WO2002093534A1 - Electromagnetic wave shielding light-transmitting window member, its manufacturing method, and display panel - Google Patents

Electromagnetic wave shielding light-transmitting window member, its manufacturing method, and display panel Download PDF

Info

Publication number
WO2002093534A1
WO2002093534A1 PCT/JP2002/004423 JP0204423W WO02093534A1 WO 2002093534 A1 WO2002093534 A1 WO 2002093534A1 JP 0204423 W JP0204423 W JP 0204423W WO 02093534 A1 WO02093534 A1 WO 02093534A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
electromagnetic wave
wave shielding
adhesive
transparent
Prior art date
Application number
PCT/JP2002/004423
Other languages
English (en)
French (fr)
Inventor
Masato Yoshikawa
Tetsuo Kitano
Taichi Kobayashi
Hidefumi Kotsubo
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001146844A external-priority patent/JP2002341779A/ja
Priority claimed from JP2001146843A external-priority patent/JP2002341778A/ja
Priority claimed from JP2001146845A external-priority patent/JP2002344193A/ja
Priority claimed from JP2001146846A external-priority patent/JP2002341780A/ja
Priority claimed from JP2001146847A external-priority patent/JP2002341781A/ja
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to US10/476,852 priority Critical patent/US7214282B2/en
Priority to KR1020037014872A priority patent/KR100939747B1/ko
Priority to EP02722937A priority patent/EP1388836A4/en
Publication of WO2002093534A1 publication Critical patent/WO2002093534A1/ja
Priority to US11/695,867 priority patent/US8067084B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/204Filters in which spectral selection is performed by means of a conductive grid or array, e.g. frequency selective surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/16Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/02Vessels; Containers; Shields associated therewith; Vacuum locks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • H05K9/0096Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/44Optical arrangements or shielding arrangements, e.g. filters or lenses
    • H01J2211/446Electromagnetic shielding means; Antistatic means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24851Intermediate layer is discontinuous or differential
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Definitions

  • Electromagnetic wave shielding light transmitting window material its manufacturing method and display panel
  • the present invention relates to an electromagnetic wave shielding light-transmitting window material, a method of manufacturing the same, and a display panel.
  • the display panel By integrating the shielding light-transmitting window material and its manufacturing method with such an electromagnetic wave shielding film, the display panel itself is provided with a function such as electromagnetic wave shielding, thereby reducing the weight and thickness of the display panel and reducing the number of parts.
  • the present invention relates to a display panel capable of improving productivity and reducing costs by reducing costs. Background art
  • PDPs using electric discharge development are used as display panels for office automation equipment such as televisions, personal computers, and word processors, traffic equipment, signboards, and other display boards.
  • the basic display mechanism of a PDP is to display characters and graphics by selectively discharging and emitting phosphors in a large number of discharge cells separated between two glass plates.
  • the configuration is as shown in FIG. In Fig. 16, 21 is the front panel (front glass), 22 is the rear panel (Lya glass), 23 is a partition, 24 is a display cell (discharge cell), 25 is an auxiliary cell, and 26 is a cathode.
  • Reference numeral 27 denotes a display anode and reference numeral 28 denotes an auxiliary anode.
  • a red phosphor, a green phosphor or a blue phosphor (not shown) is provided on the inner wall of each display cell 24 in a film form. These phosphors emit light when discharged by the voltage applied between the electrodes.
  • a transparent plate having a function of shielding electromagnetic waves and the like is arranged in front of the PDP.
  • Such an electromagnetic wave shielding material is also used as a window material in places where precision equipment is installed, such as hospitals and laboratories, in order to protect precision equipment from electromagnetic waves such as mobile phones.
  • the conventional electromagnetic shielding light transmitting window material has a structure in which a conductive mesh material such as a wire mesh or a transparent conductive film is interposed between transparent substrates such as an ataryl plate to be integrated.
  • the conductive mesh used for conventional electromagnetic wave shielding light transmitting window materials has a wire diameter
  • the light transmittance is as low as about 70% at most.
  • Moires are liable to occur in a display provided with a conventional electromagnetic shielding light transmitting window provided with a conductive mesh, in relation to the pixel pitch of the display.
  • An electromagnetic wave shielding light transmitting window material having a conductive foil patterned and etched so as to have a desired wire diameter ⁇ spacing and a mesh shape has both good electromagnetic wave shielding properties and light transmitting properties and no moire phenomenon.
  • a metal foil is adhered to the surface of a transparent base film, and a photoresist film is pressed on the metal foil, and is etched into a predetermined pattern by a pattern exposure and etching process. Accordingly, the metal foil is provided as a film laminated on the base film.
  • an electromagnetic wave shielding film composed of a laminated film of a metal foil base film, light is reflected on the surface of the metal foil and sufficient visibility cannot be obtained. Disclosure of the invention
  • An object of the present invention is to provide an electromagnetic wave shielding light transmitting window material which is excellent in electromagnetic wave shielding properties, has a high antireflection effect, and is excellent in transparency and visibility.
  • Another object of the present invention is to provide a display panel using an electromagnetic wave shielding film having excellent electromagnetic wave shielding properties, a high antireflection effect, and excellent transparency and visibility. It is to be.
  • An electromagnetic wave shielding light transmitting window material is an electromagnetic wave shielding light transmitting window material obtained by laminating and integrating at least an electromagnetic wave shielding film and a transparent substrate, wherein the electromagnetic wave shielding film is transparent.
  • a base film, and a conductive foil which is adhered to a surface of the base film on the transparent substrate side with a transparent adhesive and is pattern-etched. Is characterized in that a light absorbing layer for preventing reflection is provided, and the surface of the light absorbing layer on the side of the base film is subjected to a roughening treatment.
  • this electromagnetic wave shielding film fine irregularities are formed on the surface of the light absorbing layer by surface roughening treatment (hereinafter, this surface roughening treatment may be referred to as “matte treatment”). High anti-reflection effect. Therefore, when the electromagnetic wave shielding light transmitting window material having the electromagnetic wave shielding film is mounted on the front of the display, a clear image with high contrast can be obtained.
  • the electromagnetic shielding film comprising the conductive foil subjected to the pattern etching, the light absorbing layer subjected to the matte treatment, and the base film is manufactured, for example, by the following procedure.
  • the unevenness on the surface of the light-absorbing layer subjected to the matte treatment is transferred to the transparent adhesive layer.
  • the surface of the transparent adhesive layer that appears after the light absorbing layer and the metal foil are removed by etching in the pattern etching of (3) is an uneven surface transferred from the light absorbing layer.
  • the uneven surface of such a transparent adhesive layer has a property of scattering light. Therefore, in the present invention, as in claim 2 or 5, the foil-side surface of the electromagnetic wave shielding film is adhered to the transparent substrate with a thermosetting resin or a transparent adhesive, and the concave and convex transferred to the transparent adhesive layer. Is preferably filled with a thermosetting resin or a transparent adhesive to prevent scattering of light and increase transparency.
  • the electromagnetic wave shielding light transmitting window material includes at least an electromagnetic wave
  • the electromagnetic wave shielding film comprises: a transparent base film; and a surface of the base film opposite to the transparent substrate.
  • a pattern-etched conductive foil adhered by a transparent adhesive, and a light-absorbing layer for preventing reflection is provided on a surface of the foil opposite to the base film; The surface of the absorption layer opposite to the base film is roughened.
  • This electromagnetic wave shielding film also has a high anti-reflection effect because the surface of the light absorbing layer is matte-treated. Therefore, when the electromagnetic wave shielding light transmitting window material having the electromagnetic wave shielding film is mounted on the front of the display, a clear image with high contrast can be obtained.
  • the electromagnetic wave shielding film composed of the light absorption layer subjected to the matte treatment, the conductive foil subjected to the pattern etching, and the base film is manufactured by, for example, the following procedure.
  • a metal foil is adhered to a transparent base film with a transparent adhesive.
  • a method of manufacturing an electromagnetic wave shielding light transmitting window material comprising: laminating and integrating an electromagnetic wave shielding film and a transparent substrate. Forming a light-absorbing layer on one surface of the conductive foil, roughening the surface of the light-absorbing layer, and applying a transparent adhesive to the conductive foil with the light-absorbing layer using a transparent adhesive. A step of pattern-etching the conductive foil with the light-absorbing layer adhered on the base film; and a step of applying a transparent adhesive to the etching-treated surface of the electromagnetic shielding film obtained by the pattern etching. Applying an agent to form a coating film, and pressing the coating film forming surface of the electromagnetic wave shielding film onto a transparent substrate to laminate and laminate the electromagnetic wave shielding film and the transparent substrate. Characterized by a step of.
  • the electromagnetic shielding film consisting of the conductive foil subjected to pattern etching, the light absorbing layer subjected to the matte treatment, and the base film is subjected to the above steps 1 to 3
  • the surface of the transparent adhesive layer that is exposed after the light absorbing layer and the metal foil are removed by pattern etching is a concave / convex surface transferred from the light absorbing layer.
  • a transparent adhesive is applied to the foil-side surface of the electromagnetic wave shielding film, and this coating is applied to a transparent substrate.
  • the unevenness transferred to the transparent adhesive layer is filled with a transparent adhesive to prevent scattering of light and increase transparency.
  • the thickness of the coating film of the transparent pressure-sensitive adhesive is preferably from 1 to 100 ⁇ m, and a coating film having such a thickness absorbs the unevenness of the matte treated surface of the light absorbing layer, and
  • the electromagnetic wave shielding film can be adhered to a transparent substrate or the like with good workability.
  • the electromagnetic wave shielding film may be bonded to the transparent substrate via another film or the like, but is preferably directly bonded to the transparent substrate with a transparent adhesive.
  • a display panel is a display panel comprising: a display panel main body; and an electromagnetic wave shielding film disposed on a front surface of the display panel main body.
  • a transparent substrate film, and a conductive foil which is adhered to a surface of the display panel body side of the substrate film by a transparent adhesive and is pattern-etched, and A light absorbing layer for antireflection is provided on the surface, and the surface of the light absorbing layer on the side of the base film is subjected to a roughening treatment.
  • a display panel is a display panel comprising: a display panel main body; and an electromagnetic wave shielding film disposed on a front surface of the display panel main body.
  • a light absorption layer for preventing reflection is provided on a surface opposite to the material film, and the light absorption layer is provided on a side opposite to the base film. Is characterized in that the surface is roughened.
  • These display panels have an electromagnetic wave sinored film disposed on the front of the display panel body, which can improve productivity and reduce cost by reducing the weight and thickness of the display panel and reducing the number of parts. .
  • this electromagnetic wave shielding film has a high antireflection effect because fine irregularities are formed on the surface of the light absorbing layer by a roughening treatment. Therefore, by arranging the electromagnetic shielding film on the front surface of the display panel main body, a clear image with high contrast can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the electromagnetic wave shielding light transmitting window material according to the first embodiment.
  • FIG. 2 is a schematic sectional view showing another embodiment of the electromagnetic wave shielding light transmitting window material according to the first embodiment.
  • FIG. 3 is an explanatory diagram showing an example of a method for producing an electromagnetic wave shielding film used in the first embodiment.
  • FIG. 4 is a plan view showing a specific example of the etching pattern.
  • FIG. 5 is an enlarged cross-sectional view illustrating a bonding portion between the electromagnetic wave shielding film of the electromagnetic wave shielding light transmitting window material of FIG. 1 and the transparent substrate.
  • FIG. 6 is a schematic sectional view showing an embodiment of the electromagnetic wave shielding light transmitting window material according to the second embodiment.
  • FIG. 7 is an explanatory view showing one example of a method for producing an electromagnetic wave shielding film used in the second embodiment.
  • FIG. 8 is an enlarged cross-sectional view illustrating an adhesive portion between the electromagnetic wave shielding film of the electromagnetic wave shielding light transmitting window material shown in FIG. 6 and the transparent substrate.
  • FIG. 9 is a schematic cross-sectional view showing an embodiment of the electromagnetic wave shielding light transmitting window material manufactured in the third embodiment.
  • FIG. 10 is an explanatory view showing an embodiment of a method for producing an electromagnetic wave shielding film according to the third embodiment.
  • FIG. 11 is an enlarged cross-sectional view illustrating an adhesive portion between the electromagnetic wave shielding film with an adhesive film and the transparent substrate of the electromagnetic wave shielding light transmitting window material shown in FIG.
  • FIG. 12 is a schematic sectional view showing an embodiment of the display panel according to the fourth mode.
  • FIG. 13 is a schematic sectional view showing an embodiment of the display panel according to the fifth mode.
  • FIG. 14 is an enlarged cross-sectional view illustrating a bonded portion between the electromagnetic wave shielding film and another member of the display panel shown in FIG.
  • FIG. 15 is an enlarged cross-sectional view illustrating a bonded portion of the display panel shown in FIG. 13 between the electromagnetic wave shielding film and another member.
  • FIG. 16 is a partially cutaway perspective view showing the configuration of a general PDP.
  • a copper foil 11 is prepared as a conductive foil (FIG. 3A), and a light absorbing layer 12 is formed on one surface of the copper foil 11 (FIG. 3B).
  • a method for forming the light absorbing layer 12 there is a method in which a copper alloy such as Cu-Ni is formed into a film and then blackened by a treatment such as acid or alkaline. The blackened surface that has been surface-treated by this treatment is roughened, and the surface roughness R Z can be changed depending on the treatment conditions.
  • light absorbing ink is applied to copper foil 1
  • the light-absorbing ink used here may be a carbon ink, a nickel ink, or an ink such as a dark organic pigment.
  • the light-absorbing layer 12 is then subjected to a method of mechanically roughening the surface 12 A of the surface 12 A, such as shotplast, a method of roughening the surface with a chemical such as an acid or an alkali, or a method of preparing an inorganic or organic ink in advance.
  • a mixture of these fine particles is applied, and the surface is roughened by a method such as forming a coating film with a rough surface to form fine irregularities, and a matte treatment is performed (Fig. 3C).
  • the thickness of the light-absorbing layer 12 varies depending on the material for blackening and the conductivity, but a sufficient electromagnetic wave shielding property without impairing the conductivity.
  • the thickness is preferably about 1 to 20 ⁇ m.
  • a good antireflection effect can be obtained by performing a matte treatment so that the surface roughness Rz of the light absorbing layer is 0.1 to 20 / im.
  • a light-absorbing layer 12 is formed, and the matte-treated surface of the copper foil 11 subjected to the matte treatment is applied to a transparent base film such as a PET (polyethylene terephthalate) film 13 by a transparent adhesive. Adhere by 14 (Fig. 3D, Fig. 3E).
  • the laminated film obtained in this manner is subjected to pattern etching according to a conventional method to partially remove the copper foil 11 on which the light absorbing layer 12 has been formed, thereby obtaining a copper ZPET as an electromagnetic wave shielding film.
  • a laminated etching film 10 is obtained (FIG. 3F).
  • the exposed surface 14A of the transparent adhesive 14 of the copper ZPET laminated etching film 10 is an uneven surface to which fine unevenness due to the matte treatment of the light absorbing layer 12 is transferred.
  • the conductive foil constituting the electromagnetic wave shielding film is not limited to copper foil, and metal foil such as stainless steel, aluminum, nickel, iron, brass, or an alloy thereof can be used. , Aluminum foil. If the thickness of the metal foil is too thin, it is not preferable in terms of handleability and workability of pattern etching, etc.If it is too thick, it may affect the thickness of the obtained electromagnetic wave shielding light transmitting window material, or may require an etching process. Since the time becomes long, it is preferable to set it to about 1 to 200 ⁇ .
  • the method of pattern-etching the metal foil may be any method generally used, but photo-etching using a resist is preferable.
  • photo-etching using a resist is preferable.
  • pattern exposure is performed using a desired mask or the like, and development processing is performed to form a resist pattern.
  • development processing is performed to form a resist pattern.
  • the portion of the metal foil having no resist may be removed with an etching solution such as a ferric chloride solution.
  • a matte-treated metal foil formed with the photoresist film and a light-absorbing layer, an adhesive sheet of a transparent adhesive and a base film are bonded to a base film adhesive sheet.
  • Laminate in order of metal foil photo-resist film and press thus, these can be laminated and integrated in one step, which is preferable.
  • the degree of freedom of the pattern is large, and the metal foil can be etched to an arbitrary wire diameter, an interval and a hole shape. Therefore, there is no moire phenomenon, and the desired electromagnetic wave shielding property and light transmittance can be obtained. It is possible to easily form an electromagnetic wave shielding film having the same.
  • the metal foil etching pattern there is no particular limitation on the shape of the metal foil etching pattern.
  • the moire phenomenon can be prevented as a random pattern.
  • the area ratio of the opening portion on the projection surface of the metal foil (hereinafter, referred to as “opening ratio”) is preferably 20 to 90%.
  • a resin film described later can be used as the transparent substrate material used in the electromagnetic wave shielding light transmitting window material of the present invention.
  • Possible force PET, PBT (polybutylene terephthalate), PC, PMMA, acrylic film are preferable. Thickness is sufficient without excessively increasing the thickness of the obtained electromagnetic wave shielding light transmitting window material. In order to obtain durability and handleability, it is preferable to set it to about 1 to 200 jum.
  • EVA or PVB resin which will be described later, can be used as an adhesive resin used for the electromagnetic wave shielding light transmitting window material of the present invention.
  • Epoxy, acrylic, urethane, polyester, and rubber-based transparent adhesives can also be used.
  • urethane-based and epoxy-based adhesives are particularly desirable in terms of etching resistance in the etching process after lamination. Good.
  • the thickness of the adhesive layer made of the transparent adhesive 14 is preferably 1 to 50 m. This transparent adhesive 14 may be blended with the conductive particles described below, if necessary.
  • FIG 1 and 2 are schematic cross-sectional views showing an embodiment of the electromagnetic wave shielding light transmitting window material according to the first embodiment of the present invention.
  • the electromagnetic wave shielding light transmitting window material 1 in Fig. 1 is an anti-reflection film 3 on the outermost layer, a copper ZPET laminated etching film 10 as an electromagnetic wave shielding film 10, a transparent substrate 2 and a near-infrared power film on the bottom layer. 5 are laminated and integrated using an adhesive interlayer 4 A, 4 B and an adhesive 4 C as an adhesive, and a conductive adhesive tape 7 ( Hereinafter, referred to as “second conductive adhesive tape”).
  • the electromagnetic wave shielding film 10 is approximately the same size as the transparent substrate 2 and has a conductive adhesive tape 8 (hereinafter referred to as a “first conductive adhesive”) that extends around one edge from one surface to the other surface. Tape).
  • the electromagnetic shielding light transmitting window material 1A in Fig. 2 is different from the electromagnetic shielding light transmitting window material in Fig. 1 only in that a transparent adhesive 4D is used instead of the bonding interlayer 4B. It has the same configuration.
  • the electromagnetic-shielding light-transmitting window material 1A in Fig. 2 is composed of an anti-reflection film 3 on the outermost layer, a copper / PET laminated etching film 10 as an electromagnetic-shielding film 10, a transparent substrate 2 and a near-infrared light
  • the film 5 is laminated and integrated using an adhesive intermediate film 4A as an adhesive, a transparent adhesive 4D and an adhesive 4C, and the conductive adhesive is applied to the end face of the laminate and the front and back edges adjacent thereto.
  • Tape 7 (second conductive adhesive tape) is adhered and integrated.
  • the electromagnetic wave shielding film 10 is approximately the same size as the transparent substrate 2, and the conductive adhesive tape 8 (the first conductive adhesive tape) extends around the edge from one surface to the other surface. ) Is attached.
  • the first conductive adhesive tape 8 is preferably provided over the entire periphery of the edge of the electromagnetic wave shielding film 10, but is partially provided, for example, on the opposite two side edges. It may be.
  • the anti-reflection film 3 and the bonding intermediate film 4A thereunder are smaller than the electromagnetic shielding film 10 and the transparent substrate 2.
  • the edges of the antireflection film 3 and the adhesive intermediate film 4 A are slightly smaller than the edges of the electromagnetic wave shielding film 10 and the transparent substrate 2 (for example, 3 to 2 Omm, particularly preferably 5 to 10 mm). (approximately mm).
  • the first conductive adhesive tape 8 at the periphery of the electromagnetic wave shielding film 10 is not covered with the antireflection film 3 and the bonding intermediate film 4A.
  • the second conductive adhesive tape 7 directly covers the first conductive adhesive tape 8, and passes through the first and second conductive adhesive tapes 8, 7 to form an electromagnetic wave shielding film 10. Are reliably conducted.
  • the near-infrared power film 5 with the adhesive 4C is also slightly smaller than the transparent substrate 2, and the edge of the near-infrared power film 5 with the adhesive 4C is slightly from the edge of the transparent substrate 2 (for example, 3 to 20 mm in particular). (Preferably about 5 to 10 mm).
  • the peripheral portions of the anti-reflection film 3, the adhesive intermediate film 4 A, and the near-infrared power film 5 with the adhesive 4 C are not covered with the second conductive adhesive tape 7. It may cover the inside of the second conductive adhesive tape 7.
  • the adhesive intermediate film 4A is smaller than the electromagnetic wave shielding film 10 and the transparent substrate 2, and the edge must be receded, but the near infrared cut film 5 with adhesive 4C is transparent. The size may be equivalent to that of the substrate 2.
  • the anti-reflection film 3 and the bonding intermediate film 4 A be set back from the edges of the electromagnetic wave shielding film 10 and the transparent substrate 2 over the entire circumference thereof.
  • the conductive adhesive tape 8 is provided at the two opposing edges, only that portion is receded, and the second conductive adhesive tape 7 may also be provided at the opposing two edges.
  • the constituent materials of the transparent substrate 2 include glass, polyester, polyethylene terephthalate (PET), polybutylene terephthalate, and polymethyl methacrylate.
  • PMMA Acrylic plate
  • PC Polycarbonate
  • Polystyrene Triacetate film
  • Polyvinyl alcohol Polychlorinated vinyl
  • Polyvinylidene chloride Polyethylene
  • Ethylene monoacetate biel copolymer Polyvinyl butyral
  • Metal ion crosslinking Ethylene-methacrylic acid copolymer polyurethane, cellophane, etc.
  • Preferable are glass, PET, PC, PMMA.
  • the thickness of the transparent substrate 2 is appropriately determined according to the required characteristics (for example, strength and light weight) depending on the use of the window material to be obtained, but is usually 0.1 to 1 Omm, preferably 1 to 4 mm. It is said.
  • a black frame coating based on acryl resin or the like may be provided on the periphery of the transparent substrate 2.
  • the transparent substrate 2 may be provided with a heat ray reflective coat such as a metal thin film or a transparent conductive film to enhance the functionality.
  • a single-layer film of the following (1) or a high refractive index transparent film is formed on a base film of PET, PC, PMMA, etc. (thickness is, for example, about 25 to 250 ⁇ ) 3 A.
  • a laminated film with a refractive index transparent film for example, a film in which an antireflection layer 3B formed of a laminated film having a laminated structure as shown in the following (2) to (5) is formed.
  • a base film in which a transparent film having a lower refractive index than 3 A is laminated one layer (2) A high-refractive-index transparent film and a low-refractive index transparent film are laminated one by one in a total of two layers (3) High refractive index Transparent and low-refractive-index transparent films are alternately laminated two by two, for a total of four layers.
  • the high-refractive-index transparent films I TO (indium tin oxide) or Z nO, ZnO doped with A 1, T i 0 2, S n0 2, ⁇ ]: 0 refractive index 1.8 or more thin film such as
  • a transparent conductive thin film can be formed.
  • the high refractive index transparent film a thin film in which these particles are dispersed in a binder of acryl or polyester may be used.
  • the low refractive index transparent film may be a thin film made of S i 0 2, Mg F 2 , A 1 2 0 3 low refractive index material having a refractive index of 1.6 or less, such as.
  • a thin film made of a silicon-based or fluorine-based organic material is also suitable.
  • the thickness of these films differs depending on the film configuration, film type, and center wavelength in order to reduce the reflectance in the visible light region due to light interference.
  • the first layer on the transparent substrate side High The refractive index transparent film
  • the second layer low refractive index transparent film
  • the third layer high refractive index transparent film
  • the fourth layer low refractive index
  • An anti-contamination film may be further formed on the anti-reflection film 3 to enhance the surface's anti-staining property.
  • a thin film made of a fluorine-based thin film, a silicon-based thin film and the like having a thickness of about 1 to 100 nm is preferable.
  • a coating layer of a near-infrared absorbing material such as a copper-based inorganic material, a copper-based organic material, a cyanine-based, a phthalocyanine-based, a nickel complex-based, and a diimmonium-based material, or an oxidation
  • a multilayer coating layer 5B of an inorganic dielectric such as zinc or ITO (indium tin oxide) and a metal such as silver.
  • a film made of PET, PC, PMMA, or the like can be preferably used.
  • the base film 5A has a thickness of about 10 ⁇ m to 1 mm in order to ensure handleability and durability without excessively increasing the thickness of the obtained electromagnetic wave shielding light transmitting window material.
  • the thickness of the near infrared ray coating layer 5A formed on the pace film 5A is usually about 0.5 to 50 ⁇ .
  • a near-infrared cut layer using preferably two or more kinds of the above-mentioned near-infrared power materials may be provided, and two or more kinds of coating layers may be mixed, laminated, or provided on both surfaces of the base film. They may be coated separately, or two or more kinds of near infrared cut films may be laminated.
  • the near-infrared cut material a combination of two or more near-infrared cut materials having different near-infrared cut types, such as the following, has good near-infrared power performance (for example, 850) without impairing transparency. It is preferable to obtain sufficient absorption of near-infrared light in a wide wavelength range of near-infrared light such as 1250 nm to 1250 nm.
  • a transparent conductive film may be further laminated together with the near-infrared cut film 5.
  • a resin film in which conductive particles are dispersed, or a film in which a transparent conductive layer is formed on a base film can be used.
  • the conductive particles to be dispersed in the film are not particularly limited as long as they have conductivity, and examples thereof include the following.
  • the particle size of these conductive particles is preferably 0.5 mm or less, since an excessively large particle size would affect light transmission and the thickness of the transparent conductive film.
  • the preferred particle size of the conductive particles is 0.01 to 0.5 mm.
  • the mixing ratio of the conductive particles in the transparent conductive film is too large, the light transmittance is impaired, and if the mixing ratio is too small, the electromagnetic wave shielding property is insufficient, so that the weight ratio of the transparent conductive film to the resin is small.
  • the color and gloss of the conductive particles are appropriately selected according to the purpose, but from the use as a filter of a display panel, a dark and matte color such as black or brown is preferable. In this case, the conductive particles appropriately adjust the light transmittance of the filter, so that the screen can be easily viewed.
  • Examples of the base film having a transparent conductive layer formed thereon include those having a transparent conductive layer formed of tin indium oxide, zinc aluminum oxide, or the like formed by vapor deposition, sputtering, ion plating, CVD, or the like. . If the thickness of the transparent conductive layer is less than 0.01 / xm, the thickness of the conductive layer for electromagnetic wave shielding is too thin, and sufficient electromagnetic wave shielding properties cannot be obtained. Light transmission may be impaired.
  • the thickness of such a transparent conductive film is usually about 1 ⁇ to 5 ⁇ .
  • thermosetting resin constituting the bonding intermediate film 4A of the light transmitting window material 1 a transparent and elastic resin, for example, a resin usually used as an adhesive for laminated glass is preferable. In particular, it is effective to use an elastic film having high scattering prevention ability as the bonding intermediate films 4A and 4B disposed on the front side of the transparent substrate 2.
  • the resin of the film having such elasticity examples include an ethylene monoacetate copolymer, an ethylene monomethyl acrylate copolymer, an ethylene mono (meth) atalylic acid copolymer, and an ethylene mono acetate.
  • PVB polyvinyl butyral
  • PVB resin used in laminated glass for automobiles is also suitable in terms of impact resistance, penetration resistance, adhesiveness, transparency, and the like.
  • the PVB resin has a polyvinyl acetal unit of 70 to 95% by weight 0 , a polyvinyl acetate unit of 1 to 15% by weight, and an average degree of polymerization of 200 to 300, preferably 300 to 100%. It is preferably 250, and the PVB resin is used as a resin composition containing a plasticizer.
  • plasticizer of the PVB resin composition examples include organic plasticizers such as monobasic acid esters and polybasic acid esters, and phosphoric acid plasticizers.
  • Monobasic acid esters include organic acids such as butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptanoic acid, n-octylic acid, 2-ethylhexylic acid, pelargonic acid (n-nonylic acid), and decylic acid.
  • Esters obtained by the reaction of an acid with triethylene dalicol are preferred, and more preferred are triethylene di-2-ethylethyl butyrate, triethylene glycol ⁇ ⁇ -di-2-ethynolehexoate, and triethylene glycol diethylene glycol.
  • Esters of the above organic acids with tetraethylene glycol or tripropylenedaricol can also be used.
  • esters of an organic acid such as adipic acid, sebacic acid, and azelaic acid with a linear or branched alcohol having 4 to 8 carbon atoms are preferable, and more preferably, Examples include dibutyl sepate, dioctylazelate, dibutyl carbitol adipate and the like.
  • phosphoric acid plasticizers examples include tributoxetil phosphate, isodecyl phen Nyl phosphate, triisopropyl phosphate and the like.
  • the amount of the plasticizer is small, the film-forming property is reduced, and if the amount is large, the durability at the time of heat resistance and the like are impaired.
  • To 50 parts by weight preferably 10 to 40 parts by weight.
  • Additives such as a stabilizer, an antioxidant, and an ultraviolet absorber may be added to the PVB resin composition to further prevent deterioration.
  • a cross-linkable thermosetting resin containing a cross-linking agent particularly a cross-linkable EVA resin, is preferable.
  • EVA having a vinyl acetate content of 5 to 50% by weight, preferably 15 to 40% by weight is used. If the vinyl acetate content is less than 5% by weight, there is a problem in weather resistance and transparency. If the content exceeds 40% by weight, mechanical properties are remarkably deteriorated and film formation becomes difficult. Locking occurs.
  • an organic peroxide is appropriate, and is selected in consideration of sheet processing temperature, crosslinking temperature, storage stability, and the like.
  • Peroxides that can be used include, for example, 2,5-dimethylhexane-1,2,5-dihydroxide peroxide; 2,5-dimethyl-2,
  • peroxides may be used alone or in combination of two or more, usually in an amount of 10 parts by weight or less, preferably 0.1 to 10 parts by weight, based on 100 parts by weight of EVA. used.
  • the organic peroxide is usually kneaded with an EVA by an extruder, a roll mill or the like, but may be dissolved in an organic solvent, a plasticizer, a bul monomer, or the like, and added to the EVA film by an impregnation method.
  • EVA mechanical strength, optical properties, adhesion, weather resistance, whitening resistance, cross-linking speed, etc.
  • various compounds containing ethoxy groups or methacryloxy groups and aryl groups are added. be able to.
  • Acrylic or methacrylic acid derivatives such as esters and amides thereof are the most common compounds used for this purpose, and ester residues other than alkyl groups such as methyl, ethyl, dodecyl, stearyl, and benzyl.
  • a cyclohexyl group a tetrahydrofurfuryl group, an aminoethyl group, a 2-hydroxylethyl group, a 3-hydroxypropyl group and a 3-chloro-2-hydroxypropyl group.
  • ethylene glycol triethylene glycol cornole, polyethylene glycol cornole, and trimethylolone propylone.
  • esters with polyfunctional alcohols such as pentaerythritol and the like.
  • a representative example is amide acetone amide.
  • polyfunctional esters such as acrylyl or methacrylic acid esters such as trimethylolpropane, pentaerythritol and glycerin, triallyl cyanurate, triallyl isocyanurate, diaryl phthalate, diaryl isophthalate, and diaryl maleate And the like. These may be used singly or as a mixture of two or more, usually in an amount of 0.1 to 100 parts by weight of EVA.
  • the electromagnetic wave shielding film 10 when the electromagnetic wave shielding film 10 is bonded to the transparent substrate 2, they are laminated via the bonding intermediate film 4B, and after the temporary compression bonding (after the temporary compression bonding, It can be re-applied.), And by applying pressure and heating, as shown in Fig. 5, The two layers can be bonded to each other without leaving air bubbles between the wave shielding film 10 and the transparent substrate 2, and therefore, the fine surface 14A of the transparent adhesive 14 of the electromagnetic wave shielding film 10 and the surface 14A It is preferable that the adhesive resin 4B 'of the adhesive intermediate film 4B is wrapped around in a convex manner to completely fill the adhesive resin, and light scattering due to the unevenness can be reliably prevented.
  • the adhesive resin 4 B ′ of the adhesive intermediate film 4 B prevents the scattering of light due to the fine unevenness of the surface 14 A of the transparent adhesive 14 of the electromagnetic wave shielding film 10 more reliably.
  • the refractive index of the transparent adhesive 14 and the bending of the adhesive resin 4B 'after curing are required.
  • the rates are approximately equal.
  • resin-based adhesives epoxy-based, acrylic-based, urethane-based, polyester-based, and rubber-based transparent adhesives can be used.
  • the thickness of the bonding intermediate films 4A and 4B is preferably, for example, about 10 to 100 m.
  • the bonding interlayers 4A and 4B may also contain a small amount of an ultraviolet absorber, an infrared absorber, an aging inhibitor, and a paint processing aid, and to adjust the color of the filter itself. Colorants such as dyes and pigments, and fillers such as carbon black, hydrophobic silica, and calcium carbonate may be added in appropriate amounts.
  • This adhesive interlayer is prepared by mixing the adhesive resin and the above-mentioned additives, kneading them with an extruder, a roll, etc., and then forming a sheet into a predetermined shape by a film forming method such as calendar, roll, T-die extrusion, or inflation. It is manufactured by doing. During film formation, embossing is applied to prevent blocking and facilitate degassing during pressure bonding with a transparent substrate.
  • the adhesive interlayer 4A the following adhesives (pressure-sensitive adhesives) are suitably used in addition to the above-mentioned adhesives.
  • a light-sensitive pressure-sensitive adhesive can be used.
  • acrylic elastomers, thermoplastic elastomers such as SBS, SEBS and the like are preferably used.
  • a tackifier, an ultraviolet absorber, a coloring pigment, a coloring dye, an antioxidant, an adhesion-imparting agent, and the like can be appropriately added.
  • the transparent adhesive 4D when bonding the electromagnetic wave shielding film 10 to the transparent substrate 2, they are laminated via the transparent adhesive 4D, and after the temporary pressure bonding (this temporary After pressure bonding, it can be re-applied as appropriate.), Pressurizing, heating, or depressurizing or heating to leave air bubbles between the electromagnetic wave shielding film 10 and the transparent substrate 2 as shown in FIG. Therefore, the transparent adhesive 4D can be wrapped around the fine irregularities of the surface 14A of the transparent adhesive 4 of the electromagnetic wave shielding film 10 to completely fill it. However, it is possible to reliably prevent the scattering of light due to the unevenness.
  • the transparent pressure-sensitive adhesive 4D can be re-attached, and the electromagnetic wave shielding film 10 and the transparent substrate 2 and the like can be firmly bonded and integrated without leaving bubbles at the bonding interface.
  • the transparent adhesive 4D is preferably applied directly on the conductive foil surface of the electromagnetic wave shielding film 10 on which the pattern is etched.
  • the refractive index of the transparent adhesive 14 and the refractive index of the transparent adhesive 4D are substantially equal to each other so that light reflection does not occur at the interface between the adhesive 14 and the transparent adhesive 4D.
  • the electromagnetic wave shielding film 10 may be directly bonded to the transparent substrate 2 as shown in FIGS. 1 and 2, or may be bonded via another film.
  • the adhesive 4C of the near-infrared power film 5 those exemplified as the transparent adhesive 4D can be used. These transparent adhesives 4D and the adhesive 4C may be previously used as the electromagnetic wave shielding film 10C. Or a film having a thickness of 5 to 100 m, which can be bonded to a transparent substrate or another film.
  • the near-infrared cut film 5 is preferably laminated on the transparent substrate 2 using an adhesive 4C. This is because the near-infrared cut film 5 is vulnerable to heat.
  • a low-temperature crosslinking type EVA crosslinking temperature of about 70 to 130 ° C.
  • EVA crosslinking temperature of about 70 to 130 ° C.
  • the second and first conductive adhesive tapes 7 and 8 are provided with adhesive layers 7B and 8A in which conductive particles are dispersed on one surface of metal foils 7A and 8A. Things.
  • an acrylic, rubber, or silicon adhesive, or an epoxy or phenol resin mixed with a curing agent can be used.
  • conductive particles dispersed in the adhesive layers 7B and 8B various types of conductive particles may be used as long as they are electrically good conductors.
  • metal powder such as copper, silver, and nickel, resin or ceramic powder coated with such a metal can be used.
  • shape There is no particular limitation on the shape, and any shape such as a scale, a tree, a grain, a pellet, etc. can be used.
  • the amount of the conductive particles is preferably 0.1 to 15% by volume with respect to the polymer constituting the adhesive layers 7B and 8B, and the average particle size is 0.1 to 100%. m is preferred. In this way, by defining the amount and the particle size, aggregation of the conductive particles can be prevented, and good conductivity can be obtained. Copper, silver, nickel, aluminum, stainless steel, etc. foil can be used as the metal foil 7 A, 8 A serving as the base material of the conductive adhesive tape 7, 8, and the thickness is usually In the case of, it is about 1 to 100 ⁇ .
  • the adhesive layers 7 ⁇ , 8 ⁇ are prepared by uniformly mixing the above-mentioned adhesive and conductive particles at a predetermined ratio with the metal foils 7 ⁇ , 8 ⁇ , in a roll coater, a die coater, a knife coater, a my barco. It can be easily formed by coating with a single coater, flow coater, spray coater or the like.
  • the thickness of the adhesive layers 7B and 8A is usually about 5 to 100 ⁇ .
  • an antireflection film 3 an electromagnetic wave shielding film 10, a transparent substrate 2, an adhesive 4C and a near-infrared cut film 5 with C are provided.
  • an adhesive intermediate film 4 ⁇ , 4 ⁇ and first and second conductive adhesive tapes 8 and 7 are prepared, and a first conductive adhesive tape 8 is fastened to the periphery of the electromagnetic wave shielding film 10 in advance.
  • An anti-reflection film 3, an electromagnetic wave shielding film 10 with a first conductive adhesive tape 8, and a transparent substrate 2 are laminated with an adhesive interlayer 4 4, 4 ⁇ interposed therebetween to form an adhesive interlayer. Heat under pressure under curing conditions to integrate.
  • the near-infrared cut film 5 is stuck with the adhesive 4C.
  • the second conductive adhesive tape 7 is fastened to the periphery of the laminate, and adhered by heat and pressure according to the method of curing the adhesive layers 7 ⁇ and 8 ⁇ of the conductive adhesive tapes 7 and 8 used. Fix it.
  • an antireflection film 3 an electromagnetic wave shielding film 10
  • a transparent substrate 2 a near infrared cut film 5 with an adhesive 4 C 5
  • an adhesive intermediate film 4A a transparent adhesive 4D and first and second conductive adhesive tapes 8 and 7 are prepared, and a transparent adhesive 4D is applied to one surface of the electromagnetic wave shielding film 10 in advance.
  • Heat bonding can be easily performed with a general heat sealer.Pressing and heating methods include placing a laminate with cross-linked conductive adhesive tape in a vacuum bag and heating after degassing. The bonding can be performed very easily.
  • the bonding conditions depend on the type of crosslinking agent (organic peroxide) used, but are usually 70 to 150 ° C, preferably 70 to 130 ° C. It is usually from 10 seconds to 120 minutes, preferably from 20 seconds to 60 minutes.
  • the light source In the case of photocrosslinking, many light sources that emit light in the ultraviolet to visible range can be used as the light source.
  • the light source For example, ultrahigh pressure, high pressure, low pressure mercury lamps, chemical lamps, xenon lamps, halogen lamps, mercury halogen lamps, and carbon arc lamps , Incandescent lamps, laser light, and the like.
  • the irradiation time cannot be determined unconditionally depending on the type of lamp and the intensity of the light source, but is usually about several tens of seconds to several tens of minutes. After heating to 40 to 120 ° C. in advance to promote cross-linking, this may be irradiated with ultraviolet rays.
  • the pressing force at the time of bonding is also appropriately selected, and is preferably 5 to 50 kg Z cm 2 , particularly preferably 10 to 30 kg Z cm 2 .
  • the electromagnetic-shielding light-transmitting window material 1 and 1A to which the conductive adhesive tapes 7 and 8 are attached in this manner can be easily and easily incorporated into the housing.
  • good conduction between the electromagnetic wave shielding film 10 and the housing can be obtained via the second conductive adhesive tapes 7 and 8.
  • a good electromagnetic wave shielding effect can be obtained.
  • good near-infrared cut performance can be obtained in the presence of the near-infrared cut film 5.
  • only one transparent substrate 2 is used, it is thin and lightweight.
  • both surfaces of the transparent substrate 2 are covered with the films 3 and 5, the cracking of the transparent substrate 2 is prevented, and the transparent substrate 2 in case of cracking is prevented. Is prevented from scattering.
  • the electromagnetic wave shielding film 10 is formed by pattern etching of conductive foil such as copper foil 11, both the electromagnetic wave shielding property and the light transmittance can be improved by arbitrarily adjusting the design of the etching pattern. The problem of the moire phenomenon can be solved.
  • the electromagnetic wave shielding film 10 has a light absorbing layer 12, and fine irregularities are formed on the surface of the light absorbing layer 12 by a roughening treatment, and the irregularities are transferred. Since the irregularities on the surface of the applied transparent adhesive 14 are filled with the transparent adhesive 4B, a clear image with high antireflection effect and high contrast can be obtained.
  • the electromagnetic shielding light transmitting window material shown in FIGS. 1 and 2 is an example of the electromagnetic shielding light transmitting window material according to the first embodiment of the present invention, and the present invention is not limited to the illustrated one. Not something.
  • a copper foil 11 is prepared as a conductive foil (FIG. 7A), and the copper foil 11 is adhered to a transparent base film such as a PET (polyethylene terephthalate) film 13 with a transparent adhesive 14 ( Figure 7B).
  • a transparent base film such as a PET (polyethylene terephthalate) film 13 with a transparent adhesive 14 ( Figure 7B).
  • the laminated film obtained in this manner is subjected to pattern etching to partially remove the copper foil 11 (FIG. 7C).
  • a light absorbing layer 12 is formed on the surface of the patterned copper foil 11 (see FIG.
  • the light absorbing layer 12 As a method for forming the light absorbing layer 12, there is a method in which a copper alloy such as Cu—Ni is formed into a film and then blackened by a treatment with an acid or an alkali. The blackened surface that has been surface-treated by this treatment is roughened, and the surface roughness Rz can be changed depending on the treatment conditions. It can also be formed by applying a light-absorbing ink to the copper foil 11 and curing it. Examples of the light-absorbing ink used here include carbon ink, nickel ink, and other blue-colored organic inks. An ink such as a pigment is used.
  • the light-absorbing layer 12 is then subjected to a method of mechanically roughening the surface 12A of the surface 12A by shot blasting, a method of roughening the surface with a chemical such as an acid or an alkali, or a method of preparing an inorganic or organic ink in advance.
  • a method of mechanically roughening the surface 12A of the surface 12A by shot blasting a method of roughening the surface with a chemical such as an acid or an alkali, or a method of preparing an inorganic or organic ink in advance.
  • Coating a mixture of fine particles to form a rough coating film Applying a matte finish by forming fine irregularities by roughening the surface by a method etc.
  • the thickness of the light absorbing layer 12 varies depending on the blackening material and conductivity.However, in order to obtain sufficient electromagnetic wave shielding without impairing conductivity, about 1 nm to 10 ⁇ m In order to sufficiently prevent light scattering with a good antireflection effect, the degree of surface roughening of the surface 12A is about 0.1 to 20 ⁇ in terms of surface roughness Rz. It is preferred that
  • the type and thickness of the conductive foil constituting the electromagnetic wave shielding film, the pattern etching method and the etching pattern are determined by the method of manufacturing the electromagnetic wave shielding film used in the electromagnetic wave shielding light transmitting window material according to the first aspect. This is the same as described in the method.
  • the type and thickness of the transparent base film for bonding the metal foil such as the copper foil 11 and the transparent adhesive for bonding the transparent base film and the metal foil are also as described above.
  • Various transparent pressure-sensitive adhesives can be used as the transparent pressure-sensitive adhesive applied to the copper ZPET laminated etching film 10a to form the coating film 15, such as acrylic, SBS, S Thermoplastic elastomers such as EBS are preferably used.
  • a tackifier, an ultraviolet absorber, a coloring pigment, a coloring dye, an antioxidant, an adhesion-imparting agent and the like can be appropriately added.
  • the refractive index of the transparent adhesive 14 and the refractive index of the transparent adhesive of the coating film 15 be substantially equal to each other so that light is not reflected at the interface between the transparent adhesive 14 and the transparent adhesive of the coating film 15. Good.
  • a transparent adhesive 14 include acrylic, urethane, and rubber.
  • the thickness of the coating film 15 formed by the transparent adhesive is preferably about 1 to 1 ⁇ .
  • the transparent adhesive film 15 is applied to a portion to which a conductive adhesive tape to be described later is attached so that the copper foil 11 is exposed. It is provided in a portion other than the peripheral edge.
  • FIG. 6 is a schematic cross-sectional view showing an embodiment of an electromagnetic wave shielding light transmitting window material according to the second aspect of the present invention.
  • the electromagnetic wave shielding light transmitting window material 1B shown in FIG. 6 includes an antireflection film 3 on the outermost layer, an electromagnetic wave shielding film 10A with an adhesive film, an adhesive intermediate film 4B serving as an adhesive, a transparent substrate 2, and Near-infrared adhesive film 5 with C on the rearmost layer 4C is laminated and integrated, and conductive adhesive tape 7 (second conductive adhesive tape) is attached to the end face of this laminate and the front and back edges adjacent to it. It is integrated.
  • conductive adhesive tape 7 second conductive adhesive tape
  • the electromagnetic wave shielding film with adhesive film 1 OA is almost the same size as the transparent substrate 2, and the edge of the laminate of the electromagnetic wave shielding film with adhesive film 1 OA, the intermediate film for bonding 4 B and the transparent substrate 2
  • a conductive adhesive tape 8 (first conductive adhesive tape) is attached to the portion so as to extend from one surface to the other surface.
  • the first conductive pressure-sensitive adhesive tape 8 is preferably provided over the entire periphery of the laminate of the electromagnetic wave shielding film 10A with the pressure-sensitive adhesive film and the transparent substrate 2; It may be provided at two opposing edges.
  • the antireflection film 3 is slightly smaller than the electromagnetic wave shielding film with adhesive film 10A and the transparent substrate 2, and the edge of the antireflection film 3 is Electromagnetic wave shielding film with adhesive film 10 A and transparent substrate
  • the second conductive adhesive tape 7 directly covers the first conductive adhesive tape 8, and passes through the first and second conductive adhesive tapes 8, 7, so that the electromagnetic wave shielding film 1 with an adhesive film is provided.
  • the pressure-sensitive adhesive 4 C near-infrared power film 5 is also slightly smaller than the transparent substrate 2,
  • the edge of the near-infrared power film 5 with the adhesive 4C is slightly receded (for example, about 3 to 20 mm, particularly preferably about 5 to 10 mm) from the edge of the transparent substrate 2.
  • the peripheral portions of the anti-reflection film 3 and the near-infrared cut film 5 with the adhesive 4C are not covered with the second conductive adhesive tape 7; It may be covered on the inside.
  • the anti-reflection film 3 is made of an adhesive film.
  • Adhesive 4 EM and shield film smaller than OA and transparent substrate 2 Is also good.
  • the anti-reflection film 3 is set back from the edge of the electromagnetic wave shielding film 1 OA with the adhesive film and the transparent substrate 2 over the entire circumference, but for example, the first conductive adhesive
  • the tape 8 is provided at the two opposing edges, only that portion is retracted, and the second conductive adhesive tape 7 may also be provided at the opposing two edges.
  • an anti-reflection film 3 an electromagnetic wave shielding film 1 OA with an adhesive film, a transparent substrate 2, and a near infrared cut with an adhesive 4C
  • a film 5 an adhesive intermediate film 4B and first and second conductive adhesive tapes 8 and 7 are prepared, and an electromagnetic wave shielding film 1 with an adhesive film 1OA and the transparent substrate 2 are bonded in advance to the adhesive intermediate film 4B. Then, under pressure, heating, or heating under reduced pressure under the curing conditions of the bonding interlayer, they are integrated.
  • the first conductive adhesive tape 8 is fastened to the periphery of the laminate. Then, the anti-reflection film 3 is pressed against the transparent adhesive film 15 of the electromagnetic wave shielding film with an adhesive film 10 A by pressing it, and then the near-infrared cut film 5 is adhered with the adhesive 4 C. Thereafter, the second conductive pressure-sensitive adhesive tape 7 is fixed around the laminate, and is heat-pressed or depressurized according to the method of curing the pressure-sensitive adhesive layers 7B and 8B of the conductive pressure-sensitive adhesive tapes 7 and 8 used. It is fixed by heating.
  • the adhesive is applied to the laminate using the adhesiveness of the pressure-sensitive adhesive layers 7B and 8B. Can be re-applied if necessary. ), And then heat or irradiate with ultraviolet rays while applying pressure or maintaining a reduced pressure as necessary. Heating may be performed at the same time as the ultraviolet irradiation. By locally performing the heating or light irradiation, only a part of the cross-linkable conductive pressure-sensitive adhesive tape can be adhered.
  • Heat bonding can be easily performed with a general heat sealer.
  • a pressurizing and heating method a laminate with a cross-linked conductive adhesive tape is put into a pressurizing chamber such as an autoclave.
  • a method of heating or a method of heating under reduced pressure a method in which the same laminate is put in a vacuum bag and degassed and then heated may be used, and bonding can be performed very easily.
  • the bonding conditions depend on the type of crosslinking agent (organic peroxide) used, but are usually 70 to 150 ° C, preferably 70 to 130 ° C. It is usually from 10 seconds to 120 minutes, preferably from 20 seconds to 60 minutes.
  • the light source In the case of photocrosslinking, many light sources that emit light in the ultraviolet to visible range can be used as the light source.
  • the light source For example, ultrahigh pressure, high pressure, low pressure mercury lamps, chemical lamps, xenon lamps, halogen lamps, mercury halogen lamps, and carbon arc lamps , Incandescent lamps, laser light, and the like.
  • the irradiation time is not generally determined by the type of lamp and the intensity of the light source, but it is usually several tens of seconds to several tens of minutes. After heating to 40 to 120 ° C. in advance to promote cross-linking, this may be irradiated with ultraviolet rays.
  • the pressing force at the time of bonding is also appropriately selected, and is preferably 5 to 50 kg Z cm 2 , particularly preferably 10 to 30 kg Z cm 2 .
  • composition of transparent substrate 2 material, thickness, etc.
  • composition of antireflection film 3 material, laminated structure, thickness, etc.
  • composition of near-infrared cut film 5 material, laminated structure, thickness, etc.
  • viscosity Thermosetting resin and thickness of the adhesive intermediate film 4 B for bonding the electromagnetic wave shielding film 10 A with the deposited film and the transparent substrate 2 and the configuration of the conductive adhesive tapes 7 and 8 (materials, thickness, etc.) Is as described above in the description of the electromagnetic wave shielding light transmitting window material according to the first embodiment.
  • the adhesive intermediate film 4 B is made of a cross-linked EVA resin, and if such an adhesive intermediate film 4 B is used, an electromagnetic wave shield with an adhesive film is formed on the transparent substrate 2.
  • Adhesive interlayer 1 B for bonding OA These layers are laminated, and after temporary compression (after this temporary compression, it is possible to re-apply as appropriate.), Pressurizing, heating, depressurizing, or heating to obtain an electromagnetic wave shielding film 1 with an adhesive film. Both can be bonded between the OA and the transparent substrate 2 without leaving air bubbles.
  • the near-infrared cut film 5 is preferably laminated on the transparent substrate 2 using the adhesive 4C. This is because the near-infrared cut film 5 is weak to heat and cannot withstand the heat crosslinking temperature (130 to 150 ° C).
  • a low-temperature cross-linkable type EVA cross-linking temperature of about 70 to 130 ° C. can be used for bonding the near-infrared power film 5 to the transparent substrate 2.
  • the bonding interlayer 4B may also contain a small amount of an ultraviolet absorber, an infrared absorber, an antioxidant, and a paint processing aid, as well as dyes and pigments for adjusting the color of the filter itself. And a filler such as carbon black, hydrophobic silica and calcium carbonate.
  • the adhesive intermediate film 4B is prepared by mixing the adhesive resin and the above-described additives, kneading the mixture with an extruder, a roll, or the like, and then forming the mixture into a predetermined shape by a film forming method such as calendar, roll, T-die extrusion, or inflation. It is manufactured by forming a sheet. At the time of film formation, embossing is applied to prevent blocking and facilitate degassing during pressure bonding with a transparent substrate.
  • a pressure-sensitive adhesive (pressure-sensitive adhesive) is also suitably used.
  • a thermoplastic elastomer such as acrylic, SBS, SEBS or the like is suitably used.
  • a tackifier, an ultraviolet absorber, a coloring pigment, a coloring dye, an antioxidant, an adhesion-imparting agent, and the like can be appropriately added.
  • the adhesive can be coated or pasted on the adhesive surface of the transparent substrate 2 or near-infrared cut film 5 with a thickness of 5 to 100 ⁇ in advance, and it can be pasted on the transparent substrate or another film. .
  • the conductive adhesive tape 7, 8 It can be easily and easily incorporated into the housing because it is attached to the housing.
  • the electromagnetic wave shielding film can be simply inserted into the housing, and can be inserted through the first and second conductive adhesive tapes 7 and 8. 1 Good conduction between the OA and the housing can be obtained. Therefore, a good electromagnetic shielding effect can be obtained.
  • good near-infrared cut performance is obtained in the presence of the near-infrared cut film 5.
  • there is only one transparent substrate 2 it is thin and lightweight.
  • both surfaces of the transparent substrate 2 are covered with the films 3 and 5, cracking of the transparent substrate 2 is prevented, and scattering of the transparent substrate 2 in the event of a crack is prevented.
  • the electromagnetic wave shielding film 1 OA with an adhesive film is obtained by pattern etching of conductive foil such as copper foil 11, the electromagnetic wave shielding and light transmission can be controlled by arbitrarily adjusting the etching pattern design.
  • the moiré phenomenon can be solved by improving both properties.
  • the electromagnetic wave shielding film 10A with the adhesive film has a light absorbing layer 12, and fine irregularities are formed on the surface of the light absorbing layer 12 by a roughening treatment. Since the unevenness is filled with the transparent adhesive, the antireflection effect is high, and a clear image with high contrast can be obtained.
  • the coating film 15 of the transparent adhesive was formed on the base film 13 of the electromagnetic wave shielding film 1 with the adhesive film 1 OA and the transparent adhesive 14, and the copper foil 11 and The projections formed by the light absorbing layer 12 are completely filled, and light scattering caused by the projections and depressions can be reliably prevented.
  • the refractive index of the transparent adhesive and the refractive index of the transparent adhesive 14 are substantially equal.
  • the electromagnetic wave shielding light transmitting window material shown in FIG. 6 is an example of the electromagnetic wave shielding light transmitting window material according to the second embodiment of the present invention, and the present invention is not limited to the illustrated one.
  • Adhesion between 10a and the anti-reflection film 3 is based on the preformed transparent adhesive film 1 5 Alternatively, it may be performed by the above-mentioned bonding intermediate film. Also in this case, it is preferable that the refractive index of the adhesive resin after the curing of the adhesive intermediate film to be used is substantially equal to the refractive index of the base film 13 in order to prevent reflection at these interfaces.
  • a copper foil 11 is prepared as a conductive foil (FIG. 10A), and a light absorbing layer 12 is formed on one surface of the copper foil 11 (FIG. 10B).
  • This light absorbing layer 12 is then subjected to a matte treatment by roughening its surface 12A to form fine irregularities (FIG. 10C).
  • a light-absorbing layer 12 is formed, and the matte-treated surface of the copper foil 11 subjected to the matte treatment is applied to a transparent base film such as a PET (polyethylene terephthalate) film 13 by a transparent adhesive. Adhere by 14 (Fig. 10D, 10E).
  • the laminated film obtained in this manner is subjected to pattern etching according to a conventional method to partially remove the copper foil 11 on which the light absorbing layer 12 has been formed, thereby obtaining a copper ZPET as an electromagnetic wave shielding film.
  • a laminated etching film 10b is obtained (FIG. 10F).
  • the exposed surface 14A of the transparent adhesive 14 of the copper / PET laminated etching film 10b obtained in this manner is an uneven surface on which fine irregularities due to the matte treatment of the light absorbing layer 12 are transferred. Therefore, a transparent adhesive is applied to this surface to form a coating film 15, and an electromagnetic wave shielding film 10B with an adhesive film is obtained (FIG. 10G).
  • the electromagnetic wave shielding light transmitting window material of the first embodiment As described above in the description of the method for producing the electromagnetic wave shielding film used in the above, various transparent pressure-sensitive adhesives can be used as the transparent pressure-sensitive adhesive forming the coating film 15, such as acrylic, SBS, and the like.
  • a thermoplastic elastomer such as SEBS is preferably used.
  • a tackifier, an ultraviolet absorber, a coloring pigment, a coloring dye, an antioxidant, an adhesion promoter, and the like can be appropriately added.
  • the transparent adhesive film 15 the transparent adhesive wraps around the fine irregularities on the surface 14 A of the transparent adhesive 14 and is completely buried. Light scattering is prevented.
  • the transparent adhesive 14 and the transparent adhesive It is preferable that the refractive index of the transparent adhesive 14 and the refractive index of the transparent pressure-sensitive adhesive of the coating film 15 be substantially equal to each other so that light reflection does not occur at the interface with the agent.
  • a transparent adhesive 14 include acrylic, urethane, and rubber.
  • the thickness of the coating film 15 formed by such a transparent viscous agent is preferably 1 to 10 m, because if it is too thick or too thin, good adhesion cannot be achieved in bonding to a transparent substrate described later. Is preferably about 2 to 50 m thick.
  • the transparent adhesive film 15 is applied to a portion to which a conductive adhesive tape to be described later is attached so that the copper foil 11 is exposed. It is provided in a portion other than the peripheral edge.
  • the type and thickness of the conductive foil constituting the electromagnetic wave shielding film, the method of pattern etching, and the etching pattern are determined by the production of the electromagnetic wave shielding film used in the electromagnetic wave shielding light transmitting window material according to the first aspect described above. This is the same as described in the method.
  • the type and thickness of the transparent base film for bonding the metal foil such as the copper foil 11 and the like, and the transparent adhesive for bonding the transparent base film and the metal foil are also as described above.
  • FIG. 9 is a schematic sectional view showing an embodiment of the electromagnetic wave shielding light transmitting window material manufactured by the present invention.
  • the electromagnetic wave shielding light transmitting window material 1C shown in FIG. 9 is composed of the outermost anti-reflection film 3, the electromagnetic wave shielding film 10B with an adhesive film, the transparent substrate 2, and the near-infrared power film 5 as the rearmost layer.
  • Adhesive interlayer 4A to be an adhesive, transparent adhesive of coating film 15 and The laminated body was laminated and integrated with an adhesive 4C, and a conductive adhesive tape 7 (second conductive adhesive tape) was adhered to the end face of the laminated body and the front and back edges adjacent to the laminated body to be integrated.
  • the electromagnetic wave shielding film 10B with an adhesive film is approximately the same size as the transparent substrate 2, and is formed so as to extend from one surface to the other surface on the surface of the copper foil 11 at the edge thereof.
  • the conductive adhesive tape 8 (first conductive adhesive tape) is attached.
  • the first conductive adhesive tape 8 is preferably provided over the entire periphery of the edge of the electromagnetic wave shielding film 10B with an adhesive film, but is provided partially, for example, at the two opposing edges. May be.
  • the antireflection film 3 and the adhesive intermediate film 4A thereunder are slightly smaller than the electromagnetic wave shielding film 10B with the adhesive film and the transparent substrate 2 and reflect.
  • the edges of the prevention film 3 and the adhesive intermediate film 4 A are slightly from the edges of the electromagnetic wave shielding film 10 B with the adhesive film and the edge of the transparent substrate 2 (for example, about 3 to 2 Omm, particularly preferably about 5 to 1 Omm).
  • the portion of the first conductive adhesive tape 8 around the periphery of the electromagnetic wave shielding film 10B with the adhesive film is not covered with the antireflection film 3 and the adhesive intermediate film 4A.
  • the second conductive adhesive tape 7 directly covers the first conductive adhesive tape 8, and passes through the first and second conductive adhesive tapes 8 and 7 to form an electromagnetic wave shielding film 1 with an adhesive film. 0 B is reliably conducted.
  • the near-infrared cut film 5 with the adhesive 4C is also slightly smaller than the transparent substrate 2, and the edge of the near-infrared force film 5 with the adhesive 4C is slightly from the edge of the transparent substrate 2.
  • peripheral portions of the anti-reflection film 3, the adhesive intermediate film 4A, and the near-infrared power film 5 with the adhesive 4C are not covered by the second conductive adhesive tape 7, but these are It may cover the inside of the second conductive adhesive tape 7.
  • the electromagnetic wave shielding film with an adhesive film is smaller than 10B and the transparent substrate 2, and the edge must be receded, but the near infrared cut film with adhesive 4C is transparent. It may be the same size as the substrate. It is desirable that the antireflection film 3 and the bonding intermediate film 4A are set back from the edges of the electromagnetic wave shielding film 10B with an adhesive film and the transparent substrate 2 over the entire periphery thereof.
  • the first conductive adhesive tape 8 is provided on the two opposing edges, only that portion is retracted, and the second conductive adhesive tape 7 may also be provided on the two opposing edges. .
  • an antireflection film 3 an electromagnetic wave shielding film 10B with an adhesive film, a transparent substrate 2, and a near infrared ray with an adhesive 4C
  • a cut film 5 an adhesive intermediate film 4A and first and second conductive adhesive tapes 8 and 7 are prepared, and a first conductive adhesive tape is attached to the periphery of the electromagnetic wave shielding film 10B with an adhesive film in advance. 8 and stick it to the transparent substrate 2.
  • the electromagnetic wave shielding film with an adhesive film 10B, the transparent adhesive coating 15 on the side of 15B is brought into contact with the transparent substrate 2 and laminated, and after temporary compression (after the temporary compression, By applying pressure, heating, or decompression and heating, air bubbles remain between the electromagnetic wave shielding film 10B with the adhesive film 10B and the transparent substrate 2 as shown in Fig. 11.
  • the two can be adhered without causing them to be bonded.
  • the fine irregularities on the surface 14A of the transparent adhesive 14B of the electromagnetic wave shielding film 10B with the adhesive film are completely filled by the transparent adhesive 15 Light scattering caused by the above can be reliably prevented.
  • the refractive indices of the transparent adhesive 14 and the transparent pressure-sensitive adhesive 15 ′ substantially equal, scattering of light is more reliably prevented.
  • an anti-reflection film 3 is laminated on the transparent substrate 2 on which the electromagnetic wave shielding film 10 B with an adhesive film is adhered, with the bonding intermediate film 4 A interposed therebetween, and applied under the curing conditions of the bonding intermediate film 4 A. Reduce, heat, or reduce and heat to integrate.
  • the near-infrared cut film 5 is bonded with the adhesive 4C.
  • the second conductive pressure-sensitive adhesive tape 7 is fastened around the laminate, and is heat-pressed or heated under reduced pressure according to the method of curing the pressure-sensitive adhesive layers 7 B and 8 B of the conductive pressure-sensitive adhesive tapes 7 and 8 used. And fix it.
  • the electromagnetic wave shielding film is applied by using the adhesiveness of the pressure-sensitive adhesive layers 7B and 8B. (The temporary fixing can be re-attached if necessary.) Then, heat or ultraviolet rays are applied while applying pressure or maintaining the reduced pressure as necessary. Irradiate. Heating may be performed at the same time as the ultraviolet irradiation. By locally performing the heating or light irradiation, only a part of the cross-linkable conductive pressure-sensitive adhesive tape can be adhered.
  • Heat bonding can be easily performed with a general heat sealer.
  • a pressurizing and heating method a laminate with a cross-linked conductive adhesive tape is put into a pressurizing chamber such as an autoclave.
  • a method of heating or a method of heating under reduced pressure a method in which the same laminate is put in a vacuum bag and degassed and then heated may be used, and bonding can be performed very easily.
  • the bonding conditions depend on the type of crosslinking agent (organic peroxide) used, but are usually 70 to 150 ° C, preferably 70 to 130 ° C. It is usually from 10 seconds to 120 minutes, preferably from 20 seconds to 60 minutes.
  • the light source In the case of photocrosslinking, many light sources that emit light in the ultraviolet to visible range can be used as the light source.
  • the light source For example, ultrahigh pressure, high pressure, low pressure mercury lamps, chemical lamps, xenon lamps, halogen lamps, mercury halogen lamps, and carbon arc lamps , Incandescent lamps, laser light, and the like.
  • the irradiation time is not generally determined by the type of lamp and the intensity of the light source, but it is usually several tens of seconds to several tens of minutes. After heating to 40 to 120 ° C. in advance to promote cross-linking, this may be irradiated with ultraviolet rays.
  • the pressing force at the time of bonding is also appropriately selected, and is preferably 5 to 50 kg Z cm 2 , particularly preferably 10 to 30 kg / cm 2 .
  • composition of transparent substrate 2 material, thickness, etc.
  • composition of antireflection film 3 material, laminated structure, thickness, etc.
  • composition of near-infrared cut film 5 material, laminated structure, thickness, etc.
  • viscosity Electromagnetic wave shielding film with a film 10 B and the anti-reflection film 3 A thermosetting resin and thickness constituting the intermediate film 4 A for adhesion, and the composition of the conductive adhesive tapes 7 and 8 (Material, thickness ) are as described above in the description of the electromagnetic wave shielding light transmitting window material according to the first embodiment.
  • the bonding intermediate film 4A in addition to the above-mentioned adhesive, those exemplified as the transparent adhesive used for the electromagnetic wave shieldable film 10B with an adhesive film are preferably used.
  • the adhesive 4 C of the near-infrared power film 5 those exemplified as the transparent adhesive of the electromagnetic wave shielding film 10 B with an adhesive film can be used, and the adhesive 4 C is a near-infrared cut film in advance. It can be coated or bonded to the adhesive surface of No. 5 with a thickness of 5 to 100 ⁇ , and can be bonded to a transparent substrate or another film.
  • the near-infrared cut film 5 is preferably laminated on the transparent substrate 2 using an adhesive 4C. This is because the near-infrared cut film 5 is weak to heat and cannot withstand the heat crosslinking temperature (130 to 150 ° C). However, if it is a low-temperature crosslinking type EVA (bridge temperature of about 70 to 130 ° C.), it can be used for bonding the near infrared ray power film 5 to the transparent substrate 2.
  • EVA bridge temperature of about 70 to 130 ° C.
  • the electromagnetic wave-shielding light-transmitting window material 1C to which the conductive adhesive tapes 7 and 8 are attached can be extremely easily and easily incorporated into the housing.
  • Good conduction between the electromagnetic wave shielding film 10B and the housing can be obtained via the first and second conductive adhesive tapes 7 and 8.
  • a good electromagnetic wave shielding effect can be obtained.
  • good near-infrared cut performance can be obtained in the presence of the near-infrared cut film 5.
  • only one transparent substrate 2 is used, it is thin and lightweight. Further, since both surfaces of the transparent substrate 2 are covered with the films 3 and 5, the transparent substrate 2 is prevented from cracking, and the transparent substrate 2 is prevented from being scattered in the event of a crack.
  • the electromagnetic wave shielding film 10B is formed by pattern etching of conductive foil such as copper foil 11, the electromagnetic wave shielding and light transmittance are both good by adjusting the design of the etching pattern arbitrarily. The problem of the moire phenomenon can be solved.
  • the electromagnetic wave shielding film 10 B has a light absorbing layer 12, and fine irregularities are formed on the surface of the light absorbing layer 12 by a roughening treatment, and the irregularities are transferred. Since the irregularities on the surface of the transparent adhesive 14 are filled with the transparent adhesive 15, a clear image with high anti-reflection effect and high contrast can be obtained.
  • the electromagnetic shielding light transmitting window material shown in FIG. 9 is an example of the electromagnetic shielding light transmitting window material manufactured by the method of the present invention, and the present invention is not limited to the illustrated one. is not.
  • the electromagnetic wave shielding light transmitting window material of the present invention described above and the electromagnetic wave shielding light transmitting window material manufactured by the method of the present invention can be used as a front filter of a PDP or installed in precision equipment such as a hospital or a laboratory. It is very suitable as a window material for places.
  • FIG. 12 is a schematic cross-sectional view showing an embodiment of the display panel according to the fourth embodiment of the present invention
  • FIG. 13 is an embodiment of the display panel according to the fifth embodiment of the present invention.
  • the display panel 3 OA in FIG. 12 is an outermost anti-reflection film 3, a copper laminated PET etching film 10 as an electromagnetic wave shielding film (the electromagnetic wave shielding film 10 is the first embodiment of the present invention).
  • the structure is the same as that of the electromagnetic wave shielding film used in the electromagnetic wave shielding light transmitting window material according to the embodiment of the present invention, and is manufactured by the procedure shown in FIGS. 3A to 3F described above.)
  • the PDP body 20 are laminated and integrated using an adhesive interlayer 4A, 4B, and 4C as an adhesive, and a conductive adhesive tape is attached to the end face of the laminate and the upper and lower sides adjacent thereto. 7 (Second conductive adhesive tape).
  • the display panel 30B in FIG. 13 is an outermost antireflection film 3, a copper ZPET laminated etching film 10a as an electromagnetic wave shielding film (the electromagnetic wave shielding film 10a is the present invention). It has the same configuration as the copper / PET laminated etching film 10a before forming the transparent adhesive coating film 15 of the electromagnetic wave shielding film used in the electromagnetic wave shielding light transmitting window material according to the second embodiment.
  • the near-infrared cut film 5 and the PDP body 20 are combined with the bonding interlayers 4A, 4B, and 4C, which serve as an adhesive, as shown in FIGS. 7A to 7E described above. Then, the conductive adhesive tape 7 is adhered to the end face of the laminate and the front and back edges adjacent thereto to be integrated.
  • the electromagnetic wave shielding films 10 and 10a are almost the same size as the PDP body 20, and a conductive adhesive tape is applied to the edge so that it goes around from one surface to the other.
  • This first conductive adhesive tape 8 (1st conductive adhesive tape) is attached.
  • This first conductive adhesive tape 8 is preferably provided over the entire periphery of the edges of the electromagnetic wave shielding films 10 and 10a, but may be provided partially, for example, at two opposing edges.
  • the anti-reflection film 3 and the adhesive intermediate film 4 A thereunder are slightly smaller than the electromagnetic wave shielding films 10 and 10 a, and the anti-reflection film 3 and the adhesive
  • the edge of the intermediate film 4A is slightly receded (for example, about 3 to 2 Omm, particularly preferably about 5 to 1 Omm) from the edge of the electromagnetic wave shielding film 10 or 10a.
  • the portion of the first conductive adhesive tape 8 on the periphery of 10 and 10a is not covered with the antireflection film 3 and the bonding intermediate film 4A.
  • the second conductive adhesive tape 7 directly covers the first conductive adhesive tape 8, and the electromagnetic wave shielding films 10, 1, 1, 1, and 2 pass through the first and second conductive adhesive tapes 8, 7. 0a is reliably conducted.
  • the peripheral portions of the antireflection film 3 and the adhesive intermediate film 4A are not covered by the second conductive pressure-sensitive adhesive tape 7, but they are covered by the outside of the second conductive pressure-sensitive adhesive tape 7. May be.
  • the adhesive intermediate film 4A is smaller than the electromagnetic wave shielding films 10 and 10a, and the edges are receded.
  • the antireflection film 3 and the bonding intermediate film 4A be set back from the edges of the electromagnetic wave shielding films 10 and 10a all around the periphery thereof.
  • the conductive adhesive tape 8 is provided at the two opposing edges, only that portion is receded, and the second conductive adhesive tape 7 may also be provided at the opposing two edges.
  • composition of antireflection film 3 material, laminated structure, thickness, etc.
  • composition of near-infrared cut film 5 material, laminated structure, thickness, etc.
  • antireflection film 3 electromagnetic wave shielding film 10, 10a
  • the thermosetting resin and the thickness of the adhesive interlayers 4A, 4B, and 4C for bonding the near-infrared power film 5 and the PDP body 20 and the configuration of the conductive adhesive tapes 7 and 8 materials, The thickness and the like are the same as those described above in the description of the electromagnetic wave shielding light transmitting window material according to the first embodiment.
  • thermosetting resin constituting the bonding interlayers 4A to 4C is a cross-linked EVA resin
  • the display panel 3OA, 30B In laminating and bonding the constituent members of the above, each member is laminated via the bonding intermediate films 4A to 4C, and after temporary compression bonding (after this temporary compression bonding, it is possible to re-apply as appropriate). By applying pressure and heating, both can be bonded without leaving bubbles between the members. Therefore, in the display panel 30A of FIG.
  • the electromagnetic wave shielding film 10 and the near-infrared ray power film 5 are laminated via the bonding intermediate film 4B, and the By pressing and heating after crimping, as shown in FIG. 14, for example, as shown in FIG. 14, the electromagnetic wave shielding film 10 and the infrared ray force film 5 can be bonded to each other without leaving air bubbles.
  • the electromagnetic wave shielding film 10 The transparent adhesive 14 of the surface 14
  • the surface 14 A of fine adhesive of 14 A is wrapped around the adhesive resin 4 B ′ of the adhesive intermediate film 4 B and is completely buried, resulting from the unevenness. Light scattering can be reliably prevented, which is preferable.
  • the adhesive resin 4 B ′ of the adhesive intermediate film 4 B ensures that the scattering of light due to the fine four convexes of the surface 14 A of the transparent adhesive 14 of the electromagnetic wave shielding film 10 is more reliably achieved.
  • the refractive index of the transparent adhesive 14 and the bending of the adhesive resin 4B 'after curing must be prevented.
  • the folding ratios are approximately equal.
  • Examples of such a transparent adhesive 14 include acrylic, urethane, epoxy, rubber, and the like.
  • the anti-reflection film 3 are laminated via an adhesive intermediate film 4A, and are temporarily press-bonded, then pressurized and heated, so that, for example, as shown in FIG.
  • the two films can be bonded to each other without leaving bubbles between the seed film 10a and the antireflection film 3, and the base film 13 of the electromagnetic wave shielding film 10a and the transparent adhesive 14 Copper foil 1 1 and light absorbing layer 1 formed on
  • a transparent pressure-sensitive adhesive (pressure-sensitive adhesive) is suitably used in addition to the above-mentioned adhesive.
  • an acrylic resin, a thermoplastic elastomer such as SBS, SEBS or the like is preferably used as the transparent pressure-sensitive adhesive.
  • a tackifier, an ultraviolet absorber, a coloring pigment, a coloring dye, an antioxidant, an adhesion-imparting agent, and the like can be appropriately added.
  • the transparent adhesive is coated or pasted in advance with a thickness of 5 to 100 m on the bonding surface of the anti-reflection film 3, the electromagnetic wave shielding film 10, 10a, and the near-infrared power film 5, and then the PDP is applied. It can be attached to the body 20 or other film.
  • the near-infrared cut film 5 be laminated and adhered using an adhesive. This is because the near-infrared cut film 5 is weak to heat and cannot withstand the heat crosslinking temperature (130 to 150 ° C). A low-temperature cross-linkable EVA (cross-linking temperature of about 70 to 130 ° C.) can be used for bonding the near-infrared cut film 5.
  • a low-temperature cross-linkable EVA cross-linking temperature of about 70 to 130 ° C.
  • an antireflection filter / rem 3 electromagnetic wave shielding films 10 and 10 a, a near-infrared force film 5
  • the PDP body 20 and the adhesive interlayers 4A, 4B, 4C and the first and second conductive adhesive tapes 8, 7 are prepared, and the first is placed on the periphery of the electromagnetic wave shielding films 10, 10a in advance. Fasten the conductive adhesive tape 8, and attach the anti-reflection film 3, the first conductive adhesive tape 8 with the electromagnetic wave shielding film 10, 10a, the near infrared power film 5, and the PDP body 20 between them.
  • the layers are laminated with the interlayers 4A, 4B, and 4C interposed therebetween, and heated under pressure under the curing conditions for the bonding interlayer to be integrated.
  • the second conductive adhesive tape 7 is fastened around the laminate, and the used conductive adhesive tape is used. According to the curing method of the adhesive layers 7B and 8B of the tapes 7 and 8, they are bonded and fixed by heating and pressing.
  • Heat bonding can be easily performed with a general heat sealer.Pressing and heating methods include placing a laminate with cross-linked conductive adhesive tape in a vacuum bag and heating after degassing. The bonding can be performed very easily.
  • the bonding conditions depend on the type of crosslinking agent (organic peroxide) used, but are usually 70 to 150 ° C, preferably 70 to 130 ° C. It is usually from 10 seconds to 120 minutes, preferably from 20 seconds to 60 minutes.
  • the light source In the case of photocrosslinking, many light sources that emit light in the ultraviolet to visible range can be used as the light source.
  • the light source For example, ultrahigh pressure, high pressure, low pressure mercury lamps, chemical lamps, xenon lamps, halogen lamps, mercury halogen lamps, and carbon arc lamps , Incandescent lamps, laser light, and the like.
  • the irradiation time is not generally determined by the type of lamp and the intensity of the light source, but it is usually several tens of seconds to several tens of minutes. After heating to 40 to 120 ° C. in advance to promote cross-linking, this may be irradiated with ultraviolet rays.
  • the pressing force at the time of bonding is also appropriately selected, and is preferably 5 to 50 kg Z cm 2 , particularly preferably 10 to 30 kg / cm 2 .
  • the electromagnetic wave shielding film is applied via the first and second conductive adhesive tapes 7 and 8.
  • the anti-reflection film 3 is provided on the front side of the electromagnetic wave shielding films 10 and 10a, the anti-reflection film 3 provides good Good anti-reflection effect can be obtained. In the presence of the near-infrared cut film 5, good near-infrared cut performance can be obtained, and malfunction of the remote controller can be prevented. Furthermore, since the film is laminated and bonded to the PDP body 20, it is thin and lightweight.
  • the PDP body 20 is covered with a film by the outermost anti-reflection film 3, the electromagnetic wave shielding films 10 and 10a, and the near-infrared cut film 5, the PDP body is protected.
  • the impact resistance is enhanced to prevent cracking, and the PDP body 20 is prevented from scattering when the PDP body breaks.
  • the electromagnetic wave shielding films 10 and 10a are formed by pattern etching of conductive foil such as copper foil 11, the electromagnetic wave shielding and light transmission can be adjusted by arbitrarily adjusting the etching pattern design. And the problem of moiré phenomenon can be solved.
  • the electromagnetic wave shielding films 10 and 10 a have a light absorbing layer 12, and fine irregularities are formed on the surface of the light absorbing layer 12 by a roughening treatment.
  • the irregularities on the surface of the transparent adhesive 14 onto which the HO protrusions are transferred are filled with the adhesive resin, so that the anti-reflection effect is high and the contrast is high. A clear image with high image quality can be obtained.
  • the reflection preventing effect is obtained in the display panel 30B using the electromagnetic wave shielding film 10a. High, high-contrast, clear images can be obtained.
  • FIGS. 12 and 13 are examples of the display panel of the present invention, and the present invention is not limited to those shown in the drawings. Industrial applicability
  • the present invention in addition to having excellent electromagnetic wave shielding properties, it has a high antireflection effect, and is excellent in transparency and visibility, so that a clear image can be obtained, and as a front filter of a PDP, etc.
  • a useful electromagnetic wave shielding light transmitting window material is provided.
  • the display panel of the present invention the display panel itself is provided with a function such as an electromagnetic wave shielding property by integrating the display panel body such as a PDP and the electromagnetic wave shielding film, and the display panel is lightweight and thin. Productivity by reducing the number of parts The cost of improvement can be reduced. In addition, malfunction of the remote controller can be prevented.
  • this electromagnetic wave shielding film is excellent in electromagnetic wave shielding properties, has a high antireflection effect, and is excellent in transparency and visibility, so that a clear image can be obtained.

Description

明細書 電磁波シールド性光透過窓材、 その製造方法及ぴ表示パネル 技術分野
本発明は、電磁波シールド性光透過窓材及びその製造方法と表示パネルに係り、 特に、 電磁波シールド性、 透明性、 視認性に優れ、 P D P (プラズマディスプレ 一パネル) の前面フィルタ等として有用な電磁波シールド性光透過窓材及びその 製造方法と、 このような電磁波シールド性フイルムを一体化させることにより表 示パネル自体に電磁波シールド性等の機能を付与し、表示パネルの軽量、薄肉化、 部品数の低減による生産性の向上及ぴコストの低減を可能とした表示パネルに関 する。 背景技術
放電現像を利用した P D Pは、 テレビやパソコン、 ワープロ等の O A機器、 交 通機器、 看板、 その他の表示板等の表示パネルとして用いられている。
P D Pの基本的な表示機構は、 2枚のガラス板間に隔成した多数の放電セル内 の螢光体を選択的に放電発光させることで文字や図形を表示するものであり、 例 えば、図 1 6に示すような構成とされている。図 1 6において、 2 1は前面板(フ ロントガラス)、 2 2は背面板 (リャガラス)、 2 3は隔壁、 2 4は表示セル (放 電セル)、 2 5は補助セル、 2 6は陰極、 2 7は表示陽極、 2 8は補助陽極であり、 各表示セル 2 4の内壁には、赤色螢光体、緑色螢光体又は青色螢光体(図示せず。) が膜状に設けられ、 これらの螢光体が電極間に印加された電圧による放電で発光 する。
P D Pの前面からは、 電圧印加、 放電、 発光により、 周波数:数 k H z〜数 G H z程度の電磁波が発生するため、 これを遮蔽する必要がある。 表示コントラス ト向上のためには、 前面における外部光の反射を防止する必要がある。
従来においては、 P D Pからの電磁波等を遮蔽するために、 電磁波シールド性 等の機能を有する透明板を P D Pの前面に配置している。 このような電磁波シールド性材料は、 携帯電話等の電磁波から精密機器を保護 するために、病院や研究室等の精密機器設置場所の窓材としても利用されている。 従来の電磁波シールド性光透過窓材は、 金網のような導電性メッシュ材又は透 明導電性フィルムをアタリル板等の透明基板の間に介在させて一体化した構成と されている。
従来の電磁波シールド性光透過窓材に用いられている導電性メッシュは、 線径
1 0〜5 0 0 111で5〜5 0 0メッシュ程度のものであり、 開口率は 7 5 %未満 である。 このような導電性メッシュを用いた従来の電磁波シールド性光透過窓材 では、 光透過率は高々 7 0 %程度と低い。
従来の導電性メッシュを備えた電磁波シールド性光透過窓材を取り付けたディ スプレーにあっては、該ディスプレーの画素ピッチとの関係で、 モアレ (干渉縞) が発生し易い。
このような問題を解決するものとして、 導電性メッシュの代りに、 パターンェ ツチングした導電性箔を電磁波シールド層として用いることが提案されている (特開 2 0 0 0— 1 7 4 4 9 1 )。所望の線径ゃ間隔、網目形状を有するようにパ ターンエッチングされた導電性箔を有する電磁波シールド性光透過窓材は、 電磁 波シールド性、 光透過性が共に良好でモアレ現象も無い。
この導電性箔のパターンエッチングは、 透明な基材フィルムの表面に金属箔を 接着すると共に、 この金属箔上にフォ トレジス トのフィルムを圧着し、 パターン 露光及びエッチングの工程により所定パターンにエッチングすることにより行わ れ、 従って、 金属箔は、 基材フィルムに積層されたフィルムとして提供される。 このような金属箔 基材フィルムの積層フィルムよりなる電磁波シールド性フ ィルムでは、 金属箔の表面で光が反射して十分な視認性が得られない。 発明の開示
本発明の目的は、 電磁波シールド性に優れる上に、 反射防止効果が高く、 透明 性、 視認性に優れる電磁波シールド性光透過窓材を提供することにある。
本発明の他の目的は、 電磁波シールド性に優れる上に、 反射防止効果が高く、 透明性、 視認性に優れる電磁波シールド性フィルムを用いた表示パネルを提供す ることにある。
本発明の第 1の態様に係る電磁波シールド性光透過窓材は、 少なくとも電磁波 シールド性フィルムと透明基板とを積層一体化してなる電磁波シールド性光透過 窓材において、 該電磁波シールド性フィルムは透明な基材フィルムと、 該基材フ イルムの該透明基板側の面に透明接着剤により接着され、 パターンエッチングさ れた導電性箔とを備えており、 該箔の該基材フィルム側の面には反射防止用の光 吸収層が設けられており、 該光吸収層の該基材フィルム側の面が粗面化処理され ていることを特徴とする。
この電磁波シールド性フィルムは、 光吸収層の表面に粗面化処理により微細な 凹凸が形成されている (以下、 この粗面化処理を 「無光沢処理」 と称す場合があ る。) ため、反射防止効果が高い。 従って、 この電磁波シールド性フィルムを有し た電磁波シールド性光透過窓材をディスプレーの前面に装着すると、 コントラス トの高い鮮明な画像を得ることができる。
上記のパターンエッチングされた導電性箔、 無光沢処理された光吸収層及び基 材フィルムよりなる電磁波シールド性フィルムは、 例えば次のような手順で製造 される。
① 金属箔の表面に光吸収層を形成し、この光吸収層の表面を粗面化処理する。
② ①の金属箔を透明接着剤により透明な基材フィルムに接着する。
③ ②の積層フィルムをパターンエッチングする。
上記②の接着工程では、 無光沢処理された光吸収層の表面の凹凸が透明接着剤 層に転写される。 このため、 ③のパターンエッチングにより光吸収層及ぴ金属箔 をエッチング除去した後に表出する透明接着剤層の表面は、 光吸収層から転写さ れた凹凸面となっている。
このような透明接着剤層の凹凸面は、 光が散乱する性質を有する。 そこで、 本 発明では、 請求項 2又は 5の通り、 電磁波シールド性フィルムの箔側の面を熱硬 化性樹脂又は透明粘着剤により透明基板に接着し、 透明接着剤層に転写された凹 凸を熱硬化性樹脂又は透明粘着剤で埋めることにより、 光の散乱を防止して透明 度を高めることが望ましい。
本発明の第 2の態様に係る電磁波シールド性光透過窓材は、 少なくとも電磁波 シールド性フィルムと透明基板とを積層一体化してなる電磁波シールド性光透過 窓材において、 該電磁波シールド性フィルムは、 透明な基材フィルムと、 該基材 フィルムの前記透明基板と反対側の面に透明接着剤により接着された、 パターン エッチングされた導電性箔とを備えており、 該箔の該基材フィルムと反対側の面 には反射防止用の光吸収層が設けられており、 該光吸収層の該基材フイルムと反 対側の面が粗面化処理されていることを特徴とする。
この電磁波シールド性フィルムも、 光吸収層の表面が無光沢処理されているた め、 反射防止効果が高い。 従って、 この電磁波シールド性フィルムを有した電磁 波シールド性光透過窓材をディスプレーの前面に装着すると、 コントラス トの高 い鮮明な画像を得ることができる。
ここで、 無光沢処理された光吸収層、 パターンエッチングされた導電性箔及び 基材フィルムよりなる電磁波シールド性フィルムは、 例えば次のような手順で製 造される。
( i ) 金属箔を透明接着剤により透明な基材フィルムに接着する。
( ii ) ( i ) の積層フィルムをパターンエッチングする。
( iii ) パターンエッチングした金属箔の表面に光吸収層を形成し、 この光吸 収層の表面を粗面化処理する。
本発明の第 3の態様に係る電磁波シールド性光透過窓材の製造方法は、 少なく とも電磁波シールド性フィルムと透明基板とを積層一体化して電磁波シールド性 光透過窓材を製造する方法において、 導電性箔の一方の面に光吸収層を形成する 工程と、 該光吸収層の表面を粗面化処理する工程と、 この光吸収層付きの導電性 箔を透明接着剤により透明な基材フィルムに接着する工程と、 該基材フィルム上 に接着された光吸収層付きの導電性箔をパターンエッチングする工程と、 このパ ターンエッチングにより得られた電磁波シールド性フィルムのエッチング処理面 側に透明粘着剤を塗布して塗膜を形成する工程と、 該電磁波シールド性フィルム の塗膜形成面を透明基板に圧着して該電磁波シールド性フィルムと該透明基板と を積層一体化する工程とを有することを特徴とする。
この方法において、 パターンエッチングした導電性箔、 無光沢処理した光吸収 層及び基材フィルムよりなる電磁波シールド性フィルムは、 前述の①〜③の手順 で製造され、 前述の如く、 パターンエッチングにより光吸収層及ぴ金属箔をエツ チング除去した後に表出する透明接着剤層の表面は、 光吸収層から転写された凹 凸面となっている。
このような透明接着剤層の凹凸面は、 光が散乱する性質を有するが、 本発明で は、 電磁波シールド性フィルムの箔側の面に透明粘着剤を塗布し、 この塗膜を透 明基板に直接又は他のフィルムを介して揍着し、 透明接着剤層に転写された凹凸 を透明粘着剤で埋めることにより、 光の散乱を防止して透明度を高める。
この場合、 透明粘着剤であれば、 貼り直しが可能であり、 電磁波シールド性フ ィルムと透明基板等とを接着界面に気泡を残留させることなく、 強固に接着一体 化することができる。
この透明粘着剤の塗膜の厚さは 1〜 1 0 0 μ mであることが好ましく、 このよ うな厚さの塗膜であれば、 光吸収層の無光沢処理面の凹凸を吸収すると共に、 良 好な作業性で電磁波シールド性フィルムを透明基板等に接着することができる。 この電磁波シールド性フィルムは、 透明基板に他のフィルム等を介して接着さ れていても良いが、 好ましくは、 透明基板に直接透明粘着剤により接着されてい ることが望ましい。
本発明の第 4の態様に係る表示パネルは、 表示パネル本体と、 該表示パネル本 体の前面に配置された電磁波シールド性フィルムとを備えてなる表示パネルにお いて、 該電磁波シールド性フィルムは、 透明な基材フィルムと、 該基材フィルム の該表示パネル本体側の面に透明接着剤により接着され、 パターンエッチングさ れた導電性箔とを備えており、 該箔の該基材フィルム側の面には反射防止用の光 吸収層が設けられており、 該光吸収層の該基材フィルム側の面が粗面化処理され ていることを特徴とすることを特徴とする。
本発明の第 5の態様に係る表示パネルは、 表示パネル本体と、 該表示パネル本 体の前面に配置された電磁波シールド性フィルムとを備えてなる表示パネルにお いて、 該電磁波シールド性フィルムは、 透明な基材フィルムと、 該基材フィルム の該表示パネル本体と反対側の面に透明接着剤により接着された、 パターンエツ チングされた導電性箔とを備えており、 該箔の該基材フィルムと反対側の面には 反射防止用の光吸収層が設けられており、 該光吸収層の該基材フィルムと反対側 の面が粗面化処理されていることを特徴とする。
これらの表示パネルは、 表示パネル本体の前面に電磁波シーノレド性ブイルムを 配置したものであり、 表示パネルの軽量、 薄肉化、 部品数の低減による生産性の 向上及ぴコストの低減を図ることができる。
また、 この電磁波シールド性フィルムは、 光吸収層の表面に粗面化処理により 微細な凹凸が形成されているため、 反射防止効果が高い。 従って、 この電磁波シ 一ルド性フィルムを表示パネル本体の前面に配置することにより、 コントラスト の高い鮮明な面像を得ることができる。 図面の簡単な説明
図 1は、 第 1の態様に係る電磁波シールド性光透過窓材の実施の形態を示す模 式的な断面図である。
図 2は、 第 1の態様に係る電磁波シールド性光透過窓材の別の実施の形態を示 す模式的な断面図である。
図 3は、 第 1の態様で用いる電磁波シールド性フィルムの製造方法の一例を示 す説明図である。
図 4は、 エッチングパターンの具体例を示す平面図である。
図 5は、 図 1の電磁波シールド性光透過窓材の電磁波シールド性フイルムと透 明基板との接着部分を説明する拡大断面図である。
図 6は、 第 2の態様に係る電磁波シールド性光透過窓材の実施の形態を示す模 式的な断面図である。
図 7は、 第 2の態様で用いる電磁波シールド性フィルムの製造方法の一例を示 す説明図である。
図 8は、 図 6に示す電磁波シールド性光透過窓材の電磁波シールド性フィルム と透明基板との接着部分を説明する拡大断面図である。
図 9は、 第 3の態様で製造される電磁波シールド性光透過窓材の実施の形態を 示す模式的な断面図である。
図 1 0は、 第 3の態様における電磁波シールド性フィルムの製造方法の実施の 形態を示す説明図である。 図 1 1は、 図 9に示す電磁波シールド性光透過窓材の粘着膜付き電磁波シール ド性フィルムと透明基板との接着部分を説明する拡大断面図である。
図 1 2は、 第 4の態様に係る表示パネルの実施の形態を示す模式的な断面図で める。
図 1 3は、 第 5の態様に係る表示パネルの実施の形態を示す模式的な断面図で める。
図 1 4は、 図 1 2に示す表示パネルの電磁波シールド性フィルムと他部材との 接着部分を説明する拡大断面図である。
図 1 5は、 図 1 3に示す表示パネルの電磁波シールド性フィルムと他部材との 接着部分を説明する拡大断面図である。
図 1 6は、 一般的な P D Pの構成を示す一部切欠斜視図である。 発明の好ましい形態
以下に図面を参照して本発明の実施の形態を詳細に説明する。
まず、 図 3を参照して、 本発明の第 1の態様の電磁波シールド性光透過窓材で 用いる電磁波シールド性フィルムの製造方法の一例を説明する。
導電性箔として例えば銅箔 1 1を準備し(図 3 A)、 この銅箔 1 1の一方の面に 光吸収層 1 2を形成する (図 3 B )。 この光吸収層 1 2の形成方法としては、 C u 一 N iなどの銅合金を成膜した後に酸、 アル力リなどの処理により黒化する方法 がある。 この処理により表面処理された黒化面は粗面化されており、 その処理条 件により表面粗さ R Zを変えることができる。 また、 光吸収性のインキを銅箔 1
1に塗布して硬化させることにより形成することができ、 ここで使用される光吸 収性のインクとしては、 カーボンインキ、 ニッケルインキ、 その他暗色系有機顔 料等のインキが用いられる。 この光吸収層 1 2は次いでその表面 1 2 Aをショッ トプラストなどの、 機械的に表面を粗す方法や、 酸、 アルカリ等の薬品により表 面を粗す方法、インクに予め無機、又は有機の微粒子を混合したものを塗工して、 表面の粗い塗膜を形成する方法等により粗面化して微細な凹凸を形成することに より無光沢処理を施す(図 3 C )。 この光吸収層 1 2の厚さは、その黒化の材料や 導電性によっても異なるが、 導電性を損なうことなく十分な電磁波シールド性を 得るために、 1 n m〜 1 0 μ πι程度とするのが好ましく、 また、 光の散乱を十分 に防止する上で、 表面 1 2 Αの粗面化の程度は、 表面粗さ R zで 0 . 1〜2 0 μ m程度とするのが好ましい。 光吸収層の表面粗さ R zが 0 . l〜2 0 /i mとなる ように無光沢処理することにより良好な反射防止効果を得ることができる。
次いで、 光吸収層 1 2を形成し、 その無光沢処理を施した銅箔 1 1の無光沢処 理面を、 P E T (ポリエチレンテレフタレート) フィルム 1 3等の透明な基材フ イルムに透明接着剤 1 4により接着する (図 3 D, 図 3 E )。
このようにして得られた貼り合わせフィルムについて、 常法に従ってパターン エッチングを行い、 光吸収層 1 2を形成した銅箔 1 1を部分的に除去することに より、 電磁波シールド性フィルムとしての銅 Z P E T積層エッチングフィルム 1 0を得る (図 3 F )。
銅 Z P E T積層エッチングフィルム 1 0の透明接着剤 1 4の表出面 1 4 Aは、 光吸収層 1 2の無光沢処理による微細な凹凸が転写された凹凸面となる。
電磁波シールド性フィルムを構成する導電性箔としては、 銅箔に限らず、 ステ ンレス、 アルミニウム、 ニッケル、 鉄、 真鍮、 或いはこれらの合金等の金属箔を 用いることができるが、 好ましくは銅、 ステンレス、 アルミニウム箔である。 金属箔の厚さは、 薄過ぎると取り扱い性やパターンエッチングの作業性等の面 で好ましくなく、 厚過ぎると得られる電磁波シールド性光透過窓材の厚さに影響 を及ぼしたり、 エッチング工程の所要時間が長くなることから、 1〜2 0 0 μ πι 程度とするのが好ましい。
金属箔をパターンエッチングする方法は、 一般に用いられているどのような方 法でも構わないが、 レジス トを用いるフォ トエッチングが好ましい。 この場合、 金属箔上にフォトレジスト膜を圧着するか、 フォ トレジストをコ一ティングした 後、 所望のマスクを用いるなどしてパターン露光後、 現像処理してレジストパタ ーンを形成する。 その後、 レジス トのない部分の金属箔を塩化第二鉄液等のエツ チング液で除去すればよい。
フォ トレジスト膜を用いる場合、 このフォ トレジス ト膜と光吸収層を形成して 無光沢処理を施した金属箔と、 透明接着剤の接着シートと基材フィルムとを、 基 材フィルムノ接着シート/金属箔ノフォトレジスト膜の順で積層して圧着するこ とにより、 これらを一工程で積層一体化することができ、 好ましい。 パターンエッチングによれば、 パターンの自由度が大きく、 金属箔を任意の線 径、 間隔及ぴ孔形状にエッチングすることができ、 従って、 モアレ現象がなく、 所望の電磁波シールド性と光透過性を有する電磁波シールド性フィルムを容易に 形成することができる。
金属箔のエッチングパターンの形状には特に制限はなく、 例えば図 4A, 4 B に示すような四角形の孔 Mが形成された格子状の金属箔 1 l a, l i b、図 4C, 4D, 4E, 4 Fに示すような円形、 六角形、 三角形又は楕円形の孔 Mが形成さ れたパンチングメタル状の金属箔 1 1 c, l i d, l i e, 1 1 f 等が挙げられ る。 また、 このように孔 Mが規則的に並んだものの他、 ランダムパターンとして モアレ現象を防止することもできる。
電磁波シールド性と光透過性とを共に確保するために、 この金属箔の投影面に おける開口部分の面積割合 (以下 「開口率」 と称す。) は、 20〜90%であるこ とが好ましい。
銅箔 11等の金属箔を接着する透明な基材フィルムとしては、 PETフィルム 13の他、 本発明の電磁波シールド性光透過窓材で用いられる透明基板材料とし て後述する樹脂フィルムを用いることができる力 好ましくは PET、 PBT (ポ リブチレンテレフタレート)、 PC、 PMMA、 アクリルフィルムであり、 その厚 さは、 得られる電磁波シールド性光透過窓材の厚さを過度に厚くすることなく、 十分な耐久性と取り扱い性を得る上で、 1〜200 jum程度とするのが好ましい。 透明基材フィルムと金属箔とを接着する透明接着剤としては、 本発明の電磁波 シールド性光透過窓材に用いられる接着樹脂として後述する E V Aや P V B樹脂 等を用いることができ、 そのシート化及び接着の方法や条件についても同様の方 法及ぴ条件を採用することができる。 また、 エポキシ系、 アクリル系、 ウレタン 系、 ポリエステル系、 ゴム系の透明接着剤を用いることができ、 特に、 積層後の エッチング工程での耐エッチング性の点から、 ウレタン系、 エポキシ系が特に望 ましい。 この透明接着剤 14による接着層の厚さは、 好ましくは 1〜50 mで ある。 この透明接着剤 14は、 必要に応じて、 後述の導電性粒子が配合されてい ても良い。 次に、 図 1, 2を参照して本発明の第 1の態様に係る電磁波シールド性光透過 窓材の実施の形態を詳細に説明する。
図 1, 2は、 本発明の第 1の態様に係る電磁波シールド性光透過窓材の実施の 形態を示す模式的な断面図である。
図 1の電磁波シールド性光透過窓材 1は、 最表層の反射防止フィルム 3、 電磁 波シールド性フィルムとしての銅 Z P E T積層エッチングフィルム 1 0、 透明基 板 2及ぴ最裏層の近赤外線力ットフィルム 5を、接着剤となる接着用中間膜 4 A, 4 B及ぴ粘着剤 4 Cを用いて積層一体化し、 この積層体の端面とそれに近接する 表裏の縁部とに導電性粘着テープ 7 (以下 「第 2の導電性粘着テープ」 という。) を付着させて一体化したものである。 電磁波シールド性フィルム 1 0は、 透明基 板 2とほぼ同等の大きさであり、 その縁部に一方の面から他方の面に回り込むよ うに導電性粘着テープ 8 (以下 「第 1の導電性粘着テープ」 という。) が付着され ている。
図 2の電磁波シールド性光透過窓材 1 Aは、 図 1の電磁波シールド性光透過窓 材において、接着用中間膜 4 Bの代りに透明粘着剤 4 Dを用いた点のみが異なり、 その他は同様の構成とされている。
図 2の電磁波シールド性光透過窓材 1 Aは、 最表層の反射防止フィルム 3、 電 磁波シールド性フィルムとしての銅/ P E T積層エッチングフィルム 1 0、 透明 基板 2及び最裏層の近赤外線力ッ トフィルム 5を、 接着剤となる接着用中間膜 4 A、 透明粘着剤 4 D及び粘着剤 4 Cを用いて積層一体化し、 この積層体の端面と それに近接する表裏の縁部とに導電性粘着テープ 7 (第 2の導電性粘着テープ) を付着させて一体化したものである。 電磁波シールド性フィルム 1 0は、 透明基 板 2とほぼ同等の大きさであり、 その縁部に一方の面から他方の面に回り込むよ うに導電性粘着テープ 8 (第 1の導電性 ¾着テープ) が付着されている。
図 1, 2において、 第 1の導電性粘着テープ 8は、 電磁波シールド性フィルム 1 0の縁部の全周にわたって設けられていることが好ましいが、 一部、 例えば対 向 2辺縁部に設けられていても良い。
電磁波シールド性光透過窓材 1, 1 Aにあっては、 反射防止フィルム 3及びそ の下の接着用中間膜 4 Aは電磁波シールド性フィルム 1 0及ぴ透明基板 2よりも 若干小さく、 反射防止フィルム 3及び接着用中間膜 4 Aの縁部は電磁波シールド 性フィルム 1 0及ぴ透明基板 2の縁部から若干 (例えば 3〜 2 O mm特に好まし くは 5〜 1 0 mm程度) 後退しており、 電磁波シールド性フィルム 1 0の周縁の 第 1の導電性粘着テープ 8部分が反射防止フィルム 3及び接着用中間膜 4 Aによ つて覆われていない。 このため第 1の導電性粘着テープ 8の上に第 2の導電性粘 着テープ 7が直接被さり、 第 1, 第 2の導電性粘着テープ 8, 7を介して、 電磁 波シールド性フィルム 1 0が確実に導通される。
粘着剤 4 C付き近赤外線力ットフィルム 5も透明基板 2よりも若干小さく、 該 粘着剤 4 C付き近赤外線力ットフィルム 5の縁部は透明基板 2の縁部から若干 (例えば 3〜 2 0 mm特に好ましくは 5〜1 0 mm程度) 後退している。
この実施の形態では、 反射防止フィルム 3及び接着用中間膜 4 A、 粘着剤 4 C 付き近赤外線力ットフィルム 5の周縁部が第 2の導電性粘着テープ 7に被さつて いないが、 これらは第 2の導電性粘着テープ 7の内側に被さっていても良い。 図 1, 2の電磁波シールド性光透過窓材 1 , 1 Aでは、 第 1の導電性粘着テープ 8 と第 2の導電性粘着テープ 7との導通を図る必要があるため、 反射防止フィルム 3及ぴ接着用中間膜 4 Aについては、 電磁波シールド性フィルム 1 0及ぴ透明基 板 2よりも小さく、 縁部が後退している必要があるが、 粘着剤 4 C付き近赤外線 カットフィルム 5は透明基板 2と同等の大きさであっても良い。
反射防止フィルム 3及び接着用中間膜 4 Aは、 その全周にわたって電磁波シー ルド性フィルム 1 0及ぴ透明基板 2の縁部から後退していることが望ましいが、 —部例えば、 第 1の導電性粘着テープ 8が対向 2辺縁部に設けられている場合に は、 その部分のみ後退し、 第 2の導電性粘着テープ 7もこの対向 2辺縁部に設け られていても良い。
透明基板 2の構成材料としては、 ガラス、 ポリエステル、 ポリエチレンテレフ タレート ( P E T ) , ポリブチレンテレフタレート、 ポリメチルメタァクリ レート
( P MMA)、 アクリル板、 ポリカーボネート (P C )、 ポリスチレン、 トリァセ テートフィルム、 ポリ ビュルアルコール、 ポリ塩化ビュル、 ポリ塩化ビユリデン、 ポリエチレン、 エチレン一酢酸ビエル共重合体、 ポリ ビュルプチラール、 金属ィ オン架橋エチレン一メタアクリル酸共重合体、 ポリウレタン、 セロファン等、 好 ましくは、 ガラス、 PET、 PC、 PMMAが挙げられる。
透明基板 2の厚さは得られる窓材の用途による要求特性 (例えば、 強度、 軽量 性) 等によって適宜決定されるが、 通常の場合、 0. 1〜1 Omm好ましくは 1 〜4 mmの範囲とされる。
透明基板 2の周縁部にァクリル樹脂等をべ一スとする黒枠塗装が設けられても よい。
透明基板 2には、 金属薄膜又は透明導電性膜等の熱線反射コート等を施して機 能性を高めるようにしてもよい。
反射防止フィルム 3としては、 P ET, PC, PMMA等のベースフィルム(厚 さは例えば 25〜250 μπι程度) 3 A上に下記 (1) の単層膜や、 高屈折率透 明膜と低屈折率透明膜との積層膜、 例えば、 下記 (2) 〜 (5) のような積層構 造の積層膜よりなる反射防止層 3 Bを形成したものが挙げられる。
(1) ベースフィルム 3 Aよりも屈折率の低い透明膜を一層積層したもの ( 2 ) 高屈折率透明膜と低屈折率透明膜を 1層ずつ合計 2層に積層したもの ( 3 ) 高屈折率透明膜と低屈折率透明膜を 2層ずつ交互に合計 4層積層したも の
(4) 中屈折率透明膜/高屈折率透明膜/低屈折率透明膜の順で 1層ずつ、 合 計 3層に積層したもの
(5) 高屈折率透明膜/低屈折率透明膜の順で各層を交互に 3層ずつ、 合計 6 層に積層したもの
高屈折率透明膜としては、 I TO (スズインジウム酸化物) 又は Z nO、 A 1 をドープした ZnO、 T i 02、 S n02、 ∑ ]: 0等の屈折率1. 8以上の薄膜、 好ましくは透明導電性の薄膜を形成することができる。高屈折率透明膜としては、 これらの粒子をァクリルやポリエステルのバインダーに分散させた薄膜でもよい。 低屈折率透明膜としては S i 02、 Mg F2、 A 1203等の屈折率が 1. 6以下 の低屈折率材料よりなる薄膜を形成することができる。低屈折率透明膜としては、 シリコン系、 フッ素系の有機材料からなる薄膜も好適である。
これらの膜の膜厚は光の干渉で可視光領域での反射率を下げるため、 膜構成、 膜種、中心波長により異なってくるが、 4層構造の場合、透明基板側の第 1層(高 屈折率透明膜) が 5〜50 nm、 第 2層 (低屈折率透明膜) が 5~50 nm、 第 3層 (高屈折率透明膜) が 50〜100 nm、 第 4層 (低屈折率透明膜) が 50 〜150 nm程度の膜厚で形成される。
反射防止フィルム 3の上に更に汚染防止膜を形成して、 表面の耐汚染性を高め るようにしてもよい。 汚染防止膜としては、 フッ素系薄膜、 シリコン系薄膜等よ りなる膜厚 1〜100 nm程度の薄膜が好ましい。
近赤外線力ットフイルム 5としては、ベースフィルム 5 A上に、銅系無機材料、 銅系有機材料、 シァニン系、 フタロシアニン系、 ニッケル錯体系、 ジインモニゥ ム系等の近赤外線吸収材料のコーティング層、 又は酸化亜鉛、 I TO (酸化イン ジゥムスズ) 等の無機誘電体と銀等のメタルとの多層コーティング層 5 Bを設け たものを用いることができる。 ベースフィルム 5 Aとしては、 好ましくは、 PE T、 PC、 PMMA等よりなるフィルムを用いることができる。 ベースフィルム 5 Aは、得られる電磁波シールド性光透過窓材の厚さを過度に厚くすることなく、 取り扱い性、 耐久性を確保する上で 10 μ m〜 1 mm程度とするのが好ましい。 ペースフィルム 5 A上に形成される近赤外線力ットコ一ティング層 5 Aの厚さは、 通常の場合、 0. 5〜50 μπι程度である。
上記近赤外線力ット材料のうちの好ましくは 2種以上の材料を用いた近赤外線 カット層を設けてもよく、 2種以上のコーティング層を混合したり、積層したり、 ベースフィルムの両面に分けてコーティングしたり、 2種以上の近赤外線カツト フィルムを積層してもよい。
近赤外線カツト材料として、 次のような近赤外線カツトタイプの異なる 2種以 上の近赤外線カツト材料を組み合わせて用いるのが、 透明性を損なうことなく、 良好な近赤外線力ット性能 (例えば 850〜 1250 nmなど近赤外の幅広い波 長域において、 近赤外線を十分に吸収する性能) を得る上で好ましい。
(a) 厚さ 100〜5000 Aの I TOのコーティング層
(b) 厚さ 100〜 1000 OAの I TOと銀の交互積層体によるコ一ティン グ層
(c) 厚さ 0. 5〜50ミクロンのニッケル錯体系とィモニゥム系の混合材料 を適当な透明バインダーを用いて膜としたコーティング層 (d) 厚さ 1 0〜 1 0000ミクロンの 2価の銅イオンを含む銅化合物を適当 な透明パインダーを用いて膜としたコーティング層
(e) 厚さ 0. 5〜50ミクロンの有機色素系コーティング層
上 4 レヽ、ヽ
(a) と (c) の組み合わせ
(a) と (d) の組み合わせ
(b) と (c) の組み合わせ
(b) と (d) の組み合わせ
又は (c) のみ
が好適であるが、 何らこれらに限定されるものではない。
本発明においては、 例えば近赤外線カットフィルム 5と共に、 更に透明導電性 フィルムを積層してもよい。 この透明導電性フィルムとしては、 導電性粒子を分 散させた樹脂フィルム、 又はベースフィルムに透明導電性層を形成したものを用 いることができる。
フィルム中に分散させる導電性粒子としては、 導電性を有するものであればよ く特に制限はないが、 例えば、 次のようなものが挙げられる。
(i) カーボン粒子ないし粉末
(ii) ニッケル、 インジウム、 クロム、 金、 バナジウム、 すず、 カドミウム、 銀、 プラチナ、 アルミ、 銅、 チタン、 コバルト、 鉛等の金属又は合金或いはこれらの 導電性酸化物の粒子ないし粉末
(iii) ポリスチレン、 ポリエチレン等のプラスチック粒子の表面に上記 (i),(ii)の導 電性材料のコーティング層を形成したもの
(iv) I T Oと銀の交互積層体
これらの導電性粒子の粒径は、 過度に大きいと光透過性や透明導電性フィルム の厚さに影響を及ぼすことから、 0. 5 mm以下であることが好ましい。 好まし い導電性粒子の粒径は 0. 01〜0. 5 mmである。
また、 透明導電性フィルム中の導電性粒子の混合割合は、 過度に多いと光透過 性が損なわれ、 過度に少ないと電磁波シールド性が不足するため、 透明導電性フ イルムの樹脂に対する重量割合で 0. 1〜50重量%、特に0. 1〜20重量%、 とりわけ 0 . 5〜 2 0重量%程度とするのが好ましい。
導電性粒子の色、 光沢は、 目的に応じ適宜選択されるが、 表示パネルのフィル タとしての用途から、 黒、 茶等の暗色で無光沢のものが好ましい。 この場合は、 導電性粒子がフィルタの光線透過率を適度に調整することで、 画面が見やすくな るという効果もある。
ベースフィルムに透明導電性層を形成したものとしては、 蒸着、 スパッタリン グ、 イオンプレーティング、 C V D等により、 スズインジウム酸化物、 亜鉛アル ミ酸化物等の透明導電層を形成したものが挙げられる。 透明導電層の厚さが 0 . 0 1 /x m未満では、 電磁波シールドのための導電性層の厚さが薄過ぎ、 十分な電 磁波シールド性を得ることができず、 5 μ mを超えると光透過性が損なわれる恐 れ ある。
なお、 透明導電性フィルムのマトリックス樹脂又はベースフィルムの樹脂とし ては、 ポリエステル、 P E T、 ポリブチレンテレフタレート、 P MMA、 アタリ ル板、 P C、 ポリスチレン、 トリアセテートフィルム、 ポリ ビュルアルコール、. ポリ塩化ビュル、 ポリ塩化ビニリデン、 ポリエチレン、 エチレン一酢酸ビニル共 重合体、 ポリビニルブチラール、 金属イオン架橋エチレンーメタクリル酸共重合 体、 ポリウレタン、 セロファン等、 好ましくは、 P E T、 P C、 P MMAが挙げ られる。
このような透明導電性フィルムの厚さは、 通常の場合、 1 ί πι〜5 πιηι程度と される。
反射防止フィルム 3、 電磁波シールド性フィルム 1 0及ぴ透明基板 2を接着す る図 1の電磁波シールド性光透過窓材 1の接着用中間膜 4 Α, 4 Β、 及ぴ図 2の 電磁波シールド性光透過窓材 1 Αの接着用中間膜 4 Aを構成する熱硬化性樹脂と しては、 透明で弾性のあるもの、 例えば、 通常、 合せガラス用接着剤として用い られているものが好ましい。 特に、 透明基板 2よりも前面側に配置される接着用 中間膜 4 A, 4 Bとして、 飛散防止能の高い弾性膜を用いると効果的である。 このような弾性を有した膜の樹脂としては、 具体的には、 エチレン一酢酸ビニ ル共重合体、 エチレン一アクリル酸メチル共重合体、 エチレン一 (メタ) アタリ ル酸共重合体、 エチレン一 (メタ) アクリル酸ェチル共重合体、 エチレン一 (メ タ) アクリル酸メチル共重合体、 金属イオン架橋エチレン一 (メタ) アクリル酸 共重合体、 部分鹼化エチレン一酢酸ビニル共重合体、 カルボキシルエチレン一酢 酸ビュル共重合体、 エチレン一 (メタ) アクリル—無水マレイン酸共重合体、 ェ チレン一酢酸ビニルー (メタ) アタリレート共重合体等のエチレン系共重合体が 挙げられる (なお、 「(メタ) アクリル」 は 「アクリル又はメタクリル」 を示す。)。 その他、 ポリビニルプチラール (P V B ) 樹脂、 エポキシ樹脂、 アクリル樹脂、 フヱノール樹脂、 シリコン樹脂、 ポリエステル樹脂、 ウレタン樹脂等も用いるこ とができるが、 性能面で最もバランスがとれ、 使い易いのはエチレン一酢酸ビニ ル共重合体 (E V A) である。 また、 耐衝撃性、 耐貫通性、 接着性、 透明性等の 点から自動車用合せガラスで用いられている P V B樹脂も好適である。
P V B樹脂は、 ポリビニルァセタール単位が 7 0〜9 5重量0 、 ポリ酢酸ビニ ル単位が 1〜 1 5重量%で、 平均重合度が 2 0 0〜 3 0 0 0、 好ましくは 3 0 0 〜2 5 0 0であるものが好ましく、 P V B樹脂は可塑剤を含む樹脂組成物として 使用される。
P V B樹脂組成物の可塑剤としては、 一塩基酸エステル、 多塩基酸エステル等 の有機系可塑剤や燐酸系可塑剤が挙げられる。
一塩基酸エステルとしては、 酪酸、 イソ酪酸、 カプロン酸、 2—ェチル酪酸、 ヘプタン酸、 n—ォクチル酸、 2—ェチルへキシル酸、 ペラルゴン酸 (n—ノニ ル酸)、デシル酸等の有機酸とトリエチレンダリコールとの反応によって得られる エステルが好ましく、 より好ましくは、 トリエチレン一ジ一 2 —ェチルブチレ一 ト、 ト リエチレングリ コー Λ^—ジー 2—ェチノレへキソエー ト、 ト リエチレングリ コールージ一力プロネート、 トリエチレングリコーノレ一ジ— η—ォク トエート等 である。 上記有機酸とテトラエチレングリコール又はトリプロピレンダリコール とのエステルも使用可能である。
多塩基酸エステル系可塑剤としては、 例えば、 アジピン酸、 セバチン酸、 ァゼ ライン酸等の有機酸と炭素数 4〜 8の直鎖状又は分岐状アルコールとのエステル が好ましく、 より好ましくは、 ジブチルセパケート、 ジォクチルァゼレート、 ジ ブチルカルビトールアジぺート等が挙げられる。
燐酸系可塑剤としては、 トリブトキシェチルフォスフェート、 イソデシルフエ ニルフォスフエ一ト、 トリイソプロピルフォスフヱート等が挙げられる。
P V B樹脂組成物において、 可塑剤の量が少ないと製膜性が低下し、 多いと耐 熱時の耐久性等が損なわれるため、 ポリビニルブチラール樹脂 1 0 0重量部に対 して可塑剤を 5〜5 0重量部、 好ましくは 1 0〜4 0重量部とする。
P V B樹脂組成物には、 更に劣化防止のために、 安定剤、 酸化防止剤、 紫外線 吸収剤等の添加剤が添加されていても良い。
接着用中間膜 4 A, 4 Bの接着樹脂としては特に架橋剤を含む架橋型熱硬化性 樹脂、 とりわけ架橋型 E V A樹脂が好ましい。
以下に、 この接着樹脂としての架橋型 E V A樹脂について詳細に説明する。
E V Aとしては酢酸ビニル含有量が 5〜 5 0重量%、 好ましくは 1 5〜4 0重 量%のものが使用される。 酢酸ビニル含有量が 5重量%より少ないと耐候性及ぴ 透明性に問題があり、また 4 0重量%を超すと機械的性質が著しく低下する上に、 成膜が困難となり、 フィルム相互のプロッキングが生ずる。
架橋剤としては、 有機過酸化物が適当であり、 シート加工温度、 架橋温度、 貯 蔵安定性等を考慮して選ばれる。 使用可能な過酸化物としては、 例えば 2, 5— ジメチルへキサン一 2, 5—ジハイ ド口パーオキサイ ド; 2, 5—ジメチルー 2,
5—ジ( t一ブチ^^パーォキシ)へキサン一 3;ジー t一ブチルパーォキサイド; t—プチルクミルパーオキサイ ド; 2, 5—ジメチル _ 2, 5—ジ ( t _ブチル パーォキシ) へキサン; ジクミルパーオキサイ ド; α, a ' —ビス ( t _ブチル ノ、。一ォキシイソプロピル) ベンゼン; n _ブチル一 4, 4—ビス (tーブチルバ ーォキシ) バレレート ; 2, 2—ビス (t一ブチルパーォキシ) ブタン; 1, 1 一ビス ( t _ブチルパーォキシ) シクロへキサン; 1, 1一ビス (t一プチルパ ーォキシ) 一 3, 3, 5—トリメチルシクロへキサン; t _ブチルパーォキシベ ンゾエート ;ベンゾイノレハ。ーォキサイ ド;第 3ブチノレパーォキシアセテート; 2,
5—ジメチル一 2, 5—ビス (第 3ブチルパーォキシ) へキシン一 3 ; 1, 1一 ビス (第 3プチルパーォキシ) 一 3, 3, 5—トリメチルシクロへキサン; 1,
1一ビス (第 3ブチルパーォキシ) シクロへキサン; メチルェチルケトンパーォ キサイ ド; 2, 5—ジメチノレへキシノレ一 2, 5—ビスパーォキシベンゾエート ; 第 3ブチルハイ ド口パーオキサイ ド; p—メンタンハイド口パーオキサイ ド; p 一クロノレべンゾィノレパーォキサイド ;第 3プチノレパーォキシィソブチレ一ト ; ヒ ドロキシヘプチルバーォキサイド;クロルへキサノンパーォキサイドなどが挙げ られる。 これらの過酸化物は 1種を単独で又は 2種以上を混合して、 通常 E V A 1 0 0重量部に対して、 1 0重量部以下、 好ましくは 0 . 1〜1 0重量部の割合 で使用される。
有機過酸化物は通常 E V Aに対し押出機、 ロールミル等で混練されるが、 有機 溶媒、 可塑剤、 ビュルモノマー等に溶解し、 E V Aのフィルムに含浸法により添 加しても良い。
なお、 E V Aの物性 (機械的強度、 光学的特性、 接着性、 耐候性、 耐白化性、 架橋速度など) 改良のために、 各種アタリ口キシ基又はメタクリロキシ基及びァ リル基含有化合物を添加することができる。 この目的で用いられる化合物として はアクリル酸又はメタクリル酸誘導体、 例えばそのエステル及びアミ ドが最も一 般的であり、 エステル残基としてはメチル、 ェチル、 ドデシル、 ステアリル、 ラ ゥリル等のアルキル基の他、 シクロへキシル基、 テトラヒドロフルフリル基、 ァ ミノェチル基、 2—ヒ ドロキシェチル基、 3—ヒ ドロキシプロピル基、 3—クロ ロー 2—ヒドロキシプロピル基などが挙げられる。 また、 エチレングリコール、 ト リエチレングリ コーノレ、 ポリエチレングリ コーノレ、 ト リメチローノレプロノヽ。ン、 ペンタエリスリ トール等の多官能アルコールとのエステルを用いることもできる。 アミ ドとしてはダイァセトンアクリルアミ ドが代表的である。
より具体的には、 トリメチロールプロパン、 ペンタエリスリ トール、 グリセリ ン等のァクリル又はメタクリル酸エステル等の多官能エステルや、 トリアリルシ ァヌレート、 トリアリルイソシァヌレート、 フタル酸ジァリル、 イソフタル酸ジ ァリル、 マレイン酸ジァリル等のァリル基含有化合物が挙げられ、 これらは 1種 を単独で、 或いは 2種以上を混合して、 通常 E V A 1 0 0重量部に対して 0 . 1
〜2重量部、 好ましくは 0 . 5〜5重量部用いられる。
このような架橋型の E V A樹脂であれば、 図 1の電磁波シールド性光透過窓材
1の場合、 透明基板 2に対して電磁波シールド性フィルム 1 0を接着するに当た り、 接着用中間膜 4 Bを介して、 これらを積層し、 仮圧着後 (この仮圧着後は適 宜貼り直しが可能である。)、 加圧、 加熱することにより、 図 5に示す如く、 電磁 波シールド性フィルム 1 0と透明基板 2との間に気泡を残留させることなく両者 を接着することができ、 従って、 電磁波シールド性フィルム 1 0の透明接着剤 1 4の表面 1 4 Aの微細な回凸に接着用中間膜 4 Bの接着樹脂 4 B ' を回り込ませ てこれを完全に埋め、この凹凸に起因する光の散乱を確実に防止することができ、 好ましい。
このように接着用中間膜 4 Bの接着樹脂 4 B ' で、 電磁波シールド性フィルム 1 0の透明接着剤 1 4の表面 1 4 Aの微細な凹凸に起因する光の散乱をより一層 確実に防止するためには、 この透明接着剤 1 4と接着樹脂 4 B, との界面で光の 反射が起きないように、 透明接着剤 1 4の屈折率と硬化後の接着樹脂 4 B ' の屈 折率がほぼ等しいことが好ましい。
接着樹脂 4 B, としての E V A樹脂の屈折率はおおむね n = 1 . 5程度である ことから、 透明接着剤 1 4としては屈折率 n = 1 . 5程度のものを用いるのが好 ましい。 このような透明接着剤 1 4としては、 £ ¥ ゃ?¥ 8樹脂系接着剤の他、 エポキシ系、 アクリル系、 ウレタン系、 ポリエステル系、 ゴム系の透明接着剤等 が挙げられる。
接着用中間膜 4 A、 4 Bの厚さは、例えば 1 0〜 1 0 0 0 m程度が好ましい。 接着用中間膜 4 A, 4 Bには、 その他、 紫外線吸収剤、 赤外線吸収剤、 老化防 止剤、 塗料加工助剤を少量含んでいてもよく、 また、 フィルター自体の色合いを 調整するために染料、 顔料などの着色剤、 カーボンブラック、 疎水性シリカ、 炭 酸カルシウム等の充填剤を適量配合してもよい。
接着性改良の手段として、 シート化された接着用中間膜の膜面へのコロナ放電 処理、 低温プラズマ処理、 電子線照射、 紫外光照射などの手段も有効である。 この接着用中間膜は、 接着樹脂と上述の添加剤とを混合し、 押出機、 ロール等 で混練した後カレンダー、 ロール、 Tダイ押出、 インフレーション等の成膜法に より所定の形状にシート成形することにより製造される。 成膜に際してはプロッ キング防止、透明基板との圧着時の脱気を容易にするためエンボスが付与される。 接着用中間膜 4 Aとしては上記の接着剤の他、 下記のような粘着剤 (感圧接着 剤) も好適に使用される。
図 2の電磁波シールド性光透過窓材 1 Aの透明粘着剤 4 Dとしては、 各種の透 明感圧接着剤を用いることができ、 例えば、 アクリル系、 S B S、 S E B S等の 熱可塑性エラストマ一系などが好適に用いられる。 これらの粘着剤には、 タツキ フアイヤー、 紫外線吸収剤、 着色顔料、 着色染料、 老化防止剤、 接着付与剤等を 適宜添加することができる。
このような透明粘着剤 4 Dであれば、 透明基板 2に対して電磁波シールド性フ イルム 1 0を接着するに当たり、 透明粘着剤 4 Dを介して、 これらを積層し、 仮 圧着後 (この仮圧着後は適宜貼り直しが可能である。)、 加圧、 加熱、 又は減圧、 加熱することにより、 図 5に示す如く、 電磁波シールド性フィルム 1 0と透明基 板 2との間に気泡を残留させることなく両者を接着することができ、 従って、 電 磁波シールド性フィルム 1 0の透明接着剤 4の表面 1 4 Aの微細な凹凸に透明粘 着剤 4 Dを回り込ませてこれを完全に埋め、 この凹凸に起因する光の散乱を確実 に防止することができる。
透明粘着剤 4 Dであれば、 貼り直しが可能であり、 電磁波シールド性フィルム 1 0と透明基板 2等とを接着界面に気泡を残留させることなく、 強固に接着一体 化することができる。
この透明粘着剤 4 Dは、 電磁波シールド性フィルム 1 0のパターンエッチング された導電性箔面上に直接塗工されていることが好ましい。
このように透明粘着剤 4 Dで、 電磁波シールド性フイルム 1 0の透明接着剤 1 4の表面 1 4 Aの微細な凹凸に起因する光の散乱をより一層確実に防止するため には、 この透明接着剤 1 4と透明粘着剤 4 Dとの界面で光の反射が起きないよう に、 透明接着剤 1 4の屈折率と透明粘着剤 4 Dの屈折率がほぼ等しいことが好ま しい。
一般に透明粘着剤又は接着剤 4 Dとしてのアクリル系、 ウレタン系、 E V A系、
P V B系、 シリコン系、 ゴム系等の屈折率はおおむね n = 1 . 5程度であること から、 この場合には、 透明接着剤 1 4としては屈折率 n = 1 . 5程度のものを用 いることが好ましい。 このような透明接着剤 1 4としてはアクリル系、 ウレタン 系、 ゴム系等が挙げられる。 透明粘着剤又は接着剤 4 Dとしてのエポキシ系、 ポ リエステル系等の屈折率はおおむね n = 1 . 6〜1 . 6 5程度であることから、 この場合には、 透明接着剤 1 4としては屈折率 n = l . 6〜1 . 6 5程度のもの を用いることが好ましい。 このような透明接着剤 1 4としてはエポキシ系、 ポリ ェステル系などが挙げられる。
電磁波シールド性フィルム 1 0は、 図 1, 2のように直接透明基板 2に接着され ていても良く、 他のフィルムを介して接着されていても良い。
近赤外線力ットフィルム 5の粘着剤 4 Cとしても、 透明粘着剤 4 Dとして例示 したものを用いることができ、 これらの透明粘着剤 4 D、 粘着剤 4 Cは予め、 電 磁波シールド性フィルム 1 0や近赤外線力ットフィルム 5の接着面に 5〜 1 0 0 mの厚みでコーティング又は貼り合わせておき、 それを透明基板や他のフィル ムに貼り合わせることができる。
近赤外線カツトフイルム 5については、 粘着剤 4 Cを用いて透明基板 2に積層 するのが好ましい。 これは、 近赤外線カットフィルム 5は熱に弱く加熱架橋温度
( 1 3 0〜1 5 0 °C) に耐えられないためである。 低温架橋型 E V A (架橋温度 7 0〜 1 3 0 °C程度) であればこの近赤外線力ットフィルム 5の透明基板 2への 接着に使用することができる。
第 2, 第 1の導電性粘着テープ 7, 8は、 図示の如く、 金属箔 7 A , 8 Aの一 方の面に、 導電性粒子を分散させた粘着層 7 B, 8 Aを設けたものである。 粘着 層 7 B, 8 Bには、 アクリル系、 ゴム系、 シリ コン系粘着剤や、 エポキシ系、 フ ェノール系樹脂に硬化剤を配合したものを用いることができる。
粘着層 7 B, 8 Bに分散させる導電性粒子としては、 電気的に良好な導体であ ればよく、 種々のものを使用することができる。 例えば、 銅、 銀、 ニッケル等の 金属粉体、 このような金属で被覆された樹脂又はセラミック粉体等を使用するこ とができる。 また、 その形状についても特に制限はなく、 りん片状、 樹枝状、 粒 状、 ペレッ ト状等の任意の形状をとることができる。
この導電性粒子の配合量は、 粘着層 7 B, 8 Bを構成するポリマーに対し 0 . 1〜1 5容量%であることが好ましく、 また、 その平均粒径は 0 . 1〜1 0 0 mであることが好ましい。 このように、 配合量及ぴ粒径を規定することにより、 導電性粒子の凝集を防止して、 良好な導電性を得ることができるようになる。 導電性粘着テープ 7, 8の基材となる金属箔 7 A, 8 Aとしては、 銅、 銀、 二 ッケル、 アルミニウム、 ステンレス等の箔を用いることができ、 その厚さは通常 の場合、 1〜1 0 0 μ ηι程度とされる。
粘着層 7 Β, 8 Βは、 この金属箔 7 Α, 8 Αに、 前記粘着剤と導電性粒子とを 所定の割合で均一に混合したものをロールコーター、 ダイコーター、 ナイフコー ター、 マイ力バーコ一タ一、 フローコータ一、 スプレーコーター等により塗工す ることにより容易に形成することができる。
この粘着層 7 B, 8 Aの厚さは通常の場合 5〜 1 0 0 μ ηι程度とされる。
図 1に示す電磁波シールド性光透過窓材 1を製造するには、 例えば反射防止フ イルム 3と、 電磁波シールド性フィルム 1 0と、 透明基板 2と、 粘着剤 4 C付き 近赤外線カットフィルム 5と、 接着用中間膜 4 Α, 4 Β及び第 1 , 第 2の導電性 粘着テープ 8, 7を準備し、 予め電磁波シールド性フィルム 1 0の周縁に第 1の 導電性粘着テープ 8を留め付け、 反射防止フィルム 3、 第 1の導電性粘着テープ 8付き電磁波シールド性フィルム 1 0、 透明基板 2を各々の間に接着用中間膜 4 Α, 4 Βを介在させて積層し、 接着用中間膜の硬化条件で加圧下、 加熱して一体 化する。 次いで、 粘着剤 4 Cにより近赤外線カットフィルム 5を貼り合わせる。 その後、 第 2の導電性粘着テープ 7を積層体の周囲に留め付け、 用いた導電性粘 着テープ 7, 8の粘着層 7 Β, 8 Βの硬化方法等に従って、 加熱圧着するなどし て接着固定する。
図 2に示す電磁波シールド性光透過窓材 1 Αを製造するには、 例えば反射防止 フィルム 3と、 電磁波シールド性フィルム 1 0と、 透明基板 2と、粘着剤 4 C付 き近赤外線カットフィルム 5と、 接着用中間膜 4 A、 透明粘着剤 4 D及び第 1, 第 2の導電性粘着テープ 8, 7を準備し、 予め電磁波シールド性フィルム 1 0の 一方の面に透明粘着剤 4 Dを付着させると共に周縁に第 1の導電性粘着テープ 8 を留め付け、 第 1の導電性粘着テープ 8及び透明粘着剤 4 D付き電磁波シールド 性フィルム 1 0を透明基板 2に貼り付け、 その後、 この上に接着用中間膜 4 Aを 介在させて反射防止フィルム 3を積層し、接着用中間膜 4 Aの硬化条件で加圧下、 加熱して一体化する。 次いで、 粘着剤 4 Cにより近赤外線カットフィルム 5を貼 り合わせる。 その後、 第 2の導電性粘着テープ 7を積層体の周囲に留め付け、 用 いた導電性粘着テープ 7, 8の粘着層 7 B, 8 Bの硬化方法等に従って、 加熱圧 着、 又は減圧加熱するなどして接着固定する。 導電性粘着テープ 7, 8に架橋型導電性粘着テープを用いる場合、 その貼り付 けに際しては、 その粘着層 7 B, 8 Bの粘着性を利用して電磁波シールド性フィ ルムゃ積層体に貼り付け (この仮り止めは、 必要に応じて、 貼り直しが可能であ る。)、 その後、 必要に応じて圧力をかけながら加熱又は紫外線照射する。 この紫 外線照射時には併せて加熱を行ってもよい。 この加熱又は光照射を局部的に行う ことで、 架橋型導電性粘着テープの一部分のみを接着させるようにすることもで きる。
加熱接着は、 一般的なヒートシ一ラーで容易に行うことができ、 また、 加圧加 熱方法としては、 架橋型導電性粘着テープを貼り付けた積層体を真空袋中に入れ 脱気後加熱する方法でもよく、 接着はきわめて容易に行える。
この接着条件としては、 熱架橋の場合は、 用いる架橋剤 (有機過酸化物) の種 類に依存するが、 通常 7 0〜1 5 0 °C、 好ましくは 7 0〜1 3 0 °Cで、 通常 1 0 秒〜 1 2 0分、 好ましくは 2 0秒〜 6 0分である。
また、 光架橋の場合、 光源としては紫外〜可視領域に発光する多くのものが採 用でき、 例えば超高圧、 高圧、 低圧水銀灯、 ケミカルランプ、 キセノンランプ、 ハロゲンランプ、 マーキュリーハロゲンランプ、 カーボンアーク灯、 白熱灯、 レ 一ザ一光等が挙げられる。 照射時間は、 ランプの種類、 光源の強さによって一概 には決められないが、 通常数十秒〜数十分程度である。 架橋促進のために、 予め 4 0〜1 2 0 °Cに加熱した後、 これに紫外線を照射してもよい。
また、 接着時の加圧力についても適宜選定され、 通常 5〜5 0 k g Z c m 2、 特に 1 0〜3 0 k g Z c m 2の加圧力とすることが好ましい。
このようにして導電性粘着テープ 7, 8を取り付けた電磁波シールド性光透過 窓材 1, 1 Aは、 極めて簡便かつ容易に筐体に組み込むことができ、 筐体に単に はめ込むのみで、 第 1, 第 2の導電性粘着テープ 7, 8を介して電磁波シールド 性フィルム 1 0と筐体との良好な導通を得ることができる。 このため、 良好な電 磁波シールド効果が得られる。 加えて、 近赤外線カットフィルム 5の存在下で、 良好な近赤外線カット性能が得られる。 さらに、 透明基板 2が 1枚のみであるた め、 薄く軽量である。 また、 この透明基板 2の両面をフィルム 3, 5で被装して いるから、 透明基板 2の割れが防止されると共に、 万一割れたときの透明基板 2 の飛散が防止される。
しかも、 電磁波シールド性フィルム 1 0は、 銅箔 1 1等の導電性箔のパターン エッチングによるものであるため、 エツチングパターンの設計を任意に調節する ことで、 電磁波シールド性、 光透過性が共に良好なものとし、 モアレ現象の問題 も解消することができる。 そして、 この電磁波シールド性フィルム 1 0は、 光吸 収層 1 2を有し、 かつ、 この光吸収層 1 2の表面に粗面化処理により微細な凹凸 が形成され、 かつ、 この凹凸が転写された透明接着剤 1 4の表面の凹凸が透明粘 着剤 4 Bで埋められているため、 反射防止効果が高く、 コントラストの高い鮮明 な画像を得ることができる。
なお、 図 1, 2に示す電磁波シールド性光透過窓材は本発明の第 1の態様に係 る電磁波シールド性光透過窓材の一例であって、'本発明は図示のものに何ら限定 されるものではない。
次に、 図 7を参照して、 本発明の第 2の態様の電磁波シールド性光透過窓材で 用いる電磁波シールド性フィルムの製造方法の一例を説明する。
導電性箔として例えば銅箔 1 1を準備し (図 7 A)、銅箔 1 1を、 P E T (ポリ エチレンテレフタレート) フィルム 1 3等の透明な基材フィルムに透明接着剤 1 4により接着する (図 7 B )。
このようにして得られた貼り合わせフィルムについて、 パターンエッチングを 行い、 部分的に銅箔 1 1を除去する (図 7 C )。
次いで、パターンエッチングした銅箔 1 1の表面に光吸収層 1 2を形成する(図
7 D )。 この光吸収層 1 2の形成方法としては、 C u—N iなどの銅合金を成膜し た後に酸、 アルカリなどの処理により黒化する方法がある。 この処理により表面 処理された黒化面は粗面化されており、 その処理条件により表面粗さ R zを変え ることができる。 また、 光吸収性のインキを銅箔 1 1に塗布して硬化させること により形成することができ、 ここで使用される光吸収性のインクとしては、 カー ボンインキ、 ニッケルインキ、 その他喑色系有機顔料等のインキが用いられる。 この光吸収層 1 2は次いでその表面 1 2 Aをショットブラストなどの、 機械的に 表面を粗す方法や、 酸、 アルカリ等の薬品により表面を粗す方法、 インクに予め 無機、 又は有機の微粒子を混合したものを塗工して、 表面の粗い塗膜を形成する 方法等により粗面化して微細な凹凸を形成することにより無光沢処理を施す (図
7 E)o この光吸収層 12の厚さは、その黒化の材料や導電性によっても異なるが、 導電性を損なうことなく十分な電磁波シールド性を得るために、 1 n m〜 10 μ m程度とするのが好ましく、 また、 良好な反射防止効果で光の散乱を十分に防止 する上で、 表面 1 2 Aの粗面化の程度は、 表面粗さ R zで 0. 1〜20 μπι程度 とするのが好ましい。
次いで、 このようにして得られた銅 ΖΡ ΕΤ積層エッチングフィルム 10 aの 銅箔 1 1側の面に透明粘着剤を塗布して塗膜 1 5を形成し、 粘着膜付き電磁波シ 一ルド性フィルム 10 Aとする (図 7 F)。
電磁波シールド性フイルムを構成する導電性箔の種類や厚さ、 パターンエッチ ングの方法及びェツチングパターンは、 前述の第 1の態様に係る電磁波シールド 性光透過窓材で用いる電磁波シールド性フィルムの製造方法における説明と同様 である。
銅箔 11等の金属箔を接着する透明な基材フィルムの種類や厚さ、 透明基材フ イルムと金属箔とを接着する透明接着剤についても前述の通りである。
また、 銅 ZPET積層エッチングフィルム 10 aに塗布して塗膜 1 5を形成す る透明粘着剤としては、 各種の透明感圧接着剤を用いることができ、 例えば、 ァ クリル系、 SB S、 S EB S等の熱可塑性エラストマ一系などが好適に用いられ る。 これらの粘着剤には、 タツキフアイヤー、 紫外線吸収剤、 着色顔料、 着色染 料、 老化防止剤、 接着付与剤等を適宜添加することができる。
透明接着剤 14と塗膜 1 5の透明粘着剤との界面で光の反射が起きないように、 透明接着剤 14の屈折率と塗膜 15の透明粘着剤の屈折率がほぼ等しいことが好 ましい。
一般に塗膜 15を形成する透明粘着剤としてのアクリル系、 シリコン系の屈折 率はおおむね n= l. 5程度であることから、 透明接着剤 14としては屈折率 n = 1. 5程度のものを用いることが好ましい。 このような透明接着剤 14として はアクリル系、 ウレタン系、 ゴム系などが挙げられる。
透明粘着剤により形成される塗膜 15の厚さは、 1〜1 Ο Ο μηι程度が好まし い。 なお、 この透明粘着剤の塗膜 1 5は、 電磁波シールド性光透過窓材の製造に当 つて、後述の導電性粘着テープを貼り付ける部分は、銅箔 1 1が表出するように、 その周縁以外の部分に設けられる。
次に、 図 6を参照して本発明の第 2の態様に係る電磁波シールド性光透過窓材 の実施の形態を詳細に説明する。
図 6は、 本発明の第 2の態様に係る電磁波シールド性光透過窓材の実施の形態 を示す模式的な断面図である。
図 6の電磁波シールド性光透過窓材 1 Bは、 最表層の反射防止フィルム 3、 粘 着膜付き電磁波シールド性フィルム 1 0 A、 接着剤となる接着用中間膜 4 B、 透 明基板 2及び最裏層の粘着剤 4 C付き近赤外線力ットフィルム 5を積層一体化し、 この積層体の端面とそれに近接する表裏の縁部とに導電性粘着テープ 7 (第 2の 導電性粘着テープ) を付着させて一体化したものである。 粘着膜付き電磁波シー ルド性フィルム 1 O Aは、 透明基板 2とほぼ同等の大きさであり、 粘着膜付き電 磁波シールド性フィルム 1 O A、 接着用中間膜 4 B及び透明基板 2の積層体の縁 部には、 一方の面から他方の面に回り込むように導電性粘着テープ 8 (第 1の導 電性粘着テープ) が付着されている。 この第 1の導電性粘着テープ 8は、 粘着膜 付き電磁波シールド性フィルム 1 0 Aと透明基板 2の積層体の縁部の全周にわた つて設けられていることが好ましいが、 一部、 例えば対向 2辺縁部に設けられて いても良い。
電磁波シールド性光透過窓材 1 Bにあっては、 反射防止フィルム 3は、 粘着膜 付き電磁波シ ルド性ブイルム 1 0 A及び透明基板 2よりも若千小さく、 反射防 止フィルム 3の縁部は粘着膜付き電磁波シールド性フイルム 1 0 A及び透明基板
2の縁部から若干 (例えば 3〜2 O mm特に好ましくは 5〜1 O mm程度) 後退 しており、 粘着膜付き電磁波シールド性フィルム 1 O Aの周縁の第 1の導電性粘 着テープ 8部分が反射防止フィルム 3によって覆われていない。 このため第 1の 導電性粘着テープ 8の上に第 2の導電性粘着テープ 7が直接被さり、 第 1, 第 2 の導電性粘着テープ 8, 7を介して、 粘着膜付き電磁波シールド性フィルム 1 0
Aが確実に導通される。
粘着剤 4 C付き近赤外線力ットフィルム 5も透明基板 2よりも若干小さく、 該 粘着剤 4 C付き近赤外線力ットフィルム 5の縁部は透明基板 2の縁部から若干 (例えば 3〜 2 0 mm特に好ましくは 5〜1 0 mm程度) 後退している。
この実施の形態では、 反射防止フィルム 3、 粘着剤 4 C付き近赤外線カツトフ イルム 5の周縁部が第 2の導電性粘着テープ 7に被さっていないが、 これらは第 2の導電性粘着テープ 7の内側に被さっていても良い。 図 6の電磁波シールド性 光透過窓材 1 Bでは、 第 1の導電性粘着テープ 8と第 2の導電性粘着テープ 7と の導通を図る必要があるため、 反射防止フィルム 3については、 粘着膜付き電磁 波シールド性フィルム 1 O A及び透明基板 2よりも小さく、 縁部が後退している 必要があるが、 粘着剤 4 C付き近赤外線カツトフイルム 5は透明基板 2と同等の 大きさであっても良い。
反射防止フィルム 3は、 その全周にわたつて粘着膜付き電磁波シールド性フィ ルム 1 O A及び透明基板 2の縁部から後退していることが望ましいが、 一部例え ば、 第 1の導電性粘着テープ 8が対向 2辺縁部に設けられている場合には、 その 部分のみ後退し、 第 2の導電性粘着テープ 7もこの対向 2辺縁部に設けられてい ても良い。
図 6に示す電磁波シールド性光透過窓材 1 Bを製造するには、 例えば反射防止 フィルム 3と、 粘着膜付き電磁波シールド性フィルム 1 O Aと、 透明基板 2と、 粘着剤 4 C付き近赤外線カットフィルム 5と、 接着用中間膜 4 B及び第 1, 第 2 の導電性粘着テープ 8, 7を準備し、 予め粘着膜付き電磁波シールド性フィルム 1 O Aと透明基板 2とを接着用中間膜 4 Bを介して積層し、 接着用中間膜の硬化 条件で加圧下、 加熱、 又は減圧下、 加熱して一体化する。
そして、 この積層体の周縁に第 1の導電性粘着テープ 8を留め付ける。 その後 反射防止フィルム 3を粘着膜付き電磁波シールド性フイルム 1 0 Aの透明粘着剤 の塗膜 1 5に押しあてて圧着し、 次いで、 粘着剤 4 Cにより近赤外線カットフィ ルム 5を貼り合わせる。 その後、 第 2の導電性粘着テープ 7を積層体の周囲に留 め付け、 用いた導電性粘着テープ 7, 8の粘着層 7 B, 8 Bの硬化方法等に従つ て、 加熱圧着又は減圧加熱するなどして接着固定する。
導電性粘着テープ 7, 8に架橋型導電性粘着テープを用いる場合、 その貼り付 けに際しては、 その粘着層 7 B, 8 Bの粘着性を利用して積層体に貼り付け (こ の仮り止めは、 必要に応じて、 貼り直しが可能である。)、 その後、 必要に応じて 圧力をかけながら、 又は減圧状態に保持したまま加熱又は紫外線照射する。 この 紫外線照射時には併せて加熱を行ってもよい。 この加熱又は光照射を局部的に行 うことで、 架橋型導電性粘着テープの一部分のみを接着させるようにすることも できる。
加熱接着は、 一般的なヒートシ一ラーで容易に行うことができ、 また、 加圧加 熱方法として架橋型導電性粘着テープを貼り付けた積層体をオートクレープ等の 加圧チャンバ一中に入れ加熱する方法、 減圧加熱方法として同様の積層体を真空 袋中に入れ脱気後加熱する方法でもよく、 接着はきわめて容易に行える。
この接着条件としては、 熱架橋の場合は、 用いる架橋剤 (有機過酸化物) の種 類に依存するが、 通常 7 0〜1 5 0 °C、 好ましくは 7 0〜1 3 0 °Cで、 通常 1 0 秒〜 1 2 0分、 好ましくは 2 0秒〜 6 0分である。
また、 光架橋の場合、 光源としては紫外〜可視領域に発光する多くのものが採 用でき、 例えば超高圧、 高圧、 低圧水銀灯、 ケミカルランプ、 キセノンランプ、 ハロゲンランプ、 マーキュリーハロゲンランプ、 カーボンアーク灯、 白熱灯、 レ 一ザ一光等が挙げられる。 照射時間は、 ランプの種類、 光源の強さによってー概 には決められないが、 通常数十秒〜数十分程度である。 架橋促進のために、 予め 4 0〜1 2 0 °Cに加熱した後、 これに紫外線を照射してもよい。
また、 接着時の加圧力についても適宜選定され、 通常 5〜5 0 k g Z c m 2、 特に 1 0 ~ 3 0 k g Z c m 2の加圧力とすることが好ましい。
透明基板 2の構成 (材料、 厚さ等)、 反射防止フィルム 3の構成 (材料、積層構 造、 厚さ等)、 近赤外線カットフィルム 5の構成 (材料、 積層構造、 厚さ等)、 粘 着膜付き電磁波シールド性フィルム 1 0 A及び透明基板 2を接着する接着用中間 膜 4 Bを構成する熱硬化性樹脂及び厚さ、導電性粘着テープ 7, 8の構成(材料、 厚さ等) については、 第 1の態様に係る電磁波シールド性光透過窓材の説明にお いて前述した通りである。
前述の如く、 特に接着用中間膜 4 Bとしては、 架橋型の E V A樹脂よりなるも のが好ましく、 このような接着用中間膜 4 Bであれば、 透明基板 2に対して粘着 膜付き電磁波シールド性フィルム 1 O Aを接着するに当たり、 接着用中間膜 4 B を介して、 これらを積層し、 仮圧着後 (この仮圧着後は適宜貼り直しが可能であ る。)、 加圧、 加熱、 又は減圧、 加熱することにより、 粘着膜付き電磁波シールド 性フィルム 1 O Aと透明基板 2との間に気泡を残留させることなく両者を接着す ることができる。
図 6の電磁波シールド性光透過窓材 1 Bにおいても、 近赤外線カツトフイルム 5は粘着剤 4 Cを用いて透明基板 2に積層するのが好ましい。 これは、 近赤外線 カットフィルム 5は熱に弱く加熱架橋温度 (1 3 0〜 1 5 0 °C) に耐えられない ためである。 低温架橋型 E V A (架橋温度 7 0〜 1 3 0 °C程度) であればこの近 赤外線力ッ トフィルム 5の透明基板 2への接着に使用することができる。
接着用中間膜 4 Bには、 その他、 紫外線吸収剤、 赤外線吸収剤、 老化防止剤、 塗料加工助剤を少量含んでいてもよく、 また、 フィルター自体の色合いを調整す るために染料、 顔料などの着色剤、 カーボンブラック、 疎水性シリカ、 炭酸カル シゥム等の充填剤を適量配合してもよい。
また、 接着性改良の手段として、 シート化された接着用中間膜面へのコロナ放 電処理、 低温プラズマ処理、 電子線照射、 紫外光照射などの手段も有効である。 この接着用中間膜 4 Bは、 接着樹脂と上述の添加剤とを混合し、 押出機、 ロー ル等で混練した後カレンダー、 ロール、 Tダイ押出、 インフレーション等の成膜 法により所定の形状にシート成形することにより製造される。 成膜に際してはブ 口ッキング防止、 透明基板との圧着時の脱気を容易にするためエンボスが付与さ れる。
接着用中間膜 4 Bとしては上記の接着剤の他、 粘着剤 (感圧接着剤) も好適に 使用される。 この粘着剤及び近赤外線カツトフイルム 5の粘着剤 4 Cとしては、 アクリル系、 S B S、 S E B S等の熱可塑性エラストマ一系などが好適に用いら れる。 これらの粘着剤には、 タツキフアイヤー、 紫外線吸収剤、 着色顔料、 着色 染料、 老化防止剤、 接着付与剤等を適宜添加することができる。 粘着剤は予め、 透明基板 2や近赤外線カツトフイルム 5の接着面に 5〜 1 0 0 μ πιの厚みでコー ティング又は貼り合わせておき、 それを透明基板や他のフィルムに貼り合わせる ことができる。
図 6の電磁波シールド性光透過窓材 1 Βであっても、 導電性粘着テープ 7, 8 を取り付けたものであるため、極めて簡便かつ容易に筐体に組み込むことができ、 筐体に単にはめ込むのみで、 第 1, 第 2の導電性粘着テープ 7, 8を介して電磁 波シールド性フィルム 1 O Aと筐体との良好な導通を得ることができる。 このた め、 良好な電磁^シールド効果が得られる。 加えて、 近赤外線カットフィルム 5 の存在下で、 良好な近赤外線カット性能が得られる。 さらに、 透明基板 2が 1枚 のみであるため、 薄く軽量である。 また、 この透明基板 2の両面をフィルム 3, 5で被装しているから、 透明基板 2の割れが防止されると共に、 万一割れたとき の透明基板 2の飛散が防止される。
しかも、 粘着膜付き電磁波シールド性フィルム 1 O Aは、 銅箔 1 1等の導電性 箔のパターンエッチングによるものであるため、 エッチングパターンの設計を任 意に調節することで、 電磁波シールド性、 光透過性が共に良好なものとし、 モア レ現象の問題も解消することができる。 そして、 この粘着膜付き電磁波シールド 性フィルム 1 0 Aは、 光吸収層 1 2を有し、 かつ、 この光吸収層 1 2の表面に粗 面化処理により微細な凹凸が形成され、 かつ、 この凹凸が透明粘着剤で埋められ ているため、 反射防止効果が高く、 コントラス トの高い鮮明な画像を得ることが できる。
即ち、 図 8に示す如く、 透明粘着剤の塗膜 1 5は、 粘着膜付き電磁波シールド 性フィルム 1 O Aの基材フィルム 1 3及び透明接着剤 1 4上に形成された、 銅箔 1 1及び光吸収層 1 2による凸部を完全に埋め、 この凹凸に起因する光の散乱を 確実に防止することができる。
このように透明粘着剤で光の散乱をより一層確実に防止するためには、 この透 明粘着剤の塗膜 1 5と透明接着剤 1 4との界面で光の反射が起きないように、 前 述の如く、 透明粘着剤の屈折率と透明接着剤 1 4の屈折率がほぼ等しいことが好 ましい。
図 6に示す電磁波シールド性光透過窓材は本発明の第 2の態様に係る電磁波シ ールド性光透過窓材の一例であって、 本発明は図示のものに何ら限定されるもの ではない。
例えば、 電磁波シールドフィルムとしての銅/ P E T積層エッチングフィルム
1 0 aと反射防止フィルム 3との接着は、 予め形成された透明粘着剤の塗膜 1 5 により行う他、 前述の接着用中間膜により行っても良い。 この場合においても、 用いる接着用中間膜の硬化後の接着樹脂の屈折率は、 基材フィルム 1 3の屈折率 とほぼ同等であることが、 これらの界面での反射を防止する上で好ましい。
次に、 図 1 0を参照して、 本発明 (第 3の態様) の電磁波シールド性光透過窓 材の製造方法における電磁波シールド性フィルムの製造方法の実施の形態を説明 する。
導電性箔として例えば銅箔 1 1を準備し(図 1 0 A)、 この銅箔 1 1の一方の面 に光吸収層 1 2を形成する (図 1 0 B )。 この光吸収層 1 2は次いでその表面 1 2 Aを粗面化して微細な凹凸を形成することにより無光沢処理を施す(図 1 0 C )。 次いで、 光吸収層 1 2を形成し、 その無光沢処理を施した銅箔 1 1の無光沢処 理面を、 P E T (ポリエチレンテレフタレート) フィルム 1 3等の透明な基材フ イルムに透明接着剤 1 4により接着する (図 1 0 D, 1 0 E )。
このようにして得られた貼り合わせフィルムについて、 常法に従ってパターン エッチングを行い、 光吸収層 1 2を形成した銅箔 1 1を部分的に除去することに より、 電磁波シールド性フィルムとしての銅 Z P E T積層エッチングフィルム 1 0 bを得る (図 1 0 F )。
このようにして得られた銅/ P E T積層エッチングフィルム 1 0 bの透明接着 剤 1 4の表出面 1 4 Aは、 光吸収層 1 2の無光沢処理による微細な凹凸が転写さ れた凹凸面となるため、 この面に透明粘着剤を塗布して塗膜 1 5を形成し、 粘着 膜付き電磁波シールド性フィルム 1 0 Bとする (図 1 0 G)。
光吸収層 1 2の形成方法、 無光沢処理方法や、 光吸収層 1 2の厚さ、 その表面 1 2 Aの粗面化の程度については、 第 1の態様の電磁波シールド性光透過窓材で 用いる電磁波シールド性フィルムの製造方法の説明において前述した通りである 塗膜 1 5を形成する透明粘着剤としては、 各種の透明感圧接着剤を用いること ができ、 例えば、 アクリル系、 S B S、 S E B S等の熱可塑性エラストマ一系な どが好適に用いられる。 これらの粘着剤には、 タツキフアイヤー、紫外線吸収剤、 着色顔料、 着色染料、 老化防止剤、 接着付与剤等を適宜添加することができる。 透明粘着剤の塗膜 1 5を形成することにより、 透明接着剤 1 4の表面 1 4 Aの 微細な凹凸に透明粘着剤が回り込んでこれが完全に埋められ、 この凹凸に起因す る光の散乱は防止される。
透明粘着剤で、 透明接着剤 1 4の表面 1 4 Aの微細な凹凸に起因する光の散乱 をより一層確実に防止するためには、 この透明接着剤 1 4と塗膜 1 5の透明粘着 剤との界面で光の反射が起きないように、 透明接着剤 1 4の屈折率と塗膜 1 5の 透明粘着剤の屈折率がほぼ等しいことが好ましい。
従って、 一般に塗膜 1 5の透明粘着剤としてのアクリル系、 シリコン系の屈折 率はおおむね n = l . 5程度であることから、 透明接着剤 1 4としては屈折率 n = 1 . 5程度のものを用いることが好ましい。 このような透明接着剤 1 4として はアクリル系、 ウレタン系、 ゴム系などが挙げられる。
このような透明粘考剤により形成される塗膜 1 5の厚さは、 厚過ぎても薄過ぎ ても後述の透明基板への接着に当たり良好な接着を行えないため、 1〜1 0 m望ましくは 2〜 5 0 m程度の厚さとするのが好ましい。
なお、 この透明粘着剤の塗膜 1 5は、 電磁波シールド性光透過窓材の製造に当 つて、後述の導電性粘着テープを貼り付ける部分は、銅箔 1 1が表出するように、 その周縁以外の部分に設けられる。
電磁波シールド性フイルムを構成する導電性箔の種類や厚さ、 パターンエッチ ングの方法及ぴエッチングパターンは、 前述の第 1の態様に係る電磁波シールド 性光透過窓材で用いる電磁波シールド性フィルムの製造方法における説明と同様 である。
銅箔 1 1等の金属箔を接着する透明な基材フ.イルムの種類や厚さ、 透明基材フ イルムと金属箔とを接着する透明接着剤についても前述の通りである。
次に、 図 9を参照して、 このような粘着膜付き電磁波シールド性フィルム 1 0 Bを用いる本発明の電磁波シールド性光透過窓材の製造方法の実施の形態を詳細 に説明する。
図 9は、 本発明で製造される電磁波シールド性光透過窓材の実施の形態を示す 模式的な断面図である。
図 9の電磁波シールド性光透過窓材 1 Cは、 最表層の反射防止フィルム 3、 粘 着膜付き電磁波シールド性フィルム 1 0 B、 透明基板 2及ぴ最裏層の近赤外線力 ットフィルム 5を、 接着剤となる接着用中間膜 4 A、 塗膜 1 5の透明粘着剤及び 粘着剤 4 Cにより積層一体化し、 この積層体の端面とそれに近接する表裏の縁部 とに導電性粘着テープ 7 (第 2の導電性粘着テープ) を付着させて一体化したも のである。 粘着膜付き電磁波シールド性フィルム 1 0 Bは、 透明基板 2とほぼ同 等の大きさであり、 その縁部の銅箔 1 1の表面部分に一方の面から他方の面に回 り込むように導電性粘着テープ 8 (第 1の導電性粘着テープ)が付着されている。 この第 1の導電性粘着テープ 8は、 粘着膜付き電磁波シールド性フィルム 1 0 B の縁部の全周にわたって設けられていることが好ましいが、 一部、 例えば対向 2 辺縁部に設けられていても良い。
電磁波シールド性光透過窓材 1 Cにあっては、 反射防止フィルム 3及ぴその下 の接着用中間膜 4 Aは粘着膜付き電磁波シールド性フィルム 1 0 B及び透明基板 2よりも若干小さく、 反射防止フィルム 3及び接着用中間膜 4 Aの縁部は粘着膜 付き電磁波シールド性フィルム 1 0 B及び透明基板 2の縁部から若干 (例えば 3 〜2 O mm特に好ましくは 5〜1 O mm程度) 後退しており、 粘着膜付き電磁波 シールド性フィルム 1 0 Bの周縁の第 1の導電性粘着テープ 8部分が反射防止フ イルム 3及ぴ接着用中間膜 4 Aによって覆われていない。 このため第 1の導電性 粘着テープ 8の上に第 2の導電性粘着テープ 7が直接被さり、 第 1, 第 2の導電 性粘着テープ 8, 7を介して、 粘着膜付き電磁波シールド性フィルム 1 0 Bが確 実に導通される。
粘着剤 4 C付き近赤外線カツトフイルム 5も透明基板 2よりも若干小さく、 該 粘着剤 4 C付き近赤外線力ットフィルム 5の縁部は透明基板 2の縁部から若干
(例えば 3〜 2 O mm特に好ましくは 5〜 1 0 mm程度) 後退している。
この実施の形態では、 反射防止フィルム 3及び接着用中間膜 4 A、 粘着剤 4 C 付き近赤外線力ッ トフィルム 5の周縁部が第 2の導電性粘着テープ 7に被さって いないが、 これらは第 2の導電性粘着テープ 7の内側に被さっていても良い。 図
9の電磁波シールド性光透過窓材 1 Cでは、 第 1の導電性粘着テープ 8と第 2の 導電性粘着テープ 7との導通を図る必要があるため、 反射防止フィルム 3及ぴ接 着用中間膜 4 Aについては、 粘着膜付き電磁波シールド性フィルム 1 0 B及ぴ透 明基板 2よりも小さく、 縁部が後退している必要があるが、 粘着剤 4 C付き近赤 外線カツトフイルム 5は透明基板と同等の大きさであっても良い。 反射防止フィルム 3及び接着用中間膜 4 Aは、 その全周にわたって粘着膜付き 電磁波シールド性フィルム 1 0 B及ぴ透明基板 2の縁部から後退していることが 望ましいが、 一部例えば、 第 1の導電性粘着テープ 8が対向 2辺縁部に設けられ ている場合には、 その部分のみ後退し、 第 2の導電性粘着テープ 7もこの対向 2 辺縁部に設けられていても良い。
図 9に示す電磁波シールド性光透過窓材 1 Cを製造するには、 反射防止フィル ム 3と、 粘着膜付き電磁波シールド性フィルム 1 0 Bと、 透明基板 2と、 粘着剤 4 C付き近赤外線カットフィルム 5と、 接着用中間膜 4 A及び第 1 , 第 2の導電 性粘着テープ 8, 7を準備し、 予め粘着膜付き電磁波シールド性フィルム 1 0 B の周縁に第 1の導電性粘着テープ 8を留め付け、これを透明基板 2に貼り付ける。 この接着に当っては、 粘着膜付き電磁波シールド性フィルム 1 0 Bの透明粘着 剤の塗膜 1 5側を透明基板 2に当接してこれらを積層し、 仮圧着後 (この仮圧着 後は適宜貼り直しが可能である。)、加圧、加熱、 又は減圧、加熱することにより、 図 1 1に示す如く、 粘着膜付き電磁波シールド性フィルム 1 0 Bと透明基板 2と の間に気泡を残留させることなく両者を接着することができる。 そして、 粘着膜 付き電磁波シールド性フイルム 1 0 Bの透明接着剤 1 4の表面 1 4 Aの微細な凹 凸は透明粘着剤 1 5, が回り込むことにより、 完全に埋められているため、 この 凹凸に起因する光の散乱を確実に防止することができる。 特に、 透明接着剤 1 4 と透明粘着剤 1 5 ' の屈折率をほぼ等しいものとすることにより、 光の散乱はよ り一層確実に防止される。
その後、 粘着膜付き電磁波シールド性フィルム 1 0 Bを貼り付けた透明基板 2 上に接着用中間膜 4 Aを介在させて反射防止フィルム 3を積層し、 接着用中間膜 4 Aの硬化条件で加圧下、 加熱、 又は減圧、 加熱して一体化する。 次いで、 粘着 剤 4 Cにより近赤外線カットフィルム 5を貼り合わせる。 その後、 第 2の導電性 粘着テープ 7を積層体の周囲に留め付け、 用いた導電性粘着テープ 7 , 8の粘着 層 7 B, 8 Bの硬化方法等に従って、 加熱圧着、 又は減圧加熱するなどして接着 固定する。
導電性粘着テープ 7, 8に架橋型導電性粘着テープを用いる場合、 その貼り付 けに際しては、 その粘着層 7 B, 8 Bの粘着性を利用して電磁波シールド性フィ ルム、 積層体に貼り付け (この仮り止めは、 必要に応じて、 貼り直しが可能であ る。)、 その後、 必要に応じて圧力をかけながら、 又は減圧状態に保持したまま加 熱又は紫外線照射する。 この紫外線照射時には併せて加熱を行ってもよい。 この 加熱又は光照射を局部的に行うことで、 架橋型導電性粘着テープの一部分のみを 接着させるようにすることもできる。
加熱接着は、 一般的なヒートシ一ラーで容易に行うことができ、 また、 加圧加 熱方法として架橋型導電性粘着テープを貼り付けた積層体をオートクレープ等の 加圧チャンバ一中に入れ加熱する方法、 減圧加熱方法として同様の積層体を真空 袋中に入れ脱気後加熱する方法でもよく、 接着はきわめて容易に行える。
この接着条件としては、 熱架橋の場合は、 用いる架橋剤 (有機過酸化物) の種 類に依存するが、 通常 7 0〜1 5 0 °C、 好ましくは 7 0〜1 3 0 °Cで、 通常 1 0 秒〜 1 2 0分、 好ましくは 2 0秒〜 6 0分である。
また、 光架橋の場合、 光源としては紫外〜可視領域に発光する多くのものが採 用でき、 例えば超高圧、 高圧、 低圧水銀灯、 ケミカルランプ、 キセノンランプ、 ハロゲンランプ、 マーキュリーハロゲンランプ、 カーボンアーク灯、 白熱灯、 レ 一ザ一光等が挙げられる。 照射時間は、 ランプの種類、 光源の強さによってー概 には決められないが、 通常数十秒〜数十分程度である。 架橋促進のために、 予め 4 0〜 1 2 0 °Cに加熱した後、 これに紫外線を照射してもよい。
また、 接着時の加圧力についても適宜選定され、 通常 5〜5 0 k g Z c m 2、 特に 1 0〜3 0 k g / c m 2の加圧力とすることが好ましい。
透明基板 2の構成 (材料、 厚さ等)、 反射防止フィルム 3の構成 (材料、 積層構 造、 厚さ等)、 近赤外線カツトフイルム 5の構成 (材料、 積層構造、 厚さ等)、 粘 着膜付き電磁波シールド性フィルム 1 0 B及び反射防止フィルム 3を接着する接 着用中間膜 4 Aを構成する熱硬化性樹脂及び厚さ、 導電性粘着テープ 7, 8の構 成 (材料、 厚さ等) については、 第 1の態様に係る電磁波シールド性光透過窓材 の説明において前述した通りである。
なお、 接着用中間膜 4 Aとしては前述の接着剤の他、 粘着膜付き電磁波シール ド性フィルム 1 0 Bに用いられる透明粘着 として例示したものも好適に使用さ れる。 近赤外線力ットフィルム 5の粘着剤 4 Cとしても、 粘着膜付き電磁波シールド 性フィルム 1 0 Bの透明粘着剤として例示したものを用いることができ、 この粘 着剤 4 Cは予め、 近赤外線カツトフイルム 5の接着面に 5〜1 0 0 μ ηιの厚みで コーティング又は貼り合わせておき、 それを透明基板や他のフィルムに貼り合わ せることができる。
近赤外線カツトフイルム 5については、 粘着剤 4 Cを用いて透明基板 2に積層 するのが好ましい。 これは、 近赤外線カットフィルム 5は熱に弱く加熱架橋温度 ( 1 3 0〜 1 5 0 °C)に耐えられないためである。ただし、低温架橋型 E V A (架 橋温度 7 0〜 1 3 0 °C程度) であればこの近赤外線力ットフィルム 5の透明基板 2への接着に使用することができる。
図 9に示す如く、 導電性粘着テープ 7, 8を取り付けた電磁波シールド性光透 過窓材 1 Cは、 極めて簡便かつ容易に筐体に組み込むことができ、 筐体に単には め込むのみで、 第 1, 第 2の導電性粘着テープ 7, 8を介して電磁波シールド性 フィルム 1 0 Bと筐体との良好な導通を得ることができる。 このため、 良好な電 磁波シールド効果が得られる。 加えて、 近赤外線カットフィルム 5の存在下で、 良好な近赤外線カット性能が得られる。 さらに、 透明基板 2が 1枚のみであるた め、 薄く軽量である。 また、 この透明基板 2の両面をフィルム 3, 5で被装して いるから、 透明基板 2の割れが防止されると共に、 万一割れたときの透明基板 2 の飛散が防止される。
電磁波シールド性フィルム 1 0 Bは、 銅箔 1 1等の導電性箔のパターンエッチ ングによるものであるため、エッチングパターンの設計を任意に調節することで、 電磁波シールド性、 光透過性が共に良好なものとし、 モアレ現象の問題も解消す ることができる。 そして、 この電磁波シールド性フィルム 1 0 Bは、 光吸収層 1 2を有し、 かつ、 この光吸収層 1 2の表面に粗面化処理により微細な凹凸が形成 され、 かつ、 この凹凸が転写された透明接着剤 1 4の表面の凹凸が透明粘着剤 1 5, で埋められているため、 反射防止効果が高く、 コントラストの高い鮮明な画 像を得ることができる。
図 9に示す電磁波シールド性光透過窓材は本発明の方法で製造される電磁波シ ールド性光透過窓材の一例であって、 本発明は図示のものに何ら限定されるもの ではない。
以上詳述した本発明の電磁波シールド性光透過窓材、 及び本発明の方法で製造 される電磁波シールド性光透過窓材は、 P D Pの前面フィルタとして、 或いは、 病院や研究室等の精密機器設置場所の窓材等としてきわめて好適である。
次に、 図 1 2, 1 3を参照して本発明の表示パネルの実施の形態を詳細に説明 する。
図 1 2は、 本発明の第 4の態様に係る表示パネルの実施の形態を示す模式的な 断面図であり、 図 1 3は本発明の第 5の態様に係る表示パネルの実施の形態を示 す断面図である。
図 1 2の表示パネル 3 O Aは、 最表層の反射防止フィルム 3、 電磁波シールド 性フィルムと しての銅ノ P E T積層エッチングフィルム 1 0 (この電磁波シール ド性フィルム 1 0は、 本発明の第 1の態様に係る電磁波シールド性光透過窓材で 使用される電磁波シールド性フィルムと同様の構成であり、 前述の図 3 A〜 3 F に示す手順で製造される。)、近赤外線カツトフイルム 5と、 P D P本体 2 0とを、 接着剤となる接着用中間膜 4 A, 4 B , 4 Cを用いて積層一体化し、 この積層体 の端面とそれに近接する表裏の緣部とに導電性粘着テープ 7 (第 2の導電性粘着 テープ) を付着させて一体化したものである。
図 1 3の表示パネル 3 0 Bは、 最表層の反射防止フィルム 3、 電磁波シールド 性フィルムと しての銅 Z P E T積層エッチングフィルム 1 0 a (この電磁波シー ルド性フィルム 1 0 aは、 本発明の第 2の態様に係る電磁波シールド性光透過窓 材で使用される電磁波シールド性フィルムの透明粘着剤の塗膜 1 5を形成する前 の銅/ P E T積層エッチングフィルム 1 0 aと同様の構成であり、 前述の図 7 A 〜 7 Eに示す手順で製造される。)、 近赤外線カットフィルム 5と、 P D P本体 2 0とを、 接着剤となる接着用中間膜 4 A, 4 B , 4 Cを用いて積層一体化し、 こ の積層体の端面とそれに近接する表裏の縁部とに導電性粘着テープ 7を付着させ て一体化したものである。
電磁波シールド性フィルム 1 0, 1 0 aは、 P D P本体 2 0とほぼ同等の大き さであり、 その縁部に一方の面から他方の面に回り込むように導電性粘着テープ
8 (第 1の導電性粘着テープ) が付着されている。 この第 1の導電性粘着テープ 8は、 電磁波シールド性フィルム 1 0 , 1 0 aの縁部の全周にわたって設けられ ていることが好ましいが、 一部、 例えば対向 2辺縁部に設けられていても良い。 この表示パネル 3 O A, 3 O Bにあっては、 反射防止フィルム 3及びその下の 接着用中間膜 4 Aは電磁波シールド性フィルム 1 0, 1 0 aよりも若干小さく、 反射防止フィルム 3及び接着用中間膜 4 Aの縁部は電磁波シールド性フィルム 1 0 , 1 0 aの縁部から若干 (例えば 3〜2 O mm特に好ましくは 5〜 1 O mm程 度) 後退しており、 電磁波シールド性フィルム 1 0, 1 0 aの周縁の第 1の導電 性粘着テープ 8部分が反射防止フィルム 3及び接着用中間膜 4 Aによつて覆われ ていない。 このため第 1の導電性粘着テープ 8の上に第 2の導電性粘着テープ 7 が直接被さり、 第 1, 第 2の導電性粘着テープ 8, 7を介して、 電磁波シールド 性フィルム 1 0, 1 0 aが確実に導通される。
この実施の形態では、 反射防止フィルム 3及び接着用中間膜 4 Aの周縁部が第 2の導電性粘着テープ 7に被さっていないが、 これらは第 2の導電性粘着テープ 7の外側に被さっていても良い。 図 1 2, 1 3の表示パネル 3 0 A, 3 0 Bでは、 第 1の導電性粘着テープ 8と第 2の導電性粘着テープ 7との導通を図る必要があ るため、 反射防止フィルム 3及び接着用中間膜 4 Aについては、 電磁波シールド 性フィルム 1 0, 1 0 aよりも小さく、 縁部が後退している。
反射防止フィルム 3及び接着用中間膜 4 Aは、 その全周にわたって電磁波シー ルド性フィルム 1 0, 1 0 aの縁部から後退していることが望ましいが、 一部例 えば、 第 1の導電性粘着テープ 8が対向 2辺縁部に設けられている場合には、 そ の部分のみ後退し、 第 2の導電性粘着テープ 7もこの対向 2辺縁部に設けられて いても良い。
反射防止フィルム 3の構成 (材料、積層構造、厚さ等)、 近赤外線カツトフィル ム 5の構成 (材料、 積層構造、 厚さ等)、 反射防止フィルム 3、 電磁波シールド性 フィルム 1 0, 1 0 a、 近赤外線力ットフィルム 5及び P D P本体 2 0を接着す る接着用中間膜 4 A, 4 B, 4 Cを構成する熱硬化性樹脂及び厚さ、 導電性粘着 テープ 7, 8の構成 (材料、 厚さ等) については第 1の態様に係る電磁波シール ド性光透過窓材の説明において前述したものと同様である。
P D P本体 2 0としては、図 1 6に示すような P D Pを採用することができる。 本発明の電磁波シールド性光透過窓材と同様に、 接着用中間膜 4 A〜 4 Cを構 成する熱硬化性樹脂が、 架橋型の E V A樹脂であれば、 表示パネル 3 O A, 3 0 Bの構成部材を積層して接着するに当たり、 接着用中間膜 4 A〜 4 Cを介して、 各部材を積層し、仮圧着後 (この仮圧着後は適宜貼り直しが可能である。)、加圧、 加熱することにより、 部材間に気泡を残留させることなく両者を接着することが できる。 従って、 図 1 2の表示パネル 3 0 Aにあっては、 電磁波シールド性フィ ルム 1 0と近赤外線力ットフィルム 5との間に接着用中間膜 4 Bを介して、 これ らを積層し、 仮圧着後、 加圧、 加熱することにより、 例えば図 1 4に示す如く、 電磁波シールド性フィルム 1 0と赤外線力ットフイルム 5との間に気泡を残留さ せることなく両者を接着することができ、 従って、 電磁波シールド性フィルム 1 0の透明接着剤 1 4の表面 1 4 Aの微細な凹凸に接着用中間膜 4 Bの接着樹脂 4 B ' を回り込ませてこれを完全に埋め、 この凹凸に起因する光の散乱を確実に防 止することができ、 好ましい。
このように接着用中間膜 4 Bの接着樹脂 4 B ' で、 電磁波シールド性フィルム 1 0の透明接着剤 1 4の表面 1 4 Aの微細な四凸に起因する光の散乱をより一層 確実に防止するためには、 この透明接着剤 1 4と接着樹脂 4 B, との界面で光の 反射が起きないように、 透明接着剤 1 4の屈折率と硬化後の接着樹脂 4 B ' の屈 折率がほぼ等しいことが好ましい。
接着樹脂 4 B ' としての E V A樹脂の屈折率はおおむね n = 1 . 5程度である ことから、 透明接着剤 1 4としては屈折率 n == 1 . 5程度のものを用いるのが好 ましい。 このような透明接着剤 1 4としては、 アクリル系、 ウレタン系、 ェポキ シ系、 ゴム系等が挙げられる。
同様に、 図 1 3の表示パネル 3 0 Bにおいても、 電磁波シールド性フィルム 1
0 aと反射防止フィルム 3とを接着するに当たり、 接着用中間膜 4 Aを介して、 これらを積層し、 仮圧着後、 加圧、 加熱することにより、 例えば図 1 5に示す如 く、 電磁波シー ド性フィルム 1 0 aと反射防止フィルム 3との間に気泡を残留 させることなく両者を接着することができ、 電磁波シールド性フィルム 1 0 aの 基材フィルム 1 3及び透明接着剤 1 4上に形成された、 銅箔 1 1及び光吸収層 1
2による凸部を接着用中間膜 4 Aの接着樹脂 4 A ' で完全に埋め、 この凹凸に起 因する光の散乱を確実に防止することができる。
このように接着用中間膜 4 Aの接着樹脂 4 A, と、 電磁波シールド性フィルム 10 aの透明接着剤 14との界面での光の反射を低減させるため、 透明接着剤 1 4の屈折率と硬化後の接着樹脂 4 A, の屈折率がほぼ等しいことが好ましい。 接着樹脂 4A, としての EVA樹脂の屈折率はおおむね n= 1. 5程度である ことから、 透明接着剤 14としては屈折率 n= 1. 5程度のものを用いることが 好ましい。 このような透明接着剤 14としてはアクリル系、 ウレタン系、 ゴム系 などが挙げられる。
接着用中間膜 4A, 4B, 4 Cとしては前述の接着剤の他、 透明粘着剤 (感圧 接着剤) も好適に使用される。 この透明粘着剤としては、 アクリル系、 SB S、 S EB S等の熱可塑性エラストマ一系などが好適に用いられる。 これらの透明粘 着剤には、 タツキフアイヤー、 紫外線吸収剤、 着色顔料、 着色染料、 老化防止剤、 接着付与剤等を適宜添加することができる。 透明粘着剤は予め、 反射防止フィル ム 3や電磁波シールド性フィルム 10, 10 a、 近赤外線力ットフィルム 5の接 着面に 5〜 1 00 mの厚みでコーティング又は貼り合わせておき、 それを PD P本体 20や他のフィルムに貼り合わせることができる。
特に、近赤外線カツトフイルム 5は粘着剤を用いて積層接着するのが好ましい。 これは、近赤外線カツトフイルム 5は熱に弱く加熱架橋温度(130〜1 50°C) に耐えられないためである。 なお、 低温架橋型 EVA (架橋温度 70〜130°C 程度) であればこの近赤外線カツトフイルム 5の接着に使用することができる。 図 1 2, 1 3に示す表示パネル 3 OA, 30 Bを製造するには、 例えば反射防 止フィ /レム 3と、 電磁波シールド性フィルム 10, 10 aと、 近赤外線力ッ トフ イルム 5と、 PDP本体 20と、 接着用中間膜 4 A, 4 B, 4 C及び第 1, 第 2 の導電性粘着テープ 8, 7を準備し、 予め電磁波シールド性フィルム 10, 10 aの周縁に第 1の導電性粘着テープ 8を留め付け、 反射防止フィルム 3、 第 1の 導電性粘着テープ 8付き電磁波シールド性フィルム 10, 10 a、 近赤外線力ッ トフイルム 5、 PD P本体 20を各々の間に接着用中間膜 4 A, 4B, 4 Cを介 在させて積層し、 接着用中間膜の硬化条件で加圧下、 加熱して一体化する。 次い で、 第 2の導電性粘着テープ 7を積層体の周囲に留め付け、 用いた導電性粘着テ ープ 7, 8の粘着層 7 B, 8 Bの硬化方法等に従って、 加熱圧着するなどして接 着固定する。
導電性粘着テープ 7, 8に架橋型導電性粘着テープを用いる場合、 その貼り付 けに際しては、 その粘着層 7 B, 8 Bの粘着性を利用して電磁波シールド性フィ ルムゃ積層体に貼り付け (この仮り止めは、 必要に応じて、 貼り直しが可能であ る。)、 その後、 必要に応じて圧力をかけながら加熱又は紫外線照射する。 この紫 外線照射時には併せて加熱を行ってもよい。 この加熱又は光照射を局部的に行う ことで、 架橋型導電性粘着テープの一部分のみを接着させるようにすることもで きる。
加熱接着は、 一般的なヒートシ一ラーで容易に行うことができ、 また、 加圧加 熱方法としては、 架橋型導電性粘着テープを貼り付けた積層体を真空袋中に入れ 脱気後加熱する方法でもよく、 接着はきわめて容易に行える。
この接着条件としては、 熱架橋の場合は、 用いる架橋剤 (有機過酸化物) の種 類に依存するが、 通常 7 0〜1 5 0 °C、 好ましくは 7 0〜1 3 0 °Cで、 通常 1 0 秒〜 1 2 0分、 好ましくは 2 0秒〜 6 0分である。
また、 光架橋の場合、 光源としては紫外〜可視領域に発光する多くのものが採 用でき、 例えば超高圧、 高圧、 低圧水銀灯、 ケミカルランプ、 キセノンランプ、 ハロゲンランプ、 マーキュリーハロゲンランプ、 カーボンアーク灯、 白熱灯、 レ 一ザ一光等が挙げられる。 照射時間は、 ランプの種類、 光源の強さによってー概 には決められないが、 通常数十秒〜数十分程度である。 架橋促進のために、 予め 4 0〜 1 2 0 °Cに加熱した後、 これに紫外線を照射してもよい。
また、 接着時の加圧力についても適宜選定され、 通常 5〜5 0 k g Z c m 2、 特に 1 0〜3 0 k g / c m 2の加圧力とすることが好ましい。
このようにして導電性粘着テープ 7, 8を取り付けた表示パネル 3 0 A, 3 0
Bは、 極めて簡便かつ容易に筐体に組み込むことができ、 筐体に単にはめ込むの みで、 第 1, 第 2の導電性粘着テープ 7, 8を介して電磁波シールド性フィルム
1 0, 1 0 aと筐体との良好な導通を得ることができる。 このため、 良好な電磁 波シールド効果が得られる。 電磁波シールド性フィルム 1 0, 1 0 aの前面側に 反射防止フィルム 3が設けられているため、 この反射防止フィルム 3により、 良 好な反射防止効果が得られる。 近赤外線カットフィルム 5の存在下で、 良好な近 赤外線カット性能が得られ、 リモコンの誤作動等を防止することができる。 さら に、 P D P本体 2 0に対して、 フィルムを積層、 接着したものであるため、 薄く 軽量である。 また、 最表層の反射防止フィルム 3と電磁波シールド性フィルム 1 0 , 1 0 aと近赤外線カツトフイルム 5とで P D P本体 2 0の前面をフィルムで 被装しているから、 P D P本体が保護され、 耐衝撃性が高められて割れが防止さ れると共に、万一 P D P本体が割れたときの P D P本体 2 0の飛散が防止される。
しかも、 電磁波シールド性フィルム 1 0, 1 0 aは、 銅箔 1 1等の導電性箔の パターンエッチングによるものであるため、 エッチングパターンの設計を任意に 調節することで、 電磁波シールド性、 光透過性が共に良好なものとし、 モアレ現 象の問題も解消することができる。 そして、 この電磁波シールド性フィルム 1 0, 1 0 aは、 光吸収層 1 2を有し、 かつ、 この光吸収層 1 2の表面に粗面化処理に より微細な凹凸が形成され、 電磁波シールド性フィルム 1 0を用いた表示パネル 3 O Aにあっては、 この HO凸が転写された透明接着剤 1 4の表面の凹凸が接着樹 脂で埋められているため、 反射防止効果が高く、 コントラス トの高い鮮明な画像 を得ることができる。 また、 電磁波シールド性フィルム 1 0 aを用いた表示パネ ル 3 0 Bにあっては、 光吸収層 1 2及ぴ銅箔 1 1の凹凸が接着樹脂で埋められて いるため、 反射防止効果が高く、 コントラス トの高い鮮明な画像を得ることがで きる。
なお、 図 1 2, 1 3に示す表示パネルは本癸明の表示パネルの一例であって、 本発明は図示のものに何ら限定されるものではない。 産業上の利用可能性
以上詳述した通り、 本発明によると、 電磁波シールド性に優れる上に、 反射防 止効果が高く、 透明性、 視認性に優れるため、 鮮明な画像を得ることができ、 P D Pの前面フィルタ等として有用な電磁波シールド性光透過窓材が提供される。 また、 本発明の表示パネルによれば、 P D P等の表示パネル本体と、 電磁波シ ールド性フィルムを一体化させることにより表示パネル自体に電磁波シールド性 等の機能を付与し、 表示パネルの軽量、 薄肉化、 部品数の低減による生産性の向 上及ぴコス トの低減を図ることができる。 また、 リモコンの誤作動を防止するこ とができる。 しかも、 この電磁波シールド性フィルムは、 電磁波シールド性に優 れる上に、 反射防止効果が高く、 透明性、 視認性に優れるため、 鮮明な画像を得 ることができる。

Claims

請求の範囲
( 1 ) 少なく とも電磁波シールド性フィルムと透明基板とを積層一体化してな る電磁波シールド性光透過窓材において、
該電磁波シールド性フィルムは透明な基材フィルムと、 該基材フィルムの該透 明基板側の面に透明接着剤により接着され、 パターンエッチングされた導電性箔 とを備えており、
該箔の該基材フィルム側の面には反射防止用の光吸収層が設けられており、 該光吸収層の該基材フィルム側の面が粗面化処理されていることを特徴とする 電磁波シールド性光透過窓材。
( 2 ) 請求項 1において、 該電磁波シールド性フィルムは、 前記導電性箔側の 面が、 熱硬化性樹脂により該透明基板に接着されていることを特徴とする電磁波 シールド性光透過窓材。
( 3 ) 請求項 2において、 該熱硬化性樹脂が架橋剤を含む架橋型熱硬化性樹脂 であることを特徴とする電磁波シールド性光透過窓材。
( 4 ) 請求項 2又は 3において、 硬化後の該熱硬化性樹脂と該電磁波シールド 性フィルムの前記透明接着剤とは、 屈折率がほぼ等しいことを特徴とする電磁波 シールド性光透過窓材。
( 5 ) 請求項 1において、 該電磁波シールド性フィルムは、 前記導電性箔側の 面が、 透明粘着剤により該透明基板に接着されていることを特徴とする電磁波シ ルド性光透過窓材。
( 6 ) 請求項 5において、 該電磁波シールド性フィルムは、 該フィルムのパタ ーンエッチングされた導電性箔面上に透明粘着剤が直接塗工されていることを特 徴とする電磁波シールド性光透過窓材。
( 7 ) 請求項 5又は 6において、 該透明粘着剤と該電磁波シールド性フィルム の前記透明接着剤とは、 屈折率がほぼ等しいことを特徴とする電磁波シールド性 光透過窓材。
( 8 ) 少なく とも電磁波シールド性フィルムと透明基板とを積層一体化してな る電磁波シールド性光透過窓材において、 該電磁波シールド性フィルムは、 透明な基材フィルムと、 該基材フィルムの前 記透明基板と反対側の面に透明接着剤により接着された、 パターンエッチングさ れた導電性箔とを備えており、
該箔の該基材フィルムと反対側の面には反射防止用の光吸収層が設けられてお り、
該光吸収層の該基材フィルムと反対側の面が粗面化処理されていることを特徴 とする電磁波シールド性光透過窓材。
(9) 請求項 8において、 該電磁波シールド性フィルムの導電性箔側の面に透 明粘着剤の塗膜が形成されていることを特徴とする電磁波シールド性光透過窓材。
(10) 請求項 9において、 該透明粘着剤と該電磁波シールド性フィルムの前 記透明接着剤とは、 屈折率がほぼ等しいことを特徴とする電磁波シールド性光透 過窓材。
(1 1) 請求項 1ないし 10のいずれか 1項において、 該光吸収層の粗面化処 理面の表面粗さ Rzが 0. 1〜20 μπιであることを特徴とする電磁波シールド 性光透過窓材。
(12) 請求項 1ないし 1 1のいずれか 1項において、
1枚の透明基板と、 最表層の反射防止フィルムと、 前記電磁波シールド性フィ ルムと、 近赤外線力ットフィルムとが積層一体化された積層体よりなることを特 徴とする電磁波シールド性光透過窓材。
(13) 請求項 12において、
1枚の透明基板と、 最表層の反射防止フィルムと、 該透明基板と該反射防止フ ィルムとの間に介在された前記電磁波シールド性フイルムと、 近赤外線力ッ トフ イルムとが積層一体化された積層体よりなることを特徴とする電磁波シールド性 光透過窓材。
(14) 請求項 12又は 13において、該電磁波シールド性フィルムの縁部に、 該電磁波シールド性フィルムの一方の面から他方の面に回り込むように第 1の導 電性テープが付着されており、
前記反射防止フィルムの縁部の少なくとも一部は該電磁波シールド性フィルム の縁部よりも後退しており、 該積層体の最表面の縁部から該積層体の端面を経て、 該積層体の最裏面の縁部 に達するように第 2の導電性テープが付着されていることを特徴とする電磁波シ ールド性光透過窓材。
( 1 5 ) 請求項 1 3において、 該透明基板及び該透明基板に接着された電磁波 シールド性フィルムの縁部に、 該電磁波シールド性フィルムの表面から該透明基 板の裏面に回り込むように第 1の導電性テープが付着されており、
前記反射防止ブイルムの縁部の少なくとも一部は該電磁波シールド性フィルム の縁部よりも後退しており、
該積層体の最表面の縁部から該積層体の端面を経て、 該積層体の最裏面の縁部 に達するように第 2の導電性テープが付着されていることを特徴とする電磁波シ ールド性光透過窓材。
( 1 6 ) 少なくとも電磁波シールド性フィルムと透明基板とを積層一体化して 電磁波シールド性光透過窓材を製造する方法において、
導電性箔の一方の面に光吸収層を形成する工程と、
該光吸収層の表面を粗面化処理する工程と、
この光吸収層付きの導電性箔を透明接着剤により透明な基材フィルムに接着す る工程と、
該基材フィルム上に接着された光吸収層付きの導電性箔をパターンエッチング する工程と、 '
このパターンェツチングにより得られた電磁波シールド性フィルムのエツチン グ処理面側に透明粘着剤を塗布して塗膜を形成する工程と、
該電磁波シールド性ブイルムの塗膜形成面を透明基板に圧着して該電磁波シー ルド性フィルムと該透明基板とを積層一体化する工程と
を有することを特徴とする電磁波シールド性光透過窓材の製造方法。
( 1 7 ) 請求項 1 6において、 該透明粘着剤の塗膜の厚さが 1〜1 0 0 μ πιで あることを特徴とする電磁波シールド性光透過窓材の製造方法。
( 1 8 ) 請求項 1 6又は 1 7において、 該電磁波シールド性フィルムを該透明 基板に直接接着することを特徴とする電磁波シールド性光透過窓材の製造方法。
( 1 9 ) 請求項 1 6ないし 1 8のいずれか 1項において、 該透明粘着剤と該電 磁波シールド性フィルムの前記透明接着剤とは、 屈折率がほぼ等しいことを特徴 とする電磁波シールド性光透過窓材の製造方法。
( 2 0 ) 請求項 1 6ないし 1 9のいずれか 1項において、 該光吸収層の粗面化 処理面の表面粗さ R zが 0 . 1〜2 0 // mであることを特徴とする電磁波シール ド性光透過窓材の製造方法。
( 2 1 ) 請求項 1 6ないし 2 0のいずれか 1項において、
1枚の透明基板と、 最表層の反射防止フィルムと、 該透明基板と反射防止フィ ルムとの間に介在された前記電磁波シールド性フィルムと、 近赤外線カツ トフィ ルムとを積層一体化することを特徴とする電磁波シールド性光透過窓材の製造方 法。
( 2 2 ) 請求項 2 1において、 該電磁波シールド性フィルムの縁部に、 該電磁 波シールド性フィルムの一方の面から他方の面に回り込むように第 1の導電性テ —プを付着させ、
前記透明基板と反射防止フィルムと電磁波シールド性フィルムと近赤外線力ッ トフイルムとの積層体において、 該反射防止フィルムは、 その縁部の少なくとも 一部が該電磁波シールド性フィルムの縁部よりも後退する大きさとし、
該積層体の最表面の縁部から該積層体の端面を経て、 該積層体の最裏面の縁部 に達するように第 2の導電性テープを付着させることを特徴とする電磁波シール ド性光透過窓材の製造方法。
( 2 3 ) 表示パネル本体と、 該表示パネル本体の前面に配置された電磁波シ一 ルド性フィルムとを備えてなる表示パネルにおいて、
該電磁波シールド性フィルムは、 透明な基材フィルムと、 該基材フィルムの該 表示パネル本体側の面に透明接着剤により接着され、 パターンエッチングされた 導電性箔とを備えており、
該箔の該基材フィルム側の面には反射防止用の光吸収層が設けられており、 該光吸収層の該基材フィルム側の面が粗面化処理されていることを特徴とする 表示パネル。
( 2 4 ) 請求項 2 3において、 該電磁波シールド性フィルムと表示パネル本体 との間に近赤外線力ットフイルムが設けられていることを特徴とする表示パネル。 ( 2 5 ) 請求項 2 3又は 2 4において、 該電磁波シールド性フィルムは、 前記 導電性箔側の面が、 熱硬化性樹脂又は透明粘着剤により該表示パネル本体又は近 赤外線力ットフィルムに接着されていることを特徴とする表示パネル。
( 2 6 ) 請求項 2 5において、 硬化後の該熱硬化性樹脂又は透明粘着剤と該電 磁波シールド性ブイルムの前記透明接着剤とは、 屈折率がほぼ等しいことを特徴 とする表示パネル。
( 2 7 ) 請求項 2 5又は 2 6において、 該熱硬化性樹脂が架橋剤を含む架橋型 熱硬化性樹脂であることを特徴とする表示パネル。
( 2 8 ) 表示パネル本体と、 該表示パネル本体の前面に配置された電磁波シー ルド性フィルムとを備えてなる表示パネルにおいて、
該電磁波シールド性フィルムは、 透明な基材フィルムと、 該基材フィルムの該 表示パネル本体と反対側の面に透明接着剤により接着された、 パターンエツチン グされた導電性箔とを備えており、
該箔の該基材フィルムと反対側の面には反射防止用の光吸収層が設けられてお り、
該光吸収層の該基材フィルムと反対側の面が粗面化処理されていることを特徴 とする表示パネル。
( 2 9 ) 請求項 2 8において、 該電磁波シールド性フィルムの前面側に反射防 止フィルムが設けられていることを特徴とする表示パネル。
( 3 0 ) 請求項 2 9において、 該電磁波シールド性フィルムは、 前記導電性箔 側の面が、 熱硬化性樹脂又は透明粘着剤により該反射防止フィルムに接着されて いることを特徴とする表示パネル。
( 3 1 ) 請求項 3 0において、 硬化後の該熱硬化性樹脂又は透明粘着剤と該電 磁波シールド性フィルムの前記透明接着剤とは、 屈折率がほぼ等しいことを特徴 とする表示パネノレ。
( 3 2 ) 請求項 3 0又は 3 1において、 該熱硬化性樹脂が架橋剤を含む架橋型 熱硬化性樹脂であることを特徴とする表示パネル。
( 3 3 ) 請求項 2 3ないし 3 2のいずれか 1項において、 最表層の反射防止フ イルムと、 前記電磁波シールド性フィルムと、 近赤外線力ットフィルムと、 表示 パネル本体とが積層一体化された積層体よりなることを特徴とする表示パネル。
( 3 4 ) 請求項 3 3において、 該電磁波シールド性フィルムの縁部に、 該電磁 波シールド性フィルムの一方の面から他方の面に回り込むように第 1の導電性テ ープが付着されており、
前記反射防止フィルムの縁部の少なくとも一部は該電磁波シールド性フィルム の縁部よりも後退しており、
該積層体の最表面の縁部から該積層体の端面を経て、 該積層体の最裏面の縁部 に達するように第 2の導電性テープが付着されていることを特徴とする表示パネ ル。
( 3 5 ) 請求項 2 3ない 3 4のいずれか 1項において、 該光吸収層の粗面化処 理面の表面粗さ R zが 0 . 1〜2 0 /z mであることを特徴とする表示パネル。
( 3 6 ) 請求項 2 3ないし 3 5のいずれか 1項において、 表示パネル本体はプ ことを特徴とする表示パネル。
PCT/JP2002/004423 2001-05-16 2002-05-07 Electromagnetic wave shielding light-transmitting window member, its manufacturing method, and display panel WO2002093534A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/476,852 US7214282B2 (en) 2001-05-16 2002-05-07 Electromagnetic-wave shielding and light transmitting plate, manufacturing method thereof and display panel
KR1020037014872A KR100939747B1 (ko) 2001-05-16 2002-05-07 전자파 실드성 광투과 창재, 그 제조 방법 및 표시 패널
EP02722937A EP1388836A4 (en) 2001-05-16 2002-05-07 ELECTROMAGNETIC WAVE SHIELDS THE LIGHT TRANSMITTER, METHOD FOR ITS MANUFACTURE AND DISPLAY PANEL
US11/695,867 US8067084B2 (en) 2001-05-16 2007-04-03 Electromagnetic-wave shielding and light transmitting plate, manufacturing method thereof, and display panel

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2001146844A JP2002341779A (ja) 2001-05-16 2001-05-16 電磁波シールド性光透過窓材
JP2001-146846 2001-05-16
JP2001-146844 2001-05-16
JP2001146843A JP2002341778A (ja) 2001-05-16 2001-05-16 電磁波シールド性光透過窓材
JP2001-146847 2001-05-16
JP2001146845A JP2002344193A (ja) 2001-05-16 2001-05-16 電磁波シールド性光透過窓材の製造方法
JP2001-146843 2001-05-16
JP2001146846A JP2002341780A (ja) 2001-05-16 2001-05-16 電磁波シールド性光透過窓材
JP2001-146845 2001-05-16
JP2001146847A JP2002341781A (ja) 2001-05-16 2001-05-16 表示パネル

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10476852 A-371-Of-International 2002-05-07
US11/695,867 Division US8067084B2 (en) 2001-05-16 2007-04-03 Electromagnetic-wave shielding and light transmitting plate, manufacturing method thereof, and display panel

Publications (1)

Publication Number Publication Date
WO2002093534A1 true WO2002093534A1 (en) 2002-11-21

Family

ID=27531897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004423 WO2002093534A1 (en) 2001-05-16 2002-05-07 Electromagnetic wave shielding light-transmitting window member, its manufacturing method, and display panel

Country Status (4)

Country Link
US (2) US7214282B2 (ja)
EP (1) EP1388836A4 (ja)
KR (1) KR100939747B1 (ja)
WO (1) WO2002093534A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095252A1 (en) * 2003-03-25 2004-11-04 3M Innovative Properties Company High transparency touch screen

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7214282B2 (en) * 2001-05-16 2007-05-08 Bridgeston Corporation Electromagnetic-wave shielding and light transmitting plate, manufacturing method thereof and display panel
JP2005135732A (ja) * 2003-10-30 2005-05-26 Pioneer Plasma Display Corp プラズマ表示装置及びその駆動方法
WO2005072039A1 (ja) * 2004-01-21 2005-08-04 Dai Nippon Printing Co., Ltd. ディスプレイ用前面板及びその製造方法
JP4067504B2 (ja) * 2004-03-17 2008-03-26 三洋電機株式会社 光導波路及びその製造方法
KR100752830B1 (ko) * 2004-03-31 2007-08-29 에스케이씨 주식회사 플라즈마 디스플레이 판넬용 전면 필터의 제조방법
US8495851B2 (en) 2004-09-10 2013-07-30 Serious Energy, Inc. Acoustical sound proofing material and methods for manufacturing same
KR100769900B1 (ko) 2005-07-21 2007-10-24 엘지전자 주식회사 필름형 전면필터 및 이를 이용한 플라즈마 디스플레이 패널모듈
KR100761160B1 (ko) * 2005-04-19 2007-09-21 엘지전자 주식회사 플라즈마 표시 장치용 필터 및 그의 제조방법, 이를포함하는 플라즈마 표시 장치
US8029881B2 (en) * 2005-11-04 2011-10-04 Serious Energy, Inc. Radio frequency wave reducing material and methods for manufacturing same
JP4794351B2 (ja) * 2006-05-15 2011-10-19 パナソニック株式会社 反射防止構造体及びそれを備えた光学装置
JP5105771B2 (ja) * 2006-05-15 2012-12-26 パナソニック株式会社 反射防止構造体及びそれを備えた光学装置
JP2007304466A (ja) * 2006-05-15 2007-11-22 Matsushita Electric Ind Co Ltd 光吸収性反射防止構造体、それを備えた光学ユニット及びレンズ鏡筒ユニット、並びにそれらを備えた光学装置
KR20080010539A (ko) * 2006-07-27 2008-01-31 엘지전자 주식회사 플라즈마 디스플레이 패널, 그 전면필터 및 그 제조방법
US7931518B2 (en) * 2006-08-03 2011-04-26 Bridgestone Corporation Process for preparing light transmissive electromagnetic wave shielding material, light transmissive electromagnetic wave shielding material and display filter
KR20090126264A (ko) * 2007-03-05 2009-12-08 교도 기큰 케미칼 가부시키가이샤 도전성 고분자 탄성체 조성물 및 이 조성물로 이루어지는 전자파 실드
US8424251B2 (en) 2007-04-12 2013-04-23 Serious Energy, Inc. Sound Proofing material with improved damping and structural integrity
US8397864B2 (en) 2007-04-24 2013-03-19 Serious Energy, Inc. Acoustical sound proofing material with improved fire resistance and methods for manufacturing same
JP4977083B2 (ja) * 2007-04-26 2012-07-18 サムスンコーニング精密素材株式会社 ディスプレイ装置用光学部材およびこれを含んだディスプレイ装置用フィルタ
EP2009977A3 (en) 2007-05-09 2011-04-27 FUJIFILM Corporation Electromagnetic shielding film and optical filter
KR101000631B1 (ko) 2007-07-18 2010-12-10 다이요 홀딩스 가부시키가이샤 투광성 도전 필름
US7880168B2 (en) * 2007-12-19 2011-02-01 Aptina Imaging Corporation Method and apparatus providing light traps for optical crosstalk reduction
RU2519942C2 (ru) 2009-02-13 2014-06-20 Сейдзи КАГАВА Композитная пленка из линейно-процарапанной, тонкой металлической пленки и пластиковой пленки, а также установка для ее производства
KR101112102B1 (ko) * 2010-03-15 2012-02-22 웅진케미칼 주식회사 디스플레이 장치용 명실명암 향상 필름 및 이를 활용한 유기전계 발광장치
KR101720722B1 (ko) * 2010-04-05 2017-04-03 삼성디스플레이 주식회사 표시 장치
US9681592B2 (en) 2011-05-16 2017-06-13 Nutech Ventures Structural concrete mix for construction for electromagnetic wave/pulse shielding
US8968461B1 (en) 2011-05-16 2015-03-03 The Board Of Regents Of The University Of Nebraska Concrete mix for electromagnetic wave/pulse shielding
KR101856231B1 (ko) 2011-12-19 2018-05-10 엘지이노텍 주식회사 나노패턴을 구비한 투명기판 및 그 제조방법
CN104221131B (zh) * 2012-09-07 2016-12-21 富士电机株式会社 半导体元件的制造方法
JP5942725B2 (ja) * 2012-09-18 2016-06-29 デクセリアルズ株式会社 導電性シート
KR101975867B1 (ko) * 2012-12-14 2019-05-08 삼성디스플레이 주식회사 표시장치용 윈도우 및 이를 포함하는 표시 장치
US10034418B1 (en) 2015-11-04 2018-07-24 Nutech Ventures Concrete mix for shotcrete applications for electromagnetic shielding
WO2017077933A1 (ja) * 2015-11-06 2017-05-11 リンテック株式会社 透明導電層積層用フィルム、その製造方法、及び透明導電性フィルム
US10256006B1 (en) 2015-12-18 2019-04-09 Nutech Ventures Electrically conductive concrete mix for electromagnetic (EM) ground plane
JP5973099B1 (ja) * 2016-02-26 2016-08-23 加川 清二 近傍界電磁波吸収フィルム
JP6027281B1 (ja) * 2016-04-01 2016-11-16 加川 清二 近傍界電磁波吸収フィルム
US9974188B2 (en) * 2016-04-05 2018-05-15 Compass Technology Company Limited Patterning of graphene circuits on flexible substrates
US10385519B2 (en) 2016-04-06 2019-08-20 Nutech Ventures Systems and methods for construction of electrically conductive concrete slab with protection from current leakage
BR112022009872A2 (pt) * 2019-12-05 2022-08-09 Lumus Ltd Dispositivo óptico e método para fabricar um dispositivo óptico
CN114333567B (zh) * 2020-09-30 2023-12-08 京东方科技集团股份有限公司 黑矩阵结构及其制造方法、显示基板、显示装置
CN113150481A (zh) * 2021-04-26 2021-07-23 中国电子科技集团公司第三十三研究所 一种亚克力浇注丝网屏蔽玻璃及其制备方法
WO2023064034A1 (en) * 2021-10-15 2023-04-20 Switch Project Llc Emf shield
CN114639747B (zh) * 2022-05-18 2022-10-14 西安中易建科技集团有限公司 建筑光伏模块

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236194A (ja) * 1998-12-17 2000-08-29 Hitachi Chem Co Ltd 電磁波シールドフィルタ及びその製造方法
JP2001053488A (ja) * 1999-08-06 2001-02-23 Hitachi Chem Co Ltd 電磁波シールド材料並びにこの材料を用いた電磁波遮蔽構成体及びディスプレイ

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3388682B2 (ja) 1996-05-23 2003-03-24 日立化成工業株式会社 電磁波シールド性と透明性を有するディスプレイ用フィルムの製造法
US6030708A (en) * 1996-10-28 2000-02-29 Nissha Printing Co., Ltd. Transparent shielding material for electromagnetic interference
TW358895B (en) 1996-12-26 1999-05-21 Sumitomo Chemical Co Plasma display front panel
TW417025B (en) * 1997-04-10 2001-01-01 Sumitomo Chemical Co Front plate for plasma display
US6090473A (en) * 1997-06-24 2000-07-18 Bridgestone Corporation Electromagnetic-wave shielding and light transmitting plate
JPH1152875A (ja) 1997-07-31 1999-02-26 Sumitomo Chem Co Ltd 前面板
KR100335346B1 (ko) * 1997-11-11 2002-06-20 이사오 우치가사키 전자파차폐성접착필름,이필름을채용한전자파차폐성어셈블리및표시소자
JPH11145678A (ja) 1997-11-11 1999-05-28 Hitachi Chem Co Ltd 電磁波シールド性接着フィルムおよび該接着フィルムを用いた電磁波遮蔽構成体、ディスプレイ
KR100252375B1 (ko) * 1997-11-21 2000-04-15 전주범 브라운관의 빛반사 방지방법 및 장치
JP2000036687A (ja) 1998-03-06 2000-02-02 Bridgestone Corp 電磁波シールド性光透過窓材
JPH11251782A (ja) 1998-03-06 1999-09-17 Bridgestone Corp 電磁波シールド性光透過窓材
JP2000174491A (ja) 1998-12-07 2000-06-23 Bridgestone Corp 電磁波シールド性光透過窓材
JP2000171615A (ja) 1998-12-09 2000-06-23 Tomoegawa Paper Co Ltd ディスプレイ用フィルタおよびその製造方法
EP1008872B1 (en) * 1998-12-11 2004-09-29 Nitto Denko Corporation Transparent laminate and filter for plasma display panel using the transparent laminate
JP2000223886A (ja) * 1999-01-28 2000-08-11 Nisshinbo Ind Inc 透視性電磁波シールド材及びその製造方法
JP3782250B2 (ja) 1999-03-31 2006-06-07 共同印刷株式会社 電磁波シールド基材の製造方法
JP4192329B2 (ja) 1999-03-31 2008-12-10 旭硝子株式会社 電磁波遮蔽積層体の製造方法
US6221543B1 (en) 1999-05-14 2001-04-24 3M Innovatives Properties Process for making active substrates for color displays
JP2001175185A (ja) * 1999-12-14 2001-06-29 Bridgestone Corp 電磁波シールド性光透過窓材及び表示装置
CN1234107C (zh) * 2000-02-01 2005-12-28 三井化学株式会社 显示器用滤光片、显示装置及其制造方法
AU2001233210A1 (en) 2000-02-22 2001-09-03 Univation Technologies, Llc Process for the polymerization of ethylene and a small amount of a diene
JP2002326305A (ja) * 2001-04-27 2002-11-12 Nisshinbo Ind Inc 透視性電磁波シールド板、その製造方法及びディスプレイ装置
US7214282B2 (en) * 2001-05-16 2007-05-08 Bridgeston Corporation Electromagnetic-wave shielding and light transmitting plate, manufacturing method thereof and display panel
TW583688B (en) * 2002-02-21 2004-04-11 Dainippon Printing Co Ltd Electromagnetic shielding sheet and method of producing the same
US7160583B2 (en) * 2004-12-03 2007-01-09 3M Innovative Properties Company Microfabrication using patterned topography and self-assembled monolayers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236194A (ja) * 1998-12-17 2000-08-29 Hitachi Chem Co Ltd 電磁波シールドフィルタ及びその製造方法
JP2001053488A (ja) * 1999-08-06 2001-02-23 Hitachi Chem Co Ltd 電磁波シールド材料並びにこの材料を用いた電磁波遮蔽構成体及びディスプレイ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095252A1 (en) * 2003-03-25 2004-11-04 3M Innovative Properties Company High transparency touch screen

Also Published As

Publication number Publication date
KR100939747B1 (ko) 2010-02-04
EP1388836A4 (en) 2006-05-03
EP1388836A1 (en) 2004-02-11
US8067084B2 (en) 2011-11-29
US7214282B2 (en) 2007-05-08
US20040140516A1 (en) 2004-07-22
US20070190296A1 (en) 2007-08-16
KR20030096402A (ko) 2003-12-24

Similar Documents

Publication Publication Date Title
WO2002093534A1 (en) Electromagnetic wave shielding light-transmitting window member, its manufacturing method, and display panel
US20070011863A1 (en) Manufacturing methods of electromagnetic-wave shielding and light transmitting window material, display panel, and solar battery module
EP1056325B1 (en) Light transmiting laminated plate for electromagnetic shielding
JP4352488B2 (ja) 電磁波シールド性光透過窓材
WO2001088889A1 (fr) Panneau d'affichage et procede de fabrication d'un materiau filtrant a transmission lumineuse servant d'ecran de protection electromagnetique
JP2002341781A (ja) 表示パネル
JPH11338383A (ja) 表示パネル
JP4111571B2 (ja) 表示パネル
JP2007328284A (ja) ディスプレイ用光学フィルタの製造方法、ディスプレイ用光学フィルタ、これを備えたディスプレイ及びプラズマディスプレイパネル
JP2002341780A (ja) 電磁波シールド性光透過窓材
JP2002344193A (ja) 電磁波シールド性光透過窓材の製造方法
JP3882290B2 (ja) 表示パネル
JPH11251782A (ja) 電磁波シールド性光透過窓材
JP3997581B2 (ja) 表示パネル
JP2000340986A (ja) 電磁波シールド性光透過窓材及びパネル貼合材
JPH11119668A (ja) 表示パネル
JP4300595B2 (ja) 表示パネル
JP2002341779A (ja) 電磁波シールド性光透過窓材
JP2000340988A (ja) 電磁波シールド性光透過窓材及びパネル貼合材
JP2001331116A (ja) 表示パネル
JP2000340990A (ja) 電磁波シールド性光透過窓材及びパネル貼合材
JPH11119669A (ja) 表示パネル
JPH11185641A (ja) 表示パネル
JP2002341778A (ja) 電磁波シールド性光透過窓材
JP2000172182A (ja) 電磁波シールド性光透過窓材及び電磁波シールド熱線カット性光透過窓材

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10476852

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002722937

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020037014872

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002722937

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642