis 50 Vol.-%, vorzugsweise 10 bis 40 Vol.-%, ohne dass hierdurch eine Beschränkung erfolgen soll.
Die Vernetzung kann auch durch Einwirken von IR bzw. NIR (IR = InfraRot, d. h. Licht mit einer Wellenlänge von mehr als 700 nm; NIR = Nahes IR, d. h. Licht mit einer Wellenlänge im Bereich von ca. 700 bis 2000 nm bzw. einer Energie im Bereich von ca. 0.6 bis 1.75 eV) und/oder UV-Licht erfolgen. Eine weitere Methode ist die
Bestrahlung mit ß-,γ- und/oder Elektronen Strahlen. Die Strahlungsdosis beträgt hierbei vorzugsweise zwischen 5 und 200 kGy, insbesondere 10 bis 100 kGy. Die Bestrahlung kann an Luft oder unter Inertgas erfolgen. Hierdurch werden die Gebrauchseigenschaften der Membran, insbesondere deren Haltbarkeit verbessert.
Je nach gewünschtem Vernetzungsgrad kann die Dauer der Vernetzungsreaktion in einem weiten Bereich liegen. Im allgemeinen liegt diese Reaktionszeit im Bereich von 1 Sekunde bis 10 Stunden, vorzugsweise 1 Minute bis 1 Stunde, ohne dass hierdurch eine Beschränkung erfolgen soll.
Die erfindungsgemäße mit Katalysator beschichtete Polymermembran weist verbesserte Materialeigenschaften gegenüber den bisher bekannten dotierten Polymermembranen auf. Insbesondere zeigen sie im Vergleich mit bekannten dotierten Polymermembranen bessere Leistungen. Diese begründet sich insbesondere durch einen besseren Kontakt zwischen Membran und Katalysator.
Zur Herstellung einer Membran-Elektroden-Einheit kann die erfindungsgemäße Membran mit einer Gasdiffusionslage verbunden werden. Falls die Membran beidseitig mit einer Katalysatorschicht versehen ist, muß die Gasdiffusionslage vor dem Verpressen keinen Katalysator aufweisen.
Eine erfindungsgemäße Membran-Elektroden-Einheit zeigt eine überraschend hohe Leistungsdichte. Gemäß einer besonderen Ausführungsform leisten bevorzugte Membran-Elektroden-Einheiten eine Stromdichte von mindestens 0,1 A/cm2, bevorzugt 0,2 A/cm2, besonders bevorzugt 0,3 A/cm2. Diese Stromdichte wird im
Betrieb mit reinem Wasserstoff an der Anode und Luft (ca. 20 Vol.-% Sauerstoff, ca. 80 Vol.-% Stickstoff) an der Kathode bei Normaldruck (absolut 1013 mbar, mit offenem Zellausgang) und 0,6V Zellspannung gemessen. Hierbei können besonders hohe Temperaturen im Bereich von 150-200°C, vorzugsweise 160-180°C, insbesondere von 170°C eingesetzt werden.
Die zuvor genannten Leistungsdichten können auch bei geringer Stöchiometrie der Brenngase an beiden Seiten erzielt werden. Gemäß einem besonderen Aspekt der vorliegenden Erfindung ist die Stöchiometrie kleiner oder gleich 2, vorzugsweise kleiner oder gleich 1 ,5 ganz besonders bevorzugt kleiner oder gleich 1 ,2.
Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung weist die Katalysatorschicht einen geringen Edelmetallgehalt auf. Der Edelmetall-Gehalt einer bevorzugten Katalysatorschicht, die von einer erfindungsgemäßen Membran umfasst wird, beträgt vorzugsweise höchstens 2 mg/cm2, insbesondere höchstens 1 mg/cm2, ganz besonders bevorzugt höchstens 0,5 mg/cm2. Gemäß einem besonderen Aspekt der vorliegenden Erfindung weist eine Seite einer Membran einen höheren Metallgehalt auf als die gegenüberliegende Seite der Membran. Vorzugsweise ist der
Metallgehalt der einen Seite mindestens doppelt so hoch wie der Metallgehalt der gegenüberliegenden Seite.
In einer weiteren Variante kann auf die erfindungsgemäße Membran eine katalytisch aktive Schicht aufgebracht werden und diese mit einer Gasdiffusionslage verbunden werden. Hierzu wird gemäß den Schritten A) und B) eine Membran gebildet und der Katalysator aufgebracht. In einer Variante kann der Katalysator vor oder zusammen mit der Starterlösung aufgebracht werden. Auch diese Gebilde sind Gegenstand der vorliegenden Erfindung.
Darüber hinaus kann die Bildung der Membran gemäß den Schritten A) und B) auch auf einem Träger oder einer Trägerfolie erfolgen, die bereits den Katalysator aufweist. Nach Entfernen des Trägers bzw. der Trägerfolie befindet sich der Katalysator auf der erfindungsgemäßen Membran. Auch diese Gebilde sind Gegenstand der vorliegenden Erfindung.
Ebenfalls Gegenstand der vorliegenden Erfindung ist eine Membran-Elektroden- Einheit, die mindestens eine erfindungsgemäße Polymermembran ggf. in Kombination mit einer weiteren Polymermembran auf Basis von Polyazolen oder einer Polymerblendmembran enthält.
Zu möglichen Einsatzgebieten der erfindungsgemäßen Polymermembranen gehören unter anderem die Verwendung in Brennstoffzellen, bei der Elektrolyse, in Kondensatoren und in Batteriesystemen. Aufgrund ihres Eigenschaftsprofils werden die Polymermembranen vorzugsweise in Brennstoffzellen verwendet.
Versuchsbeispiele:
Beispiel 1 :
Herstellung von Vinylsulfonsäure
Eine Säulenkolonne mit einem Durchmesser von 5,5 cm wird mit einem lonenaustauscherharz bestehend aus vernetztem sulfonierten Polystyrol vom Typ
Dowex 50W-X4 erhalten von Aldrich bis zu einer Höhe von 20 cm befüllt.
Anschliessend werden 100 ml einer 25% wässrigen Lösung von Natrium-
Vinylsulfonsäure-Salz (0,19 mol) durch die Säule durchlaufen lassen, und es werden
80-90 ml (0,16 mol) Vinylsulfonsäure aufgefangen. Das Lösungsvolumen wird anschliessend mit einem Rotationsverdampfer auf etwa die Hälfte (40-45 ml) reduziert.
Beispiel 2:
Die Vinylsulfonsäure Lösung aus Beispiel 1 wird zusammen mit 56g einer 90%-igen Vinylphosphonsäure gemischt und im Ofen bei einer Temperatur von 70°C während
1 Stunde behandelt. Zu dieser Mischung gibt man 5g Bisphenol-A Diepoxyacrylat (CN-120 der Firma Sartomer Inc.) und 8g 1-hydroxycyclohexyl phenyl keton (Irgacure 184 von Ciba Geigy). Die Mischung wird dann gerührt bis eine homogene Lösung entsteht. Die Lösung wird wieder im Ofen bei 70°C während 30 Minuten behandelt. In diese Lösung taucht man 0,5g einer Folie aus hochmolekularem
Polybenzimidazol, die aus einer PBI-DMAc Lösung gemäss DE 10052237.8 und durch Auswahl von geeignetem Polymergranulat gemäss DE 10129458.1 hergestellt wurde. Die Lösung wird mit einer Aluminiumfolie als Lichtschutz abgedeckt und wird im Ofen bei 80°C während 3h gehalten. Überschüssige Flüssigkeit wird von der Membranoberfläche abgetupft. Der so erhaltene Film wird anschliessend zwischen 2 transparente Folien aus orientiertem Polypropylen gelegt und überschüssige Luft durch mehrmaliges Abrollen wie oben beschrieben entfernt. Dieses Laminat wird anschliessend in eine Kammer überführt und dort wird jede Seite 1 Minute mit einer 300 W Quecksilberbogenlampe vom Typ H3T7 der Firma General Electric bestrahlt und dieser Prozess wird einmal wiederholt. Der Polypropylen Film wird vorsichtig von der Membran entfernt. Dieser Prozess wird durch leichtes Erhitzen mit einem Heissluftföhn erleichtert. Eine typische Gewichtszunahme nach dieser Behandlung beträgt 350 wt%. Beispiel 3:
Bei Raumtemperatur werden 20 g (0,97 mol) eines Natriumstyrolsulfonsäuresalzes von Aldrich mit 200 ml destilliertem Wasser gemischt. Anschliessend wird der lonenaustauschprozess wie in Beispiel 1 beschrieben wiederholt und es wird 160 ml einer Styrolsulfonsäure Lösung erhalten. Diese Lösungsmenge wird anschliessend mit einem Rotationsverdampfer auf 60 ml reduziert. Zu dieser Lösung werden 100 ml Vinylphosphonsäure zugegeben und die Mischung wird im Dunkeln während 24 h gerührt. Zu dieser Lösung gibt man 8g Bisphenol-A Diepoxyacrylat (CN-120 der Firma Sartomer Inc.) und 5,5g 1-hydroxycyclohexyl phenyl keton (Irgacure 184 von Ciba Geigy). Die Mischung wird dann im Ofen bei 70°C während 4 h unter gelegentlichem Rühren behandelt. In diese Mischung taucht man 0,4g einer Folie aus hochmolekularem Polybenzimidazol, die aus einer PBI-DMAc Lösung gemäss DE 10052237.8 und durch Auswahl von geeignetem Polymergranulat gemäss DE 10129458.1 hergestellt wurde. Die Mischung wird mit einer Aluminiumfolie als Lichtschutz abgedeckt und wird im Ofen bei 80°C während 3h gehalten.
Überschüssige Flüssigkeit wird von der Membranoberfläche abgetupft. Der so erhaltene Film wird anschliessend zwischen 2 transparente Folien aus orientiertem Polypropylen gelegt und überschüssige Luft durch mehrmaliges Abrollen wie oben beschrieben entfernt. Dieses Laminat wird anschliessend in eine Kammer überführt und dort wird jede Seite 1 Minute mit einer 300 W Quecksilberbogenlampe vom Typ
H3T7 der Firma General Electric bestrahlt und dieser Prozess wird einmal wiederholt. Der Polypropylen Film wird vorsichtig von der Membran entfernt. Eine typische Gewichtszunahme nach dieser Behandlung beträgt 270 wt%.

Claims

Patentansprüche
1. Protonenleitende Elektrolytmembran erhältlich durch ein Verfahren umfassend die Schritte A) Quellen einer Polymerfolie mit einer Vinylhaltigen Sulfonsaure umfassenden Flüssigkeit und B) Polymerisation der in Schritt A) eingebrachten Flüssigkeit vorhandenen Vinylhaltigen Sulfonsaure.
2. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, daß die in Schritt A) eingesetzten Folie eine Quellung von mindestens 3 % in der Vinylhaltigen Sulfonsaure umfassenden Flüssigkeit aufweist.
3. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, daß es sich bei dem in Schritt A) eingesetzten Polymeren um hochtemperaturstabile Polymere, die mindestens ein Stickstoff-, Sauerstoff- und/oder Schwefelatom in einer oder in unterschiedlichen Wiederholungseinheit enthalten, handelt.
4. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, daß die Vinylhaltige Sulfonsaure umfassende Flüssigkeit Verbindungen der Formel
t^iy— -(Sθ3Z)x
worin
R eine Bindung, eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe,
Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN,
NZ2 substituiert sein können, Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15-
Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet y eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet
und/oder der Formel
Figure imgf000049_0001
worin
R eine Bindung, eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe,
Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN,
NZ2 substituiert sein können, Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15-
Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet, und/oder der Formel
R-(S03Z)x
A worin A eine Gruppe der Formeln COOR2, CN, CONR2 2, OR2 und/oder R2 darstellt, worin R2 Wasserstoff, eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können
R eine Bindung, eine zweibindige C1-C15-Alkylengruppe, zweibindige C1- C15-Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5-C20-Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,
Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15-
Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet, enthält.
5. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, dass die Vinylhaltige Sulfonsaure umfassende Flüssigkeit Vinylhaltige Phosphonsäure enthält. Membran gemäß Anspruch 5, dadurch gekennzeichnet, dass die Vinylhaltige Sulfonsaure umfassende Flüssigkeit Verbindungen der Formel
[^ -R- (PO3Z2)x
worin R eine Bindung, eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe,
Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN,
NZ2 substituiert sein können, Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet y eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet
und/oder der Formel
Figure imgf000050_0001
worin
R eine Bindung, eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können, Z unabhängig voneinander Wasserstoff, C1 -C15-Alkylgruppe, C1 -C15-
Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet, und/oder der Formel
R-(P03Z2)x
A worin A eine Gruppe der Formeln COOR2, CN, CONR2 2, OR2 und/oder R2 darstellt, worin R2 Wasserstoff, eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH,
COOZ, -CN, NZ2 substituiert sein können, R eine Bindung, eine zweibindige C1 -C15-Alkylengruppe, zweibindige C1- C15-Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5-C20-Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können, Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15-
Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5,
6, 7, 8, 9 oder 10 bedeutet, enthält.
7. Membran gemäß Anspruch 5 oder 6, dadurch gekennzeichnet, dass das Gewichtsverhältnis von Vinylhaltiger Phosphonsäure zu Vinylhaltiger
Sulfonsaure im Bereich von 1 :100 bis 99:1 liegt.
8. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, daß die Vinylhaltige Sulfonsaure umfassende Flüssigkeit zur Vernetzung befähigte Monomere enthält.
9. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, daß die Vinylhaltige Sulfonsaure umfassende Flüssigkeit mindestens eine Substanz enthält, die zur Bildung von Radikalen befähigt ist.
10. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, daß die Polymerisation gemäß Schritt C) durch Bestrahlung mit IR- bzw. NIR-Licht, UV-Licht, ß-,γ- und/oder Elektronen Strahlen erfolgt.
11. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, daß die Membran eine
Eigenleitfähigkeit von mindestens 0,001 S/cm aufweist.
12. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, daß die Membran zwischen 1 und 90 Gew.-% des Polymeren sowie zwischen 99 und 0,5 Gew.-% Polyvinylsulfonsäure enthält.
13. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, daß die Membran eine
Schicht enthaltend eine katalytisch aktive Komponente aufweist.
14. Membran-Elektroden-Einheit enthaltend mindestens eine Elektrode und mindestens eine Membran gemäß einem oder mehreren der Ansprüche 1 bis 13.
15. Brennstoffzelle enthaltend eine oder mehrere Membran-Elektroden-Einheiten gemäß Anspruch 14 und/oder eine oder mehrere Membranen gemäß einem der Ansprüche 1 bis 13.
PCT/EP2003/002397 2002-03-06 2003-03-04 Protonenleitende elektrolytmembran mit geringer methanoldurchlässigkeit und deren anwendung in brennstoffzellen WO2003074597A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA002478530A CA2478530A1 (en) 2002-03-06 2003-03-04 Proton-conducting electrolyte membrane with low methanol permeability and its use in fuel cells
JP2003573059A JP2005519428A (ja) 2002-03-06 2003-03-04 低減されたメタノール透過性を有するプロトン伝導性電解質膜、および燃料電池におけるその使用
KR1020047013965A KR100993157B1 (ko) 2002-03-06 2003-03-04 감소된 메탄올 투과성을 갖는 양성자 전도성 전해질 막 및연료 전지에서의 이의 용도
US10/506,387 US7846982B2 (en) 2002-03-06 2003-03-04 Proton conducting electrolyte membrane having reduced methanol permeability and the use thereof in fuel cells
DE50308216T DE50308216D1 (de) 2002-03-06 2003-03-04 Protonenleitende elektrolytmembran mit geringer methanoldurchlässigkeit und deren anwendung in brennstoffzellen
DK03743390T DK1483316T3 (da) 2002-03-06 2003-03-04 Protonledende elektrolytmembran med reduceret methanolpermeabilitet og anvendelse deraf til brændselsceller
EP03743390A EP1483316B1 (de) 2002-03-06 2003-03-04 PROTONENLEITENDE ELEKTROLYTMEMBRAN MIT GERINGER METHANOLDURCHL&Auml;SSIGKEIT UND DEREN ANWENDUNG IN BRENNSTOFFZELLEN

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10209685A DE10209685A1 (de) 2002-03-06 2002-03-06 Verfahren zur Herstellung einer Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
DE10209685.6 2002-03-06
DE10210499A DE10210499A1 (de) 2002-03-11 2002-03-11 Verfahren zur Herstellung einer Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
DE10210499.9 2002-03-11

Publications (1)

Publication Number Publication Date
WO2003074597A1 true WO2003074597A1 (de) 2003-09-12

Family

ID=27789731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/002397 WO2003074597A1 (de) 2002-03-06 2003-03-04 Protonenleitende elektrolytmembran mit geringer methanoldurchlässigkeit und deren anwendung in brennstoffzellen

Country Status (11)

Country Link
US (1) US7846982B2 (de)
EP (1) EP1483316B1 (de)
JP (2) JP2005519428A (de)
KR (1) KR100993157B1 (de)
CN (1) CN1277869C (de)
AT (1) ATE373690T1 (de)
CA (1) CA2478530A1 (de)
DE (1) DE50308216D1 (de)
DK (1) DK1483316T3 (de)
ES (1) ES2292993T3 (de)
WO (1) WO2003074597A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005024989A1 (de) * 2003-09-04 2005-03-17 Pemeas Gmbh Protonenleitende polymermembran umfassend mindestens ein poröses trägermaterial und deren anwendung in brennstoffzellen
WO2005063862A1 (de) 2003-12-30 2005-07-14 Pemeas Gmbh Protonenleitende membran und deren verwendung
WO2006059582A1 (ja) * 2004-12-03 2006-06-08 Nitto Denko Corporation 電解質膜の製造方法、電解質膜、及び、その電解質膜を用いた固体高分子型燃料電池
JP2006216531A (ja) * 2004-12-03 2006-08-17 Nitto Denko Corp 電解質膜及びそれを用いた固体高分子型燃料電池
WO2007051570A1 (de) * 2005-10-31 2007-05-10 Basf Fuel Cell Gmbh Verbesserte membran-elektrodeneinheiten und brennstoffzellen mit hoher lebensdauer
US20110318671A1 (en) * 2003-12-30 2011-12-29 Pemeas Gmbh Proton-conducting membrane and use thereof
US8846267B2 (en) 2005-06-27 2014-09-30 Itm Power (Research) Ltd. Membrane electrode assemblies
US8859150B2 (en) * 2003-12-30 2014-10-14 Basf Fuel Cell Gmbh Proton-conducting membrane and use thereof
US9447217B2 (en) 2001-09-07 2016-09-20 Itm Power (Research) Limited Method for producing a membrane electrode including forming the membrane in situ

