WO2002098934A1 - Verfahren zur reaktivierung von inaktivierten koordinationskatalysatoren und vorrichtung zur durchführung des verfahrens - Google Patents

Verfahren zur reaktivierung von inaktivierten koordinationskatalysatoren und vorrichtung zur durchführung des verfahrens Download PDF

Info

Publication number
WO2002098934A1
WO2002098934A1 PCT/EP2002/005933 EP0205933W WO02098934A1 WO 2002098934 A1 WO2002098934 A1 WO 2002098934A1 EP 0205933 W EP0205933 W EP 0205933W WO 02098934 A1 WO02098934 A1 WO 02098934A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
electromagnetic radiation
coordination
catalysts
coordination catalysts
Prior art date
Application number
PCT/EP2002/005933
Other languages
English (en)
French (fr)
Inventor
Karl-Heinz Reichert
Annette Wittebrock
Kalle Kallio
Eric Van Praet
Original Assignee
Borealis Technology Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10126829A external-priority patent/DE10126829A1/de
Priority claimed from DE10136684A external-priority patent/DE10136684A1/de
Priority claimed from DE10136683A external-priority patent/DE10136683A1/de
Priority claimed from DE10200740A external-priority patent/DE10200740A1/de
Application filed by Borealis Technology Oy filed Critical Borealis Technology Oy
Publication of WO2002098934A1 publication Critical patent/WO2002098934A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/128Infrared light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4084Regeneration or reactivation of catalysts containing metals involving electromagnetic wave energy, e.g. UV or visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0886Gas-solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/12Olefin polymerisation or copolymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/49Hafnium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S522/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S522/911Specified treatment involving megarad or less
    • Y10S522/912Polymer derived from ethylenic monomers only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S522/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S522/915Synthetic resins or natural rubbers -- part of the class 520 series involving inert gas, steam, nitrogen gas, or carbon dioxide

Definitions

  • the invention relates to a method for reactivating inactivated coordination catalysts and / or for preventing the inactivation of coordination catalysts, and an apparatus for carrying out the method.
  • Coordination catalysts such as metallocene catalysts, are successfully used today for the polymerization of a large number of monomers.
  • a disadvantage of the coordination catalysts is that they are easily affected by various components in the polymerization system. Impurities in the polymerization system can lead to partial or complete inactivation of the catalyst.
  • metallocene catalysts are extremely sensitive to polymerization poisons such as O 2 , CO 2 , CO, SO 2 , moisture and acetylene.
  • the reason for the poisoning could be the coordination reaction of these compounds to the strongly cationic centers of the metallocene. By coordinating with the active centers, these compounds could block the coordination of the monomer, for example ethylene, which is necessary for the polymerization.
  • the catalyst systems most sensitive to poisoning are those with non-coordinating anionic cocatalysts, such as metallocene boron catalyst systems, in which no cleaning effect by cocatalysts can occur.
  • scavangers it is known to use various chemical compounds, so-called “scavangers”, to remove impurities.
  • alkyl aluminum compounds such as triethyl aluminum, hexaisobutylalumoxane or triisobutylalumoxane.
  • Disadvantages of using scavangers are that they increase fouling in the polymerization reactor and can also lead to polymerization products with deteriorated properties.
  • the object of the invention is to find an improved method to prevent the inactivation of coordination catalysts or to achieve the reactivation of inactivated coordination catalysts.
  • the invention is based on the knowledge that this object can be achieved by exposing the coordination catalysts to electromagnetic radiation.
  • the invention relates to a method for preventing the inactivation of coordination catalysts and / or for the reactivation of inactivated coordination catalysts, which is characterized in that the coordination catalysts and monomers are irradiated with electromagnetic radiation.
  • the invention further relates to a device for carrying out a method for preventing the inactivation of coordination catalysts and / or for reactivating inactivated coordination catalysts, which is characterized in that it comprises devices for Emitting electromagnetic radiation comprises, wherein the radiation is directed to the coordination catalysts and the monomers.
  • Inactivation is caused by impurities. Said impurities are described in more detail below.
  • Inactivation here means a partial or complete loss of activity of the coordination catalysts and reactivation means a partial or complete restoration of the activity.
  • Coordination polymerization is a polymerization in which the polymerization is initiated by catalysts such as Ziegler-Natta catalysts or metallocene catalysts, the newly emerging monomers being embedded between growing polymer chains and transition metal of the catalyst complex.
  • catalysts such as Ziegler-Natta catalysts or metallocene catalysts
  • Ionic polymerization is also under subsumed the term coordination polymerization.
  • Coordination catalysts are understood to mean all catalysts that can be used in a coordination polymerization, in particular transition metal compounds or transition metal compounds, such as Ziegler-Natta catalysts, metallocenes, so-called late transition metal catalysts and also chromium catalysts, nickel catalysts, vanadium catalysts and Phillips catalysts.
  • Suitable Ziegler-Natta catalysts are, for example, those which contain a compound of a transition element from groups 4 to 6 of the Periodic Table of the Elements (Hubbard, IUPAC 1970) as a procatalyst and a compound of a metal from groups 1 to 3 of the Periodic Table of the Elements as cocatalyst , They are preferably applied to a carrier, such as silicon dioxide. They can also contain other additives, such as electron donors. Ziegler-Natta catalysts are described, for example, in EP-A-0 261 130, the disclosure of which is expressly incorporated by reference.
  • the organic transition metal compounds of the formula I represent a subgroup of the transition metal compounds:
  • M is a transition metal from group 3 to 10, for example 3 to 7, such as 4 to 6, and each X is independently a monovalent anionic ligand, such as a ⁇ ligand, each L is independently an organic ligand that coordinated to M, R is a bridging group connecting two ligands L, m is 1, 2 or 3, n is 0 or 1, q is 1, 2 or 3, and m + q is equal to the valence of the metal.
  • ⁇ ligand is understood to mean a group which is bonded to the metal at one or more points via a sigma bond.
  • said organic transition metal compounds I are a group of compounds known as metallocenes.
  • Said metallocenes carry at least one organic ligand, generally 1, 2 or 3, for example 1 or 2, which is ⁇ -bonded to the metal, for example an ⁇ 2 "6 ligand, such as an ⁇ 5 ligand.
  • the metallocene contains a transition metal from groups 4 to 6, and is suitably a titanocene, zirconocene or hafnocene, which contains at least one ⁇ ligand, for example an optionally substituted cyclopentadienyl, an optionally substituted indenyl, an optionally substituted tetrahydroindenyl or an optionally substituted fluorenyl is.
  • a titanocene, zirconocene or hafnocene which contains at least one ⁇ ligand, for example an optionally substituted cyclopentadienyl, an optionally substituted indenyl, an optionally substituted tetrahydroindenyl or an optionally substituted fluorenyl is.
  • the metallocene compound can have the following formula II:
  • each Cp is independently an unsubstituted or substituted and / or fused homo- or heterocyclopentadienyl ligand, for example a substituted or unsubstituted cyclopentadienyl, substituted or unsubstituted indenyl or substituted or unsubstituted fluorenyl ligand; the optional one or more substituent (s) are preferably from halogen, hydrocarbon radical (for example C1-C20-alkyl, C2-C20-alkenyl, C2-C20-alkynyl, C3-C12-cycloalkyl, C6-C20-aryl or C7 ⁇ C20-arylakyl), C3-C12-cycloalkyl which contains 1, 2, 3 or 4 heteroatoms in the ring component, C6-C20-heteroaryl, C1-C20-haloalkyl, -SiR " 3 , -OSiR" 3 , -SR ",
  • M is a Group 4 to 6 transition metal, such as Group 4, e.g. Ti, Zr or Hf,
  • each X is independently a sigma ligand such as H, halogen, C1-C20-alkyl, Cl-C20-alkoxy, C2-C20-alkenyl, C2-C20-alkynyl, C3-C12-cycloalkyl, C6-C20-aryl , C6-C20-aryloxy, C7-C20-arylalkyl, C7-C20-arylalkenyl, -SR ", -PR" 2 , -SiR " 3 , -OSiR” 3 , or -NR " 2 , each R" as above X is defined, and is preferably independently hydrogen or a hydrocarbon radical, for example C1-C20-alkyl, C2-C20-alkenyl, C2-C20-alkynyl, C3-C12-cycloalkyl or C6-C20-aryl; or, for example in the case of - NR " 2 , the two substituents
  • each of the above rings alone or as part of a radical as a substituent for Cp, X, R "or R 1 can further be substituted, for example, with C1-C20-alkyl which contains Si and / or O atoms; n is 0, 1 or 2, preferably 0 or 1,
  • n 1, 2 or 3, e.g. 1 or 2,
  • q is 1, 2 or 3, e.g. 2 or 3,
  • Metallocenes are described in detail in EP 0 260 130, the disclosure of which is expressly incorporated by reference. Further literature to which reference is made regarding the metallocenes is as follows: WO 97/28170, WO 98/46616, WO 98/49208, WO 99/12981, WO 99/19335, WO 98/56831, WO 00/34341, EP-A-0 423 101 and EP-A-0 537 130 and "Metallocenes", vol. 1, Togni and Garrman (Eds.), Wiley-VCH 1998, and V.C. Gibson et al., In Angew. Chem. Int. Ed., Engl, vol. 38, 1999, pages 428-447, EP 576 970, EP 485 823, EP 785 821, EP 702 303.
  • the metal in a further subgroup of the metallocene compounds, carries a Cp group as defined above and additionally an ⁇ 1 or ⁇ ligand, in which said ligands may or may not be bridged to one another.
  • This subgroup includes so-called "scorpionate compounds" (with forced geometry) in which the metal is complexed by an ⁇ 5 ligand, which is bridged with an ⁇ 1 or ⁇ 2 ligand, preferably with an ⁇ 'ligand (e.g.
  • ⁇ -bonded for example a metal complex of a Cp group as defined above, for example a cyclopentadienyl group which, via a bridge member, bears an acyclic or cyclic group which contains at least one heteroatom, for example -NR " 2 as defined above.
  • a metal complex of a Cp group as defined above for example a cyclopentadienyl group which, via a bridge member, bears an acyclic or cyclic group which contains at least one heteroatom, for example -NR " 2 as defined above.
  • non-metallocenes are known as "non-metallocenes” (non-metallocenes), in which the transition metal (preferably a transition metal of groups 4 to 6, suitably Ti, Zr or Hf) has a different coordination ligand than the ⁇ 5 ligand (ie a different one than a cyclopentadienyl ligand).
  • the transition metal preferably a transition metal of groups 4 to 6, suitably Ti, Zr or Hf
  • the transition metal preferably a transition metal of groups 4 to 6, suitably Ti, Zr or Hf
  • the transition metal preferably a transition metal of groups 4 to 6, suitably Ti, Zr or Hf
  • the transition metal preferably a transition metal of groups 4 to 6, suitably Ti, Zr or Hf
  • the transition metal preferably a transition metal of groups 4 to 6, suitably Ti, Zr or Hf
  • the transition metal preferably a transition metal of groups 4 to 6, suitably Ti, Zr or Hf
  • the transition metal has a different coordination lig
  • oxygen-based ligands such as group 4 metal complexes, which carry bidental cyclic or acyclic aliphatic or aromatic alkoxide ligands, for example optionally substituted, bridged bisphenolic ligands (see above-mentioned review article by Gibson et al.).
  • group 4 metal complexes which carry bidental cyclic or acyclic aliphatic or aromatic alkoxide ligands, for example optionally substituted, bridged bisphenolic ligands (see above-mentioned review article by Gibson et al.).
  • Other specific examples of non- ⁇ 5 ligands are amido, amide diphosphine, amidinate, aminopyridine, benzamidinate, triazacyclononane, allyl, hydrocarbon, beta-diketimate and alkoxide.
  • chromium catalysts such as chromium oxide on silicon dioxide, chromocenes and in particular the catalysts described in EP-A-0 480 276, EP-A-0 533 156, EP-A-0 533 160, EP-A-0 100 879 and US 4,011,382, the disclosure of which is expressly incorporated by reference; and nickel catalysts, in particular those described in WO99 / 62968, WO98 / 47933, WO98 / 40420, WO98 / 47933, WO00 / 06620 and WO96 / 23010, the disclosure of which is expressly incorporated by reference, and vanadium catalysts.
  • the coordination catalysts preferably comprise one or more cocatalysts, for example an organic aluminum compound such as trialky aluminum and / or alumoxane compounds. Boron coactivators are also particularly suitable. Both homogeneous and heterogeneous catalyst systems can be used.
  • the coordination catalyst component if appropriate together with the cocatalyst, is preferably applied to an inert support which can be inorganic or organic, such as, for example, silicon dioxide.
  • the porous, particulate support is usually impregnated with the catalyst system.
  • EP 678103 and PCT / GBO 1/01280 are examples of the coordination catalyst component.
  • Particularly suitable monomers are olefins. Any olefin that can be polymerized by coordination polymerization is suitable.
  • Preferred olefins are ethylene and propylene and mixtures of ethylene and propylene with one or more ⁇ -olefins.
  • Suitable co-monomers are C 2- ⁇ 2 olefins, preferably C 4 . 10 olefins, such as 1-butene, isobutene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonen, 1-decene, and dienes such as butadiene, 1.7 -Octadiene and 1,4-hexadiene or cyclic olefms such as norbornene, and mixtures thereof.
  • the amount of comonomer is generally from 0.01 to 50% by weight, preferably from 0.1 to 10% by weight and in particular from 0.3 to 3% by weight.
  • the coordination catalysts are also suitable for the polymerization of long-chain ⁇ -olefins having 4 to 40 carbon atoms, which can be polymerized either alone or in combination, even with short-chain ⁇ -olefins.
  • Suitable examples are: 1-butenes, 1-pentene, 1-hexenes, 1-heptene, 1-octene, 1-nonen, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1 - Pentadecene, 1-hexadecene, 1-heptodecene, 1-octodecene, 1-nonadecene, 1-eicosen, etc. to tetradecene.
  • Alpha-olefins having 4 to 16 carbon atoms are preferred.
  • Other suitable monomers are isomers of ⁇ -olefins with branched alkyl groups, such as 4-methyl-1-pen
  • Suitable monomers are vinyl monomers such as alkyl and aryl vinyl monomers, e.g. Styrene, vinyl ether, vinyl ester, acrylic acid and its esters, methacrylic acid and its esters, acrylamides, acrylonitriles, vinyl amines, and the like.
  • vinyl monomers such as alkyl and aryl vinyl monomers, e.g. Styrene, vinyl ether, vinyl ester, acrylic acid and its esters, methacrylic acid and its esters, acrylamides, acrylonitriles, vinyl amines, and the like.
  • the coordination polymerization can be carried out in one or more polymerization reactors.
  • Conventional polymerization Techniques are applicable, such as gas phase polymerization, solution polymerization, slurry polymerization, bulk polymerization, emulsion polymerization and precipitation polymerization. Different polymerization processes can be combined. The combination of a slurry polymerization followed by a gas phase polymerization is particularly suitable.
  • the polymerization processes can be carried out continuously or batchwise.
  • the process according to the invention is also particularly suitable for prepolymerization, i.e. a prepolymerization followed by the actual polymerization.
  • the disadvantageous effect due to the impurities is eliminated by irradiation during the actual polymerization.
  • the irradiation can take place during one or more of the aforementioned stages of the coordination polymerization process.
  • the coordination catalyst comprises a metallocene as the coordination catalyst component, alumoxane as the cocatalyst and optionally silicon dioxide as the carrier.
  • the inactivating effect of the optional silica support on the metallocene and cocatalyst can be eliminated if the system is irradiated with electromagnetic radiation during the activation step or the heterogenization step.
  • silica reduces the activity of a coordination catalyst, such as a metallocene, due to the hydroxy functionality on the surface of the silica particles. This is described, for example, in Gregory G. Hlatky "Heterogenous single-site catalysts for olefin polymerization" Chem. Rev. 2000, 100; 1347 to 1376, 1370.
  • the coordination catalysts are also suitable for oligomerization. This means that the oligomerization is subsumed under the term "polymerization".
  • the polymerization process is carried out in the presence of electromagnetic radiation. Electromagnetic radiation is an additional radiation to natural radiation or artificial room lighting.
  • the increase in the activity of the catalyst system or the increase in the productivity of the polymerization process depends on the intensity of the radiation. The higher the intensity, the higher the activity.
  • Irradiation can take place continuously, but also at intervals or pulsating or only for a short period at the start of the polymerization. Even activation with radiation prior to polymerization, e.g. in the feed line to the actual polymerization reactor is possible.
  • the wavelength can be in any wavelength range of the electromagnetic spectrum, which ranges from gamma radiation to radio waves. Waves in the area between X-rays and microwaves are particularly suitable, the area between UV and infrared being preferred and short-wave visible light and UV light being particularly suitable.
  • the radiation can be in the range between 10 " and 10 4 m.
  • radiation between 10 " 8 and 10 “2 m, in particular 10 " 8 and 10 "6 m and especially radiation in the range between 100 and 10 m is preferred 800 nm.
  • the radiation can have a uniform wavelength or consist of radiation with different wavelengths.
  • the electromagnetic radiation of a wavelength that is in the range of the light absorption of the coordination catalyst is used. Radiation of a wavelength in the range of the maximum absorption of the coordination catalyst is preferred.
  • the electromagnetic radiation is able to reactivate the active centers of the coordination catalyst, which are blocked with electron-rich compounds, such as 0 2 , and the co- favor ordination of olefinic double bonds to the active ionic center.
  • the radiation source is arranged in the interior of the polymerization reactor, optionally also in the feed line to the reactor.
  • the radiation source can be arranged outside the reactor. This is then provided with a window that is transparent to the respective radiation. A window can be omitted if the radiation can penetrate through the wall of the reactor.
  • Said window preferably consists of glass or quartz, since quartz in particular is radiolucent in the UV range.
  • a device for emitting electromagnetic radiation to be arranged outside the polymerization reactor or the feed line to the polymerization reactor and for the electromagnetic radiation to be able to reach the reactor via an optical conductor.
  • the amount of radiation depends on the size of the reactor system.
  • the radiation can be introduced at one or more points in the loop system. Radiation can also be applied to the gas phase reactor. Alternatively, the feed lines to the reactors, optionally in addition to the reactors, can be irradiated.
  • a suitable polymerization system is, for example, the following.
  • the first reactor is a slurry reactor. This works at a temperature in the range of 60 to 110 ° C.
  • the reactor pressure is in the range from 0.1 to 100 bar, preferably 5 to 80 bar and in particular 50 to 65 bar.
  • the residence time is 0.1 to 5 hours, preferably 0.3 to 5 hours and in particular 0.5 to 2 hours.
  • An aliphatic hydrocarbon is generally used as the diluent.
  • the polymerization can be performed under supercritical conditions.
  • One or more gas phase reactors are subsequently connected.
  • the reaction temperature is generally 60 to 115 ° C, preferably 70 to 110 ° C.
  • the reactor pressure is 10 to 25 bar and the residence time is 1 to 8 hours.
  • the gas used is generally a non-reactive gas such as nitrogen.
  • the reactor system described for example is particularly suitable for the polymerization of ethylene and propylene, or the copolymerization of ethylene and propylene with ⁇ -olefins.
  • Suitable devices for initiating the electromagnetic radiation are, for example, fluorescent lamps, incandescent lamps and halogen lamps.
  • the amount of radiation in the UV or visible range should be at least one watt per 100 ml reaction volume.
  • Impurities or catalyst poisons are understood here to mean any chemical compounds which could reduce the activity of the coordination catalyst in a polymerization process or could completely inactivate it.
  • These include a wide variety of compounds which have an electron-donating group, such as oxides, for example O 2 , CO 2 , CO, SO 2 , amides, sulfides and mercaptans, H 2 S, carboxylic acids and their derivatives, ether ketones, such as methyl ethyl ketone, Support materials with functional groups, such as OH or epoxy groups, for example silicon dioxide, acethylene, and moisture.
  • the catalyst was prepared by dissolving 11 mg of n-Bu-C ⁇ 2 ZrCl 2 (Witco GmbH, Germany) with MAO / toluene containing 1.15 ml of 30% by weight MAO (30% by weight MAO in toluene, from Albemarle) and 0.35 ml of moisture and oxygen-free toluene.
  • the metallocene / MAO / toluene solution was placed on a silicon dioxide carrier (SYLOPOL 55 SJ; Grace-Davison, calcined at 600 ° C with a pore volume of 1.5 to 1.7 ml / g, surface 350 m 2 / g) in such a way that the volume of the complex solution the pore volume of the silicon dioxide (1.5 ml / g) did not exceed.
  • the mixture was then dried and the drying was completed by passing moisture-free and oxygen-free nitrogen through the catalyst at room temperature.
  • the polymerization was carried out in a mini reactor (volume about 40 ml), which had a glass window.
  • the polymerization can be followed by measuring the pressure drop.
  • the measuring range was between 0 and 6000 mbar.
  • the accuracy of the pressure measurement was less than ⁇ 1 mbar.
  • the pressure was controlled by a magnetic control valve, the highest point being 5010 mbar (closed valve and beginning of the pressure drop measurement), and the lowest point was 4980 mbar (valve open and reactor filled with ethylene).
  • the polymerization activity with different amounts of oxygen was examined. An experiment was carried out without oxygen poisoning.
  • the reaction conditions were: temperature: 80 ° C., ethylene partial pressure 4.5 bar and amount of catalyst 7 mg.
  • FIG. 1 The results are shown in FIG. 1.
  • the curve labeled "1" shows the activity without the addition of oxygen.
  • the polymerization activity was examined with different amounts of oxygen. Some were exposed to visible light and the results were compared to the polymerization in the dark equalized.
  • the reaction conditions were: temperature: 80 ° C, ethylene partial pressure 4.5 bar, amount of catalyst 7 mg.
  • Curve 1 in FIG. 2 shows the polymerization activity in the case of poisoning with 3.4 ⁇ l of air and without irradiation.
  • Curve 2 shows the same poisoning with 3.4 ⁇ l of air at the start of the irradiation after 10 min.
  • Curve 3 shows the polymerization activity in the case of poisoning with 15 ⁇ l of air.
  • curve 4 shows the same poisoning with 15 ⁇ l of air and radiation after 10 min.
  • Example 6 Comparison of the polymerization with light from a halogen lamp and with light from a mercury lamp
  • the polymerization was carried out in a 20 ml mini reactor, with catalyst prepared according to Example 1 in the amounts given in Table 1 being introduced into the reactor.
  • the reactor was closed and connected to the ethylene source.
  • the ethylene partial pressure was set at 4.5 bar.
  • the polymerization temperature was 80 ° C and the polymerization time was 60 min.
  • the ethylene consumption was followed by the pressure drop, namely in the range between 4980 and 5010 mbar.
  • the reactor provided with a glass window, was irradiated with a cold light source FLEXILUX 600 longlife with Phillips 14501 DDL, 20V / 150W halogen lamps. The highest light intensity was used. After a reaction time of 60 minutes, the polymerization was stopped by closing the ethylene feed and the ethylene pressure was released.
  • the halogen lamp had a very broad spectrum of the emitted visible light with wavelengths from 350 to 750 nm.
  • Three light filters were used which transmit light of three different wavelengths. The blue filter transmitted wavelengths between 300 and 480 nm, the green / yellow filter transmitted wavelengths above 400 nm and the red filter transmitted wavelengths above 600 nm.
  • the filtered light has only a fraction of the total intensity of the light source. This must be taken into account when comparing the results.
  • Table 1 below shows the influence of the longitudinal wave of light on the polymerization activity.
  • the activity of the catalyst was highest when the filter transmitted light with a wavelength of 300 to 450 nm.
  • the activity decreased when the irradiation was carried out at a higher wavelength.
  • FIG. 1 shows the comparison of the absorption spectrum of the metallocene complex (gray area) in comparison with the emission ranges of the three filters.
  • Example 7 Polymerization with a Ziegler-Natta catalyst
  • the polymerization was carried out in a 51 reactor, which was heated, evacuated and flushed with nitrogen before it was put into use.
  • 213 ⁇ l TEA triethylaluminium, from Witco, used without further purification / treatment
  • 36 ⁇ l donor D dicyclopentyldimetoxysilane from Wacker, dried over molecular sieve
  • 30 ml pentane dried over molecular sieve and gassed with nitrogen
  • the ZN catalyst was produced according to test example 3 in EP 591224 (Borealis) and had a Ti content of 2.1 percent by weight. After approximately 10 minutes, the ZN catalyst / TEA / donor D / pentane mixture was fed to the reactor. The Al / Ti molar ratio was 250 and the Al / Do molar ratio was 10. 100 mmol of hydrogen and 1400 g of propylene were added to the reactor. The lamp was turned on. The lamp was a halogen lamp, 50 watts, 12 volts. The temperature was raised from room temperature to 80 ° C over 19 minutes. After 30 minutes at 80 ° C en the reaction was stopped by letting out unreacted propylene.
  • the polymer was analyzed and the results are shown in Table 3.
  • the activity was 22.6 kg propylene per gram of catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Verfahren zur Verhinderung der Inaktivierung von Koordinationskatalysatoren und/oder zur Reaktivierung von inaktivierten Koordinationskatalysatoren durch Bestrahlen mit elektromagnetischer Strahlung.

Description

Verfahren zur Reaktivierung von inaktivierten
Koordinationskatalysatoren und Vorrichtung zur Durchführung des Verfahrens
Die Erfindung bezieht sich auf ein Verfahren zur Reaktivierung von inaktivierten Koordinationskatalysatoren und/oder zur Verhinderung der Inaktivierung von Koordinationskatalysatoren, sowie eine Vorrichtung zur Durchführung des Verfahrens.
Koordinationskatalysatoren, wie Metallocen-Katalysatoren, werden heute zur Polymerisation einer Vielzahl von Monomeren erfolgreich eingesetzt.
Ein Nachteil der Koordinationskatalysatoren liegt jedoch darin, dass diese leicht von verschiedenen Komponenten im Polymerisationssystem in Mitleidenschaft gezogen werden. Verunreinigungen im Polymerisationssystem können zu einer teilweisen oder vollständigen Inaktivierung des Katalysators führen.
Es ist bekannt, dass Metallocen-Katalysatoren außerordentlich empfindlich gegenüber Polymerisationsgiften, wie O2, CO2, CO, SO2, Feuchtigkeit und Acetylen sind. Der Grund für die Vergiftung könnte in der Koordinationsreaktion dieser Verbindungen zu den stark kationischen Zentren des Me- tallocens liegen. Durch die Koordination zu den aktiven Zentren könnten diese Verbindungen die Koordination des Monomers, z.B. Ethylens, welche zur Polymerisation notwendig ist, blockieren. Die am meisten gegenüber Vergiftung sensiblen Katalysatorsysteme sind jene mit nicht- koordinierenden anionischen Cokatalysatoren, wie Metallocen- Borkatalysatorsysteme, bei denen kein Reinigungseffekt durch Cokatalysatoren auftreten kann.
Um die Reinheit der Rohmaterialien für die Polymerisation zu garantieren, müssen sämtliche Rohmaterialien einer aufwendigen Reinigung unterworfen werden. Dies trifft zu auf Monomere, Comonomere, Verdünnungsmittel und auch Stickstoff. Im Normalfall müssen alle diese Rohmaterialien je- weils Einrichtungen durchlaufen, mit denen Feuchtigkeit, Sauerstoff, C02, CO und Acetylen entfernt werden. Dieser Aufwand verursacht naturgemäß große Kosten. Ferner müssen die Reinigungsgeräte regelmäßig regeneriert werden.
Es ist bekannt, verschiedene chemische Verbindungen, sog. "scavangers" einzusetzen, um Verunreinigungen zu entfernen. Beispiele dafür sind Alky- laluminiumverbindungen, wie Triethylalummium, Hexaisobutylalumoxan oder Triisobutylalumoxan. Nachteile bei der Verwendung von scavangers liegen darin, dass sie das fouling im Polymerisationsreaktor erhöhen und auch zu Polymerisationsprodukten mit verschlechterten Eigenschaften führen können.
Aufgabe der Erfindung ist es, ein verbessertes Verfahren zu finden, um die Inaktivierung von Koordinationskatalysatoren zu verhindern bzw. die Reaktivierung von inaktivierten Koordinationskatalysatoren zu erreichen.
Der Erfindung liegt die Erkenntnis zugrunde, dass diese Aufgabe dadurch gelöst werden kann, dass die Koordinationskatalysatoren elektromagnetischer Strahlung ausgesetzt werden.
Es hat sich überraschenderweise gezeigt, dass durch Bestrahlen der Koordinationskatalysatoren mit elektromagnetischer Strahlung eine Inaktivierung derselben durch Katalysatorgifte verhindert werden kann. Auch wurde überraschenderweise gefunden, dass bereits inaktivierte Koordinationskatalysatoren durch Bestrahlen mit elektromagnetischer Strahlung in kurzer Zeit wieder reaktiviert werden können.
Gegenstand der Erfindung ist ein Verfahren zur Verhinderung der Inaktivierung von Koordinationskatalysatoren und/oder zur Reaktivierung von inaktivierten Koordinationskatalysatoren, das dadurch gekennzeichnet ist, dass die Koordinationskatalysatoren und Monomere mit elektromagnetischer Strahlung bestrahlt werden.
Gegenstand der Erfindung ist ferner eine Vorrichtung zur Durchführung eines Verfahrens zur Verhinderung der Inaktivierung von Koordinationskatalysatoren und/oder zur Reaktivierung von inaktivierten Koordinationskatalysatoren, das dadurch gekennzeichnet ist, dass sie Einrichtungen zur Emittierung elektromagnetischer Strahlung umfaßt, wobei die Strahlung auf die Koordinationskatalysatoren und die Monomere gerichtet ist.
Dabei wird eine Inaktivierung durch Verunreinigungen bedingt. Besagte Verunreinigungen werden weiter unten näher beschrieben.
Unter Inaktivierung wird hier ein teilweiser oder völliger Aktivitätsverlust der Koordinationskatalysatoren und unter Reaktivierung eine teilweise oder völlige Wiederherstellung der Aktivität verstanden.
Die Koordinationspolymerisation ist eine Polymerisation, bei der durch Katalysatoren, wie Ziegler-Natta Katalysatoren oder Metallocen- Katalysatoren, die Polymerisation initiiert wird, wobei die neu eintretenden Monomere zwischen wachsenden Polymerketten und Übergangsmetall des Katalysatorkomplexes eingelagert werden. Bezüglich der Definition von Koordinationspolymerisation wird ausdrücklich bezug genommen auf Römpp, Lexikon der Chemie, 10. Auflage, Seite 2246 und George Odian, "Principles of Polymerisation", 2nd Edition, John Wiley & Sons, U.S.A., 1981. Die ionische Polymerisation wird ebenfalls unter dem Begriff Koordinationspolymerisation subsumiert.
Als Koordinationskatalysatoren werden alle Katalysatoren verstanden, die in einer Koordinationspolymerisation eingesetzt werden können, insbesondere, Übergangsmetallverbindungen bzw. transition metal compounds, wie Ziegler-Natta Katalysatoren, Metallocene, sogenannte late transition metal Katalysatoren sowie Chromkatalysatoren, Nickelkatalysatoren, Vanadiumkatalysatoren und Phillipskatalysatoren.
Geeignete Ziegler-Natta Katalysatoren sind beispielsweise solche, die eine Verbindung eines Übergangselementes der Gruppen 4 bis 6 des Periodischen Systems der Elemente (Hubbard, IUPAC 1970) als Prokatalysator und eine Verbindung eines Metalls der Gruppen 1 bis 3 des Periodischen Systems der Elemente als Cokatalysator enthalten. Vorzugsweise sind sie auf einem Träger, wie Siliziumdioxid, aufgebracht. Sie können noch andere Zusätze, wie beispielsweise Elektronendonatoren enthalten. Ziegler-Natta Katalysatoren sind beispielsweise in EP-A-0 261 130 beschrieben, auf dessen Offenbarung ausdrücklich bezug genommen wird. Weitere Beispiele von Ziegler-Natta Katalysatoren sind beschrieben in EP-A-0 688 794, FI- A-974622, FI-A-86866, FI-A-96615, FI-A-88047 und FI-A-88048.
Eine Untergruppe der Übergangsmetallverbindungen stellen die Organo- übergansmetallverbindungen der Formel I dar:
(L)mRnMXq (I)
worin M ein Übergangsmetall der Gruppe 3 bis 10 ist, beispielsweise 3 bis 7, wie etwa 4 bis 6, und jedes X unabhängig ein monovalenter anionischer Ligand ist, wie etwa ein σ-Ligand, jedes L unabhängig ein organischer Li- gand ist, der an M koordiniert, R eine verbrückende Gruppe welche zwei Liganden L verbindet, m ist 1, 2 oder 3, n ist 0 oder 1, q ist 1, 2 oder 3, und m+q ist gleich der Valenz des Metalls.
Unter „σ-Ligand" versteht man eine Gruppe, die an einer oder mehreren Stellen via einer sigma-Bindung an das Metall gebunden ist.
Gemäß einer bevorzugten Ausführungsform sind besagte Organo- übergangsmetallverbindungen I eine Gruppe von Verbindungen, die als Metallocene bekannt sind. Besagte Metallocene tragen mindestens einen organischen Liganden, im allgemeinen 1, 2 oder 3, beispielsweise 1 oder 2, welcher zum Metall η-gebunden ist, beispielsweise ein η2"6-Ligand, wie etwa ein η5-Ligand. Vorzugsweise enthält das Metallocen ein Übergangsmetall aus den Gruppen 4 bis 6, und ist geeigneter Weise ein Titanocen, Zirkonocen oder Hafnocen, welches mindestens einen η -Liganden enthält, welcher zum Beispiel ein optional substituiertes Cyclopentadienyl, ein optional substituiertes Indenyl, ein optional substituiertes Tetrahydroindenyl oder ein optional substituiertes Fluorenyl ist.
Die Metallocenverbindung kann die folgende Formel II haben:
(Cp)mRnMXq (II)
jedes Cp ist unabhängig ein unsubstituierter oder substituierter und/oder kondensierter Homo- oder Heterocyclopentadienyl-Ligand, beispielsweise ein substituierter oder unsubstituierter Cyclopentadienyl-, substituierter oder unsubstituierter Indenyl- oder substituierter oder unsubstituierter Fluo- renyl-Ligand; der optionale eine oder mehrere Substituent/Substituenten werden vorzugsweise aus Halogen, Kohlenwasserstoffrest (z.B. C1-C20- Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C3-C12-Cycloalkyl, C6-C20- Aryl oder C7~C20-Arylakyl), C3-C12-Cycloalkyl welches 1, 2, 3 oder 4 Heteroatom(e) im Ringbestandteil enthält, C6-C20-Heteroaryl, C1-C20- Haloalkyl, -SiR"3, -OSiR"3, -SR", -PR"2 oder -NR"2, wobei jeder R" unabhängig ein Wasserstoff oder Kohlenwasserstoffrest, z.B. C1-C20- Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C3-C12-Cycloalkyl, C6-C20- Aryl; oder z.B. im Falle von -NR"2, können die zwei Substituenten R" einen Ring bilden, z.B. einen fünf- oder sechsgliedrigen Ring, zusammen mit dem Stickstoffatom, an welches sie gebunden sind; R ist eine Brücke von 1 bis 7 Atomen, z.B. eine Brücke von 1-4 C-Atomen und 0-4 Hetero- atomen, worin das/die Heteroatom(e) beispielsweise Si-, Ge- und/oder O- Atome sein kann/können, wobei jedes der Brückenatome unabhängig Substituenten tragen kann, wie etwa Cl-C20-Alkyl, tri(Cl-C20alkyl)silyl-, tri(Cl-C20alkyl)siloxy- oder C6-C20-Aryl-Substituenten; oder eine Brücke von 1-3, z.B. eines oder zwei, Heteroatom(e), wie etwa- Silizium, Germanium- und/oder Sauerstoffatom(e), z.B. -SiR1^ worin jeder R1 unabhängig ein Cl-C20-Alkyl-, C6-C20-Aryl- oder tri(Cl-C20-alkyl)silyl-Rest, wie etwa Trimethylsilyl sein kann;
M ist ein Übergangsmetall der Gruppe 4 bis 6, wie etwa Gruppe 4, z.B. Ti, Zr oder Hf,
jedes X ist unabhängig ein sigma-Ligand, wie etwa H, Halogen, C1-C20- alkyl, Cl-C20-alkoxy, C2-C20-alkenyl, C2-C20-alkinyl, C3-C12- cycloalkyl, C6-C20-aryl, C6-C20-aryloxy, C7-C20-arylalkyl, C7-C20- arylalkenyl, -SR", -PR"2, -SiR"3, -OSiR"3, oder -NR"2, wobei jeder R" wie obiges X definiert ist, und vorzugsweise unabhängig Wasserstoff oder ein Kohlenwasserstoffrest ist, z.B. Cl-C20-alkyl, C2-C20-alkenyl, C2-C20- alkinyl, C3-C12-cycloalkyl oder C6-C20-aryl; oder z.B. im Falle von - NR"2 können die zwei Substituenten R" einen Ring bilden, z.B. einen fünf- oder sechsgliedrigen Ring, zusammen mit den Stickstoffatom an welches sie gebunden sind;
und jeder der oben genannten Ringe alleine oder als ein Teil eines Restes als Substituent für Cp, X, R" oder R1 kann weiterhin z.B. mit C1-C20- alkyl substituiert sein, welches Si- und/oder O-Atome enthält; n ist 0, 1 oder 2, vorzugsweise 0 oder 1,
m ist 1, 2 oder 3, z.B. 1 oder 2,
q ist 1, 2 oder 3, z.B. 2 oder 3,
m+q ist gleich der Valenz von M.
Besagte Metallocene II and ihre Darstellung sind aus dem im Stand der Technik bekannt.
Metallocene sind ausführlich in EP 0 260 130 beschrieben, auf deren Offenbarung ausdrücklich bezug genommen wird. Weitere Literatur, auf die bezüglich der Metallocene bezug genommen wird, ist folgende: WO 97/28170, WO 98/46616, WO 98/49208, WO 99/12981, WO 99/19335, WO 98/56831, WO 00/34341, EP-A-0 423 101 und EP-A-0 537 130 sowie "Me- tallocenes", vol. 1, Togni and Halterman (Eds.), Wiley-VCH 1998, und V.C. Gibson et al., in Angew. Chem. Int. Ed., engl, vol. 38, 1999, Seiten 428 - 447, EP 576 970, EP 485 823, EP 785 821, EP 702 303.
Alternativ trägt in einer weiteren Untergruppe der Metallocenverbindungen das Metall eine Cp-Gruppe wie oben definiert und zusätzlich einen η1- oder η -Liganden, worin besagte Liganden miteinander verbrückt sein können oder nicht. Diese Untergruppe schließt sogenannte „scorpionate Verbindungen" (mit erzwungener Geometrie) in welcher das Metall durch einen η5-Liganden komplexiert ist, welcher mit einem η1- oder η2-Liganden verbrückt ist, vorzugsweise mit einem η '-Liganden (z.B. ein σ- gebundener), z.B. ein Metallkomplex einer Cp-Gruppe wie oben definiert, z.B. eine Cyclopentadienylgruppe, die via eines Brückengliedes eine acyc- lische oder cyclische Gruppe trägt, die mindestens ein Heteroatom enthält, z.B. -NR"2 wie oben definiert. Solche Verbindungen sind beispielsweise in WO-A-9613529 beschrieben, auf dessen Inhalt hier Bezug genommen wird.
Eine weitere Untergruppe der Organoübergansmetallverbindungen der Formel I, die in der vorliegenden Erfindung verwendet werden können, ist als „Nicht-Metallocene" (Non-Metallocenes) bekannt, worin das Übergangsmetall (vorzugsweise ein Übergangsmetall der Gruppen 4 bis 6, ge- eigneter Weise Ti, Zr oder Hf) einen anderen Koordinationsliganden als den η5-Liganden hat (d.h. einen anderen als einen Cyclopentadienyl- Liganden). Als Beispiele für solche Verbindungen, d.h. Übergansmetall- komplexe mit Stickstoff-basierten, cyclischen oder acyclischen aliphati- schen oder aromatischen Liganden, z.B. wie diejenigen, die in der früheren Anmeldung WO-A-9910353 oder im Übersichtsartikel von V.C. Gibson et al., Angew. Chem. Int. Ed., engl., Band 38, 1999, 428-447 oder mit Sauer- stoff-basierenden Liganden, wie etwa Gruppe 4 Metallkomplexe, die bidentale cyclische oder acyclische aliphatische oder aromatische Alkoxid- Liganden tragen, z.B. optional substituierte, verbrückte Bisphenolische Liganden (vgl. oben genannter Übersichtsartikel von Gibson et al.). Weitere spezifische Beispiele von nicht-η5-Liganden sind Amido, Amid- Diphosphan, Amidinat, Aminopyridin, Benzamidinat, Triazacyclononan, Allyl, Kohlenwasserstoff, beta-Diketimat und Alkoxid.
Weitere geeignete Katalysatoren sind Chromkatalysatoren, wie Chromoxid auf Siliziumdioxid, Chromocene und insbesondere die Katalysatoren, die in EP-A-0 480 276, EP-A-0 533 156, EP-A-0 533 160, EP-A-0 100 879 und US 4,011,382 beschrieben sind, auf deren Offenbarung ausdrücklich bezug genommen wird; sowie Nickelkatalysatoren, insbesondere jene, die in W099/62968, WO98/47933, WO98/40420, W098/47933, WO00/06620 und WO96/23010 beschrieben sind, auf deren Offenbarung ausdrücklich bezug genommen wird, und Vanadiumkatalysatoren.
Ferner eignen sich Phillips-Katalysatoren sehr gut.
Es kommt auch in Betracht, verschiedene Koordinationskatalysatoren zusammen zu verwenden, sogenannte dual- oder multikatalytische Systeme. Diese können aus einer Kombination verschiedener der vorgenannten Katalysatoren bestehen, z.B. einer Kombination aus zwei oder mehr Metalloce- nen, einem Metallocen und einem Non-Metallocen, einem Ziegler-Natta Katalysator und einem Metallocen oder einem Ziegler-Natta Katalysator und einem Non-Metallocen.
Vorzugsweise umfassen die Koordinationskatalysatoren einen oder mehrere Cokatalysatoren, z.B. eine organische Aluminiumverbindung, wie Trialky- laluminium und/oder Alumoxanverbindungen. Bor-Coaktivatoren sind auch besonders geeignet. Es können sowohl homogene als auch heterogene Katalysatorsysteme verwendet werden. Bei einem heterogenen Katalysatorsystem ist die Koordinationskatalysatorkomponente, gegebenenfalls zusammen mit dem Cokataly- sator, vorzugsweise auf einem inerten Träger, der anorganisch oder organisch sein kann, wie beispielsweise Siliciumdioxid, aufgebracht. Üblicherweise ist der poröse, teilchenförmige Träger mit dem Katalysatorsystem imprägniert. Diesbezüglich wird auf EP 678103 und PCT/GBO 1/01280 hingewiesen.
Als Monomere kommen insbesondere Olefme in Betracht. Jedes Olefin, das mit Koordinationspolymerisation polymerisiert werden kann, ist geeignet.
Bevorzugte Olefme sind Ethylen und Propylen sowie Mischungen von E- thylen und Propylen mit einem oder mehreren α-Olefmen. Geeignete Co- monomer sind C2-ι2 Olefme, vorzugsweise C4.10 Olefme, wie 1-Buten, Isobuten, 1-Penten, 1 -Hexen, 4-Methyl-l-penten, 1-Hepten, 1-Octen, 1-Nonen, 1-Decen, sowie Diene wie Butadien, 1,7-Octadien und 1,4-Hexadien oder cyklische Olefme wie Norbornen, sowie Mischungen derselben. Die Menge an Comonomer liegt im allgemeinen bei 0,01 bis 50 Gew.%, vorzugsweise bei 0,1 bis 10 Gew.% und insbesondere bei 0,3 bis 3 Gew.%.
Die Koordinationskatalysatoren eignen sich auch zur Polymerisation von langkettigen α-Olefmen mit 4 bis 40 Kohlenstoffatomen, die entweder allein oder in Kombination, auch mit kurzkettigen α-Olefmen, polymerisiert werden können. Geeignete Beispiele sind: 1-Butene, 1-Penten, 1-Hexene, 1-Hepten, 1-Octen, 1-Nonen, 1-Decen, 1-Undecen, 1-Dodecen, 1-Tridecen, 1 -Tetradecen, 1 -Pentadecen, 1-Hexadecen, 1-Heptodecen, 1-Octodecen, 1- Nonadecen, 1-Eicosen, etc. bis Tetradecen. Bevorzugt sind α-Olefine mit 4 bis 16 Kohlenstoffatomen. Weitere geeignete Monomere sind Isomere von α-Olefϊnen mit verzweigten Alkylgruppen, wie 4-Methyl-l-penten.
Weitere geeignete Monomere sind Vinylmonomere wie Alkyl- und Arylvi- nyl onomere, z.B. Styrol, Vinylether, Vinylester, Acrylsäure und deren Ester, Methacrylsäure und deren Ester, Acrylamide, Acrylnitrile, Vinyla- mine, und dergleichen.
Die Koordinationspolymerisation kann in einem oder mehreren Polymerisationsreaktoren durchgeführt werden. Konventionelle Polymerisations- techniken sind anwendbar, wie die Gasphasenpolymerisation, Lösungspolymerisation, Slurry-Polymerisation, Bulk-Polymerisation, Emulsionspolymerisation und Fällungspolymerisation. Verschiedene Polymerisationsverfahren können kombiniert werden. Besonders geeignet ist die Kombination einer Slurry-Polymerisation gefolgt von einer Gasphasenpolymerisation.
Die Polymerisationsverfahren können kontinuierlich oder batchweise durchgeführt werden.
Das erfindungsgemäße Verfahren eignet sich auch besonders für die Pre- polymerisation, d.h. eine Vorpolymerisation, auf die die eigentliche Polymerisation folgt.
Gemäß einer bevorzugten Ausführungsform findet die Eliminierung des nachteiligen Effekts durch die Verunreinigungen durch Bestrahlen während der eigentlichen Polymerisation statt.
Die Bestrahlung kann jedoch während einer oder mehrerer der vorgenannten Stufen des Koordinationspolymerisationsverfahrens erfolgen.
Bei einer bevorzugten Ausführungsform umfaßt der Koordinationskatalysator ein Metallocen als Koordinationskatalysatorkomponete, Alumoxan als Cokatalysator und wahlweise Siliciumdioxid als Träger. Bei dieser Ausführungsform kann der inaktivierende Effekt des wahlweise vorhandenen Siliciumdioxid-Trägers auf das Metallocen und den Cokatalysator eliminiert werden, wenn das System während des Aktivierungsschrittes oder des Heterogenisierungssschrittes mit elektromagnetischer Strahlung bestrahlt wird. Es ist allgemein bekannt, dass Siliciumdioxid die Aktivität eines Koordinationskatalysators, wie einem Metallocen, aufgrund der Hydroxyfunk- tionalität auf der Oberfläche der Siliciumdioxidteilchen verringert. Dies ist beispielsweise beschrieben in Gregory G. Hlatky "Heterogenous single-site catalysts for olefin polymerisation" Chem. Rev. 2000, 100; 1347 to 1376, 1370.
Auch geeignet sind die Koordinationskatalysatoren für die Oligomerisation. Das heißt, die Oligomerisation wird hier unter dem Begriff "Polymerisation" subsumiert. Das Polymerisationsverfahren wird bei Anwesenheit elektromagnetischer Strahlung durchgeführt. Bei der elektromagnetischen Strahlung handelt es sich um eine zusätzliche Strahlung zur natürlichen Strahlung oder zur künstlichen Raumbeleuchtung.
Die Erhöhung der Aktivität des Katalysatorsystems bzw. die Erhöhung der Produktivität des Polymerisationsverfahrens ist abhängig von der Intensität der Strahlung. Je höher die Intensität, desto höher die Aktivität.
Die Bestrahlung kann kontinuierlich erfolgen, aber auch in Intervallen oder pulsierend oder nur für einen kurzen Zeitraum am Beginn der Polymerisation. Selbst die Aktivierung mit Strahlung vor der Polymerisation, z.B. in der Zuleitung zum eigentlichen Polymerisationsreaktor, ist möglich.
Bei dem erfindungsgemäßen Verfahren können Strahlungen verschiedener Wellenlängen eingesetzt werden. Die Wellenlänge kann in jedem Wellenlängenbereich des elektromagnetischen Spektrums liegen, das von der Gammastrahlung bis Radiowellen reicht. Geeignet sind insbesondere Wellen im Bereich zwischen Röntgenstrahlen und Mikrowellen, wobei der Bereich zwischen UV und Infrarot bevorzugt wird und sich insbesondere kurzwelliges sichtbares Licht als auch UV Licht besonders eignen.
In Wellenlängen ausgedrückt kann die Strahlung im Bereich zwischen 10" und 104 m liegen. Bevorzugt wird jedoch eine Strahlung zwischen 10"8 und 10"2 m, insbesondere 10"8 und 10"6 m und besonders eine Strahlung im Bereich zwischen 100 und 800 nm. Die Strahlung kann eine einheitliche Wellenlänge haben oder aus einer Strahlung mit verschiedenen Wellenlängen bestehen.
Gemäß einer besonders bevorzugten Ausführungsform wird die elektromagnetische Strahlung einer Wellenlänge eingesetzt, die im Bereich der Lichtabsorption des Koordinationskatalysators liegt. Bevorzugt wird Strahlung einer Wellenlänge im Bereich der maximalen Absorption des Koordinationskatalysators.
Es scheint so zu sein, dass die elektromagnetische Strahlung die aktiven Zentren des Koordinationskatalysators, die mit elektronenreichen Verbindungen, wie 02, blockiert sind, in der Lage ist zu reaktivieren und die Ko- ordination von olefϊnischen Doppelbindungen zum aktiven ionischen Zentrum zu favorisieren.
Für die Anordnung der Strahlungsquelle im Polymerisationssystem bestehen im Prinzip zwei Möglichkeiten. Entweder, und diese wird bevorzugt, wird die Strahlenquelle im Inneren des Polymerisationsreaktors, gegebenenfalls auch in der Zuleitung zum Reaktor, angeordnet. Alternativ kann die Strahlungsquelle außerhalb des Reaktors angeordnet werden. Dieser ist dann mit einem Fenster versehen, das für die jeweilige Strahlung durchlässig ist. Ein Fenster kann entfallen, wenn die Strahlung durch die Wand des Reaktors dringen kann.
Vorzugsweise besteht besagtes Fenster aus Glas oder Quarz, da insbesondere Quarz im UV-Bereich strahlendurchlässig ist.
Weiterhin ist es auch möglich, dass eine Vorrichtung zur Emittierung elektromagnetischer Strahlung außerhalb des Polymerisationsreaktors oder der Zufuhrleitung zum Polymerisationsreaktor angeordnet ist und die elektromagnetische Strahlung über einen optischen Leiter in den Reaktor gelangen kann.
Die Strahlenmenge ist abhängig von der Größe des Reaktorsystems.
Bei einem kombinierten Polymerisationsverfahren, wie einer Slurry- Polymerisation, die vorzugsweise in einem Loop-Reaktor ausgeführt wird, und einem darauffolgenden Gasphasenreaktor kann die Strahlung an einer oder mehreren Stellen des Loop-Systems einbracht werden. Auch der Gasphasenreaktor kann mit Strahlung beaufschlagt werden. Alternativ können die Zufuhrleitungen zu den Reaktoren, gegebenenfalls zusätzlich zu den Reaktoren, bestrahlt werden.
Ein geeignetes Polymerisationssysstem ist beispielsweise folgendes. Der erste Reaktor ist ein Slurry-Reaktor. Dieser arbeitet bei einer Temperatur im Bereich von 60 bis 110°C. Der Reaktordruck ist im Bereich von 0,1 bis 100 bar, vorzugsweise 5 bis 80 bar und insbesondere 50 bis 65 bar. Die Verweilzeit liegt bei 0,1 bis 5 Stunden, vorzugsweise 0,3 bis 5 Stunden und insbesondere 0,5 bis 2 Stunden. Als Verdünnungsmittel wird im allgemeinen ein aliphatischer Kohlenwasserstoff eingesetzt. Die Polymerisation kann unter superkritischen Bedingungen durchgeführt werden. Nachfolgend sind ein oder mehrere Gasphasenreaktoren geschalten. Die Reaktionstemperatur beträgt im allgemeinen 60 bis 115°C, vorzugsweise 70 bis 110°C. Der Reaktordruck liegt bei 10 bis 25 bar und die Verweilzeit bei 1 bis 8 Stunden. Das eingesetzte Gas ist im allgemeinen ein nichtreaktives Gas wie Stickstoff.
Das beispielsweise beschriebene Reaktorsystem ist besonders für die Polymerisation von Ethylen und Propylen, bzw. die Copolymerisation von Ethy- len und Propylen mit α-Olefinen geeignet.
Geeignete Einrichtungen zur Initiierung der elektromagnetischen Strahlung sind beispielsweise Floureszenzlampen, Incandeszentlampen und Halogenlampen. Die Strahlungsmenge im UV oder sichtbaren Bereich sollte wenigstens ein Watt pro 100 ml Reaktionsvolumen betragen.
Unter Verunreinigungen bzw. Katalysatorgiften werden hier jegliche chemische Verbindungen verstanden, die die Aktivität des Koordinationskatalysators in einem Polymerisationsverfahren verringern oder diesen völlig inaktivieren könnten. Dazu gehören die verschiedensten Verbindungen, die eine Elektronen abgebende Gruppe aufweisen, wie Oxide, beispielsweise O2, C02, CO, SO2, Amide, Sulfide und Mercaptane, H2S, Carboxyl- säuren und deren Derivate, Etherketone, wie Methylethylketon, Trägermaterialien mit funktionellen Gruppen, wie OH oder Epoxygruppen, beispielsweise Silicumdioxid, Acethylen, sowie Feuchtigkeit.
Die Erfindung wird nachstehend anhand von Beispielen, die bevorzugte Ausführungsformen zeigen, näher beschrieben.
Beispiel 1: Katalysatorherstellung
Der Katalysator wurde hergestellt durch Lösen von 11 mg n-Bu-Cρ2ZrCl2 (Witco GmbH, Deutschland) mit MAO/Toluol enthaltend 1,15 ml 30 Gew.% MAO (30 Gew.% MAO in Toluol, von Albemarle) und 0,35 ml feuchtigkeits- und sauerstofffreiem Toluol. Die Metallo- cen/MAO/Toluollösung wurde auf einen Siliziumdioxidträger (SYLOPOL 55 SJ; Grace-Davison, calziniert bei 600°C mit einem Porenvolumen von 1,5 bis 1,7 ml/g, Oberfläche 350 m2/g) in solcher Weise aufgegeben, dass das Volumen der Komplexlösung das Porenvolumen des Siliziumdioxids (1,5 ml/g) nicht überstieg. Anschließend wurde getrocknet und die Trocknung abgeschlossen mittels Durchleiten von feuchtigkeit- und sauerstofffreiem Stickstoff durch den Katalysator bei Raumtemperatur.
Beispiel 2: Polymerisation
Die Polymerisation wurde in einem Minireaktor (Volumen etwa 40 ml) durchgeführt, der ein Glasfenster aufwies. Die Polymerisation kann durch die Messung des Druckabfalls verfolgt werden. Der Meßbereich lag zwischen 0 und 6000 mbar. Die Genauigkeit der Druckmessung betrug weniger ± 1 mbar. Der Druck wurde durch ein magnetisches Regelventil kontrolliert, wobei der höchste Punkt 5010 mbar war (geschlossenes Ventil und Beginn der Druckabfallmessung), und der niedrigste Punkt war bei 4980 mbar (Ventil geöffnet und Reaktor gefüllt mit Ethylen).
Es wurde die Polymerisationsaktivität mit verschiedenen Mengen Sauerstoff untersucht. Ein Versuch wurde ohne Sauerstoffvergiftung durchgeführt. Die Reaktionsbedingungen waren: Temperatur: 80°C, Ethylenpartial- druck 4,5 bar und Katalysatormenge 7 mg.
Die Ergebnisse sind in Figur 1 wiedergegeben. Die mit "1" bezeichnete Kurve zeigt die Aktivität ohne Zusatz von Sauerstoff. Die Kurve 2 zeigt die Aktivität mit einem Zusatz von 3,5 μl Luft entsprechend einem Verhältnis von 02/Zr = 1 : 1 (mol/mol). Kurve 3 zeigt den Zusatz von 7 μl Luft entsprechend einem Verhältnis von O2/Zr = 2:1 (mol/mol) und Kurve 4 den Zusatz von 15 μl Luft entsprechend einem Verhältnis von 02/Zr = 4:1 (mol/mol).
Beispiel 3: Polymerisation
Bei diesem Beispiel wurde die Polymerisationaktivtät bei verschiedenen Mengen Sauerstoff untersucht. Teilweise wurde mit sichtbarem Licht bestrahlt und die Ergebnisse wurden mit der Polymerisation im Dunklen ver- glichen. Die Reaktionsbedingungen waren: Temperatur: 80°C, Ethylenpartialdruck 4,5 bar, Katalysatormenge 7 mg.
Kurve 1 in Figur 2 zeigt die Polymerisationsaktivität bei einer Vergiftung mit 3,4 μl Luft und ohne Bestrahlung. Kurve 2 zeigt die gleiche Vergiftung mit 3,4 μl Luft bei Beginn der Bestrahlung nach 10 min.
Kurve 3 zeigt die Polymerisationsaktivität bei einer Vergiftung mit 15 μl Luft. Schließlich zeigt Kurve 4 die gleiche Vergiftung mit 15 μl Luft und Bestrahlung nach 10 min.
Als Lichtquelle wurde eine FLEXILUX 600 longlife mit Philips 14501 DDL, 20V/150W Halogenlampe verwendet.
Beispiel 4: Polymerisation
Bei diesem Versuch wurde mit 15 μl Luft vergiftet, entsprechend einem Verhältnis O2/Zr = 4: 1 (mol/mol). Es wurde die Wirkung des Sauerstoffs über die Kontaktzeit, bevor das Licht eingeschaltet wurde, untersucht. Beim ersten Versuch wurde das Licht bei 0 min eingeschaltet. Bei den nächsten Versuchen wurde bei 10 min, 20 min bzw. 40 min bestrahlt und schließlich wurde ein Versuch ganz im Dunklen durchgeführt. Die Bedingungen waren folgende: Temperatur 80°C, Ethylenpartialdruck 4,5 bar und Katalysatormenge 7 mg. Es wurde die in Beispiel 3 spezifizierte Lampe verwendet. Die Ergebnisse sind in Figur 3 gezeigt.
Beispiel 5: Polymerisation
Bei diesem Beispiel wurde die Vergiftung mit C02 untersucht. Die Ergebnisse sind in Figur 4 gezeigt. Die Vergiftung erfolgte mit 11 μl C02, das entspricht einem Verhältnis von CO2/Zr = 4:1. Die Bestrahlung wurde nach 10 min, 20 min und 40 min begonnen. Es zeigte sich, dass die Aktivität des Katalysators durch Bestrahlung wiederhergestellt werden konnte. Bei einem Versuch wurde nicht bestrahlt. Die Reaktionsbedingungen bei diesen Versuchen waren: Temperatur 80°C, Ethylenpartialdruck 4,5 bar und Katalysatormenge 7 mg. Es wurde die in Beispiel 3 spezifizierte Lampe verwendet.
Beispiel 6: Vergleich der Polymerisation mit Licht einer Halogenlampe und mit Licht einer Quecksilberlampe
Die Polymerisation wurde in einem 20 ml Minireaktor durchgeführt, wobei Katalysator, hergestellt nach Beispiel 1 in den in Tabelle 1 angegebenen Mengen, in den Reaktor eingebracht wurden. Der Reaktor wurde geschlossen und an die Ethylenquelle angeschlossen. Der Ethylenpartialdruck wurde auf 4,5 bar eingestellt. Die Polymerisationstemperatur betrug 80°C und die Polymerisationszeit war 60 min. Der Ethylenverbrauch wurde durch den Druckabfall verfolgt, nämlich im Bereich zwischen 4980 und 5010 mbar. Der Reaktor, versehen mit einem Glasfenster, wurde mit einer kalten Lichtquelle FLEXILUX 600 longlife mit Phillips 14501 DDL, 20V/150W Halogenlampen bestrahlt. Die höchste Lichtintensität wurde verwendet. Nach 60 min Reaktionszeit wurde die Polymerisation durch Schließen der Ethylenzufuhr gestoppt und der Ethylendruck aufgehoben.
Die Halogenlampe hatte ein sehr breites Spektrum des emittierten sichtbaren Lichtes mit Wellenlängen von 350 bis 750 nm. Es wurden drei Lichtfilter verwendet, die Licht von drei verschiedenen Wellenlängen transmittie- ren. Der blaue Filter transmittierte Wellenlängen zwischen 300 und 480 nm, der Grün/Gelbfilter transmittierte Wellenlängen oberhalb von 400 nm und der Rotfilter transmittierte Wellenlängen oberhalb 600 nm. Das gefilterte Licht weist nur einen Bruchteil der Gesamtintensität der Lichtquelle auf. Dies muß beim Vergleich der Ergebnisse berücksichtigt werden.
In der nachstehenden Tabelle 1 ist der Einfluß der Längenwelle des Lichtes auf die Polymerisationsaktivität wiedergegeben.
Tabelle 1 : Wirkung des Lichtes auf die Polymerisationsaktivität mit einer Halogenlampe:
Figure imgf000017_0001
Die Aktivität des Katalysators war am höchsten, wenn der Filter Licht einer Wellenlänge von 300 bis 450 nm transmittierte. Die Aktivität fiel ab, wenn die Bestrahlung mit höherer Wellenlänge durchgeführt wurde.
Wurde das Absorptionsspektrum des Katalysators n-Bu-Cρ2ZrCl2/MAO; Al/Zr = 200 mol/mol mit dem transmittierten Licht verglichen, zeigte sich eine deutliche Überlappung des absorbierten Lichtes und des transmittierten Lichtes. Es zeigt sich, daß die höchste Aktivität bei einer Strahlungsfrequenz erreicht wird, die jener der Absorption des aktiven Metallo- cen/MAO-Komplexes entspricht. Je mehr die Strahlenfrequenz vom Absorptionsspektrum des Katalysators entfernt ist, desto geringer ist der Aktivierungseffekt.
Figur 1 zeigt den Vergleich des Absorptionsspektrums des Metallocen- Komplexes (graue Fläche) im Vergleich mit den Emissionsbereichen der drei Filter.
Zusätzliche Polymerisationen wurden wie oben in diesem Beispiel 16 beschreiben durchgeführt, jedoch wurde anstelle einer Halogenlampe eine Quecksilberlampe verwendet, die im Bereich von 300 bis 550 nm emittierte. Im Vergleich zur Halogenlampe, die ein breites Emissionsspektrum besitzt, weist die Quecksilberlampe ein paar einzelne, sehr starke Emissionen auf. Das Ergebnis dieser Polymerisationen ist in Tabelle 2 aufgeführt:
Tabelle 2: Wirkung des Lichtes auf die Polymerisationsaktivität mit einer Quescksilberlampe;
Figure imgf000018_0001
Beispiel 7: Polymerisation mit einem Ziegler-Natta-Katalysator
Alle Ausgangsmaterialien waren im Wesentlichen frei von Wasser und Luft und "alle Materialzugaben zum Reaktor und bei den unterschiedlichen Schritten wurden unter inerten Bedingungen in Stickstoffatmosphäre durchgeführt. Der Wassergehalt im Propylen war niedriger als 5 ppm.
Die Polymerisation wurde in einem 51-Reaktor durchgeführt, welcher erhitzt wurde, evakuiert und mit Stickstoff durchflutet, bevor er in Gebrauch genommen wurde. 213 μl TEA (Triethylalummium, von Witco, ohne weitere Reinigung/Behandlung verwendet), 36μl Donor D (Dicyclopentyldime- toxysilan von Wacker, über Molekularsieb getrocknet) und 30 ml Pentan (über Molekularsieb getrocknet und mit Stickstoff begast) wurden gemischt, und für 5 Minuten zur Reaktion überlassen. Die Hälfte der Mischung wurde zum Reaktor gegeben und die andere Hälfte wurde mit 14,2 mg hochaktivem und stereospezifischem Ziegler-Natta-Katalysator (ZN Katalysator) gemischt. Der ZN Katalysator wurde gemäß Test-Beispiel 3 in EP 591224 (Borealis) hergestellt, und hatte einen Ti-Gehalt von 2,1 Gewichtsprozent. Nach ungefähr 10 Minuten wurde die ZN Katalysa- tor/TEA/Donor D/Pentan-Mischung dem Reaktor zugeführt. Das molare Verhältnis Al/Ti betrug 250 und das molare Verhältnis AI/Do betrug 10. 100 mmol Wasserstoff und 1400 g Propylen wurden zum Reaktor gegeben. Die Lampe wurde eingeschaltet. Bei der Lampe handelte es sich um eine Halogenlampe, 50 Watt, 12 Volt. Die Temperatur wurde während 19 Minuten von Raumtemperatur auf 80°C erhöht. Nach 30 Minuten bei 80°C wur- de die Reaktion gestoppt, indem nicht-reagiertes Propylen herausgelassen wurde.
Das Polymer wurde analysiert und die Ergebnisse werden in Tabelle 3 gezeigt. Die Aktivität betrug 22,6 kg Propylen pro Gramm Katalysator.
Vergleichsbeispiel 8:
Dieses Beispiel wurde gemäß dem Beispiel 7 durchgeführt, wobei allerdings keine Lichtbehandlung während der Polymerisation durchgeführt wurde. Details und Ergebnisse werden in Tabelle 3 gezeigt. Die Aktivität betrug 19,9 kg Propylen pro Gramm Katalysator.
Das Beispiel dieses Patentes ergibt damit eine ungefähr 15 % höhere Aktivität als das Vergleichsbeispiel. Aus der Tabelle ist ebenso ersichtlich, dass die Lichtbehandlung auf die Polymereigenschaften keinen signifikanten Effekt zeigt. Tabelle 3:
Figure imgf000019_0001

Claims

Patentansprüche
1 Verfahren zur Verhinderung der Inaktivierung von Koordinationskatalysatoren und/oder zur Reaktivierung von inaktivierten Koordinationskatalysatoren, dadurch gekennzeichnet, dass die Koordinationskatalysatoren mit elektromagnetischer Strahlung bestrahlt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Inaktivierung durch Verunreinigungen bedingt ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Inaktivierung durch O2 und/oder CO2 bedingt ist.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Inaktivierung durch Siliciumdioxidträger bedingt ist.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Koordinationskatalysatoren während dem Polymerisationsverfahren bestrahlt werden.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Koordinationskatalysatoren mit elektromagnetischer Strahlung einer Wellenlänge im Bereich von infrarot bis ultraviolett aufweist.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die elektromagnetische Strahlung eine Wellenlänge im Bereich zwischen 800 und 100 nm aufweist.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Koordinationskatalysatoren mit elektromagnetischer Strahlung einer Wellenlänge im Bereich der Lichtabsorption des Koordinationskatalysators bestrahlt werden.
9. Verfahren nach einem der Ansprüche 1 bis" 8, dadurch gekennzeichnet, dass die elektromagnetische Strahlung eine Wellenlänge im Bereich des Maximums des Absorptionsspektrums des Koordinationskatalysators aufweist.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die elektromagnetische Strahlung kontinuierlich angewandt wird.
11. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die elektromagnetische Strahlung in Intervallen angewandt wird.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass sich der Koordinationskatalysator durch die Aktivierung mit elektromagnetischer Strahlung nicht zersetzt.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Polymerisation ohne Bildung von freien Radikalen verläuft.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Koordinationskatalysatoren zur Polymerisation von Olefinen verwendet werden.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Koordinationskatalysatoren zur Polymerisation von Ethylen oder Ethylen und Comonomeren eingesetzt werden.
16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Koordinationskatalysatoren zur Polymerisation von Propylen oder Propylen und Comonomeren eingesetzt werden.
17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass als Koordinationskatalysatoren Ziegler-Natta Katalysatoren eingesetzt werden.
18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass als Koordinationskatalysatoren Metallocen-Katalysatoren eingesetzt werden.
19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass als Koordinationskatalysator nur Koordinationskatalysatoren mit oder ohne Cokatalysatoren eingesetzt werden.
20. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass eine Mischung von Koordinationskatalysatoren eingesetzt wird.
21. Verfahren nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die Koordinationskatalysatoren zusammen mit Cokatalysatoren eingesetzt werden.
22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass Alum- oxan als Cokatalysator eingesetzt wird.
23. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass Bor- Cokatalysatoren eingesetzt werden.
24. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass die Polymerisation eine Lösungspolymerisation ist.
25. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass die Polymerisation eine Slurry-Polymerisation ist.
26. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass die Polymerisation eine Gasphasenpolymerisation ist.
27. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass die Polymerisation eine Slurry-Polymerisation gefolgt von einer Gasphasenpolymerisation ist.
28. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass die Polymerisation eine superkritische Ethylen-Polymerisation ist.
29. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass die Polymerisation eine Pre-Polymerisation ist.
30. Polymer, hergestellt durch ein Koordinationspolymerisationsverfah- ren nach einem der Ansprüche 1 bis 29 unter Verwendung eines Koordinationskatalysators, wobei während der Polymerisationsreaktion der Koordinationskatalysator und das Monomer einer elektromagnetischen Strahlung ausgesetzt werden.
31. Vorrichtung zur Durchführung eines Verfahrens zur Verhinderung der Inaktivierung von Koordinationskatalysatoren und/oder zur Reaktivierung von inaktivierten Koordinationskatalysatoren, dadurch gekennzeichnet, dass sie Einrichtungen zur Emittierung elektromagnetischer Strahlung umfaßt, wobei die Strahlung auf die Koordinationskatalysatoren und die Monomere gerichtet ist.
32. Vorrichtung nach Anspruch 31, dadurch gekennzeichnet, dass die Einrichtung zur Emittierung elektromagnetischer Strahlung innerhalb des Polymerisationsreaktors angeordnet ist.
33. Vorrichtung nach Anspruch 31, dadurch gekennzeichnet, dass die Einrichtung zur Emittierung elektromagnetischer Strahlung innerhalb der Zufuhrleitung zum Polymerisationsreaktor angeordnet ist.
34. Vorrichtung nach Anspruch 31, dadurch gekennzeichnet, dass die Einrichtung zur Emittierung elektromagnetischer Strahlung außerhalb des Polymerisationsreaktors angeordnet ist und in der Wand des Polymerisationsreaktors ein Fenster vorgesehen ist, durch das die elektromagnetische Strahlung in den Reaktor gelangen kann.
35. Vorrichtung nach Anspruch 34, dadurch gekennzeichnet, dass das Fenster aus Glas oder Quarz ist.
36. Vorrichtung nach Anspruch 31, dadurch gekennzeichnet, dass die Einrichtung zur Emittierung elektromagnetischer Strahlung außerhalb der Zufuhrleitung zum Polymerisationsreaktor angeordnet ist und in der Zufuhrleitung ein Fenster vorgesehen ist, durch das die Strahlung in die Leitung gelangt.
37. Vorrichtung nach Anspruch 36, dadurch gekennzeichnet, dass das Fenster aus Glas oder Quarz ist.
38. Vorrichtung nach Anspruch 31, dadurch gekennzeichnet, dass die Einrichtung zur Emittierung elektromagnetischer Strahlung außerhalb des Polymerisationsreaktors angeordnet ist und die elektromagnetische Strahlung über einen optischen Leiter in den Reaktor gelangen kann.
39. Vorrichtung nach Anspruch 31, dadurch gekennzeichnet, dass die Einrichtung zur Emittierung elektromagnetischer Strahlung außerhalb der Zufuhrleitung zum Polymerisationsreaktor angeordnet ist und elektromagnetische Strahlung über einen optischen Leiter in die Leitung gelangen kann.
40. Vorrichtung nach einem der Ansprüche 31 bis 39, dadurch gekennzeichnet, dass die Einrichtung zur Emittierung von elektromagnetischer Strahlung Strahlung im Bereich zwischen infrarot und ultraviolett emittiert.
PCT/EP2002/005933 2001-06-01 2002-05-29 Verfahren zur reaktivierung von inaktivierten koordinationskatalysatoren und vorrichtung zur durchführung des verfahrens WO2002098934A1 (de)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
DE10126829.7 2001-06-01
DE10126829A DE10126829A1 (de) 2001-06-01 2001-06-01 Polymerisationsverfahren und Vorrichtung zur Durchführung eines Polymerisationsverfahrens
DE10136684A DE10136684A1 (de) 2001-07-27 2001-07-27 Verfahren zur Reaktivierung von inaktivierten Koordinationskatalysatoren und Vorrichtung zur Durchführung des Verfahrens
DE10136687.6 2001-07-27
DE10136683.3 2001-07-27
DE10136684.1 2001-07-27
DE10136683A DE10136683A1 (de) 2001-07-27 2001-07-27 Polymerisationsverfahren und Vorrichtung zur Durchführung eines Polymerisationsverfahrens
DE10136687 2001-07-27
DE10200740A DE10200740A1 (de) 2002-01-11 2002-01-11 Copolymere von alpha-Olefinen und funktionellen Monomeren, deren Herstellung und deren Verwendung
DE10200740.3 2002-01-11

Publications (1)

Publication Number Publication Date
WO2002098934A1 true WO2002098934A1 (de) 2002-12-12

Family

ID=27512419

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/EP2002/005934 WO2002098935A1 (de) 2001-06-01 2002-05-29 COPOLYMERE VON $G(a)-OLEFINEN UND FUNKTIONELLEN MONOMEREN, DEREN HERSTELLUNG UND DEREN VERWENDUNG
PCT/EP2002/005933 WO2002098934A1 (de) 2001-06-01 2002-05-29 Verfahren zur reaktivierung von inaktivierten koordinationskatalysatoren und vorrichtung zur durchführung des verfahrens
PCT/EP2002/005932 WO2003011919A2 (de) 2001-06-01 2002-05-29 Polymerisationsverfahren und vorrichtung zur durchführung eines polymerisationsverfahrens

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/005934 WO2002098935A1 (de) 2001-06-01 2002-05-29 COPOLYMERE VON $G(a)-OLEFINEN UND FUNKTIONELLEN MONOMEREN, DEREN HERSTELLUNG UND DEREN VERWENDUNG

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/005932 WO2003011919A2 (de) 2001-06-01 2002-05-29 Polymerisationsverfahren und vorrichtung zur durchführung eines polymerisationsverfahrens

Country Status (4)

Country Link
US (1) US7291655B2 (de)
EP (1) EP1401895A2 (de)
AU (1) AU2002344994A1 (de)
WO (3) WO2002098935A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11028192B2 (en) 2017-03-27 2021-06-08 Exxonmobil Chemical Patents Inc. Solution process to make ethylene copolymers
CN116063598A (zh) * 2018-09-17 2023-05-05 切弗朗菲利浦化学公司 改性负载型铬催化剂和由其生产的基于乙烯的聚合物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3264275A (en) * 1961-06-27 1966-08-02 Du Pont Elastomeric interpolymers comprising ethylene and acrylonitrile
US4069124A (en) * 1971-07-29 1978-01-17 Ceskoslovenska Akademie Ved Method for controlled radiation polymerization of olefinic monomers
EP0380938A2 (de) * 1989-01-24 1990-08-08 Bayer Ag Verfahren zur Polymerisation von Ethylen und Acrylnitril mit Hilfe von Laserstrahlen
US5461123A (en) * 1994-07-14 1995-10-24 Union Carbide Chemicals & Plastics Technology Corporation Gas phase fluidized bed polyolefin polymerization process using sound waves
US6043294A (en) * 1998-01-29 2000-03-28 Gate Technologies International, Inc. Method of and apparatus for optically enhancing chemical reactions
US6194821B1 (en) * 1997-02-12 2001-02-27 Quark Systems Co., Ltd. Decomposition apparatus of organic compound, decomposition method thereof, excimer UV lamp and excimer emission apparatus
EP1079276A1 (de) * 1999-08-27 2001-02-28 AGFA-GEVAERT naamloze vennootschap Photopolymerisierbares Gemisch und daraus hergestelltes Aufzeichnungsmaterial

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968901A (en) * 1989-05-16 1990-11-06 Burr-Brown Corporation Integrated circuit high frequency input attenuator circuit
US5652280A (en) * 1991-11-12 1997-07-29 University Of Georgia Research Foundation, Inc. Anionic photoinitiation
JPH06306112A (ja) * 1993-04-23 1994-11-01 Mitsubishi Kasei Corp エチレン−極性モノマーブロック共重合体の製造方法
US5587439A (en) * 1995-05-12 1996-12-24 Quantum Chemical Corporation Polymer supported catalyst for olefin polymerization
US5922783A (en) * 1997-02-27 1999-07-13 Loctite Corporation Radiation-curable, cyanoacrylate-containing compositions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3264275A (en) * 1961-06-27 1966-08-02 Du Pont Elastomeric interpolymers comprising ethylene and acrylonitrile
US4069124A (en) * 1971-07-29 1978-01-17 Ceskoslovenska Akademie Ved Method for controlled radiation polymerization of olefinic monomers
EP0380938A2 (de) * 1989-01-24 1990-08-08 Bayer Ag Verfahren zur Polymerisation von Ethylen und Acrylnitril mit Hilfe von Laserstrahlen
US5461123A (en) * 1994-07-14 1995-10-24 Union Carbide Chemicals & Plastics Technology Corporation Gas phase fluidized bed polyolefin polymerization process using sound waves
US6194821B1 (en) * 1997-02-12 2001-02-27 Quark Systems Co., Ltd. Decomposition apparatus of organic compound, decomposition method thereof, excimer UV lamp and excimer emission apparatus
US6043294A (en) * 1998-01-29 2000-03-28 Gate Technologies International, Inc. Method of and apparatus for optically enhancing chemical reactions
EP1079276A1 (de) * 1999-08-27 2001-02-28 AGFA-GEVAERT naamloze vennootschap Photopolymerisierbares Gemisch und daraus hergestelltes Aufzeichnungsmaterial

Also Published As

Publication number Publication date
WO2003011919A2 (de) 2003-02-13
WO2003011919A3 (de) 2003-04-17
EP1401895A2 (de) 2004-03-31
AU2002344994A1 (en) 2003-02-17
US7291655B2 (en) 2007-11-06
US20040192866A1 (en) 2004-09-30
WO2002098935A1 (de) 2002-12-12

Similar Documents

Publication Publication Date Title
EP1290039B1 (de) Katalysatorsystem zur olefinpolymerisation mit einem calcinierten hydrotalcit als trägermaterial
DE69033368T3 (de) Ionische Metallocenkatalysatoren auf Träger für Olefinpolymerisation
DE69425485T3 (de) Trägerkatalysator zur olefinpolymerisation, seine herstellung und verwendung
DE69829644T2 (de) Katalysatorzusammensetzung für die olefinpolymerisation mit erhöhter aktivität
DE69935137T2 (de) Polymerträgerkatalysatoren für olefinpolymerisation
DE69814554T2 (de) Fester Aktivierungsträger für die Metallocenkatalysatoren in der Olefinpolymerisation, Herstellungsverfahren, Katalysatorsystem und entsprechendes Polymerisationsverfahren
EP0615981B1 (de) Geträgertes Katalysatorsystem, seine Herstellung und seine Verwendung zur Polymerisation von Olefinen
DE69918684T2 (de) Polymerisationskatalysatoren
DE69722152T2 (de) Verbesserte Polymerausbeute durch geträgerte Metallocenkatalysatoren
DE69630780T2 (de) Verfahren für syndiotaktische Olefinausbreitung
DE602004010642T2 (de) Verfahren zur polymerisation von olefinmonomeren mit mischkatalysatorsystemen
DE69934507T2 (de) Geträgerten bidentat und tridentat katalysatorzusammensetzungen und olefinpolymerisation derselben
DE60205368T2 (de) Aktivierung von "single site" polymerisationskatalysatoren durch (dialkylalumino)broronsäureester
WO2008006636A1 (de) Verfahren zur herstellung von polymeren aus 3-methylbut-1-en
DE60202685T2 (de) Methode zur herstellung von katalysatoren aus späten übergangsmetallen zur olefinpolymerisation
DE69820504T2 (de) Selektive Wirkung von Metallocen-Katalysatoren für die Herstellung von isotaktischen Polyolefinen
DE69719763T2 (de) Verfahren zur herstellung von olefinischen polymeren unter verwendung von geträgertem metallocen-katalysator
DE69826130T2 (de) Verfahren zur herstellung von olefinpolymeren mit einer gewünschten verteilung des molekulargewichtes
WO2002098934A1 (de) Verfahren zur reaktivierung von inaktivierten koordinationskatalysatoren und vorrichtung zur durchführung des verfahrens
DE102004020525A1 (de) Katalysatorsystem zur Olefinpolymerisation, dessen Herstellung und Verwendung
DE60015880T2 (de) Verfahren zur olefinpolymerisierung unter wiederverwendung des co-katalysators
DE602004006223T2 (de) Katalysatorzusammensetzung für die Polymerisation von Olefinen und Polymerisationsverfahren unter dessen Verwendung
DE10136683A1 (de) Polymerisationsverfahren und Vorrichtung zur Durchführung eines Polymerisationsverfahrens
DE60220714T2 (de) Geträgerter polymerisationskatalysator enthaltend agglomeriertes pyrogenes siliciumdioxyd
DE69916604T2 (de) Herstellung von polyolefin

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP