WO2003052262A1 - Niederdruckkreislauf für ein speichereinspritzsystem - Google Patents

Niederdruckkreislauf für ein speichereinspritzsystem Download PDF

Info

Publication number
WO2003052262A1
WO2003052262A1 PCT/DE2002/004757 DE0204757W WO03052262A1 WO 2003052262 A1 WO2003052262 A1 WO 2003052262A1 DE 0204757 W DE0204757 W DE 0204757W WO 03052262 A1 WO03052262 A1 WO 03052262A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
low
pressure pump
pump
fuel
Prior art date
Application number
PCT/DE2002/004757
Other languages
English (en)
French (fr)
Inventor
Sascha Ambrock
Burkhard Boos
Matthias Distel
Stefan Kieferle
Achim Köhler
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to DE10295868T priority Critical patent/DE10295868D2/de
Priority to AU2002363846A priority patent/AU2002363846A1/en
Publication of WO2003052262A1 publication Critical patent/WO2003052262A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0017Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/04Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by special arrangement of cylinders with respect to piston-driving shaft, e.g. arranged parallel to that shaft or swash-plate type pumps
    • F02M59/06Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by special arrangement of cylinders with respect to piston-driving shaft, e.g. arranged parallel to that shaft or swash-plate type pumps with cylinders arranged radially to driving shaft, e.g. in V or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/34Varying fuel delivery in quantity or timing by throttling of passages to pumping elements or of overflow passages, e.g. throttling by means of a pressure-controlled sliding valve having liquid stop or abutment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0001Fuel-injection apparatus with specially arranged lubricating system, e.g. by fuel oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/004Sliding valves, e.g. spool valves, i.e. whereby the closing member has a sliding movement along a seat for opening and closing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • F02M69/52Arrangement of fuel metering devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/60Fuel-injection apparatus having means for facilitating the starting of engines, e.g. with valves or fuel passages for keeping residual pressure in common rails

Definitions

  • the invention relates to a low-pressure circuit for a memory injection system of an internal combustion engine with a high-pressure pump, which has at least one pump element, which is supplied via a differential pressure valve from a suction chamber of the high-pressure pump with a first part of a fuel quantity that is conveyed by a low-pressure pump, a controllable metering unit in a fuel path is arranged between the differential pressure valve and the low pressure pump.
  • one or more injection nozzles are connected to a fuel accumulator via controllable valves.
  • the fuel in the fuel accumulator is under a pressure that is sufficient for injection into combustion chambers of the internal combustion engine. In a diesel internal combustion engine, this corresponds to a pressure in the order of more than 1000 bar.
  • the valves When the valves are opened, fuel is injected from the accumulator into the combustion chambers.
  • the fuel accumulator is usually assigned to several combustion chambers and is therefore referred to as a common rail.
  • the high-pressure pump is often designed as a radial piston pump with a plurality of pump elements which are actuated via a shaft mechanically driven by the internal combustion engine. Fuel is sucked into the working areas of the pump elements under pressure from the radially movable pistons set and expelled. The fuel is drawn in from a suction chamber via a differential pressure valve, which opens when a defined pressure difference between the suction chamber and the working chamber of the pump element is reached, thus allowing fuel to flow into the working chamber. During the compression stroke, the differential pressure valve works as a check valve.
  • the fuel is supplied by a low-pressure pump, which draws fuel from a tank and makes it available at a pressure of a few bar, for example 1 to 5 bar, via an inlet for the high-pressure pump.
  • the metering unit is arranged between the low-pressure pump and the suction chamber and is used to control the high-pressure demand quantity of the high-pressure pump delivered to the accumulator by throttling the first part of the fuel quantity supplied to the suction chamber.
  • the suction chamber forms the total of all communicating volumes between the differential pressure valve and the metering unit.
  • a return closes the circle of components under low pressure, which include include the tank, the low pressure pump, the metering unit and the return.
  • the entirety of these components and the associated connecting lines is therefore referred to as a low-pressure circuit.
  • Such a low pressure circuit is known from DE 1 99 26 308 AI.
  • This effect can be achieved by opening a pressure relief valve on the Com-mon Rail in order to keep the rail pressure within permitted limits.
  • the excess fuel supplied by the high-pressure pump flows back to the inlet side of the low-pressure circuit at a low pressure level. Therefore, the pressure of the fuel, which is discharged via the pressure relief valve, is ultimately unnecessarily raised by the high-pressure pump from the low pressure level (order of magnitude: ⁇ 10 bar) to the rail pressure level (order of magnitude:> 1000 bar), which costs energy unnecessarily and is detrimental to the life of the components involved is.
  • metering units that are normally used have a leak, which make it difficult to set a zero demand for the high-pressure pump by throttling the fuel supply to the suction chamber of the high-pressure pump.
  • This problem occurs particularly in connection with uncontrolled low-pressure feed pumps, which due to their design always maintain a certain pressure in front of the metering unit.
  • the leakage flow to the suction space mentioned results from this pressure.
  • a typical example of an uncontrolled low-pressure pump is a gear pump mechanically driven by the internal combustion engine.
  • the suction chamber is connected to a return flow via a zero throttle.
  • the throttle is designed in such a way that, when the metering unit is open, it allows a pressure build-up in the suction space that is sufficient to open the differential pressure valves. The high pressure pump can therefore require fuel.
  • the throttle is designed at the same time so that it has a remaining one when the metering unit is closed Let leakage flow to the return flow. In this case, the pressure in the suction chamber required to open the differential pressure valves is not reached, so that the pump does not request as requested.
  • the zero-throttle throttle in DE 1 99 26 308 leads to a return line.
  • This return line leads into the tank and is therefore under ambient pressure.
  • the ambient pressure which fluctuates in the order of magnitude between 0.5 bar and approximately 1 bar, can lead to the high-pressure pump drawing fuel from the return line at the desired zero demand because of the return pressure prevailing at the differential pressure valves.
  • the opening pressures of the differential pressure valves must be set sufficiently high. This will undesirably open the
  • the disadvantage is that the high opening pressure has to be overcome by the low pressure pump if the demand is high and the ambient pressure is low.
  • the low-pressure pump in the known low-pressure circuit must work with a high delivery pressure (for example 5 bar), which reduces the service life of the delivery pump compared to operation with lower pressures.
  • the object of the invention is to provide a stable, dethrottled low-pressure circuit with reduced demands on the feed pump with regard to pressure level and delivery rate.
  • the metering unit can reduce the first part of the fuel quantity supplied to the suction chamber to such an extent that the first part of the fuel quantity supplied to the suction chamber is not sufficient to generate a pressure which Differential pressure valve opens, fuel flowing out of the suction chamber only via at least one pump element.
  • a metering unit which allows the aforementioned reduction, is a prerequisite for the invention.
  • a possible embodiment of such a metering unit is further explained in the context of an exemplary embodiment.
  • the invention is not limited to the special embodiment of a dense metering unit explained below, but rather is aimed at optimizing a low-pressure circuit using a dense metering unit.
  • the metering unit mentioned in the solution specification used above is such a tight metering unit. This results from the requirement that the first part of the fuel quantity delivered to the suction chamber can be reduced by the metering unit to such an extent that the first part of the fuel quantity supplied to the suction chamber is not sufficient to generate a pressure that opens the differential pressure valve, with an outflow of Fuel from the suction chamber is made only via at least one pump element.
  • the last subset in particular precludes the use of the known zero-feed throttle, which derives the undesired leakage flow in metering units that are comparatively less dense.
  • the elimination of the zero-throttle throttle already has an advantage because the elimination enables a simplified and therefore more cost-effective production of the low-pressure circuit.
  • a major advantage results from the fact that the annoying coupling of the suction chamber to the return pressure is eliminated.
  • the suction valves can therefore be operated with lower spring forces, which leads to the desired dethrottling of the low-pressure circuit.
  • the full pressure level mentioned here does not correspond to the excess pressure level of the suction space compared to the working space of the pump elements during suction, but rather to the absolute pressure prevailing in the suction space when the metering unit is open.
  • Differential pressure valves can therefore be optimized so that the differential pressure valves close when there is no zero demand throttle when no demand is desired. This prevents the suction chamber from being sucked empty.
  • the possible reduction of the differential valve opening pressures results from the elimination of the zero-throttle and thus from the use of a tight metering unit.
  • the differential pressure valve opens at a differential pressure that is less than 0.9 bar. It has been shown that this differential pressure level represents a good compromise between the demands for the highest possible differential pressure level in order to avoid vacuuming the suction chamber and for the lowest possible pressure level for easier filling of the pump elements. In the known low-pressure circuit with a zero throttle, the necessary differential pressure is about 1 bar higher.
  • a second part of the fuel required by the low-pressure pump is branched off before the metering unit and is returned via at least one return to a part of the low-pressure circuit that is on an inlet side of the low-pressure pump.
  • This configuration has the advantage that a fuel excess provided by the low-pressure pump can also be used for other purposes, for example for cooling and / or lubricating the high-pressure pump.
  • the possible use as a lubricant applies in particular to diesel fuel.
  • the division of the quantity of fuel provided by the outlet of the low-pressure pump into at least one delivery flow and a lubrication flow, the delivery flow corresponding to the first fuel quantity and the lubrication flow being conducted separately from the delivery flow via bearings in the high-pressure pump, has the advantage that fuel lubrication of the high-pressure pump is realized leave, without the demand flow is passed through the bearings of the high pressure pump before it reaches the suction chamber. As a result, a rapid onset of the high-pressure pump requirement is achieved in particular at the start, which is a prerequisite for a rapid starting of the internal combustion engine.
  • the part of the fuel required by the low-pressure pump that is branched off in front of the metering unit is recirculated via a first return is at least partially led as a third part over an interior of the high pressure pump.
  • This embodiment advantageously uses the fuel to be returned from the fuel quantity required by the low-pressure pump for cooling and / or lubricating the high-pressure pump.
  • the third part is led to the interior via a switching valve.
  • This configuration has the particular advantage that the cooling and / or lubrication can be interrupted by the switching valve when the internal combustion engine is started, so that the portion of the fuel quantity otherwise required for cooling and / or lubrication by the low-pressure pump for a request by the High pressure pump is available.
  • the switching valve can be a spring-loaded valve. Alternatively, it can be a valve that is actuated by a control device. The switching valve facilitates the rapid build-up of pressure in the common rail, which contributes to a quick start of the internal combustion engine after a standstill.
  • the third part is led to the interior via a limiting throttle.
  • the advantage of this configuration is that the cooling and / or lubricating flow through the high-pressure pump is limited to a maximum value predetermined by the dimensioning of the limiting throttle. In this way, undesired heating of the fuel can be avoided, for example.
  • a further part of the second part as a fourth part via an overflow valve and a second return flow to a part of the low-pressure circuit is returned, which is on the input side of the low pressure pump.
  • a further part of the second part is fed back as a fifth part via a vent throttle and the first return to the part of the low-pressure circuit located on the inlet side of the low-pressure pump.
  • This configuration enables the low-pressure circuit to be vented after air penetration, as can be caused, for example, by the fuel tank being emptied too far. Otherwise, air remaining in the low-pressure circuit could lead to disruptions in high-pressure delivery.
  • At least a part of the part which is guided as a third part via the interior of the high-pressure pump, is conducted as a bearing lubrication stream via at least one bearing of the high-pressure pump into the first return line.
  • This configuration advantageously allows forced lubrication and flushing of the bearing in question with a defined lubrication flow.
  • the third part is divided into a sixth part and a seventh part, that the sixth part is led as a flange lubrication flow via flange bearings to the interior of the high pressure pump, and that the seventh part as a housing bearing lubrication flow via housing bearings to the interior of the high pressure pump to be led .
  • This configuration provides further structural degrees of freedom and thus allows the lubricant flows to be set individually for the bearing.
  • Figure 1 shows schematically a first embodiment of a low pressure circuit
  • Figure 2 shows schematically a second embodiment of a low pressure circuit
  • Figure 3 also schematically shows a third embodiment of a low pressure circuit
  • Figure 4 shows a possible implementation of a dense metering unit.
  • the low pressure circuit 10 has a tank 12, at least one filter 14, a low pressure pump 16, a metering unit 18, a high pressure pump 20 and at least one return 22. Fuel from the tank 12 is drawn in by the low pressure pump 16 via the filter 14.
  • the low-pressure pump 16 can be, for example, a gear pump continuously driven by the internal combustion engine. To limit the delivery rate of the low pressure pump 16 at high speeds of
  • Internal combustion engine can be a throttle 24 upstream of the low pressure pump 16. After an outlet 26 of the low-pressure pump 16, the amount of fuel delivered by the low-pressure pump 16 is divided into a first part and a second part in a branch 28.
