DE10210500A1 - Lösung aus Vinylphosphonsäure und Vinylsulfonsäure, Verfahren zur Herstellung einer Polymerelektrolytmembran aus Polyvinylphosphonsäure und Polyvinylsulfonsäure und deren Anwendung in Brennstoffzellen - Google Patents

Lösung aus Vinylphosphonsäure und Vinylsulfonsäure, Verfahren zur Herstellung einer Polymerelektrolytmembran aus Polyvinylphosphonsäure und Polyvinylsulfonsäure und deren Anwendung in Brennstoffzellen

Info

Publication number
DE10210500A1
DE10210500A1 DE10210500A DE10210500A DE10210500A1 DE 10210500 A1 DE10210500 A1 DE 10210500A1 DE 10210500 A DE10210500 A DE 10210500A DE 10210500 A DE10210500 A DE 10210500A DE 10210500 A1 DE10210500 A1 DE 10210500A1
Authority
DE
Germany
Prior art keywords
group
membrane
polymer
membrane according
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10210500A
Other languages
English (en)
Inventor
Oemer Uensal
Joachim Kiefer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Fuel Cell GmbH
Original Assignee
Celanese Ventures GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese Ventures GmbH filed Critical Celanese Ventures GmbH
Priority to DE10210500A priority Critical patent/DE10210500A1/de
Priority to DE50302234T priority patent/DE50302234D1/de
Priority to KR10-2004-7013923A priority patent/KR20040107473A/ko
Priority to CNB038101653A priority patent/CN1318484C/zh
Priority to JP2003573057A priority patent/JP2005526875A/ja
Priority to EP03711948A priority patent/EP1485427B1/de
Priority to PCT/EP2003/002395 priority patent/WO2003074595A1/de
Priority to CA002477863A priority patent/CA2477863A1/en
Priority to AT03711948T priority patent/ATE316111T1/de
Publication of DE10210500A1 publication Critical patent/DE10210500A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

Lösung aus Vinylphosphonsäure und Vinylsulfonsäure, Verfahren zur Herstellung einer Polymer-Elektrolyt-Membran aus Polyvinylphosphonsäure und Polyvinylsulfon und deren Anwendung in Brennstoffzellen. DOLLAR A Die vorliegende Erfindung betrifft eine Lösung aus Vinylphosphonsäuremonomeren, Vinylsulfonsäuremonomeren und eine protonenleitende Polymer-Elektrolyt-Membran, auf Basis von Polyvinylphosphon/sulfonsäure-Polymeren, die aufgrund ihrer hervorragenden chemischen und thermischen Eigenschaften vielfältig eingesetzt werden kann und sich insbesondere als Polymer-Elektrolyt-Membran (PEM) in sogenannten PEM-Brennstoffzellen eignet.

Description

  • Die vorliegende Erfindung betrifft eine Lösung aus Vinylphosphonsäuremonomeren, Vinylsulfonsäuremonomeren und eine protonenleitende Polymerelektrolytmembran, auf Basis von Polyvinylphosphon/sulfonsäure-Polymeren, die aufgrund ihrer hervorragenden chemischen und thermischen Eigenschaften vielfältig eingesetzt werden kann und sich insbesondere als Polymer-Elektrolyt-Membran (PEM) in sogenannten PEM-Brennstoffzellen eignet.
  • Eine Brennstoffzelle enthält üblicherweise einen Elektrolyten und zwei durch den Elektrolyten getrennte Elektroden. Im Fall einer Brennstoffzelle wird einer der beiden Elektroden ein Brennstoff, wie Wasserstoffgas oder ein Methanol-Wasser-Gemisch, und der anderen Elektrode ein Oxidationsmittel, wie Sauerstoffgas oder Luft, zugeführt und dadurch chemische Energie aus der Brennstoffoxidation direkt in elektrische Energie umgewandelt. Bei der Oxidationsreaktion werden Protonen und Elektronen gebildet.
  • Der Elektrolyt ist für Wasserstoffionen, d. h. Protonen, aber nicht für reaktive Brennstoffe wie das Wasserstoffgas oder Methanol und das Sauerstoffgas durchlässig.
  • Eine Brennstoffzelle weist in der Regel mehrere Einzelzellen sogenannte MEE's (Membran-Elektroden-Einheit) auf, die jeweils einen Elektrolyten und zwei durch den Elektrolyten getrennte Elektroden enthalten.
  • Als Elektrolyt für die Brennstoffzelle kommen Feststoffe wie Polymerelektrolytmembranen oder Flüssigkeiten wie Phosphorsäure zur Anwendung. In jüngster Zeit haben Polymerelektrolytmembranen als Elektrolyte für Brennstoffzellen Aufmerksamkeit erregt. Prinzipiell kann man zwischen 2 Kategorien von Polymermembranen unterscheiden.
  • Zu der ersten Kategorie gehören Kationenaustauschermembranen bestehend aus einem Polymergerüst welches kovalent gebunden Säuregruppen, bevorzugt Sulfonsäuregruppen enthält. Die Sulfonsäuregruppe geht unter Abgabe eines Wasserstoffions in ein Anion über und leitet daher Protonen. Die Beweglichkeit des Protons und damit die Protonenleitfähigkeit ist dabei direkt an den Wassergehalt verknüpft. Durch die sehr gute Mischbarkeit von Methanol und Wasser weisen solche Kationenaustauschermembranen eine hohe Methanolpermeabilität auf und sind deshalb für Anwendungen in einer Direkt-Methanol-Brennstoffzelle ungeeignet. Trocknet die Membran, z. B. in Folge hoher Temperatur, aus, so nimmt die Leitfähigkeit der Membran und folglich die Leistung der Brennstoffzelle drastisch ab. Die Betriebstemperaturen von Brennstoffzellen enthaltend solche Kationenaustauschermembranen ist somit auf die Siedetemperatur des Wassers beschränkt. Die Befeuchtung der Brennstoffe stellt eine grosse technische Herausforderung für den Einsatz von Polymerelektrolytmembranbrennstoffzellen (PEMBZ) dar, bei denen konventielle, sulfonierte Membranen wie z. B. Nafion verwendet werden.
  • So verwendet man als Materialien für Polymerelektrolytmembranen beispielsweise Perfluorsulfonsäurepolymere. Das Perfluorsulfonsäurepolymer (wie z. B. Nafion) weist im allgemeinen ein Perfluorkohlenwasserstoffgerüst auf, wie ein Copolymer aus Tetrafluorethylen und Trifluorvinyl, und eine daran gebundene Seitenkette mit einer Sulfonsäuregruppe, wie eine Seitenkette mit einer an eine Perfluoralkylengruppe gebundenen Sulfonsäuregruppe.
  • Bei den Kationenaustauschermembranen handelt es sich vorzugsweise um organische Polymere mit kovalent gebundenen Säuregruppen, insbesondere Sulfonsäure. Verfahren zur Sulfonierung von Polymeren sind in F. Kucera et. al. Polymer Engineering and Science 1988, Vol. 38, No 5, 783-792 beschrieben.
  • Im Folgenden sind die wichtigsten Typen von Kationenaustauschmembranen aufgeführt die zum Einsatz in Brennstoffzellen kommerzielle Bedeutung erlangt haben:
    Der wichtigste Vertreter ist das Perfluorosulfonsäurepolymer Nafion® (US 3692569). Dieses Polymer kann wie in US 4453991 beschrieben in Lösung gebracht und dann als Ionomer eingesetzt werden. Kationenaustauschermembranen werden auch erhalten durch Füllen eines porösen Trägermaterials mit einem solchen Ionomer. Als Trägermaterial wird dabei expandiertes Teflon bevorzugt (US 5635041).
  • Eine weitere perfluorinierte Kationenaustauschermembran kann wie in US 5422411 beschrieben durch Copolymerisation aus Trifluorostyrol und sulfonylmodifiziertem Trifuorostyrol hergestellt werden. Kompositmembranen bestehend aus einem porösen Trägermaterial, insbesondere expandiertes Teflon, gefüllt mit Ionomeren bestehend aus solchen sulfonylmodifizierten Trifluorostyrol-Copolymeren sind in US 5834523 beschrieben.
  • US 6110616 beschreibt Copolymere aus Butadien und Styrol und deren anschliesende Sulfonierung zur Herstellung von Kationenaustauschermembranen für Brennstoffzellen.
  • Eine weitere Klasse von teilfluorierten Kationenaustauschermembranen kann durch Strahlenpfropfen und nachfolgende Sulfonierung hergestellt werden. Dabei wird wie in EP 667983 oder DE 198 44 645 beschrieben an einem zuvor bestrahlten Polymerfilm eine Pfropfungsreaktion vorzugsweise mit Styrol durchgeführt. In einer nachfolgenden Sulfonierungsreaktion erfolgt dann die Sulfonierung der Seitenketten. Gleichzeitig mit der Pfropfung kann auch eine Vernetzung durchgeführt und somit die mechanischen Eigenschaften verändert werden.
  • Neben obigen Membranen wurde eine weitere Klasse nichtfluorierter Membranen durch Sulfonierung von hochtemperaturstabilen Thermoplasten entwickelt. So sind Membranen aus sulfonierten Polyetherketonen (DE 42 19 077, EP 96/01177), sulfoniertem Polysulfon (J. Membr. Sci. 83 (1993) p. 211) oder sulfoniertem Polyphenylensulfid (DE 195 27 435) bekannt.
  • Ionomere hergestellt aus sulfonierten Polyetherketonen sind in WO 00/15691 beschrieben.
  • Desweiteren sind Säure-Base-Blendmembranen bekannt, die wie in DE 198 17 374 oder WO 01/18894 beschrieben durch Mischungen von sulfonierten Polymeren und basischen Polymeren hergestellt werden.
  • Zur weiteren Verbesserung der Membraneigenschaften kann eine aus dem Stand der Technik bekannte Kationenaustauschermembran mit einem hochtemperaturstabilen Polymer gemischt werden. Die Herstellung und Eigenschaften von Kationenaustauschermembranen bestehend aus Blends aus sulfoniertem PEK und a) Polysulfonen (DE 44 22 158), b) aromatischen Polyamiden (424 45 264) oder c) Polybenzimidazol (DE 198 51 498) sind beschrieben.
  • Nachteil all dieser Kationenaustauschermembranen ist die Tatsache, dass die Membran befeuchtet werden muss, die Betriebstemperatur auf 100°C beschränkt ist, und die Membranen eine hohe Methanolpermeabilität aufweisen. Ursache für diese Nachteile ist der Leitfähigkeitsmechanismus der Membran, bei der der Transport der Protonen an den Transport des Wassermoleküls gekoppelt ist. Dies bezeichnet man als "Vehicle-Mechanismus" (K.-D. Kreuer, Chem. Mater. 1996, 8, 610-641).
  • Als zweite Kategorie sind Polymerelektrolytmembranen mit Komplexen aus basischen Polymeren und starken Säuren entwickelt worden. So beschreibt WO 96/13872 und die korrespondierende US-PS 5,525,436 ein Verfahren zur Herstellung einer protonenleitenden Polymerelektrolytmembranen, bei dem ein basisches Polymer, wie Polybenzimidazol, mit einer starken Säure, wie Phosphorsäure, Schwefelsäure usw., behandelt wird.
  • In J. Electrochem. Soc., Band 142, Nr. 7, 1995, S. L121-L123 wird die Dotierung eines Polybenzimidazols in Phosphorsäure beschrieben.
  • Bei den im Stand der Technik bekannten basischen Polymermembranen wird die - zum Erzielen der erforderlichen Protonenleitfähigkeit - eingesetzte Mineralsäure (meist konzentrierte Phosphorsäure) entweder nach der Formgebung eingesetzt oder alternativ dazu die basische Polymermembran direkt aus Polyphosphorsäure wie in der deutschen Patentanmeldung Nr. 101 17 686.4, Nr. 101 44 815.5 und Nr. 101 17 687.2 hergestellt. Das Polymer dient dabei als Träger für den Elektrolyten bestehend aus der hochkonzentrierten Phosphorsäure, respektive Polyphosphorsäure. Die Polymermembran erfüllt dabei weitere wesentliche Funktionen insbesondere muss sie eine hohe mechanische Stabilität aufweisen und als Separator für die beiden eingangs genannten Brennstoffe dienen.
  • Wesentliche Vorteile einer solchen Phosphorsäure oder Polyphosphorsäure dotierten Membran ist die Tatsache, dass eine Brennstoffzelle, bei der eine derartige Polymerelektrolytmembran eingesetzt wird, bei Temperaturen oberhalb 100°C ohne eine sonst notwendige Befeuchtung der Brennstoffe betrieben werden kann. Dies liegt in der Eigenschaft der Phosphorsäure begründet die Protonen ohne zusätzliches Wasser mittels des sog. Grotthus Mechanismus transportieren zu können (K.-D. Kreuer, Chem. Mater. 1996, 8, 610-641).
  • Durch die Möglichkeit des Betriebes bei Temperaturen oberhalb 100°C ergeben sich weitere Vorteile für das Brennstoffzellensystem. Zum Einen wird die Empfindlichkeit des Pt-Katalysators gegenüber Gasverunreinigungen, insbesondere CO, stark verringert. CO entsteht als Nebenprodukt bei der Reformierung des wasserstoffreichen Gases aus Kohlenstoffhaltigen Verbindungen, wie z. B. Erdgas, Methanol oder Benzin oder auch als Zwischenprodukt bei der direkten Oxidation von Methanol. Typischerweise muss der CO-Gehalt des Brennstoffes bei Temperaturen < 100°C kleiner als 100 ppm sein. Bei Temperaturen im Bereich 150-200° können jedoch auch 10000 ppm CO oder mehr toleriert werden (N. J. Bjerrum et. al. Journal of Applied Electrochemistry, 2001, 31, 773-779). Dies führt zu wesentlichen Vereinfachungen des vorgeschalteten Reformierungsprozesses und somit zu Kostensenkungen des gesamten Brennstoffzellensystems.
  • Ein grosser Vorteil von Brennstoffzellen ist die Tatsache, dass bei der elektrochemischen Reaktion die Energie des Brennstoffes direkt in elektrische Energie und Wärme umgewandelt wird. Als Reakionsprodukt entsteht dabei an der Kathode Wasser. Als Nebenprodukt bei der elektrochemischen Reaktion entsteht also Wärme. Für Anwendungen bei denen nur der Strom zum Antrieb von Elektromotoren genutzt wird, wie z. B. für Automobilanwendungen, oder als vielfältiger Ersatz von Batteriesystemen muss die Wärme abgeführt werden, um ein Überhitzen des Systems zu vermeiden. Für die Kühlung werden dann zusätzliche, Energie verbrauchende Geräte notwendig, die den elektrischen Gesamt- Wirkungsgrad der Brennstoffzelle weiter verringern. Für stationäre Anwendungen wie zur zentralen oder dezentralen Erzeugung von Strom und Wärme lässt sich die Wärme effizient durch vorhandene Technologien wie z. B. Wärmetauscher nutzen. Zur Steigerung der Effizienz werden dabei hohe Temperaturen angestrebt. Liegt die Betriebstemperatur oberhalb 100°C und ist die Temperaturdifferenz zwischen der Umgebungstemperatur und der Betriebstemperatur groß, so wird es möglich das Brennstoffzellensystem effizienter zu kühlen beziehungsweise kleine Kühlflächen zu verwenden und auf zusätzliche Geräte zu verzichten im Vergleich zu Brennstoffzellen, die aufgrund der Membranbefeuchtung bei unter 100°C betrieben werden müssen.
  • Neben diesen Vorteilen weist ein solches Brennstoffzellensystem einen entscheidenden Nachteil auf. So liegt Phosphorsäure oder Polyphosphorsäure als Elektrolyt vor, die durch ionische Wechselwirkungen nicht permanent an das basische Polymer gebunden ist und durch Wasser ausgewaschen werden kann. Wasser wird wie oben beschrieben bei der elektrochemischen Reaktion an der Kathode gebildet. Liegt die Betriebstemperatur oberhalb 100°C so wird das Wasser zum Grossteil als Dampf durch die Gasdiffusionselektrode abgeführt und der Säureverlust ist sehr gering. Fällt die Betriebstemperatur jedoch unter 100°C, z. B. beim An- und Abfahren der Zelle oder in Teillastbetrieb wenn eine hohe Stromausbeute angestrebt wird, so kondensiert das gebildete Wasser und kann zu einem verstärkten Auswaschen des Elektrolyten, hochkonzentrierte Phosphorsäure oder Polyphosphorsäure, führen.
  • Dies kann bei der vorstehend beschriebenen Fahrweise der Brennstoffzelle zu einem stetigen Verlust der Leitfähigkeit und Zellleistung führen, welche die Lebensdauer der Brennstoffzelle vermindern kann.
  • In der sogenannten Direkt-Methanol-Brennstoffzelle (DMBZ) wird als Brennstoff eine Methanol-Wasser-Gemisch zur Oxidation eingesetzt. Beim notwendigen direkten Kontakt der mit Phosphorsäure oder Polyphosphorsäure dotierten Membran mit dem wässrigen Brennstoffgemisch an der Anode kommt es zu einem steten Auswaschen des Elektrolyten und somit zu einem irreversiblen Leistungsabfall. Deshalb sind mit Phosphorsäure oder Polyphosphorsäure dotierte Polymerelektrolytmembranen nicht für den Einsatz in einer Direktmethanolbrennstoffzelle geeignet.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine neuartige Polymerelektrolytmembran bereitzustellen, bei der ein Auswaschen des Elektrolyten verhindert wird. Insbesondere soll so die Betriebstemperatur von < 0°C bis auf 200°C ausgeweitet werden können und das System keine Befeuchtung benötigen. Eine Brennstoffzelle enthaltend eine erfindungsgemässe Polymerelektrolytmembran soll sich eignen für reinen Wasserstoff sowie für zahlreiche kohlenstoffhaltige Brennstoffe insbesondere Erdgas, Benzin, Methanol und Biomasse.
  • Gelöst wird diese Aufgabe durch die Herstellung einer Vinylphosphonsäurehaltigen Lösung und ein Verfahren zur Herstellung einer Polymerelektrolytmembran aus dieser Lösung und einem weiteren hochtemperaturstabilen Polymer. Bedingt durch die hohe Konzentration an Polyvinylphosphonsäurepolymer, seine hohe Kettenflexibilität und die hohe Säurestärke der Polyvinylphosphonsäure beruht die Leitfähigkeit auf dem Grotthus-Mechanismus und das System benötigt somit keine zusätzliche Befeuchtung. Die polymere Polyvinylphosphonsäure die durch reaktive Gruppen auch vernetzt werden kann, wird durch gebildetes Produktwasser oder im Falle einer DMBZ durch den wässrigen Brennstoff nicht ausgewaschen. Eine erfindungsgemässe Polymerelektrolytmembran besitzt eine sehr geringe Methanolpermeabilität und eignet sich insbesondere für den Einsatz in einer DMBZ. Somit ist ein dauerhafter Betrieb einer Brennstoffzelle mit einer Vielzahl von Brennstoffen wie Wasserstoff, Erdgas, Benzin, Methanol oder Biomasse möglich.
  • Gegenstand der vorliegenden Erfindung ist eine protonenleitende Polymermembran auf Basis von Polyvinylphosphonsäure erhältlich durch ein Verfahren umfassend die Schritte
    • A) Lösen eines Polymeren in Mischung enthaltend Vinylhaltiger Phosphonsäure Monomere und Vinylhaltige Sulfonsäure Monomere,
    • B) Bildung eines flächigen Gebildes unter Verwendung der Lösung gemäß Schritt A) auf einem Träger
    • C) Aufbringen einer Starterlösung auf das gemäß Schritt B) gebildete flächige Gebilde und
    • D) Polymerisation der in dem flächigen Gebilde gemäß Schritt C) vorhandenen Vinylphosphonsäure und Vinylsulfonsäure.
  • Bei den in Schritt A) eingesetzten Polymeren handelt es sich um ein oder mehrere Polymere, die in der Vinylhaltigen Phosphonsäure eine Löslichkeit von mindestens 1 Gew.-%, vorzugsweise mindestens 3 Gew.-%, aufweisen, wobei die Löslichkeit von der Temperatur abhängig ist. Die zur Bildung des flächigen Gebildes eingesetzte Lösung unterliegt jedoch keinerlei Einschränkung hinsichtlich der Temperatur, so daß lediglich die geforderte Mindestlöslichkeit erzielt werden muss.
  • Besonders bevorzugt wird in Schritt A) ein Polymeres eingesetzt, welches eine Löslichkeit von mindestens 1 Gew.-% in Vinylphosphonsäure bei 160°C hat.
  • Bei den in Schritt A) eingesetzten Polymeren handelt es sich vorzugsweise um Polymere, die mindestens ein Stickstoff-, Sauerstoff- und/oder Schwefelatom in einer oder in unterschiedlichen Wiederholungseinheit enthalten.
  • Besonders bevorzugt sind Polymere die mindestens ein Stickstoffatom in einer Wiederholungseinheit enthalten. Insbesondere bevorzugt sind Polymere, die mindestens einen aromatischen Ring mit mindestens einem Stickstoffheteroatom pro Wiederholungseinheit enthalten. Innerhalb dieser Gruppe sind insbesondere Polymere auf Basis von Polyazolen bevorzugt. Diese basischen Polyazol-Polymere enthalten mindestens einen aromatischen Ring mit mindestens einem Stickstoffheteroatom pro Wiederholungseinheit.
  • Bei dem aromatischen Ring handelt es sich vorzugsweise um einen fünf- oder sechsgliedrigen Ring mit eins bis drei Stickstoffatomen, der mit einem anderen Ring, insbesondere einem anderen aromatischen Ring, anelliert sein kann.
  • Das basiche Polymere auf Basis von Polyazol enthält wiederkehrende Azoleinheiten der allgemeinen Formel (I) und/oder (II) und/oder (III) und/oder (IV) und/oder (V) und/oder (VI) und/oder (VII) und/oder (VIII) und/oder (IX) und/oder (X) und/oder (XI) und/oder (XII) und/oder (XIII) und/oder (XIV) und/oder (XV) und/oder (XVI) und/oder (XVI) und/oder (XVII) und/oder (XVIII) und/oder (XIX) und/oder (XX) und/oder (XXI) und/oder (XXII)








    worin
    Ar gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar1 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar2 gleich oder verschieden sind und für eine zwei oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar3 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar4 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar5 gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar6 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar7 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar8 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar9 gleich oder verschieden sind und für eine zwei- oder drei- oder vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar10 gleich oder verschieden sind und für eine zwei- oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar11 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    X gleich oder verschieden ist und für Sauerstoff, Schwefel oder eine Aminogruppe, die ein Wasserstoffatom, eine 1-20 Kohlenstoffatome aufweisende Gruppe, vorzugsweise eine verzweigte oder nicht verzweigte Alkyl- oder Alkoxygruppe, oder eine Arylgruppe als weiteren Rest trägt
    R gleich oder verschieden für Wasserstoff, eine Alkylgruppe und eine aromatische Gruppe steht und
    n, m eine ganze Zahl größer gleich 10, bevorzugt größer gleich 100 ist.
  • Bevorzugte aromatische oder heteroaromatische Gruppen leiten sich von Benzol, Naphthalin, Biphenyl, Diphenylether, Diphenylmethan, Diphenyldimethylmethan, Bisphenon, Diphenylsulfon, Chinolin, Pyridin, Bipyridin, Pyridazin, Pyrimidin, Pyrazin, Triazin, Tetrazin, Pyrol, Pyrazol, Anthracen, Benzopyrrol, Benzotriazol, Benzooxathiadiazol, Benzooxadiazol, Benzopyridin, Benzopyrazin, Benzopyrazidin, Benzopyrimidin, Benzopyrazin, Benzotriazin, Indolizin, Chinolizin, Pyridopyridin, Imidazopyrimidin, Pyrazinopyrimidin, Carbazol, Aciridin, Phenazin, Benzochinolin, Phenoxazin, Phenothiazin, Acridizin, Benzopteridin, Phenanthrolin und Phenanthren, die gegebenenfalls auch substituiert sein können, ab.
  • Dabei ist das Substitionsmuster von Ar1, Ar4, Ar6, Ar7, Ar8, Ar9, Ar10, Ar11 beliebig, im Falle vom Phenylen beispielsweise kann Ar1, Ar4, Ar6, Ar7, Ar8, Ar9, Ar10, Ar11 ortho-, meta- und para-Phenylen sein. Besonders bevorzugte Gruppen leiten sich von Benzol und Biphenylen, die gegebenenfalls auch substituiert sein können, ab.
  • Bevorzugte Alkylgruppen sind kurzkettige Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, wie z. B. Methyl-, Ethyl-, n- oder i-Propyl- und t-Butyl-Gruppen.
  • Bevorzugte aromatische Gruppen sind Phenyl- oder Naphthyl-Gruppen. Die Alkylgruppen und die aromatischen Gruppen können substituiert sein.
  • Bevorzugte Substituenten sind Halogenatome wie z. B. Fluor, Aminogruppen, Hydroxygruppen oder kurzkettige Alkylgruppen wie z. B. Methyl- oder Ethylgruppen.
  • Bevorzugt sind Polyazole mit wiederkehrenden Einheiten der Formel (I) bei denen die Reste X innerhalb einer wiederkehrenden Einheit gleich sind.
  • Die Polyazole können grundsätzlich auch unterschiedliche wiederkehrende Einheiten aufweisen, die sich beispielsweise in ihrem Rest X unterscheiden. Vorzugsweise jedoch weist es nur gleiche Reste X in einer wiederkehrenden Einheit auf.
  • In einer weiteren Ausführungsform der vorliegenden Erfindung ist das Polymer enthaltend wiederkehrende Azoleinheiten ein Copolymer oder ein Blend, das mindestens zwei Einheiten der Formel (I) und/oder (II) enthält, die sich voneinander unterscheiden.
  • In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist das Polymer enthaltend wiederkehrende Azoleinheiten ein Polyazol, das nur Einheiten der Formel (I) und/oder (II) enthält.
  • Die Anzahl der wiederkehrende Azoleinheiten im Polymer ist vorzugsweise eine ganze Zahl größer gleich 10. Besonders bevorzugte Polymere enthalten mindestens 100 wiederkehrende Azoleinheiten.
  • Im Rahmen der vorliegenden Erfindung sind Polymere enthaltend wiederkehrenden Benzimidazoleinheiten bevorzugt. Ein Beispiel eines äußerst zweckmäßigen Polymers enthaltend wiederkehrende Benzimidazoleinheiten wird durch Formel (Ia) wiedergegeben:


    wobei n eine ganze Zahl größer gleich 10, vorzugsweise größer gleich 100 ist.
  • Weitere bevorzugte Polyazol-Polymere sind Polyimidazole, Polybenzthiazole, Polybenzoxazole, Polytriazole, Polyoxadiazole, Polythiadiazole, Polypyrazole, Polyquinoxalines, Poly(pyridine), Poly(pyrimidine), und Poly(tetrazapyrene).
  • Besonders bevorzugt ist Celazole der Fa. Celanese, insbesondere ein solches bei dem das in der deutschen Patentanmeldung Nr. 101 29 458.1 beschriebe durch Sieben aufgearbeitete Polymer eingesetzt wird.
  • Neben den vorstehend genannten Polymeren kann auch ein Blend das weitere Polymere enthält eingesetzt werden. Diese Polymer muss jedoch die geforderte Mindestlöslichkeit aufweisen. Die Blendkomponente hat dabei im Wesentlichen die Aufgabe die mechanischen Eigenschaften zu verbessern und die Materialkosten zu verringern. Eine bevorzugte Blendkomponente ist dabei Polyethersulfon wie in der deutschen Patentanmeldung Nr. 100 52 242.4 beschrieben.
  • Die erfindungsgemäße Polymermembran kann noch weitere Zusätze an Füll- und/oder Hilfsstoffen aufweisen.
  • Die eingesetzten Polyazole, inbesondere jedoch die Polybenzimidazole zeichnen sich durch ein hohes Molekulargewicht aus. Gemessen als Intrinsische Viskosität beträgt diese mindestens 0,2 dl/g, vorzugsweise 0,8 bis 10 dl/g, insbesondere 1 bis 10 dl/g.
  • Bei der in Schritt A) verwendeten Lösung von Vinylhaltigen Phosphonsäure- Monomer handelt es sich um Verbindungen der Formel


    worin
    R eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5- C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,
    Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und
    x eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet
    y eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet
    und/oder der Formel


    worin
    R eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5- C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,
    Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und
    x eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet.
  • Bei der in Schritt A) verwendeten Lösung von Vinylhaltigen Sulfonsäure-Monomer handelt es sich um Verbindungen der Formel


    worin
    R eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5- C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,
    Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und
    x eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet,
    y eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet,
    und/oder der Formel


    worin
    R eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5- C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,
    Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und
    x eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet.
  • Die vinylhaltige Sulfonsäure/Phosphonsäure kann zusätzlich noch weitere organische Lösungsmittel und/oder Wasser enthalten. Diese können die Verarbeitbarkeit positiv beeinflussen. Insbesondere kann durch Zugabe des organischen Lösungsmittels die Löslichkeit des Polymeren verbessert werden. Der Gehalt an Vinylphosphonsäure in solchen Lösungen beträgt mindestens 3 Gew.-%, vorzugsweise mindestens 5 Gew.-%, besonders bevorzugt zwischen 10 und 97 Gew.-%.
  • Besonders bevorzugt wird handelsübliche Vinylphosphonsäure wie diese beispielsweise von der Firma Aldrich oder Clariant GmbH erhältlich ist, eingesetzt. Die Vinylphosphonsäure weist eine Reinheit von mehr als 90%, bevorzugt mehr als 97% Reinheit auf.
  • Der Gehalt an Vinylsulfonsäure Monomeren in solchen Lösungen beträgt mindestens 3 Gew.-%, vorzugsweise mindestens 5 Gew.-%, besonders bevorzugt zwischen 10 und 97 Gew.-%.
  • Besonders bevorzugt wird handelsübliche Vinylsulfonsäure eingesetzt. Die Vinylsulfonsäure weist eine Reinheit von mehr als 90%, bevorzugt mehr als 97% Reinheit auf.
  • In einer weiteren Ausführungsform der Erfindung enthalten die Vinylhaltigen Phosphonsäure/Sulfonsäure Monomeren weitere zur Vernetzung befähigte Monomere. Bei diesen handelt es sich insbesondere um Verbindungen, die mindestens 2 Kohlenstoff-Kohlenstoff Doppelbindungen aufweisen. Bevorzugt werden Diene, Triene, Tetraene, Dimethylacrylate, Trimethylacrylate, Tetramethylacrylate, Diacrylate, Triacrylate, Tetraacrylate.
  • Besonders bevorzugt sind Diene, Triene, Tetraene der Formel


  • Dimethylacrylate, Trimethylycrylate, Tetramethylacrylate der Formel


  • Diacrylate, Triacrylate, Tetraacrylate der Formel


    worin
    R eine C1-C15-Alkylgruppe, C5-C20-Aryl oder Heteroarylgruppe, NR', -SO2, PR', Si(R')2 bedeutet, wobei die vorstehenden Reste ihrerseits substituiert sein können,
    R' unabhängig voneinander Wasserstoff, eine C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, C5-C20-Aryl oder Heteroarylgruppe bedeutet und
    n mindestens 2 ist.
  • Bei den Substituenten des vorstehenden Restes R handelt es sich vorzugsweise um Halogen, Hydroxyl, Carboxy, Carboxyl, Carboxylester, Nitrile, Amine, Silyl, Siloxan Reste.
  • Besonders bevorzugte Vernetzer sind Allylmethacrylat, Ethylenglykoldimethacrylat, Diethylenglykoldimethacrylat, Triethylenglykoldimethacrylat, Tetra- und Polyethylenglykoldimethacrylat, 1,3-Butandioldimethacrylat, Glycerindimethacrylat, Diurethandimethacrylat, Trimethylpropantrimethacrylat, N',N-Methylenbisacrylamid, Carbinol, Butadien, Isopren, Chloropren, Divinylbenzol und/oder Bisphenol-A- dimethylacrylat.
  • Die Vernetzer werden zwischen 0,5 bis 30 Gew.-% bezogen auf die Vinylhaltige Phosphonsäure bzw. Vinylhaltige Sulfonsäure eingesetzt.
  • Die in Schritt A) erzeugte Lösung des Polymeren kann auch noch dispergiertes oder suspendiertes Polymer enthalten.
  • Die Bildung des flächigen Gebildes gemäß Schritt B) erfolgt mittels an sich bekannter Maßnahmen (Gießen, Sprühen, Rakeln, Extrusion) die aus dem Stand der Technik zur Polymerfilm-Herstellung bekannt sind. Als Träger sind alle unter den Bedingungen als inert zu bezeichnenden Träger geeignet.
  • Zur Einstellung der Viskosität kann die Lösung gegebenenfalls mit Wasser oder einem leicht verdampfbaren organischen Lösungsmittel versetzt werden. Hierdurch kann die Viskosität auf den gewünschten Wert eingestellt und die Bildung der Membran erleichtert werden.
  • Die Dicke des flächigen Gebildes beträgt zwischen 15 und 2000 µm, vorzugsweise zwischen 30 und 1500 µm, insbesondere zwischen 50 und 1200 µm.
  • Anschließend wird gemäß Schritt C) eine Starterlösung auf das flächige Gebilde aufgebracht. Dies kann mittels an sich bekannter Maßnahmen (z. B. Sprühen, Tauchen etc.) die aus dem Stand der Technik bekannt sind, erfolgen.
  • Die Starterlösung enthält mindestens eine Substanz die zur Bildung von Radikalen befähigt ist. Die Radikalbildung kann thermisch, photochemisch, chemisch und/oder elektrochemisch erfolgen.
  • Geeignete Radikalbildner sind Azoverbindungen, Peroxyverbindungen, Persulfatverbindungen oder Azoamidine. Nicht limitierende Beispiele sind Dibenzoylperoxid, Dicumolperoxid, Cumolhydroperoxid, Diisopropylperoxidicarbonat, Bis(4-t-butylcyclohexyl)peroxidicarbonat, Dikaliumpersulfat, Ammoniumperoxidisulfat, 2,2'-Azobis(2-methylpropionitril) (AIBN), Benzpinakol, Dibenzylderivate, Methylethylenletonperoxid, sowie die von der Firma DuPont unter dem Namen ®Vazo und ®Vazo WS erhältlichen Radikalbildner.
  • Üblicherweise werden zwischen 0,0001 und 1 Gew.-% (bezogen auf die Vinylhaltige Phosphonsäure oder Vinylhaltige Sulfonsäure) an Radikalbildner zugesetzt. Die Menge an Radikalbildner kann je nach gewünschten Polymerisationsgrad variiert werden.
  • In einer weiteren Ausführungsform der Erfindung kann die Starterlösung bereits in Schritt A) oder nach Schritt A) zugegeben werden. Wesentlich hierbei ist, das dies zu einem Zeitpunkt oder unter Bedingungen geschieht bei denen die Polymerisation, d. h. die Initiierung, noch nicht ausgelöst wird. Vorzugsweise erfolgt die Zugabe der Starterlösung zur gemäß Schritt A) erhaltenen Lösung des Polyazol-Polymeren in Vinylhaltiger Phosphon/Sulfonsäure bei Temperaturen unterhalb 100°C, besonders bevorzugt bei Temperaturen zwischen Raumtemperatur (20°C) und 80°C. Anschließend erfolgt die Bildung des flächigen Gebildes wie unter Schritt B) beschrieben.
  • Die Polymerisation der Vinylhaltigen Phosphon-/Sulfonsäure Monomeren in Schritt D) erfolgt bei Temperaturen oberhalb Raumtemperatur (20°C) und kleiner 200°C, vorzugsweise bei Temperaturen zwischen 40°C und 150°C, insbesondere zwischen 50°C und 120°C. Die Polymerisation erfolgt vorzugsweise unter Normaldruck, kann aber auch unter Einwirkung von Druck erfolgen. Die Polymerisation führt zu einer weiteren Verfestigung des flächigen Gebildes. Je nach gewünschten Polymerisationsgrad ist das flächige Gebilde eine selbsttragende Membran. Bevorzugt beträgt der Polymerisationsgrad mindestens 30 Wiederholeinheiten, insbesondere mindestens 50 Wiederholeinheiten, besonders bevorzugt mindestens 100 Wiederholeinheiten.
  • Die Polymerisation kann auch durch Einwirken von IR bzw. NIR (IR = InfraRot, d. h. Licht mit einer Wellenlänge von mehr als 700 nm; NIR = Nahes IR, d. h. Licht mit einer Wellenlänge im Bereich von ca. 700 bis 2000 nm bzw. einer Energie im Bereich von ca. 0.6 bis 1.75 eV) erfolgen. Eine weitere Methode ist die Bestrahlung mit β- Strahlen. Die Strahlungsdosis beträgt hierbei zwischen 5 und 200 kGy.
  • Die Polymerisation in Schritt D) kann zu einer Abnahme der Schichtdicke führen. Vorzugsweise beträgt die Dicke der selbsttragenden Membran zwischen 15 und 1000 µm, vorzugsweise zwischen 20 und 500 µm, insbesondere zwischen 30 und 250 µm.
  • Vorzugsweise ist die gemäß Schritt D) erhaltene Membran selbsttragend, d. h. sie kann vom Träger ohne Beschädigung gelöst und anschließend gegebenenfalls direkt weiterverarbeitet werden.
  • Die Eigenleitfähigkeit der erfindungsgemäßen Membran beträgt mindestens 0,001 S/cm, bevorzugt mindestens 10 mS/cm, insbesondere mindestens 20 mS/cm.
  • Die erfindungsgemäße Polymermembran enthält zwischen 0,5 und 94 Gew.-% des Polymeren sowie zwischen 99,5 und 6 Gew.-% Polyvinylphosphonsäure und Polyvinylsulfonsäure. Bevorzugt enthält die erfindungsgemäße Polymermembran zwischen 3 und 90 Gew.-% des Polymeren sowie zwischen 97 und 10 Gew.-% Polyvinylphosphonsäure und Polyvinylsulfonsäure, besonders bevorzugt zwischen 5 und 80 Gew.-% des Polymeren sowie zwischen 95 und 20 Gew.-% Polyvinylphosphonsäure und Polyvinylsulfonsäure. Zusätzlich kann die erfindungsgemäße Polymermembran noch weitere Füll- und/oder Hilfsstoffe enthalten.
  • Die erfindungsgemäße Polymermembran weist verbesserte Materialeigenschaften gegenüber den bisher bekannten dotierten Polymermembranen auf. Insbesondere zeigen sie im Vergleich mit bekannten undotierten Polymermembranen bereits eine intrinsische Leitfähigkeit. Diese begründet sich insbesondere durch eine vorhandene polymere Polyvinylphosphonsäure bzw. Polyvinylsulfonsäure.
  • Weiterer Gegenstand der vorliegenden Erfindung sind Ionomere auf Basis von Polyvinylphosphonsäure/Polyvinylsulfonsäure die aus solch einer Lösung hergestellt werden können. Hierzu wird anstelle eine flächigen Gebildes in Schritt B) dieses direkt polymerisiert, wobei die Polymerisation auch in einem inerten Lösungsmittel als Suspensionspolymerisation durchgeführt werden kann. Der Starter wird der Lösung nach Schritt A) zugesetzt.
  • Diese Ionomere eignen sich als Zusätze zu Katalysatormischungen für den Einsatz in Brennstoffzellen.
  • Zu möglichen Einsatzgebieten der erfindungsgemäßen intrinsich leitfähigen Polymermembranen sowie des Ionomeren gehören unter anderem die Verwendung in Brennstoffzellen, bei der Elektrolyse, in Kondensatoren und in Batteriesystemen. Aufgrund ihres Eigenschaftsprofils werden die Polymermembranen vorzugsweise in Brennstoffzellen, insbesondere in DMFC-Brennstoffzellen (direct methanol fuel cell), verwendet.
  • Die vorliegende Erfindung betrifft auch eine Membran-Elektroden-Einheit, die mindestens eine erfindungsgemäße Polymermembran und/oder das erfindungsgemäße Ionomer aufweist. Für weitere Informationen über Membran- Elektroden-Einheiten wird auf die Fachliteratur, insbesondere auf die Patente US-A-4,191,618, US-A-4,212,714 und US-A-4,333,805 verwiesen. Die in den vorstehend genannten Literaturstellen [US-A-4,191,618, US-A-4,212,714 und US-A-4,333,805] enthaltene Offenbarung hinsichtlich des Aufbaues und der Herstellung von Membran-Elektroden-Einheiten, sowie der zu wählenden Elektroden, Gasdiffusionslagen und Katalysatoren ist auch Bestandteil der Beschreibung.
  • In einer Variante der vorliegenden Erfindung kann die Membranbildung anstelle auf einem Träger auch direkt auf der Elektrode erfolgen. Die Behandlung gemäß Schritt D) kann hierdurch entsprechend verkürzt werden oder aber die Menge an Starterlösung reduziert werden, da die Membran nicht mehr selbsttragend sein muß. Auch eine solche Membran, respektive eine Elektrode die mit einer solchen erfindungsgemäßen Polymermembran beschichtet ist, ist Gegenstand der vorliegenden Erfindung.
  • Weiterhin ist es auch möglich die Polymerisation der Vinylhaltigen Phosphon/Sulfonsäure in der laminierten Membran-Elektroden-Einheit durchzuführen. Hierzu wird die Lösung auf die Elektrode aufgebracht und mit der zweiten, ggf. ebenfalls beschichteten Elektrode zusammengebracht und verpresst. Anschließend wird die Polymerisation in der laminierten Membran-Elektroden-Einheit wie vorstehend beschrieben durchgeführt.
  • Die Beschichtung hat eine Dicke zwischen 2 und 500 µm, vorzugsweise zwischen 5 und 300 µm, insbesondere zwischen 10 und 200 µm hat. Die ermöglicht den Einsatz in sogenannten Mikro-Brennstoffzellen, insbesondere in DMFC- Mikrobrennstoffzellen.
  • Eine derartig beschichtete Elektrode kann in einer Membran-Elektroden-Einheit, die gegebenenfalls mindestens eine erfindungsgemäße Polymermembran aufweist, eingebaut werden.
  • In einer weiteren Variante kann auf die erfindungsgemäße Membran eine katalytisch aktive Schicht aufgebracht werden und diese mit einer Gasdiffusionslage verbunden werden. Hierzu wird gemäß den Schritten A) bis D) eine Membran gebildet und der Katalysator aufgebracht. In einer Variante kann der Katalysator vor oder zusammen mit der Starterlösung aufgebracht werden. Auch diese Gebilde sind Gegenstand der vorliegenden Erfindung.
  • Darüber hinaus kann die Bildung der Membran gemäß den Schritten A) bis D) auch auf einem Träger oder einer Trägerfolie erfolgen, die bereits den Katalysator aufweist. Nach Entfernen des Trägers bzw. der Trägerfolie befindet sich der Katalysator auf der erfindungsgemäßen Membran. Auch diese Gebilde sind Gegenstand der vorliegenden Erfindung.
  • Ebenfalls Gegenstand der vorliegenden Erfindung ist eine Membran-Elektroden- Einheit, die mindestens eine beschichtete Elektrode und/oder mindestens eine erfindungsgemäße Polymermembran in Kombination mit einer weiteren Polymermembran auf Basis von Polyazolen oder einer Polymerblendmembran enthaltend mindestens ein Polymer auf Basis von Polyazolen aufweist.

Claims (35)

1. Protonenleitende Polymermembran auf Basis von Polyvinylphosphonsäure und Polyvinylsulfonsäure erhältlich durch ein Verfahren umfassend die Schritte
A) Lösen eines Polymeren in einer Mischung enthaltend Vinylhaltige Phosphonsäure Monomere und Vinylhaltige Sulfonsäure Monomere,
B) Bildung eines flächigen Gebildes unter Verwendung der Lösung gemäß Schritt A) auf einem Träger
C) Aufbringen einer Starterlösung auf das gemäß Schritt B) gebildete flächige Gebilde und
D) Polymerisation der in dem flächigen Gebilde gemäß Schritt C) vorhandenen Vinylphosphonsäure und Vinylsulfonsäure.
2. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß in Schritt A) Vinylhaltige Phosphonsäuremonomere der Formel


worin
R eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,
Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und
x eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet
y eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet
und/oder der Formel


worin
R eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,
Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und
x eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet
eingesetzt werden.
3. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß in Schritt A) Vinylhaltige Sulfonsäuremonomere der Formel


worin
R eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, GOOZ, -CN, NZ2 substituiert sein können,
Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und
x eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet,
y eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet,
und/oder der Formel


worin
R eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,
Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und
x eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet,
eingesetzt werden.
4. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß in Schritt A) eine Vinylhaltige Phosphon-/Sulfonsäure Monomermischung eingesetzt wird, die weitere zur Vernetzung befähigte Monomere enthält, die mindestens 2 Kohlenstoff- Kohlenstoff Doppelbindungen aufweisen.
5. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß in Schritt A) erzeugte Lösung zusätzlich dispergiertes und/oder suspendiertes Polymer enthält.
6. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß das in Schritt A) eingesetzte Polymer eine Löslichkeit von mindestens 1 Gew.-% in der Vinylhaltigen Phosphonsäure aufweist.
7. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß das in Schritt A) eingesetzte Polymer mindestens ein Stickstoff-, Sauerstoff- und/oder Schwefelatom in einer oder in unterschiedlichen Wiederholungseinheiten enthält.
8. Membran gemäß Anspruch 6, dadurch gekennzeichnet, daß das Polymer mindestens einen aromatischen Ring mit mindestens einem Stickstoffheteroatom pro Wiederholungseinheit enthält.
9. Membran gemäß Anspruch 7, dadurch gekennzeichnet, daß das Polymer wiederkehrende Azoleinheiten der allgemeinen Formel (I) und/oder (II) und/oder (III) und/oder (IV) und/oder (V) und/oder (VI) und/oder (VII) und/oder (VIII) und/oder (IX) und/oder (X) und/oder (XI) und/oder (XII) und/oder (XIII) und/oder (XIV) und/oder (XV) und/oder (XVI) und/oder (XVI) und/oder (XVII) und/oder (XVIII) und/oder (XIX) und/oder (XX) und/oder (XXI) und/oder (XXII)








worin
Ar gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar1 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar2 gleich oder verschieden sind und für eine zwei oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar3 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar4 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar5 gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar6 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar7 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar8 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar9 gleich oder verschieden sind und für eine zwei- oder drei- oder vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar10 gleich oder verschieden sind und für eine zwei- oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar11 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
X gleich oder verschieden ist und für Sauerstoff, Schwefel oder eine Aminogruppe, die ein Wasserstoffatom, eine 1-20 Kohlenstoffatome aufweisende Gruppe, vorzugsweise eine verzweigte oder nicht verzweigte Alkyl- oder Alkoxygruppe, oder eine Arylgruppe als weiteren Rest trägt
R gleich oder verschieden für Wasserstoff, eine Alkylgruppe und eine aromatische Gruppe steht und
n, m eine ganze Zahl größer gleich 10, bevorzugt größer gleich 100 ist, enthält.
10. Membran gemäß Anspruch 8, dadurch gekennzeichnet, daß das Polymer aus der Gruppe Polybenzimidazol, Poly(pyridine), Poly(pyrimidine), Polyimidazole, Polybenzthiazole, Polybenzoxazole, Polyoxadiazole, Polyquinoxalines, Polythiadiazole und Poly(tetrazapyrene) ausgewählt wird.
11. Membran gemäß Anspruch 8, dadurch gekennzeichnet, daß das Polyazol ein Polymer enthaltend die wiederkehrenden Benzimidazoleinheiten der Formel (III)


wobei n eine ganze Zahl größer gleich 10, vorzugsweise größer gleich 100, ist.
12. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die in Schritt B) eingesetzte Starterlösung zur Bildung von Radikalen befähigt ist.
13. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die Starterlösung in Schritt A) zugesetzt wird.
14. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die Starterlösung zu der in Schritt A) erzeugten Lösung zugesetzt wird.
15. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die Polymerisation thermisch, photochemisch, chemisch oder elektrochemisch induziert wird.
16. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß sie eine Eigenleitfähigkeit von mindestens 1 mS/cm aufweist.
17. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß in Schritt B) als Träger eine Elektrode gewählt wird.
18. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die in Schritt B) gebildete Membran eine Dicke zwischen 15 und 2000 µm, vorzugsweise zwischen 30 und 1500 µm, insbesondere zwischen 50 und 1200 µm hat.
19. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die in Schritt D) gebildete Membran eine Dicke zwischen 15 und 1000 µm, vorzugsweise zwischen 20 und 500 µm, insbesondere zwischen 30 und 250 µm, die selbsttragend ist.
20. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß sie eine Schicht enthaltend eine katalytisch aktive Komponente aufweist.
21. Protonenleitende Polymermembran enthaltend zwischen 0,5 und 94 Gew.-% des Polymeren definiert in Anspruch 4, und zwischen 99,5 und 6 Gew.-% Polyvinylphosphonsäure und Polyvinylsulfonsäure definiert in Anspruch 2 und 3.
22. Elektrode die mit einer protonenleitenden Polymermembran gemäß Anspruch 1 beschichtet ist.
23. Elektrode gemäß Anspruch 22, wobei die Beschichtung eine Dicke zwischen 2 und 500 µm, vorzugsweise zwischen 5 und 300 µm, insbesondere zwischen 10 und 200 µm hat.
24. Lösungen enthaltend Vinylhaltige Phosphonsäure Monomere definiert in Anspruch 2, Vinylhaltige Sulfonsäure Monomere definiert in Anspruch 3 und mindestens ein Polymer das eine Löslichkeit von mindestens 1 Gew.-% in der Vinylhaltige Phosphonsäure aufweist.
25. Lösung gemäß Anspruch 24 dadurch gekennzeichnet, daß eingesetzte Polymer mindestens ein Stickstoff-, Sauerstoff- und/oder Schwefelatom in einer oder in unterschiedlichen Wiederholungseinheiten enthält.
26. Lösung gemäß Anspruch 24, dadurch gekennzeichnet, daß sie mindestens einen Vernetzer definiert in Anspruch 4 enthält.
27. Lösung gemäß Anspruch 24, dadurch gekennzeichnet, daß sie mindestens einen Starter enthält der zur Bildung von Radikalen befähigt ist.
28. Ionomer erhältlich durch Polymerisation einer Lösung gemäß einem der Ansprüche 24 bis 28.
29. Verwendung des Ionomeren gemäß Anspruch 28, gegebenenfalls in Kombination mit einem Katalysator in einer Membran-Elektroden-Einheit für Brennstoffzellen.
30. Membran-Elektroden-Einheit enthaltend mindestens eine Elektrode gemäß Anspruch 22 oder 23 und mindestens eine Membran gemäß einem oder mehreren der Ansprüche 1 bis 20 oder Anspruch 21.
31. Membran-Elektroden-Einheit enthaltend mindestens eine Elektrode und mindestens eine Membran gemäß einem oder mehreren der Ansprüche 1 bis 20 oder Anspruch 21.
32. Membran-Elektroden-Einheit enthaltend mindestens eine Elektrode gemäß Anspruch 22 oder 23.
33. Membran-Elektroden-Einheit enthaltend mindestens ein Ionomer gemäß Anspruch 28.
34. Membran-Elektroden-Einheit gemäß einem oder mehreren der Ansprüche 27 bis 30, dadurch gekennzeichnet, daß sie mindestens eine weitere Polymermembran auf Basis von Polyazolen und/oder einer Polymerblendmembran enthaltend mindestens ein Polymer auf Basis von Polyazolen enthält.
35. Brennstoffzelle enthaltend eine oder mehrere Membran-Elektroden-Einheiten gemäß einem der Ansprüche 30 bis 34.
DE10210500A 2002-03-06 2002-03-11 Lösung aus Vinylphosphonsäure und Vinylsulfonsäure, Verfahren zur Herstellung einer Polymerelektrolytmembran aus Polyvinylphosphonsäure und Polyvinylsulfonsäure und deren Anwendung in Brennstoffzellen Withdrawn DE10210500A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE10210500A DE10210500A1 (de) 2002-03-11 2002-03-11 Lösung aus Vinylphosphonsäure und Vinylsulfonsäure, Verfahren zur Herstellung einer Polymerelektrolytmembran aus Polyvinylphosphonsäure und Polyvinylsulfonsäure und deren Anwendung in Brennstoffzellen
DE50302234T DE50302234D1 (de) 2002-03-06 2003-03-04 Mischungen umfassend vinylhaltige sulfonsaure, polymerelektrolytmembranen umfassend polyvinylsulfonsaure und deren anwendung in brennstoffzellen
KR10-2004-7013923A KR20040107473A (ko) 2002-03-06 2003-03-04 비닐 함유 술폰산을 함유하는 혼합물, 폴리비닐술폰산을함유하는 중합체 전해질 막 및 연료 전지에서의 이들의용도
CNB038101653A CN1318484C (zh) 2002-03-06 2003-03-04 包括含乙烯基的磺酸的混合物、含聚乙烯磺酸的聚合物电解质膜及其在燃料电池中的应用
JP2003573057A JP2005526875A (ja) 2002-03-06 2003-03-04 ビニル含有スルホン酸を含む混合物、ポリビニルスルホン酸を含む高分子電解質膜、および燃料電池におけるその使用
EP03711948A EP1485427B1 (de) 2002-03-06 2003-03-04 Mischungen umfassend vinylhaltige sulfonsaure, polymerelektrolytmembranen umfassend polyvinylsulfonsaure und deren anwendung in brennstoffzellen
PCT/EP2003/002395 WO2003074595A1 (de) 2002-03-06 2003-03-04 Mischungen umfassend vinylhaltige sulfonsäure, polymerelektrolytmembranen umfassend polyvinylsulfonsäure und deren anwendung in brennstoffzellen
CA002477863A CA2477863A1 (en) 2002-03-06 2003-03-04 Mixtures comprising vinyl-containing sulphonic acid, polymer electrolyte membranes comprising polyvinylsulphonic acid and their use in fuel cells
AT03711948T ATE316111T1 (de) 2002-03-06 2003-03-04 Mischungen umfassend vinylhaltige sulfonsaure, polymerelektrolytmembranen umfassend polyvinylsulfonsaure und deren anwendung in brennstoffzellen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10210500A DE10210500A1 (de) 2002-03-11 2002-03-11 Lösung aus Vinylphosphonsäure und Vinylsulfonsäure, Verfahren zur Herstellung einer Polymerelektrolytmembran aus Polyvinylphosphonsäure und Polyvinylsulfonsäure und deren Anwendung in Brennstoffzellen

Publications (1)

Publication Number Publication Date
DE10210500A1 true DE10210500A1 (de) 2003-10-09

Family

ID=27815574

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10210500A Withdrawn DE10210500A1 (de) 2002-03-06 2002-03-11 Lösung aus Vinylphosphonsäure und Vinylsulfonsäure, Verfahren zur Herstellung einer Polymerelektrolytmembran aus Polyvinylphosphonsäure und Polyvinylsulfonsäure und deren Anwendung in Brennstoffzellen

Country Status (1)

Country Link
DE (1) DE10210500A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005063852A1 (de) * 2003-12-30 2005-07-14 Pemeas Gmbh Protonenleitende membran und deren verwendung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005063852A1 (de) * 2003-12-30 2005-07-14 Pemeas Gmbh Protonenleitende membran und deren verwendung
US8765905B2 (en) 2003-12-30 2014-07-01 Basf Fuel Cell Gmbh Proton-conducting membrane and use thereof

Similar Documents

Publication Publication Date Title
DE10209419A1 (de) Verfahren zur Herstellung einer Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
DE10213540A1 (de) Lösung aus Vinylphosphonsäure, Verfahren zur Herstellung einer Polymerelektrolytmembran aus Polyvinylphosphaonsäure und deren Anwendung in Brennstoffzellen
EP1506591B1 (de) Polymerelektrolytmembran, verfahren zu deren herstellung und deren anwendung in brennstoffzellen
EP1483316B1 (de) PROTONENLEITENDE ELEKTROLYTMEMBRAN MIT GERINGER METHANOLDURCHL&amp;Auml;SSIGKEIT UND DEREN ANWENDUNG IN BRENNSTOFFZELLEN
EP1527494B1 (de) Protonenleitende polymembran, welche sulfonsäuregruppen enthaltende polymere umfasst, und deren anwendung in brennstoffzellen
EP1485427B1 (de) Mischungen umfassend vinylhaltige sulfonsaure, polymerelektrolytmembranen umfassend polyvinylsulfonsaure und deren anwendung in brennstoffzellen
DE10220817A1 (de) Verfahren zur Herstellung einer gepfropften Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
WO2004015802A1 (de) Protonenleitende polymermembran umfassend phosphonsäuregruppen enthaltende polymere und deren anwendung in brennstoffzellen
EP1927151B1 (de) Verfahren zur konditionierung von membran-elektroden-einheiten für brennstoffzellen
DE10340927A1 (de) Protonenleitende Polymermembran enthaltend Polymere mit an aromatische Gruppen kovalent gebundene Sulfonsäuregruppen, Membran-Elektoden-Einheit und deren Anwendung in Brennstoffzellen
DE10235357A1 (de) Protonenleitende Polymermembran umfassend Phosphonsäure- und Sulfonsäuregruppen enthaltende Polymere und deren Anwendung in Brennstoffzellen
DE102005052378A1 (de) Verbesserte Membran-Elektrodeneinheiten und Brennstoffzellen mit hoher Lebensdauer
DE10340928A1 (de) Mit einer Katalysatorschicht beschichtete protonenleitende Polymermembran enthaltend Phosphonensäuregruppen umfassende Polymere, Membran-Elektroden-Einheit und deren Anwendung in Brennstoffzellen
DE10210499A1 (de) Verfahren zur Herstellung einer Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
DE102005057644A1 (de) Funktionalisierte Polyazole, Phosphonsäuregruppen aufweisende Polyazole, Polymembranen sowie Verfahren zur Herstellung
DE10209685A1 (de) Verfahren zur Herstellung einer Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
DE10210500A1 (de) Lösung aus Vinylphosphonsäure und Vinylsulfonsäure, Verfahren zur Herstellung einer Polymerelektrolytmembran aus Polyvinylphosphonsäure und Polyvinylsulfonsäure und deren Anwendung in Brennstoffzellen
WO2009124737A9 (de) Verfahren zum betrieb einer brennstoffzelle
DE10209684A1 (de) Lösung aus Vinylsulfonsäure, Verfahren zur Herstellung einer Polymerelektrolytmembran aus Polyvinylsulfonsäure und deren Anwendung in Brennstoffzellen
EP1676333A1 (de) Protonenleitende polymermembran umfassend mindestens ein poröses träger-material und deren anwendung in brennstoffzellen
DE10218368A1 (de) Mehrschichtige Elektrolytmembran
DE10235356A1 (de) Protonenleitende Polymermembran umfassend Sulfonsäuregruppen enthaltende Polymere und deren Anwendung in Brennstoffzellen
DE10218367A1 (de) Mehrschichtige Elektrolytmembran

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee
8127 New person/name/address of the applicant

Owner name: PEMEAS GMBH, 65929 FRANKFURT, DE