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10117686A1 (de) * 2001-04-09 2002-10-24 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
CA2686279C (en) * 2001-06-11 2013-04-02 Honda Giken Kogyo Kabushiki Kaisha Production method for an electrode structure for a solid polymer fuel cell
DE10209419A1 (de) * 2002-03-05 2003-09-25 Celanese Ventures Gmbh Verfahren zur Herstellung einer Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
ATE373690T1 (de) 2002-03-06 2007-10-15 Pemeas Gmbh Protonenleitende elektrolytmembran mit geringer methanoldurchlässigkeit und deren anwendung in brennstoffzellen
US20050118478A1 (en) * 2002-03-06 2005-06-02 Joachim Kiefer Mixture comprising sulphonic acid containing vinyl, polymer electrolyte membrane comprising polyvinylsulphonic acid and the use thereof in fuel cells
DE10213540A1 (de) * 2002-03-06 2004-02-19 Celanese Ventures Gmbh Lösung aus Vinylphosphonsäure, Verfahren zur Herstellung einer Polymerelektrolytmembran aus Polyvinylphosphaonsäure und deren Anwendung in Brennstoffzellen
DE10234236A1 (de) 2002-07-27 2004-02-05 Celanese Ventures Gmbh Verfahren zur Behandlung von Polyazolfolien
DE10235358A1 (de) * 2002-08-02 2004-02-12 Celanese Ventures Gmbh Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polymere und deren Anwendung in Brennstoffzellen
DE10242708A1 (de) * 2002-09-13 2004-05-19 Celanese Ventures Gmbh Protonenleitende Membranen und deren Verwendung
DE10246461A1 (de) * 2002-10-04 2004-04-15 Celanese Ventures Gmbh Protonenleitende Polymermembran enthaltend Polyazolblends und deren Anwendung in Brennstoffzellen
DE10246372A1 (de) * 2002-10-04 2004-04-15 Celanese Ventures Gmbh Mit einer Katalysatorschicht beschichtete protonenleitende Polymermembran enthaltend Polyazole und deren Anwendung in Brennstoffzellen
JP4875489B2 (ja) 2003-07-27 2012-02-15 ベーアーエスエフ フューエル セル ゲーエムベーハー プロトン伝導性膜およびその使用
JP4979179B2 (ja) * 2003-08-22 2012-07-18 株式会社豊田中央研究所 固体高分子型燃料電池およびその製造方法
DE10340928A1 (de) * 2003-09-04 2005-04-07 Celanese Ventures Gmbh Mit einer Katalysatorschicht beschichtete protonenleitende Polymermembran enthaltend Phosphonensäuregruppen umfassende Polymere, Membran-Elektroden-Einheit und deren Anwendung in Brennstoffzellen
WO2005111123A1 (de) * 2004-05-14 2005-11-24 Pemeas Gmbh Anisotroper formkörper, verfahren zur herstellung und verwendung von anisotropen formkörpern
KR100723389B1 (ko) 2005-12-21 2007-05-30 삼성에스디아이 주식회사 폴리머 전해질막 및 이를 채용한 연료전지
DE102005020604A1 (de) * 2005-05-03 2006-11-16 Pemeas Gmbh Brennstoffzellen mit geringerem Gewicht und Volumen
EP1902484B1 (de) * 2005-07-01 2017-09-06 BASF Fuel Cell Research GmbH Herstellungsverfahren für gasdiffusionselektroden
US8945736B2 (en) * 2005-09-10 2015-02-03 Basf Fuel Cell Gmbh Method for conditioning membrane-electrode-units for fuel cells
DE102005051887A1 (de) * 2005-10-29 2007-05-03 Pemeas Gmbh Membran für Brennstoffzellen, enthaltend Polymere, die Phosphonsäure-und/oder Sulfonsäuregruppen umfassen, Membran-Elektroden-Einheit und deren Anwendung in Brennstoffzellen
JP5286646B2 (ja) * 2006-04-19 2013-09-11 トヨタ自動車株式会社 スルホン基含有モノマーの重合方法
US7638877B2 (en) * 2006-06-30 2009-12-29 Intel Corporation Alternative to desmear for build-up roughening and copper adhesion promotion
DE102007011424A1 (de) * 2007-03-08 2008-09-11 Lanxess Deutschland Gmbh Polymerelektrolytmembran mit funktionalisierten Nanopartikeln
KR101557269B1 (ko) 2007-04-19 2015-10-06 쿠리타 고교 가부시키가이샤 아니온 교환 수지의 제조 방법, 아니온 교환 수지, 카티온 교환 수지의 제조 방법, 카티온 교환 수지, 혼상 수지 및 전자 부품·재료 세정용 초순수의 제조 방법
CN103996865A (zh) * 2013-02-19 2014-08-20 中国科学院上海有机化学研究所 高阻醇聚合物电解质膜及其制备方法
FR3080958A1 (fr) * 2018-05-04 2019-11-08 Universite de Bordeaux Pile a combustible a electrolyte ameliore
CN109273747A (zh) * 2018-09-14 2019-01-25 汪青霞 一种聚吡咯增强质子交换膜及其制备方法
CN116063877B (zh) * 2021-10-29 2023-12-08 未势能源科技有限公司 膜电极涂布设备调试用的碳粉墨水及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397988A (en) * 1977-02-08 1978-08-26 Toyo Soda Mfg Co Ltd Production of cation exchange membrane
US4187333A (en) * 1973-05-23 1980-02-05 California Institute Of Technology Ion-exchange hollow fibers
EP0893165A2 (de) * 1997-06-28 1999-01-27 Hüls Aktiengesellschaft Bioaktive Beschichtung von Oberflächen unter Verwendung von Makroinitiatoren
US6096369A (en) * 1997-06-28 2000-08-01 Huels Aktiengesellschaft Process for hydrophilicizing the surface of polymeric substrates with a macroinitiator as primer
WO2000054351A1 (fr) * 1999-03-08 2000-09-14 Center For Advanced Science And Technology Incubation, Ltd. Membrane electrolytique pour pile a combustible et son procede de fabrication, et pile a combustible et son procede de fabrication

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL257772A (de) * 1959-11-18
NL268724A (de) * 1960-08-31
GB1000525A (en) 1962-07-20 1965-08-04 Teijin Ltd Process for preparation of polybenzimidazoles
JPS501707B1 (de) * 1969-12-20 1975-01-21
US3808305A (en) * 1971-07-27 1974-04-30 H Gregor Crosslinked,interpolymer fixed-charge membranes
DE2450670A1 (de) * 1974-10-25 1976-04-29 Benckiser Gmbh Joh A Verfahren zur abtrennung von citrat oder citronensaeure aus fermentationsloesungen
US4012303A (en) * 1974-12-23 1977-03-15 Hooker Chemicals & Plastics Corporation Trifluorostyrene sulfonic acid membranes
FR2485395B1 (fr) * 1980-06-24 1986-04-11 Commissariat Energie Atomique Membrane echangeuse de cations, son procede de fabrication et son application en tant qu'electrolyte solide
US4634530A (en) * 1980-09-29 1987-01-06 Celanese Corporation Chemical modification of preformed polybenzimidazole semipermeable membrane
US4622276A (en) * 1983-12-16 1986-11-11 Stauffer Chemical Company Fuel cell electrolyte
US4775215A (en) 1986-10-31 1988-10-04 Hoechst Celanese Corporation Nonlinear optical devices
US5098985A (en) * 1988-10-11 1992-03-24 The Dow Chemical Company Copolymers containing polybenzoxazole, polybenzothiazole and polybenzimidazole moieties
US5218076A (en) * 1989-08-31 1993-06-08 The Dow Chemical Company Branch polybenzazole polymer and method of preparation
US5091500A (en) 1990-09-21 1992-02-25 The Dow Chemical Company Polybenzazole polymer containing perfluorocyclobutane rings
US5211984A (en) * 1991-02-19 1993-05-18 The Regents Of The University Of California Membrane catalyst layer for fuel cells
CA2153973A1 (en) * 1993-01-15 1994-07-21 Christopher Andreola Process for producing ion exchange membranes, and the ion exchange membranes produced thereby
US5312895A (en) * 1993-03-12 1994-05-17 The United States Of America As Represented By The Secretary Of The Air Force Benzobisazole copolymer system soluble in aprotic solvents
CA2161663C (en) 1993-04-28 2005-02-15 Doetze Jakob Sikkema Rigid rod polymer based on pyridobisimidazole
CH691209A5 (de) * 1993-09-06 2001-05-15 Scherrer Inst Paul Herstellungsverfahren für einen Polmerelektrolyten und elektrochemische Zelle mit diesem Polymerelektrolyten.
US5633337A (en) * 1995-01-26 1997-05-27 The United States Of America As Represented By The Secretary Of The Air Force Aromatic benzobisazole polymers and copolymers incorporating diphenylamino moieties
US5492996A (en) * 1995-02-21 1996-02-20 The United States Of America As Represented By The Secretary Of The Air Force Alcohol soluble benzazole polymers
US5599639A (en) * 1995-08-31 1997-02-04 Hoechst Celanese Corporation Acid-modified polybenzimidazole fuel cell elements
DE19548421B4 (de) * 1995-12-22 2004-06-03 Celanese Ventures Gmbh Verfahren zur kontinuierlichen Herstellung von Membranelektrodeneinheiten
DE19632285A1 (de) * 1996-08-09 1998-02-19 Hoechst Ag Protonenleiter mit einer Temperaturbeständigkeit in einem weiten Bereich und guten Protonenleitfähigkeiten
DE19650478A1 (de) 1996-12-05 1998-06-10 Daimler Benz Ag Lackiertes metallisches Substrat mit einer korrosionsschützenden Haftschicht auf Basis von Polysäuren und Verfahren zum Aufbringen der Haftschicht
DE19653484A1 (de) 1996-12-20 1998-06-25 Fraunhofer Ges Forschung Verfahren zur Herstellung von Membran-Elektroden-Einheiten und eine so hergestellte Membran-Elektroden-Einheit
EP1021296A4 (de) 1997-08-29 2001-05-23 Foster Miller Inc Elektrolytverbundstoffmembranen aus festen polymeren
US6248469B1 (en) * 1997-08-29 2001-06-19 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
US6030718A (en) * 1997-11-20 2000-02-29 Avista Corporation Proton exchange membrane fuel cell power system
US6110616A (en) * 1998-01-30 2000-08-29 Dais-Analytic Corporation Ion-conducting membrane for fuel cell
US6087032A (en) * 1998-08-13 2000-07-11 Asahi Glass Company Ltd. Solid polymer electrolyte type fuel cell
FI107932B (fi) 1999-02-16 2001-10-31 Mikael Paronen Polymeerikalvo ja menetelmä sen valmistamiseksi
US6517962B1 (en) * 1999-08-23 2003-02-11 Ballard Power Systems Inc. Fuel cell anode structures for voltage reversal tolerance
DE60029731T8 (de) 1999-11-29 2007-11-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Fester Polymerelektrolyt mit hoher Dauerhaftigkeit
JP3656244B2 (ja) * 1999-11-29 2005-06-08 株式会社豊田中央研究所 高耐久性固体高分子電解質及びその高耐久性固体高分子電解質を用いた電極−電解質接合体並びにその電極−電解質接合体を用いた電気化学デバイス
AU2907801A (en) 1999-12-16 2001-06-25 Proton Energy Systems, Inc. Low gravity electrochemical cell
GB0006429D0 (en) 2000-03-17 2000-05-03 Johnson Matthey Plc Electrochemical cell
GB0006428D0 (en) * 2000-03-17 2000-05-03 Johnson Matthey Plc Electrochemical cell
US7052805B2 (en) 2000-06-02 2006-05-30 Sri International Polymer electrolyte having acidic, basic and elastomeric subunits
DE10052242A1 (de) * 2000-10-21 2002-05-02 Celanese Ventures Gmbh Mit Säure dotierte, ein- oder mehrschichtige Kunststoffmembran mit Schichten aufweisend Polymerblends umfassend Polymere mit wiederkehrenden Azoleinheiten, Verfahren zur Herstellung solche Kunststoffmembranen sowie deren Verwendung
US7288603B2 (en) 2000-11-13 2007-10-30 Toyo Boseki Kabushiki Kaisha Polybenzazole compound having sulfonic acid group and/or phosphonic acid group, resin composition containing the same, resin molding, solid polymer electrolyte membrane, solid polymer electrolyte membrane/electrode assembly and method of preparing assembly
JP2002146014A (ja) 2000-11-15 2002-05-22 Toyobo Co Ltd イオン伝導性ホスホン酸含有ポリアゾール
DE10109829A1 (de) 2001-03-01 2002-09-05 Celanese Ventures Gmbh Polymermembran, Verfahren zu deren Herstellung sowie deren Verwendung
DE10117686A1 (de) 2001-04-09 2002-10-24 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10117687A1 (de) * 2001-04-09 2002-10-17 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10129458A1 (de) 2001-06-19 2003-01-02 Celanese Ventures Gmbh Verbesserte Polymerfolien auf Basis von Polyazolen
JP2003022709A (ja) 2001-07-09 2003-01-24 Toyobo Co Ltd ブレンドポリマー電解質、該電解質を主成分とする電解質膜、及び該電解質を用いた膜/電極接合体
DE10133738A1 (de) 2001-07-11 2003-02-06 Joerg Mueller Verfahren zur Herstellung einer plasmapolymerisierten Polymer-Elektrolytmembran
DE10144815A1 (de) * 2001-09-12 2003-03-27 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10148131B4 (de) * 2001-09-28 2010-07-01 Gkss-Forschungszentrum Geesthacht Gmbh Verfahren zur Herstellung eines Polymers, Polymer und protonenleitfähige Membran für elektrochemische Anwendungen
DE10209419A1 (de) * 2002-03-05 2003-09-25 Celanese Ventures Gmbh Verfahren zur Herstellung einer Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
DE10213540A1 (de) * 2002-03-06 2004-02-19 Celanese Ventures Gmbh Lösung aus Vinylphosphonsäure, Verfahren zur Herstellung einer Polymerelektrolytmembran aus Polyvinylphosphaonsäure und deren Anwendung in Brennstoffzellen
EP1485427B1 (de) * 2002-03-06 2006-01-18 Pemeas GmbH Mischungen umfassend vinylhaltige sulfonsaure, polymerelektrolytmembranen umfassend polyvinylsulfonsaure und deren anwendung in brennstoffzellen
US20050118478A1 (en) * 2002-03-06 2005-06-02 Joachim Kiefer Mixture comprising sulphonic acid containing vinyl, polymer electrolyte membrane comprising polyvinylsulphonic acid and the use thereof in fuel cells
ATE373690T1 (de) 2002-03-06 2007-10-15 Pemeas Gmbh Protonenleitende elektrolytmembran mit geringer methanoldurchlässigkeit und deren anwendung in brennstoffzellen
DE10220818A1 (de) 2002-05-10 2003-11-20 Celanese Ventures Gmbh Verfahren zur Herstellung einer gepfropften Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
DE10228657A1 (de) 2002-06-27 2004-01-15 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
EP1537164A1 (de) 2002-08-29 2005-06-08 Pemeas GmbH Verfahren zur herstellung von protonenleitenden polymermembranen, verbesserte polymermembranen und deren anwendung in brennstoffzellen
DE10242708A1 (de) 2002-09-13 2004-05-19 Celanese Ventures Gmbh Protonenleitende Membranen und deren Verwendung
JP4875489B2 (ja) * 2003-07-27 2012-02-15 ベーアーエスエフ フューエル セル ゲーエムベーハー プロトン伝導性膜およびその使用
DE10340928A1 (de) * 2003-09-04 2005-04-07 Celanese Ventures Gmbh Mit einer Katalysatorschicht beschichtete protonenleitende Polymermembran enthaltend Phosphonensäuregruppen umfassende Polymere, Membran-Elektroden-Einheit und deren Anwendung in Brennstoffzellen
DE102005051887A1 (de) * 2005-10-29 2007-05-03 Pemeas Gmbh Membran für Brennstoffzellen, enthaltend Polymere, die Phosphonsäure-und/oder Sulfonsäuregruppen umfassen, Membran-Elektroden-Einheit und deren Anwendung in Brennstoffzellen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187333A (en) * 1973-05-23 1980-02-05 California Institute Of Technology Ion-exchange hollow fibers
JPS5397988A (en) * 1977-02-08 1978-08-26 Toyo Soda Mfg Co Ltd Production of cation exchange membrane
EP0893165A2 (de) * 1997-06-28 1999-01-27 Hüls Aktiengesellschaft Bioaktive Beschichtung von Oberflächen unter Verwendung von Makroinitiatoren
US6096369A (en) * 1997-06-28 2000-08-01 Huels Aktiengesellschaft Process for hydrophilicizing the surface of polymeric substrates with a macroinitiator as primer
WO2000054351A1 (fr) * 1999-03-08 2000-09-14 Center For Advanced Science And Technology Incubation, Ltd. Membrane electrolytique pour pile a combustible et son procede de fabrication, et pile a combustible et son procede de fabrication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 002, no. 131 (C - 026) 31 October 1978 (1978-10-31) *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9447217B2 (en) 2001-09-07 2016-09-20 Itm Power (Research) Limited Method for producing a membrane electrode including forming the membrane in situ
WO2005024989A1 (de) * 2003-09-04 2005-03-17 Pemeas Gmbh Protonenleitende polymermembran umfassend mindestens ein poröses trägermaterial und deren anwendung in brennstoffzellen
US20110318671A1 (en) * 2003-12-30 2011-12-29 Pemeas Gmbh Proton-conducting membrane and use thereof
US20090214920A1 (en) * 2003-12-30 2009-08-27 Pemeas Gmbh Proton-conducting membrane and use thereof
US8765905B2 (en) * 2003-12-30 2014-07-01 Basf Fuel Cell Gmbh Proton-conducting membrane and use thereof
US8822091B2 (en) 2003-12-30 2014-09-02 Basf Fuel Cell Gmbh Proton-conducting membrane and use thereof
US8859150B2 (en) * 2003-12-30 2014-10-14 Basf Fuel Cell Gmbh Proton-conducting membrane and use thereof
WO2005063862A1 (de) 2003-12-30 2005-07-14 Pemeas Gmbh Protonenleitende membran und deren verwendung
JP2006216531A (ja) * 2004-12-03 2006-08-17 Nitto Denko Corp 電解質膜及びそれを用いた固体高分子型燃料電池
EP1833111A1 (de) * 2004-12-03 2007-09-12 Nitto Denko Corporation Elektrolytmembran und festpolymer-brennstoffzelle damit
EP1833111A4 (de) * 2004-12-03 2010-03-17 Nitto Denko Corp Elektrolytmembran und festpolymer-brennstoffzelle damit
US7785751B2 (en) 2004-12-03 2010-08-31 Nitto Denko Corporation Production method of electrolyte membrane, electrolyte membrane and solid polymer fuel cell using same
WO2006059582A1 (ja) * 2004-12-03 2006-06-08 Nitto Denko Corporation 電解質膜の製造方法、電解質膜、及び、その電解質膜を用いた固体高分子型燃料電池
US8846267B2 (en) 2005-06-27 2014-09-30 Itm Power (Research) Ltd. Membrane electrode assemblies
WO2007051570A1 (de) * 2005-10-31 2007-05-10 Basf Fuel Cell Gmbh Verbesserte membran-elektrodeneinheiten und brennstoffzellen mit hoher lebensdauer

Also Published As

Publication number Publication date
CN1277869C (zh) 2006-10-04
JP2011138782A (ja) 2011-07-14
EP1483316B1 (de) 2007-09-19
ES2292993T3 (es) 2008-03-16
ATE373690T1 (de) 2007-10-15
US20050118477A1 (en) 2005-06-02
DK1483316T3 (da) 2007-12-27
DE50308216D1 (de) 2007-10-31
JP2005519428A (ja) 2005-06-30
KR100993157B1 (ko) 2010-11-09
US7846982B2 (en) 2010-12-07
KR20050002844A (ko) 2005-01-10
CN1639239A (zh) 2005-07-13
EP1483316A1 (de) 2004-12-08
CA2478530A1 (en) 2003-09-12

Similar Documents

Publication Publication Date Title
EP1488473B1 (de) Mischungen umfassend vinylhaltige phosphonsäure; polymerelektrolytmembranen umfassend polyvinylphosphonsäure und deren anwendung in brennstoffzellen
EP1483316B1 (de) PROTONENLEITENDE ELEKTROLYTMEMBRAN MIT GERINGER METHANOLDURCHL&amp;Auml;SSIGKEIT UND DEREN ANWENDUNG IN BRENNSTOFFZELLEN
EP1506591B1 (de) Polymerelektrolytmembran, verfahren zu deren herstellung und deren anwendung in brennstoffzellen
EP1483314A1 (de) Protonenleitende elektrolytmembran für hochtemperaturanwendungen und deren anwendung in brennstoffzellen
EP1485427B1 (de) Mischungen umfassend vinylhaltige sulfonsaure, polymerelektrolytmembranen umfassend polyvinylsulfonsaure und deren anwendung in brennstoffzellen
EP1527494B1 (de) Protonenleitende polymembran, welche sulfonsäuregruppen enthaltende polymere umfasst, und deren anwendung in brennstoffzellen
EP1512190A2 (de) Gepfropfte polymerelektrolytmembran, verfahren zu deren herstellung und deren anwendung in brennstoffzellen
EP1527493A1 (de) Protonenleitende polymermembran, welche phosphonsäuregruppen enthaltende polymere aufweist, und deren anwendung in brennstoffzellen
WO2007048636A2 (de) Membran für brennstoffzellen, enthaltend polymere, die phosphonsäure- und/oder sulfonsäuregruppen umfassen, membran-elektroden-einheit und deren anwendung in brennstoffzellen
EP1927151B1 (de) Verfahren zur konditionierung von membran-elektroden-einheiten für brennstoffzellen
EP1771911B1 (de) Membran-elektrodeneinheiten und brennstoffzellen mit hoher lebensdauer
EP1678778A2 (de) Protonenleitende polymermembran enthaltend polymere mit an aromatische gruppen kovalent gebundene sulfonsäuregruppen, membran -elektroden-einheit und deren anwendung in brennstoffzellen
EP1664166A2 (de) Mit einer katalysatorschicht beschichtete protonenleitende polymermembran enthaltend phosphons uregruppen umfassende polymere , membran-elektroden-einheit und deren anwendung in brennstoffzellen
EP1955400A1 (de) Verbesserte membran-elektrodeneinheiten und brennstoffzellen mit hoher lebensdauer
EP1676333A1 (de) Protonenleitende polymermembran umfassend mindestens ein poröses träger-material und deren anwendung in brennstoffzellen
DE10210499A1 (de) Verfahren zur Herstellung einer Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
DE10209685A1 (de) Verfahren zur Herstellung einer Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
DE10210500A1 (de) Lösung aus Vinylphosphonsäure und Vinylsulfonsäure, Verfahren zur Herstellung einer Polymerelektrolytmembran aus Polyvinylphosphonsäure und Polyvinylsulfonsäure und deren Anwendung in Brennstoffzellen
DE10209684A1 (de) Lösung aus Vinylsulfonsäure, Verfahren zur Herstellung einer Polymerelektrolytmembran aus Polyvinylsulfonsäure und deren Anwendung in Brennstoffzellen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2478530

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003573059

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038053004

Country of ref document: CN

Ref document number: 1020047013965

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003743390

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003743390

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047013965

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10506387

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003743390

Country of ref document: EP