WO2003061817A1 - Mikrokapseln enthaltende koagulate - Google Patents

Mikrokapseln enthaltende koagulate Download PDF

Info

Publication number
WO2003061817A1
WO2003061817A1 PCT/EP2003/000215 EP0300215W WO03061817A1 WO 2003061817 A1 WO2003061817 A1 WO 2003061817A1 EP 0300215 W EP0300215 W EP 0300215W WO 03061817 A1 WO03061817 A1 WO 03061817A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcapsules
polymer
acid
substrates
compounds
Prior art date
Application number
PCT/EP2003/000215
Other languages
English (en)
French (fr)
Inventor
Friedrich Koch
Ciro Piermatteo
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10213984A external-priority patent/DE10213984A1/de
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Publication of WO2003061817A1 publication Critical patent/WO2003061817A1/de

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/005Compositions containing perfumes; Compositions containing deodorants
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/12Processes in which the treating agent is incorporated in microcapsules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • the invention relates to coagulates containing microcapsules, a process for their preparation and their use.
  • Coagulates in the sense of this application are substrates on the surface of which polymers have been deposited by coagulation (precipitation).
  • One object of the present invention was to provide substrates with active ingredients on a permanent basis.
  • the invention therefore relates to substrates coated with polymers which contain microcapsules in the polymer layer.
  • the substrates are preferably flat, in particular the substrates are also flexible.
  • the preferred substrates are: leather, textile, fleece, paper, synthetic leather (i.e. textile fabrics made using plastics) or plastic films.
  • suitable polymers are: polyurethanes, polyurethaneureas, polyacrylonitriles or copolymers of styrene, in particular acrylic-butadiene-styrene copolymers.
  • Preferred polyurethanes or polyureas are polyadducts made from polyisocyanates and compounds with active hydrogen atoms. They are preferably hydrophobic, which is preferably understood to mean that without further auxiliaries they do not give stable dispersions or solutions with water. They can contain certain structural components, for example those from the group of the silicone resins, the aromatic molecular segment-containing polyethers, the aromatic molecular segment-containing polyesters and / or the perfluorocarbon resins.
  • Preferred starting materials for the production of the polyurethanes or polyurethane ureas are
  • Any organic polyisocyanates preferably diisocyanates of the formula Q (NCO) 2 , where Q is in particular an aliphatic hydrocarbon radical having .4 to 12 carbon atoms, a cycloaliphatic hydrocarbon radical having 6 to 15 carbon atoms, an aromatic hydrocarbon radical having 6 to 15 carbon atoms or an araliphatic hydrocarbon radical with 7 to 15 carbon atoms.
  • Q is in particular an aliphatic hydrocarbon radical having .4 to 12 carbon atoms, a cycloaliphatic hydrocarbon radical having 6 to 15 carbon atoms, an aromatic hydrocarbon radical having 6 to 15 carbon atoms or an araliphatic hydrocarbon radical with 7 to 15 carbon atoms.
  • diisocyanates examples include tetramethylene diisocyanate, hexamethylene diisocyanate, l-methyl-l, 5-diisocyanatopentane, 2-methylene pentadiisocyanate-2,5, 2-ethyl-butane diisocyanate-1,4, dodecamethylene diisocyanate, 1,3- and 1 , 4-diisocyanatocyclohexane, 1-
  • the (cyclo) aliphatic diisocyanates mentioned are particularly preferably used.
  • polyfunctional polyisocyanates known per se in polyurethane chemistry, or else modified polyisocyanates containing (for example) carbodiimide groups, allophanate groups, isocyanurate groups, urethane groups and / or biuret groups.
  • the ones used preferably have
  • Polyhydroxy compounds have a water solubility of less than 100 g / 1 at 20 ° C., in particular less than 50 g / 1.
  • the corresponding dihydroxy compounds are preferably used.
  • the use of tri or higher functional compounds in the sense of the isocyanate polyaddition reaction in small proportions to achieve a certain degree of branching is possible, as is the possible use of tri or higher functional polyisocyanates already mentioned for the same purpose. It is further preferred that the corresponding polyhydroxyl compounds are predominantly made from aliphatic structural components.
  • Hydroxyl compounds which are preferably used are the hydroxypolyesters, hydroxypolyethers, hydoxypolythioethers, hydroxypolycarbonates and / or hydroxypolyesteramides known per se in polyurethane chemistry.
  • the polyesters containing hydroxyl groups are, for example, reaction products of polyhydric, preferably dihydric and optionally additionally trihydric alcohols with polybasic, preferably dihydric, carboxylic acids.
  • the polycarboxylic acids are preferably aliphatic and / or cycloaliphatic in nature and can optionally, e.g. by halogen atoms, substituted and / or unsaturated. Examples include:
  • Succinic acid adipic acid, suberic acid, azelaic acid, sebacic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, tetrachlorophthalic anhydride, endomethylene tetrahydrophthalic anhydride, glutaric anhydride, maleic acid, maleic anhydride, dimeric and dimeric anhydride, fumaric acid.
  • monovalent carboxylic acids to be used are preferably saturated or unsaturated fatty acids, e.g. 2-ethylhexanoic acid, palmitic acid, stearic acid, oleic acid, ricinoleic acid, linoleic acid, ricinic acid,
  • Linolenic acid and technical fatty acid mixtures such as those from natural raw materials (e.g. coconut fat, linseed oil, soybean oil, ricmus oil).
  • polyhydric alcohols are e.g. Ethylene glycol, propanediol (1,2) and - (1,3), butanediol (1,4), - (2,4) and / or - (2,3), hexanediol (1,6), octanediol -
  • polyesters in question can have a proportion of terminal carboxyl groups.
  • Lactone polyester e.g. ⁇ - caprolactone or hydroxycarboxylic acids, e.g. ⁇ -hydroxycaproic acid can be used.
  • polyethers that are suitable according to the invention, preferably having two hydroxyl groups, are also of the type known per se and are e.g. by polymerization of tetrahydrofuran or epoxides such as ethylene oxide, propylene oxide, butylene oxide, styrene oxide or epichlorohydrin with themselves, e.g. in the presence of BF or by addition of these epoxides, optionally in a mixture or in succession, to starting components with reactive hydrogen atoms such as alcohols and amines, e.g. Water, ethylene glycol or propylene glycol (1, 2) produced.
  • epoxides such as ethylene oxide, propylene oxide, butylene oxide, styrene oxide or epichlorohydrin
  • reactive hydrogen atoms such as alcohols and amines
  • the polyethers used as structural components preferably contain only a maximum of enough ethylene oxide units that the resulting polyurethane (ureas) contain less than 2% by weight of oxyethylene segments -CH2-CH2-O-. Ethylene oxide-free polyesters are preferably used to produce the polyurethane (ureas). Also polyethers modified by vinyl polymers, such as those formed by polymerizing styrene or acrylonitrile in the presence of polyethers (US Pat. Nos. 33 83 351, 33 04 273, 35 23 093, 31 10 695, DE-PS-C 11 52 536), are suitable, the higher-functionality polyethers to be used proportionally, if appropriate, are formed in an analogous manner by known ones
  • Alkoxylation of higher functional starter molecules e.g. Ammonia, ethanolamine, ethylenediamine, trimethylolpropane, glycerin or sucrose.
  • polythioethers are, in particular, the condensation products of thiodiglycol with themselves and / or with other glycols, dicarboxylic acids,
  • Formaldehyde amino carboxylic acids or amino alcohols listed.
  • Suitable polycarbonates containing hydroxyl groups are those of the type known per se, which e.g. by reacting diols such as propanediol (1,3), butanediol (1,4) and / or hexanediol (1,6) with diaryl carbonates, e.g. Diphenyl carbonate or phosgene can be produced.
  • diols such as propanediol (1,3), butanediol (1,4) and / or hexanediol (1,6)
  • diaryl carbonates e.g. Diphenyl carbonate or phosgene
  • polyester amides and polyamides include e.g. those of polyvalent saturated and unsaturated carboxylic acids or their anhydrides and polyvalent saturated and unsaturated amino alcohols, diamines,
  • Polyhydroxyl compounds already containing uretlian or urea groups can also be used.
  • copolymers of styrene namely plastics of the acrylonitrile-butadiene-styrene (ABS) type and of the acrylonitrile-styrene-acrylic ester type
  • ABS plastics are understood to mean those plastics which are specified in the draft for the European standard ISO 2580-1. These are preferably styrene / acrylonitrile copolymers with a continuous phase based on copolymers of styrene / alkyl-substituted styrene and acrylonitrile and a disperse elastomeric phase, predominantly based on butadiene, admixtures of other components may be present. These other components can be monomers or polymers of compounds other than acrylonitrile, butadiene and substituted or unsubstituted styrene, these components being contained in no more than 30% by weight.
  • the other component is a polymer
  • this is preferably dispersed in a matrix made of a styrene-acrylonitrile copolymer.
  • Monomers that may be present are acrylic esters, butadiene, maleic anhydride and other anhydrides, and N-phenyl-maleimide and maleic acid esters.
  • ASA plastics are understood to mean those plastics which are specified in the draft for the European standard ISO 6402-1.
  • ASA is a plastic with a continuous phase that is essentially based on a styrene-acrylonitrile copolymer and a disperse elastomer phase that is mainly based on acrylic esters. There may be other new components. If these are monomers other than acrylonitrile, substituted or unsubstituted styrene or acrylic esters, they are preferably present in an amount by weight of not more than 30%.
  • the monomers mentioned above are acrylic esters, butadiene, maleic anhydride and other anhydrides or N-phenyl-maleimide and maleic acid esters.
  • Microcapsules are preferably understood to mean capsules that have a medium size
  • capsule materials are polyureas formed from polyisocyanates and polyamines, polyamides formed from polymeric acid chlorides and
  • the retention properties of the capsules i.e. the drug-releasing properties can be influenced.
  • “slow release” capsules can be produced which, when applied to the nonwoven, continuously release the ingredient (active ingredient) over a long period of time, but also nonwovens which only spread the ingredient when subjected to mechanical stress.
  • Preferred wall thicknesses of the microcapsules are in the range from 2 to 25%, preferably from 3 to 15%, in particular from 4 to 10%, in each case based on the sum of the capsule contents.
  • Preferred microcapsules are those whose walls consist of reaction products of guanidine compounds and polyisocyanates or contain such reaction products.
  • the proportion of wall in the microcapsule is directly proportional to the proportion of the primary wall structure, the polyisocyanate.
  • the salts can be salts of carbonic acid, nitric acid, sulfuric acid, hydrochloric acid, silicic acid, phosphoric acid, formic acid and / or acetic acid.
  • Salts of guanidine compounds of the formula (I) can be used in combination with inorganic bases in order to obtain the free guanidine compounds of the formula (I) in situ from the salts.
  • inorganic bases for this purpose are alkali metal and / or alkaline earth metal hydroxides and / or alkaline earth metal oxides Question.
  • Aqueous solutions or slurries of these bases are preferred, in particular aqueous sodium hydroxide solution, aqueous potassium hydroxide solution and aqueous solutions or slurries of calcium hydroxide. Combinations of several bases can also be used.
  • guanidine compounds of the formula (I) are commercially available in this form and the free guanidine compounds are partly sparingly soluble in water or not stable in storage.
  • inorganic bases are used, they can be used in stoichiometric, substoichiometric and superstoichiometric amounts, based on salts of guanidine compounds. It is preferred to use 10 to 100 equivalent% of inorganic base (based on salts of the guanidine compounds).
  • the addition of inorganic bases means that in the microencapsulation in the aqueous phase guanidine compounds with free NH groups are available for reaction with the polyisocyanates contained in the oil phase. In the microencapsulation, salts of guanidine compounds and bases are expediently added in such a way that they are added separately to the aqueous phase.
  • Guanidine or salts of guanidine with carbonic acid, nitric acid, sulfuric acid, hydrochloric acid, silica, phosphoric acid, formic acid and / or acetic acid are preferably used.
  • guanidine compounds with weak acids are in aqueous solution as a result of hydrolysis in equilibrium with the corresponding free guanidine compound.
  • the free Guarüdin compound is consumed during the encapsulation process and is continuously reproduced in accordance with the law of mass action.
  • Guanidine carbonate shows this advantage in a special way.
  • salts of guanidine compounds with weak acids it is not necessary to add inorganic bases to release the free guanidine compounds.
  • the guanidine compounds of the formula (I) which are suitable for the present invention can also be prepared by ion exchange from their water-soluble salts according to the prior art with the aid of commercially available basic ion exchangers. The eluate from the ion exchanger can be used directly to form the capsule wall by mixing it with the oil-in-water emulsion.
  • guanidine compounds that 0.2 to 4.0 mol of free NH 2 groups in the form of guanidine compounds are introduced into or released from the water phase per mole of NCO groups which are present as polyisocyanate in the oil phase. This amount is preferably 0.5 to 1.5 mol.
  • free NCO groups remain after the reaction with the polyisocyanate. These then generally react with water, which is usually not critical because new, free, crosslinkable amino groups are formed.
  • the guanidine compounds are preferably used in the form of aqueous solutions.
  • concentration of such solutions is not critical and is generally limited only by the solubility of the guanidine compounds in water. Suitable are e.g. 1 to 20% by weight aqueous solutions of guanidine compounds.
  • Aliphatic polyisocyanates are preferably used. The following are particularly preferably used: hexamethylene diisocyanate, isophorone diisocyanate and / or derivatives of hexamethylene diisocyanate and isophorone diisocyanate which contain free isocyanate groups and which contain biuret, isocyanurate, uretdione and / or oxadiazinetrione groups. Mixtures of different polyisocyanates can also be used.
  • microcapsules are used whose walls consist of guanidine compounds, polyamines and polyisocyanates or contain such reaction products.
  • the guanidine compound is preferred in an amount of 0.5-0.99, in particular 0.51-0.75 mol equivalents, based on polyisocyanate, and the polyamine compound in an amount of 0.1-1, in particular 0, 5 - 0.75 molar equivalents, based on polyisocyanate, are used, the total amount of guanidine compound and polyamine being greater than 1.1 molar equivalents, based on polyisocyanate.
  • Various compounds are possible as active ingredients of the microcapsules, such as dye precursors, adhesives, pharmaceuticals, insecticides, fungicides, herbicides, repellants and fragrances.
  • Fragrances are particularly preferred.
  • the substrates preferably contain 1 to 100 g / m 2 , in particular 20 to 80 g / m 2 , polymer including microcapsules.
  • the polymer layer preferably contains 0.5 to 10% by weight, in particular 1 to 8% by weight, of microcapsules.
  • the substrate according to the invention preferably contains the microcapsules in 50%, in particular in 80%, of the cross section of the polymer layer.
  • the polymer layer of the substrates according to the invention can also contain further ingredients. In this context, fillers or colorants should be mentioned.
  • the polymer layer can be porous and thus permeable to water vapor, but it can also be irregular or smooth.
  • other layers can be applied to modify the properties of the polymer layer.
  • these layers can be applied, for example, by spraying, coating, impregnating or transferring.
  • the substrates according to the invention are particularly suitable as automotive interior parts, e.g. Seat cover materials, covers for furniture such as armchairs, chairs and sofas, clothing or shoe materials.
  • the invention further relates to a method for producing the substrates according to the invention, which is characterized in that microcapsules and dissolved polymer are applied to the substrate and that the polymer coagulates in a precipitation bath on the substrate.
  • the polymer is used as a solution in an organic solvent, preferably aprotic solvents, such as, for example, DMF, DMSO or dimethyl acetate.
  • aprotic solvents such as, for example, DMF, DMSO or dimethyl acetate.
  • the polymer solution preferably contains 30 to 80% by weight of polymer, 20 to 70% by weight of solvent and, if appropriate, further additives. Fillers, colorants, plasticizers, deaerators, etc. can be mentioned as such.
  • the polymer solution can of course also contain the microcapsules in dispersed form. These are preferably in the form of an aqueous dispersion with a Microcapsule content of about 5 to 60 wt .-%, in particular 25 to 52 wt .-% used.
  • the polymer solution can contain, for example, 1 to 10, in particular 2 to 5,% by weight of this microcapsule dispersion.
  • the polymer solution is preferably mixed with one another shortly before application to the substrate.
  • the polymer solution and the microcapsules in particular in the form of their dispersion, can be applied in succession or together to the substrate, with possible application techniques being, for example, knife coating, spraying, rolling or brushing.
  • Squeegee is preferred.
  • the invention further relates to a preparation containing
  • organic solvent in particular 20 to 67% by weight, preferably DMF,
  • At least one dispersant preferably 1 to 10% by weight, the dispersants preferably being those mentioned above and
  • active ingredient-containing microcapsules preferably 1 to 10% by weight, the microcapsules and active ingredients preferably being those mentioned above in each case
  • the coagulation is preferably carried out in such a way that the substrate coated with a polymer solution and microcapsules is placed in an aqueous precipitation bath.
  • This precipitation bath preferably contains water and optionally other additives.
  • the precipitation bath preferably has a temperature of 10 to 50 ° C., in particular 20 to 40 ° C.
  • the solvent used is recovered from the precipitation bath by distillation. After done
  • the coated substrate is preferably dried and optionally aftertreated. Drying is preferably carried out at 20 to 200 ° C. For example, the application of further layers can be considered as post-treatment steps.
  • the polymer layer thickness of the coated substrates is preferably 0.1 to 2 mm.
  • the process according to the invention can be carried out batchwise or continuously.
  • a continuous driving style is preferred.
  • the invention further relates to the use of the substrates according to the invention as a leather substitute, in particular as clothing, furniture or cover materials for automobile seats. Examples
  • Two aromatic polyester-polyether urethanes (325 parts each) with different softening ranges ((i) 170 to 180 ° C. and (ii) 190 to 200 ° C. are dissolved in 312.85 parts of DMF. 2.6 parts are added to this solution a disperser based on polyether / polydimethylsiloxane, 0.65 part of a silicone oil, 20 parts of a 50% pigment dispersion in PEG 400 and 10 parts of a 50% aqueous microcapsule dispersion with microcapsule walls made of a polyurea, formed by the reaction of trimeric HDI (hexamethylene diisocyanate) and guanidine carbonate
  • the microcapsules contain the fragrance Blue Line D 13049F from Haarmann & Reimer.
  • This dispersion is spread on cotton fabric and then coagulated in a water bath at room temperature. The drying is then carried out at a temperature of 80 to 140 ° C.

Abstract

Mit Polymeren beschichtete Substrate, die in der Polymerschicht Mikrokapseln enthalten.

Description

Mikrokapseln enthaltende Koagulate
Die Erfindung betrifft Mikrokapseln enthaltende Koagulate, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung.
Stand der Technik
Koagulate im Sinne dieser Anmeldung sind Substrate, auf deren Oberfläche Polymere durch Koagulation (Fällung) abgeschieden worden sind.
Eine Aufgabe der vorliegenden Erfindung war es, Substrate dauerhaft mit Wirkstoffen auszurüsten.
Es wurde nun gefunden, dass mit Polymeren beschichtete Substrate, die in der Polymerschicht Mikrokapseln enthalten, das Problem lösen.
Die Erfindung betrifft daher mit Polymeren beschichtete Substrate, die in der Polymerschicht Mikrokapseln enthalten.
Die Substrate sind vorzugsweise von flächiger Gestalt, insbesondere sind die Substrate zudem flexibel.
Als Substrate kommen vorzugsweise in Frage: Leder, Textil, Vlies, Papier, Kunstleder (d.h. unter Verwendung von Kunststoffen hergestellte textile Flächengebilde) oder Kunststofffolien.
Als Polymere kommen beispielsweise in Frage: Polyurethane, Polyurethanharnstoffe, Polyacrylnitrile oder Copolymerisate des Styrols, insbesondere Acryl-Butadien- Styrol-Copolymere. Bevorzugte Polyurethane bzw. Polyharnstoffe sind Polyadditionsprodukte aus Poly- isocyanaten und Verbindungen mit aktiven Wasserstoffatomen. Bevorzugt sind sie hydrophob, worunter vorzugsweise verstanden wird, dass sie ohne weitere Hilfsmittel keine stabilen Dispersionen oder Lösungen mit Wasser ergeben. Sie können bestimmte Aufbaukomponenten beispielsweise solche aus der Gruppe der Siliconharze, der aromatische Molekülsegmente enthaltenden Polyether, der aromatische Molekülsegmente enthaltenden Polyester und/oder der Perfluorcarbonharze eingebaut enthalten.
Bevorzugte Ausgangsmaterialien zur Herstellung der Polyurethane bzw. Polyurethanharnstoffe sind
1. beliebige organische Polyisocyanate, vorzugsweise Diisocyanate der Formel Q(NCO)2, wobei Q insbesondere einen aliphatischen Kohlenwasserstoffrest mit .4 bis 12 Kohlenstoffatomen, einen cycloaliphatischen Kohlenwasserstoffrest mit 6 bis 15 Kohlenstoffatomen, einen aromatischen Kohlenwasserstoffrest mit 6 bis 15 Kohlenstoffatomen oder einen araliphatischen Kohlenwasserstoffrest mit 7 bis 15 Kohlenstoffatomen bedeutet. Eine ausführliche Aufzählung geeigneter Diisocyanate kann z.B. den DE-A 31 34 112, DE-A 28 54 384 und DE-A 29 20 501 entnommen werden.
Beispiele derartiger bevorzugt einzusetzender Diisocyanate sind Tetra- methylendiisocyanat, Hexamethylendiisocyanat, l-Methyl-l,5-diisocyanato- pentan, 2-Methylenpentadiisocyanat-2,5, 2-Ethyl-butandiisocyanat-l,4, Dodecamethylendiisocyanat, 1,3- und 1,4-Diisocyanatocyclohexan, 1-
Methyl-2,4- und -2,6-diisocyanato-cyclohexan, 3-Isocyanatomethyl-3,5,5- trimethylcyclohexylisocyanat (Isophorondiisocyanat), 4,4'-Diisocyanatodi- cyclohexylmethan, 4,4'-Diisocyanatodicyclohexylpropan-(2,2), Mono-, Bis-, Tris- oder Tetraalkyldicyclohexylmethan-4,4'-diisocyanate, Lysin-alkylester- diisocyanate, Oligomere oder Homopolymere von m- oder p-Isopropenyl- α,α-dibenzyldiisocyanaten nach EP-A 1 30 313, l-Alkyl-2-isocyanatomethyl- isocyanato-cyclohexane, l-Alkyl-4-isocyanatomethyl-isocyanato-cyclo- hexane nach EP-A 1 28 382, 1,4-Diisocyanatobenzol, 2,4- oder 2,6-Diiso- cyanatotoluol bzw. Gemische dieser Isomeren, 4,4'- und/oder 2,4' - und/oder 2,2'-Diisocyanatodiphenylmethan, 4,4'-Diisocyanatodiphenylpropan-(2,2), p- Xylylendiisocyanat und α,α,α', α'-Tetramethyl-m- oder -p-xylylendiisocyanat sowie aus diesen Verbindungen bestehende Gemische.
Besonders bevorzugt werden die genannten (cyclo)aliphaitschen Diisocyanate eingesetzt.
Es ist selbstverständlich auch möglich, die in der Polyurethan-Chemie an sich bekannten höherfunktionellen Polyisocyanate oder auch an sich bekannte modifizierte, beispielsweise Carbodiimidgruppen, Allophanatgruppen, Iso- cyanuratgruppen, Urethangruppen und/oder Biuretgruppen aufweisenden Polyisocyanate (mit)zu verwenden.
2. Polyhydroxylverbindungen der in der Polyurethan-Chemie an sich bekannten Art mit Molekulargewichten über 200 g/mol, beispielsweise 400 bis 10 000 g/Mol, vorzugsweise von 500 bis 5 000 g/mol und Schmelzpunkten unter 60°C, vorzugsweise unter 45°C. Bevorzugt besitzen die eingesetzten
Polyhydroxyverbindungen eine Wasserlöslichkeit von kleiner 100 g/1 bei 20°C, insbesondere kleiner 50 g/1. Bevorzugt werden die entsprechenden Di- hydroxyverbindungen eingesetzt.' Die Mitverwendung von im Sinne der Isocyanat-Polyadditionsreaktion tri- oder höherfunktionellen Verbindungen in geringen Anteilen zur Erzielung eines gewissen Verzweigungsgrades ist ebenso möglich wie die bereits erwähnte, mögliche Mitverwendung von trioder höherfunktionellen Polyisocyanaten zum gleichen Zweck. Weiterhin ist es bevorzugt, dass die entsprechenden Polyhydroxylverbindungen überwiegend aus aliphatischen Aufbaukomponenten hergestellt sind. Vorzugsweise einzusetzende Hydroxylverbindungen sind die in der Polyurethan-Chemie an sich bekannten Hydroxypolyester, Hydroxypolyether, Hyd oxypolythioether, Hydroxypolycarbonate und/oder Hydroxypolyester- amide. Die in Frage kommenden Hydroxylgruppen aufweisenden Polyester sind z.B. Umsetzungsprodukte von mehrwertigen, vorzugsweise zweiwertigen und gegebenenfalls zusätzlich dreiwertigen Alkoholen mit mehrwertigen, vorzugsweise zweiwertigen Carbonsäuren.
Werden drei- oder höherwertige Alkohole zur Herstellung der Polyester eingesetzt, so ist auch die (Mit-) Verwendung einwertiger Carbonsäuren möglich. Umgekehrt lassen sich bei Einsatz höherwertiger Carbonsäuren einwertige Alkohole (mit)-verwenden.
Anstelle der freien Polycarbonsäuren können auch die entsprechenden Poly- carbonsäureanhydride oder entsprechende Polycarbonsäureester von niederen
Alkoholen oder deren Gemische zur Herstellung der Polyester verwendet werden. Die Polycarbonsäuren sind vorzugsweise aliphatischer und/oder cycloaliphatischer Natur und können gegebenenfalls, z.B. durch Halogenatome, substituiert und/oder ungesättigt sein. Als Beispiele hierfür seien genannt:
Bernsteinsäure, Adipinsäure, Korksäure, Azelainsäure, Sebacinsäure, Tetra- hydrophthalsäureanhydrid, Hexahydrophthalsäureanhydrid, Tetrachlorphfhal- säureanhydrid, Endomethylentetrahydrophthalsäureanhydrid, Glutarsäure- anhydrid, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, dimere und trimere Fettsäuren.
Gegebenenfalls (mit-)zuverwendende einwertige Carbonsäuren sind vorzugsweise gesättigte oder ungesättigte Fettsäuren, wie z.B. 2-Ethylhexansäure, Palmitinsäure, Stearinsäure, Ölsäure, Ricinolsäure, Linolsäure, Ricinensäure,
Linolensäure sowie technische Fettsäure-Gemische, wie sie u.a. aus natürlichen Rohstoffen (z.B. Kokosfett, Leinöl, Sojaöl, Ricmusöl) gewonnen werden.
Als mehrwertige Alkohole kommen z.B. Ethylenglykol, Propandiol-(l,2) und -(1,3), Butandiol-(l,4), -(2,4) und/oder -(2,3), Hexandiol-(l,6), Octandiol-
(1,8), Neopentylglykol, Cyclohexandimethanol (1,4-Bis-hydroxymethyl- cyclohexan), 2-Methyl-l,3-propandiol, Glycerin, Trimethylolpropan, Hexantriol-( 1,2,6), Butantrio l-( 1,2,4), Trimethylolethan, Pentaerythrit, Chinit, Mannit und Sorbit, Methylglykosid, ferner Diethylenglykol, Dipropylenglykol, Polypropylenglykole, Dibutylenglykol und
Polxbutylenglykole in Frage. Die Polyester können anteilig endständige Carboxylgruppen aufweisen. Auch Polyester aus Lactonen, z.B. ε- Caprolacton oder Hydroxycarbonsäuren, z.B. ω-Hydroxycapronsäure, sind einsetzbar.
Auch die erfindungsgemäß in Frage kommenden, vorzugsweise zwei Hydroxylgruppen aufweisenden Polyether sind solche der an sich bekannten Art und werden z.B. durch Polymerisation von Tetrahydrofuran oder Epoxi- den wie Ethylenoxid, Propylenoxid, Butylenoxid, Styroloxid oder Epichlor- hydrin mit sich selbst, z.B. in Gegenwart von BF oder durch Anlagerung dieser Epoxide, gegebenenfalls im Gemisch oder nacheinander, an Startkomponenten mit reaktionsfähigen Wasserstoffatomen wie Alkohole und Amine, z.B. Wasser, Ethylenglykol oder Propylenglykol-(l,2) hergestellt.
Bevorzugt enthalten die als Aufbaukomponenten eingesetzten Polyether nur maximal so viel Ethylenoxideinheiten, dass die resultierenden Polyur- ethan(-harnstoffe) weniger als 2 Gew.-% an Oxyethylen-Segementen -CH2-CH2-O- enthalten. Vorzugsweise werden Ethylenoxid-freie Polyester zur Herstellung der Polyurethan(-harnstoffe) eingesetzt. Auch durch Vinylpolymerisate modifizierte Polyether, wie sie z.B. durch Polymerisation von Styrol, Acrylnitril in Gegenwart von Polyethern entstehen (US-PS 33 83 351, 33 04 273, 35 23 093, 31 10 695, DE-PS-C 11 52 536), sind geeignet, die anteilig gegebenenfalls mitzuverwendenden höherfunk- tionellen Polyether entstehen in analoger Weise durch an sich bekannte
Alkoxylierung von höherfunktionellen Startermolekülen z.B. Ammoniak, Ethanolamin, Ethylendiamin, Trimethylolpropan, Glycerin oder Sucrose.
Unter den Polythioethem seien insbesondere die Kondensationsprodulcte von Thiodiglykol mit sich selbst und/oder mit anderen Glykolen, Dicarbonsäuren,
Formaldehyd, Aminocarbonsäuren oder Aminoalkoholen angeführt.
Als Hydroxylgruppen aufweisende Polycarbonate kommen solche der an sich bekannten Art in Betracht, die z.B. durch Umsetzung von Diolen wie Propan- diol-(l,3), Butandiol-(l,4) und/oder Hexandiol-(l,6), mit Diarylcarbonaten, z.B. Diphenylcarbonat oder Phosgen, hergestellt werden können.
Zu den Polyesteramiden und Polyamiden zählen z.B. die aus mehrwertigen gesättigten und ungesättigten Carbonsäuren bzw. deren Anhydriden und mehrwertigen gesättigten und ungesättigten Aminoalkoholen, Diaminen,
Polyaminen und ihren Mischungen . gewonnenen, vorwiegend linearen Kondensate.
Auch bereits Uretlian- oder Harnstoffgruppe enthaltende Polyhydroxylverbindungen sind verwendbar.
Vertreter der genannten im erfindungsgemäßen Verfahren zu verwendenden Polyisocyanat- und Hydroxyl- Verbindungen sind z.B. in High Polymers, Vol. XVI, "Polyurethanes, Chemistry and Technology", verfasst von Saunders- Frisch, Interscience Publishers, New York, London, Band I, 1962, Seiten 32- 42 und Seiten 44 bis 54 und Band II, 1964, Seiten 5-6 und 198-199, sowie im Kunststoff-Handbuch, Band NIL Nieweg-Höchtlen, Carl-Hanser-Verlag, München, 1966, z.B. auf den Seiten 45 bis 71, beschrieben.
Ebenfalls bevorzugt sind Copolymerisate des Styrols, nämlich Kunststoffe des Typs Acrylnitril-Butadien-Styrol (ABS) und des Typs Acrylnitril-Styrol-Acrylester
(ASA). In Zusammenhang mit der vorliegenden Erfindung werden dabei unter ABS- Kunststoffen diejenigen Kunststoffe verstanden, die im Entwurf für die Europäische Norm ISO 2580-1 spezifiziert sind. Es handelt sich dabei vorzugsweise um Styrol/ Acrylnitril-Copolymere mit einer kontinuierlichen Phase auf Basis von Copolymeren von Styrol/alkylsubstituiertem Styrol und Acrylnitril und einer dispersen elastomeren Phase, vorwiegend auf Basis von Butadien, wobei Zumischungen anderer Komponenten vorhanden sein können. Diese anderen Komponenten können Monomere oder Polymere anderer Verbindungen als Acrylnitril, Butadien und substituiertem oder unsubstituiertem Styrol sein, wobei diese Komponenten in nicht mehr als 30 Gew.-% enthalten sind. Ist die andere Komponente ein Polymer, so ist dieses vorzugsweise in einer Matrix aus einem Styrol- Acrylnitril-Copolymer disper- giert. Monomere, die vorhanden sein können, sind Acrylester, Butadien, Maleinsäureanhydrid und andere Anhydride, und N-Phenyl-Maleininimid und Maleinsäureester.
Unter ASA-Kunststoffen werden in Zusammenhang mit der vorliegenden Erfindung diejenigen Kunststoffe verstanden, die im Entwurf für die Europäische Norm ISO 6402-1 spezifiziert sind. ASA ist dabei ein Kunststoff mit einer im Wesentlichen auf einem Styrol-Acrylnitril-Copolymeren basierenden kontinuierlichen Phase und einer dispersen Elastomerenphase, die hauptsächlich auf Acrylester basiert. Es können andere neuen Komponenten vorhanden sein. Handelt es sich dabei um andere Monomere als Acrylnitril, substituiertes oder unsubstituiertes Styrol oder Acrylester, so sind diese vorzugsweise in einer Gewichtsmenge von nicht mehr als 30 % vorhanden. Handelt es sich dabei um Polymere,- so sind diese nicht auf Acrylnitril, sub- statuiertem oder unsubstituiertem Styrol oder Acrylester basierenden Polymere in einer Gewichtsmenge von nicht mehr als 1 % vorhanden. Weiterhin können diese Polymere in einer Matrix aus einem Styrol-Acrylnitril-Copolymer dispergiert sein. Die oben erwähnten Monomere sind dabei Acrylester, Butadien, Maleinsäureanhydrid und andere Anhydride oder N-Phenyl-Maleininimid und Maleinsäureester.
Unter Mikrokapseln werden vorzugsweise Kapseln verstanden, die eine mittlere
Teilchengröße von 0,1 bis 100 μm, besonders bevorzugt 1 bis 30 μ , insbesondere 2 bis 20 μm aufweisen und die einen Wirkstoff enthalten.
Beispiele für bevorzugte Kapselmaterialien sind Polyharnstoffe, gebildet aus Poly- isocyanaten und Polyaminen, Polyamide, gebildet aus polymeren Säurechloriden und
Polyammen, Polyurethane, gebildet aus Polyisocyanat und Polyalkoholen, Polyester, gebildet aus Polyisocyanate und Polyamine, Polyamide, gebildet aus Polyisocyanate und Polyamine, Polyester, gebildet aus polymeren Säurechloriden und Polyalkoholen, Epoxydharze, gebildet aus Epoxyverbindungen und Polyamine, Melamin- Formaldehydverbindungen, gebildet aus Melamin-Formaldehyd-Prepolymeren,
Harnstoffharze, gebildet aus Harnstoff-Formaldehyd-Prepolymeren, Ethylcellulose, Polystyrol, Polyvinylacetat und Gelatine.
Durch Variation der Wandstärke können auf einfachste Art die Retentionseigen- schaffen der Kapseln, d.h. den Wirkstoff freisetzenden Eigenschaften, beeinflusst werden. So können beispielsweise "slow release"-Kapseln erzeugt werden, die aufgebracht auf dem Vlies über lange Zeit kontinuierlich den Inhaltsstoff (Wirkstoff) abgeben, aber auch Vliese, die erst bei mechanischer Belastung den Inhaltsstoff verbreiten.
Bevorzugte Wandstärken der Mikrokapseln liegen im Bereich von 2 - 25 %, bevorzugt 3 - 15 %, insbesondere 4 - 10 % Wandanteil, jeweils bezogen auf die Summe der Kapselinhaltsstoffe. Bevorzugt sind solche Mikrokapseln, deren Wände aus Umsetzungsprodukten von Guanidinverbindungen und Polyisocyanaten bestehen oder solche Umsetzungsprodukte enthalten.
Der Wandanteil der Mikrokapsel ist dabei direkt proportional zum Anteil des primären Wandbildnes, des Polyisocyanates.
Für die Herstellung der Mikrokapseln kommen als Guanidinverbindungen beispielsweise solche der Formel (I) in Frage
X
(I),
H2N- C- NHY
in der
O NH
I I I I X für HN=, H2N — C — N = oder H2N — C — N = und
Y für H - . NC - , H2N — , HO - ,
NH
H2N — C — oder H2N — C — stehen,
oder deren Salze mit Säuren.
Beispielsweise kann es sich bei den Salzen um Salze von Kohlensäure, Salpetersäure, Schwefelsäure, Salzsäure, Kieselsäure, Phosphorsäure, Ameisensäure und/oder Essig- säure handeln. Der Einsatz von Salzen von Guanidinverbindungen der Formel (I) kann in Kombination mit anorganischen Basen erfolgen, um in situ aus den Salzen die freien Guanidinverbindungen der Formel (I) zu erhalten. Als anorganische Basen für diesen Zweck kommen z.B. Alkali- und/oder Erdalkalüiydroxide und/oder Erdalkalioxide in Frage. Bevorzugt sind wässrige Lösungen oder Aufschlämmungen dieser Basen, insbesondere wässrige Natronlauge, wässrige Kalilauge und wässrige Lösungen oder Aufschlämmungen von Kalziumhydroxid. Es können auch Kombinationen mehrerer Basen angewendet werden.
Häufig ist es vorteilhaft, die Guanidinverbindungen der Formel (I) als Salze einzusetzen, weil sie in dieser Form im Handel erhältlich und die freien Guanidinverbindungen zum Teil in Wasser schwer löslich oder nicht lagerstabil sind. Wenn man anorganische Basen einsetzt, können diese in stöchiometrischen, unterstöchiometrischen und überstöchiometrischen Mengen, bezogen auf Salze von Guanidinverbindungen, verwendet werden. Vorzugsweise setzt man 10 bis 100 Äquivalent-% anorganische Base (bezogen auf Salze der Guanidinverbindungen) ein. Die Zugabe anorganischer Basen hat zur Folge, dass bei der Mikroverkapselung in der wässrigen Phase Guanidinverbindungen mit freien NH -Gruppen zur Reaktion mit den in der Ölphase ent- haltenden Polyisocyanaten zur Verfügung stehen. Bei der Mikroverkapselung erfolgt die Zugabe von Salzen von Guanidinverbindungen und Basen zweckmäßigerweise so, dass man sie getrennt der wässrigen Phase zufügt.
Vorzugsweise wird Guanidin oder werden Salze von Guanidin mit Kohlensäure, Salpetersäure, Schwefelsäure, Salzsäure, Kieselsäure, Phosphorsäure, Ameisensäure und/oder Essigsäure eingesetzt.
Besonders vorteilliaft ist es, Salze von Guanidmverbindungen mit schwachen Säuren einzusetzen. Diese befinden sich in wässriger Lösung in Folge Hydrolyse im Gleichge- wicht mit der entsprechenden freien Guanidinverbindung. Die freie Guarüdinver- bindung wird während des Verkapselungsprozesses verbraucht und bildet sich gemäß dem Massenwirkungsgesetz laufend nach. Diesen Vorteil zeigt in besonderer Weise das Guanidincarbonat. Beim Einsatz von Salzen von Guanidinverbindungen mit schwachen Säuren ist ein Zusatz anorganischer Basen zur Freisetzung der freien Guanidinverbindungen nicht erforderlich. Die für die vorliegende Erfindung in Frage kommenden Guanidinverbindungen der Formel (I) können auch durch Ionenaustausch aus ihren wasserlöshchen Salzen nach dem Stand der Technik mit Hilfe handelsüblicher basischer Ionenaustauscher hergestellt werden. Man kann das Eluat aus dem Ionenaustauscher direkt zur Kapselwand- bildung heranziehen, indem man es mit der Öl-in- Wasser-Emulsion vermischt.
Beispielsweise kann man soviel Guanidinverbindungen einsetzen, dass pro Mol NCO- Gruppen, die als Polyisocyanat in der Ölphase vorliegen 0,2 bis 4,0 Mol an freien NH2- Gruppen in Form von Guanidinverbmdungen in die Wasserphase eingebracht oder dort freigesetzt werden. Vorzugsweise beträgt diese Menge 0,5 bis 1,5 Mol. Beim Einsatz von Guanidinverbindungen in unterstöchiometrischer Menge verbleiben nach der Reaktion mit dem Polyisocyanat noch freie NCO-Gruppen. Diese reagieren dann im allgemeinen mit Wasser, was üblicherweise nicht kritisch ist, weil dabei neue, freie, zur Vernetzung fähige Arninogruppen entstehen.
Vorzugsweise werden die Guanidinverbindungen in Form wässriger Lösungen eingesetzt. Die Konzentration solcher Lösungen ist unkritisch und im allgemeinen nur durch die Löslichkeit der Guanidinverbindungen in Wasser begrenzt. Geeignet sind z.B. 1 bis 20 gew.-%ige wässrige Lösungen von Guanidinverbindungen.
Als Polyisocyanate können zur Herstellung der Mikrokapseln die verschiedensten ali- phatischen, aromatischen und aromatisch-aliphatischen 2- und höherfunktionellen Iso- cyanate eingesetzt werden, insbesondere solche, die zur Herstellung von Mikrokapseln bekannt sind. Vorzugsweise werden aliphatische Polyisocyanate eingesetzt. Besonders bevorzugt eingesetzt werden: Hexamethylendiisocyanat, Isophorondiisocyanat und/oder freie Isocyanatgruppen aufweisende Derivate des Hexamethylendiisocyanats und des Isophorondiisocyanats, die Biuret-, Isocyanurat-, Uretdion- und/oder Oxadia- zintriongruppen enthalten. Es können auch Gemische verschiedener Polyisocyanate eingesetzt werden. Einige einsetzbare Polyisocyanate sind z.B. beschrieben in EP-A 227 562, EP-A 164 666 und EP-A 16 378. In einer bevorzugten Ausführungsform der erfindungsgemäßen Vliese werden Mikrokapseln eingesetzt, deren Wände aus Guanidinverbindungen, Polyaminen und Polyisocyanaten bestehen oder solche Umsetzungsprodukte enthalten.
Bevorzugt wird dabei die Guanidinverbindung in einer Menge von 0,5 - 0,99, insbesondere 0,51 - 0,75 Mol-Äquivalente, bezogen auf Polyisocyanat und die Poly- aminverbindung in einer Menge von 0,1 - 1, insbesondere 0,5 - 0,75 Mol-Äquivalente, bezogen auf Polyisocyanat, eingesetzt, wobei die Gesamtmenge an Guanidinverbindung und Polyamin größer 1,1 Mol-Äquivalente, bezogen auf Polyisocyanat, ist.
Als mögliche Wirkstoffe der Mikrokapseln kommen verschiedene Verbindungen in Frage, wie beispielsweise Farbstoffvorläufer, Klebstoffe, Pharmazeutika, Insektizide, Fungizide, Herbizide, Repellants sowie Duftstoffe.
Duftstoffe sind besonders bevorzugt.
Als Duftstoffe können alle handelsüblichen hydropho und damit wasserunlöslichen Riechstoffe eingesetzt werden, wie sie z.B. beschrieben werden von P. Frakft et al. in Angew. Chem., 2000, 112, 3106-3138. Bei Substanzen, die sowohl in Wasser wie auch in Ölen löslich sind, kann der Zusatz von geruchsneutralen, schwerflüchtigen Ölen wie Paraffinen, Alkylaromaten oder Estern eine Verwendung ermöglichen.
Die Substrate enthalten vorzugsweise 1 bis 100 g/m2, insbesondere 20 bis 80 g/m2, Polymer inklusive Mikrokapseln.
Die Polymerschicht enthält vorzugsweise 0,5 bis 10 Gew.-%, insbesondere 1 bis 8 Gew.-% an Mikrokapseln.
Bevorzugt enthält das erfindungsgemäße Substrat die Mikrokapseln in 50 %, insbesondere in 80 % des Querschnitts der Polymerschicht. Die Polymerschicht der erfindungsgemäßen Substrate kann darüberhinaus weitere Inhaltsstoffe enthalten. Zu nennen sind in diesem Zusammenhang Füllstoff oder Farbmittel.
Die Polymerschicht kann porös und damit wasserdampfdurchlässig sein, sie kann aber auch unregelmäßig oder glatt sein. Nach der Koagulation können andere Schichten aufgetragen werden, um die Eigenschaften der Polymerschicht zu modifizieren. Dazu können diese Schichten beispielsweise durch Sprühen, Beschichten, Imprägnieren oder Transferieren aufgebracht werden.
Die erfindungsgemäßen Substrate eignen sich insbesondere als Autoinnenteile, z.B. Sitzbezugsmaterialien, Bezüge für Möbel wie Sessel, Stühle und Sofas, Kleidung oder Schuhmaterialien.
Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung der erfindungsgemäßen Substrate, das dadurch gekennzeichnet ist, dass Mikrokapseln und gelöstes Polymer auf das Substrat aufgetragen werden und dass das Polymer in einem Fällungsbad auf dem Substrat koaguliert.
In einer bevorzugten Ausfübrungsform des erfindungsgemäßen Verfahrens wird das Polymer als Lösung in einem organischen Lösungsmittel, vorzugsweise aprotischen Lösungsmitteln, wie beispielsweise DMF, DMSO oder Dimethylacetat eingesetzt.
Bevorzugt ist DMF als Lösungsmittel. Die Polymerlösung enthält vorzugsweise 30 bis 80 Gew.-% Polymer, 20 bis 70 Gew.-% Lösungsmittel sowie gegebenenfalls weitere Zusätze. Als solche können beispielsweise Füllstoffe, Farbmittel, Weichmacher, Entlüfter usw. genannt werden.
Die Polymerlösung kann selbstverständlich auch die Mikrokapseln dispergiert enthalten. Diese werden vorzugsweise in Form einer wässrigen Dispersion mit einem Mikrokapselgehalt von ca. 5 bis 60 Gew.-%, insbesondere 25 bis 52 Gew.-% eingesetzt.
Die Polymerlösung kann beispielsweise 1 bis 10, insbesondere 2 bis 5 Gew.-% dieser Mikrokapseldispersion enthalten.
Die Polymerlösung wird vorzugsweise kurz vor dem Auftrag auf das Substrat miteinander gemischt.
Die Polymerlösung und die Mikrokapseln, insbesondere in Form ihre Dispersion, können nacheinander oder gemeinsam auf das Substrat aufgetragen werden, wobei als mögliche Auftragungstechniken beispielsweise das Rakeln, Sprühen, Rollen oder Streichen in Frage kommen.
Bevorzugt ist das Rakeln.
Die Erfindung betrifft weiterhin eine Präparation enthaltend
a) organisches Lösungsmittel, insbesondere 20 bis 67 Gew.-%, vorzugsweise DMF,
b) wenigstens ein im organischen Lösungsmittel a) gelöstes Polymer, vorzugsweise in einer Menge von 30 bis 60 Gew.-%, wobei als Polymer vorzugsweise die oben genannten in Frage kommen,
c) wenigstens einen Dispergator, vorzugsweise 1 bis 10 Gew.-%, wobei als Dispergator vorzugsweise die oben angegebenen i Frage kommen und
d) wirkstoffhaltige Mikrokapseln, vorzugsweise 1 bis 10 Gew.-%, wobei als Mikrokapsel und Wirkstoffe vorzugsweise die jeweils oben angegebenen in
Frage kommen, und die Mengenangaben sich jeweils auf die Präparation beziehen.
Die Koagulation erfolgt vorzugsweise so, dass das mit einer Polymerlösung und Mikrokapseln beschichtete Substrat in ein wässriges Fällungsbad gegeben wird.
Dieses Fällungsbad enthält vorzugsweise Wasser und gegebenenfalls weitere Zusätze. Das Fällungsbad hat vorzugsweise eine Temperatur von 10 bis 50°C, insbesondere 20 bis 40°C. In einer bevorzugten Ausfülirungsform wird das eingesetzte Lösungsmittel destillativ aus dem Fällungsbad zurückgewonnen. Nach erfolgter
Koagulation wird das beschichtete Substrat vorzugsweise getrocknet und gegebenenfalls nachbehandelt. Die Trocknung erfolgt vorzugsweise bei 20 bis 200°C. Als Nachbehandlungsschritte kommen beispielsweise das Auftragen weiterer Schichten in Frage.
Die Polymerschichtdicke der beschichteten Substrate beträgt vorzugsweise 0,1 bis 2 mm.
Das erfmdungsgemäße Verfahren kann diskontinuierlich oder kontinuierlich durch- geführt werden. Bevorzugt ist eine kontinuierliche Fahrweise.
Die Erfindung betrifft weiterhin die Verwendung der erfindungsgemäßen Substrate als Lederersatzstoff, insbesondere als Kleider, Möbel oder Bezugsmaterialien für Automobilsitze. Beispiele
Beispiel 1
Es werden zwei aromatische Polyester-Polyetherurethane (jeweils 325 Teile) mit unterschiedlichen Erweichungsbereichen ((i) 170 bis 180°C und (ii) 190 bis 200°C in 312,85 Teilen DMF gelöst. Zu dieser Lösung gibt man 2,6 Teile eines Dispergators auf Polyether/Polydimethylsiloxanbasis, 0,65 Teile eines Silikonöls, 20 Teile einer 50 %igen Pigmentdispersion in PEG 400 und 10 Teile einer 50 %igen wässrigen Mikrokapseldispersion mit Mikrokapselnwänden aus einem Polyharnstoff, entstanden durch Reaktion von trimerem HDI (Hexamethylendiisocyanat) und Guanidincarbonat. Als Wirkstoff enthalten die Mikrokapseln den Duftstoff Blue Line D 13049F von Haarmann & Reimer.
Diese Dispersion wird auf Baumwollgewebe gestrichen und danach im Wasserbad bei Raumtemperatur koaguliert. Anschließend erfolgt die Trocknung bei einer Temperatur von 80 bis 140°C.
Bewertung des Geruches: direkt nach der Koagulation: sehr intensiv
8 Stunden nach Koagulation: sehr intensiv
2 Tage nach Koagulation: sehr intensiv
15 Tage nach Koagulation: intensiv
Beispiel 2
Es wurde analog Beispiel 1 verfahren, wobei jedoch lediglich 5 Teile der Mikrokapseldispersion und dafür 317,85 Teile an DMF eingesetzt wurden.
Bewertung des Geruches: direkt nach der Koagulation: sehr intensiv 8 Stunden nach Koagulation: sehr intensiv
2 Tage nach Koagulation: intensiv
15 Tage nach Koagulation: intensiv
Beispiel 3
Es wurde analog Beispiel 1 verfahren, wobei jedoch die Menge an DMF auf 390,55 Teile erhöht wird und die Menge an den beiden Polymeren auf jeweils 286 Teile reduziert wird.
Bewertung des Geruches:' direkt nach der Koagulation: sehr intensiv
8 Stunden nach Koagulation: sehr intensiv
2 Tage nach Koagulation: sehr intensiv
15 Tage nach Koagulation: intensiv

Claims

Patentansprtiche
1. Mit Polymeren beschichtete Substrate, die in der Polymerschicht Mikrokapseln enthalten.
2. Substrate gemäß Anspruch 1, dadurch gekennzeichnet, dass als Substrate Leder, Textil, Kunstleder, Vlies, Papier oder Kunststofffolien eingesetzt werden.
3. Substrate gemäß Ansprach 1, dadurch gekennzeichnet, dass das Polymer ein Polyurethan, Polyurethanharnstoff, Polyacrylnitril oder Styrol-Copolymerisat ist.
4. Substrate gemäß Anspruch 1, dadurch gekennzeichnet, dass die Mikrokapseln Duftstoffe enthalten.
5. Verfahren zur Herstellung von Substraten gemäß Anspruch 1, dadurch gekennzeichnet, dass gelöstes Polymer und Mikrokapseln auf das Substrat aufgetragen werden und das Polymer in einem Fällungsbad auf dem Substrat koaguliert.
6. Verwendung der Substrate gemäß Anspruch 1 als Lederersatzstoffe wie Bezugsstoffe für Möbel und Autositze.
7. Präparation enthaltend a) organisches Lösungsmittel b) wenigstens ein im organischen Lösungsmittel a) gelöstes Polymer c) wenigstens einen Dispergator d) wirkstoffhaltige Mikrokapseln.
PCT/EP2003/000215 2002-01-24 2003-01-13 Mikrokapseln enthaltende koagulate WO2003061817A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10202573.8 2002-01-24
DE10202573 2002-01-24
DE10213984.9 2002-03-28
DE10213984A DE10213984A1 (de) 2002-01-24 2002-03-28 Mikrokapseln enthaltende Koagulate

Publications (1)

Publication Number Publication Date
WO2003061817A1 true WO2003061817A1 (de) 2003-07-31

Family

ID=27614247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/000215 WO2003061817A1 (de) 2002-01-24 2003-01-13 Mikrokapseln enthaltende koagulate

Country Status (2)

Country Link
US (1) US20030165692A1 (de)
WO (1) WO2003061817A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101781858B (zh) * 2009-09-30 2012-05-09 安徽安利合成革股份有限公司 高耐候荧光聚氨酯合成革的干法贴面工艺
AT12563U1 (de) * 2011-03-17 2012-07-15 Wollsdorf Leder Schmidt & Co Ges M B H Verfahren zur herstellung von leder zum beledern von flugzeugsitzen
US8546509B2 (en) 2004-04-08 2013-10-01 Huntsman Textile Effects (Germany) Gmbh Functionalized particles
EP3170552A1 (de) 2015-11-23 2017-05-24 Basf Se Mikrokapsel mit einer polymerschale und hydrophilem oder hydrophobem kernmaterial

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110117156A1 (en) * 2004-05-27 2011-05-19 Arizona Chemical Company Compositions and articles containing an active liquid in a polymeric matrix and methods of making and using the same
US8664292B2 (en) * 2004-05-27 2014-03-04 Croda International Plc Compositions and articles containing a cross-linked polymer matrix and an immobilized active liquid, as well as methods of making and using the same
MXPA06013734A (es) * 2004-05-27 2007-08-14 Arizona Chem Composiciones y articulos que contienen una matriz de polimero entrelazado y un liquido activo inmovilizado, asi como metodos para producir y utilizar las mismas.
MX2007009952A (es) 2005-02-17 2007-09-26 Procter & Gamble Composicion para el cuidado de telas.
BRPI0608316A2 (pt) 2005-04-18 2009-12-29 Procter & Gamble composições diluìdas para tratamento de tecidos compreendendo espessantes e composições para tratamento de tecidos destinadas ao uso na presença de persistência de resìduos aniÈnicos
WO2007057859A2 (en) * 2005-11-18 2007-05-24 The Procter & Gamble Company Fabric care article
US20070179082A1 (en) * 2006-01-30 2007-08-02 The Procter & Gamble Company Dryer-added fabric care articles
EP1984556B1 (de) * 2006-02-03 2011-10-05 Basf Se Verfahren zum behandeln von substraten
US20070191256A1 (en) 2006-02-10 2007-08-16 Fossum Renae D Fabric care compositions comprising formaldehyde scavengers
US20070269651A1 (en) 2006-05-05 2007-11-22 Denome Frank W Films with microcapsules
US20070270327A1 (en) * 2006-05-22 2007-11-22 The Procter & Gamble Company Dryer-added fabric care articles imparting fabric feel benefits
US20070275866A1 (en) * 2006-05-23 2007-11-29 Robert Richard Dykstra Perfume delivery systems for consumer goods
US20080045426A1 (en) * 2006-08-17 2008-02-21 George Kavin Morgan Dryer-added fabric care articles imparting malodor absorption benefits
JP2008093117A (ja) * 2006-10-10 2008-04-24 Sri Sports Ltd ゴルフボール
MX2009008576A (es) * 2007-02-09 2009-08-18 Procter & Gamble Sistemas de perfume.
EP2055351B1 (de) 2007-10-29 2016-05-25 The Procter and Gamble Company Zusammensetzungen mit beständiger Perlglanzästhetik
US8361953B2 (en) * 2008-02-08 2013-01-29 Evonik Goldschmidt Corporation Rinse aid compositions with improved characteristics
DE102008002145A1 (de) * 2008-06-02 2009-12-03 Symrise Gmbh & Co. Kg Kapsel mit organisch-anorganischer Hybridwand
MX2011005801A (es) * 2008-12-01 2011-06-20 Procter & Gamble Sistemas de perfume.
US8754028B2 (en) * 2008-12-16 2014-06-17 The Procter & Gamble Company Perfume systems
EP2204155A1 (de) 2008-12-30 2010-07-07 Takasago International Corporation Duftstoffzusammensetzung für Kernhüllenmikrokapseln
MX2011013859A (es) 2009-06-30 2012-01-30 Procter & Gamble Composiciones que contienen aminosilicona añadidas durante el enjuague y metodos para usarlas.
EP2270124A1 (de) 2009-06-30 2011-01-05 The Procter & Gamble Company Bleichzusammensetzungen mit Parfümliefersystem
US8188027B2 (en) 2009-07-20 2012-05-29 The Procter & Gamble Company Liquid fabric enhancer composition comprising a di-hydrocarbyl complex
US8309505B2 (en) * 2009-07-30 2012-11-13 The Procter & Gamble Company Hand dish composition in the form of an article
EP2459691A1 (de) 2009-07-30 2012-06-06 The Procter & Gamble Company Stoffpflegende artikel mit partikelförmigem schmiermittel
CA2769636A1 (en) 2009-07-30 2011-02-03 The Procter & Gamble Company Oral care articles and methods
US8367596B2 (en) * 2009-07-30 2013-02-05 The Procter & Gamble Company Laundry detergent compositions in the form of an article
US8288332B2 (en) * 2009-07-30 2012-10-16 The Procter & Gamble Company Fabric care conditioning composition in the form of an article
PL2295531T3 (pl) 2009-09-14 2017-07-31 The Procter & Gamble Company Płynna kompozycja detergentowa do prania
US8476219B2 (en) 2009-11-05 2013-07-02 The Procter & Gamble Company Laundry scent additive
CA2682636C (en) 2009-11-05 2010-06-15 The Procter & Gamble Company Laundry scent additive
EP4159833A3 (de) 2009-12-09 2023-07-26 The Procter & Gamble Company Stoff- und heimpflegeprodukte
WO2011084463A1 (en) 2009-12-17 2011-07-14 The Procter & Gamble Company Freshening compositions comprising malodor binding polymers and malodor control components
CN107028801A (zh) 2009-12-18 2017-08-11 宝洁公司 香料和香料包封物
DE102010001350A1 (de) 2010-01-29 2011-08-04 Evonik Goldschmidt GmbH, 45127 Neuartige lineare Polydimethylsiloxan-Polyether-Copolymere mit Amino- und/oder quaternären Ammoniumgruppen und deren Verwendung
CA2786906A1 (en) 2010-01-29 2011-08-04 The Procter & Gamble Company Novel linear polydimethylsiloxane-polyether copolymers with amino and/or quaternary ammonium groups and use thereof
CA2689925C (en) 2010-02-01 2011-09-13 The Procter & Gamble Company Fabric softening compositions
US8492325B2 (en) 2010-03-01 2013-07-23 The Procter & Gamble Company Dual-usage liquid laundry detergents comprising a silicone anti-foam
US20110239377A1 (en) 2010-04-01 2011-10-06 Renae Dianna Fossum Heat Stable Fabric Softener
CA2794672A1 (en) 2010-04-01 2011-10-06 The Procter & Gamble Company Compositions comprising organosilicones
US8765659B2 (en) 2010-04-01 2014-07-01 The Procter & Gamble Company Cationic polymer stabilized microcapsule composition
US8183199B2 (en) 2010-04-01 2012-05-22 The Procter & Gamble Company Heat stable fabric softener
EP2553075B1 (de) 2010-04-01 2014-05-07 The Procter and Gamble Company Wäschepflegemittel enthaltend copolymere
CA2794084C (en) 2010-04-01 2014-09-02 The Procter & Gamble Company Fabric softener based on a bis-(2-hydroxyethyl)-dimethylammonium chloride fatty acid ester
BR112012024811B1 (pt) 2010-04-01 2021-08-31 Evonik Operations Gmbh Composição ativa amaciante de tecido, e seu método de preparação
ES2536849T3 (es) 2010-04-01 2015-05-29 Evonik Degussa Gmbh Composición de sustancia activa suavizante de tejidos
US20110240510A1 (en) 2010-04-06 2011-10-06 Johan Maurice Theo De Poortere Optimized release of bleaching systems in laundry detergents
ES2627705T3 (es) 2010-04-28 2017-07-31 Evonik Degussa Gmbh Composición suavizante textil
EP2569407A1 (de) 2010-05-12 2013-03-20 The Procter and Gamble Company Stoff- und möbelpflegeprodukt mit pflegepolymeren
EP2397120B2 (de) 2010-06-15 2019-07-31 Takasago International Corporation Duftstoffenthaltende Kernhüllenmikrokapseln
CA2900812C (en) 2010-06-22 2017-07-04 Johan Smets Perfume systems
IN2015DN00239A (de) 2010-06-22 2015-06-12 Procter & Gamble
PL2399979T5 (pl) 2010-06-24 2022-05-30 The Procter And Gamble Company Rozpuszczalne produkty w dawkach jednostkowych zwierające polimer kationowy
ES2428231T5 (es) 2010-06-24 2021-07-20 Procter & Gamble Composiciones líquidas no acuosas estables que comprenden un polímero catiónico en forma de partículas
EP2399980B1 (de) 2010-06-24 2012-08-29 The Procter and Gamble Company Stabile Zusammensetzungen enthaltend kationisches Cellulosepolymer und Cellulase
US8507425B2 (en) 2010-06-29 2013-08-13 Evonik Degussa Gmbh Particulate fabric softener comprising ethylenediamine fatty acid amides and method of making
EP3301167B1 (de) 2010-06-30 2019-10-30 The Procter & Gamble Company Aminosilikonhaltige weichspülzusammensetzungen und verfahren zu ihrer verwendung
EP2588654B1 (de) 2010-07-02 2019-08-07 The Procter and Gamble Company Vliesstoff enthaltend einen oder mehrere wirkstoffe
WO2012003319A2 (en) 2010-07-02 2012-01-05 The Procter & Gamble Company Filaments comprising an active agent nonwoven webs and methods for making same
BR112013000099A2 (pt) 2010-07-02 2016-05-17 Procter & Gamble filamentos compreendendo mantas de não tecido com agente ativo de não perfume e métodos de fabricação dos mesmos
JP5759544B2 (ja) 2010-07-02 2015-08-05 ザ プロクター アンド ギャンブルカンパニー 活性剤を送達する方法
CN103282015B (zh) 2010-07-02 2016-10-05 宝洁公司 包含活性剂的可溶性纤维网结构制品
CA2803371C (en) 2010-07-02 2016-04-19 The Procter & Gamble Company Process for making films from nonwoven webs
US8603960B2 (en) 2010-12-01 2013-12-10 The Procter & Gamble Company Fabric care composition
AR084058A1 (es) 2010-12-01 2013-04-17 Procter & Gamble Composicion y metodo para fabricar una composicion para el cuidado de telas
RU2564663C2 (ru) 2011-03-30 2015-10-10 Дзе Проктер Энд Гэмбл Компани Композиции для ухода за тканью, содержащие первичные стабилизирующие агенты
CN103608444B (zh) 2011-06-23 2015-11-25 宝洁公司 香料体系
WO2013002786A1 (en) 2011-06-29 2013-01-03 Solae Baked food compositions comprising soy whey proteins that have been isolated from processing streams
CA2843256C (en) 2011-07-27 2017-06-06 The Procter & Gamble Company Multiphase liquid detergent composition
CN103890157B (zh) 2011-10-20 2016-10-19 宝洁公司 制备织物软化剂组合物的连续方法
EP2800802B1 (de) 2012-01-04 2018-02-28 The Procter and Gamble Company Wirkstoff enthaltende faserstrukturen mit mehreren regionen verschiedener dichten
MX353496B (es) 2012-01-04 2018-01-16 Procter & Gamble Estructuras fibrosas que contienen activos con múltiples regiones.
GB2498265B (en) 2012-01-04 2015-04-08 Procter & Gamble Fibrous structures comprising particles and methods for making same
WO2013113453A1 (en) 2012-01-30 2013-08-08 Evonik Industries Ag Fabric softener active composition
DK2847307T3 (en) 2012-05-07 2016-07-25 Evonik Degussa Gmbh ACTIVE SOFT COMPOSITION FOR TEXTILES AND PROCEDURES FOR MANUFACTURING THEREOF
US20150284660A1 (en) 2012-08-21 2015-10-08 Firmenich Sa Method to improve the performance of encapsulated fragrances
EP2708589A1 (de) 2012-09-14 2014-03-19 The Procter & Gamble Company Stoffpflegezusammensetzung
EP2743339B1 (de) 2012-12-12 2018-02-21 The Procter & Gamble Company Verbesserte Strukturierung mit Threads aus nicht polymeren, kristallinen, hydroxylhaltigen Strukturmitteln
EP2746377A1 (de) 2012-12-20 2014-06-25 The Procter & Gamble Company Verbesserte Struktur mit externen Strukturbildnern und einer kosmotropen Substanz
JP6151374B2 (ja) 2012-12-20 2017-06-21 ザ プロクター アンド ギャンブル カンパニー 洗濯物香り添加剤
CN103114459B (zh) * 2013-03-11 2015-03-18 广西鑫深科技有限公司 芳香人造革及其制备方法
EP2824170B1 (de) 2013-07-12 2018-11-14 The Procter & Gamble Company Strukturierte Flüssigkeitszusammensetzungen
EP2824169A1 (de) 2013-07-12 2015-01-14 The Procter & Gamble Company Strukturierte Textilpflegemittel
EP2865741A1 (de) 2013-10-28 2015-04-29 Dow Global Technologies LLC Stabile, nichtwässrige flüssige Mittel mit unlöslichen oder schwach löslichen Bestandteilen
EP2865742A1 (de) 2013-10-28 2015-04-29 Dow Global Technologies LLC Stabile nicht wässrige flüssige Mittel enthaltend kationisches Polymer in Partikelform
BR102014025172B1 (pt) 2013-11-05 2020-03-03 Evonik Degussa Gmbh Método para fabricação de um éster de ácido graxo de metisulfato de tris-(2-hidroxietil)-metilamônio, e composição ativa de amaciante de roupa
CA2928436A1 (en) 2013-11-15 2015-05-21 The Procter & Gamble Company Fabric softener composition
MX2016007157A (es) 2013-12-09 2016-07-21 Procter & Gamble Estructuras fibrosas que incluyen un agente activo y tienen un grafico impreso sobre estas.
EP2960322B1 (de) 2014-06-25 2021-01-13 The Procter and Gamble Company Strukturierungsvormischungen mit nichtpolymeren, kristallinen, hydroxylhaltigen Strukturierungsmitteln und einem linearen Alkylsulfat sowie Zusammensetzungen damit
EP3132016A1 (de) 2014-06-30 2017-02-22 The Procter & Gamble Company Waschmittelzusammensetzung
US9365803B2 (en) 2014-07-28 2016-06-14 The Procter & Gamble Company Fabric treatment composition comprising an aminosiloxane polymer nanoemulsion
WO2016023145A1 (en) 2014-08-11 2016-02-18 The Procter & Gamble Company Laundry detergent
UA119182C2 (uk) 2014-10-08 2019-05-10 Евонік Дегусса Гмбх Активна композиція для пом'якшувача тканини
US20180265825A1 (en) 2014-12-23 2018-09-20 Lubrizol Advanced Materials, Inc. Laundry detergent compositions
BR112017013600A2 (pt) 2014-12-23 2018-03-06 Lubrizol Advanced Mat Inc composição.
WO2016196021A1 (en) 2015-06-01 2016-12-08 E I Du Pont De Nemours And Company Structured liquid compositions comprising colloidal dispersions of poly alpha-1,3-glucan
WO2017004340A1 (en) 2015-06-30 2017-01-05 The Procter & Gamble Company Methods for making compositions containing multiple populations of microcapsules
US11820960B2 (en) 2015-06-30 2023-11-21 The Procter & Gamble Company Compositions containing multiple populations of microcapsules
EP3316854B1 (de) 2015-06-30 2019-07-31 The Procter and Gamble Company Zusammensetzung mit mehreren populationen von mikrokapseln mit parfüm
US10221380B2 (en) 2016-04-01 2019-03-05 The Procter & Gamble Company Dryer-activated fabric conditioning products having frangible boundaries and methods
JP6997171B2 (ja) 2016-08-09 2022-01-17 高砂香料工業株式会社 フリー香料及びカプセル化香料を含む固体組成物
US10870816B2 (en) 2016-11-18 2020-12-22 The Procter & Gamble Company Fabric treatment compositions having low calculated cationic charge density polymers and fabric softening actives and methods for providing a benefit
US20180142188A1 (en) 2016-11-18 2018-05-24 The Procter & Gamble Company Fabric treatment compositions having polymers and fabric softening actives and methods for providing a benefit
EP3541913A1 (de) 2016-11-18 2019-09-25 The Procter and Gamble Company Zusammensetzungen zur gewebebehandlung und verfahren zur bereitstellung eines nutzens
GB2572720B (en) 2017-01-27 2022-06-22 Procter & Gamble Active agent-containing articles that exhibit consumer acceptable article in-use properties
US11697904B2 (en) 2017-01-27 2023-07-11 The Procter & Gamble Company Active agent-containing articles that exhibit consumer acceptable article in-use properties
US11697906B2 (en) 2017-01-27 2023-07-11 The Procter & Gamble Company Active agent-containing articles and product-shipping assemblies for containing the same
US11697905B2 (en) 2017-01-27 2023-07-11 The Procter & Gamble Company Active agent-containing articles that exhibit consumer acceptable article in-use properties
KR20200015516A (ko) 2017-05-04 2020-02-12 루브리졸 어드밴스드 머티어리얼스, 인코포레이티드 이중 활성화된 마이크로겔
EP3412760B1 (de) 2017-06-08 2023-08-16 The Procter & Gamble Company Verfahren zur strukturierung von waschmittelzusammensetzungen
EP3461879A1 (de) 2017-09-29 2019-04-03 The Procter & Gamble Company Verbesserte strukturierung
EP4045620A1 (de) 2019-10-15 2022-08-24 The Procter & Gamble Company Waschmittelzusammensetzungen
EP4069811A1 (de) 2019-12-05 2022-10-12 The Procter & Gamble Company Verfahren zur herstellung einer reinigungszusammensetzung
US20210171866A1 (en) 2019-12-05 2021-06-10 The Procter & Gamble Company Cleaning composition
EP4053256A1 (de) 2021-03-01 2022-09-07 Novozymes A/S Verwendung von enzymen zur verbesserung der duftstoffablagerung
JP2023548361A (ja) 2021-04-29 2023-11-16 ザ プロクター アンド ギャンブル カンパニー 構造化プレミックス及びそれを含む液体組成物
EP4083176A1 (de) 2021-04-29 2022-11-02 The Procter & Gamble Company Strukturierungsvormischungen und flüssige zusammensetzungen damit
WO2024046952A1 (en) 2022-08-30 2024-03-07 Novozymes A/S Improvements in or relating to organic compounds

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0328937A2 (de) * 1988-02-02 1989-08-23 Kanebo, Ltd. Faseriges Material mit dauernder Parfümwirkung und Verfahren zu seiner Herstellung
DE3921145A1 (de) * 1989-06-28 1991-01-10 Basf Ag Verfahren zum mattieren von lederoberflaechen
WO1995034609A1 (en) * 1994-06-14 1995-12-21 Gateway Technologies, Inc. Energy absorbing fabric coating and manufacturing method
US6277439B1 (en) * 1999-04-26 2001-08-21 Pittards Public Limited Company Impregnation of leather with micro-encapsulated material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3110695A (en) * 1960-07-15 1963-11-12 Koppers Co Inc Process for polymerizing methylmethacrylate in presence of polyethylene oxide
US3110273A (en) * 1960-09-22 1963-11-12 United Nuclear Corp Transpiration cooled boiler baffle
GB1022434A (en) * 1961-11-28 1966-03-16 Union Carbide Corp Improvements in and relating to polymers
US3523093A (en) * 1961-11-28 1970-08-04 Paul Stamberger Method of producing polyurethanes by reacting polyisocyanate with a preformed polymer resulting from polymerization of ethylenically unsaturated monomers
US3304273A (en) * 1963-02-06 1967-02-14 Stamberger Paul Method of preparing polyurethanes from liquid, stable, reactive, filmforming polymer/polyol mixtures formed by polymerizing an ethylenically unsaturated monomer in a polyol
DE2854384A1 (de) * 1978-12-16 1980-07-03 Bayer Ag Verfahren zur herstellung von polyurethan-kunststoffen
DE2920501A1 (de) * 1979-05-21 1980-11-27 Bayer Ag Verfahren zur herstellung von polyurethanharnstoffelastomeren
DE3134112A1 (de) * 1981-08-28 1983-03-10 Bayer Ag, 5090 Leverkusen Beschichtungs- und zurichtmittel fuer leder und lederaustauschstoffe auf basis von polyurethanharnstoff-beschichtungsmassen
US4556702A (en) * 1983-06-01 1985-12-03 American Cyanamid Company Oligomers and homopolymers of meta- or para-isopropenyl-α,α-dimethylbenzylisocyanate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0328937A2 (de) * 1988-02-02 1989-08-23 Kanebo, Ltd. Faseriges Material mit dauernder Parfümwirkung und Verfahren zu seiner Herstellung
DE3921145A1 (de) * 1989-06-28 1991-01-10 Basf Ag Verfahren zum mattieren von lederoberflaechen
WO1995034609A1 (en) * 1994-06-14 1995-12-21 Gateway Technologies, Inc. Energy absorbing fabric coating and manufacturing method
US6277439B1 (en) * 1999-04-26 2001-08-21 Pittards Public Limited Company Impregnation of leather with micro-encapsulated material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8546509B2 (en) 2004-04-08 2013-10-01 Huntsman Textile Effects (Germany) Gmbh Functionalized particles
CN101781858B (zh) * 2009-09-30 2012-05-09 安徽安利合成革股份有限公司 高耐候荧光聚氨酯合成革的干法贴面工艺
AT12563U1 (de) * 2011-03-17 2012-07-15 Wollsdorf Leder Schmidt & Co Ges M B H Verfahren zur herstellung von leder zum beledern von flugzeugsitzen
EP3170552A1 (de) 2015-11-23 2017-05-24 Basf Se Mikrokapsel mit einer polymerschale und hydrophilem oder hydrophobem kernmaterial
WO2017089115A1 (en) 2015-11-23 2017-06-01 Basf Se Microcapsule comprising a polyester-urethane shell and a hydrophilic core material
WO2017089116A1 (en) 2015-11-23 2017-06-01 Basf Se Microcapsule comprising a polyester-urethane shell and a hydrophobic core material
US10695734B2 (en) 2015-11-23 2020-06-30 Basf Se Microcapsule comprising a polyester-urethane shell and a hydrophilic core material
US11077417B2 (en) 2015-11-23 2021-08-03 Basf Se Microcapsule comprising a polyester-urethane shell and a hydrophobic core material

Also Published As

Publication number Publication date
US20030165692A1 (en) 2003-09-04

Similar Documents

Publication Publication Date Title
WO2003061817A1 (de) Mikrokapseln enthaltende koagulate
DE2637115C3 (de) Verfahren zur Herstellung von Polyurethanharnstoffen
DE2221756C3 (de) Verfahren zur Herstellung von lösungsmittelbeständigen, lichtechten, knick- und reibfesten Polyurethanüberzügen auf textlien Substraten, Leder oder Kunstleder oder von Folien
EP0165437B1 (de) Verfahren zur Herstellung von festen Polyisocyanaten retardierter Reaktivität, polymerumhüllte, feinteilige Polyisocyanate und ihre Verwendung
DE102008014211A1 (de) Wässrige Dispersion aus anionisch modifizierten Polyurethanharnstoffen zur Beschichtung eines textilen Flächengebildes
DE2319706A1 (de) Verschaeumbare massen fuer die herstellung von vernetzten schaumstoffen mit dreidimensionalem netzwerk und verschaeumungsverfahren
EP0050264A1 (de) Verfahren zur Herstellung von Mikrokapseln
DE2448606B2 (de) Verfahren zur Herstellung von wäßrigen anionischen Polyurethan-Latices
EP0319816B1 (de) Polyurethanharnstoffe
WO2008113755A1 (de) Wässrige dispersionen, enthaltend polyurethan, und ihre verwendung zur herstellung von flächigen substraten
DE2060599A1 (de) Verfahren zur Herstellung von Beschichtungsmassen auf Polyurethanbasis
DE2457387A1 (de) Weiche, nappa-leder-artige textilbeschichtungen
DE2807479A1 (de) Ueberzugsmittel
DE2448133C2 (de) Verfahren zur Beschichtung von Substraten
EP0150803B1 (de) Haftungsvermittelnde Zusätze enthaltende PVC-Plastisole für Beschichtungszwecke und ihre Verwendung
DE2912864A1 (de) Schichtfoermiges polyurethanmaterial und verfahren zur herstellung des materials
EP0662985B1 (de) Spritzbeständiger wässriger schaum, dessen herstellung und verwendung
EP0490150B1 (de) In Wasser dispergierbare, elektrolytstabile Polyetherester-modifizierte Polyurethanionomere
DE2431846B2 (de) Verfahren zur Beschichtung von textlien, bahnförmigen Unterlagen nach dem Umkehrverfahren mit Polyurethanlösungen
DE10213984A1 (de) Mikrokapseln enthaltende Koagulate
EP0492139A1 (de) Mikrokapseln aus Melamin und deren Verwendung zur flammhemmenden Ausrüstung von Kunststoffen
EP1491563A2 (de) Wässrige Zubereitungen hydrophiler Polyurethanharze
DE3839940C2 (de)
DE2629704C3 (de) Verfahren zur Beschichtung von Leder oder Spaltleder
EP0122554B1 (de) Verwendung von Vernetzerkombinationen enthaltende Polyurethanzubereitungen als thermoaktive Haftstriche

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP