WO2002098935A1 - COPOLYMERE VON $G(a)-OLEFINEN UND FUNKTIONELLEN MONOMEREN, DEREN HERSTELLUNG UND DEREN VERWENDUNG - Google Patents

COPOLYMERE VON $G(a)-OLEFINEN UND FUNKTIONELLEN MONOMEREN, DEREN HERSTELLUNG UND DEREN VERWENDUNG Download PDF

Info

Publication number
WO2002098935A1
WO2002098935A1 PCT/EP2002/005934 EP0205934W WO02098935A1 WO 2002098935 A1 WO2002098935 A1 WO 2002098935A1 EP 0205934 W EP0205934 W EP 0205934W WO 02098935 A1 WO02098935 A1 WO 02098935A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic radiation
catalyst
copolymer according
polymerization
copolymer
Prior art date
Application number
PCT/EP2002/005934
Other languages
English (en)
French (fr)
Inventor
Karl-Heinz Reichert
Annette Wittebrock
Kalle Kallio
Original Assignee
Borealis Technology Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10126829A external-priority patent/DE10126829A1/de
Priority claimed from DE10136684A external-priority patent/DE10136684A1/de
Priority claimed from DE10136683A external-priority patent/DE10136683A1/de
Priority claimed from DE10200740A external-priority patent/DE10200740A1/de
Application filed by Borealis Technology Oy filed Critical Borealis Technology Oy
Publication of WO2002098935A1 publication Critical patent/WO2002098935A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/128Infrared light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4084Regeneration or reactivation of catalysts containing metals involving electromagnetic wave energy, e.g. UV or visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0886Gas-solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/12Olefin polymerisation or copolymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/49Hafnium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S522/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S522/911Specified treatment involving megarad or less
    • Y10S522/912Polymer derived from ethylenic monomers only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S522/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S522/915Synthetic resins or natural rubbers -- part of the class 520 series involving inert gas, steam, nitrogen gas, or carbon dioxide

Definitions

  • the invention relates to new copolymers of ⁇ -olefins and functional monomers.
  • the invention also relates to their manufacture, their use and a device for their manufacture.
  • Polyolefins especially polyethylene and polypropylene, are the largest quantities of polymers produced worldwide and are an integral part of our daily lives. The good combination of chemical and physical properties together with low manufacturing costs, excellent processability and recyclability have made the polyolefins the most preferred polymers.
  • polyolefin materials lack some properties that limit their further use, so that more expensive and environmentally harmful polymers have to be used.
  • a major disadvantage of the polyolefins is their low adhesion and the poor miscibility of polyolefins with other materials such as pigments, glass fibers, clay, metals, carbon black, fillers and most other polymers. Due to the lack of chemical functionality (polar groups) and the semi-crystalline morphology, the polyolefins have low surface energy. Polyolefins are widely used for films and molded articles where a single polyolefin is used. However, the polyolefins are unsuitable for polymer blends and composites that require adhesion and compatibility with other materials.
  • the first-mentioned direct process would be the ideal because it takes place as a one-step reaction.
  • some fundamental chemical difficulties mean that the direct process has not found commercial use.
  • the main problem is that the Lewis acid component of the catalyst tends to react with the unbonded electron pair of the heteroatom of the functional monomer preferentially over the ⁇ electrons of the double bond. Research has therefore concentrated particularly on the chemical modification and incorporation of reactive copolymers.
  • the object of the invention is to provide copolymers of ⁇ -olefins and functional monomers which can be prepared in a direct process and whose properties can be varied in a desired manner by the targeted incorporation of different functional monomers.
  • the invention is based on the knowledge that it is possible to produce such copolymers from ⁇ -olefins and functional monomers if electromagnetic radiation is used in the polymerization with coordination catalysts.
  • the invention relates to copolymers which can be prepared from at least one ⁇ -olefin monomer and a functional monomer using a coordination catalyst, the catalyst and / or the monomer being irradiated with electromagnetic radiation.
  • the invention further relates to a process for the preparation of copolymers from at least one ⁇ -olefin monomer and a functional monomer using a coordination catalyst, the catalyst and / or the monomer being irradiated with electromagnetic radiation.
  • the invention relates to a device for a polymerization process, which comprises devices for emitting electromagnetic radiation, the radiation being directed onto the coordination catalyst and the monomer.
  • Preferred olefins are ethylene and propylene and mixtures of ethylene and propylene with one or more ⁇ -olefins.
  • Suitable co- monomer are C 2 _ i2 olefins, preferably C. 4 10 olefins, such as 1-butene, isobutene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, and dienes such as butadiene, 1, 7 -Octadiene and 1,4-hexadiene or cyclic olefins such as norbornene, and mixtures thereof.
  • the amount of comonomer is generally from 0.01 to 50% by weight, preferably from 0.1 to 10% by weight and in particular from 0.3 to 3% by weight.
  • long-chain ⁇ -olefins with 4 to 40 carbon atoms, which can be polymerized either alone or in combination, even with short-chain ⁇ -olefins.
  • Suitable examples are: 1-butenes, 1-pentene, 1-hexenes, 1-heptene, 1-octene, 1-nonen, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1- Pentadecene, 1-hexadecene, 1-heptodecene, 1-octodecene, 1-nonadecene, 1-eicosen, etc. to tetradecene.
  • Alpha-olefins having 4 to 16 carbon atoms are preferred.
  • Other suitable monomers are Isomers of ⁇ -olefins with branched alkyl groups, such as 4-methyl-l-pentene.
  • Comonomer mixtures of ethylene, propylene and dienes are also suitable. Suitable dienes are dicyclopentadienes.
  • the functional monomers are usually polar monomers, which usually have a group with a hetero atom.
  • the heteroatom is usually nitrogen, oxygen, sulfur, phosphorus, silicon or halogens.
  • Suitable functional monomers are acrylic compounds and methacrylic compounds, such as acrylic acid and its esters, such as methyl acrylate and ethyl acrylate, methacrylic acid and their esters, such as methyl methacrylate and ethyl methacrylate.
  • vinyl monomers such as vinyl acetate, vinyl alcohol, vinyl ether, vinyl esters, vinyl amines and the like are particularly suitable.
  • monomers containing halogen heteroatoms can also be mentioned: 4-iodo-1-butene, 5-chloro, 5-bromo, 5-iodo-1-pentene and 1 1-chloro, 1 1-bromo and 11 -Iodo-l-undecene, and 5,5,5-trifloro-1-pentene, 4-trifloromethyl-1-pentene, 4,4,4-trifloro-1-butene and 3-trifloromefhyl-1-butene.
  • Suitable functional monomers containing an oxygen heteroatom are esters, alcohols, ketones, ethers and carboxylic acids and carboxylic acid esters. Examples are methyl-5-norbornen-2-yl ester, 10-undecenoic acid-2,6-dimethylphenyl ester and -2,6-diphenylphenyl ester, 10-undecenoic acid phenyl ester, 8-nonenoic acid-2,6-dimethylphenyl ester, 7-octenoic acid ester, 10- Undecenoic acid N-butyl ester, ⁇ -ester monomers, such as 9-decenoic acid methyl ester and 10-decenoic acid tert-butyl ester.
  • Suitable alcohols are, for example, ⁇ -alkenols such as 10-undecen-l-ol, 5-hexen-l-ol, and branched alcohols such as l, l-dimethyl-2-propen-l-ol, 2,2-dimethyl-3- (l, l-dimethylethyl) -l l-dodecen-3-ol, 2-methyl-3-butenol, 12-tridecen-2-ol.
  • Suitable ketones are, for example, 2,2-dimethyl-1 l-dodecen-3-one.
  • Suitable ethers are, for example, 7-phenoxy-1-heptene, diallyl ether.
  • Suitable carboxylic acids and carboxylates are, for example, 10-undecenonic acid and 10-undecenoic acid-2,6-dimethylphenyl ester.
  • Suitable imines are, for example, N-phenyl-lundecenamine, olefins with tert. Amine groups, dimethylamines and diefhylamines, 5- (N, N-dimefhylamino) - and 5- (N, N-diethylamino) -l-pentene, 4- (N, N-diisopropylamino) -l-butene, 5- (N , N-diisopropylamino) -1-pentene, 7-N, N-diisopropylamino) -l-heptene, 5-N-tert-butylamino-l-pentene, 5-N, N-dimethyl-, diethyl-, -n -Butylamino-1-pentene, and 4-N, N-diisopropylamino-1-butene.
  • Suitable amides are, for example, N, N-di-n-butyl-10-undecenamide and N, N-dipheny 1- 10-undecenamide.
  • Suitable functional monomers with sulfur groups are, for example:
  • Suitable functional monomers with phosphorus groups are, for example:
  • siloxanes such as the following:
  • R can be the same or different and represents hydrogen or a hydrocarbon group.
  • the arrangement of the functional monomers in the copolymer can be different. An arbitrary or random arrangement is suitable. However, preferred structures are also the block structure or graft structure.
  • the coordination polymerization is a polymerization in which the polymerization is initiated by catalysts such as Ziegler-Natta catalysts or metallocene catalysts, the newly emerging monomers being embedded between growing polymer chains and transition metal of the catalyst complex.
  • catalysts such as Ziegler-Natta catalysts or metallocene catalysts
  • Ionic polymerization is also under subsumed the term coordination polymerization.
  • the polymerization reaction of the present invention occurs without the formation of free radicals. Furthermore, it is possible that impurities are present in the polymerization process, which can usually be contained in the raw materials.
  • Coordination catalysts are understood to mean all catalysts that can be used in a coordination polymerization, in particular transition metal compounds, such as Ziegler-Natta catalysts, metallocenes, so-called late transition metal catalysts, and also chromium catalysts, nickel catalysts, vanadium catalysts and Phillips catalysts.
  • transition metal compounds such as Ziegler-Natta catalysts, metallocenes, so-called late transition metal catalysts, and also chromium catalysts, nickel catalysts, vanadium catalysts and Phillips catalysts.
  • Suitable Ziegler-Natta catalysts are, for example, those which contain a compound of a transition element from groups 4 to 6 of the Periodic Table of the Elements (Hubbard, IUPAC 1970) as a procatalyst and a compound of a metal from groups 1 to 3 of the Periodic Table of the Elements as cocatalyst , They are preferably applied to a carrier, such as silicon dioxide. You can add other additives like contain electron donors, for example. Ziegler-Natta catalysts are described, for example, in EP-A-0 261 130, the disclosure of which is expressly incorporated by reference.
  • the organic transition metal compounds of the formula I represent a subgroup of the transition metal compounds:
  • M is a transition metal from group 3 to 10, for example 3 to 7, such as 4 to 6, and each X is independently a monovalent anionic ligand, such as a ⁇ ligand, each L is independently an organic ligand that coordinated to M, R is a bridging group connecting two ligands L, m is 1, 2 or 3, n is 0 or 1, q is 1, 2 or 3, and m + q is equal to the valence of the metal.
  • ⁇ ligand is understood to mean a group which is bonded to the metal at one or more points via a sigma bond.
  • said organic transition metal compounds I are a group of compounds known as metallocenes.
  • Said metallocenes carry at least one organic ligand, generally 1, 2 or 3, for example 1 or 2, which is ⁇ -bound to the metal, for example an ⁇ " ligand, such as an ⁇ ligand.
  • the metallocene preferably contains a transition metal groups 4 to 6, and is suitably a titanocene, zirconocene or hafnocene which contains at least one ⁇ 5 ligand, which is, for example, an optionally substituted cyclopentadienyl, an optionally substituted indenyl, an optionally substituted tetrahydroindenyl or an optionally substituted fluorenyl.
  • the metallocene compound can have the following formula II:
  • each Cp is independently an unsubstituted or substituted and / or fused homo- or heterocyclopentadienyl ligand, for example a substituted or unsubstituted cyclopentadienyl, substituted or unsubstituted indenyl or substituted or unsubstituted fluorenyl ligand; the optional one or more substituents / substituents are preferably made from halogen, hydrocarbon radical (for example Cl-C20-alkyl, C2-C20-alkenyl, C2-C20-alkynyl, C3-C12-cycloalkyl, C6-C20-aryl or C7-C20- Arylalkyl), C3-C12-cycloalkyl which contains 1, 2, 3 or 4 heteroatoms in the ring component, C6-C20-heteroaryl, Cl-C20-haloalkyl, -SiR
  • M is a Group 4 to 6 transition metal, such as Group 4, e.g. Ti, Zr or Hf,
  • each X is independently a sigma ligand, such as H, halogen, C1-C20-alkyl, Cl-C20-alkoxy, C2-C20-alkenyl, C2-C20-alkynyl, C3-C12-cycloalkyl, C6-C20-aryl , C6-C20-aryloxy, C7-C20-arylalkyl, C7-C20-arylalkenyl, - SR ", -PR" 2 , -SiR " 3 , -OSiR” 3 , or -NR " 2 , each R" as above X is defined, and is preferably independently hydrogen or a hydrocarbon radical, for example C1-C20-alkyl, C2-C20-alkenyl, C2-C20-alkynyl, C3-C12-cycloalkyl or C6-C20-aryl; or, for example in the case of -NR " 2 , the two substituent
  • n 0, 1 or 2, preferably 0 or 1
  • n 1, 2 or 3, e.g. 1 or 2,
  • q is 1, 2 or 3, e.g. 2 or 3,
  • Metallocenes are described in detail in EP 0 260 130, the disclosure of which is expressly incorporated by reference. Further literature to which reference is made regarding the metallocenes is as follows: WO 97/28170, WO 98/46616, WO 98/49208, WO 99/12981, WO 99/19335, WO 98/56831, WO 00/34341, EP-A-0 423 101 and EP-A-0 537 130 and "Metallocenes", vol. 1, Togni and Garrman (Eds.), Wiley-VCH 1998, and V.C. Gibson et al., In Angew. Chem. Int. Ed., Engl, vol. 38, 1999, pages 428-447, EP 576 970, EP 485 823, EP 785 821, EP 702 303.
  • the metal in a further subgroup of the metallocene compounds, carries a Cp group as defined above and additionally an ⁇ 1 or ⁇ ligand, in which said ligands may or may not be bridged to one another.
  • This subgroup includes so-called "scorpionate compounds" (with forced geometry) in which the metal is complexed by an ⁇ 5 ligand, which is bridged with an ⁇ 1 or ⁇ 2 ligand, preferably with an ⁇ 'ligand (e.g.
  • ⁇ -bonded for example a metal complex of a Cp group as defined above, for example a cyclopentadienyl group which, via a bridge member, carries an acyclic or cyclic group which contains at least one heteroatom, for example -NR " 2 as defined above.
  • a metal complex of a Cp group as defined above for example a cyclopentadienyl group which, via a bridge member, carries an acyclic or cyclic group which contains at least one heteroatom, for example -NR " 2 as defined above.
  • non-metallocenes Another subgroup of the organic transition metal compounds of formula I that can be used in the present invention is known as "non-metallocenes" in which the transition metal (preferably a transition metal of groups 4 to 6, suitably Ti, Zr or Hf) has a coordination ligand other than the ⁇ 5 ligand (ie a different one than a cyclopentadienyl ligand) .
  • the transition metal preferably a transition metal of groups 4 to 6, suitably Ti, Zr or Hf
  • a coordination ligand other than the ⁇ 5 ligand ie a different one than a cyclopentadienyl ligand
  • nitrogen-based, cyclic or acyclic aliphatic or aromatic ligands for example like those described in earlier application WO-A-9910353 or in the review article by VC Gibson et al., Angew. Chem. Int.
  • oxygen-based ligands such as Group 4 metal complexes which carry bidental cyclic or acyclic aliphatic or aromatic alkoxide ligands, for example optionally substituted, bridged bisphenolic ligands (cf. above-mentioned review article by Gibson et al.).
  • oxygen-based ligands such as Group 4 metal complexes which carry bidental cyclic or acyclic aliphatic or aromatic alkoxide ligands, for example optionally substituted, bridged bisphenolic ligands (cf. above-mentioned review article by Gibson et al.).
  • non- ⁇ 5 ligands are amido, amide diphosphine, amidinate, aminopyridine, benzamidinate, triazacyclononane, allyl, hydrocarbon, beta-diketimate and alkoxide.
  • chromium catalysts such as chromium oxide on silicon dioxide, chromocenes and in particular the catalysts described in EP-A-0 480 276, EP-A-0 533 156, EP-A-0 533 160, EP-A-0 100 879 and US 4,011,382, the disclosure of which is expressly incorporated by reference; as well as nickel catalysts, in particular those described in WO99 / 62968, WO98 / 47933, WO98 / 40420, WO98 / 47933, WO00 / 06620 and WO96 / 23010, the disclosure of which is expressly incorporated by reference, and vanadium catalysts.
  • chromium catalysts such as chromium oxide on silicon dioxide, chromocenes and in particular the catalysts described in EP-A-0 480 276, EP-A-0 533 156, EP-A-0 533 160, EP-A-0 100 879 and US 4,011,382, the disclosure of which is expressly incorporated
  • coordination catalysts can consist of a combination of different of the aforementioned catalysts, for example a combination of two or more metallocenes, a metallocene and a non-metallocene, a Ziegler-Natta catalyst and a metallocene or a Ziegler-Natta catalyst and a non-metallocene.
  • the coordination catalysts preferably comprise one or more cocatalysts, for example an organic aluminum compound such as trialkylaluminium and / or alumoxane compounds. Boron coactivators are also particularly suitable.
  • the coordination catalyst component if appropriate together with the cocatalyst, is preferably applied to an inert support which can be inorganic or organic, such as, for example, silicon dioxide.
  • the porous, particulate support is usually impregnated with the catalyst system.
  • the coordination polymerization can be carried out in one or more polymerization reactors.
  • Conventional polymerization techniques are applicable, such as gas phase polymerization, solution polymerization, slurry polymerization, bulk polymerization, emulsion polymerization and precipitation polymerization. Different polymerization processes can be combined. The combination of a slurry polymerization followed by a gas phase polymerization is particularly suitable.
  • the polymerization processes can be carried out continuously or batchwise.
  • the process is also particularly suitable for Prc polymerization, i.e. a prepolymerization followed by the actual polymerization.
  • Electromagnetic radiation is an additional radiation to natural radiation or artificial room lighting.
  • Irradiation with electromagnetic radiation can take place continuously, but also at intervals or pulsating or only for a short period at the start of the polymerization.
  • By changing the intensity of the electromagnetic radiation it is possible to influence the productivity of the polymerization, but also to control the incorporation of functional monomers in a targeted manner.
  • Radiations of different wavelengths can be used.
  • the wavelength can be in any wavelength range of the electromagnetic spectrum, which ranges from gamma radiation to radio waves. Waves in the area between X-rays and microwaves are particularly suitable, the area between UV and infrared being preferred and short-wave visible light and UV light being particularly suitable.
  • the radiation can be in the range between 10 "12 and 10 m. However, radiation between 10 " and 10 "2 m, in particular 10 " 8 and 10 "6 m, and especially radiation in the range between 100 and 800, is preferred nm.
  • the radiation can have a uniform wavelength or consist of radiation with different wavelengths.
  • the electromagnetic radiation of a wavelength that is in the range of the light absorption of the coordination catalyst is used. Radiation of a wavelength in the range of the maximum absorption of the coordination catalyst is preferred.
  • the radiation source is arranged in the interior of the polymerization reactor, optionally also in the feed line to the reactor.
  • the radiation source can be arranged outside the reactor. This is then provided with a window that is transparent to the respective radiation. A window can be omitted if the radiation can penetrate through the wall of the reactor.
  • Said window preferably consists of glass or quartz, since quartz in particular is radiolucent in the UV range. Furthermore, it is also possible for a device for emitting electromagnetic radiation to be arranged outside the polymerization reactor or the feed line to the polymerization reactor and for the electromagnetic radiation to be able to reach the reactor via an optical conductor.
  • the amount of radiation depends on the size of the reactor system.
  • the radiation can be introduced at one or more points in the loop system. Radiation can also be applied to the gas phase reactor. Alternatively, the feed lines to the reactors, optionally in addition to the reactors, can be irradiated.
  • a suitable polymerization system is, for example, the following.
  • the first reactor is a slurry reactor. This works at a temperature in the range of 60 to 110 ° C.
  • the reactor pressure is in the range from 0.1 to 100 bar, preferably 5 to 80 bar and in particular 50 to 65 bar.
  • the residence time is 0.1 to 5 hours, preferably 0.3 to 5 hours and in particular 0.5 to 2 hours.
  • An aliphatic hydrocarbon is generally used as the diluent.
  • the polymerization can be carried out under supercritical conditions.
  • One or more gas phase reactors are subsequently connected.
  • the reaction temperature is generally 60 to 115 ° C, preferably 70 to 110 ° C.
  • the reactor pressure is 10 to 25 bar and the residence time is 1 to 8 hours.
  • the gas used is generally a non-reactive gas such as nitrogen.
  • Suitable devices for initiating the electromagnetic radiation are, for example, fluorescent lamps, incandescent lamps and halogen lamps.
  • the amount of radiation in the UV or visible range should be at least one watt per 100 ml reaction volume.
  • the copolymers according to the invention can in particular be produced by polymerization processes at low pressure.
  • the copolymers according to the invention are particularly suitable as compatibilizers for polymer mixtures. In this case, they improve the interaction between the polyolefin and other materials, including polymers and substrates.
  • the addition of small amounts, about 0.5 to 20%, preferably 1 to 10%, of the comonomer according to the invention as a compatibilizer to polymer mixtures composed of polyolefins and other polymers which are poorly miscible therewith results in an excellent homogeneous miscibility of the components. The result is a uniform micro-phase morphology with strong interface adhesion.
  • the polymers according to the invention are new products due to their functionalization. With such new polymers, where the activity of the polymer is essential, completely new application possibilities arise, for example for painting, printing, for post-reactor treatment, polymer cross-linking and for gluing, to name just a few examples.
  • the catalyst was prepared by dissolving 1 1 mg of n-Bu-Cp 2 ZrCl 2 (Witco GmbH, Germany) with MAO / toluene containing 1.15 ml of 30% by weight MAO (30% by weight MAO in Tolual, from Albemarle) and 0.35 ml of moisture-free and oxygen-free toluene.
  • the metallocene / MAO / toluene solution was placed on a silicon dioxide carrier (SYLOPOL 55 SJ; Grace-Davison, calcined at 600 ° C.
  • Example 2 Catalyst preparation
  • the catalyst was prepared as in Example 1, but 14 mg n-Bu-Cp 2 HfCl 2 (Witco GmbH, Germany) were used as the metallocene compound.
  • the catalyst was prepared as in Example 1, but 17.5 mg rac-ethylene-bis (2-butyldimethylsiloxyindenyl) zirconium dichloride (prepared according to WO 97 28170) were used as the metallocene compound.
  • the polymerization was carried out in a 20 ml mini-reactor, with 7.06 mg of catalyst prepared according to Example 1 being weighed out.
  • the reactor was sealed in a glove box and connected to the ethylene source.
  • the ethylene partial pressure was kept at 5 bar.
  • the polymerization temperature was 80 ° C. and the polymerization time was 60 min. 25 mg of ethylene 10 undecenoate was introduced into the reactor as described below.
  • the feed system was kept under an argon atmosphere to prevent uncontrolled amounts of oxygen from entering the reactor.
  • a combination of valve and septa closure was used. In this way it was possible to insert a needle into the reactor under an inert atmosphere.
  • the ball valve was opened for a short moment, the needle was placed in the reactor, and the desired amount of polar comonomer was applied to a glass plate inside the reactor.
  • the needle was removed and the ball valve closed.
  • the reactor was kept under a slight positive pressure of argon, which also helped keep oxygen out of the atmosphere when the needle was moved through the septum.
  • the polar comonomer evaporated from the glass plate into the gas phase, which contained ethylene at a pressure of 4.5 bar.
  • the ethylene consumption was monitored by means of a pressure drop that was in the range between 4980 and 5010 mbar.
  • the reactor was irradiated with a cold light source, namely FLEXILUX 600 long life with a PHILLIPS 14501 DDL, 20V / 150W halogen lamp. The highest light intensity was used.
  • the polymerization was stopped by closing the ethylene feed and releasing the ethylene pressure via an outlet line.
  • the yield of polymer was 0.366 g and the activity of the catalyst was 52 gHDPE / g cat h.
  • the polymerization was carried out as in Example 4, but the amount of comonomer was 12.5 ⁇ l.
  • the amount of catalyst was 7.04 mg. After 60 minutes of polymerization, the yield of polymer was 0.281 g.
  • the activity of the catalyst was 40 gHDPE / g cat h.
  • Example 7 The polymerization was carried out as in Example 4, but the amount of comonomer was 0 ⁇ l. The amount of catalyst was 7.22 mg. After 60 minutes of polymerization, the yield of polymer was 0.871 g. The activity of the catalyst was 121 gHDPE / g cat h.
  • Example 7 The polymerization was carried out as in Example 4, but the amount of comonomer was 0 ⁇ l. The amount of catalyst was 7.22 mg. After 60 minutes of polymerization, the yield of polymer was 0.871 g. The activity of the catalyst was 121 gHDPE / g cat h. Example 7:
  • the polymerization was carried out as in Example 4, but the catalyst according to Example 2 was used.
  • the amount of catalyst was 7.04 mg.
  • After 60 minutes of polymerization, the yield of polymer was 0.109 g.
  • the activity of the catalyst was 14 gHDPE / g cat h.
  • the polymerization was carried out as described in Example 4, but the amount of comonomer was 0 ⁇ l.
  • the amount of catalyst was 6.98 mg. After 60 minutes of polymerization, the yield of polymer was 0.540 g.
  • the activity of the catalyst was 77 gHDPE / g cat h.
  • the polymerization was carried out as described in Example 4, but the catalyst according to Example 3 was used.
  • the amount of catalyst was 6.88 mg.
  • After 60 minutes of polymerization, the yield of polymer was 0.212 g.
  • the activity of the catalyst was 31 gHDPE / g cat h.
  • Example 11 The polymerization was carried out as described in Example 4, but the amount of comonomer was 0 ⁇ l. The amount of catalyst was 7.17 mg. After 60 minutes of polymerization, the yield of polymer was 0.970 g. The activity of the catalyst was 135 gHDPE / g cat h.
  • Example 11 The polymerization was carried out as described in Example 4, but the amount of comonomer was 0 ⁇ l. The amount of catalyst was 7.17 mg. After 60 minutes of polymerization, the yield of polymer was 0.970 g. The activity of the catalyst was 135 gHDPE / g cat h.
  • Example 11 Example 11:
  • the polymerization was carried out as described in Example 4, but light was only used after 5 minutes of polymerization in the dark.
  • the amount of catalyst was 7.16 mg. After 60 minutes of polymerization, the yield of polymer was 0.321 g.
  • the activity of the catalyst was 44 gHDPE / g cat h.
  • the polymerization was carried out as described in Example 4, but light was only used after 10 minutes of polymerization in the dark.
  • the amount of catalyst was 7.04 mg. After 60 minutes of polymerization, the yield of polymer was 0.249 g.
  • the activity of the catalyst was 35 gHDPE / g cat h.
  • the polymerization was carried out as in Example 4, but light was only used after 20 minutes of polymerization in the dark.
  • the amount of catalyst was 7.02 mg. After 60 minutes of polymerization, the yield of polymer was 0.155 g.
  • the activity of the catalyst was 22 gHDPE / g cat h.
  • Table 1 shows various metallocenes in the copolymerization of polar comonomers with ethylene under radiation, and the polymer properties.
  • FIG. 1 shows the polymerization kinetics of Examples 10, 11, 12 and 13. The effect of the light on the ethylene consumption during the copolymerization with ethylene 10-undecenoate can be seen.
  • the arrows indicate that the light is switched on, namely immediately in the first curve, in the second curve after 5 minutes, in the third curve after 10 minutes and in the fourth curve after 20 minutes.
  • the amount of comonomer was 25 mg.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Copolymere herstellbar aus zumindest einem α-Olefinmonomeren und einem funktionellen Monomeren unter Verwendung eines Koordinationskatalysators, wobei der Katalysator und/oder das Monomere mit elektromagnetischer Strahlung bestrahlt werden, sowie Verfahren zu deren Herstellung und deren Verwendung.

Description

(54) Bezeichnung:
COPOLYMERE VON $G(a)-OLEFTNEN UND FUNKΗONELLEN MONOMEREN, DEREN HERSTELLUNG UND DEREN VERWENDUNG
Die Erfindung betrifft neue Copolymere von α-Olefinen und funktioneilen Monomeren. Die Erfindung bezieht sich auch auf deren Herstellung, deren Verwendung sowie eine Vorrichtung zu deren Herstellung.
Polyolefine, insbesondere Polyethylen und Polypropylen sind die weltweit in größter Menge hergestellten Polymere und sind aus unserem täglichen Leben nicht mehr wegzudenken. Die gute Kombination von chemischen und physikalischen Eigenschaften zusammen mit niedrigen Herstellungskosten, ausgezeichneter Verarbeitbarkeit und Recyclefähigkeit haben die Polyolefine zu den bevorzugtesten Polymeren gemacht.
Trotz dieses großen Erfolges mangelt es den Polyolefinmaterialien an einigen Eigenschaften, die ihren noch weiteren Einsatz limitieren, so dass dafür teurere und die Umwelt belastende Polymere verwendet werden müssen. Ein großer Nachteil der Polyolefine ist deren geringe Adhäsion sowie die mangelnde Mischbarkeit von Polyolefinen mit anderen Materialien, wie Pigmenten, Glasfasern, Ton, Metallen, Ruß, Füllstoffen und den meisten anderen Polymeren. Aufgrund des Mangels an chemischer Funktionalität (polaren Gruppen) und der semikristallinen Morphologie weisen die Polyolefine niedrige Oberflächenenergie auf. Polyolefine werden in großem Umfang für Folien und geformte Artikel eingesetzt, wo ein einzelnes Polyolefϊn verwendet wird. Die Polyolefine sind jedoch ungeeignet für Polymermischungen und Composits, bei denen Adhäsion und Kompatibilität mit anderen Materialien eine Notwendigkeit sind.
Seit der Entdeckung von HDPE und PP vor etwa einem halben Jahrhundert ist die Funktionalisierung von Polyolefinen eine wissenschaftlich herausfordernde und industriell wichtige Aufgabe. Das konstante Interesse, trotz des Mangels an effektiver Funktionalität, liegt offensichtlich in dem starken Wunsch, die geringen interaktiven Eigenschaften der Polyolefine zu verbessern und die Anwendung der Polyolefine zu höherwertigeren Produkten zu verbreitern, insbesondere in Polymermischungen und Composits. Seit der Entwicklung der Single site Coordinationskatalyse wurde viel Forschung zur Herstellung von funktionellen Polyolefincopolymeren betrieben.
Theoretisch gibt es drei mögliche Ansätze, um die Polyolefine zu funktiona- lisieren. Das ist einmal die direkte Copolymerisation eines α-Olefins mit einem funktionellen Monomer, dann die chemische Modifizierung des vorgeformten Polymeren und schließlich die reaktive Copolymerisation, bei der reaktive Comonomere in das Polymer eingebracht werden, die dann selektiv zu funktionellen Gruppen umgesetzt werden.
Der erstgenannte direkte Prozeß wäre der ideale, weil er als Einstufenreakti- on abläuft. Unglücklicherweise führen einige fundamentale chemische Schwierigkeiten dazu, dass das direkte Verfahren keine kommerzielle Anwendung gefunden hat. Das wesentliche Problem liegt darin, dass die Lewis- Säurekomponente des Katalysators dazu tendiert, mit dem nicht-gebundenen Elektronenpaar des Heteroatoms des funktionellen Monomers bevorzugt gegenüber den π-Elektronen der Doppelbindung zu reagieren. Die Forschung hat sich deshalb besonders auf die chemische Modifikation und den Einbau von reaktiven Copolymeren konzentriert.
Sowohl die chemische Modifizierung als auch der Einbau von reaktiven Copolymeren, die in einer anschließenden Stufe zu den gewünschten funktionellen Gruppen umgesetzt werden müssen, haben inhärente Nachteile, insbesondere deshalb, weil ein mehrstufiges Verfahren notwendig ist.
Aufgabe der Erfindung ist es, Copolymere von α-Olefinen und funktionellen Monomeren zur Verfügung zu stellen, die in einem direkten Verfahren hergestellt werden können und deren Eigenschaften durch gezielten Einbau von unterschiedlichen funktionellen Monomeren in gewünschter Weise variiert werden können.
Der Erfindung liegt die Erkenntnis zugrunde, dass es gelingt, solche Copolymere aus α-Olefinen und funktionellen Monomeren dann herzustellen, wenn bei der Polymerisation mit Koordinationskatalysatoren elektromagnetische Strahlung angewandt wird. Gegenstand der Erfindung sind Copolymere herstellbar aus zumindest einem α-Olefinmonomeren und einem funktionellen Monomeren unter Verwendung eines Koordinationskatalysators, wobei der Katalysator und/oder das Monomere mit elektromagnetischer Strahlung bestrahlt werden.
Gegenstand der Erfindung ist ferner ein Verfahren zur Herstellung von Co- polymeren aus zumindest einem α-Olefmmonomeren und einem funktionellen Monomeren unter Verwendung eines Koordinationskatalysators, wobei der Katalysator und/oder das Monomere mit elektromagnetischer Strahlung bestrahlt werden.
Gegenstand der Erfindung ist schließlich eine Vorrichtung für ein Polymerisationsverfahren, die Einrichtungen zur Emittierung elektromagnetischer Strahlung umfaßt, wobei die Strahlung auf den Koordinationskatalysator und das Monomer gerichtet ist.
Gemäß der Erfindung gelingt es, aufgrund der elektromagnetischen Strahlung Copolymere mit funktionellen Comonomeren mit Koordinationskatalysatoren herzustellen, wobei die funktionellen Comonomere in die Polymerkette eingebaut sind.
Bevorzugte Olefine sind Ethylen und Propylen sowie Mischungen von Ethylen und Propylen mit einem oder mehreren α-Olefinen. Geeignete Co- monomer sind C2_i2 Olefine, vorzugsweise C4.10 Olefine, wie 1-Buten, Isobuten, 1-Penten, 1 -Hexen, 4-Methyl-l-penten, 1-Hepten, 1-Octen, 1- Nonen, 1-Decen, sowie Diene wie Butadien, 1 ,7-Octadien und 1,4-Hexadien oder cyklische Olefine wie Norbornen, sowie Mischungen derselben. Die Menge an Comonomer liegt im allgemeinen bei 0,01 bis 50 Gew.%, vorzugsweise bei 0,1 bis 10 Gew.% und insbesondere bei 0,3 bis 3 Gew.%.
Ferner eignen sich langkettige α-Olefine mit 4 bis 40 Kohlenstoff-Atomen, die entweder allein oder in Kombination, auch mit kurzkettigen α-Olefinen, polymerisiert werden können. Geeignete Beispiele sind: 1-Butene, 1-Penten, 1-Hexene, 1-Hepten, 1-Octen, 1-Nonen, 1-Decen, 1-Undecen, 1-Dodecen, 1- Tridecen, 1-Tetradecen, 1-Pentadecen, 1-Hexadecen, 1-Heptodecen, 1- Octodecen, 1-Nonadecen, 1-Eicosen, etc. bis Tetradecen. Bevorzugt sind α- Olefine mit 4 bis 16 Kohlenstoffatomen. Weitere geeignete Monomere sind Isomere von α-Olefmen mit verzweigten Alkylgruppen, wie 4-Methyl-l- penten. Ferner sind geeignet Comonomer-Mischungen aus Ethylen, Propylen und Dienen. Geeignete Diene sind Dicyclopentadiene.
Die funktionellen Monomeren sind in der Regel polare Monomere, die meist eine Gruppe mit einem Heteroatom aufweisen. Das Heteroatom ist in der Regel Stickstoff, Sauerstoff, Schwefel, Phosphor, Silicium oder Halogene.
Diese funktionellen Monomere polymerisieren nach einem völlig anderen Mechanismus als beispielsweise Ethylen und Propylen.
Geeignete funktionelle Monomere sind Acrylverbindungen und Metacryl- verbindungen, wie Acrylsäure und deren Ester, wie Methylacrylat und Ethylacrylat, Metacrylsäure und deren Ester, wie Methylmetacrylat und Ethylmetacrylat.
Ferner sind besonders geeignet Vinylmonomere, wie Vinylacetat, Vinylal- kohol, Vinylether, Vinylester, Vinylamine und dergleichen.
Als Halogenheteroatome enthaltende Monomere können außer Vinylchlorid noch genannt werden: 4-Iodo-l-buten, 5-Chloro-, 5-Bromo-, 5-Iodo-l- penten und 1 1-Chloro-, 1 1-Bromo- und 11-Iodo-l-undecen, sowie 5,5,5- Trifloro-1 -penten, 4-Trifloromethyl-l -penten, 4,4,4-Trifloro-l-buten und 3- Trifloromefhyl- 1 -buten.
Geeignete ein Sauerstoffheteroatom enthaltende funktioneile Monomere sind Ester, Alkohole, Ketone, Ether sowie Carbonsäuren und Carbonsäureester. Beispiele sind Methyl-5-norbornen-2-yl ester, 10-Undecensäure-2,6- Dimethylphenylester und -2,6-Diphenylphenylester, 10- Undecensäurephenylester, 8-Nonensäure-2,6-Dimethylphenylester, 7- Oktenonsäureester, 10-Undecensäure-N-Butyl-ester, ω-Estermonomere, wie 9-Decensäuremethylester und lO-Decensäure-tert.-butylester.
Geeignete Alkohole sind beispielsweise ω- Alkenole wie 10-Undecen-l-ol, 5-Hexen-l-ol, und verzweigte Alkohole wie l ,l-Dimethyl-2-propen-l-ol, 2,2-Dimethyl-3-(l, l-dimethylethyl)-l l-dodecen-3-ol, 2-Methyl-3-butenol, 12-Tridecen-2-ol. Geeignete Ketone sind beispielsweise 2,2-Dimethyl-l l-dodecen-3-on.
Geeignete Ether sind beispielsweise 7-Phenoxy-l-hepten, Diallylether.
Geeignete Carbonsäuren und Carboxylate sind beispielsweise 10- Undecenonsäure und 10-Undecensäure-2,6-Dimethylphenyl-ester.
Geeignete Imine sind beispielsweise N-Phenyl-lOundecenamin, Olefine mit tert. Amingruppen, Dimethyl- und Diefhylamine, 5-(N,N-Dimefhylamino)- und 5-(N,N-Diethylamino)-l -penten, 4-(N,N-Diisopropylamino)-l-buten, 5- (N,N-Diisopropylamino)-1 -penten, 7-N,N-Diisopropylamino)-l-hepten, 5- N-tert.-Butylamino-l -penten, 5-N,N-Dimethyl-, Diethyl-, -n-Butylamino-1- penten, und 4-N,N-Diisopropylamino-l-buten.
Geeignete Amide sind beispielsweise N,N-di-n-Butyl-10-undecenamid und N,N-Dipheny 1- 10-undecenamid.
Geeignete funktionelle Monomere mit Schwefelgruppen sind beispielsweise:
Figure imgf000006_0001
Thioester:
Figure imgf000006_0002
Sulfonylchloride:
Figure imgf000006_0003
Sulfonsäuren:
Figure imgf000007_0001
Sulfoxide:
Figure imgf000007_0002
Sulfonsäureester:
Figure imgf000007_0003
Geeignete funktionelle Monomere mit Phosphorgruppen sind beispielsweise:
Phosphine:
H H
Figure imgf000007_0004
Besonders geeignet sind funktionelle Monomere, die Gruppen mit einem Silici- umatom enthalten. Beispielsweise sind dies Siloxane, wie die nachstehenden:
Figure imgf000007_0005
Figure imgf000007_0006
wobei R gleich oder unterschiedlich sein kann und Wasserstoff oder eine Kohlenwasserstoffgruppe bedeutet.
Die Anordnung der funktionellen Monomeren im Copolymeren kann unterschiedlich sein. Geeignet ist eine willkürliche bzw. Random-Anordnung. Bevorzugte Strukturen sind jedoch auch die Block-Struktur oder Graft- Struktur.
Die Koordinationspolymerisation ist eine Polymerisation, bei der durch Katalysatoren, wie Ziegler-Natta Katalysatoren oder Metallocen-Katalysatoren, die Polymerisation initiiert wird, wobei die neu eintretenden Monomere zwischen wachsenden Polymerketten und Übergangsmetall des Katalysatorkomplexes eingelagert werden. Bezüglich der Definition von Koordinationspolymerisation wird ausdrücklich bezug genommen auf Römpp, Lexikon der Chemie, 10. Auflage, Seite 2246 und George Odian, "Principles of Polymerisation", 2nd Edition, John Wiley & Sons, U.S.A., 1981. Die ionische Polymerisation wird ebenfalls unter dem Begriff Koordinationspolymerisation subsumiert.
Die Polymerisationsreaktion der vorliegenden Erfindung erfolgt ohne die Bildung von freien Radikalen. Weiterhin ist es möglich, dass bei dem Polymerisationsverfahren Verunreinigungen anwesend sind, die gewöhnlich in den Rohmaterialen enthalten sein können.
Als Koordinationskatalysatoren werden alle Katalysatoren verstanden, die in einer Koordinationspolymerisation eingesetzt werden können, insbesondere Übergangsmetallverbindungen bzw. transition metal compounds, wie Ziegler-Natta Katalysatoren, Metallocene, sogenannte late transition metal Katalysatoren sowie Chromkatalysatoren, Nickelkatalysatoren, Vanadiumkatalysatoren und Phillipskatalysatoren.
Geeignete Ziegler-Natta Katalysatoren sind beispielsweise solche, die eine Verbindung eines Übergangselementes der Gruppen 4 bis 6 des Periodischen Systems der Elemente (Hubbard, IUPAC 1970) als Prokatalysator und eine Verbindung eines Metalls der Gruppen 1 bis 3 des Periodischen Systems der Elemente als Cokatalysator enthalten. Vorzugsweise sind sie auf einem Träger, wie Siliziumdioxid, aufgebracht. Sie können noch andere Zusätze, wie beispielsweise Elektronendonnatoren enthalten. Ziegler-Natta Katalysatoren sind beispielsweise in EP-A-0 261 130 beschrieben, auf dessen Offenbarung ausdrücklich bezug genommen wird. Weitere Beispiele von Ziegler-Natta Katalysatoren sind beschrieben in EP-A-0 688 794, FI-A-974622, FI-A- 86866, FI-A-96615, FI-A-88047 und FI-A-88048.
Eine Untergruppe der Übergangsmetallverbindungen stellen die Organo- übergangsmetallverbindungen der Formel I dar:
(L)mRnMXq (I)
worin M ein Übergangsmetall der Gruppe 3 bis 10 ist, beispielsweise 3 bis 7, wie etwa 4 bis 6, und jedes X unabhängig ein monovalenter anionischer Ligand ist, wie etwa ein σ-Ligand, jedes L unabhängig ein organischer Li- gand ist, der an M koordiniert, R eine verbrückende Gruppe welche zwei Liganden L verbindet, m ist 1, 2 oder 3, n ist 0 oder 1, q ist 1 , 2 oder 3, und m+q ist gleich der Valenz des Metalls.
Unter „σ-Ligand" versteht man eine Gruppe, die an einer oder mehreren Stellen via einer sigma-Bindung an das Metall gebunden ist.
Gemäß einer bevorzugten Ausführungsform sind besagte Organoübergangs- metallverbindungen I eine Gruppe von Verbindungen, die als Metallocene bekannt sind. Besagte Metallocene tragen mindestens einen organischen Liganden, im allgemeinen 1 , 2 oder 3, beispielsweise 1 oder 2, welcher zum Metall η -gebunden ist, beispielsweise ein η " -Ligand, wie etwa ein η - Ligand. Vorzugsweise enthält das Metallocen ein Übergangsmetall aus den Gruppen 4 bis 6, und ist geeigneter Weise ein Titanocen, Zirkonocen oder Hafnocen, welches mindestens einen η5-Liganden enthält, welcher zum Beispiel ein optional substituiertes Cyclopentadienyl, ein optional substituiertes Indenyl, ein optional substituiertes Tetrahydroindenyl oder ein optional substituiertes Fluorenyl ist.
Die Metallocenverbindung kann die folgende Formel II haben:
(Cp)mRnMXq (II) jedes Cp ist unabhängig ein unsubstituierter oder substituierter und/oder kondensierter Homo- oder Heterocyclopentadienyl-Ligand, beispielsweise ein substituierter oder unsubstituierter Cyclopentadienyl-, substituierter oder unsubstituierter Indenyl- oder substituierter oder unsubstituierter Fluorenyl- Ligand; der optionale eine oder mehrere Substituent/Substituenten werden vorzugsweise aus Halogen, Kohlenwasserstoffrest (z.B. Cl-C20-Alkyl, C2- C20-Alkenyl, C2-C20-Alkinyl, C3-C12-Cycloalkyl, C6-C20-Aryl oder C7- C20-Arylakyl), C3-C 12-Cycloalkyl welches 1 , 2, 3 oder 4 Heteroatom(e) im Ringbestandteil enthält, C6-C20-Heteroaryl, Cl-C20-Haloalkyl, -SiR"3, - OSiR"3, -SR", -PR"2 oder -NR"2, wobei jeder R" unabhängig ein Wasserstoff oder Kohlenwasserstoffrest, z.B. Cl-C20-Alkyl, C2-C20-Alkenyl, C2- C20-Alkinyl, C3-C 12-Cycloalkyl, C6-C20-Aryl; oder z.B. im Falle von - NR"2, können die zwei Substituenten R" einen Ring bilden, z.B. einen fünf- oder sechsgliedrigen Ring, zusammen mit dem Stickstoffatom, an welches sie gebunden sind; R ist eine Brücke von 1 bis 7 Atomen, z.B. eine Brücke von 1-4 C- Atomen und 0-4 Heteroatomen, worin das/die Hetero- atom(e) beispielsweise Si-, Ge- und/oder O-Atome sein kann/können, wobei jedes der Brückenatome unabhängig Substituenten tragen kann, wie etwa Cl-C20-Alkyl, tri(Cl-C20alkyl)silyl-, tri(Cl-C20alkyι)siloxy- oder C6-C20- Aryl-Substituenten; oder eine Brücke von 1-3, z.B. eines oder zwei, Hetero- atom(e), wie etwa- Silizium, Germanium- und/oder Sauerstoffatom(e), z.B. -SiR'2, worin jeder R1 unabhängig ein Cl-C20-Alkyl-, C6-C20-Aryl- oder tri(Cl-C20-alkyl)silyl-Rest, wie etwa Trimethylsilyl sein kann;
M ist ein Übergangsmetall der Gruppe 4 bis 6, wie etwa Gruppe 4, z.B. Ti, Zr oder Hf,
jedes X ist unabhängig ein sigma-Ligand, wie etwa H, Halogen, C1-C20- alkyl, Cl-C20-alkoxy, C2-C20-alkenyl, C2-C20-alkinyl, C3-C12-cycloalkyl, C6-C20-aryl, C6-C20-aryloxy, C7-C20-arylalkyl, C7-C20-arylalkenyl, - SR", -PR"2, -SiR"3, -OSiR"3, oder -NR"2, wobei jeder R" wie obiges X definiert ist, und vorzugsweise unabhängig Wasserstoff oder ein Kohlenwasserstoffrest ist, z.B. Cl-C20-alkyl, C2-C20-alkenyl, C2-C20-alkinyl, C3- C12-cycloalkyl oder C6-C20-aryl; oder z.B. im Falle von -NR"2 können die zwei Substituenten R" einen Ring bilden, z.B. einen fünf- oder sechsgliedrigen Ring, zusammen mit den Stickstoffatom an welches sie gebunden sind; und jeder der oben genannten Ringe alleine oder als ein Teil eines Restes als Substituent für Cp, X, R" oder R1 kann weiterhin z.B. mit Cl-C20-alkyl substituiert sein, welches Si- und/oder O-Atome enthält;
n ist 0, 1 oder 2, vorzugsweise 0 oder 1,
m ist 1, 2 oder 3, z.B. 1 oder 2,
q ist 1, 2 oder 3, z.B. 2 oder 3,
m+q ist gleich der Valenz von M.
Besagte Metallocene II and ihre Darstellung sind aus dem im Stand der Technik bekannt.
Metallocene sind ausführlich in EP 0 260 130 beschrieben, auf deren Offenbarung ausdrücklich bezug genommen wird. Weitere Literatur, auf die bezüglich der Metallocene bezug genommen wird, ist folgende: WO 97/28170, WO 98/46616, WO 98/49208, WO 99/12981, WO 99/19335, WO 98/56831, WO 00/34341, EP-A-0 423 101 und EP-A-0 537 130 sowie "Metallocenes", vol. 1, Togni and Halterman (Eds.), Wiley-VCH 1998, und V.C. Gibson et al., in Angew. Chem. Int. Ed., engl, vol. 38, 1999, Seiten 428 - 447, EP 576 970, EP 485 823, EP 785 821, EP 702 303.
Alternativ trägt in einer weiteren Untergruppe der Metallocenverbindungen das Metall eine Cp-Gruppe wie oben definiert und zusätzlich einen η 1- oder η -Liganden, worin besagte Liganden miteinander verbrückt sein können oder nicht. Diese Untergruppe schließt sogenannte „scorpionate Verbindungen" (mit erzwungener Geometrie) in welcher das Metall durch einen η5- Liganden komplexiert ist, welcher mit einem η 1- oder η2-Liganden verbrückt ist, vorzugsweise mit einem η '-Liganden (z.B. ein σ-gebundener), z.B. ein Metallkomplex einer Cp-Gruppe wie oben definiert, z.B. eine Cyc- lopentadienylgruppe, die via eines Brückengliedes eine acyclische oder cyc- lische Gruppe trägt, die mindestens ein Heteroatom enthält, z.B. -NR"2 wie oben definiert. Solche Verbindungen sind beispielsweise in WO-A-9613529 beschrieben, auf dessen Inhalt hier Bezug genommen wird. Eine weitere Untergruppe der Organoübergansmetallverbindungen der Formel I, die in der vorliegenden Erfindung verwendet werden können, ist als „Nicht-Metallocene" (Non-Metallocenes) bekannt, worin das Übergangsmetall (vorzugsweise ein Übergangsmetall der Gruppen 4 bis 6, geeigneter Weise Ti, Zr oder Hf) einen anderen Koordinationsliganden als den η5- Liganden hat (d.h. einen anderen als einen Cyclopentadienyl-Liganden). Als Beispiele für solche Verbindungen, d.h. Übergansmetallkomplexe mit Stick- stoff-basierten, cyclischen oder acyclischen aliphatischen oder aromatischen Liganden, z.B. wie diejenigen, die in der früheren Anmeldung WO-A- 9910353 oder im Übersichtsartikel von V.C. Gibson et al., Angew. Chem. Int. Ed., engl., Band 38, 1999, 428-447 oder mit Sauerstoff-basierenden Liganden, wie etwa Gruppe 4 Metallkomplexe, die bidentale cyclische oder acyclische aliphatische oder aromatische Alkoxid-Liganden tragen, z.B. optional substituierte, verbrückte Bisphenolische Liganden (vgl. oben genannter Übersichtsartikel von Gibson et al.). Weitere spezifische Beispiele von nicht-η5-Liganden sind Amido, Amid-Diphosphan, Amidinat, Aminopyridin, Benzamidinat, Triazacyclononan, Allyl, Kohlenwasserstoff, beta-Diketimat und Alkoxid.
Weitere geeignete Katalysatoren sind Chromkatalysatoren, wie Chromoxid auf Siliziumdioxid, Chromocene und insbesondere die Katalysatoren, die in EP-A-0 480 276, EP-A-0 533 156, EP-A-0 533 160, EP-A-0 100 879 und US 4,011,382 beschrieben sind, auf deren Offenbarung ausdrücklich bezug genommen wird; sowie Nickelkatalysatoren, insbesondere jene, die in W099/62968, W098/47933, WO98/40420, W098/47933, WO00/06620 und WO96/23010 beschrieben sind, auf deren Offenbarung ausdrücklich bezug genommen wird, und Vanadiumkatalysatoren.
Ferner eignen sich Phillips-Katalysatoren sehr gut.
Es kommt auch in Betracht, verschiedene Koordinationskatalysatoren zusammen zu verwenden, sogenannte dual- oder multikatalytische Systeme. Diese können aus einer Kombination verschiedener der vorgenannten Katalysatoren bestehen, z.B. einer Kombination aus zwei oder mehr Metalloce- nen, einem Metallocen und einem Non-Metallocen, einem Ziegler-Natta Katalysator und einem Metallocen oder einem Ziegler-Natta Katalysator und einem Non-Metallocen. Vorzugsweise umfassen die Koordinationskatalysatoren einen oder mehrere Cokatalysatoren, z.B. eine organische Aluminiumverbindung, wie Trialkyla- luminium und/oder Alumoxanverbindungen. Bor-Coaktivatoren sind auch besonders geeignet.
Es können sowohl homogene als auch heterogene Katalysatorsysteme verwendet werden. Bei einem heterogenen Katalysatorsystem ist die Koordinationskatalysatorkomponente, gegebenenfalls zusammen mit dem Cokatalysa- tor, vorzugsweise auf einem inerten Träger, der anorganisch oder organisch sei kann, wie beispielsweise Siliciumdioxid, aufgebracht. Üblicherweise ist der poröse, teilchenförmige Träger mit dem Katalysatorsystem imprägniert. Diesbezüglich wird auf EP 678103 und PCT/GB01/01280 hingewiesen.
Die Koordinationspolymerisation kann in einem oder mehreren Polymerisationsreaktoren durchgeführt werden. Konventionelle Polymerisationstechniken sind anwendbar, wie die Gasphasenpolymerisation, Lösungspolymerisation, Slurry-Polymerisation, Bulk-Polymerisation, Emulsionspolymerisation und Fällungspolymerisation. Verschiedene Polymerisationsverfahren können kombiniert werden. Besonders geeignet ist die Kombination einer Slurry- Polymerisation gefolgt von einer Gasphasenpolymerisation.
Die Polymerisationsverfahren können kontinuierlich oder batchweise durchgeführt werden.
Das Verfahren eignet sich auch besonders gut für die Prc-Polymerisation, d.h. eine Vorpolymerisation, auf die die eigentliche Polymerisation folgt.
Das Polymerisationsverfahren wird bei Anwesenheit elektromagnetischer Strahlung durchgeführt. Bei der elektromagnetischen Strahlung handelt es sich um eine zusätzliche Strahlung zur natürlichen Strahlung oder zur künstlichen Raumbeleuchtung.
Die Bestrahlung mit elektromagnetischer Strahlung kann kontinuierlich erfolgen, aber auch in Intervallen oder pulsierend oder nur für einen kurzen Zeitraum am Beginn der Polymerisation. Durch Änderung der Intensität der elektromagnetischen Strahlung ist es möglich, die Produktivität der Polymerisation zu beeinflussen, aber auch den Einbau an funktionellen Monomeren gezielt zu steuern.
Es können Strahlungen verschiedener Wellenlänge eingesetzt werden.
Die Wellenlänge kann in jedem Wellenlängenbereich des elektromagnetischen Spektrums liegen, das von der Gammastrahlung bis Radiowellen reicht. Geeignet sind insbesondere Wellen im Bereich zwischen Röntgenstrahlen und Mikrowellen, wobei der Bereich zwischen UV und Infrarot bevorzugt wird und sich insbesondere kurzwelliges sichtbares Licht als auch UV Licht besonders eignen.
In Wellenlängen ausgedrückt kann die Strahlung im Bereich zwischen 10"12 und 10 m liegen. Bevorzugt wird jedoch eine Strahlung zwischen 10" und 10"2 m, insbesondere 10"8 und 10"6 m und besonders eine Strahlung im Bereich zwischen 100 und 800 nm. Die Strahlung kann eine einheitliche Wellenlänge haben oder aus einer Strahlung mit verschiedenen Wellenlängen bestehen.
Gemäß einer besonders bevorzugten Ausführungsform wird die elektromagnetische Strahlung einer Wellenlänge eingesetzt, die im Bereich der Lichtabsorption des Koordinationskatalysators liegt. Bevorzugt wird Strahlung einer Wellenlänge im Bereich der maximalen Absorption des Koordinationskatalysators.
Für die Anordnung der Strahlungsquelle im Polymerisationssystem bestehen im Prinzip zwei Möglichkeiten. Entweder, und diese wird bevorzugt, wird die Strahlenquelle im Inneren des Polymerisationsreaktors, gegebenenfalls auch in der Zuleitung zum Reaktor, angeordnet. Alternativ kann die Strahlungsquelle außerhalb des Reaktors angeordnet werden. Dieser ist dann mit einem Fenster versehen, das für die jeweilige Strahlung durchlässig ist. Ein Fenster kann entfallen, wenn die Strahlung durch die Wand des Reaktors dringen kann.
Vorzugsweise besteht besagtes Fenster aus Glas oder Quarz, da insbesondere Quarz im UV-Bereich strahlendurchlässig ist. Weiterhin ist es auch möglich, dass eine Vorrichtung zur Emittierung elektromagnetischer Strahlung außerhalb des Polymerisationsreaktors oder der Zufuhrleitung zum Polymerisationsreaktor angeordnet ist und die elektromagnetische Strahlung über einen optischen Leiter in den Reaktor gelangen kann.
Die Strahlenmenge ist abhängig von der Größe des Reaktorsystems.
Bei einem kombinierten Polymerisationsverfahren, wie einer Slurry- Polymerisation, die vorzugsweise in einem Loop-Reaktor ausgeführt wird, und einem darauffolgenden Gasphasenreaktor kann die Strahlung an einer oder mehreren Stellen des Loop-Systems einbracht werden. Auch der Gasphasenreaktor kann mit Strahlung beaufschlagt werden. Alternativ können die Zufuhrleitungen zu den Reaktoren, gegebenenfalls zusätzlich zu den Reaktoren, bestrahlt werden.
Ein geeignetes Polymerisationssysstem ist beispielsweise folgendes. Der erste Reaktor ist ein Slurry-Reaktor. Dieser arbeitet bei einer Temperatur im Bereich von 60 bis 110°C. Der Reaktordruck ist im Bereich von 0,1 bis 100 bar, vorzugsweise 5 bis 80 bar und insbesondere 50 bis 65 bar. Die Verweilzeit liegt bei 0,1 bis 5 Stunden, vorzugsweise 0,3 bis 5 Stunden und insbesondere 0,5 bis 2 Stunden. Als Verdünnungsmittel wird im allgemeinen ein aliphatischer Kohlenwasserstoff eingesetzt. Die Polymerisation kann unter superkritischen Bedingungen durchgeführt werden. Nachfolgend sind ein oder mehrere Gasphasenreaktoren geschalten. Die Reaktionstemperatur beträgt im allgemeinen 60 bis 115°C, vorzugsweise 70 bis 110°C. Der Reaktordruck liegt bei 10 bis 25 bar und die Verweilzeit bei 1 bis 8 Stunden. Das eingesetzte Gas ist im allgemeinen ein nichtreaktives Gas wie Stickstoff.
Geeignete Einrichtungen zur Initiierung der elektromagnetischen Strahlung sind beispielsweise Floureszenzlampen, Incandeszenflampen und Halogenlampen. Die Strahlungsmenge im UV oder sichtbaren Bereich sollte wenigstens ein Watt pro 100 ml Reaktionsvolumen betragen.
Die erfindungsgemäßen Copolymere können insbesondere mit Polymerisationsverfahren bei geringem Druck hergestellt werden. Die erfindungsgemäßen Copolymere eignen sich besonders als Compatibili- zer für Polymermischungen. In diesem Fall verbessern sie die Interaktion zwischen dem Polyolefm und anderen Materialien, einschließlich Polymeren und Substraten. Die Zugabe von geringen Mengen, etwa 0,5 bis 20 %, vorzugsweise 1 bis 10 %, an erfindungsgemäßem Comonomer als Compatibili- zer zu Polymermischungen aus Polyolefinen und anderen damit schlecht mischbaren Polymeren bewirkt eine ausgezeichnete homogene Mischbarkeit der Komponenten. Es entsteht eine uniforme Mikrophasenmorphologie mit starker Grenzflächenadhäsion.
Die erfindungsgemäßen Polymere sind aufgrund ihrer Funktionalisierung neue Produkte. Bei solchen neuen Polymeren wo die Aktivität des Polymers wesentlich ist, ergeben sich völlig neue Anwendungsmöglichkeiten, wie beispielsweise zum Bemalen, Bedrucken, bei der Postreaktorbehandlung, der Polymervernetzung und beim Verkleben, um nur einige Beispiele zu nennen.
Die Erfindung wird nachfolgend anhand von Beispielen, die bevorzugte Ausführungsformen zeigen, näher beschrieben.
Beispiel 1 : Katalysatorherstellung
Der Katalysator wurde hergestellt durch Lösen von 1 1 mg n-Bu-Cp2ZrCl2 (Witco GmbH, Deutschland) mit MAO/Toluol enthaltend 1 ,15 ml 30 Gew.% MAO (30 Gew.% MAO in Tolual, von Albemarle) und 0,35 ml feuchtig- keits- und sauerstofffreiem Toluol. Die Metallocen/MAO/Toluollösung wurde auf einen Siliziumdioxidträger (SYLOPOL 55 SJ; Grace-Davison, calzi- niert bei 600°C mit einem Porenvolumen von 1 ,5 bis 1 ,7 ml/g, Oberfläche 350 m2/g) in solcher Weise aufgegeben, daß das Volumen der Komplexlösung das Porenvolumen des Siliziumdioxids (1 ,5 ml/g) nicht überstieg. Anschließend wurde getrocknet und die Trocknung abgeschlossen mittels Durchleiten von feuchtigkeit- und sauerstofffreiem Stickstoff durch den Katalysator bei Raumtemperatur. Beispiel 2: Katalysatorherstellung
Der Katalysator wurde wie in Beispiel 1 hergestellt, jedoch wurden als Metallo- cenverbindung 14 mg n-Bu-Cp2HfCl2 (Witco GmbH, Deutschland) verwendet.
Beispiel 3: Katalysatorherstellung
Der Katalysator wurde wie in Beispiel 1 hergestellt, jedoch wurden als Metallo- cenverbindung 17,5 mg rac-Ethylen-bis(2-butyldimethylsiloxyindenyl)- zirconiumdichlorid (gemäß WO 97 28170 hergestellt) verwendet.
Polymerisation;
Beispiel 4:
Die Polymerisation wurde in einem 20 ml Minireaktor durchgeführt, wobei 7,06 mg Katalysator, der gemäß Beispiel 1 hergestellt wurde, eingewogen wurden. Der Reaktor wurde in einer Glovebox verschlossen und mit der Ethylenquelle verbunden. Der Ethylenpartialdruck wurde bei 5 bar gehalten. Die Polymerisationstemperatur betrug 80°C und die Polymerisationszeit 60 min. 25 mg Ethylen- 10- undecenoat wurden in den Reaktor, wie nachstehend beschrieben, eingebracht.
Das Zuführsystem wurde unter einer Argonatmosphäre gehalten, um zu vermeiden, dass unkontrollierte Mengen an Sauerstoff in den Reaktor gelangen. Es wurde eine Kombination von Ventil und Septaverschluß verwendet. Auf diese Weise war es möglich, eine Nadel unter inerter Atmosphäre in den Reaktor einzufuhren. Wenn die Nadel durch den Septumverschluss geführt war, wurde das Kugelventil einen kurzen Moment geöffnet, die Nadel wurde in den Reaktor gebracht, und die gewünschte Menge an polarem Comonomer wurde auf eine Glasplatte innerhalb des Reaktors aufgebracht. Sofort nach der Zugabe wurde die Nadel entfernt und das Kugelventil geschlossen. Während des ganzen Vorgangs wurde der Reaktor unter einem geringen Überdruck von Argon gehalten, was auch dazu beitrug, Sauerstoff aus der Atmosphäre fernzuhalten, wenn die Nadel durch das Septum bewegt wurde. Von der Glasplatte evaporierte das polare Comonomer in die Gasphase, die Ethylen bei einem Druck von 4,5 bar enthielt.
Der Ethylenverbrauch wurde mittels Druckabfall verfolgt, der im Bereich zwischen 4980 und 5010 mbar lag. Der Reaktor wurde mit einer kalten Lichtquelle, nämlich FLEXILUX 600 long life mit einer PHILLIPS 14501 DDL, 20V/150W Halogenlampe bestrahlt. Die höchste Lichtintensität wurde verwendet. Nach 60 min Reaktionszeit wurde die Polymerisation gestoppt, indem die Ethylenzufuhr geschlossen wurde und der Ethylendruck über eine Ausgangsleitung abgebaut wurde. Die Ausbeute an Polymer betrug 0.366 g, und die Aktivität des Katalysators betrug 52 gHDPE/g cat h.
Beispiel 5:
Die Polymerisation wurde wie in Beispiel 4 durchgeführt, jedoch betrug die Menge an Comonomer 12,5 μl. Die Katalysatormenge betrug 7.04 mg. Nach 60 min Polymerisation betrug die Ausbeute an Polymer 0.281 g. Die Aktivität des Katalysators betrug 40 gHDPE/g cat h.
Beispiel 6:
Die Polymerisation wurde wie in Beispiel 4 durchgeführt, jedoch betrug die Menge an Comonomer 0 μl. Die Katalysatormenge betrug 7.22 mg. Nach 60 min Polymerisation betrug die Ausbeute an Polymer 0.871 g. Die Aktivität des Katalysators war 121 gHDPE/ g cat h. Beispiel 7:
Die Polymerisation wurde wie in Beispiel 4 durchgeführt, jedoch wurde der Katalysator gemäß Beispiel 2 eingesetzt. Die Katalysatormenge betrug 7.04 mg. Nach 60 min Polymerisation betrug die Ausbeute an Polymer 0.109 g. Die Aktivität des Katalysators war 14 gHDPE/ g cat h.
Beispiel 8:
Die Polymerisation wurde wie in Beispiel 4 beschrieben durchgeführt, jedoch betrug die Comonomermenge 0 μl. Die Katalysatormenge betrug 6.98 mg. Nach 60 min Polymerisation betrug die Ausbeute an Polymer 0.540 g. Die Aktivität des Katalysators war 77 gHDPE/ g cat h.
Beispiel 9:
Die Polymerisation wurde wie in Beispiel 4 beschrieben durchgeführt, jedoch wurde der Katalysator gemäß Beispiel 3 eingesetzt. Die Katalysatormenge betrug 6.88 mg. Nach 60 min Polymerisation betrug die Ausbeute an Polymer 0.212 g. Die Aktivität des Katalysators war 31 gHDPE/ g cat h.
Beispiel 10:
Die Polymerisation wurde wie in Beispiel 4 beschrieben durchgeführt, jedoch betrug die Menge an Comonomer 0 μl. Die Katalysatormenge betrug 7.17 mg. Nach 60 min Polymerisation betrug die Ausbeute an Polymer 0.970 g. Die Aktivität des Katalysators war 135 gHDPE/ g cat h. Beispiel 11:
Die Polymerisation wurde wie in Beispiel 4 beschrieben durchgeführt, jedoch wurde Licht erst nach 5 min Polymerisation im Dunklen eingesetzt. Die Katalysatormenge betrug 7.16 mg. Nach 60 min Polymerisation betrug die Ausbeute an Polymer 0.321 g. Die Aktivität des Katalysators betrug 44 gHDPE/ g cat h.
Beispiel 12:
Die Polymerisation wurde wie in Beispiel 4 beschrieben durchgeführt, jedoch wurde Licht erst nach 10 min Polymerisation im Dunklen verwendet. Die Katalysatormenge betrug 7.04 mg. Nach 60 min Polymerisation betrug die Ausbeute an Polymer 0.249 g. Die Aktivität des Katalysators betrug 35 gHDPE/ g cat h.
Beispiel 13:
Die Polymerisation wurde wie in Beispiel 4 durchgeführt, jedoch wurde Licht erst nach 20 min Polymerisation im Dunklen verwendet. Die Katalysatormenge betrug 7.02 mg. Nach 60 min Polymerisation betrug die Ausbeute an Polymer 0.155 g. Die Aktivität des Katalysators war 22 gHDPE/ g cat h.
Die nachstehende Tabelle 1 zeigt verschiedene Metallocene bei der Copolymerisation von polaren Comonomeren mit Ethylen unter Bestrahlung, sowie die Polymereigenschaften.
Figure imgf000021_0001
Figur 1 zeigt die Polymerisationskinetik der Beispiele 10, 11, 12 und 13. Zu sehen ist die Wirkung des Lichtes auf den Ethylenverbrauch während der Copolymerisation mit Ethylen- 10-undecenoat. Die Pfeile deuten auf das Einschalten des Lichtes hin, nämlich bei der ersten Kurve sofort, bei der zweiten Kurve nach 5 min, bei der dritten Kurve nach 10 min und bei der vierten Kurve nach 20 min. Die Menge an Comonomer betrug 25 mg.

Claims

Patentansprüche
1. Copolymere herstellbar aus zumindest einem α-Olefinmonomeren und einem funktionellen Monomeren unter Verwendung eines Koordinationskatalysators, wobei der Katalysator und das Monomere mit elektromagnetischer Strahlung bestrahlt werden.
2. Copolymere nach Anspruch 1 , dadurch gekennzeichnet, dass das α- Olefin Ethylen ist.
3. Copolymere nach Anspruch 1, dadurch gekennzeichnet, dass das α- Olefin Propylen ist.
4. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das funktionelle Monomer ein polares Monomer ist.
5. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das funktionelle Monomer ein Olefinmolekül mit einer ein Heteroatom aufweisenden Gruppe ist.
6. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das funktionelle Monomer ein N, O oder Halogen- Heteroatom enthält.
7. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das funktionelle Monomer eine Acrylat- oder Metacry- latverbindung ist.
8. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das funktionelle Monomer eine Alkohol-, Säure-, Ether-, Keton-, oder Estergruppe enthält.
9. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das funktionelle Monomer eine Amin-, Imin- oder Amidgruppe enthält.
10. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Copolymer ein Blockcopolymer ist.
11. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Copolymer ein Graftcopolymer ist.
12. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Katalysator ein Metallocenkatalysator verwendet wird.
13. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Katalysator ein Ziegler-Natta-Katalysator verwendet wird.
14. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Koordinationskatalysator zusammen mit einem Coka- talysator verwendet wird.
15. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Mischung von Koordinationskatalysatoren verwendet wird.
16. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Cokatalysator ein Borkatalysator verwendet wird.
17. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Cokatalysator ein Alumoxan verwendet wird.
18. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektromagnetische Strahlung im Bereich von Infrarot bis Ultraviolett liegt.
19. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektromagnetische Strahlung im Bereich von 800 bis 100 nm liegt.
20. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektromagnetische Strahlung eine Wellenlänge im Bereich des Absorptionsspektrums des Koordinationskatalysators aufweist.
21. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektromagnetische Strahlung eine Wellenlänge im Bereich des Maximums des Absorptionsspektrums des Koordinationskatalysators aufweist.
22. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich der Koordinationskatalysator durch die Aktivierung mit elektromagnetischer Strahlung nicht zersetzt.
23. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Polymerisation ohne Bildung von freien Radikalen verläuft.
24. Copolymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei dem Polymerisationsverfahren Verunreinigungen anwesend sind.
25. Verfahren zur Herstellung von Copolymeren aus zumindest einem α- Olefinmonomeren und einem funktionellen Monomeren unter Verwendung eines Koordinationskatalysators, wobei der Katalysator und das Monomere mit elektromagnetischer Strahlung bestrahlt werden.
26. Verwendung der Copolymeren nach einem der Ansprüche 1 bis 24 als Compatibilizer für Polymermischungen.
27. Vorrichtung für ein Polymerisationsverfahren, die Einrichtungen zur Emittierung elektromagnetischer Strahlung umfaßt, wobei die Strahlung auf den Koordinationskatalysator und das Monomer gerichtet ist.
28. Vorrichtung nach Anspruch 27, dadurch gekennzeichnet, dass die Einrichtung zur Emittierung elektromagnetischer Strahlung innerhalb des Polymerisationsreaktors angeordnet ist.
29. Vorrichtung nach Anspruch 27, dadurch gekennzeichnet, dass die Einrichtung zur Emittierung elektromagnetischer Strahlung innerhalb der Zufuhrleitung zum Polymerisationsreaktor angeordnet. ist.
30. Vorrichtung nach Anspruch 27, dadurch gekennzeichnet, dass die Einrichtung zur Emittierung elektromagnetischer Strahlung außerhalb des Po- lymerisationsreaktors angeordnet ist und in der Wand des Polymerisationsreaktors ein Fenster vorgesehen ist, durch das die elektromagnetische Strahlung in den Reaktor gelangen kann.
31. Vorrichtung nach Anspruch 30, dadurch gekennzeichnet, dass das Fenster aus Glas oder Quarz ist.
32. Vorrichtung nach Anspruch 27, dadurch gekennzeichnet, dass die Einrichtung zur Emittierung elektromagnetischer Strahlung außerhalb der Zufuhrleitung zum Polymerisationsreaktor angeordnet ist und in der Zufuhrleitung ein Fenster vorgesehen ist, durch das die Strahlung in die Leitung gelangt.
33. Vorrichtung nach Anspruch 32, dadurch gekennzeichnet, dass das Fenster aus Glas oder Quarz ist.
34. Vorrichtung nach Anspruch 27, dadurch gekennzeichnet, dass die Einrichtung zur Emittierung elektromagnetischer Strahlung außerhalb des Polymerisationsreaktors angeordnet ist und die elektromagnetische Strahlung über einen optischen Leiter in den Reaktor gelangen kann.
35. Vorrichtung nach Anspruch 27, dadurch gekennzeichnet, dass die Einrichtung zur Emittierung elektromagnetischer Strahlung außerhalb der Zufuhrleitung zum Polymerisationsreaktor angeordnet ist und elektromagnetische Strahlung über einen optischen Leiter in die Leitung gelangen kann.
36. Vorrichtung nach einem der Ansprüche 27 bis 35, dadurch gekennzeichnet, dass die Einrichtung zur Emittierung von elektromagnetischer Strahlung Strahlung im Bereich zwischen infrarot und ultraviolett emittiert.
PCT/EP2002/005934 2001-06-01 2002-05-29 COPOLYMERE VON $G(a)-OLEFINEN UND FUNKTIONELLEN MONOMEREN, DEREN HERSTELLUNG UND DEREN VERWENDUNG WO2002098935A1 (de)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
DE10126829A DE10126829A1 (de) 2001-06-01 2001-06-01 Polymerisationsverfahren und Vorrichtung zur Durchführung eines Polymerisationsverfahrens
DE10126829.7 2001-06-01
DE10136684.1 2001-07-27
DE10136684A DE10136684A1 (de) 2001-07-27 2001-07-27 Verfahren zur Reaktivierung von inaktivierten Koordinationskatalysatoren und Vorrichtung zur Durchführung des Verfahrens
DE10136683.3 2001-07-27
DE10136687.6 2001-07-27
DE10136687 2001-07-27
DE10136683A DE10136683A1 (de) 2001-07-27 2001-07-27 Polymerisationsverfahren und Vorrichtung zur Durchführung eines Polymerisationsverfahrens
DE10200740A DE10200740A1 (de) 2002-01-11 2002-01-11 Copolymere von alpha-Olefinen und funktionellen Monomeren, deren Herstellung und deren Verwendung
DE10200740.3 2002-01-11

Publications (1)

Publication Number Publication Date
WO2002098935A1 true WO2002098935A1 (de) 2002-12-12

Family

ID=27512419

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/EP2002/005934 WO2002098935A1 (de) 2001-06-01 2002-05-29 COPOLYMERE VON $G(a)-OLEFINEN UND FUNKTIONELLEN MONOMEREN, DEREN HERSTELLUNG UND DEREN VERWENDUNG
PCT/EP2002/005933 WO2002098934A1 (de) 2001-06-01 2002-05-29 Verfahren zur reaktivierung von inaktivierten koordinationskatalysatoren und vorrichtung zur durchführung des verfahrens
PCT/EP2002/005932 WO2003011919A2 (de) 2001-06-01 2002-05-29 Polymerisationsverfahren und vorrichtung zur durchführung eines polymerisationsverfahrens

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/EP2002/005933 WO2002098934A1 (de) 2001-06-01 2002-05-29 Verfahren zur reaktivierung von inaktivierten koordinationskatalysatoren und vorrichtung zur durchführung des verfahrens
PCT/EP2002/005932 WO2003011919A2 (de) 2001-06-01 2002-05-29 Polymerisationsverfahren und vorrichtung zur durchführung eines polymerisationsverfahrens

Country Status (4)

Country Link
US (1) US7291655B2 (de)
EP (1) EP1401895A2 (de)
AU (1) AU2002344994A1 (de)
WO (3) WO2002098935A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11028192B2 (en) 2017-03-27 2021-06-08 Exxonmobil Chemical Patents Inc. Solution process to make ethylene copolymers
EP4234591A3 (de) * 2018-09-17 2023-09-27 Chevron Phillips Chemical Company LP Lichtbehandlung von chromkatalysatoren sowie zugehörige katalysatorherstellungssysteme und polymerisationsverfahren

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069124A (en) * 1971-07-29 1978-01-17 Ceskoslovenska Akademie Ved Method for controlled radiation polymerization of olefinic monomers
JPH036112A (ja) * 1989-05-16 1991-01-11 Burr Brown Corp 集積回路高周波入力減衰器回路
JPH06306112A (ja) * 1993-04-23 1994-11-01 Mitsubishi Kasei Corp エチレン−極性モノマーブロック共重合体の製造方法
US5461123A (en) * 1994-07-14 1995-10-24 Union Carbide Chemicals & Plastics Technology Corporation Gas phase fluidized bed polyolefin polymerization process using sound waves
WO1996035726A1 (en) * 1995-05-12 1996-11-14 Quantum Chemical Corporation Polymer supported catalyst for olefin polymerization
US6043294A (en) * 1998-01-29 2000-03-28 Gate Technologies International, Inc. Method of and apparatus for optically enhancing chemical reactions
US6194821B1 (en) * 1997-02-12 2001-02-27 Quark Systems Co., Ltd. Decomposition apparatus of organic compound, decomposition method thereof, excimer UV lamp and excimer emission apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3264275A (en) * 1961-06-27 1966-08-02 Du Pont Elastomeric interpolymers comprising ethylene and acrylonitrile
DE3901902A1 (de) * 1989-01-24 1990-07-26 Bayer Ag Verfahren zur polymerisation von ethylen und acrylnitril mit hilfe von laserstrahlen
US5652280A (en) * 1991-11-12 1997-07-29 University Of Georgia Research Foundation, Inc. Anionic photoinitiation
US5922783A (en) * 1997-02-27 1999-07-13 Loctite Corporation Radiation-curable, cyanoacrylate-containing compositions
DE19940921A1 (de) * 1999-08-27 2001-03-01 Agfa Gevaert Ag Photopolymerisierbares Gemisch und damit hergestelltes Aufzeichnungsmaterial

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069124A (en) * 1971-07-29 1978-01-17 Ceskoslovenska Akademie Ved Method for controlled radiation polymerization of olefinic monomers
JPH036112A (ja) * 1989-05-16 1991-01-11 Burr Brown Corp 集積回路高周波入力減衰器回路
JPH06306112A (ja) * 1993-04-23 1994-11-01 Mitsubishi Kasei Corp エチレン−極性モノマーブロック共重合体の製造方法
US5461123A (en) * 1994-07-14 1995-10-24 Union Carbide Chemicals & Plastics Technology Corporation Gas phase fluidized bed polyolefin polymerization process using sound waves
WO1996035726A1 (en) * 1995-05-12 1996-11-14 Quantum Chemical Corporation Polymer supported catalyst for olefin polymerization
US6194821B1 (en) * 1997-02-12 2001-02-27 Quark Systems Co., Ltd. Decomposition apparatus of organic compound, decomposition method thereof, excimer UV lamp and excimer emission apparatus
US6043294A (en) * 1998-01-29 2000-03-28 Gate Technologies International, Inc. Method of and apparatus for optically enhancing chemical reactions

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199503, Derwent World Patents Index; *
HAKALA K ET AL: "SYNTHESIS OF NITROGEN-FUNCTIONALIZED POLYOLEFINS WITH METALLOCENE/METHYLALUMINOXANE CATALYSTS", POLYMER BULLETIN, SPRINGER VERLAG. HEIDELBERG, DE, vol. 46, no. 2/3, 1 April 2001 (2001-04-01), pages 123 - 130, XP001017502, ISSN: 0170-0839 *
PATENT ABSTRACTS OF JAPAN 31 March 1995 (1995-03-31) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 02 31 March 1995 (1995-03-31) *

Also Published As

Publication number Publication date
EP1401895A2 (de) 2004-03-31
US7291655B2 (en) 2007-11-06
WO2003011919A2 (de) 2003-02-13
AU2002344994A1 (en) 2003-02-17
WO2002098934A1 (de) 2002-12-12
WO2003011919A3 (de) 2003-04-17
US20040192866A1 (en) 2004-09-30

Similar Documents

Publication Publication Date Title
DE69033368T3 (de) Ionische Metallocenkatalysatoren auf Träger für Olefinpolymerisation
EP1290039B1 (de) Katalysatorsystem zur olefinpolymerisation mit einem calcinierten hydrotalcit als trägermaterial
DE69116157T3 (de) Trägerkatalysator für olefinpolymerisation mit monozyklopentadienylkomplexen von übergangsmetallen
DE68902039T2 (de) Verfahren zur anwendung von triethylaluminium beim herstellen von alumoxan auf traeger fuer aktive metallocenkatalysatoren.
DE68902040T2 (de) Verfahren zur herstellung eines polyethylenwachses durch gasphasenpolymerisation.
DE69015369T2 (de) Olefinpolymerisationskatalysator aus einer trialkylaluminiummischung, kieselsäuregel und metallocen.
DE68927765T2 (de) Verfahren zur Anwendung von Triethylaluminium beim Herstellen eines Alumoxans auf einem Träger für einen aktiven Metallocen-Katalysator
DE69831410T2 (de) Mehrstufiges polymerisationsverfahren unter verwendung eines katalysators mit mehreren katalytisch aktiven stellen
DE69421411T2 (de) Polymerisationskatalysatorsysteme, ihre herstellung und verwendung
DE69333114T2 (de) Indenylverbindungen und katalysatorbestandteile fur olefinpolymerisation
DE69307472T2 (de) Verfahren zur Herstellung von Alpha-Olefinpolymeren
DE69425485T3 (de) Trägerkatalysator zur olefinpolymerisation, seine herstellung und verwendung
EP0824113B2 (de) Geträgertes Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
DE3889353T2 (de) Fein verteiltes Aluminoxan, Verfahren zu seiner Herstellung und seine Verwendung.
DE69829644T2 (de) Katalysatorzusammensetzung für die olefinpolymerisation mit erhöhter aktivität
DE3872997T2 (de) Verfahren zur herstellung eines aktiven metallocen-alumoxan-katalysators "in situ" waehrend der polymerisation.
WO2008006636A1 (de) Verfahren zur herstellung von polymeren aus 3-methylbut-1-en
DE60011453T2 (de) Katalysatorzusammensetzungen für die polymerisation von olefinen zu polymeren mit multimodaler molekulargewichtsverteilung, verfahren zur herstellung und verwendung des katalysators
DE60205368T2 (de) Aktivierung von "single site" polymerisationskatalysatoren durch (dialkylalumino)broronsäureester
DE69630780T2 (de) Verfahren für syndiotaktische Olefinausbreitung
DE102005035477A1 (de) Verfahren zur Steuerung der relativen Aktivität der unterschiedlichen aktiven Zentren von Hybridkatalysatoren
DE69820504T2 (de) Selektive Wirkung von Metallocen-Katalysatoren für die Herstellung von isotaktischen Polyolefinen
DE60219660T2 (de) Feste cokatalysatorkomponente für die olefinpolymerisation und katalysatorsystem davon
DE602004006223T2 (de) Katalysatorzusammensetzung für die Polymerisation von Olefinen und Polymerisationsverfahren unter dessen Verwendung
EP1086146A1 (de) Katalysatorsystem

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP