WO2003066220A1 - Milling method - Google Patents

Milling method Download PDF

Info

Publication number
WO2003066220A1
WO2003066220A1 PCT/JP2003/001315 JP0301315W WO03066220A1 WO 2003066220 A1 WO2003066220 A1 WO 2003066220A1 JP 0301315 W JP0301315 W JP 0301315W WO 03066220 A1 WO03066220 A1 WO 03066220A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
mill
grinding
pulverizing
range
Prior art date
Application number
PCT/JP2003/001315
Other languages
English (en)
French (fr)
Inventor
Nobusuke Tanaka
Original Assignee
Ube Machinery Corporation, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Machinery Corporation, Ltd. filed Critical Ube Machinery Corporation, Ltd.
Priority to JP2003565638A priority Critical patent/JPWO2003066220A1/ja
Publication of WO2003066220A1 publication Critical patent/WO2003066220A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/04Mills with pressed pendularly-mounted rollers, e.g. spring pressed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C2015/002Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs combined with a classifier

Definitions

  • the present invention relates to a powder frame method provided with a vertical mill and a classifier, which efficiently mills cement minerals, cement raw materials, slag, coal, calcium carbonate, ceramics, ceramics, and other minerals as raw materials.
  • a two-stage mill with a vertical mill and a tube mill, or a rotary mill has been used as a mill for finely milling raw materials such as coal, limestone, cement raw materials, slag, cement cleaner, ceramics and chemicals.
  • a vertical pulverizer with a built-in classifier is used.
  • the two-stage pulverizer is a pulverizer that pulverizes a raw material pulverized by a vertical pulverizer by a tube mill again to pulverize the raw material.
  • Patent Document 1 Japanese Patent Application Laid-Open No. H4-133882
  • the technology disclosed in No. 44 is to pulverize the raw material finely by re-grinding it with a vertical mill and a tube mill while distributing the raw material milled by a vertical mill with a distribution means.
  • Fig. 15 shows an example of such a conventional grinding device.
  • a vertical pulverizer incorporating the classifier there is, for example, a technology disclosed in Patent Document 2 (Japanese Patent Application Laid-Open No. 57-71556).
  • the vertical pulverizer disclosed in this document blows up raw material that has been pulverized between a pulverizing roller in a pulverizer and a rotary table with a gas introduced from below the rotary table, and rotates the raw material disposed above the rotary table.
  • This is a conventional pulverizer that efficiently classifies the raw materials by taking out the fine powder out of the device, dropping the coarse powder on a rotary table, and pulverizing the raw material efficiently.
  • Figure 16 shows an example of this.
  • the conventional two-stage pulverizing apparatus has to be equipped with both a vertical mill and a tube mill as the apparatus configuration, so that the configuration of the apparatus is complicated and each of the apparatuses is complicated. In order to move the device efficiently, the operation control method becomes complicated,
  • a vertical mill having the classifier incorporated therein (sometimes referred to as an air-swept vertical mill) is used to remove the raw material pulverized between the milling rollers in the mill and the rotary table from below the rotary table. It is necessary to blow up the introduced gas with the introduced gas. However, in order to blow up the crushed raw material with the gas, a large amount of gas is required, so that a large blower power (fan power) is required to blow the gas. They have problems when they need them.
  • the present invention has been made in view of the above-mentioned problems, and is provided with a vertical mill and a classifier, and uses, as a raw material, a cement cleaner, a cement raw material, slag, coal, calcium carbonate, ceramic, a chemical, and the like. It is an object of the present invention to provide a pulverizing method for a pulverizing device for efficiently pulverizing.
  • a pulverization method comprises:
  • a plurality of rotatable conical grinding rollers are arranged on a rotating table whose upper surface is formed in a substantially horizontal disk shape and a dam ring is provided around the outer edge.
  • a vertical pulverizer for pulverizing the raw material charged on the rotary table by applying a predetermined pulverizing pressure; and a classification for separating the raw material pulverized by the vertical pulverizer into coarse powder and fine powder.
  • the raw material pulverized by the vertical pulverizer is separated into coarse powder and fine powder by the classifier, and the coarse powder is returned to the vertical pulverizer and pulverized again.
  • a method of removing the fine powder as a product wherein at least one of the height of the dam ring, the grinding pressure of the grinding roller, the number of rotations of the rotary table, and the amount of raw material to be charged into the vertical grinder.
  • the basic unit was controlled in the range of 1 to 30 kWh / ton.
  • the pulverizing pressure of the pulverizing port is set to 0. Crush the cement raw material in the range of 6 to 0.8 MPa and the power unit of the crusher in the range of 5 to: L 0 kWh / ton.
  • the pulverization pressure of the pulverizing roller is set to a range of 0.8 to 1.IMPa, and the power unit of the pulverizer is set to a range of 20 to 25 kWhZon, and a cement clinker is used. Crush.
  • the crushing pressure of the crushing roller is set to a range of 0.8 to 1.IMPa
  • the crusher power unit is set to a range of 25 to 30 kWh Zton. Crush the slag.
  • the height of the dam ring is set in a range of 1 to 10% with respect to a center diameter of the pulverization roller.
  • FIG. 1 is an overall configuration diagram of a pulverizer using a vertical pulverizer used in an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of the vertical mill used in the embodiment of the present invention.
  • FIG. 3 is an explanatory diagram illustrating a roller pressing hydraulic device and a grinding pressure of the vertical grinding machine used in the embodiment of the present invention.
  • FIG. 4 is an explanatory diagram illustrating the pulverizing pressure of the vertical pulverizer used in the embodiment of the present invention.
  • FIG. 5 is a diagram showing a relationship between a pulverized product average particle size ratio and a system capacity ratio obtained by the pulverization method according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing the relationship between the milling pressure and the average particle size ratio of the milled product obtained by the milling method according to the embodiment of the present invention.
  • FIG. 7 is a diagram showing the relationship between the sieve mesh and the passing amount when the cement raw material is sieved.
  • FIG. 8 is a diagram showing the relationship between the sieve mesh and the passing amount when clinker is sieved.
  • FIG. 9 is a diagram showing a relationship between sieve mesh and passing amount when slag is sieved.
  • FIG. 10 is a diagram showing the relationship between the power consumption of the crusher and the system capacity ratio obtained by the crushing method according to the embodiment of the present invention.
  • FIG. 11 is a diagram showing the relationship between the milling pressure obtained by the milling method according to the embodiment of the present invention and the power unit ratio of the mill.
  • FIG. 12 is a diagram showing the relationship between the dam ring height ratio, the average particle size ratio of the milled product, and the unit power of the mill obtained by the milling method according to the embodiment of the present invention.
  • FIG. 13 is a diagram showing the relationship between the raw material acceleration on the table and the average particle size ratio of the milled product obtained by the milling method according to the embodiment of the present invention.
  • FIG. 14 is a diagram showing a relationship between a power consumption unit of a pulverizer outlet transporter obtained by the pulverization method according to the embodiment of the present invention and an average particle size ratio of the pulverized product.
  • Fig. 15 is an overall configuration diagram of a conventional grinding device using a pole mill.
  • Fig. 16 is an overall configuration diagram of a conventional pulverizer using an air-swept vertical pulverizer.
  • FIG. 1 is an overall configuration diagram of a pulverizer using a vertical pulverizer
  • FIG. FIG. 3 and FIG. 4 are explanatory diagrams for explaining the hydraulic device for pressing the mouth of the vertical crusher and the grinding pressure.
  • FIGS. 5 to 14 are graphs of experimental data for explaining the effect of the pulverization method of the present invention.
  • Fig. 15 and Fig. 16 show the overall configuration of the conventional milling device.
  • the vertical mill 1 used in the present embodiment is driven by an electric motor via a casing forming the outer periphery of the vertical mill and a speed reducer 2B installed at the lower part of the mill as shown in FIG.
  • Horizontal disk-shaped rotary table 2 that is rotated
  • a plurality of conical-type pulverizing openings 3 are provided at positions where the outer peripheral portion of A is equally divided in the circumferential direction.
  • the pulverizing roller 3 has a piston rod of a hydraulic cylinder 8 through an upper arm 6 rotatably mounted on a lower casing by a shaft 7 and a lower arm 6 A formed integrally with the upper arm 6.
  • the rotary cylinder 9 is pressed by the operation of the hydraulic cylinder 8 in the direction of the rotary table upper surface 2A, and is rotated by being driven by the rotary table upper surface 2A via the raw material.
  • a raw material input port 35 for inputting the raw material to the rotary table upper surface 2A and a raw material input chute 13 and a raw material input port 3 5
  • the raw material can be fed (sometimes referred to as “supply”) to the upper surface 2 A of the rotary table via the raw material input chute 13, and the injected raw material swirls around the upper surface 2 A of the rotary table. It moves to the outer periphery of the rotary table upper surface 2A while drawing a trajectory, and enters the rotary table upper surface 2A and the grinding roller 3 to be pulverized.
  • the raw material that has entered the rotary table upper surface 2A and the milling roller 3 and crushed passes over the dam ring 15 provided around the outer edge of the rotary table upper surface 2A, and turns the rotary table upper surface. 2 A toward the annular passage 30 (also referred to as an annular space 30), which is a gap between the outer peripheral portion of the casing and the casing, and falls below the annular passage 30 to drop from the lower outlet 34. It is structured to be taken out of the vertical mill 1 as ground products.
  • the casing has a gas inlet 33 for introducing gas below the turntable 2 and an upper outlet 39 for discharging the gas above the turntable. .
  • gas air in this embodiment
  • gas is introduced from the gas inlet 33, so that the gas flow of the gas flowing upward from below the rotary table in the casing is reduced. Has occurred.
  • the fine powder having a small diameter in the raw material that has passed over the dam and Jing is blown up, rises in the casing, and is discharged as fine powder from the upper outlet 39.
  • the amount of the fine powder to be taken out is very small.
  • the amount of the introduced gas is adjusted so that about 2 to 5% of the raw material taken out from the lower outlet 34 is taken out. I am trying to be.
  • a pressure gauge (not shown) is attached so that the tension pressure P1 applied to the oil chamber on the rod side of the hydraulic cylinder 8 can be measured.
  • the pressure P1 is always measured.
  • the value measured by the pressure gauge is converted by an amplifier and sent to a control panel, which is a pressure control device for the crushing roller.
  • the control panel is composed of an arithmetic unit, a comparator, a setting unit, etc., calculates the measured values, compares them with the set values set in the setting unit in advance, and presses the grinding roller based on the result. It is configured to be able to control the pressure of the pressure oil sent to the hydraulic cylinder 8 of the hydraulic device 36 for use.
  • the vertical mill 1 used in the present embodiment has three grinding rollers, the table rotation speed is 73 RPM, the center diameter D of the grinding roller is 0.4 m, The table diameter T is 0.64 m, and the height of the dam ring 15 is about 20 mm from the upper surface 2 A of the table.
  • a preferred example of the mill 100 used in the embodiment of the present invention includes a vertical mill 1, a classifier 50, and a collector 60, and these devices are configured as described below.
  • a blower 70 sometimes referred to as an exhaust fan 70
  • a packet elevator 41 and a belt conveyor 80 are provided.
  • pipes are provided so that raw materials supplied from outside the grinding device 100 via the belt conveyor 80 can be fed into the vertical mill 1 from the raw material inlet 35 through the two-stage gate 45. It is connected.
  • the classifier 50 in the present embodiment is a gravity classifier type classifier, and the inside of the classifier 50 is separated from the blower 70 through a collector 60 (in the present embodiment, a bag filter 60).
  • a collector 60 in the present embodiment, a bag filter 60.
  • the classifier 50 is operated by the blower 70 to suck the inside thereof through the collector 60, whereby the fine powder smaller than the desired particle size is collected by the collector 60. And the raw materials other than those fed to the collector 60 are taken out from below the classifier 50 as coarse powder.
  • the piping is connected so that the raw material taken out from below the classifier 50 as coarse powder is introduced into the vertical mill 1 from the raw material inlet 35.
  • the classifier 50 has a structure in which the inputted raw material is always separated into a coarse powder and a fine powder (product) at a constant ratio, so that the classification efficiency can be adjusted to be always constant. I have. In this embodiment, by adjusting operating conditions such as the gas amount of the classifier 50 according to the particle size of the input raw material, 30% of the input raw material is always separated as coarse powder. .
  • the classifier 50 in the present embodiment uses a gravity classifier type classifier as described above.
  • the classifier is not limited thereto, and may be a sieve type, an inertia type, a centrifugal type, or the like.
  • the classification method may be used, it is preferable to use a gas stream to classify the fine powder efficiently when the fine powder is efficiently fed to the collector.
  • the upper outlet of the vertical mill 1 is supplied from the blower 70 through the collector 60 and the classifier 50.
  • a pipe is connected so as to suck a small amount of 6 and the dust-containing gas drifting in the vertical crusher 1 is classified by a classifier 50 to collect fine powder smaller than the desired particle size.
  • the raw materials other than those fed to the collector 60 are taken out from below the classifier 50 as coarse powder.
  • the vertical pulverizer 1 and the classifier are provided by providing flow control valves B 2 and B 3 at various points in a blow line sent from the blower 70. It was configured to be able to adjust the air volume and the like of the gas flowing in 50.
  • the material that has passed over the damping 15 is between the outer peripheral surface of the rotating table upper surface 2A and the inner peripheral surface of the casing. Is thrown into the annular passage 30 and falls down the annular passage 30, and the lower outlet
  • the pulverized product taken out of the vertical pulverizer 1 from the lower outlet 34 is conveyed to the classifier 50 by Baguette Elevator 41.
  • the fine powder having a small diameter is sent together with the gas to the collector 60, where it is taken out as a product.
  • the coarse powder having a large diameter is returned to the vertical mill 1 again to be ground again.
  • the average particle size ratio of the pulverized product, the basic unit of power of the pulverizer, and the basic unit of power of the pulverizing system (kWhZ ton) described in the present invention were defined as follows.
  • the average particle size ratio of the pulverized product is obtained by dividing the average particle size of the pulverized product by the average particle size of the raw material, and is represented by Equation 1 below.
  • Nominal average particle size ratio Formula (1)
  • the average particle size is the residue ratio (the ratio of the raw materials put into the sieve that could not pass through the sieve and remained on the sieve) when the ground product was sieved. It was defined as the sieve size of 8%.
  • the unit power consumption of the crusher is obtained by dividing the power consumption of the crusher (kWh) by the product weight (ton), and is expressed by the following equation (2).
  • Grinding machine power consumption powder ⁇ cost ⁇ power ⁇ ⁇ ⁇ Formula 2
  • the grinding system power consumption is the system power consumption (kWh) divided by the product weight of the raw material (ton). expressed.
  • Crushing system power consumption Nos! ⁇ ⁇ ⁇ ⁇ ⁇ 'Equation 3
  • the system power consumption is the sum of the power consumption of the vertical mill 1, classifier 50, blower 70 and auxiliary equipment.
  • the system capacity ratio (sometimes referred to as the pulverization system capacity ratio) is a classification in which the average particle size ratio is 0.15 when the pulverized product is classified by a sieve through which 90 micron-under pulverized product passes.
  • the ratio of the passage rate in each milled product average particle size ratio is taken as the standard (reference value 1) based on the sieve passage rate of the sieve.
  • Figure 5 shows a reference graph showing an example of the relationship between the average particle size ratio of the crushed product and the system capacity ratio. As the average particle size ratio of the crushed product decreases, the system capacity ratio increases.
  • cement raw materials and slag show the same tendency, and the pulverization characteristics of cement raw materials are not so effective in grinding more than 0.8 MPa. Slag also shows the same tendency, and grinding larger than 1. IMPa is not so effective.
  • the passing amount is defined as when the crushed product is sieved
  • the percentage of the amount passed through the sieve compared to the amount passed through the sieve is expressed as a percentage.In other words, when operating the system in Fig. 1, the optimal surface pressure is selected, and the minimum number of times of grinding is repeated. Reaching the desired particle size of the crushed product is the best efficiency.
  • the raw material charged from the belt conveyor 80 and the raw material that has been pulverized multiple times are mixed and input into the vertical mill, so that the number of repetitions is accurately counted and controlled. Is difficult to do.
  • the inventor of the present application has diligently searched for an appropriate factor as one of the factors for controlling the number of times of repetitive pulverization, and focused on the basic unit of electric power of a vertical pulverizer. In other words, it was found that the number of times of repetition of grinding was proportional to the power consumption rate of the vertical mill, and that the power consumption rate increased as the number of times of grinding increased.
  • the power consumption of the mill changes depending on how many times the raw material is ground, it is necessary to control the power consumption after selecting the optimal surface pressure (the pressure at the mill opening). Thereby, it is possible to achieve the optimal grinding conditions for the raw material to be ground.
  • Fig. 10 shows the case where the product particle size required for cement clinker is 12% on a 90-micron sieve.
  • Fig. 10 The tendency in Fig. 10 is almost the same not only for cement cleansing force but also for cement raw materials and slag with different grinding characteristics.Even if the power consumption of the mill is increased to 3 O kWhZ ton or more. However, the capacity of the milling system was not improved. This is a characteristic value for the grinding system in Fig. 1.
  • the required product particle size is 90% on a sieve 12% (see attached sheet), so there is no need to pulverize strongly, and the system has good grinding efficiency, 5-10 kWh (surface pressure 0.6-0.8 MPa) By crushing with, it can be crushed.
  • the preferable range is 5 to: L OkWh (surface pressure: 0.6 to 0.8 MPa).
  • cement raw material is very suitable as a raw material to be crushed by the system of Fig. 1.
  • the required product particle size is 3000 to 4000 Blaine (Brain is a unit that indicates the size of a powder, and is also described in JIS R5201-1997.)
  • Blaine Brain is a unit that indicates the size of a powder, and is also described in JIS R5201-1997.
  • a preferable range is that the crushing pressure of the crushing roller is in the range of 0.8 to 1.
  • IMPa, and the unit power of the crusher is in the range of 20 to 25 kWh / ton to achieve the product particle size at the surface pressure. It is to grind repeatedly.
  • a preferable range is that the grinding pressure of the grinding roller is in the range of 0.8 to 1.
  • IMPa and the power of the grinding machine is used in order to achieve the product particle size at the surface pressure at the upper limit of the range where the grinding power is not wasted.
  • the basic unit is preferably in the range of 25 to 30 kWh.
  • the power consumption per unit of the vertical mill 1 was gradually increased.
  • the system capacity ratio tends to gradually increase.
  • the power consumption per unit of the crusher is adjusted by adjusting at least one of the crushing pressure of the crushing roller, the height of the dam ring, the number of rotations of the rotary table, and the amount of raw material to be charged into the vertical crusher. Can be controlled.
  • FIG. Fig. 11 is a graph showing the relationship between the roller surface pressure of the mill and the power consumption of the mill. Note that the roller surface pressure shown in FIG. 11 refers to the milling force L described in the present invention.
  • the grinding pressure L for pressing the grinding port 3 against the rotating table upper surface 2 A is represented by D, the center diameter of the grinding roller 3, the width of the grinding roller W, and the grinding roller
  • the crushing force which is the force pressing vertically 3 against the upper surface 2A of the rotary table in the vertical direction
  • the crushing pressure L is as follows. Defined in Equation 4.
  • Milling pressure L F Q s " ⁇ ⁇ ⁇ equation (4)
  • the unit of the grinding pressure F used in Fig. 3 is Newton (N), and the unit of the grinding roller center diameter D and the grinding roller width W is m.
  • the pulling force of the rod of the hydraulic cylinder 8 (sometimes referred to as hydraulic cylinder force) is F1
  • the rapper ratio from the hydraulic cylinder 8 to the grinding roller 3 is R
  • R L 1 ZL 2
  • F F 1 XR + M.
  • M is the crushing force generated by the weight of the crushing roller 3 etc.
  • FIGS. Figure 12 shows the relationship between the dam ring height ratio, the average particle size ratio of the milled product, and the unit power of the mill.
  • the power consumption of the mill increases as shown in Fig. 12. This is because the higher the dam ring height of the dam ring 15 provided around the outer edge of the rotary table upper surface 2A, the more difficult it is for the raw material on the rotary table upper surface 2A to pass over the dam ring 15; This is due to the fact that the number of times of grinding is increased. And the average particle size ratio of the framed product tends to become smaller as the power unit of the mill increases. Therefore, it is possible to change the dam ring height ratio by adjusting the height of the dam ring 15 and control the unit power consumption of the crusher.
  • the rise curve of the power consumption of the mill becomes sharp when the dam ring height ratio exceeds 10%. It can be seen that the average particle size ratio of the comminuted product does not decrease as much as it corresponds. Also, when the dam ring height ratio is less than 1%, the unit consumption of crusher power gradually rises, which indicates that it does not easily contribute to the unit consumption of crusher power.
  • the ratio of the height of the dam ring 15 to the center diameter D of the crushing roller 3 within the range of 1 to 10%, the average particle size of the crushed product in proportion to the increase in the unit power consumption of the crusher Since a ground product with a specific ratio can be obtained, efficient operation with less waste is possible, which is preferable.
  • the dam ring height ratio is in the range of 3 to 8%, especially efficient Since the particle size ratio can be reduced, it is particularly preferable to operate the pulverizing apparatus using this range because it is possible to efficiently produce finely divided products.
  • the raw material put into the upper surface 2A of the rotary table is dispersed on the upper surface 2A of the rotary table by the centrifugal force generated by the rotation of the rotary table 2 and crushed by the pulverizing roller 3. If the rotation speed of 2 is slow, the raw material residence time on the upper surface 2 A of the rotary table will be longer, so that the thickness of the raw material layer on the upper surface 2 A of the rotary table will be too thick, and the grinding will not proceed. Nevertheless, a problem arises when only the power consumption of the crusher rises unnecessarily. Conversely, when the rotation speed of the rotary table 2 is high, the raw material residence time on the upper surface 2A of the rotary table is shortened. Therefore, it is estimated that the results shown in Fig. 13 were obtained because the thickness of the raw material layer on the upper surface 2A of the rotary table became too thin, causing problems such as stable grinding not progressing. Is done.
  • Fig. 14 shows the relationship between the unit power consumption of the transporter at the outlet of the mill and the average particle size of the milled product, the power unit of the mill, and the vibration of the mill.
  • the power consumption per unit of the transporter at the outlet of the mill is the power consumption of the transporter that conveys the raw material pulverized by the vertical mill 1 to the classifier 50.
  • the power consumption (kWh) consumed by the bucket elevator 41 is divided by the weight (ton) of the conveyed goods.
  • the amount of raw material taken out from the vertical mill 1 is measured by measuring the power consumption of the bucket elevator 41.
  • the tendency is that the vibration gradually increases and the vibration ratio of the mill increases. This is because, when a large amount of raw material is removed through the vertical mill 1 per unit time, the amount of raw material on the upper surface 2 A of the rotating table increases, so that the grinding does not proceed and When the amount of raw material extracted through the vertical mill 1 is small, the amount of raw material on the upper surface 2A of the rotating table decreases, so that the grinding proceeds, but the vibration of the vertical mill 1 increases. Means that.
  • the amount of the raw material taken out of the vertical mill 1 is measured, and the amount of the raw material taken out is measured, and the raw material is put into the vertical mill 1 from outside of the mill 100. Adjusting the amount of the raw material is effective in preventing vibration and promoting efficient pulverization.
  • a preferred method of this method is as follows. By measuring the power consumption of the bucket elevator 41, the amount of raw material taken out from the vertical crusher 1 is measured, and the bucket elevator, which is a crusher outlet transporter, is measured. Input from Belt Comparator 80 so that the power consumption per night is constant within the range of 0.3 to 0.7 kWhZ ton, which can stably and efficiently pulverize electricity without vibration etc. This is a method of controlling the amount of raw material input. As described above, according to the pulverizing method of the present invention, it is not necessary to use the tube mill described in the conventional method, so that it is possible to carry out pulverization with a simple apparatus configuration and efficient pulverization. There is no need for large blower power because there is no need to blow up with gas.
  • the pulverization method according to the present invention adjusts at least one of the height of the dam ring, the pulverization pressure of the pulverizing roller, the number of rotations of the rotary table, and the input amount of the raw material to be input to the vertical pulverizer. By doing so, by setting the power unit of the pulverizer in the range of 1 to 30 kWh / t0n, it is possible to perform efficient operation with less waste.
  • the grinding pressure of the grinding roller is set to a range of 0.6 to 0.8 MPa, and the power consumption of the crusher is set to a range of 5 to 10 kWh / ton. Cement raw materials can be efficiently crushed.
  • the efficiency of cement cleaning is improved by setting the grinding pressure of the grinding roller to 0.8 to 1.
  • IMP a and the power consumption of the grinding machine to 20 to 25 kWh / ton. Can be ground.
  • the slag is efficiently reduced by setting the pulverizing pressure of the pulverizing roller to a range of 0.8 to 1.IMPa and a power unit of the pulverizer to a range of 25 to 30 kWh / ton. Can be crushed.
  • the dam ring height ratio is excessively increased by selecting an appropriate height with the dam ring height in a range of 1 to 10% as a percentage of the center diameter of the milling roller to operate. It is possible to perform stable pulverization without generating useless power consumption caused by the above.
  • the amount of raw material taken out of the vertical mill is measured, and the amount of raw material input from the outside of the mill to the vertical mill is measured so that the amount of the raw material taken out is constant.

Description

5
1 明細書 粉砕方法
[技術分野]
本発明は、 竪型粉碎機と分級装置を備えて、 セメントクリン力、 セメント原料 、 スラグ、 石炭、 炭酸カルシウム、 セラミック及び化学品等の鉱物を原料として 効率良く粉碎する粉枠方法に関する。
[背景技術]
従来から、 石炭、 石灰石、 セメント原料、 スラグ、 セメントクリン力、 セラミ ック及び化学品等の原料を微粉碎する粉砕装置として、 竪型粉碎機とチューブミ ルを備えた 2段粉碎装置、 あるいは回転式の分級機を内蔵した竪型粉砕装置が用 いられている。
前記 2段粉碎装置は、 竪型粉碎機で粉碎した原料を、 再度チューブミルで粉砕 することによって原料を微粉碎する粉碎装置であって、 例えば特許文献 1 (特開 平 4一 3 3 8 2 4 4号公報) に開示された技術は、 竪型粉砕機で粉碎した原料を 分配手段で分配しながら、 竪型粉碎機とチューブミルで再度粉砕することによつ て、 原料を微粉碎する粉砕装置であり、 そのような従来の粉碎装置の 1例を図 1 5に示す。
また、 前記分級機を内蔵した竪型粉砕機として、 例えば特許文献 2 (特開昭 5 7 - 7 5 1 5 6号公報) に開示された技術がある。 この文献に開示された竪型粉 砕装置は、 粉碎機内の粉碎ローラと回転テーブルの間で粉碎した原料を回転テ一 ブル下方から導入したガスで吹き上げて、 該回転テーブルの上方に配した回転式 の分級機で分級し、 微粉を装置外に取り出すとともに粗粉を回転テーブル上に落 下させて再度粉碎して、 原料を効率良く微粉砕する粉碎装置であり、 そのような 従来の粉砕装置の 1例を図 1 6に示す。
しかしながら、 前記従来の 2段粉砕装置は、 装置構成として竪型粉碎機とチュ ーブミルの両方を備えなければならないために装置構成が複雑となって各々の装 置を効率良く動かすためには運転制御方法が複雑となる、
また複雑な装置は、 メンテナンス等に労力と時間を要する等といった問題点を 有しており、 さらに設備全体も非常に高額となる。 また、 粉砕効率の低いチュー ブミルを用いるために、 装置全体として電力消費が多くなり効率が良くないとい つた問題を有する。
さらに、 前記分級機を内蔵した竪型粉碎機 (エアスェプト式竪型粉砕機と称す ることもある) は、 粉砕機内の粉碎ローラと回転テーブルの間で粉砕した原料を 、 回転テ一ブル下方から導入したガスで上方に吹き上げる必要があるが、 該粉砕 した原料をガスで上方に吹き上げるためには、 多大なガスを必要とするために、 ガスを送風するために大きな送風機動力 (ファン動力) を必要とするといつた問 題点を有する。
本発明は、 上記問題点に鑑みてなされたものであり、 竪型粉碎機と分級装置を 備えて、 セメントクリン力、 セメント原料、 スラグ、 石炭、 炭酸カルシウム、 セ ラミック及び化学品等を原料として効率良く粉砕する粉砕装置の粉碎方法を提供 することを目的とする。
[発明の開示]
上記の課題を解決するため、 本発明による粉碎方法は、
( 1 ) 上面が略水平円板状に形成されて外縁部にダムリングが周設された回 転テーブル上に回転自在なコニカル形状の粉砕ローラを複数個配設し、 該粉碎口 ―ラに所定の粉碎圧力を与えることによつて該回転テ一ブル上に投入された原料 を粉碎する竪型粉砕機と、 該竪型粉砕機で粉碎された原料を粗粉と微粉とに分離 する分級機とを備えた粉碎装置を用いて、 該竪型粉砕機により粉碎した原料を該 分級機によって粗粉と微粉に分離し、 該粗粉は該竪型粉砕機に戻して再度粉碎す るとともに、 該微粉を製品として取り出す粉碎方法において、 該ダムリングの高 さ、 該粉砕ローラの粉碎圧力、 該回転テーブルの回転数、 及び竪型粉砕機に投入 する原料の投入量の中の少なくとも一つを調整することによって、 該竪型粉碎機 の粉碎機電力原単位を 1〜 3 0 kWh / t o nの範囲に制御した。
( 2 ) ( 1 ) に記載の粉碎方法において、 前記粉碎口一ラの粉碎圧力を 0 . 6〜0. 8MPaの範囲とし、 前記粉碎機電力原単位を 5〜: L 0 kWh/t on の範囲としてセメント原料を粉碎する。
(3) (1) に記載の粉碎方法において、 前記粉砕ローラの粉砕圧力を 0. 8〜1. IMP aの範囲とし、 前記粉碎機電力原単位を 20〜25 kWhZt o nの範囲としてセメントクリンカを粉碎する。
(4) (1) に記載の粉砕方法の発明において、 前記粉碎ローラの粉碎圧力 を 0. 8〜1. IMP aの範囲とし、 前記粉碎機電力原単位を 25〜 30 kWh Zt onの範囲としてスラグを粉碎する。
(5) (1) 〜 (4) までいずれかに一項の記載の粉碎方法の発明において 、 前記ダムリングの高さを、 粉碎ローラの中心直径に対して 1〜10%の範囲と した。
(6) (1) 〜 (5) までいずれかに一項の記載の粉砕方法の発明において 、 前記竪型粉砕機より取り出される原料の量を測定し、 該取り出される原料の量 が一定となるように、 前記粉砕装置の外部から該竪型粉碎機に投入する原料の量 を調整した。
[図面の簡単な説明]
図 1は、 本発明の実施形態に用いた竪型粉碎機を用いた粉砕装置の全体構成図 である。
図 2は、 本発明の実施形態に用いた竪型粉碎機の縦断面図である。
図 3は、 本発明の実施形態に用いた竪型粉碎機のローラ押圧用油圧装置と粉碎 圧力とを説明する説明図である。
図 4は、 本発明の実施形態に用いた竪型粉碎機の粉砕圧力を説明する説明図で ある。
図 5は、 本発明の実施形態に係わる粉砕方法によって得られた粉砕品平均粒度 比とシステム能力比の関係を示した図である。
図 6は、 本発明の実施形態に係わる粉砕方法によつて得られた粉碎圧力と粉碎 品平均粒度比の関係を示す図である。
図 7は、 セメント原料を篩にかけた際の篩目と通過分との関係を示す図である 図 8は、 クリンカーを篩にかけた際の篩目と通過分との関係を示す図である。 図 9は、 スラグを篩にかけた際の篩目と通過分との関係を示す図である。 図 1 0は、 本発明の実施形態に係わる粉碎方法によって得られた粉碎機電力原 単位とシステム能力比の関係を示す図である。
図 1 1は、 本発明の実施形態に係わる粉碎方法によって得られた粉碎圧力と粉 砕機電力原単位比の関係を示す図である。
図 1 2は、 本発明の実施形態に係わる粉碎方法によって得られたダムリング高 さ比と粉碎品平均粒度比及び粉砕機動力原単位の関係を示す図である。
図 1 3は、 本発明の実施形態に係わる粉砕方法によって得られたテーブル上原 料加速度と粉碎品平均粒度比の関係を示す図である。
図 1 4は、 本発明の実施形態に係わる粉碎方法によって得られた粉砕機出口輸 送機電力原単位と粉碎品平均粒度比等の関係を示す図である。
図 1 5は、 ポールミルを使用した従来型の粉碎装置の全体構成図である。 図 1 6は、 エアスェブト型の竪型粉砕機を使用した従来型の粉碎装置の全体構 成図である。
[発明を実施するための最良の形態]
以下、 図に基づいて本発明による粉砕装置の粉砕方法の詳細について説明する 。 図 1〜図 4は本発明に係る発明の実施の形態の好ましい 1例を示し、 図.1は竪 型粉碎機を用いた粉砕装置の全体構成図であり, 図 2は竪型粉砕機の縦断面図で ある。 図 3及び図 4は竪型粉砕機の口一ラ押圧用油圧装置と粉碎圧力とを説明す る説明図である。 図 5〜図 1 4は本発明の粉碎方法における効果を説明するため の実験データのグラフである。 図 1 5及び図 1 6は従来型粉碎装置の全体構成図 である。
本発明の実施形態に用いる竪型粉碎機 1の好ましい構成について、 以下に説明 する。 本実施形態に用いた竪型粉碎機 1は、 図 2に示すように該竪型粉碎機の外 郭を形成するケーシングと、 粉碎機の下部に設置された減速機 2 Bを介し電動機 により駆動されて回転する水平円板状の回転テーブル 2と、 回転テーブル上面 2 Aの外周部を円周方向に等分する位置に配設した複数個のコニカル型の粉砕口一 ラ 3とを備えている。
粉碎ローラ 3は、 軸 7により下部ケ一シングに回動自在に軸着した上部アーム 6と、 該上部アーム 6と一体に形成した下部アーム 6 Aと、 を介して油圧シリン ダ 8のピストンロッド 9に連結されており、 該油圧シリンダ 8の作動によって回 転テーブル上面 2 Aの方向に押圧されて、 回転テーブル上面 2 Aに原料を介して 従動することにより回転する。
前記ケ一シングの回転テ一ブル上面 2 Aの中央上部には、 回転テーブル上面 2 Aに原料を投入する原料投入口 3 5と原料投入シュート 1 3が設けられており、 原料投入口 3 5から原料投入シュート 1 3を介して回転テーブル上面 2 Aに原料 を投入する (供給と称することもある) ことができるよう構成されており、 該投 入した原料は、 回転テーブル上面 2 Aを渦巻き状の軌跡を描きながら回転テープ ル上面 2 Aの外周部に移動して、 回転テーブル上面 2 Aと粉碎ローラ 3に嚙み込 まれ粉砕される。
また、 回転テーブル上面 2 Aと粉碎ローラ 3に嚙み込まれて粉碎された原料は 、 該回転テ一ブル上面 2 Aの外縁部に周設されたダムリング 1 5を乗り越え、 回 転テーブル上面 2 Aの外周部とケーシングとの隙間である環状通路 3 0 (環状空 間部 3 0と称することもある) へと向かい、 環状通路 3 0より下部に落下して下 部取出口 3 4より粉碎品として竪型粉碎機 1の外部に取出される構造となってい る。
また、 前記ケ一シングには、 回転テーブル 2下方にガスを導入するためのガス 導入口 3 3を設け、 また回転テ一ブル上方に該ガスを排出するため上部取出口 3 9を設けている。 竪型粉碎機 1の運転中には、 該ガス導入口 3 3よりガス (本実 施形態においては空気) を導入することによって、 前記ケーシング内において該 回転テーブル下方から上方に向かうガスの気流が生じている。
そのため、 ダム、 Jングを乗り越えた原料の中で径の小さい微粉は吹き上げられ てケ一シング内を上昇し、 上部取出口 3 9より微粉として取出される。
なお、 該取出される微粉の量は、 わずかであり、 本実施形態においては該導入 するガスの量を調整して、 下部取出口 3 4から取り出される原料の 2〜 5 %程度 になるようにしている。
また、 本実施形態の竪型粉碎機 1においては、 油圧シリンダ 8のロッド側の油 室にかかる緊張圧力 P 1を測定できるように図示しない圧力計が取付けられてお り、 油圧シリンダ 8の緊張圧力 P 1を常に測定できる構成となっている。
前記圧力計で測定した値は、 アンプで変換して粉碎ローラの圧力制御装置であ る制御盤に送るよう構成している。 制御盤は、 演算器と比較器と設定器等で構成 しており、 前記の測定値を演算して、 予め設定器に設定した設定値と比較し、 そ の結果に基づいて、 粉碎ローラ押圧用油圧装置 3 6の油圧シリンダ 8に送る圧油 の圧力を制御することができる構成となっている。
なお、 本実施形態に用いた竪型粉碎機 1は粉碎ローラの個数が 3個であって、 テ一ブル回転数は 7 3 R P Mであり、 粉砕ローラ中心直径 Dは 0 . 4 mであり、 テーブル直径 Tは 0 . 6 4 mであり、 ダムリング 1 5の高さはテ一ブル上面 2 A より約 2 O mmである。
次に、 図 1を用いて粉碎装置の構成について説明する。 本発明の実施形態に用 いた粉碎装置 1 0 0の好ましい 1例は、 竪型粉碎機 1、 分級機 5 0、 及び捕集機 6 0を備えており、 さらにそれらの機器を後述する構成で接続するために、 送風 機 7 0 (ェキゾーストファン 7 0と称することもある) 、 パケットエレべ一夕 4 1、 及びベルトコンべャ 8 0等を備えている。
ここで、 粉砕装置 1 0 0の外部からベルトコンペャ 8 0を介して供給された原 料が 2段ゲート 4 5を介して、 原料投入口 3 5から竪型粉碎機 1に投入できるよ うに配管が接続されている。
また、 竪型粉碎機 1により粉砕された原料の大部分は、 下部取出口 3 4より竪 型粉碎機 1の外部に取出されて、 該取出された原料は、 バゲットエレべ一夕 4 1 で搬送されて、 分級機 5 0に投入される構成となっている。
ここで、 本実施形態における分級機 5 0は重力分級式の分級装置であって、 送 風機 7 0から捕集機 6 0 (本実施形態においては、 バグフィルタ 6 0 ) を介して 、 その内部を吸引されるよう配管で接続されている。
そして、 分級機 5 0は、 送風機 7 0を作動させることにより捕集機 6 0を介し てその内部を吸引されることによって、 所望の粒径より小さな微粉を捕集機 6 0 側にガスとともに送給するとともに、 前記捕集機 6 0に送給した以外の原料を粗 粉として、 分級機 5 0の下方より取り出す構造となっている。
分級機 5 0の下方より粗粉として取り出した原料は、 原料投入口 3 5から竪型 粉碎機 1内に投入するように配管が接続されている。
また、 本実施形態における分級機 5 0は、 投入された原料を常に一定の割合で 粗粉と微粉 (製品) に分離するために、 その分級効率が常に一定となるよう調整 できる構造となっている。 本実施形態においては、 投入した原料の粒度に合わせ て分級機 5 0のガス量といった運転条件等を調整することにより、 常に投入され た原料の 3 0 %を粗粉として分離するように構成した。
なお、 本実施の形態における分級機 5 0は前述したように重力分級式の分級装 置を使用したが、 これに限るものではなく、 篩式、 慣性式、 遠心力式等、 あるい は他の分級方式であって良いが、 効率良く捕集機に微粉を送給するといつた点で 、 ガス気流を用いて分級する分級方式が好ましい。
また、 本実施形態においては、 竪型粉碎機 1内の雰囲気集塵をおこなうため、 送風機 7 0から、 捕集機 6 0及び分級機 5 0を介して、 竪型粉碎機 1の上部取出 口 3 6をわずかに吸引するよう配管を接続しており、 竪型 碎機 1内を漂う含塵 ガスを分級機 5 0で分級することによって、 所望の粒径より小さな微粉を捕集機 6 0側にガスとともに送給するとともに、 前記捕集機 6 0に送給した以外の原料 を粗粉として、 分級機 5 0の下方より取り出す構造となっている。
また、 図 1に示した実施形態の好ましい 1例においては、 送風機 7 0から送ら れる送風ラインの各所には、 流量調整バルブ B 2、 B 3を設けることによって、 竪型粉砕機 1及び分級機 5 0の中を流れるガスの風量等を調整できるよう構成し た。
前記のように構成された粉碎装置 1 0 0を用いて実施された本実施形態による 粉砕方法の好ましい 1例を以下に説明する。
粉碎装置 1 0 0の外部からベルトコンペャ 8 0よって竪型粉碎機 1に供給され た原料である鉱物等 (本実施形態ではセメントクリン力) を、 竪型粉碎機 1の回 転テ一ブル上面 2 Aの中央上部に設けられた原料投入口 3 5から、 原料投入シュ ート 1 3を介して、 回転テーブル上面 2 Aの上方より回転テーブル上面 2 Aの中 央部に投入する。 投入された原料は、 回転テーブル上面 2 Aで回転させられ、 ま た、 回転による遠心力が発生することにより、 回転テーブル上面 2 Aを渦巻き状 の軌跡を描きながら回転テーブル上面 2 Aの外周部に移動し、 回転テーブル上面
2 Aと該回転テーブル上面 2 Aに押圧された粉砕ローラ 3との間に嚙み込まれ粉 砕される。
回転テーブル上面 2 Aと粉碎ローラ 3に嚙み込まれ粉碎された原料の中で、 ダ ムリング 1 5を乗り越えた原料は、 回転テーブル上面 2 Aの外周面とケ一シング 内周面との間の環状通路 3 0に放り出されて環状通路 3 0を落下し、 下部取出口
3 4より粉砕品として竪型粉碎機 1の外部へ取出される。 なお、 ダムリング 1 5 にせき止められて、 回転テーブル上面 2 Aに滞留した原料は、 回転テーブル上面 2 Aと粉砕ローラ 3に再び嚙み込まれて再度粉碎される。
なお、 下部取出口 3 4より竪型粉砕機 1の外部へ取出した粉碎品は、 バゲット エレべ一夕 4 1により分級機 5 0に搬送される。
分級機 5 0に搬送された原料の中で、 径の小さな微粉はガスとともに捕集機 6 0に送給されて、 そこで製品として取り出される。 また、 径の大きな粗粉は、 再 度竪型粉砕機 1に戻されて再度粉碎される。
以下、 図 5〜図 1 4に記載した実験デ一夕によるグラフの説明をする。
本発明で述べる粉砕品平均粒度比、 粉碎機電力原単位、 及び粉碎システム電力 原単位 (kWhZ t o n) は、 以下の定義とした。
粉碎品平均粒度比は、 粉砕品平均粒度を原料の平均粒度で割ったものであり下 記の数式 1で表される。 謹平均粒度比 …数式丄 なお、 平均粒度は、 粉砕品を篩にかけた際において、 その残さ率 (篩に投入し た原料で篩を通過できず篩上に残った原料の割合) が 3 6 . 8 %となる篩目の大 きさとして定義した。
粉砕機電力原単位は、 粉碎機消費電力 (kWh ) を製品重量 (t o n ) で割つ たものであり下記の数式 2で表される。 粉砕機電力原単位 =粉^^^費 π電力 · · ·数式 2 粉砕システム電力原単位は、 システム消費電力 (kWh ) を原料の製品重量 ( t o n ) で割ったものであり下記の数式 3で表される。 粉碎システム電力原単位 =ノス!^^ ΐ ^ · · '数式 3 また、 システム消費電力は竪型粉碎機 1、 分級機 5 0、 送風機 7 0及び付属機 器の消費電力の総和である。
システム能力比 (粉砕システム能力比と称することもある。 ) とは 9 0ミクロ ンアンダーの粉碎品を通過させる篩によって粉砕品を分級した際において、 前記 平均粒度比が 0 . 1 5の塲合の篩通過率を基準 (基準値 1 ) として、 各粉碎品平 均粒度比における通過率の比をとつたものである。 図 5に粉砕品平均粒度比とシ ステム能力比の関係の 1例を示した参考のグラフを示すが、 粉碎品平均粒度比が 小さくなるにつれてシステム能力比は向上する。
図 5から明らかなように、 原料を細かく粉碎するにつれて、 システム能力比は 高くなる傾向にある。
次に、 竪型粉碎機の面圧 (粉碎ローラ圧力) と、 粉砕品の平均粒度の関係を図 6 (セメントクリン力の場合) に示す。
これをみると明らかなように、 面圧を上げても、 粉砕品の平均粒度が小さくな りにくい領域が存在している。 (セメントクリン力の粉碎特性では 1 . I M P a より大きい粉碎はあまり効果ないことがわかる) 。
また、 図を添付しないが、 セメント原料とスラグも同様の傾向を示し、 セメン ト原料の粉碎特性では 0 . 8 M P aより大きい粉砕はあまり効果ない。 またスラ グも同様の傾向を示し、 1 . I M P aより大きい粉碎はあまり効果ない。
さらに、 図 7〜9をみると明らかであるが、 竪型粉砕機で原料を繰り返し粉碎 した場合は、 繰り返し粉碎回数が多くなると粉碎品の平均粒度を小さくするのに あまり効果がないことがわかる。 ここで、 通過分とは、 粉砕品を篩にかけた際に 、 篩にかけた量に対して篩目を通過した量をパーセンテージで示したものである 言い換えると、 図 1のシステムを運転するに際しては、 最適な面圧を選択し、 最小限回数の繰り返し粉砕で、 目的とする粉砕品の粒度に達することが、 効率と して最も良いのである。
しかし、 ここで問題がある。 繰り返し粉碎回数は、 必要とされる製品の粒径に よって変化するファクターであり、 原料が何回繰り返し粉碎されるかを制御する ことが難しいのである。
特に、 図 1のシステムにおいては、 ベルトコンペャ 8 0から投入された原料と 、 複数回繰り返し粉碎された原料が混在して竪型粉砕機に投入されるため、 その 繰り返し回数を正確にカウントして制御することが困難である。
本願発明者は、 繰り返し粉碎回数を制御するファクタ一として、 適切なファク タ一を鋭意探索し、 竪型粉砕機の電力原単位に着目した。 つまり、 繰り返し粉碎 回数と竪型粉碎機の電力原単位とは比例の関係にあり、 粉碎回数が増えると電力 原単位も増えることを見出した。
原料が何回繰り返し粉碎されるかによつて、 粉碎機の電力原単位は変化するこ とから、 最適な面圧 (粉碎口一ラ圧力) を選択した上で、 電力原単位を制御する ことによって、 粉碎する原料に最適な粉砕条件を達成することが可能である。
ここで、 粉砕機の電力原単位と粉碎システム能力との関係を調べた図 1 0 (セ メントクリンカを例にした) を見てみると、 5〜1 0 kWhZ t o nに粉砕効率 の良い領域を有しており、 また 3 0 kWh/ t o n以上の粉碎機動力をかけるこ とはシステムとしての効率が悪くなるという特徴がある。 (ただし、 図 1 0はセ メントクリンカで求められる製品粒度が 9 0ミクロン篩上 1 2 %とした場合であ る。 )
図 1 0の傾向は、 セメントクリン力のみならず、 粉碎特性の異なるセメント原 料、 スラグに対してもほぼ同様であって、 粉碎機の電力原単位を 3 O kWhZ t o n以上に増加させても、 粉碎システム能力が向上しないという結果になった。 これは、 図 1の粉碎システムに特徴的な数値である。
これらのことから、 図 1の粉碎システムを制御するにあたって、 好適な粉碎を 行なうための前提条件として、 粉碎機動力を無駄にしないようにするため、 30 kWh/t on以下で運転することであって、 実際に 1 kWhZt o n未満では 粉碎ができないことから、 粉碎機電力原単位を 1〜30 kWh/t onの範囲と することが、 好ましい。
以下、 原料別に説明する。
①セメント原料の場合
求められる製品粒度が 90ミクロン篩上 12% (別紙参照) で良いため、 強く 粉砕する必要がなく、 システムとして粉碎効率の良い、 5〜10 kWh (面圧 0 . 6〜0. 8MP a) 領域で粉碎することによって、 粉碎可能である。
従って、 好ましい範囲として、 5〜: L OkWh (面圧 0. 6〜0. 8MPa) が好適である。 言いかえると、 セメント原料は図 1のシステムによって粉碎する 原料として、 非常に適している。
②セメントクリン力の場合
求められる製品粒度が 3000〜4000ブレーン (ブレーンとは粉末の大き さを表す単位であり、 J I Sの R 5201- 1997にもブレーンが記載されて いる。 ) である。 セメントクリン力の粉碎特性から明らかな様に 1. IMP aよ り大きい粉碎はあまり効果ないことがわかるので、 1. IMP a付近の領域の粉 碎圧力を利用して、 繰り返す粉碎が効果的である。 従って、 好ましい範囲は前記 粉碎ローラの粉砕圧力を 0. 8〜1. IMP aの範囲とし、 その面圧で製品粒度 を達成するため前記粉砕機電力原単位を 20〜25 kWh/t onの範囲として 繰り返し粉砕することである。
③スラグの場合
求められる製品粒度が 4000〜5000ブレーンであるため、 非常に細かく 原料を微粉碎する必要がある。 粉碎動力の無駄にならない範囲の最も粉碎率の高 い領域で粉碎する必要がある。 従って、 好ましい範囲は前記粉碎ローラの粉碎圧 力を 0. 8〜1. IMP aの範囲とし、 粉碎動力の無駄にならない範囲の上限値 でその面圧で製品粒度を達成するため前記粉碎機電力原単位を、 25〜30 kW hの範囲が好適である。
さて、 図 10で説明したように、 竪型粉碎機 1の粉碎機電力原単位を徐々に上 昇させていった場合、 システム能力比は徐々に上昇して行く傾向にある。 粉碎機 電力原単位は、 粉碎ローラの粉碎圧力、 ダムリングの高さ、 回転テーブルの回転 数、 及び竪型粉砕機に投入する原料の投入量の中の少なくとも一つを調整するこ とによって、 制御することができる。
以下、 粉碎ローラ 3の粉碎圧力 L、 ダムリング 1 5の高さ、 回転テーブル 2の 回転数、 及び竪型粉碎機 1に投入する原料の投入量中の少なくとも一つを調整す ることによって、 粉砕機動力原単位を制御する技術について説明する。
粉碎圧力 Lを調整することにより粉碎機電力原単位を制御することについて、 図 1 1を用いて説明する。 図 1 1は粉碎機のローラ面圧と粉碎機動力原単位の関 係を示すグラフである。 なお、 図 1 1に記載したローラ面圧は、 本発明で説明す る粉碎庄カ Lのことである。
図 1 1から明らかなように 竪型粉碎機 1の粉砕圧力 Lを大きくするにつれて 、 粉碎機電力原単位は上昇する。
これは、 回転テーブル上面 2 Aの原料が高い粉碎圧力 Lで粉碎される程、 竪型 粉碎機 1の消費動力が上昇するためである。 従って、 粉砕圧力 Lを調整すること によって、 粉砕機電力原単位を制御することは可能である。
ここで、 粉碎口一ラ 3を前記回転テーブル上面 2 Aに押圧する粉碎圧力 Lは、 図 3に示すように、 粉碎ローラ 3の中心直径を Dとして、 粉碎ローラ幅を Wとし て、 粉碎ローラ 3を回転テーブル上面 2 Aに垂直方向に押し付ける力である粉碎 力を Fとして、 粉碎ローラ 3の幅方向の中心線と垂直軸との傾き角度を 0とした ときに、 粉碎圧力 Lを下記の数式 4で定義した。 粉砕圧力 L = F Q s " · · ·数式 4
WxD ここで、 図 3に用いた粉碎圧力 Fの単位はニュートン (N) であり、 粉碎ロー ラ中心直径 D、 および、 粉碎ローラ幅 Wの単位は mである。
また、 本実施形態における粉碎カ Fは、 油圧シリンダ 8のロッドの引込力 (油 圧シリンダ力と称することもある) を F 1とし、 油圧シリンダ 8から粉碎ローラ 3までのレーパー比を R (本実施形態においては、 R = L 1 ZL 2である) とす ると、 F = F 1 X R +Mである。 (Mは粉砕ローラ 3等の自重によって生じる粉 砕力である)
ダムリング 1 5の高さを調整することにより粉碎機電力原単位を制御すること について図 1 2を用いて説明する。 図 1 2にダムリング高さ比と粉碎品平均粒度 比及び粉碎機動力原単位の関係を示す。 ダムリング高さ比は、 粉砕ローラ 3の中 心直径の大きさ Dに対してのダムリング 1 5の高さの割合をパーセンテージ (% ) で表示したものであって、 粉碎ローラ 3の中心直径 Dに対してダムリング 1 5 の高さが高くなるにつれてその割合が大きくなる。 ダムリング高さ比 = リ
粉碎ローフ ί xl 0 0 · · ·数式 5
中も、直径 図 1 2から明らかなようにダムリング高さ比を大きくするにつれて、 粉碎機電 力原単位は上昇する。 これは、 回転テーブル上面 2 Aの外縁部に周設されたダム リング 1 5のダムリング高さが高くなるにつれて、 回転テーブル上面 2 A上の原 料がダムリング 1 5を乗り越えにくくなり、 回転テーブル上で繰り返し粉碎され る回数が増加することによる。 そして、 粉碎機電力原単位の上昇することにより 、 枠品平均粒度比は小さくなつていく傾向にある。 従って、 ダムリング 1 5の高 さを調整することによってダムリング高さ比を変化させ、 粉砕機電力原単位を制 御することは可能である。
さらに図 1 2の結果について説明すれば、 ダムリング高さ比が 1 0 %を超えた あたりから、 粉碎機電力原単位の上昇カーブが急激になるが、 粉碎機電力原単位 の急激な上昇に対応するほど粉碎品平均粒度比は小さくなつていくことがないこ とがわかる。 また、 ダムリング高さ比が 1 %未満では、 粉砕機電力原単位が上昇 が緩やかであって、 粉砕機電力原単位に寄与しにくいことがわかる。
これらの理由により、 前記ダムリング 1 5の高さ粉碎ローラ 3の中心直径 Dに 対する割合で 1〜1 0 %の範囲とすることによって、 粉碎機電力原単位の上昇に 見合った粉碎品平均粒度比の粉碎品を得ることができるので、 無駄の少ない効率 の良い運転をすることが可能であって、 好ましい。
また、 ダムリング高さ比は 3〜8 %の範囲において、 特に効率良く粉碎品平均 粒度比を小さくすることができるので、 この範囲を用いて粉碎装置を運転するこ とは効率良く微粉際品を製造することが可能であり、 特に好ましい。
次に、 回転テ一ブル 2の回転数を調整することにより粉砕機電力原単位を制御 することについて説明する。 回転テーブル 2の回転速度を上昇させれば、 竪型粉 砕機 1の消費動力が上昇することは自明であることから、 回転テーブル 2の回転 数を調整することによって、 粉砕機電力原単位を制御することは可能である。 さらに説明すると、 図 1 3に示したように本発明の想定する粉碎装置によって 、 例えばセメンクリン力を粉碎した場合においては、 テーブル回転数を変化させ てテーブル上原料加速度を 1 2〜1 5 r a d / s e c 2 の範囲とし場合、 粉碎品 平均粒度比が小さくなつていることがわかる。
なお、 回転テ一ブル上面 2 Aに投入された原料は、 回転テ一ブル 2の回転によ る遠心力で回転テーブル上面 2 Aに分散されて粉碎ローラ 3に粉砕されるが、 回 転テーブル 2の回転速度が遅い場合は、 回転テーブル上面 2 Aでの原料滞留時間 が長くなるため、 回転テ一ブル上面 2 Aでの原料層の厚みが厚くなりすぎること によつて粉碎が進まなくなるにもかかわらず, 粉砕機の消費動力のみが無駄に上 昇するといつた問題が生じ、 逆に、 回転テーブル 2の回転速度が早い場合は、 回 転テーブル上面 2 Aでの原料滞留時間が短くなるため、 回転テーブル上面 2 Aで の原料層の厚みが薄くなりすぎることによって安定した粉砕が進まなくなる等と いう問題が生じるといった理由から図 1 3に示したような結果になったものと推 測される。
言いかえれば、 テーブル回転数を調整して粉碎機電力原単位を制御することは 可能であるが、 テーブル回転数の範囲には適正な範囲があって、 その範囲を外れ てテーブル回転数を変化させた場合においては、 期待するほどシステム能力が上 昇しない場合があるということを意味している。
従って、 テーブル回転数を変化させて粉砕機電力原単位を制御する場合におい ては、 テ一ブル上原料加速度を 1 2〜1 5 r a d Z s e c 2 の範囲として適正な 範囲としておくことが、 効率良く微粉砕を行う上で好ましい。
竪型粉碎機 1から取り出される原料の量を測定し、 該取り出される原料の量を 一定にするようにして外部から投入される原料の量を制御する調整する発明につ JP03/01315
15 いて以下に説明する。
図 1 4に粉碎機出口輸送機電力原単位と粉碎品平均粒度、 粉砕機電力原単位及 び粉砕機振動の関係を示す。
ここで、 粉碎機出口輸送機電力原単位とは、 竪型粉碎機 1で粉砕した原料を分 級機 5 0に搬送する輸送機の電力原単位のことであり、 図 1に示した本発明の想 定する粉砕装置においては、 バケツトエレべ一夕 4 1で消費される消費電力 (k Wh) を搬送品の重量 (t o n) で割ったものである。
なお、 本実施形態においては、 バケツトエレべ一夕 4 1の消費電力を測定する ことによって、 竪型粉碎機 1からの原料取りだし量を測定している。
図 1 4から明らかなように、 粉碎機出口輸送機電力原単位を大きくした場合に おいて、 粉砕機電力原単位が高くなるが、 粉碎品平均粒度比も大きくなつており 粉砕が進まないという傾向が現れる。
また、 粉碎機出口輸送機電力原単位を小さくした場合においては徐々に振動が 大きくなつて粉碎機振動比が大きくなるといった傾向がわかる。 これは、 単位時 間に竪型粉砕機 1を通過して取り出される原料が多い場合においては、 回転テー ブル上面 2 A上の原料の量が多くなることによって、 粉碎が進まず、 単位時間に 竪型粉碎機 1を通過して取り出される原料が少ない場合においては、 回転テープ ル上面 2 A上の原料の量が少なくなることによって、 粉碎が進むが、 竪型粉碎機 1の振動が大きくなることを意味している。
従って、 竪型粉碎機 1より取り出される原料の量を測定し、 該取り出される原 料の量が一定となるようにして、 前記粉砕装置 1 0 0の外部から該竪型粉碎機 1 に投入する原料の量を調整することは振動を防止して効率良く粉砕を進める点で 効果的である。
この方法の好ましい 1つの方法を説明すれば、 バケツトエレべ一夕 4 1の消費 電力を測定することによって、 竪型粉砕機 1からの原料取りだし量を測定し、 粉 砕機出口輸送機であるバケツトエレべ一夕 4 1の電力原単位が、 振動等発生する ことなく安定して効率的に粉碎できる 0 . 3〜0 . 7 kWhZ t o nの範囲で一 定となるように、 ベル卜コンペャ 8 0から投入される原料の投入量をコント口一 ルする方法である。 以上、 説明したように本発明による粉碎方法によれば、 従来方法で記載したチ ユーブミルを用いる必要がないので装置構成が簡単で効率の良い粉砕が可能であ り、 また粉碎した原料の全量をガスで上方に吹き上げる必要がないので大きな送 風機動力を必要としない。
そして、 本発明による粉砕方法は、 ダムリングの高さ、 粉碎ローラの粉砕圧力 、 回転テ一ブルの回転数、 及び竪型粉碎機に投入する原料の投入量の中の少なく とも一つを調整することにより、 前記粉碎機電力原単位を 1〜 30 kWh/t 0 nの範囲とすることによって、 無駄の少ない効率の良い運転をすることが可能で ある。
また、 第 2の発明においては、 粉碎ローラの粉碎圧力を 0. 6〜0. 8 MP a の範囲とし、 粉砕機電力原単位を 5〜10 kWh/t onの範囲とすることによ り、 セメント原料を効率的に粉碎できる。
第 3の発明においては、 粉砕ローラの粉碎圧力を 0. 8〜1. IMP aの範囲 とし、 粉碎機電力原単位を 20〜25 kWh/t onの範囲とすることにより、 セメントクリン力を効率的に粉砕できる。
第 4の発明においては、 粉砕ローラの粉砕圧力を 0. 8〜1. IMP aの範囲 とし、 粉砕機電力原単位を 25〜30 kWh/t onの範囲とすることにより、 スラグを効率的に粉砕できる。
第 5の発明においては、 ダムリングの高さを粉碎ローラの中心直径に対する割 合で 1〜10%の範囲として適正な高さに選んで運転することにより、 ダムリン グ高さ比を上げすぎることにより発生する無駄な消費動力を発生させずに安定し た粉砕をすることが可能である。
第 6の発明においては、 竪型粉碎機より取り出される原料の量を測定し、 該取 り出される原料の量が一定となるように、 粉砕装置の外部から竪型粉砕機に投入 する原料の量を調整することによって、 竪型粉碎機に発生する振動を防止して効 率良く粉碎を進めることが可能である。

Claims

請求の範囲
1. 上面が略水平円板状に形成されて外縁部にダムリングが周設された回転テ 一ブル上に回転自在なコニカル形状の粉碎ローラを複数個配設し、 該粉碎ローラ に所定の粉碎圧力を与えることによって該回転テーブル上に投入された原料を粉 砕する竪型粉砕機と、 該竪型粉碎機で粉砕された原料を粗粉と微粉とに分離する 分級機とを備えた粉碎装置を用いて、 該竪型粉碎機により粉碎した原料を該分級 機によって粗粉と微粉に分離し、 該粗粉は該竪型粉碎機に戻して再度粉砕すると ともに、 該微粉を製品として取り出す粉碎方法において、 該ダムリングの高さ、 該粉碎ローラの粉砕圧力、 該回転テーブルの回転数、 及び竪型粉砕機に投入する 原料の投入量の中の少なくとも一つを調整することによって、 該竪型粉碎機の粉 碎機電力原単位を 1〜30 kWh/t onの範囲に制御することを特徴とした粉 碎方法。
2. 前記粉碎ローラの粉碎圧力を 0. 6〜0. 8MP aの範囲とし、 前記粉砕 機電力原単位を 5〜10 kWhZt onの範囲としてセメント原料を粉碎する請 求項 1記載の粉砕方法。
3. 前記粉碎ローラの粉枠圧力を 0. 8〜1. IMP aの範囲とし、 前記粉砕 機電力原単位を 20〜25 kWh/t onの範囲としてセメントクリン力を粉碎 する請求項 1記載の粉碎方法。
4. 前記粉砕ローラの粉砕圧力を 0. 8〜1. IMP aの範囲とし、 前記粉碎 機電力原単位を 25〜30 kWh/t onの範囲としてスラグを粉砕する請求項 1記載の粉碎方法。
5. 前記ダムリングの高さを、 粉碎ローラの中心直径に対して 1〜10%の範 囲とする請求項 1〜請求項 4までのいずれか 1項に記載の粉碎方法。
6. 前記竪型粉碎機より取り出される原料の量を測定し、 該取り出される原料 の量が一定となるように、 前記粉碎装置の外部から該竪型粉碎機に投入する原料 の量を調整する請求項 1〜請求項 5までのいずれか 1項に記載の粉碎方法。
PCT/JP2003/001315 2002-02-07 2003-02-07 Milling method WO2003066220A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003565638A JPWO2003066220A1 (ja) 2002-02-07 2003-02-07 粉砕方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002030473 2002-02-07
JP2002-30473 2002-02-07

Publications (1)

Publication Number Publication Date
WO2003066220A1 true WO2003066220A1 (en) 2003-08-14

Family

ID=27677905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001315 WO2003066220A1 (en) 2002-02-07 2003-02-07 Milling method

Country Status (3)

Country Link
JP (1) JPWO2003066220A1 (ja)
CN (1) CN100368092C (ja)
WO (1) WO2003066220A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522455A (ja) * 2010-03-05 2013-06-13 ロエシェ ゲーエムベーハー 金属回収のためのステンレス鋼スラグおよび鉄鋼スラグの精製方法
JP2013163171A (ja) * 2012-02-13 2013-08-22 Ube Machinery Corporation Ltd 竪型粉砕機
CN104437757A (zh) * 2014-09-23 2015-03-25 南京凯盛国际工程有限公司 一种预粉磨立磨
CN105080698A (zh) * 2014-05-14 2015-11-25 中材装备集团有限公司 立式辊磨系统及其粉磨工艺
JP2016135462A (ja) * 2015-01-23 2016-07-28 宇部興産機械株式会社 竪型粉砕機の運転方法
WO2018166903A1 (en) * 2017-03-13 2018-09-20 General Electric Technology Gmbh System and method for adjusting a material bed depth in a pulverizer mill

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101664707B (zh) * 2008-09-02 2013-01-30 浙江明峰水泥有限公司 矿渣微粉超细开路生产线
KR101002404B1 (ko) * 2010-05-07 2010-12-21 (주)명우분체시스템 석탄분쇄 및 분급 이송장치
CN102872958A (zh) * 2012-09-26 2013-01-16 佛山市博晖机电有限公司 一种陶瓷原料的粉磨工艺及陶瓷原料粉磨生产线
CN107737642A (zh) * 2017-11-20 2018-02-27 重庆嘉韵实业有限公司 一种粉煤灰的生产流水线及其工艺
CN109926164A (zh) * 2019-04-27 2019-06-25 南京凯盛国际工程有限公司 一种新型摇臂磨辊结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557206A (ja) * 1991-09-03 1993-03-09 Ube Ind Ltd 竪型粉砕機
JPH0788389A (ja) * 1992-01-21 1995-04-04 Ube Ind Ltd 粉砕設備
JPH11333310A (ja) * 1998-05-29 1999-12-07 Kobe Steel Ltd 骨材生産方法及びその装置
JP2001224973A (ja) * 2000-02-16 2001-08-21 Ube Ind Ltd 砕砂製造用竪型粉砕機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85106642B (zh) * 1985-09-03 1988-12-14 川崎重工业株式会社 立式辊碾机分级器及控制器
US4714202A (en) * 1986-02-12 1987-12-22 Combustion Engineering, Inc. Pulverized solid control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557206A (ja) * 1991-09-03 1993-03-09 Ube Ind Ltd 竪型粉砕機
JPH0788389A (ja) * 1992-01-21 1995-04-04 Ube Ind Ltd 粉砕設備
JPH11333310A (ja) * 1998-05-29 1999-12-07 Kobe Steel Ltd 骨材生産方法及びその装置
JP2001224973A (ja) * 2000-02-16 2001-08-21 Ube Ind Ltd 砕砂製造用竪型粉砕機

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522455A (ja) * 2010-03-05 2013-06-13 ロエシェ ゲーエムベーハー 金属回収のためのステンレス鋼スラグおよび鉄鋼スラグの精製方法
US9212404B2 (en) 2010-03-05 2015-12-15 Loesche Gmbh Preparation method for stainless steel slags and steelworks slags for recovery of metal
JP2013163171A (ja) * 2012-02-13 2013-08-22 Ube Machinery Corporation Ltd 竪型粉砕機
CN105080698A (zh) * 2014-05-14 2015-11-25 中材装备集团有限公司 立式辊磨系统及其粉磨工艺
CN105080698B (zh) * 2014-05-14 2018-10-12 天津水泥工业设计研究院有限公司 使用立式辊磨系统的粉磨工艺
CN104437757A (zh) * 2014-09-23 2015-03-25 南京凯盛国际工程有限公司 一种预粉磨立磨
JP2016135462A (ja) * 2015-01-23 2016-07-28 宇部興産機械株式会社 竪型粉砕機の運転方法
WO2018166903A1 (en) * 2017-03-13 2018-09-20 General Electric Technology Gmbh System and method for adjusting a material bed depth in a pulverizer mill
CN110545919A (zh) * 2017-03-13 2019-12-06 通用电气技术有限公司 用于调节粉碎研磨机中的材料床深度的系统和方法
CN110545919B (zh) * 2017-03-13 2023-02-21 通用电气技术有限公司 用于调节粉碎研磨机中的材料床深度的系统和方法

Also Published As

Publication number Publication date
CN100368092C (zh) 2008-02-13
JPWO2003066220A1 (ja) 2005-05-26
CN1627991A (zh) 2005-06-15

Similar Documents

Publication Publication Date Title
WO2003066220A1 (en) Milling method
JPH0538464A (ja) スラグ粉砕設備
JP2004188368A (ja) 粉砕方法
JP2004141713A (ja) 骨材製造用粉砕システム
JP2007136299A (ja) セメントクリンカの粉砕設備
JP4269257B2 (ja) 粉砕方法
US5769332A (en) Efficient production of landplaster by collecting and classsifying gypsum fines
MXPA97002608A (en) Efficient production of gypsum calcinated by collection and classification of fine and
JP3216677B2 (ja) 粉砕設備
JP2000271503A (ja) 竪型粉砕機の運転方法
EP0558572A1 (en) DOUBLE SEPARATOR FOR SIGHTING PARTICLE MATERIAL.
JP2823099B2 (ja) 微粉砕設備
JP2755338B2 (ja) 粉砕設備
JP3570265B2 (ja) 粉砕装置
JP2795363B2 (ja) 粉砕設備
JP3036669B2 (ja) 粉砕設備
JP2904371B2 (ja) 粉砕設備
JP2006102691A (ja) 砕砂製造用の竪型粉砕機及び粉砕システム
JP3216678B2 (ja) 粉砕設備
JPH057792A (ja) 粉砕設備
JP3562213B2 (ja) 竪型粉砕機
JP4169449B2 (ja) 竪型粉砕機の運転方法
JP2795361B2 (ja) 粉砕設備
JP3805131B2 (ja) 砕砂製造用竪型粉砕機の運転方法
JP2613508B2 (ja) 竪型粉砕機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP

WWE Wipo information: entry into national phase

Ref document number: 2003565638

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003803378X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: CR2008-010284

Country of ref document: CR