WO2003031453A1 - Procede de production de compose a base d'ester borique, compose pour dispositif electrochimique et batterie secondaire - Google Patents

Procede de production de compose a base d'ester borique, compose pour dispositif electrochimique et batterie secondaire Download PDF

Info

Publication number
WO2003031453A1
WO2003031453A1 PCT/JP2002/010049 JP0210049W WO03031453A1 WO 2003031453 A1 WO2003031453 A1 WO 2003031453A1 JP 0210049 W JP0210049 W JP 0210049W WO 03031453 A1 WO03031453 A1 WO 03031453A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
borate
group
compound represented
Prior art date
Application number
PCT/JP2002/010049
Other languages
English (en)
French (fr)
Inventor
Shoichi Yokoyama
Takeshi Yabe
Original Assignee
Nof Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nof Corporation filed Critical Nof Corporation
Priority to KR1020047004592A priority Critical patent/KR100937285B1/ko
Priority to DE60230646T priority patent/DE60230646D1/de
Priority to US10/489,418 priority patent/US6998465B2/en
Priority to EP02800707A priority patent/EP1431300B1/en
Publication of WO2003031453A1 publication Critical patent/WO2003031453A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/328Polymers modified by chemical after-treatment with inorganic compounds containing other elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3322Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof acyclic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a boric acid ester compound of a compound having an oxyalkylene group, an electrolyte for an electrochemical device using the borate compound or a polymer thereof, and a secondary battery.
  • a lithium ion secondary battery generally has a structure in which a metal oxide is used as a positive electrode, a carbon material or the like is used as a negative electrode, and a separator and an electrolyte are interposed between the electrodes. This is a secondary battery with a high energy density and has been put to practical use, but further improvements in performance are now desired.
  • 4,337,478 proposes a solid electrolyte in which an alkali metal salt or an alkaline earth metal salt is dissolved in polyalkylenoxide. Since the dissolution of the salts takes time, the work efficiency is poor, the ionic conductivity is insufficient, and the contact resistance with the electrode material is still high. If the ion conductivity is insufficient and the contact resistance is high, the current density during charging and discharging cannot be obtained sufficiently, and it cannot be applied to applications requiring a large current, and the application is limited. It will be done.
  • poly (meth) acrylate is used as a main chain and a side chain and / or a polymer in which a polyalkylene glycol chain is introduced as a cross-linked chain.
  • Many solid electrolytes in which a lithium metal salt or an alkaline earth metal salt is dissolved have been proposed.
  • Japanese Patent Publication No. 3-73081 discloses an alkali metal salt or an alkaline earth metal salt dissolved in an acryloyl-modified polyalkylene oxide.
  • Japanese Patent Application Laid-Open No. 11-54151 is disclosed.
  • Japanese Patent Laid-Open Publication No. 2001-555441 proposes an electrolyte using a trifunctional boron compound such as a boroxine ring that captures anion of the metal salt.
  • the boron-containing compounds used to obtain these compounds include orthoboric acid and acids. Boron iodide is used. In this case, water is eliminated during the reaction, and the obtained compound also has the property of being easily hydrolyzed by water. Very difficult to remove. For this reason, it is unavoidable that water remains in the obtained compound, which may be an obstacle when used as an electrolyte substrate.
  • JP-A-2001-72876 and JP-A-2001-72877 propose electrolytes of boron-containing compounds. In order to obtain these compounds, Borane is mentioned as a base material for boron used in the process.
  • borane has a very high activity and exhibits flammability by itself in the air, so it is difficult to handle in producing boron-containing compounds, and it is used for the reaction with compounds having polymerizable groups. In such a case, the polymerizable group may be damaged.
  • borate compounds can be obtained by reacting an alcohol with boric acid or boric anhydride. That is, when an alcohol and boric acid are used, the equation is as shown in equation [1], and when an alcohol and boric anhydride are used, the equation is as shown in equation [2].
  • the azeotropic dehydrating agent such as benzene is usually used, and water in the reaction solution generated in the reaction is sequentially removed, so that the equilibrium in the above equation becomes right.
  • a method of recovering the target material has been adopted.
  • the equilibrium of the formula [1] is extremely deviated to the left, the dehydration efficiency becomes worse as the reaction rate increases, and there is a limit to water reduction.
  • the reaction rate can be increased, and there is an advantage in dehydration efficiency.However, it has an alcohol having a large molecular weight and a polymerizable group which may cause polymerization when the temperature is increased. In alcohol, it is difficult to evaporate, and it will remain in the system. If such a compound having a hydroxyl group remains in the system, the performance may be significantly deteriorated depending on the use of the electrochemical device.
  • Japanese Patent Application Laid-Open No. Hei 3-74390 discloses that a reaction solution containing boric acid ester and boric acid is obtained by reacting boron oxide with an aliphatic alcohol, and from the reaction solution.
  • a method of distilling the filtrate after filtering off boric acid is disclosed. As described above, if the boric acid is distilled without being filtered, the decomposition of boric acid esters and boric acid is promoted, and the yield of the target substance is recovered. It is indicated that the rate is reduced.
  • this method is limited to compounds that can filter boric acid and that can be purified by distillation, such as boric acid ester compounds of aliphatic alcohols.
  • a borate ester containing such a large amount of impurities is used as an electrolyte raw material, there is a possibility of deteriorating electrolyte characteristics such as an increase in electrode coating resistance, a decrease in charge / discharge cycle characteristics, and a decrease in potential stability. There is a problem when it is high.
  • impurities contained in the boric ester compound react with lithium and gas is highly likely to be generated, which poses a problem when battery safety is reduced. is there.
  • the present invention provides a method for producing a borate compound having high ionic conductivity and excellent in safety, which is useful as a material for electrochemical devices such as secondary batteries and capacitors, and has a low water content and low impurities.
  • An object of the present invention is to provide a polymer electrolyte containing the same and a secondary battery using the same.
  • the present invention is as follows.
  • (A) a method for producing a borate ester compound, comprising subjecting a compound represented by the formula (1) to boric acid esterification using a boron-containing compound represented by the formula (2);
  • X is a residue of a compound having 1 to 6 hydroxyl groups, a group selected from an acryloyl group and a methacryloyl group
  • AO is an oxy group having 2 to 4 carbon atoms.
  • An alkylene group, n is from 0 to 600, a is from 1 to 6, and nxa is from 0 to 600.
  • R is an alkyl group having 1 to 4 carbon atoms.
  • R is an alkyl group having 1 to 4 carbon atoms.
  • Y is a group selected from an acryloyl group, a methacryloyl group and an alkyl group having 1 to 4 carbon atoms, at least one of which is an acryloyl group or a methacryloyl group.
  • AO is an oxyalkylene group having 2 to 4 carbon atoms, and p is 1 to 600.
  • X is a residue selected from a residue of a compound having 1 to 6 hydroxyl groups, an acryloyl group and a methyl acryloyl group.
  • the residue of the compound having a hydroxyl group is a group obtained by removing the hydroxyl group from each compound.
  • Examples of the oxyalkylene group having 2 to 4 carbon atoms represented by A 0 in the formula (1) include an oxyethylene group, an oxypropylene group, an oxybutylene group, an oxytetramethylene group, and the like. Or an oxypropylene group. These may be used alone or in combination of two or more kinds. When two or more kinds are used, the polymerization form may be either block-shaped or random.
  • n is the average number of moles of the added oxyalkylene group having 2 to 4 carbon atoms, and is 0 to 600. For the purpose of obtaining ionic conductivity, it is preferably from 1 to 200, more preferably from 1 to 100. If it exceeds 600, the amount of boron introduced is small, and it becomes difficult to exhibit the ability to capture yin when used as an electrolyte.
  • a is 1 to 6, preferably 1 to 4, and particularly preferably 1.
  • nxa is from 0 to 600, preferably from 1 to 400, and more preferably from 1 to 200. When it exceeds 600, the introduction amount of borate ester bond becomes small, and it becomes difficult to exhibit the ability to capture anion. Therefore, it is difficult to obtain high ion conductivity.
  • the compound represented by the formula (1) serving as a substrate of the borate compound in the present invention can be obtained by ordinary ring-opening polymerization.
  • compounds having 1 to 6 hydroxyl groups include alkali metal compounds such as sodium hydroxide, lithium hydroxide, lithium hydroxide, sodium methoxide, and boron trifluoride etherate.
  • C2-C4 alkyleneoxy such as ethylene oxide, propylene oxide, butylene oxide and tetrahydrofuran using a ring-opening polymerization catalyst such as Lewis acid such as benzene, tin tetrachloride and aluminum trichloride.
  • Lewis acid such as benzene, tin tetrachloride and aluminum trichloride.
  • Compounds having 1 to 6 hydroxyl groups represented by X in the formula (1) include, for example, methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, n-butyl alcohol, and 2-butyl alcohol.
  • diols such as resorcinol, 4-t-butyl catechol, and 2_t-butylhydroquinone; glycerin, trimethylolpropane, pentaerythritol monomethacrylate, pentayl erythritol monoacrylate, diglyme Triols such as serine monomethacrylate, diglycerin monoatalylate, and phloroglucinol; pentrals such as pentaerythritol and diglycerin; and tetraols such as triglycerin All; hexaol such as tetraglycerin and dipentaerythritol.
  • glycerin trimethylolpropane
  • pentaerythritol monomethacrylate pentayl erythritol monoacrylate
  • diglyme Triols such as serine monomethacrylate, diglycerin monoatalylate,
  • X is preferably methyl alcohol, ethylene glycol, propylene glycol, butylene glycol, acrylic acid 2—hydroxy Ethyl, methacrylic acid 2—hydroxyxyl, atalylic acid 2—hydroxypropyl, methacrylic acid 2—hydroxypropyl, glycerol monomethacrylate and glycerol monoacrylate residues, ⁇ It is a cryloyl group.
  • the compound represented by the formula (1) has an atalyloyl group or a methyroyl group, so that the heat load is reduced. It is preferable because it can be produced in a small amount and does not impair the polymerizable group.
  • the compound represented by the formula (1) preferably has a number-average molecular weight of 110 or more, more preferably 110-30,000, in number average molecular weight.
  • the average molecular weight is 110 or more
  • the compound represented by the formula (1) can be sufficiently retained in the reaction solution, so that the reaction rate can be increased. Further, the above-mentioned distillation is preferable because the distillate can be easily recovered and used.
  • the compound represented by the formula (1) can be used alone or in combination of two or more. When two or more kinds are used, the hydroxyl value of the mixture is preferably 430 or less.
  • the compound represented by the formula (1) has a low water content in advance, and a water content of 0.5% by weight or less is preferable.
  • a water content of 0.5% by weight or less is preferable.
  • R represents a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a 2-butyl group, an isobutyl group, a t-butyl group.
  • Examples include a monobutyl group.
  • the boron-containing compound represented by the formula (2) can be used alone or in combination of two or more. However, it is preferable to use only one boron-containing compound because distillation control and raw material recovery / purification are simple.
  • a boron-containing compound represented by the formula (2) is added to the compound represented by the formula (1), and the mixture is heated at 30 to 200 ° C. under an inert gas atmosphere.
  • a borate ester exchange reaction is performed.
  • the formed alcohol represented by the formula (3) is removed under atmospheric pressure or under a pressure of an inert gas atmosphere under a pressure of 0.013 kPa, and the borate ester exchange reaction proceeds. Let it.
  • the reaction temperature is preferably from 50 to 200 ° C, more preferably from 60 to 150 ° C. In this case, it is preferable to ventilate an appropriate amount of nitrogen gas into the reactor.
  • the reaction temperature is low, the progress of the borate ester exchange reaction due to the removal of low molecular alcohol which is eliminated is slowed, and when the temperature is higher than 200 ° C, the compound represented by the formula (1) is likely to be thermally degraded. .
  • the reaction temperature is preferably 30 to 120 ° C, more preferably 60 to 90 ° C. ° C. In this case, it is preferable to ventilate a suitable amount of dry air into the reactor.
  • the reaction temperature is low, the progress of the borate ester exchange reaction is slowed by the removal of low molecular alcohol which is eliminated, and when the temperature is higher than 20 ° C, it is difficult to retain the (meth) acryloyl group. There is.
  • the pressure during the reaction can be determined as appropriate depending on the temperature, the type of the boron-containing compound represented by the formula (2), and the like, but is in the range of 0.013 kPa from the pressurization of the inert gas atmosphere. It is preferable. If the pressure is lower than 0.013 kPa, it is difficult to sufficiently keep the boron-containing compound represented by the formula (2) in the reaction solution, and the pressure is higher than the pressure in an inert gas atmosphere or higher than the atmospheric pressure. When removing the alcohol represented by the formula (3), the temperature may be too high, which may cause thermal degradation of the compound. In order to increase the purity of the borate compound of the present invention, finally, 0.013 to 6
  • reaction conditions may be changed within the range shown above as the reaction proceeds.
  • the reaction time is 0.5 to 100 hours, preferably 2 to 50 hours. In addition, conditions and equipment can be selected so that the reaction is completed in this time. If the time is shorter than 0.5 hours, it may be difficult to remove the low-molecular alcohol represented by the formula (3). If the time exceeds 100 hours, the compound represented by the formula (1) and the boric acid formed may be difficult to remove. Deterioration of the ester is likely to proceed.
  • the reaction time is 2 to 30 hours to suppress the polymerization reaction of the (meth) acryloyl group.
  • the compound represented by the formula (1) and the compound represented by the formula (2) are mixed in a predetermined amount, and dried under a dry air or inert gas atmosphere. Mixing for 5 to 5 hours is preferred. Thereafter, it is preferable to remove volatile components at 60 to 120 ° C. under a reduced pressure of 6.67 kPa or less.
  • the dry air flowing into the system during the reaction is not particularly limited, but is preferably dried by a condensing type air dryer or the like.
  • the water content in the gas must be low, for example, the dew point is ⁇ 10 ° C. or less.
  • the boron-containing compound represented by the formula (2) used in the present invention is converted into a compound represented by the formula (3) by a transesterification reaction with a hydroxyl group-containing compound represented by the formula (1) during the borate esterification reaction.
  • the indicated low molecular alcohol is produced.
  • the boron-containing compound represented by the formula (2) is trimethyl borate
  • the low-molecular alcohol represented by the formula (3) is a methyl alcohol.
  • the low-molecular alcohol represented by the formula (3) also contains two or more kinds. This is a method in which a boron-containing compound represented by the formula (2) is added to the compound represented by the formula (1) to carry out the reaction.
  • the compound represented by the formula (3) is formed thereafter or simultaneously with the reaction.
  • a borate compound By distilling the low-molecular-weight alcohol and the boron-containing compound represented by the formula (2), a borate compound can be obtained. Distillation is usually distinguished from simple distillation and rectification, but the distillation performed in the present invention includes not only simple distillation but also rectification.
  • the production method in the present invention is a method for producing a high-purity borate compound using the equilibrium reaction represented by the formula [3].
  • borate esters are formed.
  • the ratio of borate esterification can be arbitrarily adjusted depending on the reaction temperature, reaction time, molar ratio of hydroxyl group to boron atom, etc., and preferably the reaction rate is 50 to 100%, more preferably 6 to 100%. It is a boric acid ester compound in the range of 5 to 100%.
  • the temperature is preferably 30 to 200 t: and the pressure is preferably in the range of 0.13 kPa from the pressure of an inert gas atmosphere under pressure, and 0.10 to 11 kPa. More preferably, it is in the range of 0 kPa. If the pressure is out of this range, special equipment may be required and distillation control may be difficult.
  • the amount of the compound represented by the formula (2) relative to the compound represented by the formula (1) used in the reaction is 1 mole of the hydroxyl group of the compound represented by the formula (1) or the amount of the boron-containing compound represented by the formula (2).
  • the compound is preferably at least 1/3 mole.
  • the amount of the boron-containing compound represented by the formula (2) is more preferably 0.5 per mole of the hydroxyl group of the compound represented by the formula (1). Mol or more, and more preferably 0.67 mol or more.
  • the amount of the boron-containing compound represented by the formula (2) needs to be considered in consideration of the structure, molecular weight, and the like of the compound represented by the formula (1).
  • the compound represented by the formula (1) has a high molecular weight
  • the amount of the compound represented by the formula (2) is small, the mixture may become a solid, The response may not be high enough.
  • the upper limit of the amount of the boron-containing compound represented by the formula (2) is not particularly limited, but is usually at most 80% by weight based on the total weight of the reaction solution. Even if a larger amount is used, it is difficult to obtain further effects only by increasing the distillation time.
  • Distillation can be performed by further adding a boron-containing compound represented by the formula (2).
  • a boron-containing compound represented by the formula (2) can be added at a time or continuously or intermittently as time elapses.
  • the above reaction can be carried out without requiring a catalyst.
  • a low-reactivity alcohol such as tertiary alcohol
  • sodium or potassium can be used as a catalyst in order to obtain a sufficient reaction rate, but in order to simplify purification.
  • no catalyst is used.
  • a solvent that does not contribute to the borate esterification reaction can be used as appropriate.
  • Aprotic solvents are preferred, and specific examples thereof include hexane, heptane, benzene, toluene, xylene and the like. When these solvents are used, the effect of reducing the distillation ratio of the boron-containing compound represented by the formula (2) is exhibited, and the amount of the boron-containing compound represented by the formula (2) can be reduced.
  • BHT G-t-butyl hydroxy toluene
  • polymerization inhibitor such as phenothiazine, etc. 20 to 100 p
  • an antioxidant such as BHT can be used in an amount of 1 to 100 ppm for preventing oxidation.
  • the borate ester compound obtained by the production method of the present invention does not need to be particularly purified, but can be subjected to various purifications without impairing the effects of the present invention. Processing, extraction, distillation, recrystallization, drying, etc. can be performed. Since the borate compound is a highly hydrolyzable compound, the above treatment is preferably performed under conditions that do not absorb moisture or hydrolyze.For example, when treating with an adsorbent, a heat-dried adsorbent may be used. I like it.
  • the borate compound obtained by the production method of the present invention has a water content of not more than 1000 ppm, preferably not more than 90 ppm, and more preferably not more than 900 ppm by a Karl Fischer titration method. Is less than 35 O ppm, particularly preferably less than 100 ppm.
  • the water content by the titration method can be performed by the following method. Except for the following conditions, the measurement shall be performed in accordance with Japanese Industrial Standard JISK1555.76.5.
  • Water content is measured by volumetric titration using 100 ml of dehydrated methanol for Karl Fischer measurement as a solvent. As the titrant, use a reagent having a titer of 3 mg H 2 O / g. For those having a low water content, a sample (for example, 40 g) having a sample amount larger than 20 g specified in JISK1555.76.5 is subjected to measurement to determine the water content. The sample is put into the measuring container with a syringe. In addition, for all samples, the average of the two measured values is taken, and two significant figures are used (the third digit is rounded off).
  • the borate compound obtained by the production method of the present invention may contain a small amount of the boron-containing compound represented by the formula (2), depending on the structure of the compound, the purification method and the like.
  • the borate compound obtained by the present invention is used as an electrolyte for an electrochemical device, the following formula is used.
  • the amount is preferably reduced to 5% by weight or less.
  • the boron-containing compound represented by the formula (2) is
  • a mixture of low molecular alcohols represented by (3) is obtained as a distillate. All of these distillates can be reused, and can be used, for example, as a raw material for producing borate esters obtained by the reaction of alkyl alcohol with boric acid. Further, the distillate containing the boron-containing compound represented by the formula (2) as a main component can be reused as a raw material in the production method of the present invention.
  • Apparatus for performing the manufacturing method of the present invention can be appropriately selected from known apparatuses in the art, and the material is appropriately selected from known materials such as glass and stainless steel. Can be determined. In addition, a heat transfer area, a heat medium, and the like can be appropriately selected in consideration of reaction conditions. When performing rectification, a rectification column is required, but the separation type, the number of theoretical plates, the column diameter, etc. can be appropriately selected according to the reaction conditions. Further, since the borate compound is easily hydrolyzed, it is preferable that the inside of the apparatus is dried in advance.
  • the present invention also provides an electrochemical device containing a borate ester compound represented by the formula (4) or a polymer thereof, having a water content of 100 ppm or less as measured by Karl Fischer titration. For electrolytes for use.
  • is a group selected from an acryloyl group, a methacryloyl group and an alkyl group having 1 to 4 carbon atoms, at least one of which is an acryloyl group or a methacryloyl group.
  • AO is an oxyalkylene group having 2 to 4 carbon atoms, and p is 1 to 600.
  • the electrolyte for an electrochemical device described above has a water content of 100 ppm or less, preferably 900 ppm or less, more preferably 350 ppm or less, as measured by Karl Fischer titration. It is particularly preferably at most 100 ppm.
  • the borate ester compound represented by the formula (4) or a polymer thereof is useful as an electrolyte for an electrochemical device, and by using such an electrolyte, an anion trapping ability and a high anion trapping ability can be obtained. As a result, it is possible to obtain an electrolyte having excellent conductivity and electrical properties.
  • the oxyalkylene group having 2 to 4 carbon atoms represented by A ⁇ is the same as that defined for the formula (1).
  • the alkyl group having 1 to 4 carbon atoms represented by Y includes, among the residues of the compound having 1 to 6 hydroxyl groups represented by X in the formula (1), those having 1 to 4 carbon atoms. And an alkyl group.
  • p Is the average number of moles of the added oxyalkylene group having 2 to 4 carbon atoms, and is 1 to 600. It is preferably from 1 to 200, more preferably from 1 to 100, for the purpose of obtaining ionic conductivity. When this value exceeds 600, the amount of boron introduced is small, and it becomes difficult to exhibit the ability to capture anion when used as an electrolyte.
  • the above-mentioned electrolyte for electrochemical devices can be used as an electrolyte for secondary batteries, electric double layer capacitors, etc., and is useful as an electrolyte for secondary batteries, particularly for lithium ion secondary batteries. Useful as an electrolyte. Further, it can be used as a secondary battery using the secondary battery electrolyte.
  • the borate compound is obtained by using the method for producing the borate compound of the present invention, that is, using the compound of the formula (1) and the boric acid-containing compound of the formula (2).
  • a borate compound can be preferably used.
  • the compound having a polymerizable group among the borate ester compounds according to the present invention is used in a form in which the polymerizable group contained therein is polymerized.
  • Polymerization is performed by energy such as heating, ultraviolet light, visible light, and electron beam, and a known polymerization initiator may be appropriately used.
  • the number average molecular weight after polymerization is preferably 50,000 to 100,000,000, and if the number average molecular weight is less than 50,000, self-sustainability of the obtained film ⁇ flexibility Expression may be difficult to obtain.
  • the borate compound according to the present invention can be used alone or in combination of two or more. Depending on the composition, it is desired to improve the mechanical properties by using them in combination and to improve the ion conductivity when used as an electrolyte for a secondary battery.
  • the amount of the polymerizable group introduced and the amount of the borate ester group introduced can be reduced. It can be controlled arbitrarily and is very useful from the viewpoint of material design.
  • the borate compound according to the present invention is preferably used in an organic polymer compound in an amount of 5 to 100% by weight, for the purpose of obtaining the effect of controlling the movement of ions that can contribute to charge and discharge. It is more preferable to use 100% by weight.
  • the improvement in the ion conductivity and the improvement in the performance as an electrolyte for an electrochemical device can be achieved by the improvement of the cation transport number by boron. Furthermore, since the water content of the borate compound is inherently low, when used as an electrolyte, corrosion of other metal members, metal components, etc. occurs, and gas is generated by an electrolysis reaction of water. This is very useful because the problem of internal pressure rise is eliminated.
  • the borate group is fixed in the same molecule as the polymer matrix, it is compatible with high ionic conductivity.
  • the film stability is better.
  • a borate compound having a polymerizable group since the borate group is in the same molecule as the polymer matrix, it can be used without adding a third component other than the ionic compound. Therefore, the process for obtaining the electrolyte film can be simplified, which is very useful.
  • the electrolyte for an electrochemical device of the present invention can be prepared by various methods.
  • the preparation method is not particularly limited.
  • a boric acid ester compound is mixed with another polymerizable organic compound, and the ionizable compound is dissolved therein.
  • the polymer electrolyte thin film having mechanical strength can be obtained by dissolving, casting, heating and polymerizing.
  • a solution is prepared by dissolving the zwitterionic compound, and the solution is cast by heating to be thermally polymerized, thereby increasing the mechanical strength.
  • the resulting polymer electrolyte thin film can be obtained.
  • a thin film obtained by polymerizing the polymerizable compound can be obtained by irradiating energy rays such as ultraviolet rays, visible light, and electron beams.
  • energy rays such as ultraviolet rays, visible light, and electron beams.
  • a polymer of a borate compound having a polymerizable group and a ionic compound are well kneaded and molded, whereby an electrolyte thin film for an electrochemical device can be obtained.
  • the electrolyte for an electrochemical device is composed of an organic polymer compound containing an ionic compound and a borate compound.
  • the organic polymer compound may contain an organic polymer compound or a polymerizable compound other than the borate ester as long as the effects of the present invention are not impaired.
  • organic polymer compounds examples include polyacrylonitrile, acrylonitrile-methyl methacrylate copolymer, acrylonitrile-methyl methacrylate copolymer, and methyl methacrylate.
  • Styrene copolymer, acrylonitrile-styrene copolymer, acrylonitrile-styrene-methyl methacrylate copolymer, acrylonitrile-styrene-methyl methacrylate copolymer, Styrene-maleic acid copolymer, polyalkylene glycol (meth) acrylate copolymer and the like can be mentioned.
  • another polymerizable compound may be mixed in advance with the borate compound used in the present invention to dissolve the ionic compound and then polymerized after the dissolution.
  • polymerizable compounds include alkyl acrylates such as methyl acrylate and butyl acrylate, methyl methacrylate, and butyric methacrylate.
  • Alkyl methacrylates such as styrene, polyalkylene glycol (meta) acrylate represented by the following formula (5), acrylonitrile, styrene, dibutylbenzene, and the like. It is preferable to use polyalkylene glycol (meta) acrylate represented by the following formula (5).
  • Z is a residue of a compound having 1 to 4 hydroxyl groups, a hydrogen atom, an acryloyl group or a methacryloyl group
  • a 20 is a oxyalkylene group having 2 to 4 carbon atoms.
  • M is 0 to 150
  • b is 1 to 4
  • mxb 0 to 300
  • R ' is a hydrogen atom and has 1 carbon atom.
  • Compounds having 1 to 4 hydroxyl groups represented by Z in the formula (5) include methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, n-butyl alcohol, 2-butyl alcohol, t-Butyl alcohol, n-hexyl alcohol, n-octyl alcohol, isooctyl alcohol, decyl alcohol, dodecyl alcohol, tridecyl alcohol, tetradecyl alcohol, hexadecyl alcohol, octadecyl alcohol, Monools such as octadecenyl alcohol, icosyl alcohol, tetraicosyl alcohol, aryl alcohol, methyl alcohol, hydroxyshethyl butyl ether, ethylene glycol, propylene glycol, butanediol, and pentane Diol, hexane diol, diols such Okuda Njio Le, glyce
  • Z is methyl alcohol, ethylene glycol, propylene glycol, glycerin, trimethylolprono.
  • examples of the oxyalkylene group having 2 to 4 carbon atoms represented by A 2 ⁇ include an oxyethylene group, an oxypropylene group, an oxybutylene group, an oxytetramethylene group, and the like, and preferably an oxishylene group or an oxypropylene group Group.
  • One or a mixture of two or more of these may be used, and when two or more of them are used, the polymerization mode may be any of block and random.
  • the compound represented by the formula (5) has at least one acryloyl group or methacryloyl group in the molecule.
  • the ionic compound used in the electrolyte for an electrochemical device of the present invention can be mixed with the organic polymer compound at an arbitrary ratio.
  • the ionic compound can be mixed with boron in 1 mole of the alkali metal contained in the ionic compound.
  • Mixing so that the total number of oxyalkylene units contained in the acid ester compound is 2 to 30 moles, and more preferably 2 to 20 moles, is due to the lowering of the glass transition temperature of the organic polymer compound. It is more preferable in view of the contribution to the conductivity and the improvement of the ionic conductivity due to an increase in the number of carriers.
  • the oxyalkylene unit is also included in the Set the compounding amount of the active compound.
  • the type of the ionizing compound used in the electrolyte for an electrochemical device of the present invention is not particularly limited.
  • LiI, LiSCN, NaBr, Nal, NaSCN, KI, KSCN, etc. organic acids such as p-toluenesulfonic acid and salts thereof, and the like.
  • organic acids such as p-toluenesulfonic acid and salts thereof, and the like.
  • they are quaternary ammonium salts, quaternary phosphonium salts, and alkali metal salts, because they have a high output voltage and a large dissociation constant.
  • Is an Ion compound used in the electrolyte for secondary batteries of the present invention for example, L i C 1 0 4, L i A s F 6, L i PF 6, L i BF 4, L i CF a S 03 L i (CF 3 S 0 2 ) 2 N.L i (C 2 F 5 S ⁇ 2 ) 2 N, L i.
  • (CF 3 S 02) 3 C L i I, L i SCN, N a B r , N al, N a SCN, KI, is alkali metal salts, such as listed et al are KSCN, is favored properly L i C 1 0 4, L i a s F 6, L i PF 6, L i BF 4, L i CF 3 S 03, L i (CF 3 S 0 2 ) 2 N, L i (C 2 F 5 .S 02) 2 N, L i (CF 3 S 02) 3 C, L i I, L i SCN And the like.
  • an ion-conductive or ferroelectric salt, glass powder, or the like can be added to the electrolyte for a secondary battery of the present invention.
  • Shioma other as the powder of the glass for example, S N_ ⁇ 2, B a T i 03, L a T such i 03 and the like.
  • the effects of the present invention are hindered, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, methyl carbonate, methylethyl carbonate, and tetrahydrofuran
  • the method for producing a borate compound of the present invention uses the boron-containing compound represented by the formula (2), and includes boron oxide, which is a boron-containing compound conventionally used in the production of borate, As in the case of orthoboric acid, essentially no water is generated during the boric acid esterification reaction, and the boric acid ester exchange reaction between the compound represented by the formula (1) and the compound represented by the formula (2) occurs. The resulting removal of low-molecular-weight alcohol is easy, so the time required for the reaction can be shortened, and the production efficiency is excellent.
  • a low molecular weight alcohol represented by the formula (3) generated by a borate transesterification reaction between the compound represented by the formula (1) and the compound represented by the formula (2) is converted into a compound represented by the formula (2)
  • the borate esterification reaction can proceed at a very high conversion.
  • the borate compound of the present invention undergoes a borate esterification reaction.
  • the water content is very low because there is no water generated at the time of use, and when used as an electrolyte for electrochemical devices, it does not induce the decomposition of the ionic compound contained in the use of the electrolyte, and The metal used in these electrochemical devices does not corrode and has excellent electrical properties.
  • boron oxide, orthoboric acid, metaboric acid, and pyroboric acid which are boron-containing compounds commonly used in the production of borate ester compounds, are soluble in polyalkylene glycol derivatives, so that they are esterified. May be dissolved even after the ion exchange, and when the obtained borate compound is used as an electrolyte for an electrochemical device, it may be ion-exchanged with an ion-containing compound contained therein or used. Reaction with existing metals may cause ion trapping.
  • the electrochemical device of the present invention is excellent in electrical characteristics because it does not react or interact with supporting salts or metals.
  • an electrolyte for use is used, an electrochemical device having high ionic conductivity over a wide temperature range and having excellent cycle characteristics, safety, and stability can be obtained.
  • the borate ester compound obtained by the production method of the present invention has a very low water content and a high purity, so that the compound represented by the formula (1) and the compound represented by the formula (3) are obtained. The remaining amount of the compound is small.
  • Such a borate compound having a low moisture content and a small number of hydroxyl groups when used as an electrolyte for a lithium ion secondary battery, has a very small increase in internal resistance and uses a high-performance electrolyte and its electrolyte. A good battery can be obtained.
  • a borate compound having an arbitrary structure can be obtained, and molecular design is easy. Therefore, application to an electrochemical device capable of exhibiting various characteristics can be easily achieved.
  • L i TFSI represents a Richiumuzesu (g Li Furuoro methane sulfonate) Lee Mi-de
  • L i PF 6 is hexafluoride borrowed down Indicates lithium oxide.
  • the amount of Li TFSI or Li PF 6 added as an ionic compound in the electrolyte composition was determined in each example based on 16 moles of ether oxygen of alkylene oxide contained in the electrolyte composition.
  • the Li ion concentration is 1 molar.
  • Blemmer PE_350 polyethylene glycol (350) monomethacrylate
  • NOF Corporation N-methyl borate 51.9 g (0.5 mol) was added, and the temperature was raised to 60 ° C in a dry air atmosphere with stirring. After maintaining the temperature at 60 ° C for 1 hour, the temperature was raised to 75 ° C. After the temperature reached 75 ° C, the pressure inside the system was gradually reduced, and the pressure was 2.67 kPa or less. For 6 hours to allow the reaction to proceed. Volatiles generated with the line were removed. Thereafter, the mixture was filtered to obtain 65 g of a polymerizable borate compound.
  • Blemmer AE-400 polyethylene glycol (400) monoacrylate
  • NOF Corporation N-methyl borate
  • 9 g (0.5 mol) was added, and the mixture was heated to 60 ° C under a dry air atmosphere with stirring. After maintaining at 60 ° C for 1 hour, the temperature was raised to 70 ° C. After the temperature reached 70 ° C, the pressure inside the system was gradually reduced, and the pressure was 2.67 kPa or less. The state was maintained for 6 hours, and volatile components generated as the reaction proceeded were removed. Thereafter, the mixture was filtered, whereby 670 g of a polymerizable boric acid ester compound was obtained.
  • Bremma AE-400 polyethylene glycol (400) monoacrylate
  • orthoboric acid 20 .6 g (0.333 mol
  • the pressure inside the system was gradually reduced, and the pressure was maintained at less than 0.6 kPa for 6 hours under aeration of dry air to remove water generated as the reaction progressed. Removed. Thereafter, filtration yielded 450 g of a polymerizable borate compound.
  • Blemmer PE-350 polyethylene glycol (350) monomethacrylate
  • boron oxide (0.25 mol)
  • the pressure inside the system was gradually reduced, and a pressure of 2.67 kPa or less was maintained for 6 hours under dry air ventilation to remove water generated as the reaction progressed. Removed. Thereafter, the mixture was filtered to obtain 60 g of a polymerizable borate compound.
  • the water content of the borate compounds of Examples 1 to 4 and Comparative Examples 1 to 3 was measured as follows by Karl Fischer titration in accordance with Japanese Industrial Standards JISK1555.76.5. Calculated.
  • the water content was measured by a volumetric titration method using 100 ml of dehydrated methanol for Karl Fischer measurement as a solvent.
  • a reagent having a titer of 3 mg H 2 O / g was used.
  • a sample (40 g) larger than the sample amount of 20 g specified in JISK155576.5 was subjected to measurement to determine the water content.
  • the sample was put into the measuring container by syringe.
  • the average of the two measured values was taken and two significant figures were used (the third digit was rounded off).
  • Polymerizable borate compound 1 0. 0 g of Example 2, 1 L i PF 6 as a supporting salt. 7 1 g was added, after uniformly dissolving, ⁇ zone is a thermal polymerization initiator Mix and dissolve 30 mg of bisisobutyronitrile, apply it on a silicon wafer using Subinco overnight, and leave it in an oven at 80 ° C for 2 hours to thermally polymerize it. An ion conductive polymer composition (polymer electrolyte) having a thickness of 100 ⁇ m was obtained.
  • ⁇ zone bis isobutyronitrile Petit Roni preparative drill 3 is a thermal polymerization initiator 0 mg and mixed and melted, coated on a silicon wafer using a spinner overnight, and then left in an oven at 80 ° C for 2 hours to thermally polymerize to a thickness of 100 An ion-conductive polymer composition (polymer electrolyte) was obtained.
  • the polymerizable borate ester compound of Comparative Example 3 (7.5 g) and methoxypolyethylene glycol (200000) monomethacrylate, Blemma PME-200, manufactured by NOF Corporation, were used in the amount of 2.5. After mixing with 1.8 g of iPF6 as a supporting salt and uniformly dissolving it, azobisisobutyronitrile, a thermal polymerization initiator, was added. mg and mixed and applied on a silicon wafer using a spin coater, and then allowed to stand in an oven at 80 ° C for 2 hours to be thermally polymerized to a thickness of 100 ⁇ m. An ion conductive polymer composition (polymer electrolyte) was obtained.
  • the stability of the polymer electrolyte was evaluated by the following method.
  • each polymer electrolyte film was sandwiched between two pieces of metallic lithium foil with a thickness of 50 ⁇ ⁇ was placed in a constant temperature bath at 50 ° C under an argon atmosphere. The state of the contact surface of the foil with the electrolyte film was observed.
  • The appearance of the electrolyte film is colored, or the contact surface of the lithium metal foil is partially corroded.
  • Examples 5, 7, and 9 and Comparative Examples 5 and 6 were evaluated for ionic conductivity.
  • the ion conductivity was measured by the following method.
  • a non-blocking electrode is formed by sandwiching the material sandwiched between the two metallic lithium foils described above with a stainless steel electrode, and the temperature is varied in an argon atmosphere, and the AC complex impedance measurement at each temperature is performed.
  • the ion conductivity was obtained from the diameter of the semicircle of the bulk resistance component of the upper plot (Co1e-C01e plot).
  • Example 6 5 parts by weight, 5 parts by weight of polyvinylidene fluoride powder as a binder polymer, and 20 parts by weight of acetylene black powder as a conductive material are kneaded well, and the thickness is 1 on a copper foil by hot pressing.
  • a lithium metal foil having a thickness of about 80 ⁇ m and a diameter of 10 mm was used as the negative electrode material as the alkali metal ion occlusion material.
  • the polymer electrolyte of Example 6 was punched into a diameter of 1 Omm, sandwiched between the above-described positive electrode material and negative electrode material, and further sandwiched between stainless steel electrodes to obtain a secondary battery.
  • the current density of the obtained secondary battery was 2 at 50 ° C or 80 ° C.
  • the discharge capacity per 1 kg of the positive electrode in the 0th cycle was evaluated as a percentage of the initial capacity.
  • the discharge capacity is 70% or more of the initial capacity.
  • Has a discharge capacity of 40% or more and less than 70% of the initial capacity.
  • Discharge capacity of less than 40% of initial capacity.
  • X Cannot be evaluated due to internal short circuit, deterioration of electrode material, or insufficient conductivity.
  • a secondary battery system was assembled with the same composition as in Example 10 except that the polymer electrolyte of Example 8 was used as the polymer electrolyte, and a charge / discharge cycle test was performed under the same conditions as in Example 10. Was done.
  • a secondary battery system was assembled with the same composition as in Example 10 except that the polymer electrolyte of Comparative Example 4 was used as the polymer electrolyte, and the conditions were the same as in Example 10. A charge / discharge cycle test was performed.
  • a secondary battery system was assembled with the same composition as in Example 10 except that the polymer electrolyte of Comparative Example 7 was used as the polymer electrolyte, and a charge / discharge cycle test was performed under the same conditions as in Example 10. Was done.
  • the type of the compound represented by the formula (1), the type of the boron-containing compound used for the borate compounds obtained in Examples 1 to 4 and Comparative Examples 1 to 3, and the time required to maintain the reduced pressure required for the reaction Table 1 shows the water content.
  • the electrolyte compositions of Examples and Comparative Examples, the types of ionizable compounds, and the results of evaluating the stability of the obtained electrolyte films are shown in Tables 2, 25 and 80 ° C.
  • Table 3 shows the evaluation results of the charge / discharge test at 50 ° C and 80 ° C.
  • indicates a methacryloyl group
  • indicates an acryloyl group
  • E ⁇ indicates an oxyethylene group
  • the borate ester compounds obtained by the production methods of Comparative Examples 1 to 3 have a high water content, while the borate ester compounds obtained in Examples 1 to 4 have the same reaction temperature and time conditions. Nevertheless, it was confirmed that the water content was much smaller.
  • the electrolyte for electrochemical devices using the borate compound obtained in the examples does not show corrosion of aluminum metal, has excellent stability, has high ionic conductivity, and has excellent electrolyte for secondary batteries. It was confirmed that they exhibited excellent cycle characteristics.
  • polyethylene glycol (6.8 mol) monoatalylate having an average molecular weight of 370 (Blenmer AE-300, manufactured by NOF Corporation) 111 g (3.0 mol)
  • Trimethyl borate 9.34.2 g (9.0 mol) was charged, 0.33 g of BHT was added to this mixture, and the mixture was heated to 70 t under normal pressure while blowing dry air while stirring. did.
  • the pressure inside the system is gradually reduced, and while maintaining the temperature at 70 ° C to 2.67 kPa over 8 hours, methanol and by-products produced by the reaction are Trimethyl diacid was distilled off. Furthermore, drying was performed while maintaining the state of 2.67 kPa at 70 ° C. for 3 hours, and 110 g of the intended borate compound was obtained.
  • polyethylene glycol having an average molecular weight of 90 (4.6 mol) monomethacrylate (Nippon Oil & Fats Co., Ltd. Bremma PE—200) 870 g (3.0 mol), nonylphenol 330 g (1.5 mol) and trimethyl borate 778.5 g (7.5 mol) were charged, and 0.33 g of BHT was added to the mixture, and the mixture was blown with dry air while stirring.
  • the temperature was raised to 70 ° C. at normal pressure. After maintaining the system at 70 ° C for 1 hour, the pressure inside the system was gradually reduced, and while maintaining the temperature at 70 ° C to 2.67 kPa over 8 hours, methanol produced as a by-product of the reaction was removed. Trimethyl borate was distilled off. Furthermore, drying was performed while maintaining the state at 70 ° (:, 2.67 kPa) for 3 hours, to obtain 110 g of the intended borate compound.
  • methoxypolyoxyethylene (16.5 mol) having an average molecular weight of 100,000 propylene glycol (4.2 mol), random copolymer 150 g (1.5 mol), Triisopropylpropyl borate (470 g, 2.5 mol) was added, and the mixture was heated to 130 ° C under a nitrogen gas atmosphere with stirring. After maintaining at 130 ° C for 1 hour, the pressure inside the system was gradually reduced, and by-products were produced by the reaction while maintaining the temperature at 130 ° C to 2.67 kPa over 8 hours. Isopropanol and triisopropyl borate were removed by distillation. Furthermore, drying was performed while maintaining the condition of 130 :, 2.67 kPa for 3 hours, to obtain 140 g of the intended borate compound.
  • a 3-liter four-necked flask equipped with a distillation column was charged with polyethylene glycol (4.6 mol) monomethacrylate having an average molecular weight of 190 (Blenmer PE-2 manufactured by NOF Corporation). 0) 928 g (3.2 mol), polyethylene glycol having an average molecular weight of 400 (8.7 mol), 320 g (0.8 mol), trimethyl borate g (12.0 mol) and 0.62 g of BHT were charged, and the temperature was raised to a temperature at which reflux started at 50 kPa (50 to 65 ° C) while blowing dry air. After 30 minutes of total reflux, the mixture was distilled at the reflux ratio of 10 from the top of the column for 5 hours. As the distillation proceeded, the temperature in the kettle and the temperature at the top of the vessel rose, and after the temperature at the top reached 60 ° C, the mixture was further distilled at a reflux ratio of 10 for 3 hours.
  • polyethylene glycol (6.8 mol) monoacrylate having an average molecular weight of 370 (6.8 mol) (Blenmer AE-300 from Nippon Oil & Fats Co., Ltd.) 222 g (6.0 mol) 69.6 g (1.0 mol) of boron and 0.67 g of BHT were added, and the temperature was raised to 80 ° C. while blowing dry air while stirring. After the temperature reached 80 ° C, the pressure in the system was gradually reduced, and a state of 2.67 kPa or less was maintained for 3 hours to remove water generated as the reaction progressed. Thereafter, filtration was performed to obtain 2100 g of a borate compound.
  • the boron concentrations of the borate compounds of Examples 12 to 16 and Comparative Examples 10 to 12 were determined by the following method.
  • the boron concentration assuming that only the compound represented by the formula (1) is borate esterified and contains no other compounds is defined as the theoretical boron concentration, and the purity of the compound is defined as the boron concentration / Theoretical boron concentration, expressed as
  • E 0 represents an oxyethylene group
  • P 0 represents an oxypropylene group
  • M represents a methyl acryloyl group
  • A represents an acryloyl group
  • Ph represents a phenylene group.
  • Li FTSI Li FTSI so as to be 20% by weight. Mix well until uniform. Thereafter, 0.1% by weight of AIBN (azoisobutyl nitrile) was added and mixed, and a thermal polymerization reaction was performed at a temperature of 80 ° C. Then, it was shaped into a disk having a thickness of 1.0 mm and a diameter of 14 mm to produce a high molecular electrolyte.
  • AIBN azoisobutyl nitrile
  • the positive electrode active material represented by LiNi0.9Coo.02 was ground in a mortar to obtain a positive electrode active material powder.
  • This powder, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder were mixed at a weight ratio of 43: 3: 2 to prepare a positive electrode mixture. Press molding and heat treatment were performed on a 14 mm disk to form a positive electrode.
  • a negative electrode was prepared by punching a metallic lithium having a predetermined thickness into a disk having a diameter of 14 mm.
  • lithium secondary batteries shown in Examples 17 and 18 and Comparative Examples 13 and 14, respectively were produced.
  • the battery was sealed in an argon atmosphere, and the initial internal resistance was measured at a temperature of 60 ° C. Then, it was stored at 60 ° C for 100 hours, and then the internal resistance was measured.
  • borate ester compound obtained by the production method according to the present invention is used as an electrolyte for a lithium ion secondary battery, it is possible to obtain a battery with a small increase in internal resistance during storage. Yes, high performance electrolytes and secondary batteries could be obtained.
  • the borate ester compound obtained by the production method of the present invention has a very low water content and a high purity, the residual amount of the compound represented by the formula (1) and the compound represented by the formula (3) Less is.
  • the internal resistance is extremely small, and a high-performance electrolyte and a high-performance electrolyte are used. Good batteries can be obtained.
  • any structure may be used.
  • a borate ester compound having a structure can be obtained, and application to an electrochemical device that can exhibit various characteristics can be easily achieved because of easy molecular design.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Description

明 細 書 ホウ酸エステル化合物の製造方法、 電気化学デバイス用電解質
および二次電池
技術分野
本発明は、 ォキシアルキレン基を有する化合物のホウ酸エステル化 合物の製造方法、 該ホウ酸エステル化合物またはその重合物を用いた 電気化学デバイス用電解質ならびに二次電池に関する。
背景技術
近年、 電子製品の高性能化、 小型化に対する要求が強く、 そのエネ ルギ一源であるリチウムイオン二次電池などの電池材料に対しても、 小型化、 軽量化でかつ高容量、 高エネルギー密度が求められ、 種々の 研究開発が行われている。 リチウムイオン二次電池は一般的に金属酸 化物を正極、 炭素材料等を負極に、 そして極間にセパレ一夕一と電解 液を挟んだ構造をしている。 これは高エネルギー密度を有する二次電 池であり実用化されているが、 現在ではさ らに性能の向上が望まれて いる o
そのような要求に応える目的から、 従来の電解質溶液に代わる新し いイオン伝導体と して、 固体電解質を全固体一次電池、 二次電池、 コ ンデンサ等の電気化学デバイスへに応用する試みがなされ、 このよう な電解質と して高分子化合物を使用したいわゆる高分子電解質が種々 検討されている。 高分子電解質は可堯性を有し、 機械的衝撃にも追従 し、 さ らに電極と電解質間でのイオン電子交換反応に際して生じる電 極の体積変化にも追従し得る特徴を有している。 このような高分子電 解質と しては、 米国特許第 4 3 0 3 7 4 8号明細書ではポリアルキレ ンォキシ ドにアルカ リ金属塩またはアル力 リ土類金属塩を溶解した固 体電解質が提案されているが、 前記塩類の溶解に時間を要するために 作業効率に劣り、 イオン伝導度が不十分で、 さ らに極材との接触抵抗 が高いといつた課題が残されている。 このよ うにィォン伝導度が不十 分で、 接触抵抗が高い場合には、 充電および放電時の電流密度が充分 に得られず、 大電流を必要とする用途には適用できず、 用途が限定さ れてしま う。
上記の固体電解質の欠点を克服するため、 ポリ (メ タ) アタ リ レ一 トを主鎖と して側鎖および/または架橋鎖と してポリアルキレングリ コール鎖を導入した高分子にアル力 リ金属塩またはアルカ リ土類金属 塩を溶解した固体電解質が数多く提案されている。 このような高分子 電解質と して、 例えば特公平 3 — 7 3 0 8 1号公報にはァク リ ロイル 変性ポリアルキレンォキシ ドにアルカ リ金属塩またはアルカ リ土類金 属塩を溶解した固体電解質が提案されているが、 ここにおいてもィォ ン伝導度が不十分で、 さらに充放電に関与するカチオン成分の移動度 が低いといった課題が残されている。 このよ うにイオン伝導度が不十 分でカチオン成分の移動度が低い場合、 上述のように、 用途が限定さ れ、 さ らに対ァニオンの移動によって好ましく ない副反応が発生し得 るため充放電サイ クルによつて劣化が起こるという問題もあった。 上記アルキレンォキシ ド誘導体の開環重合物を主成分とする高分子 電解質での充放電に寄与し得るィォンの移動を制御する目的から、 特 開平 1 1 _ 5 4 1 5 1号公報ゃ特開 2 0 0 1 — 5 5 4 4 1号公報には 前記金属塩の対陰ィォンを捕捉するボロキシン環のような三官能ホウ 素化合物を使用した電解質が提案されている。 しかしながらこれらの 化合物を得るために使用するホウ素含有化合物にはオルトホウ酸や酸 化ホウ素が使用されており、 この場合、 反応時に水が脱離生成し、 さ らに得られた上記化合物もまた水によつて容易に加水分解する性質を 有しているため、 生成水の除去が非常に困難である。 このために得ら れる化合物中への水分の残存が避けがたく、 電解質基材と して使用し た場合の障害となる恐れがある。 また特開 2 0 0 1 — 7 2 8 7 6号公 報、 特開 2 0 0 1 — 7 2 8 7 7号公報にはホウ素を含有する化合物の 電解質が提案され、 これらの化合物を得るために使用するホウ素の基 材と してはボランが挙げられている。 しかしボランは活性が非常に強 く、 空気中では自ら燃焼性を示すことから、 ホウ素を含有する化合物 の製造に当たっては取り扱いが困難であり、 さ らに重合性基を有する 化合物との反応に使用した際には重合性基を損なう恐れがある。
一方で、 高分子ホウ酸エステルを電解質に用いることが提案されて いる。 ホウ酸エステル化合物は、 アルコールとホウ酸または無水ホウ 酸と反応させることによ り得られることが知られている。 すなわち、 アルコールとホウ酸を用いる場合では式 〔 1 〕 のように、 アルコール と無水ホウ酸を用いる場合では式 〔 2 〕 のようになる。
H3 B 03 + 3 R O H→B ( O R) 3 + 3 H2 0 〔 1 〕 B 2 03 + 3 R〇 H→B (〇 R) 3 + H3 B〇 3 〔 2 〕 しかしながら、 ホウ酸エステル化合物は極めて加水分解性が高く、 '水と接触するとホウ酸とアルコールを生成する。 これは、 式 〔 1 〕 の 逆反応である。 実際、 式 〔 1 〕 は平衡反応であるが、 その平衡は極端 に左に、 つまりホウ酸エステルを加水分解し、 ホウ酸とアルコールを 生成する方向に片寄っており、 通常の操作では、 ホウ酸エステルの収 率は極めて低くなる。 このため、 アルコールとホウ酸を反応させる方 法では、 通常はベンゼン等の共沸脱水剤を用い、 反応で生成する反応 液中の水を順次除去することにより、 前記式中の平衡を右に移動させ 、 目的物を回収する方法が取られている。 しかし、 この方法において も、 式 〔 1 〕 の平衡が極端に左に片寄っているため、 反応率が高く な るにつれ脱水効率が悪く なり、 水の低減には限界がある。 さ らに、 高 純度なホウ酸エステルを得るには、 ホウ酸およびアルコールの低減が 必要という問題がある。
すなわち、 アルコールを過剰に用いる場合、 反応速度を上げること ができ、 脱水効率についても有利な点がある反面、 分子量の大きなァ ルコールや、 温度を上げると重合の危険性がある重合性基を有するァ ルコ一ルでは、 蒸発させることが困難であり、 系内に残存することに なる。 このよ うな水酸基を有する化合物が系内に残存すると、 電気化 学デバイスの用途によつては性能を著しく悪化させることがある。
またホウ酸を過剰に用いる場合、 ホウ酸とホウ酸エステルの混合物 が得られるが、 このホウ酸とホウ酸エステルの混合物を加熱すると、 ホウ酸エステルが分解され、 収率が低下するという問題点が挙げられ る。 この解決手段と して、 例えば、 特開平 3 — 7 4 3 9 0号公報には 、 酸化ホウ素と脂肪族アルコールを反応させてホウ酸エステルとホウ 酸を含む反応液を得、 該反応液からホウ酸を濾別した後、 濾液を蒸留 する方法が示されており、 これは前述したとおりホウ酸を濾別しない まま蒸留すると、 ホウ酸エステルやホウ酸の分解が促進され、 目的物 の収率が低下することによるという旨が示されている。 しかし、 この 方法では、 脂肪族アルコールのホウ酸エステル化合物などの、 ホウ酸 を濾別することが出来る化合物でありかつ蒸留精製を行う ことの出来 る化合物に限られてしまう。
これに対し、 式 〔 2〕 で示した、 無水ホウ酸を使用する方法では、 共沸脱水剤を用いなく とも供給したホウ素の 5 0 %をホウ酸エステル と して得ることができる。 しかし、 残りのホウ酸は式 〔 1 〕 と同様な 反応でホウ酸エステル化することになるため、 前述したとおり、 高純 度なホウ酸エステルを得るには限界がある。
このよ うに不純物を多く含有するホウ酸エステルを電解質原料と し て使用した場合、 電極被膜抵抗の増大、 充放電サイ クル特性の低下、 電位安定性の低下等の、 電解質特性を低下させる可能性が高いといつ た問題がある。 また、 リチウムイオン二次電池用電解質に限ると、 ホ ゥ酸エステル化合物中に含まれる不純物と リチウムが反応し、 気体が 発生する可能性が高く、 電池の安全性を低下させるといつた問題もあ る。
このよ うに、 電気化学デバイス用電解質等に使用するホウ酸エステ ル化合物においては、 水等の不純物を低減する高純度化が望まれてい る。 発明の開示
本発明は、 高いイオン伝導度を示し、 かつ安全性に優れた二次電池 ゃコンデンサ等の電気化学デバイス用の材料として有用で、 かつ水分 量が低く不純物の少ないホウ酸エステル化合物の製造方法、 これを含 有する高分子電解質およびこれを使用した二次電池を提供することを 目的とする。
すなわち本発明は、 以下の通りである。
( A ) 式 ( 1 ) で示される化合物を、 式 ( 2 ) で示されるホウ素含有 化合物を用いてホゥ酸エステル化することを特徴とするホウ酸エステ ル化合物の製造方法、
X - [ 0 ( A O ) 一 H ] a ( 1 )
( Xは 1 〜 6個の水酸基を持つ化合物の残基、 ァク リ ロイル基及びメ タク リ ロイル基から選ばれる基であり、 A Oは炭素数 2〜 4のォキシ アルキレン基、 nは 0〜 6 0 0、 aは 1 〜 6であ り、 かつ n x a = 0 〜 6 0 0である。 )
(R O ) 3 - B ( 2 )
( Rは炭素数 1 〜 4のアルキル基である。 )
( B ) 式 ( 1 ) で示される化合物の平均分子量が 1 1 0以上である前 記 (A) のホウ酸エステル化合物の製造方法、
( C ) 式 ( 1 ) で示される化合物および式 ( ) で示されるホウ素含 有化合物を反応させると共に、 式 ( 2 ) で示されるホウ素含有化合物 および反応によって生成する式 ( 3 ) で示されるアルコールの蒸留を 行う ことを特徴とする前記 ( A) または ( B ) のホウ酸エステル化合 物の製造方法、
R 0 H ( 3 )
( Rは炭素数 1 〜 4のアルキル基である。 )
( D ) 式 ( 1 ) で示される化合物の水酸基 1 モルに対し、 式 ( 2 ) で 示されるホゥ素含有化合物を 1 / 3モル倍以上用いることを特徴とす る前記 (A) 〜 ( C ) のいずれかのホウ酸エステル化合物の製造方法
( E ) 得られたホゥ酸エステル化合物中の、 カールフイ ツシャ一滴定 法によつて測定された水分含有量が 1 0 0 0 p p m以下であることを 特徴とする前記 (A) 〜 ( D ) のいずれかのホウ酸エステルの製造方 法、
( F ) 前記 (A) 〜 ( E ) のいずれかの製造方法によって得られたホ ゥ酸エステル化合物またはその重合物を含有する電気化学デバイス用
( G) 前記 ( F ) の電気化学デバイス用電解質を用いる二次電池、 及 び (H) カールフィ ッシヤー滴定法によって測定された水分含有量が 1 0 0 O p p m以下であり、 式 ( 4 ) で示されるホウ酸エステル化合物 またはその重合物を含有する電気化学デバイス用電解質。
B - [ 0 (A O ) p -Y] 3 ( 4 )
(Yはァク リ ロイル基、 メ タク リ ロイル基及び炭素数 1〜 4のアルキ ル基から選ばれる基であり、 その少なく とも一つがァク リ ロイル基ま たはメ タク リ ロイル基である。 A Oは炭素数 2〜 4のォキシアルキレ ン基、 pは 1 〜 6 0 0である。 ) 発明を実施するための最良の形態
以下、 本発明を更に詳細に説明する。
本発明の製造方法で用いる式 ( 1 ) で示される化合物において、 X は 1 〜 6個の水酸基を持つ化合物の残基、 ァク リ ロイル基及びメ 夕ク リ ロイル基から選ばれる基である。 ここで、 水酸基をもつ化合物の残 基とは、 それぞれの化合物から水酸基を除いた基である。
式 ( 1 ) において A 0で示される炭素数 2〜 4 のォキシアルキレン 基と しては、 ォキシエチレン基、 ォキシプロピレン基、 ォキシブチレ ン基、 ォキシテ トラメチレン基などが挙げられ、 好ま しく はォキシェ チレン基またはォキシプロピレン基である。 またこれらを 1種または 2種以上組み合わせたものでもよく、 2種以上有する時の重合形式は ブロッ ク状、 ランダム状のいずれでもよい。
nは炭素数 2〜 4のォキシアルキレン基の平均付加モル数であり、 0〜 6 0 0である。 イオン伝導度を得る目的から好ましく は 1 〜 2 0 0、 より好ましく は 1 〜 1 0 0である。 6 0 0 を超えるとホウ素の導 入量が少なく、 電解質と して使用した際の陰ィォン補足能の発現が困 難となる。 aは 1 〜 6であ り、 好ま しく は 1 〜 4、 特に好ま しく は 1 である。 ここで n x aは 0 〜 6 0 0 であ り、 好ま しく は 1 〜 4 0 0、 よ り好ま しく は 1 〜 2 0 0である。 6 0 0 を超えるとホウ酸エステル結合の導 入量が少なく なり陰ィォン捕捉能の発現が困難となることから、 高い ィォン伝導度が得難く なる。
本発明におけるホウ酸エステル化合物の基質となる式 ( 1 ) で示さ れる化合物は、 通常の開環重合によ り得るこ とができる。 例えば、 1 〜 6個の水酸基を持つ化合物に、 水酸化ナ ト リ ウム、 水酸化力 リ ウム 、 水酸化リ チウム、 ナ ト リ ウムメ トキシ ド等のアルカ リ金属化合物、 三フッ化ホウ素エーテラー ト、 四塩化錫、 三塩化アルミニウム等のル イス酸等の開環重合触媒を用いて、 エチレンォキシ ド、 プロ ピレンォ キシ ド、 ブチレンォキシ ド、 テ ト ラ ヒ ドロフランなどの炭素数 2 〜 4 のアルキレンォキシ ドを所定のモル比で重合させることで合成するこ とができる。
式 ( 1 ) において Xで表される 1 〜 6個の水酸基を持つ化合物と し ては、 例えばメチルアルコール、 エチルアルコール、 プロ ピルアルコ —ル、 ィ ソプロ ピルアルコール、 n —ブチルアルコール、 2 —ブチル アルコール、 t 一ブチルアルコール、 n —へキシルアルコール、 n— ォクチルアルコール、 イ ソォクチルアルコール、 デシルアルコール、 ドデシルアルコール、 ト リ デシルアルコール、 テ トラデシルアルコー ル、 へキサデシルアルコール、 ォク タデシルアルコール、 ォク タデセ ニルアルコール、 ィコシルアルコール、 テ トライ コシルアルコール、 ァ リ ルアルコール、 メ タ リ ルアルコール、 ヒ ドロキシェチルビニルェ —テル、 アク リ ル酸 2 —ヒ ドロキシェチル、 メ タ ク リル酸 2 —ヒ ドロ キシェチル、 アク リル酸 2 —ヒ ドロキシプロ ピル、 メ タ ク リル酸 2 ― ヒ ドロキシプロ ピル、 アク リ ル酸 2 —ヒ ドロキシブチル、 メ タク リ ル 酸 2 —ヒ ドロキシブチル、 アク リル酸 4 —ヒ ドロキシブチル、 メ 夕 ク リル酸 4 —ヒ ドロキシブチル、 グリ セロール _ 1 , 3 —ジメ 夕 ク リ レ — ト、 グリ セロール一 1 , 3 _ジァク リ レ一ト、 グリセ口一ルー 1 一 アタ リ レー ト一 3 —メ タ ク リ レー ト、 ト リ メチロールプロパンジメ 夕 ク リ レート、 フヱ ノール、 4 —ェチルフヱ ノール、 p—ォキシ安息香 酸メチル、 p — t —ォクチルフヱノール、 ドデシルフヱノール、 α— ナフ トール、 j8—ナフ トール、 ノニルフヱ ノール、 フヱニルフヱノー ル、 4 ーフエ ノキシフヱ ノ一ル、 p — t —ブチルフエノール、 p— ( メ トキシェチル) フヱ ノール、 4 ーメ トキシフエノール、 グァヤコ一 ル、 グェ トール、 p — ( α —ク ミル) フエ ノール、 ク レゾール、 4 一 シァノ一 4 , 一ヒ ドロキシビフエニル、 キシレノール、 η—ヘプチル パラベン等のモノオール ; エチレングリ コール、 プロ ピレングリ コ一 ル、 ブタンジオール、 ペンタ ンジオール、 へキサンジオール、 ォク 夕 ンジオール、 グリセロールモノメ タ ク リ レー ト、 ト リ メチロールプロ パンモノメ タ ク リ レー ト、 力テコ一ル、 ハイ ド口キノ ン、 1 , 4 ージ ヒ ドロキシナフタ レン、 ビスフエノール A、 水素化ビスフエ ノール A
、 レゾルシン、 4 一 t 一プチルカテコール、 2 _ t —ブチルヒ ドロキ ノ ン等のジオール ; グリ セリ ン、 ト リ メチロールプロパン、 ペンタエ リ ス リ トールモノメ タク リ レー ト、 ペン夕エリスリ トールモノアク リ レー ト、 ジグリ セ リ ンモノメ タ ク リ レー ト、 ジグリ セ リ ンモノアタ リ レー ト、 フロログルシノール等の ト リオ一ル ; ペンタエリ ス リ トール 、 ジグリセ リ ン等のテ トラオール、 ト リ グリ セ リ ン等のペン夕オール ; テ ト ラグリ セ リ ン、 ジペンタエリ ス リ トール等のへキサオール ; が 挙げられる。
Xと して好ま しく はメチルアルコール、 エチレングリ コール、 プロ ピレングリ コール、 ブチレングリ コール、 アク リル酸 2 —ヒ ドロキシ ェチル、 メ タク リル酸 2 —ヒ ドロキシェチル、 アタ リル酸 2 —ヒ ドロ キシプロピル、 メ タク リル酸 2 —ヒ ドロキシプロピル、 グリセロール モノメ タク リ レ一トおよびグリセロ一ルモノアク リ レー 卜の残基、 ァ ク リ ロイル基おょぴメ タク リ ロイル基である。
ホウ素含有化合物と反応生成物の蒸留と反応を同時に行う本発明の 製造方法では、 式 ( 1 ) で示される化合物が、 アタ リ ロイル基または メ 夕ク リ ロイル基を持つことが、 熱負荷を少なく製造することができ 重合性基を損なわない点から好ま しい。
式 ( 1 ) で示される化合物の平均分子量は数平均分子量で 1 1 0以 上、 更に 1 1 0〜 3 0, 0 0 0であることが好ましい。 該平均分子量 が 1 1 0以上であると、 式 ( 1 ) で示される化合物を十分反応液中に 留めておく ことができるため、 反応率を上げることができる。 また、 前記蒸留を行う場合は、 留出物を簡単に回収利用できるため好ましい また、 式 ( 1 ) で示される化合物は 1種または 2種以上を組み合わ せて用いることができる。 2種以上用いるときは、 混合物の水酸基価 が 4 3 0以下であることが好ま しい。
式 ( 1 ) で示される化合物は、 予め低水分化されていることが好ま しく、 水分量と しては 0 . 5重量%以下に低水分化されているものが 好ま しい。 水分を多く含有する場合、 ホウ酸エステルの加水分解によ つて生成したホウ酸が系内に残存してしまい、 電気化学デバイス用の 電解質に用いた場合、 その性能を損なう恐れがある。
本発明に用いられる式 ( 2 ) で示されるホウ素含有化合物の Rと し ては、 メチル基、 ェチル基、 n—プロピル基、 イソプロピル基、 n— ブチル基、 2 _ブチル基、 イソブチル基、 t 一ブチル基などが挙げら れる。 ホウ酸エステル化の際に生成するアルコールの除去のし易さの 点から、 メチル基、 ェチル基、 イソプロピル基、 t 一ブチル基が好ま しく、 メチル基がより好ま しい。
また、 式 ( 2 ) で示されるホウ素含有化合物は 1種または 2種以上 を組み合わせて用いることができるが、 蒸留制御や原料の回収精製が 簡易であるため 1種のみで用いる方が好ましい。
本発明のホウ酸エステル化合物の製造においては、 式 ( 1 ) で示さ れる化合物に式 ( 2 ) で示されるホウ素含有化合物を加え、 3 0〜 2 0 0 °Cにて不活性ガス通気下でホウ酸エステル交換反応を行う。 その 後、 生成する式 ( 3 ) で示されるアルコールを大気圧下もしく は不活 性ガス雰囲気加圧下から 0 . 0 1 3 k P aの圧力下で除去し、 ホウ酸 エステル交換反応を進行させる。
式 ( 1 ) で示される化合物が (メ タ) ァク リ ロイル基 (以下、 (メ 夕) ァク リ ロイルはァク リ ロイルまたはメ タク リ ロイルを示す) を持 たない場合には前記反応温度は好ましく は 5 0〜 2 0 0 °Cであり、 よ り好ましく は 6 0〜 1 5 0 °Cである。 また、 この場合、 反応釜内に窒 素ガスを適当量通気するのが好ま しい。 反応温度が低いと脱離する低 分子アルコールの除去によるホウ酸エステル交換反応の進行が遅く な り、 2 0 0 °Cよ り高いと式 ( 1 ) で示される化合物の熱劣化がおこり やすくなる。
また式 ( 1 ) で示される化合物が (メ タ) アタ リロイル基を有する 場合には、 前記反応温度は好ましく は 3 0〜 1 2 0 °Cであり、 より好 ま しく は 6 0 〜 9 0 °Cである。 また、 この場合、 反応釜内に乾燥空気 を適当量通気するのが好ましい。 反応温度が低いと脱離する低分子ァ ルコールの除去によるホウ酸エステル交換反応の進行が遅く なり、 2 0 o °cより高いと (メ タ) ァク リ ロイル基の保持が困難となる場合が ある。 反応時の圧力は、 温度、 式 ( 2 ) で示されるホウ素含有化合物の種 類などによ り、 適宜決定できるが、 不活性ガス雰囲気加圧下から 0. 0 1 3 k P aの範囲であることが好ま しい。 0. 0 1 3 k P aよ り も 低いと式 ( 2 ) で示されるホウ素含有化合物を十分反応液中に留めて おく ことが難しく、 不活性ガス雰囲気加圧下あるいは大気圧より も高 い場合は、 式 ( 3 ) で示されるアルコールを除去する場合、 温度が高 くなりすぎ、 化合物の熱劣化を引き起こす場合がある。 本発明のホウ 酸エステル化合物の純度を上げるためには、 最終的に 0. 0 1 3〜 6
. 6 7 k P aの減圧下で揮発成分の除去を行う ことが好ましい。 反応 条件は反応の進行に伴って、 上記で示された範囲内で変化させてもよ い。
反応時間は、 0. 5〜 1 0 0時間であり、 好ま しく は 2〜 5 0時間 である。 また、 この時間で反応を終了させるように条件および装置を 選定することができる。 0 . 5時間よ り短いと式 ( 3 ) で示される低 分子アルコールの除去が困難であることがあり、 1 0 0時間を超える 場合は、 式 ( 1 ) で示される化合物および生成したホウ酸エステルの 劣化が進行しやすく なる。 式 ( 1 ) で示される化合物が (メ タ) ァク リ ロイル基を有する場合には、 (メ タ) ァク リ ロイル基の重合反応を 抑制するために、 反応時間は 2〜 3 0時間であることがよ り好ましい 上記反応においては、 式 ( 1 ) で示される化合物と式 ( 2 ) で示さ れる化合物を所定量混合して、 乾燥空気または不活性ガス雰囲気下に おいて、 0 . 5〜 5時間混合を行う ことが好ま しい。 その後、 6 . 6 7 k P a以下の減圧下、 6 0〜 1 2 0 °Cで揮発分の除去を行う ことが 好ま しい。
減圧を行う際は、 反応温度を保ったまま、 徐々に減圧を行うことが さ らに好ま しい。
反応中に系内に通じる乾燥空気は、 特に制限はないものの、 好まし く は凝縮型エアードライヤー等によって乾燥させたものであり、 式 (
2 ) で示されるホウ素含有化合物や目的のホウ酸エステル化合物が加 水分解し易いため、 ガス中の水分は低い必要があり、 例えば、 露点— 1 0 °c以下である。
本発明に用いられる式 ( 2 ) で示されるホウ素含有化合物は、 ホウ 酸エステル化反応の際には、 式 ( 1 ) で示される水酸基含有化合物と のエステル交換反応によつて式 ( 3 ) で示される低分子アルコールが 生成する。 例えば、 式 ( 2 ) で示されるホウ素含有化合物がホウ酸ト リメチルである場合、 式 ( 3 ) で示される低分子アルコ—ルはメ 夕ノ ールとなる。 式 ( 2 ) で示されるホウ素含有化合物を 2種以上使用す る場合には、 式 ( 3 ) で示される低分子アルコールも 2種以上となる 本発明のホウ酸エステル化合物の製造方法は、 式 ( 1 ) で示される 化合物に式 ( 2 ) で示されるホウ素含有化合物を加え、 反応を行う方 法であるが、 好ましく は、 その後または同時に、 反応によつて生成す る式 ( 3 ) で示される低分子アルコールと、 式 ( 2 ) で示されるホウ 素含有化合物を蒸留するこ とでホウ酸エステル化合物を得ることがで きる。 蒸留は通常、 単蒸留と精留に区別されるが、 本発明で行う蒸留 は単蒸留だけでなく精留も包含している。
a ( R 0 ) 3 - B + 3 X - [ 0 ( A O ) n — H ] a →ホウ酸エステ ル化合物 + 3 a R 0 H [ 3 ]
本発明における製造方法は式 [ 3 ] で示される平衡反応を利用して 、 高純度なホウ酸エステル化合物を製造する方法である。 式 ( 1 ) で 示される化合物の水酸基 1 モルに対して、 ホウ素原子 1 / 3 モルの比 率において、 ホウ酸エステルが生成する。 ホウ酸エステル化の割合は 、 反応温度、 反応時間や水酸基とホウ素原子のモル比率などによって 任意に調整可能であり、 好ましく は反応率が 5 0 〜 1 0 0 %、 よ り好 ましくは 6 5 〜 1 0 0 %の範囲のホウ酸エステル化合物である。
ホウ酸エステル化の割合を高くするには、 式 ( 3 ) で示されるアル コールを効率よく除去し、 反応を進行させることである。 ただし、 式 ( 3 ) で示されるアルコールと式 ( 2 ) で示されるホゥ素含有化合物 は、 それらの沸点が非常に近く しかも最低共沸混合物を形成する組み 合わせであるものが多いため、 式 ( 3 ) で示されるアルコールを効率 よく除去するために蒸留操作を用いることが好ま しい。
蒸留条件と しては、 温度 3 0〜 2 0 0 t:、 圧力が不活性ガス雰囲気 加圧下から 0 . 0 1 3 k P aの範囲で行う ことが好ま しく、 0 . 1 0 〜 1 1 0 k P aの範囲であることがよ り好ま しい。 圧力がこの範囲外 の場合、 特殊な装置を必要と したり、 蒸留制御が困難になる場合があ る。
反応に使用する式 ( 1 ) で示される化合物に対する式 ( 2 ) で示さ れる化合物の使用量は、 式 ( 1 ) で示される化合物の水酸基 1 モルあ たり、 式 ( 2 ) で示されるホウ素含有化合物 1 / 3モル以上であるこ とが好ましい。 より高純度品を得るためには、 式 ( 2 ) で示されるホ ゥ素含有化合物の使用量は、 式 ( 1 ) で示される化合物の水酸基 1 モ ルあたり、 よ り好ま しく は 0 . 5モル以上であり、 さ らに好ましく は 0 . 6 7 モル以上である。
また、 式 ( 2 ) で示されるホウ素含有化合物の使用量は、 式 ( 1 ) で示される化合物の構造や分子量などを考慮する必要がある。 例えば 、 式 ( 1 ) で示される化合物が高分子量である場合、 式 ( 2 ) で示さ れる化合物の量が少ないと、 この混合物は固体となるこどがあり、 反 応率が十分高く ならない場合がある。 よって、 式 ( 2 ) で示されるホ ゥ素含有化合物の使用量の上限については特に制限は無いものの、 通 常は反応液の全重量に対して最大 8 0重量%である。 これ以上の量を 用いても蒸留時間が長くなるだけでそれ以上の効果を得ることは難し い。
式 ( 2 ) で示されるホウ素含有化合物をさ らに追加して、 蒸留を行 う ことも出来る。 追加の方法は特に限定されないものの、 一時に追加 することも、 連続的あるいは断続的に時間経過と共に適宜追加するこ とも出来る。
上記反応は特に触媒を必要と しないで行う ことができる。 3級アル コールなどの反応性の低いアルコールを用いる場合には、 十分な反応 速度を得るために、 ナト リ ウム、 カ リ ウムなどを触媒として用いるこ とができるが、 精製を簡易に行うためには触媒は用いないことが好ま しい。
反応に際しては、 ホウ酸エステル化反応に寄与しない溶剤を適宜用 いることができる。 溶剤と しては、 式 ( 3 ) で示される低分子アルコ ールと最低共沸組成物を形成し、 式 ( 2 ) で示されるホウ素含有化合 物とは最低共沸組成物を形成しない非プロ ト ン性溶剤が好ましく 、 具 体的にはへキサン、 ヘプ夕ン、 ベンゼン、 トルエン、 キシレン等が挙 げられる。 これらの溶剤を使用した場合、 式 ( 2 ) で示されるホウ素 含有化合物の留出割合が低減される効果が発現され、 式 ( 2 ) で示さ れるホウ素含有化合物の使用量を減らすことが出来る。
また、 式 ( 1 ) で示される化合物のうち (メ タ) ァク リ ロイル基ま たはアルケニル基等の重合性基を有する化合物を用いる場合には、 重 合性基の保護のために、 ジー t —プチルーヒ ドロキシ トルエン (以下 B H Tと記す) 、 フヱノチアジン等の重合禁止剤を 2 0〜 1 0 0 0 p p mの量で用いることができる。 重合性基を有しない化合物において も、 酸化防止のため、 B H T等の酸化防止剤を l ~ 1 0 0 0 p p mの 量で用いることができる。
本発明の製造方法によつて得られたホウ酸エステル化合物は、 特に 精製を行わなくてもよいが、 本発明の効果を阻害しない範囲で種々の 精製を行う ことが出来、 例えば、 濾過、 吸着処理、 抽出、 蒸留、 再結 晶、 乾燥等を行う ことが出来る。 ホウ酸エステル化合物は加水分解性 の高い化合物であるので、 上記処理は吸湿または加水分解しない条件 で行う ことが好ましく、 例えば、 吸着剤で処理する場合、 加熱乾燥し た吸着剤を使用することが好ま しい。
本発明の製造方法によ り得られたホウ酸エステル化合物は、 カール フィ ッシヤー滴定法によって測定された水分含有量が 1 0 0 0 p p m 以下、 好ましく は 9 0 O p p m以下であり、 更に好ま しく は 3 5 O p p m以下であり、 特に好ま しく は 1 0 0 ppm以下である。
カールフィ ッ シャー滴定法による水分含有量の測定では、 メ タ ノ一 ルを測定用溶媒と して用いる。 この測定では、 ホウ酸エステル化合物 中に存在する水だけでなく、 微量に存在するオルトホウ酸、 無水ホウ 酸などの不純物の量も同時に測定できる。 これらの水及び不純物を多 く含有するホウ酸エステル化合物を電解質原料として使用する場合、 電極被膜抵抗の増大、 電位安定性の低下等の特性を劣化させる恐れが 高く なる。 また、 リチウムイオン二次電池用電解質と して用いる場合 、 ホウ酸エステル化合物中に含まれる水及び不純物と リチウムゃ支持 塩が反応したり、 充放電時に電気分解を起こ したり、 気体を発生する 可能性が高く なることから、 電池の安全性を低下させるといつた問題 が起こる。
本発明においては、 力一ルフイ ツシャ一滴定法による水分含有量の 測定は以下の方法で行う ことができる。 なお、 下記条件以外は、 日本 工業規格 J I S K 1 5 5 7 6 . 5 に準拠して行う。
カールフィ ッシャー測定用脱水メ タノール 1 0 0 m 1 を溶剤と して 用い、 容量滴定法によって水分含有量の測定を行う。 滴定液は力価 3 m g H 2 O / gの試薬を用いる。 水分含有量の少ないものについては 、 J I S K 1 5 5 7 6 . 5 に規定されたサンプル量 2 0 gより多 く の試料 (例えば 4 0 g ) を測定に供し水分含有量を求める。 試料は シ リ ンジで測定容器に投入する。 また、 すべての試料について、 二つ の測定値の平均をと り、 有効数字 2桁 ( 3桁目を四捨五入) とする。 本発明の製造方法によつて得られた、 ホウ酸エステル化合物中には 、 化合物の構造、 精製方法等によるが、 式 ( 2 ) で示されるホウ素含 有化合物が微少量含まれることがある。 本発明によって得られたホウ 酸エステル化合物を電気化学デバイス用電解質と して用いる場合、 式
( 2 ) で示されるホウ素含有化合物が有する揮発性のために、 電気化 学デバイスの膨張、 液漏れの恐れがあるため、 その量は 5重量%以下 まで低減されていることが好ましい。
本発明の製造方法では、 式 ( 2 ) で示されるホウ素含有化合物と式
( 3 ) で示される低分子アルコールの混合物が留出物として得られる 。 これらの留出物は全て再利用することができ、 例えば、 アルキルァ ルコールとホウ酸の反応よつて得られるホウ酸エステルの製造用原料 と して使用することができる。 また、 式 ( 2 ) で示されるホウ素含有 化合物を主成分とする留出物は、 本発明の製造方法の原料と して再使 用することができる。
本発明の製造方法を行う装置は、 当業界における公知の装置から適 宜選定でき、 その材質もガラス、 ステンレス等公知の材質から適宜選 定できる。 また、 反応条件を考慮し、 伝熱面積、 熱媒体等も適宜選定 することが出来る。 精留を行う場合は、 精留塔が必要であるが、 その 分離形式、 理論段数、 塔径などは反応条件に合わせて適宜選定するこ とができる。 また、 ホウ酸エステル化合物は加水分解し易いため、 装 置内は予め乾燥されていることが好ましい。
本発明は、 また、 カールフィ ッシャー滴定法によって測定された水 分含有量が 1 0 0 O p p m以下であり、 式 ( 4 ) で示されるホウ酸ェ ステル化合物またはその重合物を含有する電気化学デバイス用電解質 に関する。
B - [ 0 (A O ) P - Y] 3 ( 4 )
(Υはァク リ ロイル基、 メ タ ク リ ロイル基及び炭素数 1 〜 4のアルキ ル基から選ばれる基であり、 その少なく とも一つがァク リ ロイル基ま たはメ タク リ ロイル基である。 A Oは炭素数 2〜 4のォキシアルキレ ン基、 pは 1 〜 6 0 0である。 )
上記電気化学デバイス用電解質は、 カールフイ ツシャ一滴定法によ つて測定された水分含有量が 1 0 0 0 p p m以下であり、 好ま しく は 9 0 0 p p m以下、 更に好ま しく は 3 5 0 p p m以下、 特に好ましく は 1 0 0 p p m以下である。 式 ( 4 ) で示されるホウ酸エステル化合 物またはその重合物は、 電気化学デバイス用電解質と して有用であり 、 このような電解質を使用することによ り、 陰イオン捕捉能の発現と 高いィォン伝導度を得ることができ、 安全性および電気特性に優れた 電解質を得ることができる。 なお、 式 ( 4 ) において、 A〇で表され る炭素数 2〜 4のォキシアルキレン基については、 式 ( 1 ) について 規定したものと同様である。 また、 Yで表される炭素数 1 〜 4のアル キル基としては、 式 ( 1 ) における Xで表される 1 〜 6の水酸基を持 つ化合物の残基のうち、 炭素数 1 〜 4のアルキル基が挙げられる。 p は炭素数 2〜 4のォキシアルキレン基の平均付加モル数であり 1 〜 6 0 0である。 イオン伝導度を得る目的から好ましく は 1 〜 2 0 0、 よ り好ましく は 1 〜 1 0 0である。 この値が 6 0 0 を超えるとホウ素の 導入量が少なく、 電解質として使用した際の陰ィォン補足能の発現が 困難となる。
上記電気化学デバイ ス用電解質は、 二次電池、 電気二重層コンデン サ等の電解質と して使用することができ、 二次電池用電解質と して有 用であり、 特にリチウムィォン二次電池用電解質と して有用である。 さ らに、 その二次電池用電解質を用いた二次電池と して使用すること ができる。
上記のホウ酸エステル化合物と しては、 本発明においては、 前記本 発明のホウ酸エステル化合物の製造方法、 すなわち式 ( 1 ) の化合物 と式 ( 2 ) のホウ酸含有化合物を用いて得られるホウ酸エステル化合 物を好ま しく用いることができる。
本発明に係るホウ酸エステル化合物のうち重合性基を有する化合物 は、 これに含まれる重合性基を重合させた形で使用する。 重合は、 加 熱、 紫外線、 可視光、 電子線などのエネルギーによってなされるが、 適宜、 公知の重合開始剤を使用しても良い。 重合後の数平均分子量は 5 0 , 0 0 0〜 1 0, 0 0 0 , 0 0 0であるものが好ましく、 5 0, 0 0 0 を下回ると得られるフィルムの自立性ゃ可堯性の発現が得難く なることがある。
本発明に係るホウ酸エステル化合物は、 1種または 2種以上を混合 して使用することができる。 配合によっては、 混合して使用すること によ り機械的特性の向上や二次電池用電解質と して使用した際のィォ ン伝導度の向上が望まれる。
例えば、 本発明の製造方法で得られるホウ酸エステル化合物の場合 、 式 ( 1 ) で示される化合物のうち重合性基を有するものと、 持たな いものを同時に用いてホウ酸エステル化することで、 重合性基の導入 量、 ホウ酸エステル基の導入量を任意に制御することができ、 材料設 計の点からも非常に有用である。
本発明に係るホウ酸エステル化合物は、 充放電に寄与し得るイオン の移動を制御する効果を得る目的から、 有機高分子化合物中に 5〜 1 0 0重量%用いるのが好ましく、 1 0 〜 1 0 0重量%用いるのがより 好ま しい。
本発明に係るホウ酸エステル化合物を使用した電解質では、 ホウ素 によるカチォン輸率の向上によってィォン伝導度の向上と、 それに伴 う電気化学デバイス用電解質と しての性能改善が達成できる。 さ らに 、 ホウ酸エステル化合物の水分が本質的に低いため、 電解質と して使 用した際に他の金属部材、 金属成分等の腐食の発生や、 水の電気分解 反応によるガス発生から起こる内圧上昇の問題が排除されることから 非常に有用である。
本発明に係るホウ酸エステル化合物のうち重合性基を有する化合物 では、 ホゥ酸エステル基がポリマ一マ ト リ クスと同一分子中に固定さ れているために、 高いイオン伝導度と両立して、 フィルム安定性がよ り優れる。 また、 重合性基を有するホウ酸エステル化合物の場合には 、 ホウ酸エステル基がポリマーマ ト リ クスと同一分子中にあるため、 ィォン性化合物以外の第三成分を添加することなく使用することもで き、 電解質フィルムを得る際の工程の単純化が可能であり、 非常に有 用である。
本発明の電気化学デバイス用電解質は、 種々の方法で調製可能であ る。 その調製方法は特に限定されないが、 例えば、 ホウ酸エステル化 合物と他の重合性有機化合物と混合して、 これにィォン性化合物を溶 解させ、 キャスティ ングした後に加熱して重合させることで力学的強 度を有する高分子電解質薄膜を得ることができる。 また例えば、 重合 性基を有するホウ酸エステル化合物の場合には、 ィォン性化合物を溶 解させて溶液を調製し、 これを加熱によ りキャスティ ングして熱重合 させることで、 力学的強度を有する高分子電解質薄膜を得ることがで きる。 必要に応じて、 紫外線、 可視光、 電子線等のエネルギー線を照 射することで重合性化合物の重合による薄膜を得ることもできる。 ま た、 例えば、 重合性基を有するホウ酸エステル化合物の重合物とィォ ン性化合物を良く混練し成形することで、 電気化学デバイス用電解質 薄膜を得ることができる。
電気化学デバイス用電解質はィォン性化合物およびホウ酸エステル 化合物を含有する有機高分子化合物からなる。 有機高分子化合物は、 本発明の効果を妨げない範囲でホウ酸エステル以外の他の有機高分子 化合物または重合性化合物を含有してもよい。
他の有機高分子化合物と しては、 例えばポリアク リ ロニト リル、 ァ ク リ ロニト リル一メ タク リル酸共重合体、 アク リ ロニト リル—メ タク リル酸メチル共重合体、 メ タク リル酸一スチレン共重合体、 ァク リ ロ ニト リ ルースチレン共重合体、 ァク リ ロニト リル一スチレン一メ タ ク リル酸共重合体、 アク リ ロニト リル一スチレン一メ タク リル酸メチル 共重合体、 スチレン一マレイ ン酸共重合体、 ポリアルキレングリ コ一 ル (メ タ) ァク リ レート共重合体等が挙げられる。
また、 本発明に用いられるホウ酸エステル化合物に他の重合性化合 物を予め混合し、 イオン性化合物を溶解させて、 かかる後に重合して も良い。
他の重合性化合物と しては、 アク リル酸メチル、 アク リル酸ブチル 等のアルキルァク リ レート、 メ タク リル酸メチル、 メ タク リル酸ブチ ル等のアルキルメ タ ク リ レー ト、 下記式 ( 5 ) で示されるポリ アルキ レングリ コ一ル (メ タ) ァク リ レー ト、 アク リ ロニ ト リル、 スチレン 、 ジビュルべンゼンなどが挙げられ、 下記式 ( 5 ) で示されるポリ ア ルキレングリ コール (メ タ) アタ リ レー トを用いることが好ま しい。
Z - [ 0 (A2 0 ) m - R' ] b ( 5 )
( Zは 1 〜 4個の水酸基を持つ化合物の残基、 水素原子、 ァク リ ロイ ル基またはメ タ ク リ ロイル基であ り、 A 2 0は炭素数 2〜 4のォキシ アルキレン基の 1種または 2種以上の混合物であ り、 mは 0〜 1 5 0 、 bは 1 〜 4であり、 かつ mx b = 0〜 3 0 0であり、 R ' は水素原 子、 炭素数 1 〜 8の炭化水素基、 シァノエチル基、 ァク リ ロイル基ま たはメ 夕 ク リ ロイル基であり、 分子中に少なく と も一つはァク リ ロイ ル基またはメ タ ク リ ロイル基を含む。 )
式 ( 5 ) において Zで表される 1 〜 4個の水酸基を持つ化合物と し ては、 メチルアルコール、 エチルアルコール、 プロ ピルアルコール、 イ ソプロ ピルアルコール、 n—ブチルアルコール、 2 一ブチルアルコ —ル、 t 一ブチルアルコール、 n—へキシルアルコール、 n—ォクチ ルアルコール、 イ ソォクチルアルコール、 デシルアルコール、 ドデシ ルアルコール、 ト リ デシルアルコール、 テ トラデシルアルコール、 へ キサデシルアルコール、 ォク 夕デシルアルコール、 ォク タデセニルァ ルコール、 ィコシルアルコール、 テ トライコシルアルコール、 ァ リル アルコール、 メ タ リ ルアルコール、 ヒ ドロキシェチルビュルエーテル 等のモノオール、 エチレングリ コール、 プロ ピレングリ コール、 ブ夕 ンジオール、 ペンタ ンジオール、 へキサンジオール、 オク タ ンジォー ル等のジオール、 グリ セ リ ン、 ト リ メチロールプロパン等の ト リオ一 ル、 ペンタエリ ス リ トール、 ジグリ セリ ン等のテ トラオールが挙げら れる。 Z と しては好ま しく はメチルアルコール、 エチレングリ コ一ル、 プ ロ ピレングリ コール、 グリ セ リ ン、 ト リ メチロールプロノ、。ン、 ペン夕 エリ ス リ トール、 ジグリ セリ ンの残基、 および水素原子、 ァク リ ロイ ル基、 メ 夕 ク リ ロイル基、 よ り好ま しく はメチルアルコール、 ェチレ ングリ コール、 プロ ピレングリ コールの残基、 水素原子、 ァク リロイ ル基、 メ 夕 ク リ ロイル基である。
式 ( 5 ) において A 2 〇で示される炭素数 2 〜 4 のォキシアルキレ ン基は、 ォキシエチレン基、 ォキシプロ ピレン基、 ォキシブチレン基 、 ォキシテ ト ラメチレン基などが挙げられ、 好ま しく はォキシェチレ ン基またはォキシプロ ピレン基である。 またこれらの 1 種または 2種 以上の混合物でもよ く 、 2種以上の時の重合形式はブロッ ク状、 ラン ダム状のいずれでもよい。
式 ( 5 ) で示される化合物は分子中に少なく と も一つはァク リ ロイ ル基またはメ タ ク リ ロイル基をもつ。
本発明の電気化学デバイス用電解質に用いられるィォン性化合物は 、 有機高分子化合物に対して任意の比率で混合することができるが、 イオン性化合物に含まれるアルカ リ金属 1 モルに対して、 ホウ酸エス テル化合物に含まれるォキシアルキレン単位の総数 2〜 3 0 モル、 更 には 2 〜 2 0モルの比率となるよ うに混合するのが、 有機高分子化合 物のガラス転移温度低下によるイオン伝導度への寄与およびキヤ リ ァ 数の増大によるイオン伝導度向上の点からよ り好ま しい。 特に、 アル 力 リ金属 1 モルに対してォキシアルキレン単位の総数 4 〜 2 0 モルの 比率となるよう に混合するのが、 ィォン性化合物の解離の促進の点か ら好ま しい。
なお、 ホウ酸エステル化合物以外のォキシアルキレン単位を有する 化合物を配合する場合、 そのォキシアルキレン単位もあわせてイオン 性化合物の配合量を設定する。
本発明の電気化学デバイス用電解質に用いられるィォン性化合物の 種類は特に限定されるものではなく、 コ ンデンサ用途においては、 例 えば (C H3 ) 4 N B F 4 、 (C H3 C H2 ) 4 N B F 4 等の 4級ァ ンモニゥム塩、 A g C 1 04 等の遷移金属塩、 (C H3 ) 4 P B F 4 等の 4級ホスホニゥム塩、 L i C 1 04 、 L i A s F 6 、 L i P F 6 、 L i B F , 、 L i C F a S〇3 、 L i ( C F 3 S 02 ) 2 N、 L i (C 2 F 5 S 02 ) 2 N、 L i ( C F 3 S〇 2 ) 3 C . L i I、 L i S C N、 N a B r、 N a l、 N a S C N、 K I、 K S C Nなどのアル カ リ金属塩、 p— トルエンスルホン酸等の有機酸およびその塩などが 挙げられ、 好ま しく は出力電圧が高く得られ、 解離定数が大きい点か ら、 4級アンモニゥム塩、 4級ホスホニゥム塩、 アルカ リ金属塩であ る。
本発明の二次電池用電解質に用いられるィォン性化合物と しては、 例えば L i C 1 04 、 L i A s F 6 、 L i P F 6 、 L i B F 4 、 L i C F a S 03 L i ( C F 3 S 02 ) 2 N. L i ( C 2 F 5 S〇 2 ) 2 N、 L i .( C F 3 S 02 ) 3 C、 L i I、 L i S C N、 N a B r、 N a l、 N a S C N、 K I、 K S C Nなどのアルカ リ金属塩が挙げら れ、 好ま しく は L i C 1 04 、 L i A s F 6 、 L i P F 6 、 L i B F 4 、 L i C F 3 S 03 、 L i ( C F 3 S 02 ) 2 N、 L i ( C 2 F 5. S 02 ) 2 N、 L i ( C F 3 S 02 ) 3 C、 L i I、 L i S C Nなど のリ チウム塩である。
さ らに本発明の二次電池用電解質には、 ィォン伝導性または強誘電 性の塩、 ガラスの粉末などを添加することができる。 このような塩ま たはガラスの粉末としては、 例えば S n〇 2 、 B a T i 03 、 L a T i 03 などが挙げられる。 本発明の効果を妨げなければ、 エチレンカーボネー ト、 プロピレン カーボネー ト、 ブチレンカーボネー ト、 ジメチルカ一ボネー ト、 ジェ チルカーボネー ト、 メチルェチルカ一ボネー ト、 テ トラ ヒ ドロフラン
、 ァーブチロラ ク ト ン、 ジメ トキシェタ ン、 2 —メチルテ トラヒ ドロ フラン、 1 , 3 —ジォキソラン、 ホルムアミ ド、 ジメチルホルムアミ ド、 ニトロメ タン、 蟻酸メチル、 酢酸メチル等の液体の電解質基材を 混合して使用してもよい。
本発明の高分子電解質と、 従来公知の正極材料、 負極材料を組み合 わせることで、 イオン伝導度、 充放電サイ クル特性、 安全性に優れた 二次電池を得ることが可能である。
本発明のホウ酸エステル化合物の製造方法は、 前記式 ( 2 ) で示さ れるホゥ素含有化合物を用いるものであり、 ホウ酸エステルの製造に 従来から用いられているホウ素含有化合物である酸化ホウ素やオルト ホウ酸などのようにホウ酸エステル化反応する際の水の発生が本質的 に見られず、 式 ( 1 ) で示される化合物と式 ( 2 ) で示される化合物 のホウ酸エステル交換反応によつて発生する低分子アルコールの除去 が容易であることから、 反応に要する時間の短縮が可能であり、 生産 の効率に優れている。
さ らに、 式 ( 1 ) で示される化合物と式 ( 2 ) で示される化合物の ホウ酸エステル交換反応によって発生する式 ( 3 ) で示される低分子 量のアルコールを、 式 ( 2 ) の化合物と蒸留することによ り、 非常に 高い反応率でホゥ酸エステル化反応を進行させることが可能である。 しかも、 反応で消費されなかった残存する式 ( 2 ) で示されるホウ素 含有化合物の除去も容易であり、 高純度のホウ酸エステル化合物を得 ることができる。
また本発明のホウ酸エステル化合物は、 ホウ酸エステル化反応する 際の水の発生がないことから水分含有量が非常に少なく、 電気化学デ バイス用電解質と して使用した場合に、 電解質の用途上含まれるィォ ン性化合物の分解を誘因せず、 かつこれら電気化学デバイスに用いら れている金属の腐食も発生させず、 電気特性に優れる。
さ らに、 ホウ酸エステル化合物の製造に通常用いられているホウ素 含有化合物である酸化ホウ素、 オルトホウ酸、 メ タホウ酸やピロホゥ 酸はポリアルキレングリ コール誘導体への溶解性を有するため、 エス テル化した後にも溶存している可能性があり、 これで得られたホウ酸 エステル化合物を電気化学デバイス用電解質と して使用した際に、 含 まれるィォン性化合物とのイオン交換や、 用いられている金属との反 応ゃイオン捕捉が発生する可能性がある。 本発明の製造方法では、 前 記式 ( 2 ) で示されるホウ素含有化合物が残存した場合でも支持塩類 や金属と反応や相互作用をしない形態であるため、 電気特性に優れる 本発明の電気化学デバイス用電解質を用いた場合に、 広い温度範囲 に亘つて高いイオン伝導度を有し、 サイ クル特性および安全性および 安定性に優れた電気化学デバイスを得ることができる。
また本発明の製造方法で得られたホウ酸エステル化合物は、 水分含 有量が非常に少なく、 かつ、 純度が高いため、 式 ( 1 ) で示される化 合物および式 ( 3 ) で示される化合物の残存量が少ない。 このような 、 低水分、 水酸基の少ないホウ酸エステル化合物は、 リチウムイオン 二次電池用電解質と して使用した場合に、 内部抵抗の増加が非常に少 なく、 高性能な電解質およびその電解質を使用した良好な電池を得る ことができる。
さ らに、 本発明のホウ酸エステル化合物の製造方法では、 任意の構 造を有するホウ酸エステル化合物を得ることができ、 分子設計が容易 であることから様々な特性を発揮することのできる電気化学デバイス への応用が容易に達成することができる。
以下、 本発明を実施例によ り更に具体的に説明する。
なお、 以下文中において乾燥空気は凝縮型エア一ドライヤーを通じ て脱水した空気を示し、 L i T F S I はリチウムゼス ( ト リ フルォロ メ タンスルホネート) イ ミ ドを示し、 L i P F 6 は六フッ化リ ン酸リ チウムを示す。 電解質組成物のイオン性化合物と しての L i T F S I または L i P F 6 の添加量は、 各実施例とも電解質組成物中に含まれ るアルキレンォキシ ドのエーテル酸素 1 6 モルに対して、 L i イオン 濃度が 1 モルの比率となっている。
実施例 1
出発物質と して分子量 5 5 0 のメ トキシポリエチレングリ コール 5 5 0 g ( 1 . 0 モル) にホウ酸ト リ メチル 3 4 . 6 g ( 0 . 3 3 3 モ ル) を加え、 攪拌しながら窒素ガス雰囲気下 6 0 °Cまで昇温した。 6 0 °Cにて 1 時間保持したのちに温度 1 2 0 °Cまで 1 時間かけて昇温し た。 1 2 0 °Cになったのちに系内を徐々に減圧し、 圧力 1 . 6 7 k P a ( 2 0 m m H g ) 以下の状態を 3時間保持し、 反応の進行に伴って 発生する揮発分を除去した。 その後濾過することでホウ酸エステル化 合物 5 2 0 gが得られた。
実施例 2
出発物質として日本油脂 (株) 製ブレンマー P E _ 3 5 0 (ポリエ チレングリ コール ( 3 5 0 ) モノメ タク リ レー ト) 6 5 4 g ( 1 . 5 モル) にホウ酸ト リ メチル 5 1 . 9 g ( 0 . 5 モル) を加え、 攪拌し ながら乾燥空気雰囲気下 6 0 °Cまで昇温した。 6 0 °Cにて 1 時間保持 したのちに温度 7 5 °Cまで昇温し、 7 5 °Cになったのちに系内を徐々 に減圧し、 圧力 2 . 6 7 k P a以下の状態を 6時間保持し、 反応の進 行に伴って発生する揮発分を除去した。 その後濾過することで重合性 ホウ酸エステル化合物 6 2 5 gが得られた。
実施例 3
出発物質と して日本油脂 (株) 製ブレンマー A E— 4 0 0 (ポリェ チレングリ コール ( 4 0 0 ) モノアク リ レー ト) 7 0 8 g ( 1 . 5モ ル) にホウ酸ト リメチル 5 1 . 9 g ( 0 . 5モル) を加え、 攪拌しな がら乾燥空気雰囲気下 6 0 °Cまで昇温した。 6 0 °Cにて 1 時間保持し たのちに温度 7 0 °Cまで昇温し、 7 0 °Cになったのちに系内を徐々に 減圧し、 圧力 2 . 6 7 k P a以下の状態を 6時間保持し、 反応の進行 に伴って発生する揮発分を除去した。 その後濾過することで重合性ホ ゥ酸エステル化合物 6 7 0 gが得られた。
実施例 4
出発物質と して日本油脂 (株) 製ブレンマー A E— 4 0 0 (ポリェ チレングリ コール ( 4 0 0 ) モノアク リ レー ト) 9 4 4 g ( 2 . 0モ ル) および分子量 5 5 0 のメ トキシポリエチレングリ コール 5 5 0 g
( 1 . 0 モル) にホウ酸ト リメチル 1 0 3 . 8 g ( 1 . 0モル) を加 え、 攪拌しながら乾燥空気雰囲気下 6 0 °Cまで昇温した。 6 0 °Cにて
1 時間保持したのちに温度 7 0 °Cまで昇温し、 7 0 °Cになったのちに 系内を徐々に減圧し、 圧力 2 . 6 7 k P a以下の状態を 6時間保持し 、 反応の進行に伴って発生する揮発分を除去した。 その後濾過するこ とで重合性ホウ酸エステル化合物 1 4 3 O gが得られた。
比較例 1
出発物質と して分子量 5 5 0 のメ トキシポリェチレングリ コール 5 5 0 g ( 1 . 0 モル) に酸化ホウ素 1 6 g ( 0 . 1 6 7 モル) を 加え、 攪拌しながら窒素ガス雰囲気下 1 1 0 °Cまで昇温した。 1 1 0 °Cになったのちに系内を徐々に減圧し、 圧力 1. 6 7 k P a以下の状 態を 3時間保持し、 反応の進行に伴って発生する水を除去した。 その 後濾過することでホウ酸エステル化合物 5 2 0 gが得られた。
比較例 1
出発物質と して日本油脂 (株) 製ブレンマ一 A E— 4 0 0 (ポリェ チレングリ コール ( 4 0 0 ) モノアク リ レー ト) 4 7 2 g ( 1 . 0モ ル) にオル卜ホウ酸 2 0. 6 g ( 0. 3 3 3モル) を加え、 攪拌しな がら乾燥空気雰囲気下 7 0 °Cまで昇温した。 7 0 °Cになったのちに系 内を徐々に減圧し、 乾燥空気通気下にて圧力 . 6 7 k P a以下の状 態を 6時間保持し、 反応の進行に伴って発生する水を除去した。 その 後濾過することで重合性ホウ酸エステル化合物を 4 5 0 gが得られた 比較例 3
出発物質として日本油脂 (株) 製ブレンマー P E— 3 5 0 (ポリヱ チレングリ コール ( 3 5 0 ) モノメ タ ク リ レー ト) 6 5 4 g ( 1 . 5 モル) に酸化ホウ素 1 7. 4 g ( 0 . 2 5モル) を加え、 攪拌しなが ら乾燥空気雰囲気下 7 5 tまで昇温した。 7 5 °Cになったのちに系内 を徐々に減圧し、 乾燥空気通気下にて圧力 2 . 6 7 k P a以下の状態 を 6時間保持し、 反応の進行に伴って発生する水を除去した。 その後 濾過することで重合性ホウ酸エステル化合物を 6 2 0 gが得られた。 実施例 1 〜 4および比較例 1 〜 3のホウ酸エステル化合物の水分含 有量を、 日本工業規格 J I S K 1 5 5 7 6 . 5 に準拠したカール フイ ツシャ一滴定によって、 以下のように測定、 算出した。
カールフィ ッ シャー測定用脱水メ タノール 1 0 0 m 1 を溶剤として 用い、 容量滴定法によって水分含有量の測定を行った。 滴定液は、 力 価 3 m g H2 O/ gの試薬を用いた。 水分含有量の少ないものについ ては、 J I S K 1 5 5 7 6. 5に規定されたサンプル量 2 0 gよ り多く の試料 ( 4 0 g ) を測定に供し水分含有量を求めた。 試料はシ リ ンジで測定容器に投入した。 また、 すべての試料について、 二つの 測定値の平均をと り、 有効数字 2桁 ( 3桁目を四捨五入) と した。 実施例 5
実施例 1のホウ酸エステル化合物 5. 0 0 gとポリエチレングリ コ —ル ( 6 0 0 ) ジメ タク リ レートである日本油脂 (株) 製ブレンマー P D E - 6 0 0を 2. 5 0 gとメ トキシポリエチレングリコール ( 4 0 0 0 ) モノメ タク リ レー トである日本油脂 (株) 製ブレンマー P M E— 4 0 0 0を 2. 5 0 gとを混合し、 支持塩と して L i T F S I を 3. 6 5 g添加し、 均一に溶解させた後、 熱重合開始剤であるァゾビ スイソプチ口二ト リル 3 0 m gを混合溶解させ、 シリ コンウェハ一上 にスピンコ一夕一を用いて塗布し、 その後 8 0 tのオーブン中に 2時 間静置して熱重合させることで厚さ 1 0 O wmのィォン伝導性高分子 組成物 (高分子電解質) を得た。
実施例 6
実施例 3の重合性ホウ酸エステル化合物 1 0. 0 gに、 支持塩と し て L i TF S I を 3. 3 7 g添加し、 均一に溶解させた後、 熱重合開 始剤であるァゾビスイソプチロニト リル 3 0 m gを混合溶解させ、 シ リ コンウェハ一上にスピンコ一夕一を用いて塗布し、 その後 8 0 °Cの ォ―ブン中に 2時間静置して熱重合させることで厚さ 1 0 O wmのィ オン伝導性高分子組成物 (高分子電解質) を得た。
実施例 7
実施例 4の重合性ホウ酸エステル化合物 1 0. 0 gに、 支持塩と し て L i TF S I を 3. 5 5 g添加し、 均一に溶解させた後、 熱重合開 始剤であるァゾビスイソプチロニト リル 3 0 m gを混合溶解させ、 シ リ コンウェハー上にスピンコ一夕一を用いて塗布し、 その後 8 0 °Cの オーブン中に 2時間静置して熱重合させることで厚さ 1 0 O w mのィ オン伝導性高分子組成物 (高分子電解質) を得た。
実施例 8
実施例 2の重合性ホウ酸エステル化合物 1 0. 0 gに、 支持塩と し て L i P F 6 を 1 . 7 1 g添加し、 均一に溶解させた後、 熱重合開始 剤であるァゾビスイソプチロニト リル 3 0 m gを混合溶解させ、 シリ コンウェハー上にスビンコ一夕一を用いて塗布し、 その後 8 0 °Cのォ ーブン中に 2時間静置して熱重合させることで厚さ 1 0 0 〃 mのィォ ン伝導性高分子組成物 (高分子電解質) を得た。
実施例 9
実施例 2の重合性ホウ酸エステル化合物 5 . 0 0 g と、 メ トキシポ リエチレングリ コール ( 4 0 0 0 ) モノメ タク リ レートである日本油 脂 (株) 製ブレンマー P M E— 4 0 0 0 を 5 . 0 O g とをよく混合し 、 支持塩と して L i P F 6 を 1 . 9 1 g添加し、 均一に溶解させた後 、 熱重合開始剤であるァゾビスイソプチロニト リル 3 0 m gを混合溶 解させ、 シリ コンウェハー上にスピンコ一夕一を用いて塗布し、 その 後 8 0 °Cのオーブン中に 2時間静置して熱重合させるこ とで厚さ 1 0 0 のイオン伝導性高分子組成物 (高分子電解質) を得た。
比較例 4
比較例 1の重合性ホウ酸エステル化合物 1 0 . 0 gに、 支持塩と し て L i T F S I を 3 . 3 7 g添加し、 均一に溶解させた後、 熱重合開 始剤であるァゾビスィソブチロニト リル 3 0 m gを混合溶解させ、 シ リ コンウェハ一上にスピンコ一夕一を用いて塗布し、 その後 8 0 °Cの オーブン中に 2時間静置して熱重合させることで厚さ 1 0 0 mのィ オン伝導性高分子組成物 (高分子電解質) を得た。 比較例 5
比較例 1 のホウ酸エステル化合物 5. 0 0 g とポリエチレングリ コ ール ( 4 0 0 ) ジアタ リ レートである日本油脂 (株) 製ブレンマー A D E - 4 0 0を 2 . 5 0 g とメ トキシポリエチレングリ コール ( 4 0 0 0 ) モノメ タク リ レートである日本油脂 (株) 製ブレンマー P M E 一 4 0 0 0 を 2 . 5 0 g とを混合し、 支持塩と して L i P F 6 を 1 . 9 3 g添加し、 均一に溶解させた後、 熱重合開始剤であるァゾビスィ ソブチロニ ト リル 3 0 m gを混合溶解させ、 シリ コンウェハー上にス ビンコ一夕一を用いて塗布し、 その後 8 0 °Cのオーブン中に 2時間静 置して熱重合させることで厚さ 1 0 のィォン伝導性高分子組成 物 (高分子電解質) を得た。
比較例 6
比較例 1 の重合性ホウ酸エステル化合物 1 0. 0 gに、 支持塩と し て L i P F 6 を 1 . 7 8 g添加し、 均一に溶解させた後、 熱重合開始 剤であるァゾビスイソプチロニト リル 3 0 m gを混合溶解させ、 シリ コンウェハ一上にスピンコ一夕一を用いて塗布し、 その後 8 0 °Cのォ —ブン中に 2時間静置して熱重合させることで厚さ 1 0 O w mのィォ ン伝導性高分子組成物 (高分子電解質) を得た。
比較例 7
比較例 3 の重合性ホウ酸エステル化合物 7. 5 0 g とメ トキシポリ エチレングリコール ( 2 0 0 0 ) モノメ タク リ レートである日本油脂 (株) 製ブレンマ一 P M E— 2 0 0 0 を 2 . 5 0 g とを混合し、 支持 塩と してし i P F 6 を 1 . 8 0 g添加し、 均一に溶解させた後、 熱重 合開始剤であるァゾビスィソブチロニ卜リル 3 0 m gを混合溶解させ 、 シリ コンウェハー上にスピンコーターを用いて塗布し、 その後 8 0 °Cのオーブン中に 2時間静置して熱重合させることで厚さ 1 0 0 〃 m のイオン伝導性高分子組成物 (高分子電解質) を得た。
実施例 5〜 9、 比較例 4〜 7で得られた高分子電解質についてフィ ルム成形性および安定性の評価を行った。
フィルム成形性は電気化学デバイス用電解質と して使用するにあた つて、 いずれも申し分ない性状が得られた。
高分子電解質の安定性は次の方法で評価をおこなった。
各高分子電解質フィルムを厚さ 5 0 ί πιの金属リチウム箔 2枚に挟 み込んだ物をアルゴン雰囲気下 5 0 °Cの恒温槽に入れ、 1 日後および 7 日後の電解質フィルムの外観およびリチウム箔の電解質フイルムと の接触面の状態を観察した。
〇 : 電解質フィルム外観、 金属リチゥム箔の接触面とも全く変化無し
△ : 電解質フィルム外観が着色、 も しく は金属リチウム箔の接触面が 一部腐食している。
X : 電解質フィルム外観が着色し、 さ らに金属リチゥム箔が明らかに 腐食している。
また、 イオン伝導度について実施例 5、 7、 9および比較例 5、 6 で得られた高分子電解質の評価をおこなつた。 ィォン伝導度の測定は 次の方法でおこなった。
上記の金属リチウム箔 2枚に挟み込んだ物をステンレス電極に挟み 込んでノンブロッキング電極を形成し、 アルゴン雰囲気下、 温度を変 化させ、 各温度における交流複素ィ ンピーダンス測定を行い、 得られ た複素平面上のプロッ ト ( C o 1 e - C 0 1 eプロッ ト) のバルク抵 抗成分の半円の直径からィォン伝導度と して求めた。
実施例 1 0
正極活物質と して L i C 0 1 / 6 M η , , / 6 0 4 の組成式で示されるス ピネル型構造を有するコバルト 1 / 6置換マンガン酸リチウム粉末 7
5重量部と、 バイ ンダーポリマ一と してポリ フッ化ビニリデン粉末 5 重量部、 導電材と してアセチレンブラッ ク粉末 2 0重量部を良く混練 し、 銅箔上にホッ トプレス法にて厚さ 1 0 0 m、 直径 1 0 mmの正 極材料を得た。 アルカ リ金属ィォン吸蔵材と して厚さ約 8 0 u m、 直 径 1 0 mmの金属リ チウム箔を負極材料と した。 実施例 6 の高分子電 解質を直径 1 O mmに打ち抜き、 前述の正極材料および負極材料にて 挟み込み、 さ らにステンレス電極にて挟み込んで二次電池を得た。 得られた二次電池について、 5 0 °C も しく は 8 0 °Cにて電流密度 2
0 0 mA/m2 にて 4 . 1 5 Vまで充電した後、 電流密度 2 2 O mA /m2 にて 3 . 5 0 Vまで放電する充放電を 3 0 0サイクル繰り返し 、 各電池の初期容量 ( 1 サイ クル目) 、 1 0 0サイ クル目および 3 0
0サイ クル目の正極 1 k g当たりの放電容量を、 初期容量に対する百 分率にて評価した。
◎ : 初期容量の 7 0 %以上の放電容量を有する。
〇 : 初期容量の 4 0 %以上 7 0 %未満の放電容量を有する。
△ : 初期容量の 4 0 %未満の放電容量を有する。
X : 内部短絡発生あるいは極材の劣化、 または伝導度が十分に得られ ない等の理由により評価不可。
実施例 1 1
高分子電解質と して実施例 8の高分子電解質を使用した他は、 実施 例 1 0 と同じ組成にて二次電池系を組み、 実施例 1 0 と同様の条件に て充放電サイ クル試験を行った。
比較例 8
高分子電解質と して比較例 4 の高分子電解質を使用した他は、 実施 例 1 0 と同じ組成にて二次電池系を組み、 実施例 1 0 と同様の条件に て充放電サイ クル試験を行った。
比較例 9
高分子電解質と して比較例 7 の高分子電解質を使用した他は、 実施 例 1 0 と同じ組成にて二次電池系を組み、 実施例 1 0 と同様の条件に て充放電サイ クル試験を行った。
実施例 1 〜 4、 比較例 1 〜 3 で得られたホウ酸エステル化合物に使 用した式 ( 1 ) で示される化合物の種類、 ホウ素含有化合物の種類、 反応に要した減圧状態を保持した時間、 水分含有量を表 1 に示す。 以 下、 実施例および比較例の電解質組成およびィォン性化合物の種類お よび得られた電解質フィルムの安定性評価結果を表 2 、 2 5 °Cおよび 8 0 °Cにおけるィォン伝導度の評価結果を表 3 、 5 0 °Cおよび 8 0 °C における充放電試験の評価結果を表 4 に示す。 表 1 式 (1)
反応に要し で示され 反応に用いたホウ素 水分含有量
式 (1) で示される化合物 た減圧時間 る化合物 含有化合物 P ρητ
(h r) のモル比
1 CHsO-CEOin.e-H ホウ酸卜リメチル 42 3. 0
2 M0-(E0)8.0-H ホウ酸トリメチル 120 6. 0 施
例 3 AO- (EO -H ホウ酸トリメチル 320 6. 0
4 AO- (E0) g. Ί-Η/0Η30- (E0)„.8-H 2/1 ホウ酸トリメチル 220 6. 0
1 0Η30-(Ε0) .8-Η 無水ホウ酸 1400 3. 0 比
較 2 Α0-(Ε0)9.Ί-Η オルトホウ酸 5200 6. 0 例
3 M0-(E0)8.0-H 無水ホウ酸 3700 6. 0 表 2
Figure imgf000038_0001
表 1 2 中、 Μはメ タ ク リ ロイル基を、 Αはァク リ ロイル基を示す また、 E〇はォキシエチレン基を示す。
表 3
伝導度(S/m)
No.
25°C 80°C
5 5.75 10"4 2.06 X 10— 2
施 7 3.37 X 10"4 1.55 X 10"2
9 1.06X 10—4 1.03X 10— 1
比 5 2.10 10"7 5.40X 10
例 6 1.23 X 10— 6 3.93 X 10— 4 表 4
Figure imgf000039_0001
比較例 1 〜 3の製造方法で得られたホウ酸エステル化合物では水分 含有量が高いのに対し、 実施例 1 〜 4で得られたホウ酸エステル化合 物では反応の温度、 時間の条件は同じにもかかわらず水分含有量が遙 かに小さいことが確かめられた。
また実施例で得られたホウ酸エステル化合物を用いた電気化学デバ ィス用電解質では、 アル力 リ金属の腐食性が見られず安定性に優れ、 イオン伝導度が高く、 二次電池用電解質と しても優れたサイ クル特性 を示すことが確かめられた。
実施例 1 2
出発物質と して平均分子量 3 7 0 のポリエチレングリ コール ( 6 . 8 モル) モノアタ リ レー ト (日本油脂 (株) 製ブレンマー A E— 3 0 0 ) 1 1 1 0 g ( 3 . 0モル) 、 ホウ酸ト リ メチル 9 3 4 . 2 g ( 9 . 0モル) 仕込み、 この混合液中に B H T 0 . 3 3 g加え、 攪拌しな がら乾燥空気吹き込み下、 常圧で 7 0 tまで昇温した。 7 0 °Cにて 1 時間保持したのちに系内を徐々に減圧し、 8時間かけて 2 . 6 7 k P aまで、 7 0 °Cを保ちながら、 反応によって副生するメ タノールとホ ゥ酸ト リメチルの蒸留除去を行った。 さらに、 7 0 °C、 2 . 6 7 k P aの状態を 3時間保持して乾燥を行い、 目的のホウ酸エステル化合物 1 1 0 0 gが得られた。
実施例 1 3
出発物質と して平均分子量 9 0 のポリエチレングリ コール ( 4 . 6 モル) モノメ タク リ レート (日本油脂 (株) 製ブレンマ一 P E— 2 0 0 ) 8 7 0 g ( 3 . 0 モル) 、 ノニルフヱノール 3 3 0 g ( 1 . 5 モル) 、 ホウ酸ト リ メチル 7 7 8 . 5 g ( 7 . 5 モル) 仕込み、 この 混合液中に B H T 0 . 3 3 g加え、 攪拌しながら乾燥空気吹き込み下 、 常圧で 7 0 °Cまで昇温した。 7 0 °Cにて 1時間保持したのちに系内 を徐々に減圧し、 8時間かけて 2 . 6 7 k P aまで、 7 0 °Cを保ちな がら、 反応によって副生するメ タノールとホウ酸ト リ メチルの蒸留除 去を行った。 さ らに、 7 0 ° (:、 2 . 6 7 k P aの状態を 3時間保持し て乾燥を行い、 目的のホウ酸エステル化合物 1 1 0 0 gが得られた。 実施例 1 4
出発物質と して平均分子量 1 0 0 0 のメ トキシポリオキシエチレン ( 1 6 . 5モル) プロ ピレングリ コール ( 4 . 2 モル) ラ ンダム共重 合体 1 5 0 0 g ( 1 . 5 モル) 、 ホウ酸ト リ イ ソプロ ピル 4 7 0 g ( 2 . 5 モル) を加え、 攪拌しながら窒素ガス雰囲気下 1 3 0 °Cまで昇 温した。 1 3 0 °Cにて 1 時間保持したのちに系内を徐々に減圧し、 8 時間かけて 2 . 6 7 k P aまで、 1 3 0 °Cを保ちながら、 反応によつ て副生するイソプロパノールとホウ酸ト リイソプロピルの蒸留除去を 行った。 さらに、 1 3 0 :、 2. 6 7 k P aの状態を 3時間保持して 乾燥を行い、 目的のホウ酸エステル化合物 1 4 0 0 gが得られた。 実施例 1 5
出発物質と して平均分子量 3 7 0 のポリエチレングリ コール ( 6 . 8モル) モノアク リ レー 卜 (日本油脂 (株) 製ブレンマー A E— 3 0 0 ) 1 8 5 g ( 0 . 5 モル) 、 平均分子量 1 0 0 0 のメ トキシポリオ キシエチレン ( 1 6 . 5 モル) /ポリオキシプロ ピレン ( 4 . 2 モル ) ランダム共重合体 1 O O O g ( 1 . 0モル) 、 ホウ酸ト リメチル 1 0 3 . 8 g ( 1 . 0 モル) 、 B H T 0 . 5 9 gを加え、 攪拌しながら 乾燥空気吹き込み下 6 0 °Cまで昇温した。 6 0 °Cにて 1時間保持した のちに系内を徐々に減圧し、 4時間かけて 2 . 6 7 k P aまで、 6 0 °Cを保ちながら、 反応によって副生するメ タノールとホウ酸ト リ メチ ルの蒸留除去を行った。 その後、 圧力を常圧に戻し、 さ らにホウ酸ト リ メチル 1 0 3 . 8 g ( 1 . 0モル) を加え、 6 0 °C、 圧力を常圧か ら 2 . 6 7 k P aまで 4時間かけて徐々に減圧し、 副生するメ タノ一 ルとホウ酸ト リメチルの蒸留除去を行った。 その後、 6 0 °C、 2 . 6 7 k P aの状態を 1時間保持して乾燥を行い、 目的のホウ酸エステル 化合物 1 1 0 0 gが得られた。
実施例 1 6
蒸留塔を備えた 3 リ ッ トルの 4つ口フラスコに、 平均分子量 1 9 0 のポリエチレングリ コ一ル ( 4 . 6 モル) モノメ タ ク リ レー ト (日本 油脂 (株) 製ブレンマー P E— 2 0 0 ) 9 2 8 g ( 3 . 2 モル) 、 平 均分子量 4 0 0 のポリエチレングリ コール ( 8 . 7モル) 3 2 0 g ( 0 . 8モル) 、 ホウ酸ト リ メチル 1 2 4 6 g ( 1 2 . 0モル) 、 B H T 0 . 6 2 g仕込み、 乾燥空気を吹き込みながら、 6 8 k P aで還流 が始まる温度 ( 5 0〜 6 5 °C ) まで昇温した。 全還流を 3 0分間行つ た後、 還流比 1 0 で 5時間、 塔頂より留出させた。 留出させるにした がい、 釜内温度および塔頂温度が上昇し、 塔頂温度が 6 0 °Cになって から還流比 1 0でさ らに 3時間留出させた。
その後、 釜内反応液に含まれるホウ酸ト リメチルを釜内温度 6 0 °C 以下、 2 . 6 7 k P aまで留去させ、 その後 6 0 ° (:、 2. 6 7 k P a の状態を 2時間保持して乾燥を行い、 目的のホウ酸エステル化合物 1 1 5 0 gを得た。
比較例 1 0
出発物質と して平均分子量 3 7 0のポリエチレングリ コール ( 6 . 8モル) モノアク リ レート (日本油脂 (株) 製ブレンマー A E— 3 0 0 ) 2 2 2 0 g ( 6 . 0モル) に酸化ホウ素 6 9. 6 g ( 1 . 0モル ) 、 B H T 0 . 6 7 gを加え、 攪拌しながら乾燥空気吹き込み下 8 0 °Cまで昇温した。 8 0 °C となったのちに系内を徐々に減圧し、 2 . 6 7 k P a以下の状態を 3時間保持し、 反応の進行に伴って発生する水 を除去した。 その後濾過することでホウ酸エステル化合物 2 1 0 0 g が得られた。
比較例 1 1
出発物質と して平均分子量 3 7 0のポリエチレングリ コール ( 6 . 8モル) モノアク リ レー ト (日本油脂 (株) 製ブレンマー A E— 3 0 0 ) 1 4 8 0 g ( 4. 0モル) 、 平均分子量 1 0 0 0のメ トキシポリ ォキシエチレン ( 1 6 . 5モル) ポリオキシプロ ピレン ( 4 . 2モル ) ランダム共重合体 2 0 0 0 g ( 2 . 0モル) 、 に酸化ホウ素 5 5. 7 g ( 0 . 8モル) を加え、 攪拌しながら乾燥空気吹き込み下 8 0 °C まで昇温した。 8 0 °C となったのちに系内を徐々に減圧し、 2 . 6 7 k P a以下の状態を 3時間保持し、 反応の進行に伴って発生する水を 除去した。 その後濾過することでホウ酸エステル化合物 3 4 0 0 が 得られた。
比較例 1 2
出発物質と して平均分子量 1 9 0のポリエチレングリ コール ( 4. 6モル) モノメ タクリ レート (日本油脂 (株) 製ブレンマ一 P E— 2 0 0 ) 5 8 0 g ( 2 . 0モル) 、 平均分子量 4 0 0のポリエチレング リ コール ( 8. 7モル) 2 0 0 g ( 0 . 5モル) 、 にホウ酸 6 1 . 8 g ( 1 . 0モル) 、 B H T O . 2 3 gを加え、 攪拌しながら乾燥空気 吹き込み下 8 0 °Cまで昇温した。 8 0 °C となったのちに系内を徐々に 減圧し、 2 . 6 7 k P a以下の状態を 3時間保持し、 反応の進行に伴 つて発生する水を除去した。 その後濾過することでホウ酸エステル化 合物 5 2 0 gが得られた。
〔ホウ酸エステル化合物の評価〕
《水分含有量の測定方法》
前記と同様の方法で求めた。
実施例 1 2〜 1 6、 比較例 1 0〜 1 2 のホウ酸エステル化合物のホ ゥ素濃度を、 以下に示す手法によ り求めた。
ここでは式 ( 1 ) で示される化合物のみが全てホウ酸エステル化さ れ、 その他の化合物を含有しないと仮定した時のホウ素濃度を理論ホ ゥ素濃度と定義し、 化合物の純度をホウ素濃度/理論ホウ素濃度、 と して示した。
《ホウ素濃度の測定方法》
グリセリ ン /ィォン交換水 ( 5 0 / 5 0 v o l ) 1 0 0 m l の混合 溶液中に、 得られたホウ酸エステル化合物を、 予想されるホウ素濃度 に応じて 1 〜 5 0 g秤量し、 加える。 混合液を室温で 5分間攪拌した 後、 フヱノールフタ レイ ン 1 %溶液 2〜 3滴を該混合液に加え、 フユ ノールフタ レイ ンの変色 (無色—紫色) が見られるまで 1 / 1 0規定 水酸化ナ ト リゥム水溶液で滴定する。 ホウ素濃度は式 ( 7 ) より求め た。
ホウ素濃度 (m o l /k g ) = ( a— b ) x f /w ( 7 )
a : 1 / 1 0規定水酸化ナ ト リ ゥム水溶液の滴定量 (m 1 ) b : 空測定における 1 / 1 0規定水酸化ナト リ ゥム水溶液の滴定: m 1 )
w : 試料採取量 ( g )
f : 1 / 1 0規定水酸化ナト リ ゥム水溶液のファクタ一
表 5
Figure imgf000044_0001
※ E 0はォキシエチレン基、 P 0はォキシプロピレン基を示す。
Mはメ 夕 ク リ ロイル基、 Aはァク リ ロイル基、 P hはフエ二レン基 を示す。
[ / ] はランダム共重合を示す。
〔リチウムイオン二次電池用電解質と しての評価〕
〔高分子電解質〕
実施例 1 2 、 1 6及び比較例 1 0 、 1 2の各々によ り得られたホウ 酸エステル化合物に、 L i F T S I を 2 0重量%となるように加え、 均一になるまで十分に混合した。 その後、 A I B N (ァゾイソプチ口 二ト リル) を 0 . 1重量%加え混合し、 温度 8 0 °Cで熱重合反応を行 つた。 その後、 厚さ 1 . O m m、 直径 1 4 m mの円盤状に成形し、 高 分子電解質を作成した。
〔正極〕
L i N i 0 . 9 C o o . . 0 2 で示される正極活物質を乳鉢中で粉砕し 、 正極活物質粉末を得た。 この粉末と、 導電剤と してのアセチレンブ ラッ クと、 結着剤と してのポリ フッ化ビニリデンとを、 重量比 4 3 : 3 : 2 で混合して正極合剤を調整し、 直径 1 4 m mの円盤状に加圧成 形および熱処理を行い、 正極を作成した。
〔負極〕
所定の厚みを有する金属リチウムを直径 1 4 m mの円盤状に打ち抜 いて負極を作成した。
《リチウムイオン二次電池の作成およびその評価》
上記で示される高分子電解質、 正極、 負極を組み合わせることによ り、 それぞれ実施例 1 7、 1 8および比較例 1 3、 1 4 で示すリチウ ムィォン二次電池を作成した。 この電池をアルゴン雰囲気下で密閉し 、 温度 6 0 °Cにおいて、 初期の内部抵抗を測定した。 その後、 6 0 °C で 1 0 0時間保存し、 その後の内部抵抗を測定した。
評価結果を表 6 に示す。
表 6
Figure imgf000046_0001
比較例 1 0 〜 1 2 においては、 水分も しく は純度の低いホウ酸エス テル化合物しか得られなかつたのに対し、 実施例 1 2 〜 1 6 によれば 、 水分含有量が低く、 かつ反応率の高い、 も しく は純度の高いホウ酸 エステル化合物を得ることが可能である。
さ らに、 本発明による製造方法により得られたホウ酸エステル化合 物は、 リチウムィォン二次電池用電解質と して使用した場合、 保存時 の内部抵抗の増加が少ない電池を得ることが可能であり、 性能の高い 電解質および二次電池を得ることができた。 産業上の利用分野
本発明の製造方法で得られたホウ酸エステル化合物は、 水分含有量 が非常に少なく、 かつ、 純度が高いため、 式 ( 1 ) で示される化合物 および式 ( 3 ) で示される化合物の残存量が少ない。 このよ うな、 低 水分、 水酸基の少ないホウ酸エステル化合物は、 リチウムイオン二次 電池用電解質と して使用した場合に、 内部抵抗の増加が非常に少なく 、 高性能な電解質およびその電解質を使用した良好な電池を得ること ができる。
さ らに、 本発明のホウ酸エステル化合物の製造方法では、 任意の構 造を有するホウ酸エステル化合物を得ることができ、 分子設計が容易 であるこ とから様々な特性を発揮することのできる電気化学デバイス への応用を容易に達成することができる。

Claims

請求の範囲
1 . 式 ( 1 ) で示される化合物を、 式 ( 2 ) で示されるホウ素含有 化合物を用いてホウ酸エステル化することを特徴とするホウ酸エステ ル化合物の製造方法。
X- [0 (AO) n "HI a ( 1 )
(Xは 1〜 6個の水酸基を持つ化合物の残基、 ァク リ ロイル基及びメ タク リ ロイル基から選ばれる基であり、 A〇は炭素数 2〜 4のォキシ アルキレン基、 nは 0〜 6 0 0、 aは 1〜 6であり、 かつ n X a = 0 〜 6 0 0である。 )
( R 0 ) 3 - B ( 2 )
(Rは炭素数 1〜 4のアルキル基である)
2. 式 ( 1 ) で示される化合物の平均分子量が 1 1 0以上である請 求の範囲第 1項に記載のホウ酸エステル化合物の製造方法。
3. 式 ( 1 ) で示される化合物および式 ( 2 ) で示されるホウ素含 有化合物を反応させると共に、 式 ( 2 ) で示されるホウ素含有化合物 および反応によって生成する式 ( 3 ) で示されるアル —ルの蒸留を 行う ことを特徴とする請求の範囲第 1項に記載のホウ酸エステル化合 物の製造方法。
R 0 H ( 3 )
(Rは炭素数 1〜 4のアルキル基である)
4. 式 ( 1 ) で示される化合物の水酸基 1モルに対し、 式 ( 2 ) で 示されるホウ素含有化合物を 1 / 3モル倍以上用いることを特徴とす る請求の範囲第 1項に記載のホウ酸エステル化合物の製造方法。
5. 得られたホウ酸エステル化合物中の、 カールフィ ッシャー滴定 法によつて測定された水分含有量が 1 0 0 0 p p m以下であることを 特徴とする請求の範囲第 1項に記載のホウ酸エステルの製造方法。
6 . 請求の範囲第 1項〜第 5項のいずれか 1項に記載の製造方法に よって得られたホウ酸エステル化合物またはその重合物を含有する電 気化学デバイス用電解質。
7. 請求の範囲第 6項に記載の電気化学デバイス用電解質を用いる 二次電池。
8. カールフイ ツ シャ一滴定法によつて測定された水分含有量が 1· O O O p p m以下であり、 式 ( 4 ) で示されるホウ酸エステル化合物 またはその重合物を含有する電気化学デバイス用電解質。
B - [ 0 (AO ) P - Y] 3 ( 4 )
(Yはァク リ ロイル基、 メ タク リ ロイル基及び炭素数 1 〜 4のアルキ ル基から選ばれる基であり、 その少なく とも一つがァク リ ロイル基ま たはメ タク リ ロイル基である。 A〇は炭素数 1〜 4のォキシアルキレ ン基、 p は 1 〜 6 0 0である。 )
PCT/JP2002/010049 2001-09-28 2002-09-27 Procede de production de compose a base d'ester borique, compose pour dispositif electrochimique et batterie secondaire WO2003031453A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020047004592A KR100937285B1 (ko) 2001-09-28 2002-09-27 붕산 에스테르 화합물의 제조 방법, 전기화학 장치용 전해질 및 이차 전지
DE60230646T DE60230646D1 (de) 2001-09-28 2002-09-27 Verfahren zur herstellung einer borsäureesterverbindung
US10/489,418 US6998465B2 (en) 2001-09-28 2002-09-27 Process for producing boric ester compound, electrolyte for electrochemical device, and secondary battery
EP02800707A EP1431300B1 (en) 2001-09-28 2002-09-27 Process for producing boric acid ester compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001/301122 2001-09-28
JP2001301122 2001-09-28
JP2002098060 2002-03-29
JP2002/098060 2002-03-29

Publications (1)

Publication Number Publication Date
WO2003031453A1 true WO2003031453A1 (fr) 2003-04-17

Family

ID=26623291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010049 WO2003031453A1 (fr) 2001-09-28 2002-09-27 Procede de production de compose a base d'ester borique, compose pour dispositif electrochimique et batterie secondaire

Country Status (6)

Country Link
US (1) US6998465B2 (ja)
EP (1) EP1431300B1 (ja)
KR (1) KR100937285B1 (ja)
CN (1) CN1294137C (ja)
DE (1) DE60230646D1 (ja)
WO (1) WO2003031453A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422781A1 (en) * 2002-11-21 2004-05-26 Hitachi, Ltd. Boron-containing compound, ion-conductive polymer and polyelectrolyte for electrochemical devices
US7473492B2 (en) * 2002-11-21 2009-01-06 Hitachi, Ltd. Lithium secondary battery
US9404235B2 (en) 2010-09-07 2016-08-02 Caterpillar Work Tools B.V. Coupling arrangement
CN111574545A (zh) * 2020-05-18 2020-08-25 天目湖先进储能技术研究院有限公司 一种硼酸酯化合物及其制备方法和含其的电解液

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4046979B2 (ja) * 2001-11-09 2008-02-13 トヨタ自動車株式会社 新規リチウム塩及びイオン伝導材料並びに液体電解質
JP4451768B2 (ja) * 2004-12-17 2010-04-14 株式会社日立製作所 電気化学デバイス用重合性ホウ素化合物、その製造方法、重合性組成物及びイオン伝導性高分子電解質
WO2008039808A2 (en) 2006-09-25 2008-04-03 Board Of Regents, The University Of Texas System Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries
EP2073301B1 (en) * 2006-10-12 2011-12-07 NOF Corporation Ion conducting polymer electrolyte and secondary battery using the same
US8946486B2 (en) 2007-12-03 2015-02-03 Tyco Fire & Security Gmbh Method of forming alkoxylated fluoroalcohols
EP2485315A4 (en) 2009-09-28 2015-01-28 Univ Shizuoka Nat Univ Corp SOLVENTS FOR ELECTROLYTIC SOLUTION, ELECTROLYTIC SOLUTION AND GEL ELECTROLYTE
WO2012159106A2 (en) * 2011-05-19 2012-11-22 Northwestern University Ph responsive self-healing hydrogels formed by boronate-catechol complexation
US8967799B2 (en) 2012-12-20 2015-03-03 Bausch & Lomb Incorporated Method of preparing water extractable silicon-containing biomedical devices
US20170079310A1 (en) * 2015-09-18 2017-03-23 Richard Gerry Dingman, JR. Texture analog dysphagia cuisine
KR200484299Y1 (ko) 2017-06-01 2017-08-23 김한주 가두리 양식장용 발판 조립체
EP3743463A1 (en) 2018-01-26 2020-12-02 Bausch & Lomb Incorporated Method for end-capping a polysiloxane prepolymer
CN110310842B (zh) * 2018-03-20 2022-03-18 中天超容科技有限公司 高电压电容的电解液及其制备方法和电容器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001018094A1 (fr) * 1999-09-02 2001-03-15 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polymere ioniquement conducteur, electrolyte polymerique et dispositif electrolytique
WO2001039316A1 (fr) * 1999-11-24 2001-05-31 Nof Corporation Batterie auxiliaire et electrolyte pour batterie auxiliaire
JP2002158039A (ja) * 2000-11-21 2002-05-31 Nof Corp 二次電池用電解質および二次電池
JP2002348323A (ja) * 2001-05-23 2002-12-04 Nof Corp 重合性ホウ酸エステル化合物、電気化学デバイス用電解質および重合性ホウ酸エステル化合物の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624427A (en) * 1979-08-03 1981-03-09 Asahi Chem Ind Co Ltd Synthetic resin composition for foaming
JP3557960B2 (ja) 1999-09-02 2004-08-25 第一工業製薬株式会社 新規イオン伝導性高分子、これを用いてなる高分子電解質及び電気化学デバイス
JP3557959B2 (ja) 1999-09-02 2004-08-25 第一工業製薬株式会社 新規イオン伝導性高分子、これを用いてなる高分子電解質及び電気化学デバイス
JP3557961B2 (ja) 1999-09-02 2004-08-25 第一工業製薬株式会社 新規イオン伝導性高分子、これを用いてなる高分子電解質及び電気化学デバイス
JP4470250B2 (ja) 1999-11-24 2010-06-02 日油株式会社 二次電池用電解質および二次電池
JP4783962B2 (ja) 2000-03-28 2011-09-28 日油株式会社 二次電池用電解質および二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001018094A1 (fr) * 1999-09-02 2001-03-15 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polymere ioniquement conducteur, electrolyte polymerique et dispositif electrolytique
WO2001039316A1 (fr) * 1999-11-24 2001-05-31 Nof Corporation Batterie auxiliaire et electrolyte pour batterie auxiliaire
JP2002158039A (ja) * 2000-11-21 2002-05-31 Nof Corp 二次電池用電解質および二次電池
JP2002348323A (ja) * 2001-05-23 2002-12-04 Nof Corp 重合性ホウ酸エステル化合物、電気化学デバイス用電解質および重合性ホウ酸エステル化合物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1431300A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422781A1 (en) * 2002-11-21 2004-05-26 Hitachi, Ltd. Boron-containing compound, ion-conductive polymer and polyelectrolyte for electrochemical devices
US7230057B2 (en) 2002-11-21 2007-06-12 Hitachi, Ltd. Boron-containing compound, ion-conductive polymer and polyelectrolyte for electrochemical devices
US7473492B2 (en) * 2002-11-21 2009-01-06 Hitachi, Ltd. Lithium secondary battery
US9404235B2 (en) 2010-09-07 2016-08-02 Caterpillar Work Tools B.V. Coupling arrangement
CN111574545A (zh) * 2020-05-18 2020-08-25 天目湖先进储能技术研究院有限公司 一种硼酸酯化合物及其制备方法和含其的电解液
CN111574545B (zh) * 2020-05-18 2022-07-08 天目湖先进储能技术研究院有限公司 一种硼酸酯化合物及其制备方法和含其的电解液

Also Published As

Publication number Publication date
KR100937285B1 (ko) 2010-01-18
US6998465B2 (en) 2006-02-14
EP1431300A1 (en) 2004-06-23
EP1431300A4 (en) 2006-02-08
US20040266981A1 (en) 2004-12-30
KR20040037188A (ko) 2004-05-04
CN1294137C (zh) 2007-01-10
DE60230646D1 (de) 2009-02-12
EP1431300B1 (en) 2008-12-31
CN1596260A (zh) 2005-03-16

Similar Documents

Publication Publication Date Title
WO2003031453A1 (fr) Procede de production de compose a base d'ester borique, compose pour dispositif electrochimique et batterie secondaire
US7732100B2 (en) Solid polymer electrolyte for lithium ion battery and lithium ion battery
JP5247692B2 (ja) 高分子電解質用リン酸塩系アクリレート架橋剤及びこれを含有する組成物
KR100394077B1 (ko) 폴리알킬렌 옥시드계 고체 고분자 전해질 조성물
KR101351846B1 (ko) 올리고에틸렌글라이콜을 곁사슬로 갖는 폴리카보네이트계 가소제를 함유하는 semi―IPN 타입의 고체 고분자 전해질 조성물
JP4563668B2 (ja) 電気化学デバイス用含ホウ素化合物、イオン伝導性高分子及び高分子電解質
JP4055534B2 (ja) ホウ酸エステル化合物の製造方法、電気化学デバイス用電解質および二次電池
JP4951809B2 (ja) 二次電池用電解質および二次電池
WO2001039316A1 (fr) Batterie auxiliaire et electrolyte pour batterie auxiliaire
JP4052159B2 (ja) 電解質用高純度ホウ酸エステル化合物の製造方法
JP5017748B2 (ja) 重合性化合物、電気化学デバイス用電解質および重合性化合物の製造方法
JP4470250B2 (ja) 二次電池用電解質および二次電池
JP2002348323A (ja) 重合性ホウ酸エステル化合物、電気化学デバイス用電解質および重合性ホウ酸エステル化合物の製造方法
JP2006307012A (ja) 高分子固体電解質
JP2002352857A (ja) 二次電池電解質用ホウ酸エステル化合物、二次電池電解質および二次電池
JP4783962B2 (ja) 二次電池用電解質および二次電池
JP2006257172A (ja) ポリエーテル系高分子固体電解質
JP3557960B2 (ja) 新規イオン伝導性高分子、これを用いてなる高分子電解質及び電気化学デバイス
JP2003249267A (ja) 電気化学デバイス用電解質および二次電池
WO2022202607A1 (ja) 固体又はゲル状電解質、固体又はゲル状電解質用硬化型組成物及びリチウムイオン二次電池
KR100289950B1 (ko) 치환된 폴리알킬렌 글리콜-함유 광경화성 조성물, 이로부터 제조된 이온 전도성 박막 및 이를 이용한 고체 전지
JP2024093991A (ja) 固体電解質用樹脂材料、固体電解質用樹脂材料組成物、シート材および電池
JPH0948832A (ja) イオン伝導体
JPH1192651A (ja) イオン伝導性高分子組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ OM PH PL PT RO SD SE SG SI SK SL TJ TM TN TR TT UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10489418

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002800707

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047004592

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20028238087

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002800707

Country of ref document: EP