WO2002087080A1 - Surface acoustic wave device and its manufacture method, and electronic part using it - Google Patents

Surface acoustic wave device and its manufacture method, and electronic part using it Download PDF

Info

Publication number
WO2002087080A1
WO2002087080A1 PCT/JP2002/003808 JP0203808W WO02087080A1 WO 2002087080 A1 WO2002087080 A1 WO 2002087080A1 JP 0203808 W JP0203808 W JP 0203808W WO 02087080 A1 WO02087080 A1 WO 02087080A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
acoustic wave
surface acoustic
wave device
short
Prior art date
Application number
PCT/JP2002/003808
Other languages
English (en)
French (fr)
Inventor
Kazuo Ikeda
Yasumichi Murase
Kazunori Nishimura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001360577A external-priority patent/JP2003008389A/ja
Priority claimed from JP2001371249A external-priority patent/JP2003017972A/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP02720458A priority Critical patent/EP1381156A4/en
Priority to US10/311,711 priority patent/US6972509B2/en
Priority to KR10-2002-7017242A priority patent/KR100484078B1/ko
Publication of WO2002087080A1 publication Critical patent/WO2002087080A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02921Measures for preventing electric discharge due to pyroelectricity

Definitions

  • the present invention relates to a surface acoustic wave device used for a communication device, a method of manufacturing the same, and an electronic component using the same.
  • a surface acoustic wave device forms a metal thin film on the entire surface of a substrate having piezoelectricity, applies a resist thereon, exposes, develops, and then etches the desired interdigital transducer (IDT: IT).
  • IDT interdigital transducer
  • electrodes, dating reflectors (Grating Inflector) electrodes (hereinafter referred to as reflector electrodes), dicing lines surrounding them, and thin wires connecting them For example, a plurality of desired electrode patterns are formed, and an individual surface acoustic wave device is manufactured by cutting the dicing line.
  • the surface acoustic wave device that has been separated into individual pieces by dicing the piezoelectric substrate is electrically separated from the IDT electrode and the reflector electrode.
  • Charge is generated due to the pyroelectric effect of the electrode, and if the charge between the electrodes becomes uneven, discharge occurs between the facing IDT electrode and reflector electrode, or between the IDT electrode and the reflector electrode As a result, the electrodes are damaged, and the characteristics of the surface acoustic wave device deteriorate.
  • a method described in JP-A-11-298289 is known.
  • a thin metal wire short wire surrounding the periphery of the IDT electrode and the reflector electrode is provided inside the dicing line, and a plurality of thin wires for electrically connecting these short metal wires and the ID ⁇ electrode are arranged.
  • the generated charges are electrically uniformed to prevent damage due to electric discharge and deterioration of electric characteristics.
  • a dicing line is a boundary line that separates multiple surface acoustic wave devices formed on a piezoelectric substrate into individual pieces. The same material as above is formed by photolithography and etching.
  • a thin metal film short wire surrounding the IDT electrode and the reflector electrode is provided inside the dicing line, and a plurality of fine wires electrically connecting these short metal wires and the IDT electrode are provided. If the amount of charge generated by rapid temperature fluctuation is large, the distance between the electrodes is small, the distance between the connected electrodes is large, the wire connecting the short metal thin film wire and the IDT electrode is thin If the connected wires are partly thinner than the other portion, the impedance between the wires will be high and the generated charge cannot be made uniform enough. There was a problem that the discharge occurred between the electrodes, and the electrodes were damaged or the electrical characteristics were degraded. Disclosure of the invention
  • the present invention has been made to solve the above problems, and is intended to make the electric charge generated in a heat treatment step of a piezoelectric substrate when manufacturing a surface acoustic wave device uniform over the entire electrode surface of the surface acoustic wave device. Therefore, even after being separated into individual surface acoustic wave devices, a surface acoustic wave device that prevents the electrodes from being damaged or the electrical characteristics from being deteriorated by the discharge caused by the potential difference generated by the pyroelectricity of the substrate, and a device therefor.
  • An object is to provide a manufacturing method and electronic components using the same.
  • a surface acoustic wave device includes a substrate having piezoelectricity, a comb-shaped electrode constituting an IDT on the substrate, and a comb-shaped electrode disposed close to a propagation direction of a surface wave generated from the IDT. And a frame-shaped short-circuit auxiliary electrode having a different width depending on the location around the comb-shaped electrode and the reflector electrode. Further, in the method of manufacturing a surface acoustic wave device according to the present invention, a step of applying a metal thin film on a substrate having piezoelectricity, a step of etching the metal thin film, and a comb-shaped electrode constituting an IDT are generated by the IDT.
  • the electronic component of the present invention has a drawer electrode on the bottom of the box shape and electrical connection with the drawer electrode.
  • a base substrate having a terminal electrode that covers the base substrate, a lid for covering the base substrate and sealing the inside of the base substrate, a surface acoustic wave device arranged at the bottom of the base substrate, and input / output terminals of the surface acoustic wave device.
  • the present invention is characterized by using a surface acoustic wave device having the above-mentioned configuration, which comprises a connection member for electrically connecting an electrode and an extraction electrode of a base substrate.
  • FIG. 1A and 1B are a plan view showing a configuration of an electrode pattern of a surface acoustic wave device according to a first embodiment of the present invention, and a plan view showing a configuration in which a plurality of piezoelectric patterns are formed on a piezoelectric substrate.
  • Figure 2 is a cross-sectional view of an electronic component using the surface acoustic wave device.
  • FIG. 3 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device according to a second embodiment of the present invention.
  • FIG. 4 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device according to a third embodiment of the present invention.
  • 5A and 5B are a plan view showing a configuration of an electrode pattern of a surface acoustic wave device according to a fourth embodiment of the present invention, and a plan view showing a configuration in which a plurality of piezoelectric patterns are formed on a piezoelectric substrate.
  • FIG. 6 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device according to a fifth embodiment of the present invention.
  • FIG. 7 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device according to a sixth embodiment of the present invention.
  • FIG. 8 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device according to a seventh embodiment of the present invention.
  • FIG. 9 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device according to an eighth embodiment of the present invention.
  • FIG. 1A is a plan view showing the configuration of an electrode pattern of a surface acoustic wave device according to Embodiment 1 of the present invention
  • FIG. 1B is a diagram showing a plurality of surface acoustic wave devices shown in FIG. 1A formed on a substrate.
  • FIG. 3 is a partial plan view showing the configuration.
  • FIG. 2 is a cross-sectional view of an electronic component in which the surface acoustic wave device is sealed in a package including a base substrate and a lid.
  • a surface acoustic wave device 10 of the present invention is provided on a substrate 1 having piezoelectricity, in the vicinity of a propagation direction of a surface acoustic wave excited by the comb-shaped electrode 2 constituting an IDT. And a pair of reflector electrodes 3 arranged at a predetermined distance, and furthermore, from these comb-shaped electrodes 2, input / output extraction electrodes 4a, 5a, input / output terminal electrodes 4b, 5b, and so on. Further, a strip-shaped connection electrode 18 for connecting the comb-shaped electrodes 2 to each other is provided, and a frame-shaped short-circuit auxiliary electrode 6 having a width different from place to place is formed around these.
  • the short-circuit auxiliary electrode 6 In the outer peripheral portion of the short-circuit auxiliary electrode 6, there is a gap 8 partially left by dicing, and the gap 8 is a portion where the surface of the substrate 1 is exposed.
  • bumps 7 are formed on predetermined portions of the short-circuit auxiliary electrode 6 and the input / output terminal electrodes 4b and 5b, and the bumps 7 connect to the extraction electrodes 13 of the base substrate 9.
  • the base substrate 9 is box-shaped, and an extraction electrode 13 is provided at the bottom thereof.
  • the extraction electrode 13 is electrically connected to an external terminal electrode 14. Electrical connection with the extraction electrode 13 is performed at the same time as electrical fixing by the bump 7 formed on a predetermined portion of the surface acoustic wave device 10.
  • the lid 15 is provided with an adhesive member 16 such as an Au—Sn filter material. The adhesive member 16 adheres to the base substrate 9 to hermetically seal the inside to form an electronic component.
  • FIGS. 1 and 2 schematically show the configuration of the present embodiment, and do not show the relative relationship between the dimensions. The same applies to drawings of the surface acoustic wave device shown hereinafter.
  • an electric potential is generated by pyroelectricity ⁇ piezoelectricity. If the amount of electric charge thus generated varies depending on the location, a potential difference is generated, and when the potential difference exceeds a certain value, a discharge may occur, which may cause destruction of a device or deterioration of electrical characteristics. In order to prevent this, it is effective to lower the potential generated by pyroelectricity ⁇ piezoelectricity, or to make it the same potential as soon as possible even if a potential difference occurs. Measures.
  • a low impedance region is provided as wide as possible in the electrode pattern of the surface acoustic wave device 10. Is based on the finding that it is effective. .
  • the electrode pattern of the surface acoustic wave device 10 according to the present invention is arranged such that a comb-shaped electrode 2 constituting an IDT is formed on a substrate 1 having piezoelectricity and is close to a propagation direction of a surface wave generated from the comb-shaped electrode 2.
  • the reflector electrodes 3 are arranged on both sides of the comb-shaped electrode 2, and the comb-shaped electrode 2 and the reflector electrode 3 are surrounded by a frame-shaped short-circuit auxiliary electrode 6.
  • the short-circuit auxiliary electrode 6 is connected to the extraction electrode 13 of the base substrate 9 on which the surface acoustic wave device 10 is mounted, and the extraction electrode 13 is electrically connected to the terminal electrode 14. It is also used as a ground electrode.
  • the short-circuit auxiliary electrode 6 has a substantially uniform frame shape on the electrode forming surface of the surface acoustic wave device 10 as can be seen from FIG. 1A, and has a non-biased shape as a whole.
  • strip-shaped input / output extraction electrodes 4a and 5a connected to the comb-shaped electrode 2 are provided to face each other, and are formed so that their areas are substantially equal.
  • the input / output terminal electrodes 4b, 5b connected to the input / output extraction electrodes 4a, 5a are also provided to face each other, and their areas are substantially equal.
  • the reflector electrode 3 and the short-circuit auxiliary electrode 6 have an electrode configuration in which they are electrically open.
  • the area of the strip-shaped input / output extraction electrodes 4a, 5a and the input / output terminal electrodes 4b, 5b is made substantially equal, and the short-circuit auxiliary electrode 6 is made substantially uniform and biased.
  • the potential difference between each electrode pattern should be greatly reduced Can be. Therefore, even if the reflector electrode 3 and the comb-shaped electrode 2 are electrically open with respect to the short-circuit auxiliary electrode 6, the electric charges generated in the reflector electrode 3 and the comb-shaped electrode 2 can be made uniform.
  • the width of the frame-shaped short-circuit auxiliary electrode 6 needs to be the maximum width that can be designed depending on the location, and therefore the width differs depending on the location as shown in the figure.
  • the impedance is reduced by surrounding the comb-shaped electrode 2 and the reflector electrode 3 with the widest possible short-circuit auxiliary electrode 6, and the charge generated by the pyroelectricity of the substrate 1 is accumulated.
  • the resulting potential difference can be quickly made uniform. This uniformity of the potential difference is more effective as the area of the commonly connected electrode including the short-circuit auxiliary electrode 6 occupying the surface acoustic wave device 10 is larger. Therefore, the short-circuit auxiliary electrode 6 is as wide as possible than a thin wire. It is desirable that
  • the short-circuit auxiliary electrode 6 is connected to the ground electrode among the terminal electrodes 14 provided on the base substrate 9, and the electric charge generated on the substrate 1 is transferred from the short-circuit auxiliary electrode 6 to the terminal electrode 1. Since the surface acoustic wave device 10 can escape to the outside through 4, the influence of the charge due to pyroelectricity on the surface acoustic wave device 10 can be greatly reduced.
  • the charge due to pyroelectricity generated by heating the surface acoustic wave device 10 is generated from the pyroelectric piezoelectric substrate 1.
  • the entire surface acoustic wave device 10 is uniform. Because of the heating, the generation of electric charges originates from the entire surface acoustic wave device 10.
  • the input / output terminal electrodes 4b and 5b generally have the largest area, and therefore this portion is the largest. It is easy to generate a potential.
  • the comb-shaped electrode 2 and the reflector electrode 3 are surrounded and the frame-shaped short-circuit auxiliary electrode 6 is provided symmetrically with respect to the input / output terminal electrodes 4 b and 5 b and as wide as possible, Since the electric charge generated on the substrate 1 can be made uniform throughout and the potential difference can be reduced, discharge can be suppressed.
  • a portion having a narrow electrode interval is provided in advance between adjacent electrodes so that the surface acoustic wave device is not damaged when a certain amount of electric charge is accumulated.
  • a method of partially discharging the battery is undesirable because it generates noise during use of the surface acoustic wave device and generates noise. Therefore, the surface acoustic wave device is damaged by the discharge due to the accumulation of electric charge. In order to avoid this, it is more effective to provide the frame-shaped short-circuit auxiliary electrode 6 as wide as possible adjacent to the comb electrode 2 and the reflector electrode 3.
  • the input / output lead electrodes 4a, 5a and the input / output terminal electrodes 4b, 5b are provided facing each other to make their areas substantially equal, and the frame-shaped short-circuit auxiliary electrode 6 is substantially equal as a whole. With such an arrangement, it is possible to eliminate a region where the charge amount is unevenly accumulated and accumulated, so that the potential difference can be made more uniform.
  • the present invention is not limited to this, and the same effect can be obtained even with a multi-stage surface acoustic wave device. Is obtained.
  • a metal thin film having a laminated structure is formed on a substrate 1 having piezoelectricity by, for example, sputtering.
  • the substrate 1 it can be used, for example L i T A_ ⁇ 3 or L i N b 0 3 single crystal base plate.
  • the metal thin film consists of a titanium (Ti) film on the lower layer, an alloy film consisting of aluminum-scandium-copper-copper (A1-Sc-Cu) on it, and a Ti film on the upper layer.
  • an aluminum (A 1) film is further formed on the three-layered film by vapor deposition.
  • a photoresist is applied on the metal thin film, and the metal thin film is processed into a desired electrode pattern by a photolithography process and an etching process. Thereafter, if only the uppermost A1 film of the comb-shaped electrode 2 is removed by etching using a photolithography process and an etching process, the input / output extraction electrodes 4a, 5a and the input / output terminal electrodes 4b, 5b and On the short-circuit auxiliary electrode 6, an AT film which is a soft metal formed by a vapor deposition method can be left. If the A1 film is removed by, for example, wet etching, it can be easily performed by utilizing the etching selectivity between A1 and Ti. The state formed in this way is shown in FIG. 1B.
  • the surface acoustic wave device 10 having a predetermined shape can be obtained.
  • the center of the gap 8 of the short-circuit auxiliary electrode 6 is cut off instead of the conventional dicing line being provided and cutting the dicing line, so that the dicing line becomes unnecessary.
  • Simplified design of surface acoustic wave device 10 In addition to the simplification, the size of the surface acoustic wave device can be further reduced.
  • the metal thin film is not limited to the above-described material configuration, and a film made of A1, Ti, Cu, Cr, Ni, or an alloy thereof may be laminated, or Various materials and configurations can be used, such as an A1 film, an A1-Cu alloy film on it, and a three-layer film consisting of a Ti film on the upper layer. Lamination may be performed, and the lamination order is not limited to the above. With such an electrode film having a laminated structure, power durability can be increased, and even if discharge occurs, damage can be prevented.
  • a surface layer of the electrode film is formed of a Ti film. In such a case, it is sufficient to selectively remove by etching similarly. If the surface layer of the electrode film is an A1 film, a photoresist is formed on the comb electrode 2 in advance and then a lift-off method And can be easily created.
  • the bump connection includes connection using a conductive resin, solder bonding using solder bumps, and the surface of the extraction electrode and the bump 7 are formed of gold (Au), and Au-AU bonding is performed using ultrasonic waves.
  • Various bonding methods such as a method of forming a tin (Sn) film and a bump 7 on the surface of the extraction electrode with Au and then performing an Au-Sn eutectic bonding can be adopted.
  • the bumps 7 may be formed by plating or wire bonding.
  • the lid 15 on which the adhesive member 16 such as a filter material made of Au—Sn is formed is brought into contact with the base substrate 9 and heated.
  • the adhesive member 16 such as a filter material made of Au—Sn is formed
  • Such a bump bonding method is characterized in that the contact area between the extraction electrode 13 and the bump 7 to be bonded can be increased, and thus the reliability of bonding can be increased.
  • the electrode film will peel off, and conversely the connection will occur. Reliability may decrease.
  • the present invention it has been found that if at least the film formed on the uppermost layer of the electrode film is formed by a vapor deposition method, the strain generated at the time of bump bonding can be relaxed and the peeling of the electrode film can be prevented. Based on. Further, the formation of the vapor-deposited film has an effect that electrochemical corrosion of the electrode film is less likely to occur during steps such as cutting and washing.
  • a material made of a soft material has a better bonding property with the bump.
  • the soft material use is made of, for example, aluminum, an A1-Cu alloy obtained by adding at least one kind of material consisting of Cu, Sc, Cr, Ni, Ti, etc., or Au, etc. Can be.
  • the same effect can be obtained by forming another layer by vapor deposition in addition to the uppermost layer of the electrode in contact with the bump.
  • the position where the bump is formed is not limited to the position shown in FIG. 1A.
  • the strip-shaped input / output extraction electrodes 4a and 5a do not need to have the same width, but may have almost the same area.
  • FIG. '' In a state where a predetermined electrode pattern is formed on the substrate 1 that has not been removed, a probe is applied to the input / output terminal electrodes 4 b and 5 b of each surface acoustic wave device 10 to measure the electrical characteristics. Can be. Therefore, it is possible to perform characteristic selection before cutting the surface acoustic wave device 10 into individual pieces, and after cutting, it is possible to assemble an electronic component using only good products.
  • the periphery of the comb-shaped electrode 2 and the reflector electrode 3 is surrounded by the frame-shaped short-circuit auxiliary electrode 6 having a different width depending on the location, and at least the uppermost layer of the electrode film in contact with the bump 7
  • the substrate 1 having piezoelectricity can be focused. It is possible to reduce the potential difference generated by the electric conductivity. In addition, it is possible to prevent peeling of the joint portion of the electrode film, and to suppress electrochemical corrosion. Furthermore, since the power durability can be increased by using a laminated electrode film, even if discharge occurs due to the accumulated charges, the electrode film is hardly damaged, and the discharge resistance can be further improved.
  • FIG. 3 the same elements as those in FIG. 1A are denoted by the same reference numerals.
  • a pair of three comb-shaped electrodes 201, 202, 203 and a reflector electrode 3 at both ends is arranged, and the central comb-shaped electrode 202 has an input / output lead-out.
  • the electrodes 4a and 5a, the input / output terminal electrodes 4b and 5b, the ground extraction electrode 21a, and the ground terminal electrode 21b are provided as illustrated.
  • a frame-shaped short-circuit auxiliary electrode 6 is formed so as to surround them, and the reflector electrode 3 on both sides and the comb-shaped electrodes 201, 203 on both sides are respectively provided with the first short-circuit auxiliary electrode 6.
  • the connection electrode 17 and the second connection electrode 20 are electrically connected.
  • the outer periphery of the short-circuit auxiliary electrode 6 has a gap 8 partially left by dicing, and the surface of the substrate 1 is exposed in the gap 8. Further, the other of the comb electrodes 201 and 203 on both sides is connected to each other by a strip-shaped connection electrode 18, and a bump 7 is provided at a predetermined position of the input / output electrodes 4 b. And 5 b and the short-circuit auxiliary electrode 6.
  • the surface acoustic wave device 100 is provided. The method of manufacturing the surface acoustic wave device 100 into an electronic component as shown in FIG. 2 is the same as in the first embodiment, and a description thereof will be omitted.
  • the reflector electrode 3 and the comb-shaped electrodes 201 and 203 on both sides are connected to the short-circuit auxiliary electrode via the strip-shaped first connection electrode 17 and the second connection electrode.
  • the wide area of the surface acoustic wave device 100 is commonly connected and has the same potential.
  • the potential difference including the electrode pattern portion in the open state is extremely reduced. Can be made smaller.
  • the effect of electrically connecting the comb electrodes 201, 203 and the reflector electrode 3 to the short-circuit auxiliary electrode 6 differs depending on the design of the electrode pattern, but the impedance is made low to make the potential uniform.
  • the width of the electrodes and the number of the electrodes are not particularly limited, but it is natural that it is more effective if the width is as large as possible and the number of the electrodes is large.
  • the electrodes including the comb electrodes 201, 203 and the reflector electrode 3 are commonly connected.
  • the electrodes including the comb electrodes 201, 203 and the reflector electrode 3 are commonly connected.
  • FIG. 4 A surface acoustic wave device according to a third embodiment of the present invention will be described with reference to FIG.
  • the same elements as those in FIG. 1A are denoted by the same reference numerals.
  • the reflector electrode 19 is constituted by a meander line, and both ends of the reflector electrode 1.9 are electrically connected to the comb-shaped electrode 2 as shown in the figure. That is, the present embodiment is the same as the first embodiment except that the reflector electrode 19 and the comb-shaped electrode 2 are each electrically connected to each other. Further, a method of manufacturing an electronic component using the surface acoustic wave device 110 using the base substrate 9 and the lid 15 shown in FIG. 2 is the same as in the first embodiment.
  • a reflector electrode 19 constituted by a meander line is electrically connected to the comb-shaped electrode 2, and a signal to be used becomes conductive at a direct current and a low frequency.
  • the meander line has a high impedance, and is substantially in the open state.
  • the reflector electrode 19 composed of meander lines and the comb-shaped electrode 2 are electrically connected, the electric charge generated by the pyroelectricity of the piezoelectric substrate 1 is made uniform over a wider electrode area. And the potential difference can be reduced.
  • the comb electrode 2 and the reflector electrode 19 are substantially separated from each other in a high frequency region which is an actual use condition.
  • the surface is opened to the No failures occur.
  • the comb-shaped electrode 2 and the reflector electrode 19 become electrically conductive, and the potential difference can be reduced.
  • FIG. 5A is a plan view showing a configuration of an electrode pattern
  • FIG. 5B is a partial plan view showing a configuration in which a plurality of electrodes are formed on a substrate having piezoelectricity.
  • the surface acoustic wave device 120 of the present embodiment is different from the surface acoustic wave device 10 of the first embodiment only in that a dicing line 80 is formed of the same electrode material on the outer peripheral portion. That is, the dicing line 80 usually disappears when the substrate is cut along the dicing line into individual pieces.
  • the width is set so as to be surely left on the outer peripheral portion even after dicing.
  • the frame-shaped and electrically short-circuited dicing line 80 is provided on the substrate 1 together with the surface acoustic wave device 120, so that a large temperature fluctuation occurs in the substrate state before dicing. Even if a large electric potential is generated due to pyroelectricity, the electric potential difference between the electrode electrodes can be made uniform. Furthermore, even when the surface acoustic wave device 120 is diced and divided into individual pieces, a part of the dicing line 80 exists in a frame shape on the outer peripheral portion of the surface acoustic wave device 120, so that the effect of further reducing the potential difference is further increased. In addition, by cutting the dicing line 80 with a dicing device, the alignment work accompanying the cutting is also facilitated.
  • the same effect can be obtained even if the comb-shaped electrode 2 and the reflector electrode 3 are provided in a plurality of sets of surface acoustic wave devices.
  • the method of manufacturing the surface acoustic wave device 120 of the present example is the same as the method of manufacturing the surface acoustic wave device 10 of Example 1, except that only the dicing line 80 is cut in dicing. Can be made.
  • Embodiment 5 A surface acoustic wave device according to Embodiment 5 of the present invention will be described with reference to FIG.
  • the surface acoustic wave device 130 of the present embodiment is different from the surface acoustic wave device 100 of embodiment 3 in that a dicing line 80 is formed on the outer peripheral portion using the same material.
  • the shape, configuration and manufacturing method are the same.
  • the width of the dicing line is set such that it remains on the outer peripheral portion even after dicing.
  • the pattern of the second connection electrode 20 for electrically connecting the comb electrodes 201, 203 and the short-circuit auxiliary electrode 6 it is not preferable to provide a high impedance region in the middle of the pattern. Therefore, for example, it is desirable that the pattern width is gradually narrowed in the direction of the short-circuit auxiliary electrode 6. Further, it is desirable that the width of second connection electrode 20 be formed wider than the width of dicing line 80.
  • the dicing line 80 By providing the dicing line 80 in this way and forming the dicing line 80 in a frame shape on the outer periphery even after cutting, it is stable against temperature fluctuations during the work process in the state of the substrate 1, In addition, it is possible to easily manufacture an excellent surface acoustic wave device free from rupture or deterioration in characteristics due to discharge even when temperature is mounted on a base substrate as an individual piece, and an electronic component using the same.
  • FIG. 7 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device 140 according to Embodiment 6 of the present invention. 7, the same elements as those in FIG. 6 are denoted by the same reference numerals.
  • the surface acoustic wave device 140 of the present embodiment electrically connects the dicing line 80 and the short-circuit auxiliary electrode 6 in the surface acoustic wave device 130 of the fifth embodiment.
  • the third connection electrode 22 is provided, and the manufacturing method and the structure of an electronic component mounted on a base substrate using the surface acoustic wave device 140 are the same as those in the first embodiment. .
  • the width of the dicing line 80 is also determined after dicing. The width is also set so as to securely remain on the outer peripheral portion.
  • the electrode pattern for electrically connecting the dicing line 80, the short-circuit auxiliary electrode 6, the comb electrodes 201, 203 at both ends, and the reflector electrode 3 may be linear or band-shaped as long as the impedance is low. It does not matter, and there is no restriction on the number.
  • a surface acoustic wave device according to a seventh embodiment of the present invention will be described with reference to FIG. In FIG. 8, the same elements as those in FIG. 6 are denoted by the same reference numerals.
  • the surface acoustic wave device 150 of the present embodiment differs from the surface acoustic wave device 140 of Embodiment 6 only in that the reflector electrode 3 is opened from the short-circuit auxiliary electrode. Otherwise, the configuration and manufacturing method are the same as those of the surface acoustic wave device 140.
  • the comb-shaped electrodes 201, 203, the short-circuit auxiliary electrode 6, and the dicing line 80 at both ends are electrically connected. Since the comb-shaped electrode 202 and the reflector electrode 3 are electrically open, the potential difference between them can be reduced, and the occurrence of discharge can be suppressed to reduce reliability.
  • a surface acoustic wave device having high performance and an electronic component can be realized using the same.
  • FIG. 9 is a plan view showing the configuration of the electrode pattern of the surface acoustic wave device 160 of the present embodiment, and the same elements as those in FIG.
  • the surface acoustic wave device 160 of the present embodiment is different from the surface acoustic wave device 110 of the third embodiment in that a dicing line 80 is provided on the outer peripheral portion. Except for this, the configuration and manufacturing method are the same. Also in this embodiment, the width of the dicing line is set such that it remains on the outer periphery even after dicing.
  • the surface acoustic wave device of the present embodiment In the device 160, the reflector electrode 19 constituted by a meander line is electrically connected to the comb electrode 2. Therefore, the reflector electrode 19 and the comb-shaped electrode 2 become conductive in the DC and low frequency bands, but the meander line has a high impedance in the high frequency band in which the surface acoustic wave device operates. It becomes an open state, and does not particularly affect the electrical characteristics of the surface acoustic wave device 160. This is the same as the surface acoustic wave device 110 of the third embodiment.
  • the reflector electrode 19 constituted by a meander line and the comb-shaped electrode 2 are electrically connected, and the frame-shaped dicing is performed similarly to the frame-shaped short-circuit auxiliary electrode 6. Since the line 80 is provided, the electric charge generated by the pyroelectricity of the piezoelectric substrate 1 can be made uniform in each electrode pattern portion, and the potential difference generated in each portion can be further reduced.
  • the dicing line 80 and the short-circuit auxiliary electrode 6 are electrically open.
  • the present invention is not limited to this, and one short-circuit auxiliary electrode 6 and one dicing line 80 are provided. Alternatively, they may be electrically connected by a plurality of connection electrodes.
  • the present invention is not limited to this, and the same effect can be obtained even in a multi-stage configuration.
  • a frame-shaped short-circuit auxiliary electrode having a different width depending on the location around the comb-shaped electrode and the reflector electrode, processing in units of substrates when manufacturing a surface acoustic wave device is performed.
  • the potential difference between the electrode pads can be reduced.
  • the occurrence of electric discharge is prevented, and a highly reliable surface acoustic wave device without destruction or deterioration of characteristics and an electronic component using the same can be easily manufactured.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

明 細 書 弾性表面波装置およびその製造方法とこれを用いた電子部品 技術分野
本発明は通信機器に用いられる弾性表面波装置およびその製造方法とこれを用 いた電子部品に関する。 背景技術
従来、 弾性表面波装置は圧電性を有する基板上の全面に金属薄膜を形成し、 そ の上にレジストを塗布し、 露光、 現像後、 エッチングすることにより所望のイン ターデジタルトランスデューサ(IDT: I n t e r D i g i t a l T r an s due e r)電極、 ダレ一ティング反射器(Gr a t i ng Re f l e c t o r) 電極 (以下、 反射器電極とよぶ。)、 それらの周囲を囲むダイシングライン、 およびこれらを接続する細線など所望の電極パタ一ンを複数個形成し、 ダイシン グライン上を切断して個片の弹性表面波装置を製造している。
この方法では、 圧電基板をダイシングすることにより個片となった弾性表面波 装置は、 IDT電極や反射器電極が電気的に分離されるため、 弾性表面波装置に 熱や歪みが加わると圧電基板の持つ焦電効果により電荷が発生し、 各電極間の電 荷量が不均一になると対向する I DT電極間や反射器電極間、 あるいは I DT電 極と反射器電極の電極間で放電することにより電極が破損したり、 弾性表面波装 置の特性が劣化する。
この問題を解決する手段として、 特開平 11一 298289号公報に記載の方 法が知られている。 すなわち、 ダイシングラインの内側に I DT電極や反射器電 極の周囲を囲む金属薄膜の短絡細線を設け、 これらの金属薄膜の短絡細線と I D Τ電極とを電気的に接続する複数の細線を配設することにより、 発生した電荷を 電気的に均一化し、 放電による破損および電気特性の劣化を防止する構成が用い られている。 なお、 ダイシングラインとは圧電性を有する基板上に形成した複数 の弹性表面波装置を個片に切り分ける境界線のことであり、 通常 I D Τ電極など と同一の材料をフォトリソ、 エッチングして形成している。
しかしながら、 ダイシングラインの内側に I D T電極や反射器電極の周囲を囲 む金属薄膜の短絡細線を設け、 これらの金属薄膜の短絡細線と I D T電極とを電 気的に接続する複数の細線を配設する構成では、 温度変動が急激で発生する電荷 量が大きい場合、 電極間距離が狭い場合、 接続された電極間が離れている場合、 金属薄膜の短絡細線と I D T電極とを接続した線が細い場合や、 接続した線がミ アンダラィンゃ線の一部が他の部分よりも細い場合などには、 線間のインピーダ ンスが高くなるため発生した電荷を十分に均一化することができず、 電極間で放 電が発生し、 電極が破損したり電気特性が劣化したりするという課題を有してい た。 発明の開示
本発明は上記の課題を解決するものであり、 弾性表面波装置を作製するときに 圧電性基板の熱処理工程等で発生する電荷を弾性表面波装置の電極表面全体にわ たって均一となるようにして、 個片の弾性表面波装置に分離した後でも、 基板の 焦電性により発生する電位差に伴う放電で電極が破損したり電気特性が劣化した りするのを防止する弾性表面波装置およびその製造方法と、 これを用いた電子部 品を提供することを目的とする。
この課題を解決するために、 本発明の弾性表面波装置は、 圧電性を有する基板 と、 この基板上に I D Tを構成する櫛型電極と、 この I D Tより発生する表面波 の伝搬方向に近接して配置した反射器電極と、 上記の櫛型電極と反射器電極との 周囲に場所により幅が異なる枠状の短絡補助電極とを設けた構成を有している。 さらに、 本発明の弾性表面波装置の製造方法は、 圧電性を有する基板上に金属 薄膜を被着する工程と、 この金属薄膜をエッチングして I D Tを構成する櫛型電 極、 I D Tにより発生する表面波の伝搬方向に近接して形成する反射器電極、 少 なくとも上記の櫛型電極と反射器電極との周囲に場所により幅が異なる枠状の短 絡補助電極とを複数組設ける工程と、 隣接する短絡補助電極間を切断する工程と を含む方法である。
また、 本発明の電子部品は、 箱状の底部に引出し電極とこの引出し電極と導通 する端子電極とを有するベース基板と、 このベース基板を覆いベース基板の内部 を密封するための蓋体と、 ベース基板の底部に配置した弾性表面波装置と、 この 弾性表面波装置の入出力端子電極とベース基板の引出し電極とを電気的に接続す る接続部材とからなり、 上記の構成を有する弹性表面波装置を用いたことを特徴 とする。 図面の簡単な説明
図 1 A、 図 1 Bは本発明の第 1の実施の形態における弹性表面波装置の電極パ ターンの構成を示す平面図と、 圧電性を有する基板上に複数個形成した構成を示 す平面図
図 2は同弾性表面波装置を用いた電子部品の断面図
図 3は本発明の第 2の実施の形態における弾性表面波装置の電極パターンの構 成を示す平面図
図 4は本発明の第 3の実施の形態における弹性表面波装置の電極パターンの構 成を示す平面図
図 5 A、 図 5 Bは本発明の第 4の実施の形態における弹性表面波装置の電極パ ターンの構成を示す平面図と、 圧電性を有する基板上に複数個形成した構成を示 す平面図 ·
図 6は本発明の第 5の実施の形態における弾性表面波装置の電極パターンの構 成を示す平面図
図 7は本発明の第 6の実施の形態における弾性表面波装置の電極パターンの構 成を示す平面図
図 8は本発明の第 7の実施の形態における弾性表面波装置の電極パターンの構 成を示す平面図
図 9は本発明の第 8の実施の形態における弾性表面波装置の電極パターンの構 成を示す平面図 発明を実施するための最良の形態
以下、 本発明の実施の形態について図面を参照して説明する。 (実施例 1 )
図 1 Aは本発明の実施例 1における弾性表面波装置の電極パターンの構成を示 す平面図であり、 図 1 Bは図 1 Aに示す弾性表面波装置を基板上に複数個形成し た構成を示す部分平面図である。 また、 図 2は弾性表面波装置をベース基板と蓋 体とからなるパッケージに封止してなる電子部品の断面図である。
本発明の弾性表面波装置 1 0は、 圧電性を有する基板 1上に、 I D Tを構成す る櫛型電極 2と、 この櫛型電極 2で励振された弾性表面波の伝搬方向の近傍に設 けられている反射器電極 3とを一対所定の距離を有して配置し、 さらにこれらの 櫛型電極 2から入出力引出し電極 4 a、 5 a、 入出力端子電極 4 b、 5 b、 およ び櫛型電極 2同士を接続する帯状接続電極 1 8を設け、 これらの周囲に場所によ り幅の異なる枠状の短絡補助電極 6を形成した構成を有する。 この短絡補助電極 6の外周部には、 ダイシングにより部分的に残されたすき間 8があり、 このすき 間 8部分は基板 1の表面が露出している部分である。 また、 この短絡補助電極 6 および入出力端子電極 4 b、 5 bの所定部分にはバンプ 7が形成されており、 こ のバンプ 7によりベース基板 9の引出し電極 1 3と接続する。
図 2に示すように、 ベース基板 9は箱状であり、 その底部には引出し電極 1 3 が設けられており、 この引出し電極 1 3は外部の端子電極 1 4と導通している。 弾性表面波装置 1 0の所定部分に形成されたバンプ 7により引出し電極 1 3と電 気的な接続を行うと同時に機械的な固定も行われる。 蓋体 1 5には A u— S nろ ぅ材などの接着部材 1 6を設けてあり、 この接着部材 1 6によりベース基板 9と 接着して内部を密閉して電子部品が構成される。
なお、 図 1、 図 2は本実施の形態の構成を模式的に示したものであり、 それぞ れの寸法の相対的な関係を示したものではない。 これ以降において示す弹性表面 波装置の図においても同様である。
圧電性を有する物質によっては、 焦電性ゃ圧電性により電位が発生する。 これ らにより発生した電荷量が場所により差異が生じると電位差が発生し、 この電位 差がある値以上になると放電してデバイスの破壊や電気特性の劣化を生じさせる ことがある。 これを防止するためには、 焦電性ゃ圧電性により生じる電位を低く すること、 または電位差が生じてもできるだけ速やかに同電位にすることが有効 な対策である。
本発明は、 弾性表面波装置 1 0の中で電位のパランスをとり、 発生した電位差 をできるだけ速やかに小さくする方法として、 弾性表面波装置 1 0の電極パター ン中に低インピーダンス領域をできるだけ広く設けることが有効であることを見 い出したことにもとづく。 .
すなわち本発明の弾性表面波装置 1 0の電極パターンは、 圧電性を有する基板 1上に I D Tを構成する櫛型電極 2と、 この櫛型電極 2より発生する表面波の伝 搬方向に近接して櫛型電極 2の両側に反射器電極 3を配置し、 櫛型電極 2および 反射器電極 3の周囲を枠状の短絡補助電極 6で囲んでいる。 ここで、 短絡補助電 極 6は弾性表面波装置 1 0が実装されたベース基板 9の引出し電極 1 3に接続さ れており、 この引出し電極 1 3は端子電極 1 4と導通されており、 かつ接地電極 としてある。 また、 この短絡補助電極 6は、 図 1 Aからもわかるように弾性表面 波装置 1 0の電極形成面において略均等な枠形状とし、 全体として偏りのない形 状にしてある。
さらに、 櫛型電極 2に接続する帯状の入出力引出し電極 4 a、 5 aが相対向し て設けられており、 かつこれらの面積を略等しくなるように形成している。 さら に加えて、 入出力引出し電極 4 a、 5 aに接続する入出力端子電極 4 b、 5 bも 相対向して設けるとともに、 これらの面積も略等しくしている。 なお、 反射器電 極 3と短絡補助電極 6とは電気的に開放状態にした電極構成である。
このように、 弾性表面波装置 1 0において、 帯状の入出力引出し電極 4 a、 5 aおよび入出力端子電極 4 b、 5 bの面積を略等しくし、 かつ短絡補助電極 6を 略均等で偏りのない形状とすることで、 基板の焦電性により電荷が発生しても局 部的に大きな電荷量が蓄積される領域をなくせるため、 各電極パターン間の電位 差を大幅に小さくすることができる。 したがって、 反射器電極 3や櫛型電極 2が 短絡補助電極 6とは電気的に開放状態であっても、 反射器電極 3と櫛型電極 2と に発生する電荷を均一化できるので、 これらの間で電位差を生じることが無く、 放電発生を防止できる。 この結果、 弾性表面波装置 1 0の電極が破壊されたり、 電気特性の劣化を生じたりすることを防ぐことができる。 なお、 焦電性により発 生した電位を均一にして電極パターン間の電位差を小さくするために、 短絡補助 電極 6は設計上可能な範囲で電極の幅を広くしてインピーダンスをできるだけ小 さくすること、 および櫛型電極 2や反射器電極 3にできるだけ隣接して設けるこ とが有効である。 このためには、 枠状の短絡補助電極 6の幅は、 場所によって設 計可能な最大の幅とすることが必要となり、 したがって図に示すように場所によ りその幅は異なることになる。
このように、 櫛型電極 2および反射器電極 3の周囲をできるだけ幅広の短絡補 助電極 6で囲むことによりインピーダンスを小さくして、 基板 1の焦電性によつ て発生した電荷が蓄積されて生じる電位差を速やかに均一化できる。 この電位差 の均一化は弾性表面波装置 1 0に占める短絡補助電極 6を含む共通に接続された 電極領域が大きいほど効果的であり、 したがって短絡補助電極 6は細線で構成す るよりもできるだけ幅広とすることが望ましい。
さらに、 本実施例では、 短絡補助電極 6をベース基板 9に設けられた端子電極 1 4の中の接地電極と接続してあり、 基板 1で発生した電荷は短絡補助電極 6か ち端子電極 1 4を通して外部に逃がすことができるので、 弾性表面波装置 1 0に 対して焦電性による電荷の影響を大幅に低減できる。
弾性表面波装置 1 0が加熱されて生じる焦電性による電荷は、 焦電性を有する 圧電体の基板 1から生じるものであり、 通常の製造状態では弾性表面波装賡 1 0 全体が均一に加熱されるので、電荷の発生は弾性表面波装置 1 0全体から生じる。 しかし、 弾性表面波装置 1 0の中ではそれぞれ独立した電極パターンが複数個あ り、 一般に最も広い領域を有するのは入出力端子電極 4 b、 5 bであり、 したが つてこの部分が最も大きな電位を生じやすい。 このため、 櫛型電極 2と反射器電 極 3とを取り囲み、 入出力端子電極 4 b、 5 bを基準として対称的で、 かつでき るだけ広幅で枠状の短絡補助電極 6を設けると、 基板 1に発生した電荷を全体に 均一化して電位差を小さくできるので、 放電を抑制することが可能となる。
電荷の蓄積による放電発生から弾性表面波装置の損傷を防止する方法としては、 例えば隣接する電極間に予め電極間隔の狭い部分を設けておき、 ある程度電荷が 貯まると弾性表面波装置を損傷させない範囲で部分的に放電させる方法もある。 しかしこの方法では、 弾性表面波装置を使用中に放電してノィズを発生するので 望ましくない。 したがって、 電荷の蓄積による放電で弾性表面波装置を損傷させ ないようにするためには、 枠状の短絡補助電極 6を櫛型電極 2と反射器電極 3に 隣接してできるだけ幅広に設けることのほうが有効である。
さらに、 入出力引出し電極 4 a、 5 aおよび入出力端子電極 4 b、 5 bを相対 向して設け、 それらの面積を略等しくしたり、 また枠状の短絡補助電極 6を全体 として略均等な配置とすることにより、 電荷量が偏在して蓄積される領域を無く すことができるため、 電位差をより均一にすることができる。
なお、 櫛型電極 2および反射器電極 3は本実施の形態では一対としたが、 本発 明はこれに限定されることなく、 さらに多段構成の弾性表面波装置であっても同 様な効果が得られる。
次に、 本発明の弾性表面波装置 1 0の製造方法について説明する。
圧電性を有する基板 1上に積層構成からなる金属薄膜を例えばスパッ夕リング により形成する。 基板 1としては、 例えば L i T a〇3や L i N b 03の単結晶基 板を用いることができる。 また、 金属薄膜としては、 下層にチタン (T i ) 膜、 その上にアルミニウム—スカンジウム一銅(A 1— S c— C u)からなる合金膜、 さらにその上層に T i膜の 3層構成からなる膜を形成した後、 この 3層構成膜上 にさらに蒸着によりアルミニウム (A 1 ) 膜を形成する。 次に、 上記の金属薄膜 上にフォトレジストを塗布し、 フォトリソグラフィ一プロセスとエッチングプロ セスにより金属薄膜を所望の電極パターンに加工する。 この後、 さらにフォトリ ソグラフィ一プロセスとエッチングプロセスにより櫛型電極 2の最上層の A 1膜 のみをエッチング除去すれば、 入出力引出し電極 4 a、 5 aと入出力端子電極 4 b、 5 bおよび短絡補助電極 6上には蒸着方式で形成された柔らかい金属である AT膜を残すことができる。 なお、 この A 1膜の除去は、 例えばウエットエッチ ングで行えば、 A 1と T iとのエッチングの選択比を利用して容易に行うことが できる。 このようにして形成された状態を図 1 Bに示す。
次に、 隣接する弾性表面波装置 1 0のそれぞれの短絡補助電極 6のすき間 8を ダイシング装置により切断すれば所定形状の弾性表面波装置 1 0を得ることがで きる。 本実施の形態では、 従来ダイシングラインを設けて、 このダイシングライ ン上を切断している方式にかえて、 短絡補助電極 6のすき間 8の中心を切断する ようにしたので、 ダイシングラインは不要となり弾性表面波装置 1 0の設計を簡 略化するとともに、 弾性表面波装置のさらなる小型化もできる。
なお、 金属薄膜としては、 上記の材料構成に限定されることはなく、 さらに A 1、 T i、 C u、 C r、 N iまたはこれらの合金からなる膜を積層してもよいし、 または A 1膜、 その上に A 1—C u合金膜、 さらに上層に T i膜からなる 3層構 成膜等、 種々の材料および構成を用いることができるし、 1層以上であれば何層 積層してもかまわないし、 積層する順序も上記に限定されることはない。 このよ うな積層構成の電極膜とすることで耐電力性を大きくでき、 放電が生じても損傷 し難いようにすることができる。
このような構成の金属薄膜の少なくとも櫛型電極 2上を除いた電極膜上に蒸着 方式で柔らかい材料の膜、 例えば A 1膜を形成する方法としては、 電極膜の表面 層が T i膜の場合には同様にゥエツトエッチングで選択的にエッチング除去すれ ばよいし、 電極膜の表面層が A 1膜の場合には櫛型電極 2上にあらかじめフォト レジストを形成してから蒸着するリフトオフ方式で容易に作成可能である。
次に、 こうして得られた弾性表面波装置 1 0をベース基板 9に実装して電子部 品とする工程について、 図 2を用いて説明する。 箱状のベース基板 9の底部に設 けられた引出し電極 1 3と弹性表面波装置 1 0に形成されたバンプ 7とを位置合 わせした後、 電気的に接続するとともに機械的にも弾性表面波装置 1 0を固定す る。 このバンプ接続としては、 導電性樹脂を用いた接続、 はんだバンプによるは んだ接合、 引出し電極の表面とバンプ 7とを金 (A u ) で形成しておき、 超音波 で A u— AU接合する方式、 または引出し電極の表面にスズ (S n) 膜、 バンプ 7を A uで形成しておき、 A u— S n共晶接合する方式等種々の接合法式が採用 できる。 なお、 バンプ 7としては、 メツキで形成することもできるし、 ワイヤポ ンディングで形成してもよい。
弾性表面波装置 1 0をベース基板 9に接続固定した後、 A u— S nからなるろ ぅ材などの接着部材 1 6が形成されている蓋体 1 5をベース基板 9と接触させて 加熱して接着固定して封止された構成の電子部品を得る。
このようなバンプボンディング方式は、 引出し電極 1 3と接合するバンプ 7と の接触面積を大きくできるので、接合の信頼性を高くできる特徴がある。 しかし、 一方でバンプ接合時の加熱により熱歪が生じると、 電極膜の剥離が生じて逆に接 合の信頼性が低下する場合がある。 本発明は、 電極膜の最上層に形成する膜を少 なくとも蒸着方式により形成すれば、 バンプボンディングの際に発生する歪を緩 和して、 電極膜の剥離を防止できることを見出したことにもとづく。 さらに、 蒸 着膜で形成することにより、 切断時や洗浄時等の工程中に電極膜の電気化学的な 腐食も起こり難くなる効果も有する。
この理由は、 蒸着方式による成膜では下地材料と同じ配向を有する薄膜が形成 されやすく、 この結果金属粒子間の結合が強くなるためと推定している。 したが つて、少なくともバンプと接触する電極膜の最上層の膜を蒸着方式で形成すれば、 接合による歪みが生じても電極膜の剥離が発生せず、 かつ電気化学的な腐食も抑 制することができる。
ところで、 蒸着方式で形成する金属薄膜としては、 柔らかい材質からなる材料 の方がバンプとの接合性が良い。 柔らかい材料としては、 例えばアルミニウム、 アルミニウムに C u、 S c、 C r、 N i、 T i等からなる材料の少なくとも 1種 類を添加した A 1—C u合金、 または A uなどを用いることができる。
なお、 バンプと接触する電極の最上層に加えて、 その他の層を蒸着で形成して も同様の効果が得られる。
また、 バンプを形成する位置は、 図 1 Aで示した位置に限定されないことは言 うまでもない。 さらに、 帯状の入出力引出し電極 4 a、 5 aは、 その幅が同一で ある必要はなく面積がほぼ同じであればよい。
このようにして得られた弹性表面波装置 1 0の入出力引出し電極 4, a、 5 a、 および入出力端子電極 4 b、 5 bは電気的に互いに独立しているため、 図 1 Bに ' 未すような基板 1上に所定の電極パターンを形成した状態で、 それぞれの弹性表 面波装置 1 0の入出力端子電極 4 b、 5 bにプローブを当てて電気特性を測定す ることができる。 したがって、 弾性表面波装置 1 0を個片に切断する前に特性選 別を行うことが可能であり、 切断後には良品のみを用いて電子部品を組み立てる ことができる。
以上のように本発明によれば、 櫛型電極 2および反射器電極 3の周囲を場所に より幅が異なる枠状の短絡補助電極 6で囲み、 少なくともバンプ 7と接触する電 極膜の最上層の膜を蒸着方式で形成することにより、 圧電性を有する基板 1の焦 電性によって発生した電位差を小さくすることができる。 また、 さらに電極膜の 接合部分の剥離等を防止し、 かつ、 電気化学的な腐食を抑制することも可能とな る。 さらに、 積層構成の電極膜を用いれば耐電力を高め'られるので、 蓄積された 電荷により放電が生じでも電極膜の損傷が生じ難くなり、 より放電耐性を向上さ せることもできる。
なお、 弾性表面波装置 1 0を実装した電子部品の製造にあたっては、 上述した バンプボンディング法だけでなく、 例えばワイヤーボンディングで接続する方法 を用いてもよい。
(実施例 2 )
以下に本発明の実施例 2の弾性表面波装置について、 図 3を用いて説明する。 図 3において、 図 1 Aと同一要素については同一符号を付している。
3個の櫛型電極 2 0 1、 2 0 2、 2 0 3と、 その両端部に反射器電極 3とを有 する構成を一対配置し、中央の櫛型電極 2 0 2には入出力引出し電極 4 a、 5 a、 入出力端子電極 4 b、 5 b、 グランド引出し電極 2 1 aおよびグランド端子電極 2 1 bが図示するように設けられている。 これらを取り囲むように枠状の短絡補 助電極 6が形成され、 この短絡補助電極 6に対して、 両側の反射器電極 3および 両側の櫛型電極 2 0 1、 2 0 3がそれぞれ第 1の接続電極 1 7と第 2の接続電極 2 0により電気的に接続されている。 この短絡補助電極 6の外周部には、 ダイシ ングにより部分的に残つたすき間 8があり、 このすき間 8部分は基板 1の表面が 露出している。 さらに、 両側の櫛型電極 2 0 1、 2 0 3の他方は相互に帯状接続 電極 1 8で接続され、 入出力電極 4 b.、 5 bと短絡補助電極 6の所定個所にバン プ 7を設けて、 弾性表面波装置 1 0 0が構成されている。 この弾性表面波装置 1 0 0を図 2に示すような電子部品とするための製造方法については、 第 1の実施 の形態と同様であるので説明は省略する。
このような構成とすることにより、反射器電極 3および両側の櫛型電極 2 0 1、 2 0 3は、 帯状の第 1の接続電極 1 7と第 2の接続電極とを介して短絡補助電極 6と接続されているので、 弾性表面波装置 1 0 0の広い領域が共通に接続され、 同電位となる。 この結果、 弾性表面波装置 1 0 0が温度変動を受けて基板 1の焦 電性により電位が発生しても、 開放状態の電極パターン部を含めて電位差を非常 に小さくすることができる。
なお、 櫛型電極 2 0 1、 2 0 3および反射器電極 3を短絡補助電極 6と電気的 に接続する効果は電極パターンの設計により異なるが、 電位を均一化できるよう に低ィンピーダンスとすることが要求されるのみで、 その電極幅やその電極本数 も特に制約はないが、 望ましくはできるだけ幅広で、 かつ本数も多い方がより効 果的であることは当然である。
本実施例では、 櫛型電極 2 0 1、 2 0 3および反射器電極 3を含めた電極を共 通に接続しているため、 各部分で異なった電位が発生しても同電位とすることが でき、 放電などによる電極の破壌や特性劣化のない優れた弾性表面波装置 1 0 0 を簡単に製造することができる。
(実施例 3 )
本発明の実施例 3の弾性表面波装置について、 図 4を用いて説明する。 図 4に おいて、 図 1 Aと同一要素については同一符号を付している。
本実施例では、 反射器電極 1 9をミアンダラインで構成し、 この反射器電極 1 . 9の両端部をそれぞれ櫛型電極 2と図示するように電気的に接続している。 すな わち、 本実施例においては、 ミアンダラインで構成した反射器電極 1 9と櫛型電 極 2とを電気的に接続した構成としたことを除いて、 実施例 1と同様である。 さ らに、 この弾性表面波装置 1 1 0を図 2に示したベース基板 9と蓋体 1 5とを用 いて電子部品を製造する方法についても実施例 1と同様である。
図 4において、 ミアンダラインで構成した反射器電極 1 9は電気的に櫛型電極 2と接続されており、 使用する信号が直流および低周波数では導通状態となる。 しかしながら、 弾性表面波装置 1 1 0が動作する高周波数帯域においては、 ミア ンダラインはインピーダンスが高くなり、実質的に開放状態と同様になる。一方、 ミアンダラインで構成した反射器電極 1 9と櫛型電極 2とは電気的に接続されて いるので、 圧電性を有する基板 1の焦電性により発生した電荷をより広い電極領 域で均一化することが可能となり、 電位差を小さくすることができる。
すなわち、 ミアンダラインで構成した反射器電極 1 9と櫛型電極 2とを電気的 に接続することにより、 実使用条件である高周波数領域では櫛型電極 2と反射器 電極 1 9とは実質的に開放状態となり、 弾性表面波装置 1 1 0としての動作上の 不具合は発生しない。 一方、 焦電性による電位に対しては、 櫛型電極 2と反射器 電極 1 9とが電気的に導通状態となり、 電位差を小さくすることができる。
さらに、 櫛型電極 2に接続する帯状の入出力引出し電極 4 a、 5 aが相対向し て設けられており、 かつこれらの面積が略等しくなるように形成していることに 加えて、 入出力引出し電極 4 a、 5 aに接続する入出力端子電極 4 b、 5 bも相 対向して設けるとともに、 これらの面積も略等しくしている。 このような構成と することにより、 焦電性により電位が各電極パターンに発生しても、 電位差をほ とんど生じないようにすることが可能となり、 放電などによる電極パターンの損 傷や特性劣化のない優れた弾性表面波装置 1 1 0を簡単に製造することができる。
(実施例 4 )
本発明の実施例 4の弾性表面波装置について、 図 5 Aと図 5 Bとを用いて説明 する。 図 5 Aは電極パターンの構成を示す平面図であり、 図 5 Bは圧電性を有す る基板上に複数個形成した構成を示す部分平面図である。 図 5 Aと図 5 Bにおい て、 図 1 Aと図 1 Bど同一の要素については同一符号を付している。 本実施例の 弾性表面波装置 1 2 0は、 実施例 1の弾性表面波装置 1 0の外周部にダイシング ライン 8 0を同一の電極材料により形成した点が異なるのみである。 すなわち、 通常ダイシングライン 8 0は基板をこのダイシングラインに沿って切断して個片 にしてしまうと無くなってしまうが、 本発明ではダイシングしても外周部に確実 に残るような幅としている。
本実施例では、 基板 1上に弾性表面波装置 1 2 0と一緒に枠状で電気的に短絡 したダイシングライン 8 0を設けているので、 ダイシングするまでの基板状態で 大きな温度変動が生じて焦電性による大きな電位が発生しても、 各電極パ夕 ン 間の電位差を均一化することができる。 さらに、 ダイシングして個片に分割され ても、 弾性表面波装置 1 2 0の外周部にはダイシングライン 8 0の一部が枠状に 存在するので、 さらに電位差を小さくする効果が大きくなる。 また、 ダイシング ライン 8 0上をダイシング装置により切断することで、 切断に伴う位置合わせ作 業も容易となる。
なお、 櫛型電極 2や反射器電極 3は複数組設けた弾性表面波装置であつても同 様の効果を得ることができる。 本実施例の弾性表面波装置 1 2 0の製造方法は、 ダイシングにおいてダイシン グライン 8 0上を切断することのみが異なる以外は、 実施例 1の弾性表面波装置 1 0の製造方法と同様にして作製できる。
(実施例 5 )
本発明の実施例 5の弾性表面波装置を図 6を用いて説明する。
図 6において、 図 3と同一要素については同一符号を付している。 本実施例の弹 性表面波装置 1 3 0は、 実施例 3の弾性表面波装置 1 0 0の外周部にダイシング ライン 8 0を同一の材料を用いて形成していることが異なる以外は、 形状や構成 および製造方法は同一である。 本実施例においても、 ダイシングラインの幅は、 ダイシング後にも外周部に確実に残るような幅としている。
櫛型電極 2 0 1、 2 0 3と短絡補助電極 6とを電気的に接続するための第 2の 接続電極 2 0のパターンは、 そのパターンの途中にインピーダンスの高い領域を 設けることは好ましくないので、 例えば短絡補助電極 6方向にいくにしたがつて そのパターン幅が徐々に細くなる形状が望ましい。. また、 この第 2の接続電極 2 0の幅はダイシングライン 8 0の幅よりも広く形成することが望ましい。
このようにダイシングライン 8 0を設け、 切断後も外周部にダイシングライン 8 0が枠状に残るように形成することで、 基板 1状態での作業工程中の温度変動 に対しても安定で、 かつ個片としてベース基板へ実装する時の温度変動に対して も放電による破壌や特性劣化のない優れた弾性表面波装置およびこれを用いた電 子部品を簡単に製造することができる。
(実施例 6 )
本発明の実施例 6の弾性表面波装置を図 7を用いて説明する。 図 7は本発明の 実施例 6における弾性表面波装置 1 4 0の電極パターンの構成を示す平面図であ る。 図 7において、 図 6と同一要素は同一符号を付している。 図からわかるよう に、 本実施例の弾性表面波装置 1 4 0は、 実施例 5の弾性表面波装置 1 3 0にお いて、 ダイシングライン 8 0と短絡補助電極 6とを電気的に接続する第 3の接続 電極 2 2を設けた構成であり、 この弾性表面波装置 1 4 0を用いてベース基板に 実装して電子部品とする製造方法およびその構造については実施例 1と同様であ る。 なお、 本実施例においても、 ダイシングライン 8 0の幅は、 ダイシング後に も外周部に確実に残るような幅としている。
このように、 短絡補助電極 6とダイシングライン 8 0とを第 3の接続電極 2 2 で電気的に接続することにより、 圧電性を有する基板 1上で電荷が発生しても両 端の櫛型電極 2 0 1、 2 0 3、 反射器電極 3、 短絡補助電極 6およびダイシング ライン 8 0が電気的に共通接続されているので、 これらの電極全体で電位が等し くなり、 電位差による放電発生をさらに防止する効果が大きくなる。
なお、 ダイシングライン 8 0、 短絡補助電極 6、 両端の櫛型電極 2 0 1、 2 0 3および反射器電極 3を電気的に接続する電極パターンは低インピーダンスであ れば線状でも、 帯状でもかまわないし、 その本数にも制約はない。
(実施例 Ί )
本発明の実施例 7の弾性表面波装置について図 8を用いて説明する。 図 8にお いて、 図 6と同一要素には同一符号を付している。 図からわかるように、 本実施 例の弾性表面波装置 1 5 0は、 反射器電極 3を短絡補助電極から開放状態として いることが実施例 6の弹性表面波装置 1 4 0と異なるのみで、 それ以外について は弾性表面波装置 1 4 0と構成および製造方法は同じである。
このような構成とすることで、 圧電性を有する基板 1上で電荷が発生しても両 端の櫛型電極 2 0 1、 2 0 3、 短絡補助電極 6およびダイシングライン 8 0が電 気的に共通接続されているので、 櫛型電極 2 0 2と反射器電極 3とが電気的に開 放状態であっても、 これらの間での電位差を小さくでき、 放電発生を抑制して信 頼性の高い弾性表面波装置およびこれを用いて電子部品を実現できる。
(実施例 8 )
本発明の実施例 8の弹性表面波装置について、 図 9を用いて説明する。 図 9は 本実施例の弹性表面波装置 1 6 0の電極パターンの構成を示す平面図であり、 図 4と同一要素については同一符号を付している。 図からわかるように、 本実施例 の弾性表面波装置 1 6 0は、 実施例 3の弾性表面波装置 1 1 0の外周部にダイシ ングライン 8 0を設けていることが異なる点であり、 それ以外についての構成お よび製造方法は同じである。 本実施例においても、 ダイシングラインの幅は、 ダ イシング後にも外周部に確実に残るような幅としている。
実施例 3の弾性表面波装置 1 1 0で説明したと同様に、 本実施例の弾性表面波 装置 1 6 0では、 ミアンダラインで構成した反射器電極 1 9は櫛型電極 2と電気 的に接続されている。 したがって、 反射器電極 1 9と櫛型電極 2とは信号が直流 および低周波数帯域では導通状態となるが、 弾性表面波装置が動作する高周波数 帯域ではミアンダラインはインピーダンスが高くなり、実質的に開放状態となり、 弾性表面波装置 1 6 0としての電気特性に対しては特に影響しない。 これは実施 例 3の弾性表面波装置 1 1 0と同様である。
本実施例の弾性表面波装置 1 6 0では、 ミアンダラインで構成した反射器電極 1 9と櫛型電極 2とが電気的に接続され、 枠状の短絡補助電極 6と同様に枠状の ダイシングライン 8 0とが設けられているので、 圧電性を有する基板 1の焦電性 により発生した電荷をそれぞれの電極パターン部で均一化して、 各部で発生する 電位差をさらに小さくすることができる。
なお、 本実施例ではダイシングライン 8 0と短絡補助電極 6とは電気的に開放 状態としたが、 本発明はこれに限定されることはなく短絡補助電極 6とダイシン グライン 8 0とを 1本または複数の接続電極で電気的に接続してもよい。
また、 実施例 1から実施例 8において、 弾性表面波装置としては櫛型電極と反 射器電極とを一組とする構成を 1つまたは 2つ設けた場合について説明したが、 本発明はこれに限定されるものではなく、 さらに多段構成の場合であっても同じ 効果を得ることができる。 産業上の利用可能性
以上のように本発明によれば、 櫛型電極および反射器電極の周囲に場所により 幅が異なる枠状の短絡補助電極を設けることにより、 弹性表面波装置を製造する ときの基板単位での処理工程のみでなく、 ダイシングして個片化した後でも、 温 度変動で基板の焦電性により電位が発生しても電極パ夕一ン間の電位差を小さく できる。 この結果、 放電発生を防止して、 破壊や特性劣化がなく高信頼性の弾性 表面波装置およびこれを用いた電子部品を簡単に製造することができる。

Claims

請 求 の 範 囲
1 . 圧電性を有する基板と、 前記基板上に形成した櫛型電極と、 前記櫛型電極よ り発生する表面波の伝搬方向に近接して形成した反射器電極と、 前記櫛型電極と 前記反射器電極との周囲に場所により幅が異なる枠状の短絡補助電極とを具備し たことを特徴とする弾性表面波装置。
2 . 前記短絡補助電極の外周部にさらにダイシングラインを設けたことを特徴と する請求の範囲第 1項に記載の弾性表面波装置。
3 . 前記短絡補助電極は略均等に配置されていることを特徴とする請求第 1項ま たは 2項に記載の弾性表面波装置。
4. 枠状の前記短絡補助電極の内周部に、 櫛型電極に接続する入出力引出し電極 と、 前記入出力引出し電極に接続する入出力端子電極とを設けたことを特徴とす る請求の範囲第 1項から 3項までのいずれかに記載の弾性表面波装置。
5 . 前記入出力引出し電極は、 入力引出し電極と出力引出し電極とを相対向して 設けるとともに、 それらの面積を略等しくしたことを特徴とする請求の範囲第 4 項に記載の弾性表面波装置。
6 . 前記入出力端子電極は、 入力端子電極と出力端子電極とを相対向して設ける とともに、 それらの面積を略等しくしたことを特徴とする請求の範囲第 4項に記
7 . 前記反射器電極と短絡補助電極とを電気的に接続したことを特徴とする請求 の範囲第 1項、 3項、 4項、 5項および 6項までのいずれかに記載の弹性表面波
8 . 前記反射器電極と短絡補助電極とを電気的に接続したことを特徴とする請求 の範囲第 2項から 6項までのいずれかに記載の弹性表面波装置。
9 . 前記反射器電極と短絡補助電極とを、 1本以上の線状または帯状の第 1の接 続電極で電気的に接続したことを特徴とする請求の範囲第 7項に記載の弾性表面
1 0 . 前記反射器電極と短絡補助電極とを、 1本以上の線状または帯状の第 1の 接続電極で電気的に接続したことを特徴とする請求の範囲第 8項に記載の弾性表
1 1 . 前記第 1の接続電極の幅は少なくともダイシングラインの幅より大きいこ とを特徴とする請求の範囲第 1 0項に記載の弾性表面波装置。
1 2 . 前記櫛型電極の一部と短絡補助電極とを電気的に接続したことを特徴とす る請求の範囲第 1項から 6項までのいずれかに記載の弾性表面波装置。
1 3 . 前記櫛型電極は少なくとも 3対以上が所定の位置に設けられ、 前記複数の 櫛型電極のうちの両側の前記櫛型電極は相互に接続するとともに短絡補助電極と も電気的に接続されていることを特徴とする請求の範囲第 1 2項に記載の弾性表
1 4 . 前記櫛型電極と短絡補助電極とを、 1本以上の線状または帯状の第 2の接 続電極で電気的に接続したことを特徵とする請求の範囲第 1 2項または 1 3項に
1 5 . 前記ダイシングラインと短絡補助電極とを電気的に接続したことを特徴と する請求の範囲第 2項、 3項、 4項、 5項、 6項、 8項、 1 0項および 1 1項の いずれかに記載の弾性表面波装置。
1 6 . 前記ダイシングラインと短絡補助電極とを、 1本以上の線状または帯状の 第 3の接続電極で電気的に接続したことを特徴とする請求の範囲第 1 5項に記載 の弾性表面波装置。
1 7 . 前記第 3の接続電極の幅を少なくともダイシングラインの幅より広くした ことを特徴とする請求の範囲第 1 6項に記載の弾性表面波装置。
1 8 . 前記反射器電極と短絡補助電極とを電気的に開放状態にしたことを特徴と する請求の範囲第 1項から 6項までのいずれか 記載の弹性表面波装置。
1 9 . 前記反射器電極がミアンダライン構造を有し、 前記反射器電極の両端部が それぞれ櫛型電極と電気的に接続された構成からなることを特徴とする請求の範 囲第 1項から 6項までのいずれかに記載の弾性表面波装置。
2 0 . 前記短絡補助電極をグランド電極とすることを特徴とする請求の範囲第 1 項から 6項までのいずれかに記載の弹性表面波装置。
2 1 . 前記入出力端子電極と、 入出力引出し電極と、 短絡補助電極とから選択さ れたいずれか一つは少なくとも最上層の電極膜が蒸着方式で形成されていること を特徴とする請求の範囲第 4項から 6項までのいずれかに記載の弾性表面波装置。
2 2 . 前記最上層の電極膜は柔らかい材質の材料であることを特徴とする請求の 範囲第 2 1項に記載の弹性表面波装置。
2 3 . 前記最上層の電極膜はアルミニウムまたはアルミニウム合金からなる材料 を用いたことを特徴とする請求の範囲第 2 2項に記載の弾性表面波装置。
2 4 . 少なくとも前記櫛型電極、 反射器電極、 入出力端子電極、 入出力引き出し 電極および短絡補助電極は、 1種類または複数種類の金属を積層した構成を有す ることを特徵とする請求の範囲第 4項から 6項までのいずれかに記載の弾性表面 2 5 . 圧電性を有する基板上に金属薄膜を被着する工程と、 前記金属薄膜をエツ チングして、 インターディジタルトランスデューサを構成する櫛型電極と、 前記 ィン夕一ディジタルトランスデューサにより励振される表面波の伝搬方向に近接 して形成する反射器電極と、 少なくとも前記櫛型電極と前記反射器電極とを取り 囲み、 場所により幅が異なる枠状の短絡補助電極とを複数組形成するパターン加 ェ工程と、 隣接する前記短絡補助電極間を切断する工程とを含むことを特徴とす る弾性表面波装置の製造方法。
2 6 . 前記金属薄膜のパターン加工工程において、 さらに短絡補助電極の外周部 にダイシングラインを形成する加工を含むことを特徴とする請求の範囲第 2 5項 に記載の弾性表面波装置の製造方法。
2 7 . 前記金属薄膜のパターン加工工程において、 さらに枠状の短絡補助電極の 内周部に、 櫛型電極に接続する入出力引出し電極と、 前記入出力引出し電極に接 続する入出力端子電極とを設ける加土を含むことを特徴とする請求の範囲第 2 5 項に記載の弹性表面波装置の製造方法。
2 8 . 前記金属薄膜のパターン加工工程において、 さらに枠状の短絡補助電極の 内周部に、 櫛型電極に接続する入出力引出し電極と、 前記入出力引出し電極に接 続する入出力端子電極とを設ける加工を含むことを特徴とする請求の範囲第 2 6 項に記載の弾性表面波装置の製造方法。
2 9 . 前記金属薄膜のパターン加工工程において、 短絡補助電極と反射器電極ま たは短絡補助電極と櫛型電極との間を電気的に接続する接続電極を形成する加工 を含むことを特徴とする請求の範囲第 2 5項または 2 7項に記載の弾性表面波装 置の製造方法。
3 0 . 前記金属薄膜のパターン加工工程において、 短絡補助電極と反射器電極ま たは短絡補助電極と櫛型電極との間を電気的に接続する接続電極を形成する加工 を含むことを特徴とする請求の範囲第 2 6項または 2 8項に記載の弾性表面波装 置の製造方法。
3 1 . 前記金属薄膜のパターン加工工程において、 短絡補助電極とダイシンダラ インとを電気的に接続する接続電極を形成する加工を含むことを特徴とする請求 の範囲第 2 6項、 2 8項または 3 0項に記載の弾性表面波装置の製造方法。 3 2 . 前記入出力引出し電極、 入出力端子電極および短絡補助電極から選択され た少なくとも一つは最上層の電極膜を蒸着方式で形成することを特徴とする請求 の範囲第 2 7項または 2 8項に記載の弾性表面波装置の製造方法。
3 3 . 前記最上層の導体薄膜は柔らかい材質の材料を用いることを特徴とする請 求の範囲第 3 2項に記載の弾性表面波装置の製造方法。
3 4. 前記最上層の導体薄膜はアルミニウムまたはアルミニウム合金を用いるこ とを特徴とする請求の範囲第 3 3項に記載の弾性表面波装置の製造方法。
3 5 . 前記金属薄膜は、 1種類または複数種類の金属を積層して形成することを 特徴とする請求の範囲第 2 5項から 3 4項までのいずれかに記載の弾性表面波装 置の製造方法。
3 6 . 箱状の底部に引出し電極と、 前記引出し電極と導通する端子電極とを有す るベース基板と、 前記べ一ス基板を覆い前記べ一ス基板の内部を密封するための 蓋体と、 前記べ一ス¾板の箱状の底部に配置した弾性表面波装置と、 前記弾性表 面波装置の入出力端子電極と前記ベース基板の前記引出し電極とを電気的に接続 する接続部材とからなり、 前記弾性表面波装置が請求の範囲第 1項から 2 4項ま でのいずれかに記載の弾性表面波装置であることを特徴とする電子部品。
3 7 . 前記接続部材が、 アルミニウムまたは金からなるワイヤであることを特徴 とする請求の範囲第 3 6項に記載の電子部品。
3 8 . 前記接続部材が、 弾性表面波装置上に形成されたバンプであることを特徴 とする請求の範囲第 3 6項に記載の電子部品。
PCT/JP2002/003808 2001-04-19 2002-04-17 Surface acoustic wave device and its manufacture method, and electronic part using it WO2002087080A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02720458A EP1381156A4 (en) 2001-04-19 2002-04-17 SURFACE ACOUSTIC WAVE PROCESSING DEVICE AND MANUFACTURING METHOD THEREOF, AND ELECTRONIC COMPONENT USING THE SAME
US10/311,711 US6972509B2 (en) 2001-04-19 2002-04-17 Surface acoustic wave device method of manufacturing the same, and electronic component using the same
KR10-2002-7017242A KR100484078B1 (ko) 2001-04-19 2002-04-17 탄성 표면파 장치 및 그 제조 방법과 이것을 이용한 전자부품

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2001121136 2001-04-19
JP2001-121136 2001-04-19
JP2001-127435 2001-04-25
JP2001127435 2001-04-25
JP2001360577A JP2003008389A (ja) 2001-04-19 2001-11-27 弾性表面波装置およびその製造方法とこれを用いた電子部品
JP2001-360577 2001-11-27
JP2001371249A JP2003017972A (ja) 2001-04-25 2001-12-05 弾性表面波装置およびその製造方法とこれを用いた電子部品
JP2001-371249 2001-12-05

Publications (1)

Publication Number Publication Date
WO2002087080A1 true WO2002087080A1 (en) 2002-10-31

Family

ID=27482220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003808 WO2002087080A1 (en) 2001-04-19 2002-04-17 Surface acoustic wave device and its manufacture method, and electronic part using it

Country Status (5)

Country Link
US (1) US6972509B2 (ja)
EP (1) EP1381156A4 (ja)
CN (1) CN1272904C (ja)
TW (1) TWI280738B (ja)
WO (1) WO2002087080A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7291904B2 (en) 2004-04-28 2007-11-06 Fujitsu Media Devices Limited Downsized package for electric wave device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7064471B2 (en) * 2001-06-21 2006-06-20 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device, method of manufacturing the device, and electronic component using the device and method
JP4419732B2 (ja) * 2003-09-02 2010-02-24 株式会社村田製作所 弾性表面波装置およびその製造方法
CN101133321B (zh) * 2005-04-06 2011-04-13 株式会社村田制作所 表面波传感器器件
KR101655302B1 (ko) * 2009-09-22 2016-09-07 삼성전자주식회사 표면 탄성파 센서 시스템
KR101754200B1 (ko) 2013-08-20 2017-07-05 가부시키가이샤 무라타 세이사쿠쇼 탄성 표면파 디바이스 및 그 제조 방법
JP2014239203A (ja) * 2014-01-31 2014-12-18 株式会社村田製作所 電子部品及び電子部品の実装構造体
JP6673669B2 (ja) * 2015-11-04 2020-03-25 エスアイアイ・クリスタルテクノロジー株式会社 圧電振動片の製造方法、ウエハ及び圧電振動片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204809A (ja) * 1987-02-20 1988-08-24 Hitachi Denshi Ltd 弾性表面波デバイスの製造方法
JPH0270114A (ja) * 1988-09-06 1990-03-09 Nec Corp 弾性表面波共振子
JPH04243311A (ja) * 1991-01-18 1992-08-31 Fujitsu Ltd Sawデバイス
JPH05160664A (ja) * 1991-12-04 1993-06-25 Fujitsu Ltd 弾性表面波素子及びその製造方法及び弾性表面波デバイス
WO1999005788A1 (fr) * 1997-07-28 1999-02-04 Kabushiki Kaisha Toshiba Dispositif de traitement d'ondes acoustiques de surface et son procede de fabrication
JP2000091872A (ja) * 1998-09-11 2000-03-31 Hitachi Media Electoronics Co Ltd 弾性表面波装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278492A (en) * 1980-01-21 1981-07-14 Hewlett-Packard Company Frequency trimming of surface acoustic wave devices
JPH02160664A (ja) 1988-12-13 1990-06-20 Sumitomo Metal Ind Ltd 炭素・金属複合材
US5374908A (en) * 1992-11-25 1994-12-20 Rf Monolithics, Inc. Surface acoustic wave device for generating an output signal with only a symmetric or only an asymmetric vibration mode acoustic wave
EP0840369A4 (en) * 1995-06-30 2001-12-19 Toshiba Kk ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD
JPH11298289A (ja) 1998-04-13 1999-10-29 Toyo Commun Equip Co Ltd 弾性表面波装置
JP3289674B2 (ja) 1998-05-21 2002-06-10 株式会社村田製作所 表面波フィルタ装置、共用器、通信機装置
JP2002152001A (ja) * 2000-11-09 2002-05-24 Nec Corp 弾性表面波フィルタおよび弾性表面波フィルタ装置
JP3445971B2 (ja) * 2000-12-14 2003-09-16 富士通株式会社 弾性表面波素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204809A (ja) * 1987-02-20 1988-08-24 Hitachi Denshi Ltd 弾性表面波デバイスの製造方法
JPH0270114A (ja) * 1988-09-06 1990-03-09 Nec Corp 弾性表面波共振子
JPH04243311A (ja) * 1991-01-18 1992-08-31 Fujitsu Ltd Sawデバイス
JPH05160664A (ja) * 1991-12-04 1993-06-25 Fujitsu Ltd 弾性表面波素子及びその製造方法及び弾性表面波デバイス
WO1999005788A1 (fr) * 1997-07-28 1999-02-04 Kabushiki Kaisha Toshiba Dispositif de traitement d'ondes acoustiques de surface et son procede de fabrication
JP2000091872A (ja) * 1998-09-11 2000-03-31 Hitachi Media Electoronics Co Ltd 弾性表面波装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1381156A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7291904B2 (en) 2004-04-28 2007-11-06 Fujitsu Media Devices Limited Downsized package for electric wave device

Also Published As

Publication number Publication date
EP1381156A1 (en) 2004-01-14
EP1381156A4 (en) 2004-09-08
CN1461523A (zh) 2003-12-10
US20030160541A1 (en) 2003-08-28
CN1272904C (zh) 2006-08-30
TWI280738B (en) 2007-05-01
US6972509B2 (en) 2005-12-06

Similar Documents

Publication Publication Date Title
US10250222B2 (en) Electronic device
US6552475B2 (en) Surface acoustic wave device
JP6556663B2 (ja) 弾性波デバイス
US6792656B2 (en) Surface acoustic wave apparatus and manufacturing method therefor
JP2007535230A (ja) 封入された電子部品内における熱放散を改善する方法
KR100766262B1 (ko) 탄성표면파 장치의 제조방법 및 탄성표면파 장치
WO2002087080A1 (en) Surface acoustic wave device and its manufacture method, and electronic part using it
US9065420B2 (en) Fabrication method of acoustic wave device
JP4001111B2 (ja) 弾性表面波装置
CN110663178B (zh) 电子部件以及具备该电子部件的模块
US7064471B2 (en) Surface acoustic wave device, method of manufacturing the device, and electronic component using the device and method
US10622965B2 (en) Surface acoustic wave device assembly
JP2002374137A (ja) 弾性表面波装置の製造方法、弾性表面波装置、およびこれを搭載した通信装置
JP4370615B2 (ja) 圧電デバイスとその製造方法
KR100484078B1 (ko) 탄성 표면파 장치 및 그 제조 방법과 이것을 이용한 전자부품
US9935610B2 (en) Acoustic wave device
JPH03284006A (ja) 弾性表面波デバイス
JPH05160664A (ja) 弾性表面波素子及びその製造方法及び弾性表面波デバイス
JP2003115745A (ja) 弾性表面波装置およびその製造方法とこれを用いた電子部品
JP2003017972A (ja) 弾性表面波装置およびその製造方法とこれを用いた電子部品
JP2003008389A (ja) 弾性表面波装置およびその製造方法とこれを用いた電子部品
JP2003078386A (ja) 弾性表面波装置およびその製造方法とこれを用いた電子部品
JPH0491508A (ja) 弾性表面波デバイスとその製造方法
JP2021068975A (ja) 電子部品、フィルタおよびマルチプレクサ
JPS6120409A (ja) 表面弾性波素子の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2002720458

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027017242

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 028013042

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020027017242

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10311711

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002720458

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1020027017242

Country of ref document: KR