  • the first part of this fuel quantity is conveyed via the metering unit 18 to a suction chamber 30 of the high-pressure pump 20.
  • the suction chamber 30 of the high pressure pump 20 is separated from the working chambers 34 of the high pressure pump 20 by differential pressure valves 32.
  • a pump element 36 is formed by a piston 38 together with a working space 34.
  • Each working space 34 is also connected to a high pressure valve 40, which is a supply line 42 to one Fuel accumulator (not shown) of the accumulator injection system opens and closes under pressure control.
  • An eccentric 44 is rotatably movable in an interior 46 of the high pressure pump 20 and is driven mechanically by the internal combustion engine, for example.
  • the eccentric 44 in turn actuates the pistons 38 of the pump elements 36 in the radial direction, so that the working spaces 34 of the pump elements 36 are periodically reduced and enlarged.
  • the pressure falling within the working spaces 34 when the working spaces 34 are enlarged opens a differential pressure valve so that fuel can flow from the suction space 30 into the relevant working space 34.
  • the pressure increases, which initially leads to the differential pressure valve 32 closing.
  • the pressure on the fuel enclosed in the working space 34 is then increased until finally the high-pressure valve 40 allows the fuel under high pressure to flow off the fuel accumulator via the feed line 42 m
  • the control device 48 is therefore also used to limit the requirement of the high-pressure pump 20 on the suction side as required.
  • the control device 48 controls the controllable metering unit 18 so that, depending on the needs of the internal combustion engine, more or less fuel reaches the high-pressure pump 20 as the first part of the fuel quantity required by the low-pressure pump 16.
  • the second part of the fuel quantity delivered by the low pressure pump 16 is further divided into branches 49 and 50. Behind the two branches 49 and 50, a fuel flow, hereinafter referred to as the third part, flows via a spring-loaded switching valve 52 and an upstream throttle 54 to the interior 46 of the high-pressure pump 20. From there, the third part of the fuel quantity delivered by the low-pressure pump 16 flows via flange bearings 56, Housing bearing 58, a bearing bypass throttle 60 and / or a bearing bypass valve 62 into a (first) return 22 which leads back to the tank 12.
  • the partial fuel flow flowing through the interior 46 of the high-pressure pump 20 fulfills two tasks. On the one hand, it transports excess heat from the high-pressure pump 20 and therefore serves to cool the high-pressure pump 20.
  • Conventional high-pressure pumps 20 are implemented in a split design, the part firmly connected to the internal combustion engine being referred to as a flange and the second part attached to the flange being referred to as a housing.
  • the eccentric 44 is usually part of a shaft which is driven by the internal combustion engine and is mounted both in the flange and in the housing of the high-pressure pump 20.
  • the bearing bypass throttle 60 fulfills the task of limiting the lubricating flow through the bearings in a defined manner. This also prevents an undesirably high pressure from occurring in the interior 46 of the high-pressure pump 20. This function can also be performed or supported by a spring-loaded bearing bypass valve 62.
  • a fourth part of the fuel required by the low-pressure pump 16 can be returned to the suction side of the low-pressure pump 16 via an overflow valve 64 and a second return 65.
  • the overflow valve 64 can be designed, for example, as a spring-loaded differential pressure valve which opens when a predetermined pressure difference between the outlet 26 of the low-pressure pump 16 and its inlet is exceeded and part of the fuel quantity required by the low-pressure pump 16 neither as a first part via the metering unit 18 nor as a third part via high-pressure valve 52 and throttle 54 to the high-pressure pump 20.
  • cascade overflow valves Low pressure circuits in the form of cascade overflow valves have been used.
  • a cascade overflow valve is constructed as a structural unit with a venting throttle and a lubricating throttle and is arranged between the outlet 26 of the low-pressure pump 16 and the interior 46 of the high-pressure pump 20.
  • the venting throttle which only allows comparatively small flow rates, the known cascade overflow valve initially blocks, i.e. at low supply pressure of the low-pressure pump 16, the flow of fuel to the interior 46 and bearings of the high-pressure pump 20.
  • An increasing supply pressure of the low-pressure pump 16 then opens a lubricating throttle in a first stage of the cascade of the cascade overflow valve and a connection in a second stage of the cascade of the cascade overflow valve to the input side of the low pressure pump.
  • the opening pressure of the second stage is higher than the opening pressure of the first stage.
  • the low-pressure circuit presented here has the advantage that the overcurrent function (overflow valve 64) and the function of releasing a cooling and lubricating flow to the interior 46 of the high-pressure pump 20 through a switching valve 52 are structurally decoupled. This results in greater freedom in the arrangement of valves and throttles and thus in the design of the high-pressure pump 20, which usually forms a structural unit with the overflow valve 64 and the switching valve 52. This advantage is further reinforced by the fact that the vent throttle 66 can also be structurally decoupled from the overflow valve 64 and the switching valve 52 in the low-pressure circuit presented here.
  • FIG. 2 schematically shows a second embodiment of a low-pressure circuit 10.
  • the low-pressure circuit according to FIG. 2 differs from the low-pressure circuit according to FIG. 1 in that the low-pressure pump 16 together with the throttle 24 has been replaced by an electric fuel pump 68 which is arranged between the filter 14 and the tank 12.
  • An electric fuel pump 68 unlike a gear pump driven by the internal combustion engine, can be operated independently of the internal combustion engine. For example, it can be operated electrically and build up pressure before the internal combustion engine starts. For this reason, when using an electric fuel pump 68, it is possible to dispense with a switching valve 52, as is used in FIG. 1.
  • the switching valve 52 has the task of enabling rapid build-up of pressure in the line which leads from the branch 28 to the suction chamber 30 when the internal combustion engine and the low-pressure circuit start up. This rapid build-up of pressure is desirable in order to be able to provide high-pressure fuel for injections as quickly as possible when the internal combustion engine starts.
  • the lubrication and cooling of the high-pressure pump 20 has a lower priority for a short time, so that the spring-loaded switching valve 52 contributes to low pressure at the outlet 26 of the low pressure pump 16 blocks the connection to the interior 46 of the high pressure pump 20.
  • FIG. 3 shows schematically a third embodiment of a low pressure circuit. This differs from the embodiment according to FIG. 1 by splitting the third partial fuel flow into a sixth partial fuel flow and a seventh partial fuel flow.
  • the sixth partial fuel flow is assigned to the flange and is limited by a flange lubrication flow restriction throttle.
  • the sixth partial flow then flows back to the tank 12 via flange bearings 56, the interior 46 of the high-pressure pump 20, a switching valve 62 and the return line 22.
  • the housing lubrication flow delimited by a housing lubrication flow restriction throttle 72, flows via a housing bearing 58, the interior 46 the high pressure pump 20, the switching valve 71 and the return 22 to the tank 12 back.
  • a further liquid guide can be provided, which also supplies a cooling flow to the interior 46 of the high-pressure pump 20 parallel to the partial flows via flange bearing 56 and housing 58, which is also branched off from the third partial fuel flow and is limited by a cooling throttle 74.
  • the metering unit 18 has a valve housing 76 in which a slide-shaped valve member 80 is slidably guided in a cylinder bore 78.
  • the valve member 80 has at least one recess 82 in its outer jacket, which extends in the direction of the longitudinal axis 84 of the valve member 80 over part of the longitudinal extent and also over part of the circumference of the valve member 80.
  • the recess 82 is explained in more detail below.
  • a drain opening 86 which opens into the cylinder bore 78 and with which the recess 82 of the valve member 80 is formed, is formed in the valve housing 76 interacts to control the size of a flow cross section.
  • the drain opening 86 is connected to the suction side (suction chamber 30) of the high-pressure pump 20.
  • the recess 82 extends in the longitudinal direction on the valve member 80 up to an end face of the valve member 80.
  • the valve member 80 has a sealing surface 88 which, for example, can be at least approximately frustoconical.
  • the valve member 8 tapers in the shape of a truncated cone towards its end.
  • the sealing surface 88 can alternatively also be formed, for example, at least approximately in the form of a spherical segment.
  • An inlet opening 92 which is connected to the outlet 26 of the low-pressure pump 16, opens into the end wall 90 of the cylinder bore 78 opposite the sealing surface 88 of the valve member 80.
  • valve seat 94 is formed in the valve housing 76, with which the valve member 80 cooperates with its sealing surface 88 to close the inlet opening 92.
  • the valve seat 94 can also be at least approximately frustoconical, the cone angles of the sealing surface 88 and the valve seat 94 being the same or different.
  • the valve seat 94 widens towards the valve member 80.
  • the cone angle of the valve seat 94 is preferably larger than the cone angle of the sealing surface 88, so that the valve member 80 only comes into contact with the valve seat 94 with the edge of its sealing surface 88 at the end of the valve member 80.
  • An armature 96 of an electromagnet 98 engages on the valve member 80 on the side facing away from the valve seat 94, through which the valve member 80 can be displaced toward the valve seat 94 when the electromagnet 98 is energized.
  • a return spring 100 acts on the valve member 80.
  • metering unit 18 The function of metering unit 18 is explained below. If no fuel is to be delivered by the high-pressure pump 20, the solenoid 98 is energized by the control unit 48 with a high current, so that the valve member 80 is pressed against the force of the return spring 100 with its sealing surface 88 against the valve seat 94. In this closed position, the inlet opening 92 is completely closed by the valve member 80, even if pressure is generated by the low-pressure pump 16. In this closed position, the recess 82 of the valve member 80 is not in overlap with the outlet opening 86, but the valve member 80 is in overlap with the outlet opening 86 with its full cylindrical cross section. The end of the recess 82 is also in the direction of the longitudinal axis 84 of the valve member 80 arranged at a distance h from the edge of the drain opening 86.
  • valve member 80 By controlling the electromagnet 98 by the control device 48 with different current intensities, different flow cross sections can be controlled by the valve member 80 in order to provide correspondingly different first fuel quantities for the high pressure pump 20.
  • Activation of the electromagnet 98 by the control device 48 with different current strengths can be achieved, for example, by driving the electromagnet 98 in a pulse-width-modulated manner, the current strength and thus the size of the released flow cross-section being dependent on the pulse width.
  • the valve member 80 4 in its closed position, the suction side (suction chamber 30) of the high pressure pump 20 is completely separated from the low pressure pump 16, so that there is only a low pressure on the suction side of the high pressure pump 20.
  • the differential pressure valves 32 of the working spaces 34 of the high pressure pump 20 therefore only need to seal against a low pressure, so that they can open at a low pressure. This reduces the design requirements for the low pressure pump 16.
  • the first and restart of the internal combustion engine is improved and the efficiency of the high-pressure pump 20 is improved since the throttle losses at the differential pressure valves 32 are low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung betrifft einen Niederdruckkreislauf (10) für ein Speichereinspritzsystem eines Verbrennungsmotors mit einer Hochdruckpumpe (20). Die Hochdruckpumpe (20) weist wenigstens ein Pumpelement (36) auf, das über ein Differenzdruckventil (32) aus einem Saugraum (30) der Hochdruckpumpe (20) mit einem ersten Teil einer Kraftstoffmenge versorgt wird. Dabei ist eine steuerbare Zumesseinheit (18) in einem Kraftstoffpfad zwischen dem Differenzdruckventil (32) und der Niederdruckpumpe (16) angeordnet. Der Niederdruckkreislauf (10) zeichnet sich dadurch aus, dass der an den Saugraum (30) gelieferte erste Teil der Kraftstoffmenge durch die Zumesseinheit (18) soweit verringerbar ist, dass der an den Saugraum (30) gelieferte erste Teil der Kraftstoffmenge nicht zur Erzeugung eines Druckes ausreicht, der das Differenzdruckventil (32) öffnet, wobei ein Abfließen von Kraftstoff aus dem Saugraum (30) nur über wenigstens ein Pumpelement (36) erfolgt.

Description

Niederdruckkreislauf für ein Speichereinspritzsyste
Stand der Technik
Die Erfindung betrifft einen Niederdruckkreislauf für ein Speichereinspritzsystem eines Verbrennungsmotors mit einer Hochdruckpumpe, die wenigstens ein Pumpelement aufweist, das über ein Differenzdruckventil aus einem Saugraum der Hochdruckpumpe mit einem ersten Teil einer Kraftstoffmenge versorgt wird, die von einer Niederdruckpumpe gefördert wird, wobei eine steuerbare Zumesseinheit in einem Kraftstoffpfad zwischen dem Di ferenzdruckventil und der Niederdruckpumpe angeordnet ist .
Bei einem Speichereinspritzsystem sind ein oder mehrere Einspritzdüsen über steuerbare Ventile an einen KraftstoffSpeicher angeschlossen. Der Kraftstoff steht in dem KraftstoffSpeicher unter einem Druck, der zur Einspritzung in Brennräume des Verbrennungsmotors ausreichend ist. Bei einem Diesel -Verbrennungsmotor entspricht dies einem Druck in der Größenordnung von über 1000 bar. Durch öffnendes Ansteuern der Ventile wird Kraftstoff aus dem Speicher in die Brennräume eingespritzt. Der KraftstoffSpeicher ist üblicherweise mehreren Brennräumen gemeinsam zugeordnet und wird daher als Common Rail bezeichnet.
Die Hochdruckpumpe ist häufig als Radialkolbenpumpe mit mehreren Pumpelementen ausgestaltet, die über eine mechanisch von dem Verbrennungsmotor angetriebene Welle betätigt werden. Dabei wird Kraftstoff in Arbeitsräume der Pumpelemente gesaugt, von den radial beweglichen Kolben unter Druck gesetzt und ausgestoßen. Das Ansaugen des Kraftstoffes erfolgt aus einem Saugraum über jeweils ein Differenzdruckventil, das beim Erreichen eines definierten Druckunterschiedes zwischen dem Saugraum und dem Arbeitsraum des Pumpelementes öffnet und damit das Einstromen von Kraftstoff in den Arbeitsraum erlaubt. Beim Verdichtungshub arbeitet das Differenzdruckventil als Ruckschlagventil.
Der Kraftstoff wird von einer Niederdruckpumpe geliefert, die Kraftstoff aus einem Tank ansaugt und mit einem Druck von wenigen bar, beispielsweise 1 bis 5 bar, über einen Zulauf für die Hochdruckpumpe bereitstellt. Zwischen Niederdruckpumpe und Saugraum ist die Zumesseinheit angeordnet, die zur Steuerung der an den Speicher gelieferten Hochdruckfordermenge der Hochdruckpumpe durch eine Drosselung des an den Saugraum gelieferten ersten Teils der Kraftstoffmenge dient. Dabei bildet der Saugraum die Gesamtheit aller miteinander kommunizierender Volumina zwischen dem Differenzdruckventil und der Zumesseinheit.
Kraftstoff, der nicht über die Zumesseinheit zum Saugraum gelangt, strömt über wenigstens einen Rucklauf auf die Eingangsseite der Niederdruckpumpe zurück. Eine solche Rückführung schließt den Kreis der unter Niederdruck stehenden Komponenten, die u.a. den Tank, die Niederdruckpumpe, die Zumesseinheit und den Rucklauf umfassen. Die Gesamtheit dieser Komponenten und der zugehörigen Verbindungsleitungen wird daher als Niederdruckkreislauf bezeichnet.
Ein solcher Niederdruckkreislauf ist aus der DE 1 99 26 308 AI bekannt.
Es ist wünschenswert, eine Nullforderung der Hochdruckpumpe einstellen zu können, um beispielsweise im Schiebebetrieb des Verbrennungsmotors die Kraftstoffzufuhr zu Brennraumen des Verbrennungsmotors zu unterbrechen, ohne dass dabei der Druck des Kraftstoffes im KraftstoffSpeicher (Rail) auf unerwünscht hohe oder unzulässig hohe Werte ansteigen kann.
Diese Wirkung kann dadurch erreicht werden, dass ein Druckentlastungsventil am Com-mon Rail geöffnet wird, um den Raildruck in erlaubten Grenzen zu halten. In diesem Fall fließt der von der Hochdruckpumpe gelieferte KraftstoffÜberschuß auf niedrigem Druckniveau auf die Eingangsseite des Niederdruckkreislaufs zurück. Daher wird der Druck des Kraftstoffes, der über das Druckentlastungsventil abgeleitet wird, letztlich unnötigerweise durch die Hochdruckpumpe vom Niederdruckniveau (Größenordnung: < 10 bar) auf Raildruckniveau (Größenordnung: > 1000 bar) gehoben, was unnötig Energie kostet und der Lebensdauer der beteiligten Komponenten abtraglich ist.
Es hat sich gezeigt, dass üblicherweise verwendete Zumesseinheiten eine Leckage aufweisen, die die Einstellung einer Nullforderung der Hochdruckpumpe durch eine Drosselung der Kraftstoffzufuhr zum Saugraum der Hochdruckpumpe erschweren. Dieses Problem tritt besonders in Verbindung mit ungeregelten Niederdruckforderpumpen auf, die wegen ihrer Konstruktion immer einen gewissen Druck vor der Zumesseinheit aufrechterhalten. Aus diesem Druck resultiert der erwähnte Leckagestrom zum Saugraum. Ein typisches Beispiel einer ungeregelten Niederdruckforderpumpe ist eine mechanisch vom Verbrennungsmotor angetriebene Zahnradpumpe.
Nach der DE 1 99 26 308 wird der Saugraum über eine Nullforderdrossel mit einem Rucklauf verbunden. Die Drossel ist einerseits so ausgelegt, dass sie bei geöffneter Zumesseinheit einen Druckaufbau im Saugraum erlaubt, der zur Öffnung der Differenzdruckventile ausreichend ist. Die Hochdruckpumpe kann daher Kraftstoff fordern. Andererseits ist die Drossel gleichzeitig so ausgelegt, dass sie bei schließend angesteuerter Zumesseinheit einen verbleibenden Leckagestrom zum Rucklauf abfließen lasst. In diesem Fall wird der zum Offnen der Differenzdruckventile notwendige Druck im Saugraum nicht erreicht, so dass die Pumpe wunschgemäß nicht fordert.
Die Nullforderdrossel fuhrt, wie bereits erwähnt, bei der DE 1 99 26 308 auf eine Rucklaufleitung . Diese Rucklaufleitung fuhrt in den Tank und steht daher unter Umgebungsdruck. Der in einer Größenordnung zwischen 0,5 bar und etwa 1 bar schwankende Umgebungsdruck kann dazu fuhren, dass die Hochdruckpumpe bei erwünschter Nullforderung wegen des an den Differenzdruckventilen herrschenden Rucklaufdruckes Kraftstoff aus der Rucklaufleitung ansaugt. Um dies zu verhindern, müssen die Offnungsdrucke der Differenzdruckventile ausreichend hoch eingestellt sein. Dadurch wird ein unerwünschtes Offnen der
Differenzdruckventile verhindert. Als Nachteil ergibt sich, dass der hohe Offnungsdruck bei erwünschter Forderung und niedrigem Umgebungsdruck durch die Niederdruckpumpe überwunden werden muß .
Dadurch wird der wirksame Fulldruck, mit dem die Hochdruckpumpe befullt wird, verringert. Als Folge verringert sich die Fullrate , d.h. die Fullmenge pro Zeiteinheit in uberproportionaler Weise.
Um bei hohen Drehzahlen noch eine ausreichende Forderung der Hochdruckpumpe zu erzielen, muss die Niederdruckpumpe bei dem bekannten Niederdruckkreislauf mit hohem Forderdruck arbeiten (bspw. 5 bar), was die Lebensdauer der Forderpumpe gegenüber einem Betrieb mit geringeren Drucken herabsetzt.
Mit anderen Worten: Der hohe Offnungsdruck der Differenzdruckventile fuhrt zu einer unerwünschten Drosselung des bekannten Niederdruckkreislaufs, die durch einen Betrieb der Niederdruckpumpe mit erhöhter Antriebsleistung und erhöhtem Druck kompensiert werden muss. Vor diesem Hintergrund besteht die Aufgabe der Erfindung darin, einen stabilen, entdrosselteri Niederdruckkreislauf mit hinsichtlich Druckniveau und Fördermenge reduzierten Anforderungen an die Förderpumpe anzugeben.
Diese Aufgabe wird bei einem Niederdruckförderkreislauf der eingangs genannten Art dadurch gelöst, dass der an den Saugraum gelieferte erste Teil der Kraftstoffmenge durch die Zumesseinheit soweit verringert werden kann, dass der an den Saugraum gelieferte erste Teil der Kraftstoffmenge nicht zur Erzeugung eines Druckes ausreicht, der das Differenzdruckventil öffnet, wobei ein Abfließen von Kraftstoff aus dem Saugraum nur über wenigstens ein Pumpelement erfolgt.
Die Verwendung einer Zumesseinheit, die die genannte Verringerung erlaubt, stellt eine Voraussetzung der Erfindung dar. Eine mögliche Ausgestaltung einer solchen Zumesseinheit wird weiter im Rahmen eines Ausführungsbeispiels erläutert.
Die Erfindung beschränkt sich aber nicht auf die unten erläuterte spezielle Ausgestaltung einer dichten Zumesseinheit sondern richtet sich vielmehr auf die Optimierung eines Niederdruckkreislaufs unter Verwendung einer dichten Zumesseinheit. Die bei der oben verwendeten Angabe der Lösung genannte Zumesseinheit ist eine solche dichte Zumeßeinheit. Dies ergibt sich aus der Forderung, dass der an den Saugraum gelieferte erste Teil der Kraftstoffmenge durch die Zumesseinheit soweit verringerbar ist, dass der an den Saugraum gelieferte erste Teil der Kraftstoffmenge nicht zur Erzeugung eines Druckes ausreicht, der das Differenzdruckventil öffnet, wobei ein Abfließen von Kraftstoff aus dem Saugraum nur über wenigstens ein Pumpelement erfolgt. Insbesondere der letzte Teilsatz schließt die Verwendung der bekannten Nullförderdrossel aus, die bei Zumesseinheiten, die vergleichsweise weniger dicht sind, den unerwünschten Leckagestrom ableitet.
Vorteile der Erfindung
Der Entfall der Nullforderdrossel stellt bereits deshalb einen Vorteil da, weil der Entfall eine vereinfachte und damit kostengünstigere Fertigung des Niederdruckkreislaufs erlaubt .
Ein wesentlicher Vorteil resultiert daraus, dass die störende Ankopplung des Saugraums an den Rucklaufdruck wegfallt.
Die Saugventile können daher mit geringeren Federkräften betrieben werden, was zu der angestrebten Entdrosselung des Niederdruckkreislaufs fuhrt. Dadurch werden bei gleichem Fulldruckniveau bessere Füllungen und damit ein besserer Liefergrad der Hochdruckpumpe erreicht. Dabei entspricht das genannte Fulldruckniveau hier nicht dem Uberschussdruckniveau des Saugraums gegenüber dem Arbeitsraum der Pumpelemente beim Ansaugen, sondern dem bei geöffneter Zumesseinheit im Saugraum herrschenden Absolutdruck.
Die Dimensionierung der Offnungsdrucke der
Differenzdruckventile kann daher so optimiert werden, dass die Differenzdruckventile bei fehlender Nullforderdrossel dann schließen, wenn keine Forderung erwünscht ist. Dies verhindert ein Leersaugen des Saugraums. Die mögliche Reduzierung der Differenzventiloffnungsdrucke ergibt sich als Folge des Wegfalls der Nullforderdrossel und damit als Folge der Verwendung einer dichten Zumesseinheit.
Es ist bevorzugt, dass das Differenzdruckventil bei einem Differenzdruck öffnet, der kleiner als 0,9 bar ist. Es hat sich gezeigt, dass dieses Differenzdruckniveau einen guten Kompromiß zwischen den Forderungen nach einem möglichst hohen Differenzdruckniveau zur Vermeidung des Leersaugens des Saugraums und nach einem möglichst niedrigen Druckniveau zur leichteren Füllung der Pumpelemente darstellt. Bei dem bekannten Niederdruckkreislauf mit einer Nullforderdrossel liegt der notwendige Differenzdruck etwa 1 bar hoher.
Es ist weiter bevorzugt, dass ein zweiter Teil des von der Niederdruckforderpumpe geforderten Kraftstoffs vor der Zumesseinheit abgezweigt und über wenigstens einen Rucklauf auf einen Teil des Niederdruckkreislaufs zurückgeführt wird, der auf einer Eingangsseite der Niederdruckpumpe liegt.
Diese Ausgestaltung besitzt den Vorteil, dass ein von der Niederdruckforderpumpe bereitgestellter KraftstoffÜberschuß auch für andere Zwecke, beispielsweise zur Kühlung und/oder Schmierung der Hochdruckpumpe verwendet werden kann. Dabei gilt die mögliche Verwendung als Schmiermittel insbesondere für Dieselkraftstoff. Die Aufteilung der vom Ausgang der Niederdruckpumpe bereitgestellten Kraftstoffmenge in wenigstens einen Forderstrom und einen Schmierstrom, wobei der Forderstrom der ersten Kraftstoffmenge entspricht und wobei der Schmierstrom getrennt von dem Forderstrom über Lager der Hochdruckpumpe geleitet wird, besitzt den Vorteil, dass sich eine KraftstoffSchmierung der Hochdruckpumpe realisieren lasst, ohne dass der Forderstrom über die Lager der Hochdruckpumpe gefuhrt wird, bevor er den Saugraum erreicht. Dadurch wird insbesondere beim Start ein schnelles Einsetzen der Forderung der Hochdruckpumpe erreicht, was eine Voraussetzung für ein schnelles Anspringen der Verbrennungsmotors ist.
Es ist weiter bevorzugt, dass der vor der Zumesseinheit abgezweigte Teil des von der Niederdruckpumpe geforderten Kraftstoffs vor der Rückführung über einen ersten Rucklauf wenigstens teilweise als dritter Teil über einen Innenraum der Hochdruckpumpe gefuhrt wird.
Diese Ausgestaltung nutzt vorteilhafterweise den ruckzufuhrenden Kraftstoffanteil an der von der Niederdruckpumpe geforderten Kraftstoffmenge für eine Kühlung und/oder Schmierung der Hochdruckpumpe.
Es ist weiter bevorzugt, dass der dritte Teil über ein Schaltventil zu dem Innenraum gefuhrt wird.
Diese Ausgestaltung besitzt den besonderen Vorteil dass die Kühlung und/oder Schmierung im Start des Verbrennungsmotors durch das Schaltventil unterbrochen werden kann, so dass auch der sonst für die Kühlung und/oder Schmierung verwendete Anteil an der von der Niederdruckpumpe geforderten Kraftstoffmenge für eine Forderung durch die Hochdruckpumpe zur Verfugung steht. Das Schaltventil kann ein federbelastetes Ventil sein. Alternativ kann es sich um ein Ventil handeln, das von einer Steuereinrichtung betätigt wird. Durch das Schaltventil wird der schnelle Druckaufbau im Common Rail erleichtert, was zu einem schnellen Start des Verbrennungsmotors nach einem Stillstand beitragt.
Es ist weiter bevorzugt, dass der dritte Teil über eine Begrenzungsdrossel zu dem Innenraum gefuhrt wird.
Der Vorteil dieser Ausgestaltung besteht darin, dass der Kühl und/oder Schmierstrom durch die Hochdruckpumpe auf einen durch die Dimensionierung der Begrenzungsdrossel vorbestimmten Maximalwert begrenzt wird. Dadurch kann bspw. eine unerwünschte Erwärmung des Kraftstoffes vermieden werden .
Es ist weiter bevorzugt,' dass ein weiterer Teil des zweiten Teils als vierter Teil über ein Überströmventil und einen zweiten Rucklauf auf einen Teil des Niederdruckkreislaufs zurückgeführt wird, der auf der Eingangsseite der Niederdruckpumpe liegt.
Durch dieses Abzweigen wird eine Überströmfunktion erzielt. Als Folge wird vorteilhafterweise vermeiden, dass bei hoher Förderleistung der Niederdruckpumpe und gleichzeitig niedrigem Hochdruckkraftstoffbedarf unzulässig oder unerwünscht hohe Drücke vor der Zumesseinheit aufgebaut werden. Die beschriebenen Randbedingungen können beispielsweise bei einer mit dem Verbrennungsmotor drehsynchron gekoppelten Zahnradpumpe bei hohen Motordrehzahlen im Schiebebetrieb auftreten.
Es ist weiter bevorzugt, dass ein weiterer Teil des zweiten Teils als fünfter Teil über eine Entlüftungsdrossel und den ersten Rücklauf auf den auf der Eingangsseite der Niederdruckpumpe liegenden Teil des Niederdruckkreislaufs zurückgeführt wird.
Diese Ausgestaltung ermöglicht ein Entlüften des Niederdruckkreislaufs nach einem Eindringen von Luft, wie es beispielsweise durch ein zu weitgehendes Leerfahren des Kraftstofftanks verursacht werden kann. Im Niederdruckkreislauf verbleibende Luft könnte sonst zu Störungen der Hochdruckförderung führen.
Es ist weiter bevorzugt, dass wenigstens ein Teil des als dritter Teil über den Innenraum der Hochdruckpumpe geführten Teils als Lagerschmierstrom über wenigstens ein Lager der Hochdruckpumpe in den ersten Rücklauf geleitet wird.
Diese Ausgestaltung erlaubt vorteilhafterweise eine Zwangsschmierung und Spülung des betreffenden Lagers mit einem definierten Schmierstrom.
Es ist weiter bevorzugt, dass ein weiterer Teil des über den Innenraum der Hochdruckpumpe geführten dritten Teils über eine Lager-Bypassdrossel oder ein Lager-Bypassventil in den ersten Rücklauf geleitet wird.
Diese Ausgestaltungen betreffen eine Aufteilung des Schmierstroms auf Lager und Bypass und erlauben, wegen der Wechselwirkung der Lager- und Bypass-Ströme, eine Beeinflussung eines Schmierstroms über das betreffende Lager.
Es ist weiter bevorzugt, dass der dritte Teil in einen sechsten Teil und einen siebten Teil aufgeteilt wird, dass der sechste Teil als Flanschlagerschmierstrom über Flanschlager zu dem Innenraum der Hochdruckpumpe geführt wird, und dass der siebte Teil als Gehäuselagerschmierstrom über Gehäuselager zu dem Innenraum der Hochdruckpumpe geführt wird .
Diese Ausgestaltung liefert weitere konstruktive Freiheitsgrade und erlaubt damit eine lagerindividuelle Einstellung von Schmierströmen.
Weitere Vorteile ergeben sich aus der Beschreibung und den beigefugten Figuren.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Allemstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Zeichnungen
Ausfuhrungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung naher erläutert. Es zeigen:
Figur 1 schematisch eine erste Ausgestaltung eines Niederdruckkreislaufes; Figur 2 schematisch eine zweite Ausgestaltung eines Niederdruckkreislaufs;
Figur 3 ebenfalls schematisch eine dritte Ausgestaltung eines Niederdruckkreislaufs; und
Figur 4 eine mögliche Realisierung einer dichten Zumesseinheit .
In Figur 1 bezeichnet die Ziffer 10 einen
Niederdruckkreislauf für ein Speichereinspritzsystem eines Verbrennungsmotors. Der Niederdruckkreislauf 10 weist einen Tank 12, wenigstens einen Filter 14, eine Niederdruckpumpe 16, eine Zumesseinheit 18, eine Hochdruckpumpe 20 und wenigstens einen Rücklauf 22 auf. Kraftstoff aus dem Tank 12 wird von der Niederdruckpumpe 16 über den Filter 14 angesaugt. Die Niederdruckpumpe 16 kann bspw. eine kontinuierlich vom Verbrennungsmotor angetriebene Zahnradpumpe sein. Zur Beschränkung der Förderleistung der Niederdruckpumpe 16 bei hohen Drehzahlen des
Verbrennungsmotors kann der Niederdruckpumpe 16 eine Drossel 24 vorgeschaltet sein. Nach einem Ausgang 26 der Niederdruckpumpe 16 findet in einer Verzweigung 28 eine Aufteilung der von der Niederdruckpumpe 16 geförderten Kraftstoffmenge in einen ersten Teil und einen zweiten Teil statt .
Der erste Teil dieser Kraftstoffmenge wird über die Zumesseinheit 18 zu einem Saugraum 30 der Hochdruckpumpe 20 gefördert. Der Saugraum 30 der Hochdruckpumpe 20 ist durch Differenzdruckventile 32 von Arbeitsräumen 34 der Hochdruckpumpe 20 getrennt. Ein Pumpelement 36 wird jeweils durch einen Kolben 38 zusammen mit einem Arbeitsraum 34 gebildet. Jeder Arbeitsraum 34 ist darüber hinaus mit einem Hochdruckventil 40 verbunden, das eine Zuleitung 42 zu einem nicht dargestellten KraftstoffSpeicher des Speichereinspritzsystems druckgesteuert öffnet und schließt.
Ein Exzenter 44 ist in einem Innenraum 46 der Hochdruckpumpe 20 drehbar beweglich und wird bspw. mechanisch durch den Verbrennungsmotor angetrieben. Durch den Exzenter 44 werden wiederum die Kolben 38 der Pumpelemente 36 in radialer Richtung betätigt, so dass die Arbeitsraume 34 der Pumpelemente 36 periodisch verkleinert und vergrößert werden. Der beim Vergrößern der Arbeitsraume 34 sinkende Druck innerhalb der Arbeitsraume 34 öffnet jeweils ein Differenzdruckventil, so dass Kraftstoff aus dem Saugraum 30 in den betreffenden Arbeitsraum 34 strömen kann. Beim Verkleinern eines Arbeitsraums 34 steigt der Druck, was zunächst zu einem Schließen des Differenzdruckventils 32 fuhrt. Anschließend wird der Druck auf den im Arbeitsraum 34 eingeschlossenen Kraftstoff erhöht, bis schließlich das Hochdruckventil 40 den unter Hochdruck stehenden Kraftstoff über die Zuleitung 42 m den KraftstoffSpeicher abfließen lαSSl--- >
Das Anheben des Kraftstoffdruckes vom Niederdruckpumpenniveau (1 bis 5 bar) auf Hochdruckniveau (großer als 1000 bar) verbraucht Energie und belastet die beteiligten Komponenten mechanisch. Aus diesem Grund soll die Hochdruckpumpe 20 nur soviel Kraftstoff fordern, wie für den Verbrennungsmotor in dessen aktuellem Betriebspunkt tatsachlich erforderlich ist. Diese tatsachlich erforderliche Menge ist in einem Steuergerat 48 bekannt. Das Steuergerat 48 wird daher auch dazu verwendet, die Forderung der Hochdruckpumpe 20 bedarfsabhangig saugseitig zu begrenzen. Zu diesem Zweck steuert das Steuergerat 48 die steuerbare Zumesseinheit 18 so an, dass je nach Bedarf des Verbrennungsmotors mehr oder weniger Kraftstoff als erster Teil der von der Niederdruckpumpe 16 geforderten Kraftstoffmenge zur Hochdruckpumpe 20 gelangt. Der zweite Teil der von der Niederdruckpumpe 16 geförderten Kraftstoffmenge wird in Verzweigungen 49 und 50 weiter aufgeteilt. Hinter den beiden Verzweigungen 49 und 50 strömt ein im weiteren als dritter Teil bezeichneter Kraftstoffström über ein federbelastetes Schaltventil 52 und eine vorgeschaltete Drossel 54 zum Innenraum 46 der Hochdruckpumpe 20. Von dort fließt der dritte Teil der von der Niederdruckpumpe 16 geförderten Kraftstoffmenge über Flanschlager 56, Gehäuselager 58, eine Lager-Bypass-Drossel 60 und/oder ein Lager-Bypass-Ventil 62 in einen (ersten) Rücklauf 22, der zum Tank 12 zurückführt. Der über den Innenraum 46 der Hochdruckpumpe 20 strömende Kraftstoffteilstrom erfüllt zwei Aufgaben. Zum einen transportiert er überschüssige Wärme aus der Hochdruckpumpe 20 ab und dient daher zur Kühlung der Hochdruckpumpe 20. Darüber hinaus strömt er vom Innenraum 46 der Hochdruckpumpe 20 zumindest teilweise über das Flanschlager 56 und das Gehäuselager 58 der Hochdruckpumpe 20, was diese Lager sowohl zwangsweise schmiert als auch ein unerwünschtes Festsetzen von Partikeln in den genannten Lagern verhindert.
Übliche Hochdruckpumpen 20 sind in geteilter Ausführung realisiert, wobei jeweils der fest mit dem Verbrennungsmotor verbundene Teils als Flansch bezeichnet wird und der an dem Flansch befestigte zweite Teil als Gehäuse bezeichnet wird. Der Exzenter 44 ist üblicherweise Teil einer Welle, die vom Verbrennungsmotor angetrieben wird und sowohl im Flansch, als auch im Gehäuse der Hochdruckpumpe 20 gelagert ist. Die Lager-Bypass-Drossel 60 erfüllt in diesem Zusammenhang die Aufgabe, den Schmierstrom durch die Lager in definierter Weise zu begrenzen.. Dadurch wird auch verhindert, dass sich im Innenraum 46 der Hochdruckpumpe 20 ein unerwünscht hoher Druck einstellt. Diese Funktion kann auch durch ein federbelastetes Lager-Bypass-Ventil 62 übernommen oder unterstützt werden. Ein vierter Teil des von der Niederdruckpumpe 16 geforderten Kraftstoffs kann über ein Überströmventil 64 und einen zweiten Rucklauf 65 auf die Saugseite der Niederdruckpumpe 16 zurückgeführt werden. Das Überströmventil 64 kann bspw. als federbelastetes Differenzdruckventil ausgeführt sein, das beim Überschreiten einer vorgegebenen Druckdifferenz zwischen Ausgang 26 der Niederdruckpumpe 16 und deren Eingang öffnet und einen Teil der von der Niederdruckpumpe 16 geforderten Kraftstoffmenge weder als ersten Teil über die Zumesseinheit 18 noch als dritten Teil über Schaltventil 52 und Drossel 54 zur Hochdruckpumpe 20 gelangen lasst.
Überströmventile sind auch bei bekannten
Niederdruckkreislaufen in Form von Kaskadenuberstromventilen verwendet worden. Ein solches Kaskadenuberstromventil ist als bauliche Einheit mit einer Entluftungsdrossel und einer Schmierdrossel aufgebaut und zwischen dem Ausgang 26 der Niederdruckpumpe 16 und dem Innenraum 46 der Hochdruckpumpe 20 angeordnet. Abgesehen von der Entluftungsdrossel, die nur vergleichsweise kleine Durchflusse erlaubt, sperrt das bekannte Kaskadenuberstromventil zunächst, d.h. bei niedrigem Forderdruck der Niederdruckpumpe 16, den Durchfluss von Kraftstoff zu Innenraum 46 und Lagern der Hochdruckpumpe 20. Ein ansteigender Forderdruck der Niederdruckpumpe 16 öffnet dann zunächst in einer ersten Stufe der Kaskade des Kaskadenuberstromventils eine Schmierdrossel und in einer zweiten Stufe der Kaskade des Kaskadenuberstromventils eine Verbindung zur Eingangsseite der Niederdruckforderpumpe. Dabei liegt der Offnungsdruck der zweiten Stufe hoher als der Offnungsdruck der ersten Stufe.
Der hier vorgestellte Niederdruckkreislauf besitzt dagegen den Vorteil, dass die Uberstromfunktion (Überströmventil 64) und die Funktion des Freigebens eines Kühl- und Schmierstroms zum Innenraum 46 der Hochdruckpumpe 20 durch ein Schaltventil 52 baulich entkoppelt sind. Dadurch ergeben sich größere Freiheiten bei der Anordnung von Ventilen und Drosseln und damit bei der Konstruktion der Hochdruckpumpe 20, die meist mit dem Überströmventil 64 und dem Schaltventil 52 eine bauliche Einheit bildet. Dieser Vorteil wird noch dadurch verstärkt, dass auch die Entlüftungsdrossel 66 beim hier vorgestellten Niederdruckkreislauf baulich von dem Überströmventil 64 und dem Schaltventil 52 entkoppelt sein kann.
Figur 2 zeigt schematisch eine zweite Ausgestaltung eines Niederdruckkreislaufs 10. Der Niederdruckkreislauf nach Figur 2 unterscheidet sich vom Niederdruckkreislauf nach Figur 1 dadurch, dass die Niederdruckpumpe 16 samt Drossel 24 durch eine Elektrokraftstoffpumpe 68 ersetzt worden ist, die zwischen Filter 14 und Tank 12 angeordnet ist. Eine Elektrokraftstoffpumpe 68 kann, anders als eine vom Verbrennungsmotor angetriebene Zahnradpumpe, unabhängig vom Verbrennungsmotor betrieben werden. Sie kann bspw. bereits vor dem Start des Verbrennungsmotors elektrisch betrieben werden und Druck aufbauen. Aus diesem Grund ist es bei der Verwendung einer Elektrokraftstoffpumpe 68 möglich, auf ein Schaltventil 52, wie es in Figur 1 verwendet wird, zu verzichten.
Bei der Ausgestaltung der Figur 1 hat das Schaltventil 52 die Aufgabe, beim Anlaufen des Verbrennungsmotors und des Niederdruckkreislaufs mit der Niederdruckförderpumpe 16 einen schnellen Druckaufbau in der Leitung, die von der Verzweigung 28 zum Saugraum 30 führt, zu ermöglichen. Dieser schnelle Druckaufbau ist wünschenswert, um möglichst schnell bei einem gewünschten Start des Verbrennungsmotors unter Hochdruck stehenden Kraftstoff für Einspritzungen zur Verfügung stellen zu können. Gegenüber diesem Ziel hat die Schmierung und Kühlung der Hochdruckpumpe 20 kurzzeitig eine geringere Priorität so dass das federbelastete Schaltventil 52 bei niedrigem Druck am Ausgang 26 der Niederdruckpumpe 16 die Verbindung zum Innenraum 46 der Hochdruckpumpe 20 sperrt.
Figur 3 zeigt schematisch eine dritte Ausgestaltung eines Niederdruckkreislaufs. Diese unterscheidet sich von der Ausgestaltung nach Figur 1 durch eine Aufspaltung des dritten Kraftstoffteilstroms in einen sechsten Kraftstoffteilstrom und einem siebten Kra-ftstoffteilstrom. Der sechste Kraftstoffteilstrom ist dem Flansch zugeordnet und wird durch eine Flansch-Schmierstrom-Begrenzungsdrossel begrenzt. Anschließend strömt der sechste Teilstrom über Flanschlager 56, den Innenraum 46 der Hochdruckpumpe 20, ein Schaltventil 62 und den Rücklauf 22 zurück zum Tank 12. Parallel dazu strömt der durch eine Gehäuse-Schmierstrom-Begrenzungsdrossel 72 begrenzte Gehäuseschmierstrom über ein Gehäuselager 58, den Innenraum 46 der Hochdruckpumpe 20, das Schaltventil 71 und den Rücklauf 22 zum Tank 12 zurück. Optional kann noch eine weitere Flüssigkeitsführung vorgesehen sein, die dem Innenraum 46 der Hochdruckpumpe 20 parallel zu den Teilströmen über Flanschlager 56 und Gehäuse 58 noch eine Kühlstrom zuführt, der ebenfalls von dem dritten Kraftstoffteilstrom abgezweigt und durch eine Kühldrossel 74 begrenzt wird.
Im Folgenden wird eine mögliche Realisierung einer dichten Zumesseinheit 18 unter Bezug auf Figur 4 beschrieben. Die Zumesseinheit 18 weist ein Ventilgehäuse 76 auf, in dem in einer Zylinderbohrung 78 ein schieberförmiges Ventilglied 80 verschiebbar geführt ist. Das Ventilglied 80 weist in seinem Außenmantel wenigstens eine Ausnehmung 82 auf, die sich in Richtung der Längsachse 84 des Ventilglieds 80 über einen Teil der Längserstreckung und außerdem über einen Teil des Umfangs des Ventilglieds 80 erstreckt. Die Ausnehmung 82 wird nachfolgend noch näher erläutert. Im Ventilgehäuse 76 ist eine in die Zylinderbohrung 78 mündende AblaufÖffnung 86 ausgebildet, mit der die Ausnehmung 82 des Ventilglieds 80 zur Steuerung der Große eines Durchflussquerschnitts zusammenwirkt. Die AblaufÖffnung 86 ist mit der Saugseite (Saugraum 30) der Hochdruckpumpe 20 verbunden.
Die Ausnehmung 82 reicht am Ventilglied 80 in Längsrichtung bis zu einer Stirnseite des Ventilglieds 80. An dieser Stirnseite weist das Ventilglied 80 eine Dichtflache 88 auf, die bspw. zumindest annähernd kegelstumpfformig verjungend ausgebildet sein kann. Das Ventilglied 8 ver üngt sich dabei kegelstumpfformig zu seinem Ende hin. Die Dichtflache 88 kann alternativ auch bspw. zumindest annähernd kugelsegmentformig ausgebildet sein. In die der Dichtflache 88 des Ventilglieds 80 gegenüberliegende Stirnwand 90 der Zylinderbohrung 78 mundet eine Zulaufoffnung 92, die mit dem Ausgang 26 der Niederdruckpumpe 16 verbunden ist. Die Zulaufoffnung 92 umgebend ist im Ventilgehause 76 ein Ventilsitz 94 ausgebildet, mit dem das Ventilglied 80 mit seiner Dichtflache 88 zum Verschließen der Zulaufoffnung 92 zusammenwirkt. Der Ventilsitz 94 kann ebenfalls zumindest annähernd kegelstumpfformig ausgebildet sein, wobei die Kegelwinkel der Dichtflache 88 und des Ventilsitzes 94 gleich oder unterschiedlich sein können. Der Ventilsitz 94 erweitert sich dabei zum Ventilglied 80 hin. Vorzugsweise ist der Kegelwinkel des Ventilsitzes 94 großer als der Kegelwinkel der Dichtflache 88, so dass das Ventilglied 80 nur mit der Kante seiner Dichtflache 88 am Ende des Ventilglieds 80 am Ventilsitz 94 zur Anlage kommt.
Am Ventilglied 80 greift auf der dem Ventilsitz 94 abgewandten Seite ein Anker 96 eines Elektromagneten 98 an, durch den bei einer Bestromung des Elektromagneten 98 das Ventilglied 80 zum Ventilsitz 94 hin verschiebbar ist. Auf der dem Anker 96 gegenüberliegenden Seite greift am Ventilglied 80 eine Ruckstellfeder 100 an.
Nachfolgend wird die Funktion der Zumesseinheit 18 erläutert. Wenn durch die Hochdruckpumpe 20 kein Kraftstoff gefördert werden soll, wird der Elektromagnet 98 durch das Steuergerät 48 mit einer hohen Stromstärke bestromt, so dass das Ventilglied 80 gegen die Kraft der Rückstellfeder 100 mit seiner Dichtfläche 88 an den Ventilsitz 94 gedrückt wird. In dieser Schließstellung wird durch das Ventilglied 80 die ZulaufÖffnung 92 vollständig geschlossen, auch wenn durch die Niederdruckpumpe 16 Druck erzeugt wird. In dieser Schließstellung befindet sich die Ausnehmung 82 des Ventilglieds 80 nicht in Überdeckung mit der Ablauföffnung 86 sondern das Ventilglied 80 befindet sich mit seinem vollen zylinderförmigen Querschnitt in Überdeckung mit der AblaufÖffnung 86. Das Ende der Ausnehmung 82 ist außerdem in Richtung der Längsachse 84 des Ventilglieds 80 mit einem Abstand h vom Rand der AblaufÖffnung 86 angeordnet.
Erst wenn der Leerhub h des Ventilglieds 80 durchfahren ist, kommt dessen Ausnehmung 82 in Überdeckung mit der AblaufÖffnung 86 und gibt einen Durchflussquerschnitt frei. Durch diese Ausbildung wird eine Trennung zwischen der Funktion des vollständigen Verschließens der ZulaufÖffnung 92 durch das Ventilglied 80 und der Funktion der Steuerung des Durchflussquerschnitts durch das Ventilglied 80 erreicht.
Durch Ansteuerung des Elektromagneten 98 durch das Steuergerät 48 mit unterschiedlichen Stromstärken können unterschiedliche Durchflussquerschnitte durch das Ventilglied 80 gesteuert werden, um entsprechend unterschiedliche erste Kraftstoffmengen für die Hochdruckpumpe 20 bereitzustellen.
Eine Ansteuerung des Elektromagneten 98 durch das Steuergerät 48 mitunterschiedlichen Stromstärken kann bspw. erreicht werden, indem der Elektromagnet 98 getaktet pulsweitenmoduliert angesteuert wird, wobei die Stromstärke und damit die Größe des freigegebenen Durchflussquerschnitts abhängig ist von der Pulsweite. Wenn sich das Ventilglied 80 gemäß Figur 4 in seiner Schließstellung befindet, so ist die Saugseite (Saugraum 30) der Hochdruckpumpe 20 vollständig von der Niederdruckpumpe 16 getrennt, so dass auf der Saugseite der Hochdruckpumpe 20 nur ein geringer Druck herrscht. Die Differenzdruckventile 32 der Arbeitsraume 34 der Hochdruckpumpe 20 brauchen daher nur gegenüber einem geringen Druck abzudichten, so dass diese bereits bei einem geringen Druck offnen können. Dadurch werden die konstruktiven Anforderungen an die Niederdruckpumpe 16 verringert. Außerdem wird der Erst- und Wiederstart des Verbrennungsmotors verbessert und der Wirkungsgrad der Hochdruckpumpe 20 wird verbessert, da die Drosselverluste an den Differenzdruckventilen 32 gering sind.
Die Ausgestaltung nach Fig. 4 soll den Gegenstand der vorliegenden Patentanmeldung nicht beschranken. Es sind, wenn ein Wegfall der Nullforderdrossel gewünscht wird, andere Ausgestaltungen dichter Zumesseinheiten denkbar, beispielsweise auch solche, die sich durch eine veränderte Ansteuerung bekannter Zumesseinheiten, beispielsweise durch hoherfrequente Tastverhaltnisse, auszeichnen.

Claims

Ansprüche
1. Niederdruckkreislauf (10) für ein
Speichereinspritzsystem eines Verbrennungsmotors mit einer Hochdruckpumpe (20), die wenigstens ein Pumpelement (36) aufweist, das über ein Differenzdruckventil (32) aus einem Saugraum (30) der Hochdruckpumpe (20) mit einem ersten Teil einer Kraftstoffmenge versorgt wird, die von einer Niederdruckpumpe (16) gefördert wird,
wobei eine steuerbare Zumesseinheit (18) in einem Kraftstoffpfad zwischen dem Differenzdruckventil (32) und der Niederdruckpumpe (16) angeordnet ist,
dadurch gekennzeichnet, dass
der an den Saugraum (30) gelieferte erste Teil der Kraftstoffmenge durch die Zumesseinheit (18) soweit verringerbar ist, dass der an den Saugraum (30) gelieferte erste Teil der Kraftstoffmenge nicht zur Erzeugung eines Druckes ausreicht, der das Differenzdruckventil (32) öffnet, und
wobei ein Abfließen von Kraftstoff aus dem Saugraum (30) nur über wenigstens ein Pumpelement (36) erfolgt.
2. Niederdruckkreislauf (10) nach Anspruch 1, dadurch gekennzeichnet, dass das Differenzdruckventil (32) bei einem Differenzdruck öffnet, der kleiner als 0,9 bar ist.
3. Niederdruckkreislauf (10) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass ein zweiter Teil der von der Niederdruckförderpumpe (16) geförderten Kraftstoffmenge vor der Zumesseinheit (18) abgezweigt und wenigstens teilweise über wenigstens einen Rücklauf (22) auf einen Teil des Niederdruckkreislaufs (10) zurückgeführt wird, der auf einer Eingangsseite der Niederdruckpumpe (16) liegt.
4. Niederdruckkreislauf (10) nach Anspruch 3, dadurch gekennzeichnet, dass der vor der Zumesseinheit (18) abgezweigte zweite Teil der von der Niederdruckpumpe (16) geförderten Kraftstoffmenge vor der Rückführung über einen ersten Rücklauf (22) wenigstens teilweise als dritter Teil über einen Innenraum (46) der Hochdruckpumpe (20) geführt wird.
5. Niederdruckkreislauf (10) nach Anspruch 4, dadurch gekennzeichnet, dass der dritte Teil über ein Schaltventil (52) zu dem Innenraum (46) geführt wird.
6. Niederdruckkreislauf (10) nach Anspruch 4, dadurch gekennzeichnet, dass der dritte Teil über eine Begrenzungsdrossel (54) zu dem Innenraum (46) geführt wird.
7. Niederdruckkreislauf (10) nach Anspruch 4, dadurch gekennzeichnet, dass ein weiterer Teil des zweiten Teils als vierter Teil über ein Überströmventil (64) und einen zweiten Rücklauf (65) auf einen Teil des Niederdruckkreislaufs (10) zurückgeführt wird, der auf einer Eingangsseite der Niederdruckpumpe (16) liegt.
8. Niederdruckkreislauf (10) nach Anspruch 7, dadurch gekennzeichnet, dass ein weiterer Teil des zweiten Teils als fünfter Teil über eine Entlüftungsdrossel (66) und den ersten Rücklauf (22) auf den auf der Eingangsseite der Niederdruckpumpe (16) liegenden Teil des Niederdruckkreislaufs (10) zurückgeführt wird.
9. Niederdruckkreislauf (10) nach wenigstens einem der Ansprüche 4 - 8, dadurch gekennzeichnet, dass wenigstens ein Teil des als dritter Teil über den Innenraum (46) der Hochdruckpumpe (20) geführten Teils als Lagerschmierstrom über wenigstens ein Lager (56, 58) der Hochdruckpumpe (20) in den ersten Rücklauf (22) geleitet wird.
10. Niederdruckkreislauf (10) nach Anspruch 9, dadurch gekennzeichnet, dass ein weiterer Teil des über den Innenraum (46) der Hochdruckpumpe (20) geführten dritten Teils über eine Lager-Bypassdrossel (60) oder ein Lager-Bypassventil (62) in den ersten Rücklauf (22) geleitet wird.
11. Niederdruckkreislauf (10) nach Anspruch 4, dadurch gekennzeichnet, dass der dritte Teil in einen sechsten Teil und einen siebten Teil aufgeteilt wird, dass der sechste Teil als Flanschlagerschmierstrom über Flanschlager (56) zu dem Innenraum (46) der Hochdruckpumpe (20) geführt wird, und dass der siebte Teil als Gehäuselagerschmierstrom über Gehäuselager (58) zu dem Innenraum (46) der Hochdruckpumpe
(20) geführt wird.
PCT/DE2002/004757 2001-12-19 2002-12-19 Niederdruckkreislauf für ein speichereinspritzsystem WO2003052262A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE10295868T DE10295868D2 (de) 2001-12-19 2002-12-19 Niederdruckkreislauf für ein Speichereinspritzsystem
AU2002363846A AU2002363846A1 (en) 2001-12-19 2002-12-19 Low-pressure circuit for a reservoir injection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10162385 2001-12-19
DE10162385.2 2001-12-19

Publications (1)

Publication Number Publication Date
WO2003052262A1 true WO2003052262A1 (de) 2003-06-26

Family

ID=7709799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/004757 WO2003052262A1 (de) 2001-12-19 2002-12-19 Niederdruckkreislauf für ein speichereinspritzsystem

Country Status (6)

Country Link
US (1) US20030136384A1 (de)
EP (1) EP1321663A3 (de)
JP (1) JP2003222059A (de)
AU (1) AU2002363846A1 (de)
DE (2) DE10295868D2 (de)
WO (1) WO2003052262A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1357285A3 (de) * 2002-04-23 2004-09-22 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
WO2005052357A1 (de) * 2003-11-28 2005-06-09 Ganser-Hydromag Ag Hochdruckförderpumpe für verbrennungsmotoren
WO2014009056A1 (de) * 2012-07-11 2014-01-16 Robert Bosch Gmbh Niederdruckkreislauf für ein kraftstoffeinspritzsystem, kraftstoffeinspritzsystem sowie verfahren zum betreiben eines kraftstoffeinspritzsystems

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10146740A1 (de) * 2001-09-22 2003-04-10 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10251014A1 (de) * 2002-11-02 2004-05-19 Robert Bosch Gmbh Kraftstoffzumesseinheit für Kraftstoffeinspritzanlagen von Brennkraftmaschinen
CN100381697C (zh) * 2004-10-13 2008-04-16 株式会社电装 燃料压力调节阀
JP2006138315A (ja) * 2004-10-13 2006-06-01 Denso Corp レギュレートバルブ
DE102005026511A1 (de) * 2005-06-09 2006-12-14 Robert Bosch Gmbh Ventil, insbesondere zur Verwendung als Saugventil auf der Saugseite von Kraftstoffeinspritzsystemen
EP1923562B1 (de) * 2006-11-16 2011-11-02 C.R.F. Società Consortile per Azioni Kraftstoffeinstellungs- und Kraftstofffiltervorrichtung für eine Hochdruckpumpe
DE102010043923A1 (de) 2010-11-15 2012-05-16 Robert Bosch Gmbh Niederdruckkreislauf für ein Kraftstoffeinspritzsystem sowie Kraftstoffeinspritzsystem
DE102013216468A1 (de) 2013-08-20 2015-02-26 Volkswagen Aktiengesellschaft Kraftstoffförderereinrichtung und Verfahren zum Betreiben einer Kraftstofffördereinrichtung
DE102020114417A1 (de) 2020-05-29 2021-12-02 Liebherr-Components Deggendorf Gmbh Hochdruckpumpe

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0299337A2 (de) * 1987-07-08 1989-01-18 IVECO FIAT S.p.A. Brennstoffeinspritzsystem für eine Brennkraftmaschine
WO1995025887A1 (de) * 1994-03-23 1995-09-28 Siemens Aktiengesellschaft Anordnung zur einspritzung von kraftstoff in die zylinder einer brennkraftmaschine
US5701873A (en) * 1993-11-08 1997-12-30 Eidgenoessische Technische Hochschule Laboratorium Fuer Verbrennungsmotoren Und Verbrennungstechnik Control device for a filling-ratio adjusting pump
DE19630938A1 (de) * 1996-07-31 1998-02-05 Siemens Ag Kraftstoffzuleitung mit einem Volumenstromregelventil und Volumenstromregelventil
US5884606A (en) * 1995-12-29 1999-03-23 Robert Bosch Gmbh System for generating high fuel pressure for a fuel injection system used in internal combustion engines
US6021761A (en) * 1998-01-16 2000-02-08 Robert Bosch Gmbh High-pressure pump for fuel delivery in fuel injection systems of internal combustion engines
US6162022A (en) * 1998-05-26 2000-12-19 Caterpillar Inc. Hydraulic system having a variable delivery pump
DE19926308A1 (de) * 1999-06-09 2000-12-21 Bosch Gmbh Robert Pumpenanordnung für Kraftstoff
WO2002040857A2 (de) * 2000-11-18 2002-05-23 Robert Bosch Gmbh Kraftstoffeinspritzanlage für brennkraftmaschinen mit verbessertem startverhalten

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3427421A1 (de) * 1984-07-25 1986-01-30 Klöckner-Humboldt-Deutz AG, 5000 Köln Steuerventil fuer eine kraftstoffeinspritzvorrichtung
JPS6280376A (ja) * 1985-10-03 1987-04-13 Mitsubishi Electric Corp 電磁比例制御弁
US5639066A (en) * 1995-06-15 1997-06-17 Applied Power Inc. Bidirectional flow control valve
EP0816672B1 (de) * 1996-07-05 2003-04-09 Nippon Soken, Inc. Hochdruckpumpe
DE19727785B4 (de) * 1997-06-30 2006-04-13 Robert Bosch Gmbh Mengenregelventil zur Steuerung von Flüssigkeiten
DE69925783T2 (de) * 1998-04-15 2006-05-11 Denso Corp., Kariya Brennstoffeinspritzsystem für eine Brennkraftmaschine
DE19818385A1 (de) * 1998-04-24 1999-10-28 Bosch Gmbh Robert Zuschaltventil in einem Kraftstoffeinspritzsystem für Brennkraftmaschinen
JP2000145591A (ja) * 1998-09-01 2000-05-26 Mitsubishi Electric Corp 燃料供給装置
US6231029B1 (en) * 1998-11-13 2001-05-15 Mando Machinery Corporation Solenoid valve for anti-lock brake system
DE19853103A1 (de) * 1998-11-18 2000-05-25 Bosch Gmbh Robert Kraftstoffeinspritzsystem für Brennkraftmaschinen
US6669166B2 (en) * 2000-07-28 2003-12-30 Nippon Soken, Inc. Electromagnetic valve

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0299337A2 (de) * 1987-07-08 1989-01-18 IVECO FIAT S.p.A. Brennstoffeinspritzsystem für eine Brennkraftmaschine
US5701873A (en) * 1993-11-08 1997-12-30 Eidgenoessische Technische Hochschule Laboratorium Fuer Verbrennungsmotoren Und Verbrennungstechnik Control device for a filling-ratio adjusting pump
WO1995025887A1 (de) * 1994-03-23 1995-09-28 Siemens Aktiengesellschaft Anordnung zur einspritzung von kraftstoff in die zylinder einer brennkraftmaschine
US5884606A (en) * 1995-12-29 1999-03-23 Robert Bosch Gmbh System for generating high fuel pressure for a fuel injection system used in internal combustion engines
DE19630938A1 (de) * 1996-07-31 1998-02-05 Siemens Ag Kraftstoffzuleitung mit einem Volumenstromregelventil und Volumenstromregelventil
US6021761A (en) * 1998-01-16 2000-02-08 Robert Bosch Gmbh High-pressure pump for fuel delivery in fuel injection systems of internal combustion engines
US6162022A (en) * 1998-05-26 2000-12-19 Caterpillar Inc. Hydraulic system having a variable delivery pump
DE19926308A1 (de) * 1999-06-09 2000-12-21 Bosch Gmbh Robert Pumpenanordnung für Kraftstoff
WO2002040857A2 (de) * 2000-11-18 2002-05-23 Robert Bosch Gmbh Kraftstoffeinspritzanlage für brennkraftmaschinen mit verbessertem startverhalten

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1357285A3 (de) * 2002-04-23 2004-09-22 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
WO2005052357A1 (de) * 2003-11-28 2005-06-09 Ganser-Hydromag Ag Hochdruckförderpumpe für verbrennungsmotoren
WO2014009056A1 (de) * 2012-07-11 2014-01-16 Robert Bosch Gmbh Niederdruckkreislauf für ein kraftstoffeinspritzsystem, kraftstoffeinspritzsystem sowie verfahren zum betreiben eines kraftstoffeinspritzsystems
US20150152829A1 (en) * 2012-07-11 2015-06-04 Robert Bosch Gmbh Low-pressure circuit for a fuel injection system, fuel injection system and method for operating a fuel injection system

Also Published As

Publication number Publication date
JP2003222059A (ja) 2003-08-08
DE10295868D2 (de) 2004-11-11
DE10261780A1 (de) 2003-07-03
EP1321663A2 (de) 2003-06-25
EP1321663A3 (de) 2003-07-02
AU2002363846A1 (en) 2003-06-30
US20030136384A1 (en) 2003-07-24

Similar Documents

Publication Publication Date Title
EP1306548B1 (de) Kraftstoffeinspritzanlage mit verbesserter Fördermengenregelung
DE4401074B4 (de) Pumpenanordnung, insbesondere zur Förderung von Kraftstoff aus einem Vorratsbehälter zu einer Brennkraftmaschine
DE112008002451B4 (de) System und Methode zum Dosieren von Treibstoff in einem Hochdruck-Pumpensystem
DE102008059117B4 (de) Hochdruckpumpenanordnung
EP1336043B1 (de) Kraftstoffeinspritzanlage für brennkraftmaschinen mit verbessertem startverhalten
DE10157135A1 (de) Kraftstoffversorgungsanlage in Form eines Common-Rail-Systems einer Brennkraftmaschine mit mehreren Zylindern
EP2449245A1 (de) Kraftstoffsystem für eine brennkraftmaschine
EP1913255A1 (de) Kraftstoff-fördereinrichtung, insbesondere für eine brennkraftmaschine
DE102005022661A1 (de) Fluidpumpe, insbesondere Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine mit Kraftstoff-Direkteinspritzung
EP3059438A1 (de) Pumpeneinheit für eine hochdruckpumpe
WO2003052262A1 (de) Niederdruckkreislauf für ein speichereinspritzsystem
EP2468560B1 (de) Kraftstoffsystem
DE10032893B4 (de) Brennstoffzuführvorrichtung für variable Förderung
DE10129449A1 (de) Kraftstoffhochdruckpumpe für Brennkraftmaschine mit verbessertem Teillastverhalten
DE10139055A1 (de) Verfahren, Computerprogramm, Steuer- und/oder Regelgerät sowie Kraftstoffsystem für eine Brennkraftmaschine
DE102006013165A1 (de) Kraftstoffhochdruckpumpe und Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE10154133C1 (de) Kraftstoffsystem
WO2013075946A1 (de) Kraftstofffoerdersystem fuer ein fahrzeug
DE10153189A1 (de) Kraftstoffpumpe, Kraftstoffsystem, Verfahren zum Betreiben eines Kraftstoffsystems sowie Brennkraftmaschine
EP1394403B1 (de) Kraftstoffsystem für eine Brennkraftmaschine
DE3236828A1 (de) Brennstoffeinspritzvorrichtung
DE19531064B4 (de) Pulsationsfreie Pumpe
WO2004027250A1 (de) Kraftstoffeinspritzanlage für brennkraftmaschinen
DE19653339A1 (de) Pumpenanordnung zur Förderung von Kraftstoff
DE102007016625A1 (de) Ventil und Einspritzanlage für eine Brennkraftmaschine mit Ventil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REF Corresponds to

Ref document number: 10295868

Country of ref document: DE

Date of ref document: 20041111

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10295868

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP