WO2002053993A1 - Unite de stockage et refrigerateur - Google Patents

Unite de stockage et refrigerateur Download PDF

Info

Publication number
WO2002053993A1
WO2002053993A1 PCT/JP2001/011403 JP0111403W WO02053993A1 WO 2002053993 A1 WO2002053993 A1 WO 2002053993A1 JP 0111403 W JP0111403 W JP 0111403W WO 02053993 A1 WO02053993 A1 WO 02053993A1
Authority
WO
WIPO (PCT)
Prior art keywords
ions
storage
ion
electrode
positive
Prior art date
Application number
PCT/JP2001/011403
Other languages
English (en)
French (fr)
Inventor
Masaki Kaji
Yasuo Takenaka
Hiroshi Yoshimura
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001105324A external-priority patent/JP3690590B2/ja
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to EP01272854A priority Critical patent/EP1348923B1/en
Priority to US10/451,877 priority patent/US6865896B2/en
Publication of WO2002053993A1 publication Critical patent/WO2002053993A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0416Treating air flowing to refrigeration compartments by purification using an ozone generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/14Sensors measuring the temperature outside the refrigerator or freezer

Definitions

  • the present invention relates to a refrigerator and a storage provided with a sterilizing means for sterilizing airborne bacteria in cold air in a storage room.
  • a conventional refrigerator is disclosed in Japanese Unexamined Patent Publication No. Hei 8-145455. According to the same publication, negative ions are generated by applying a high negative DC voltage to the electrodes by an ion generator provided in the refrigerator and having a counter electrode for absorbing electric charges. Negative ions are sent out into the storage room, suppressing the growth of airborne bacteria in the storage room and maintaining the freshness of the food.
  • a counter electrode facing the needle electrode is provided in the ion generator. Ions emitted from the needle electrode into a narrow region between the needle electrode and the counter electrode are attracted to the counter electrode. Therefore, a large-sized blower having a high blowing capacity is required to send a desired amount of ions required for sterilization into a room. For this reason, there has been a problem that the ion generator becomes complicated and large due to the counter electrode and the large blower.
  • An object of the present invention is to provide a storage and a refrigerator that can efficiently sterilize floating bacteria. With the goal.
  • the present invention provides a storage that can be easily installed in a home without the need for grounding to the ground, and that can improve the sterilization efficiency by easily contacting ions with floating bacteria without complicating the device. And refrigerators.
  • the storage and the refrigerator of the present invention are characterized in that a positive ion such as H + (H 2 0) n and a negative ion such as 0 2 — (H 2 0) m And an electrode for generating a negative ion from the electrode in an air flow path through which air flows.
  • the air flow path includes a storage room and a duct provided behind the storage room.
  • a high voltage is applied to an electrode having no counter electrode to generate a positive ion such as H + (H 2 0) n and a negative ion such as 0 2 — (H 2 0) m. Emits positive ions and negative ions into the air circulation path through which the air flows.
  • the present invention also includes an ion generator that is not grounded, and applies a high voltage to the electrode of the ion generator to generate positive ions such as H + (H 20 ) n and O 2 (H 20 ) m.
  • the negative ions are generated, and the positive ions and the negative ions are released to the air circulation path through which the air flows.
  • the present invention comprises an ion generating device having no grounded electrode, a high voltage is applied to the electrodes of the ion onset generating device H + (H 2 0) and positive ions n such, 0 2 - (H 2 0) Generates negative ions such as m .
  • the present invention includes at least one storage chamber, wherein the air circulation path includes at least one of the storage chambers, and positive ions and negative ions are released to the storage chamber.
  • the present invention sterilizes airborne bacteria in the air flow path by using active species generated from positive ions and negative ions.
  • At least one storage room is provided, a duct for guiding air is provided in at least one of the storage rooms, and the electrodes are arranged in the duct.
  • the electrode is formed of a flat plate, and a needle-like projection is provided on a part of the flat plate.
  • a plurality of needle-like projections may be provided, and each needle-like projection may have a different direction. It is even better to arrange it.
  • a positive ion and a negative ion are generated alternately by applying an AC voltage to the electrode.
  • the absolute value of the peak voltage of the AC voltage is preferably 1.8 kV or more, and the voltage width is more preferably between 3.6 kV p-p and 5 kV p-p.
  • the continuous application time of the AC voltage was shorter than the time at which the sterilization rate reached an equilibrium state.
  • the present invention has a plurality of the electrodes, and applies a positive voltage to one electrode and applies a negative voltage to another electrode.
  • the positive ions and the negative ions are emitted in a direction reverse to the flow of the cold air, in a forward direction, or in a direction perpendicular to the flow.
  • At least an electrode for generating positive ions and negative ions and an adhesion device for decomposing or adsorbing at least one of odorous substances and ozone are arranged in the air passage. More preferably, the deposition device is provided in the discharge effective area of the electrode.
  • the present invention includes at least one storage room, and a control means for controlling the generation of ions in synchronization with the control of the flow of air to the at least one storage room.
  • the present invention includes at least one storage chamber, and a control means for turning on and off the generation of ions in synchronization with turning on and off the flow of air to the at least one storage chamber.
  • the present invention includes at least one storage room, a cooling unit that cools the at least one storage room, and a control unit that controls generation of ions in synchronization with a cooling operation of the storage room.
  • the present invention provides at least one storage chamber, wherein at least one storage chamber is provided with a temperature detecting means, and control means for controlling generation of ions based on temperature detection of the temperature detecting means is provided.
  • the present invention provides a method for controlling ion flow in synchronization with opening and closing of a damper for controlling air flow.
  • a control means for controlling the generation is provided.
  • control means for controlling generation of an ion based on detection of opening / closing of a damper for controlling an air flow.
  • the present invention includes at least one storage chamber, and includes cooling means for cooling the at least one storage chamber, and generates ions in synchronization with driving of a compressor which constitutes a part of the cooling means. Is provided.
  • the present invention provides at least one storage room, and cooling means for cooling the at least one storage room, and reduces a driving time, a driving frequency, or an operation rate of a compressor constituting a part of the cooling means.
  • the present invention provides a control comprising at least one storage room, wherein the generation of ions is controlled based on a detection result of opening or closing operation of at least one door for opening and closing the at least one storage room. Means were provided.
  • the present invention provides a control device comprising at least one storage room, and controlling the generation of ions when the opening time of at least one door for opening and closing the at least one storage room has passed a predetermined time. Provided.
  • control means for controlling the generation of ions based on the outside air temperature is provided.
  • the present invention includes at least one storage room, cooling means for cooling the at least one storage room, and temperature detecting means for detecting a temperature in the storage room cooled by the cooling means.
  • temperature detected by the temperature detecting means becomes equal to or higher than a predetermined temperature
  • a voltage is applied to the ion generator to generate positive ions and negative ions in synchronization with the cooling operation of cooling the storage chamber.
  • FIG. 1 is a side sectional view showing a refrigerator according to a first embodiment of the present invention.
  • FIG. 2 is a front view showing a refrigerator room of the refrigerator according to the first embodiment of the present invention.
  • FIG. 3 is a side sectional view showing the ion generation chamber of the refrigerator according to the first embodiment of the present invention. is there.
  • FIG. 4 is a rear view showing an ion generating chamber of the refrigerator according to the first embodiment of the present invention.
  • Fig. 5 is a perspective view showing a deodorizing device of the refrigerator according to the first embodiment of the present invention.
  • FIG. 6 is a block diagram showing the configuration of the refrigerator according to the first embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating the operation of the refrigerator according to the first embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating the operation of a refrigerator door open / close detection process according to the first embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating the operation of the ion generating process of the refrigerator according to the first embodiment of the present invention.
  • FIG. 10 is a flowchart for explaining the operation of the ion stop process of the refrigerator according to the first embodiment of the present invention.
  • FIG. 11 is a flowchart for explaining the operation of the dew condensation preventing process of the refrigerator according to the first embodiment of the present invention.
  • FIG. 12 is a flowchart illustrating another operation of the dew condensation prevention process of the refrigerator according to the first embodiment of the present invention.
  • FIG. 13 is a side sectional view showing a refrigerator according to a second embodiment of the present invention.
  • FIG. 14 is a side sectional view showing an ion generation chamber of a refrigerator according to a second embodiment of the present invention.
  • FIG. 15 is a rear view showing the ion generation chamber of the refrigerator according to the second embodiment of the present invention.
  • FIG. 16 is a rear view showing the ion generation chamber of the refrigerator according to the third embodiment of the present invention.
  • FIG. 17 is a side sectional view showing a refrigerator according to a fourth embodiment of the present invention.
  • FIG. 18 is a side sectional view showing a food storage according to a fifth embodiment of the present invention.
  • Fig. 19 is a side sectional view showing a dishwasher / dryer according to a sixth embodiment of the present invention.
  • Fig. 20 Another example of the ion generator installed in the first to sixth embodiments of the present invention. It is the schematic which shows the electrode part of a shape.
  • FIG. 21 is a schematic view showing another shape of an electrode portion of the ion generator mounted on the first to sixth embodiments of the present invention.
  • FIG. 22 is a schematic view showing another shape of the electrode section of the ion generator mounted on the first to sixth embodiments of the present invention.
  • FIG. 23 is a schematic view showing another arrangement of electrode portions of the ion generator mounted on the first to sixth embodiments of the present invention.
  • FIG. 1 is a side sectional view showing a refrigerator according to one embodiment.
  • the refrigerator body 1 is provided with a refrigerator room 2, a freezer room 3, and a vegetable room 4 from above, and these refrigerator room 2, freezer room 3, and vegetable room 4 are partitioned by partitioning sections 6a and 6b.
  • An isolation chamber 5 is provided below the refrigerator compartment 2 and houses a case 7 movable in the front-rear direction.
  • the refrigerator compartment 2 is provided with placing shelves 8a to 8d for placing foods and the like, and the placing shelf 8d forms a ceiling of the isolation room 5.
  • the refrigerator compartment 2 can be opened and closed by a refrigerator compartment door 19 pivotally supported at the front. Door pockets 21 a to 21 d are provided on the rear side of the refrigerator compartment door 19.
  • the freezer compartment 3 can be opened and closed by a drawer-type freezer compartment door 22.
  • the freezer case 23 is detachably attached to the freezer compartment door 22 so that it can be pulled out integrally with the freezer compartment door 22.
  • the freezing case 24 disposed above the freezing case 23 is provided so as to be able to be pulled out independently of the freezing compartment door 22.
  • the vegetable room 4 can be opened and closed by a drawer type vegetable room door 25.
  • the vegetable case 26 is attached to the vegetable room door 25, and is pulled out integrally with the vegetable room door 25.
  • a small case 27 is arranged above the vegetable case 26.
  • the upper surface of the vegetable case 26 is covered with a vegetable case cover 28 to keep the vegetable case 26 and the small case 27 at a predetermined humidity.
  • a cool air passage 38 is provided behind the freezer compartment 3, and a cooler 29 for generating cool air by driving a compressor 46 is arranged in the cool air passage 38. Cooler 2 of 9 A heater 33 for defrosting the cooler 29 is disposed below. The defrost water generated by the defrost of the heater 33 is collected in the evaporating dish 39 through the drain pipe 37.
  • a blower 30 for sending cold air to the refrigerator compartment 2, the freezer compartment 3, the vegetable compartment 4 and the isolation compartment 5 is arranged above the cooler 29, a blower 30 for sending cold air to the refrigerator compartment 2, the freezer compartment 3, the vegetable compartment 4 and the isolation compartment 5 is arranged.
  • a pressure chamber 32 is provided on the discharge side of the blower 30, and cool air flows into the freezing chamber 3 from discharge ports 31a, 31b, 31c provided in the duct 31 communicating with the pressure chamber 32. Is discharged.
  • the cool air in the freezer compartment 3 returns to the cooler 29 in the cool air passage 38 through the cool air return port 35.
  • a cold air distribution chamber 17 communicates with the pressure chamber 32 via a damper 17a.
  • the cold air distribution chamber 17 communicates with a cold air passage 41 arranged behind the refrigerator compartment 2.
  • the cool air passage 41 is composed of a passage assembly 40 having a heat insulating material 42 and a passage cover 43 on the front side.
  • reference numeral 47 denotes an electric circuit assembly for control and the like necessary for operation of the refrigerator and operation of the apparatus, and the electric circuit assembly 47 is covered with an electric cover 47a.
  • FIG. 2 shows a front view of the refrigerator compartment 2.
  • the cool air passage 41 is composed of an ascending passage 41 a disposed substantially at the center of the refrigerator compartment 2 and a descending passage 41 b provided outside the ascending passage 41 a.
  • the ascending passage 41a and the descending passage 41b communicate at the upper end.
  • the cool air guided to the cool air passage 41 discharges the cool air from the discharge port 14 into the isolation chamber 5.
  • the remaining cool air rises in the ascending passage 41 a, and is discharged through the descending passage 41 b from the discharge outlet 15 into the refrigerator compartment 2.
  • a cool air return port 10 having a plurality of holes in a lattice shape is provided at the lower right in the figure, so that the cool air in the refrigerator compartment 2 flows in.
  • an ion generation chamber 45 for generating ions (bactericidal substance) by corona discharge is provided behind the cold air return port 10.
  • a cool air passage 16 whose periphery is covered with a heat insulating material 16a is provided in communication.
  • the ion generation chamber 45 and the cold air passage 38 are shown on the same plane for convenience, the cold air passage 16 is actually provided side by side with the cold air passage 38.
  • the cold air passage 16 and the ion generation chamber 45 are arranged in substantially the same plane.
  • the discharge port 13 at the lower end of the cool air passage 16 is disposed facing the vegetable room 4, and the cool air passing through the cool air passage 16 is discharged into the vegetable room 4.
  • the cool air in the vegetable room 4 is guided to the cooler 29 in the cool air passage 38 through the cool air return port 34.
  • 3 and 4 are a side sectional view and a rear view showing the ion generation chamber 45.
  • an ion generator 11 (sterilizing section) having a needle electrode 11a is provided in the ion generation chamber 45.
  • the needle-shaped electrode 11a protrudes from the flat plate-shaped flat portion 11b, and is connected to the power supply portion 11e via a lead portion 11d covered with an insulating film.
  • the lead portion 11 d is supported by a resin support portion 10 a integrally formed with a grill 10 b forming a cool air return port 10.
  • the flat portion 11b is arranged parallel to the vertical surface, and when corona discharge is not performed, dust on the needle-shaped electrode 11a and the electrode portion 11c composed of the flat portion 11b is removed. It is designed to suppress deposition. Further, the flat portion 11b is substantially parallel to the grill 10b forming the cold air return port 10. For this reason, the distance from the cold air return port 10 as the opening to the plurality of needle electrodes 11a can be made the same. Therefore, safety against electric shock can be ensured without needless space.
  • the length of the lead portion 11d is set to 200 mm or less so as to suppress a decrease in discharge efficiency and facilitate wiring. When the length of the lead portion 11d is 100 mm or less, a decrease in discharge efficiency can be further suppressed. Further, it is more preferable that the thickness be 50 mm or less because electrodes can be connected without substantially lowering discharge efficiency.
  • Corona voltage applied by the discharge in the case of a positive voltage is generated positive ions consisting mainly H + (H 2 0) n , primarily 0 2 for negative voltage - (H 2 0) formed Ru negative ions generated from the m Is done. ? 1 + (11 2 0) 11 and 0 2 _ ( ⁇ ⁇ 0) 111 Aggregates on the surface and surrounds suspended bacteria such as microorganisms in the air. Then, as shown in equation (1) to (3), and an active species by collision [ ⁇ ⁇ ] a (hydroxyl radicals) and Eta 2 0 2 (hydrogen peroxide) was generated on the surface of such microorganisms floating Sterilizing bacteria
  • the sterilization ability can be further improved. Further, since the ion generator 11 is simplified, the size of the ion generator 11 can be reduced.
  • the ion generator 11 can be further simplified and downsized.
  • the amount of generated positive ions is smaller than the amount of generated negative ions because the positive ions alone have the function of aging cells when they come into contact with food or the like.
  • positive ions and negative ions aggregate on the surface of microorganisms to form active species, killing floating bacteria, and preventing the growth of floating bacteria due to excess negative ions.
  • the amount of generated positive ions is set to 3% or more of the amount of negative ions generated. Further, by setting the amount of generated positive ions to 500 or more per cm 3 , a sufficient sterilizing ability can be obtained.
  • the amount of each ion generated can be varied by changing the application time of the positive voltage and the negative voltage. Further, the amount of ions generated may be controlled by performing a duty control for varying the ON / OFF time of the voltage application.
  • ozone generated simultaneously with ions due to corona discharge has an oxidizing power, so that when it flows into the refrigerator compartment 2 or the vegetable compartment 4, at high concentrations, the food is oxidized and deteriorated.
  • the voltage applied to the needle electrode 11a is reduced (for example, an AC voltage of +1.8 kV to 11.8 kV) so that ozone generated by corona discharge becomes extremely small. Has been suppressed.
  • the needle-shaped electrode 11 a is arranged in a cold air passage (ion generation chamber 45) communicating with the refrigerator compartment 2. Thereby, the outflow of ozone to the refrigerator compartment 2 is suppressed by the cool air flowing into the cool air return port 10, and the oxidation of the food can be prevented by removing the ozone in the cool air passage as described later.
  • the needle electrode 11a is disposed in the cool air passage at an interval of, for example, 40 mm or more behind the cold air return port 10 to secure safety. It is not necessary to cover with an insulating case, and the ion generator 11 can be configured at low cost.
  • the cool air flowing into the cool air return port 10 suppresses the flow of ozone generated during the generation of ions into the refrigerator compartment 2 and removes ozone in the cool air passage to reduce the oxidation of food as described later. Can be prevented.
  • the needle-shaped electrode 11a may be composed of a plurality of needle-shaped conductors having the same potential.
  • the distance L between the support portion 10a and the electrode portion 11c is small, high pressure may be applied to the support portion 10a when dew condensation occurs on the support portion 10a.
  • the distance L is set to 3.5 mm or more (for example, 5 mm), more preferably 10 mm or more, and the support part 10a is separated from the needle-shaped electrode 11a. Is reliably insulated.
  • the area where ions are released by corona discharge can be widened, and the sterilization ability can be improved. It is desirable that the supporting portion 10a is formed of an insulating material.
  • the two electrodes can easily change the ion generation balance by making the circuit configuration, applied voltage, electrode shape, electrode material, and the like different. Furthermore, if the two electrodes are separated by at least 10 mm or more (preferably 30 mm or more), the positive and negative ions from each electrode hardly cancel each other, and the ions are effectively sterilized.
  • the deodorizing device 12 has a low-temperature deodorizing catalyst and an adsorbent coated on a corrugated honeycomb-shaped substance.
  • the deodorizing device 12 may be composed of a filter and a nonwoven fabric carrying a low-temperature deodorizing catalyst and an adsorbent. However, it is more preferable to form the filter into a honeycomb shape because pressure loss can be reduced.
  • floating bacteria can be captured in the deodorizing device 12 by the low-temperature deodorizing catalyst and the adsorbent. Therefore, when the deodorizing device 12 is close to the ion generating device 11, a large amount of airborne bacteria caught by the deodorizing device 12 can be sterilized, and the sterilizing effect can be improved. Can be. At this time, it is desirable to secure at least 10 mm between the needle-shaped electrode 11a for corona discharge and the surface of the deodorizing device 12.
  • the deodorizing device 12 is regarded as a counter electrode and the electric field becomes strong. Therefore, even at a low applied voltage (for example, +1.81 ?: ⁇ to -1.8 kV (3.6 kVp-p), an AC voltage of about 90 kHz), discharge occurs. The state becomes the same as when the output increases, and the deodorizing device 12 is significantly deteriorated by corona discharge. Therefore, when the distance is set to 1 Omm or more, the deterioration of the deodorizing device 12 can be prevented. If the deodorizer 12 contains a large amount of carbon and metal components (eg, activated carbon particles, carbon fiber, platinum powder, nickel, etc.), the deterioration becomes more remarkable.
  • carbon and metal components eg, activated carbon particles, carbon fiber, platinum powder, nickel, etc.
  • the discharge from the needle-shaped electrode 11a is performed mainly within the range of a solid angle of 2 ⁇ sr with the tip as a center, and a hemispherical effective discharge region is formed.
  • a solid angle of 2 ⁇ sr with the tip as a center
  • a hemispherical effective discharge region is formed.
  • an effective discharge area with a radius of 100 mm (more than 100,000 negative ions per cm 3 in a windless state) can be obtained.
  • the deodorizing device 12 is arranged in the discharge effective area, an effective sterilizing action of the deodorizing device 12 is obtained, and the sterilizing efficiency is improved. Therefore, the amount of ozone generated can be reduced by suppressing the applied voltage.
  • the sterilization rate is the amount of suspended bacteria per unit volume after ion transmission, relative to the amount of suspended bacteria per unit volume before ion transmission.
  • the sterilization rate was 25%, and the sensory test showed almost no ozone odor after the experiment. Therefore, if the absolute value of the applied voltage is an AC voltage of 1.8 kV or more, a refrigerator having a certain sterilizing effect and no discomfort can be obtained. In addition, for corona discharge effective for sterilization, an AC voltage with an absolute value of the applied voltage peak value of 1.8 kV is required. In Experiment No. 2, the sterilization rate was 80%. In addition, the amount of ozone generated was about 0.15 mg, and the results of the sensory test showed that the user did not feel the smell of ozone when the door was opened. Therefore, when the absolute value of the peak value of the applied voltage is set to an AC voltage of 2.5 kV, a refrigerator having a sufficient sterilizing effect for ordinary use in ordinary households and less discomfort can be obtained.
  • the time for one application is preferably 45 minutes or less. Therefore, if sterilization is performed by applying an applied voltage of 3.6 kV pp to 5 kV pp to the needle electrode 11 a in a range of 10 to 45 minutes, it is desirable in a normal use condition. A refrigerator having a disinfecting effect due to ozone odor while having a sterilizing effect of the present invention can be obtained.
  • the amount of positive and negative ions generated can also be adjusted by adjusting the absolute values of the applied positive and negative voltages. Therefore, each ion is adjusted by varying the absolute values of the positive and negative voltages so that the peak value is 1.8 kV or more in the range of 3.6 kV pp to 5 kV pp. be able to.
  • the electrode shape consisting of three needle-shaped electrodes 11a maintains or increases the amount of generated ions even at a low applied voltage, thereby further improving the sterilizing effect.
  • ozone can be reduced. That is, a voltage of 3.6 kV p-p to 5 kV p-p is applied to each needle electrode 11 a within a range of 15 minutes to 20 minutes, and the same as above.
  • the ions are delivered to the 400 L storage compartment.
  • the ozone generation amount becomes about 0.05 tng at a sterilization rate of 50%. Therefore, according to the results of the sensory test, when the door is opened, the user hardly feels any discomfort due to the ozone odor, and a refrigerator having a high sterilizing effect can be obtained.
  • the ion generator 11 is not restarted for a predetermined time after the operation, the remaining amount of ozone is further reduced. For example, if the ion generator 11 is driven for 30 minutes and then stopped for 30 minutes with the damper 17a open, the residual ratio of ozone becomes approximately 0%. Therefore, the discomfort caused by ozone can be further reduced.
  • the ion generator 11 is operated in synchronization with the operation of the compressor 46. By doing so, when the compressor 46 is stopped, the amount of ozone is reduced and discomfort can be further reduced. At this time, if the opening of the damper 17a and the operations of the ion generator 11 and the blower 30 are synchronized, ions are sent out into the refrigerator, and the sterilization effect can be further improved.
  • An operation switch (not shown) for driving the ion generator 11 is provided, for example, on the outer surface of the refrigerator compartment door 19. This allows the user to drive the ion generator 11 at a desired time to perform sterilization.
  • the needle portion 11a In order to improve the sterilization rate, it is preferable to increase the number of electrode portions 11c. For this reason, in general household refrigerators, the needle portion 11a usually has 1 to 5 electrode portions 11a due to the securing of the distance between the electrodes and the limitation of the space in the device. It is desirable to provide 1 to 3 c.
  • the low-temperature deodorizing catalyst is made of a copper-manganese oxide, and oxidizes and decomposes odorous substances such as amine-based thiol-based volatile substances and hydrogen sulfide.
  • the copper-manganese oxide also functions as an ozone decomposition catalyst and can decompose ozone.
  • an ozone decomposing catalyst having excellent ozone decomposing ability may be supported on the deodorizing device 12.
  • an ozone decomposition catalyst for example, manganese dioxide, platinum powder, lead dioxide, copper oxide (11), nickel and the like are used.
  • the adsorbent is carried to adsorb odorous substances, ozone and airborne bacteria, and for example, silica gel, activated carbon, zeolite, sepiolite, etc. can be used.
  • a granular or powdery adsorbent may be separately provided.
  • deodorizing equipment 1 2 If the is provided detachably, it can be replaced and cleaned, and the refrigerator can be kept clean.
  • the deodorizing device 12 can be arranged according to the purpose.
  • the cool air cooled by the cooler 29 is sent to the pressure chamber 32 through the cool air passage 38 by the blower 30.
  • Cold air is discharged from the pressure chamber 32 through the duct 31 to the freezing chamber 3 from the discharge ports 31a, 31b, 31c.
  • the inside of the freezing compartment 3 is cooled, and the cool air passes from below the freezing case 24 to the cooler 29 through the cool air return port 35 from the front of the freezing cases 23 and 24.
  • the damper 17a of the cold air distribution compartment 17 is activated. be opened.
  • the cool air in the pressure chamber 32 is led to the cool air passage 41 through the cool air distribution chamber 17.
  • Part of the cool air passing through the cool air passage 41 is sent from the discharge port 14 to the case 7 of the isolation chamber 5 to cool the storage in the case 7, and between the upper front end of the case 7 and the mounting shelf 8. From the refrigeration compartment 2.
  • the amount of cool air sent from the discharge port 14 to the case 7 is adjusted according to the opening area of the discharge ports 14 and 15 so that the temperature in the case 7 is kept lower than the temperature of the refrigerator compartment 2. Have been.
  • the other cool air passing through the cool air passage 41 rises in the ascending passage 41 a and descends in the descending passage 41 b to be discharged from the discharge port 15 into the refrigerator compartment 2.
  • the cool air descends while cooling the storage items placed on the storage shelf 8 and the door pockets 21a to 21d. Then, together with the cool air flowing out of the isolation chamber 5, the cool air flows into the ion generation chamber 45 from the cool air return port 10 through the space between the bottom surface of the case 7 and the partition 6a.
  • a guide portion that covers the cool air return port 10 and opens below the case 7 may be provided in front of the cool air return port 10. In this way, short circuit and soot from the discharge port 14 to the cool air return port 10 are prevented, and the horizontal direction below the case 7 is prevented. A uniform cold air flow can be obtained by sucking cool air from a wide range. Thereby, the cooling efficiency in the refrigerator compartment 2 can be improved.
  • the cold air flowing into the ion generation chamber 45 reaches around the needle electrode 11 a of the ion generator 11. Plasions and negative ions generated by corona discharge from the needle-shaped electrode 11a agglomerate and surround the floating bacteria floating in the cold air. Its to perform the sterilization of airborne bacteria by [ ⁇ OH] and H 2 0 2 of the active species. Thereafter, the deodorizing device 12 removes odorous substances generated from the storage in the isolation room 5 and the refrigerator compartment 2 and ozone generated by trace amounts of corona discharge by decomposition or adsorption.
  • the cool air circulated in the isolation room 5 and the refrigeration room 2 passes through the cool air return port 10 and passes through the vicinity of the needle electrode 11 a close to the cool air return port 10 and the deodorizer 12. For this reason, strong odors such as fish in the isolation room 5 can be quickly deodorized, and a large amount of odors emitted from the storage in the cold room 2 having a relatively high room temperature can be efficiently deodorized near the source. it can. Therefore, the odor of the isolation room 5 and the refrigeration room 2 can be hardly transferred.
  • the deodorizing device 12 may be arranged between the case 7 and the partition wall 6b.
  • an ozone removing device is separately required, but the passage area of the cool air can be widened and the deodorizing effect can be improved.
  • the cool air that has passed through the deodorizing device 12 is discharged through the cool air passage 16 from the discharge port 13 to the vegetable room 4.
  • the cold air is returned from the refrigerator compartment 2, but since it has been deodorized by the ion generator 11 and the deodorizer 12, no odor adheres to the storage in the vegetable compartment 4.
  • the cool air passes under and in front of the vegetable case 26 in the vegetable room 4, passes through the upper surface of the vegetable case cover 28, and flows into the cool air passage 38 through the cool air return port 34.
  • the defrost heater 33 is covered with a catalyst film layer carrying a deodorizing catalyst. After the heater 33 removes the odorous substances in the cool air passing through the vegetable compartment 2, the cool air is cooled by the cooler 2. Returned to 9.
  • FIG. 6 is a block diagram illustrating a configuration of the refrigerator 1.
  • the electric circuit assembly 47 (see FIG. 1) is provided with a control unit 50 composed of, for example, a microcomputer or the like.
  • the temperatures of the refrigerator compartment 2 and the refrigerator compartment 3 detected by the refrigerator compartment temperature sensor 48 (see FIG. 2) and the refrigerator compartment temperature sensor 49 are input to the controller 50.
  • Refrigerator compartment door open / close detection switch 51, vegetable compartment door open / close detection switch 52, freezer compartment door open / close detection switch 5 3 detects the open / close of refrigerator compartment door 19, vegetable compartment door 25, and freezer compartment door 22 The detection result is input to the control unit 50.
  • the opening and closing of the damper 17a is detected by the damper open / close detection switch 54 and input to the control unit 50.
  • the control unit 50 includes the damper 17a, the compressor 46, and the blower 30.
  • the ion generator 11 and the illumination light 55 are connected. These drives are controlled based on signals input to the control unit 50.
  • FIG. 7 is a flowchart of the main routine showing these operations.
  • FIG. 8 shows a door opening / closing monitoring process of a subroutine for constantly monitoring the opening / closing of the refrigerator compartment door 19 and the vegetable compartment door 25.
  • step # 41 it is determined whether one of the refrigerator compartment door 19 and the vegetable compartment door 25 has been opened, and waits until it is opened.
  • the refrigerator compartment door 19 or the vegetable compartment door 25 opens, the damper 17a is closed and the timer T M3 and the ion generator 11 are temporarily stopped.
  • step # 42 it is determined whether the refrigerator compartment door 19 and the vegetable compartment door 25 are closed.
  • step # 43 it is determined whether three seconds have elapsed since the refrigerator compartment door 19 or the vegetable compartment door 25 was opened in step # 43. If 3 seconds have not elapsed, the process returns to step # 42, and steps # 42 and # 43 are repeated. If the refrigerator compartment door 19 and the vegetable compartment door 25 are closed earlier than the elapse of 3 seconds, wait until the refrigerator compartment door 19 or the vegetable compartment door 25 opens in step # 41. If 3 seconds have passed since the refrigerator compartment door 19 or the vegetable compartment door 25 opened, Move to step # 4 4.
  • step # 44 the number of drives N cmp and N ion indicating the number of times the compressor 46 and the ion generator 11 were driven while the refrigerator compartment door 19 and the vegetable compartment door 25 were closed are It is reset, and the number N dor of opening and closing the refrigerator compartment door 19 or the vegetable compartment door 25 is incremented. Then, it waits until the refrigerator compartment door 19 and the vegetable compartment door 25 are closed in Step # 45, and when it is closed, returns to Step # 41 and returns to the refrigerator compartment door 19 and the vegetable compartment door 25. It monitors the opening of the building. When the refrigerator compartment door 19 and the vegetable compartment door 25 are closed, the damper 17a is opened and the ion generator 11 is restarted. The opening and closing of the refrigerator compartment door 19 and the vegetable compartment door 25 and the elapse of 3 seconds are determined independently for each door.
  • the number of drive times Ncrap of the compressor 46 is incremented each time the compressor 46 is driven after the door is opened and closed (see FIG. 7, step # 17).
  • the number of times N ion is driven by the ion generator 11 is incremented each time the ion generator 11 is driven after the door is opened and closed (see FIG. 10, step # 73).
  • the opening / closing operation of other doors such as the freezer compartment door 22 may be added to the judgment in the above flowchart. This is the same in the following flowcharts.
  • step # 12 it is determined whether or not a timer TM1 described later has passed 50,000 hours. Since the time has not elapsed here, the flow proceeds to step # 13, and the cooling is performed based on the detection result of the refrigerator compartment temperature sensor 48. It is determined whether the temperature of the storage room 2 is higher than a predetermined temperature.
  • step # 31 If the temperature of the refrigerator compartment 2 is higher than the predetermined temperature, the damper 17 a is opened in step # 31, and the temperature of the refrigerator compartment 3 is detected by the refrigerator temperature sensor 49 in step # 32. If the temperature of the refrigerator compartment 2 is lower than the predetermined temperature, it is determined in step # 14 whether or not the temperature of the refrigerator compartment 3 is higher than the predetermined temperature based on the detection result of the freezer compartment temperature sensor 49.
  • step # 15 If the temperature of the freezing room 3 is higher than the predetermined temperature, the process proceeds to step # 15. If the temperature of the freezing room 3 is lower than the predetermined temperature, the process returns to the step # 12, and the steps # 1 2 to # 1 4 are performed until either the refrigerator room 2 or the freezing room 3 becomes higher than the predetermined temperature. Waiting.
  • step # 15 the operating conditions of the compressor 46 are set based on the temperatures of the refrigerator compartment 2 and the freezer compartment 3. For example, when the refrigerator compartment 2 and the freezer compartment 3 are at or above a predetermined set temperature, the compressor 46 is operated at the maximum output. In step # 16, the compressor 46 is driven under the set operating conditions, and the refrigeration cycle is operated. In step # 17, the ion generator driving flag F ion is reset. At this time, the value of the timer TM 2 is substituted into the off time T off to memorize the off time of the compressor 46 which has been stopped so far, and the number of drive times N cmp of the compressor 46 is incremented. .
  • the flag F ion is set to 1 when the ion generator 11 is driven while the compressor 46 is being driven.
  • the off time T off is used to calculate the operation rate E of the compressor 46, and the operation rate E is T onZ (T on + T off) by the on time T on and the off time T off of the compressor 46.
  • X is represented by 100%. In this case, since the on-time Ton has not been determined since the operation started, the calculation cannot be performed.
  • step # 18 the timer TM2 is restarted, and the measurement of the ON time of the compressor 46 is started.
  • step # 19 the ion generation process of FIG. 9 is called.
  • step # 51 of FIG. 9 it is determined whether or not the ion generator driving flag Fion is 0. If it is 1, the process returns to the main routine of FIG.
  • step # 52 check if the ion switch (not shown) that allows the delivery of ions is set to ON by the user. Is determined, and if not permitted, no ions are generated and the process returns to the main routine.
  • step # 53 it is determined whether or not the damper 17a is open. If the damper 17a is closed, no cold air is sent to the refrigerator compartment 3 and the vegetable compartment 4, and no return is made to the main routine.
  • step # 54 it is determined whether the number of times N cmp of driving the compressor 46 is 0 or an even number.
  • the driving frequency N cmp is 0, it means that the compressor 46 has not been driven yet since the refrigerator compartment door 19 or the vegetable compartment door 25 was opened and closed.
  • ions are generated every time the compressor 46 is driven twice after the refrigerator compartment door 19 or the vegetable compartment door 25 is opened and closed. For this reason, when the number of driving N cmp of the compressor 46 is an even number, the process proceeds to step # 55, and when the number is odd, the process returns to the main routine.
  • step # 54 when the number of driving N cmp of the compressor 46 is a multiple of 3, the process may be shifted to step # 55.
  • step # 55 it is determined whether or not the number of drive times N ion of the ion generator 11 is smaller than 6 after the refrigerator compartment 2 or the vegetable compartment 4 is opened and closed. When the number of drives N ion is 6, the ion generator 11 was driven 6 times with the refrigerator compartment 2 and the vegetable compartment 4 closed, and the amount of ozone accumulated in the refrigerator compartment 2 and the vegetable compartment 4 was reduced.
  • the process may return to the main routine without generating ions.
  • a predetermined time for example, 3 hours
  • the process may return to the main routine.
  • step # 56 it is determined whether or not the cumulative number of times N tt1 of the ion generator 11 is greater than a predetermined number (for example, 50 in this embodiment). Moves to step # 59.
  • the cumulative number of driving Nttl is incremented each time the ion generator 11 is driven, regardless of whether the refrigerator compartment 2 and the vegetable compartment 4 are opened or closed (see FIG. 10, step # 73).
  • the refrigerator compartment door 19 or the vegetable compartment door 25 must be opened and closed a certain number of times (for example, 10 times in this case) if the Ndor has not been opened and closed more than once. It is determined that the amount of ozone accumulated in room 2 and vegetable room 4 has increased, and the process returns to the main routine without generating ions (step # 57). If the opening / closing frequency Ndor is 10 or more, the cumulative driving frequency Nttl and the opening / closing frequency Ndor of the ion generating device 11 are reset in step # 58, and the process proceeds to step # 59. The determination may be made based on the cumulative driving time of the ion generator 11 instead of the cumulative driving number Nttl.
  • step # 59 the operation rate E of the compressor 46 previously driven is calculated, and it is determined whether the operation rate E is greater than 50%. As described above, the operation rate E is calculated as Ton / (Ton + Toff) X I 00% based on the ON time Ton of the compressor 46 at the time of the previous drive and the OFF time Toff from the end of the previous drive to the current drive. If the operation rate E of the compressor 46 is larger than, for example, 50%, the predetermined drive time Tion of the ion generator 11 is set to 15 minutes in step # 60.
  • the predetermined drive time Tion of the ion generator 11 is set to 10 minutes.
  • the voltage applied to the needle electrode 11a is set to a different value (for example, E> 50). %, The applied voltage is 5 kVp-p for 10 minutes, and when E ⁇ 50%, the applied voltage is 3.6 kVp-p for 10 minutes).
  • ion generation .1 is turned on based on the settings in steps # 60 and # 61.
  • step # 63 1 is assigned to the flag F ion, Imaichi TM 3 is restarted. The timer TM 3 measures the drive time of the ion generator 11. Then, the process returns to the main routine.
  • T ion 7 minutes when E ⁇ 40%
  • T ion 10 minutes when 40 E ⁇ 80%
  • step # 21 the damper freeze prevention process shown in FIG. 11 is called in step # 21.
  • the damper 17a in order to prevent the damper 17a from freezing, the damper 17a is temporarily closed when a predetermined time (for example, 12 minutes) has elapsed since the damper 17a was opened.
  • a predetermined time for example, 12 minutes
  • step # 81 of the damper freezing prevention process it is determined whether or not the ion generator 11 is being driven. If it is, it is determined in step # 82 whether or not the damper 17a is closed. If the damper 17a is open, the damper freezing prevention process has not been performed and the process returns to the main routine. If the damper 17a is closed, the ion generator 11 is stopped in step # 83. In step # 84, the timer T M3 is temporarily stopped, and in step # 85, 1 is substituted for the flag Fcon indicating the dew condensation prevention state.
  • step # 86 If it is determined in step # 81 that the ion generator 11 is not driven, it is determined in step # 86 whether the damper 17a is open. When the damper 17a is closed, the ion generator 11 can be left off, and the process returns to the main routine. If the damper 17 a is open, it is determined in step # 87 whether the flag F con is 1 or not.
  • the flag F con When the flag F con is 0, it indicates that the normal ion generation state is established, and the process returns to the main routine without performing the dew condensation preventing process thereafter. If the flag Fcon is 1, the damper 17a is opened from the damper freezing prevention processing state and the damper freezing prevention processing is completed, and the ion generator 11 is driven in step # 88. . In step # 89, the suspension of the timer TM 3 is released. In step # 90, the flag F con is reset and the damper freezing prevention processing state is released. As a result, the amount of generated gas Such ions are continuously generated, and the bacteria in the air can be sufficiently sterilized. Returning to the main routine of FIG.
  • step # 22 it is determined whether or not the timer TM3 has reached a predetermined drive time Tion.
  • the timer TM3 has reached the predetermined drive time Tion, the ion stop process of FIG. 10 described later is called in step # 23.
  • step # 24 it is determined in step # 24 whether the temperature of the refrigerator 2 has been lowered to a predetermined temperature according to the detection result of the refrigerator temperature sensor 48 (see FIG. 2). Is determined. If the temperature is not lower than the predetermined temperature, the process returns to step # 19, and steps # 19 to # 24 are repeated.
  • step # 25 When the temperature of the refrigerator compartment 2 becomes lower than the predetermined temperature, the damper 17a is closed in step # 25. Then, in step # 26, the ion stop process is called, and in step # 27, it is determined whether or not the freezing room 3 has been cooled to a predetermined temperature. If the temperature of the freezer 3 is not lower than the predetermined temperature, the process returns to Step # 19, and Steps # 19 to # 26 are repeated.
  • step # 19 When the flag Fion is set to 1 when returning to step # 19, the process immediately exits at step # 51 in the ion generation processing (see FIG. 9). Also, when the refrigerator compartment door 19 or the vegetable compartment door 25 is opened and closed, the number of driving N cmp of the compressor 46 and the number of driving N ion of the ion generator 11 are reset (FIG. 8, step). See # 44).
  • the ion generator 11 may be driven in such a manner that the conditions are satisfied in steps # 54 and # 55 in FIG. Therefore, if it is considered that at least a part of the ozone accumulated in the refrigerator compartment 2 and the vegetable compartment 4 has flowed out by opening and closing the refrigerator compartment door 19 or the vegetable compartment door 25, the ion generator 1 1 can be driven to sterilize airborne bacteria in the refrigerator compartment 2 and the vegetable compartment 4.
  • step # 71 it is determined whether or not the ions have already been stopped. If the ions have been stopped, the process returns to the main routine. If ions are being generated, the ion generator 11 is stopped in step # 72. In Step # 73, the timer TM1 is restarted to start measuring the time after the drive of the ion generator 11 is stopped, and the timer TM3 and the predetermined drive time Tion of the ion generator 11 are reset. Is done. In addition, the number of times Nion of driving the ion generator 11 and the cumulative number of times of driving Nttl are incremented, and the process returns to the main routine.
  • step # 23 If the timer TM3 reaches the predetermined driving time Tion before the refrigerator compartment 2 cools down to the predetermined temperature, the ion generator 11 is stopped in step # 23, and the timer TM3 reaches the predetermined driving time Tion before the timer TM3 reaches the predetermined driving time Tion.
  • the ion generator 11 is stopped in step # 26.
  • step # 26 the predetermined drive time Tion of the ion generator 11 has been reset, and the ionization is performed after the refrigerator compartment 2 is cooled down to the predetermined temperature. Even if the generator 11 has not reached the predetermined drive time Tion, the ion generator 11 is stopped without performing the subsequent ion generation.
  • the temperature of the refrigeration compartment 2 is lowered quickly because the outside air temperature is low, and the amount of airborne bacteria entering the refrigeration compartment 1 is small. For this reason, even if the ion generator 11 is stopped, sufficient sterilization can be performed, and an increase in ozone can be suppressed.
  • the ion generator 11 may be stopped by detecting the outside air temperature. In other words, if control based on the outside air temperature is inserted between step # 82 and step # 83 in FIG. 11 as shown in FIG. 12, even if the predetermined drive time Tion has not been reached, The ion generation is stopped without being performed. As a result, it is possible to obtain a refrigerator that does not generate ions more than necessary when the outside air temperature is low, suppresses an increase in ozone, and can perform appropriate sterilization.
  • step # 91 it is determined whether the outside air temperature is lower than a predetermined temperature t0. If the outside air temperature is equal to or higher than the predetermined temperature t0, the process proceeds to step # 83 to perform the above-described processing. If the outside air temperature is lower than the predetermined temperature t0, it is determined in step # 92 whether or not the timer TM3 has exceeded a predetermined time T1 (for example, 5 minutes).
  • Step # 8 if timer TM3 has not elapsed by the specified time T1 Move to 3.
  • step # 93 If the timer TM 3 has elapsed by the predetermined time T 1 and a predetermined amount of ions have been generated, the process proceeds to step # 93 and the timer TM 3 is set to the predetermined driving time Tion of the ion generator 11. The value of 3 is assigned. Then, go to step # 83.
  • Step # 22 Since the timer TM3 is equal to the drive time Tion, the conditions are satisfied in Step # 22 when returning to the main routine, and the ion stop processing is performed in Step # 23. As a result, even if the outside air temperature is detected and the predetermined drive time Tion has not been reached, subsequent ion generation is not performed and the operation is stopped.
  • the command to open and close the damper 17a is based on the temperature of the refrigerator or the outside air, and if the command is based on opening and closing the door and other commands, it is possible to determine whether the temperature depends on the temperature. If reset is determined, ozone generation can be further suppressed and proper sterilization can be performed.
  • step # 28 of the main routine the refrigerator 46 and the freezer compartment 3 are cooled down to the predetermined temperatures, so that the compressor 46 is stopped.
  • step # 29 the value of the timer TM2 is substituted for the ON time Ton in order to memorize the ON time of the compressor 46 which has been operating so far.
  • step # 30 the timer TM2 is restarted, and the counting of the off time of the compressor 46 is started.
  • steps # 12 to # 30 are repeatedly performed. If a long period of time (for example, 500 hours in the present embodiment) has elapsed since the ion generator 11 was last driven, it is considered that ozone in the refrigerator compartment 2 and the vegetable compartment 4 has disappeared. Can be Therefore, every time the ion generator 11 is turned off in steps # 72 and # 73 (see Fig. 10), the timer TM1 is restarted. When the timer TM1 becomes 500H, the step According to the judgment of # 12, the process proceeds to step # 11 and all variables and timers are initialized. Further, after all of the steps are initialized in step # 11, the predetermined driving time Tion of the ion generator may be shortened when the ion generator is driven first.
  • a long period of time for example, 500 hours in the present embodiment
  • the flag F fst is 1, the predetermined drive time T ion is set to, for example, 7 minutes, and 0 is substituted for the flag F fst and the process proceeds to step # 62. If the flag F fst is 0, the flow shifts to step # 59.
  • the refrigerator 1 is turned on for the first time after the purchase of the refrigerator 1, and even if the ion switch is turned on and the ion generator 11 is driven, the driving time is short, so that the amount of generated ozone is small. Therefore, when the storage room is cooled and the stored product is put into the storage room, the user does not feel the ozone odor even when there is no masking effect in which the ozone odor is hidden by the odor emitted from the food. A refrigerator 1 that does not cause discomfort is obtained.
  • the cold air in the refrigerator is sterilized by the positive ions and the negative ions, it is possible to suppress the damage to the stored material with a simple configuration without the need for a collecting electrode or the like for collecting the positive ions. Can be.
  • FIG. 13 is a side sectional view showing a refrigerator of a second embodiment.
  • FIG. 1.4 and FIG. 15 are a side sectional view and a rear view showing the ion generating chamber of the refrigerator of the present embodiment.
  • the same parts as those in the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals.
  • the support portion 10a supporting the electrode portion 11c is The point is that the needle-shaped electrode 11a is formed integrally with the upper portion of the rill 10b, and the needle-shaped electrode 11a is arranged to be suspended from the upper portion of the ion generation chamber 45.
  • Other configurations are the same as in the first embodiment.
  • the distance L between the support portion 10a and the needle electrode 11a is short, there is a possibility that high pressure may be applied to the support portion 10a when dew condensation occurs on the support portion 10a. is there .
  • the distance L needs to be at least 3.5 mm to separate the support 10a from the needle electrode 11a.
  • the distance L is set to 5 mm, the sterilization ability is secured, and a high voltage is always applied to the needle electrode 11a stably, so that corona discharge is reliably performed and stable ions are formed. It can be released.
  • the cool air flowing into the ion chamber 45 from the cool air return port 10 in the direction of the arrow B 1 turns in the direction of the arrow B 2 and is guided to the cool air passage 16.
  • the ions emitted from the needle electrode 11a are emitted from the tip of the needle electrode 11a at a high density into a region having a radiation angle of about 45 °.
  • the needle-shaped electrode 11a is arranged such that a region (part) having a high ion density is along the cold air flow direction (B2 direction).
  • the direction of each of the needle-shaped portions 11 c is set to be different from each other. While having the highest ion density in two directions, the ion density can be increased over a wide angle range.
  • ions can be released along the cool air flow to similarly improve the sterilizing effect. Can be up.
  • the deodorizing device 12 is provided below the needle electrode 11a (downwind side), the ions are uniformly irradiated on the entire upper surface of the deodorizing device 12. Therefore, the suspended bacteria caught by the deodorizer 12 can be surely sterilized, and the sterilizing ability can be further improved.
  • the deodorizing device 12 is brought close to the ion generator 11, a large amount of the suspended bacteria caught by the deodorizing device 12 can be sterilized, but along the flow of cool air from the needle electrode 11 a. Since the ions are released, the disinfection ability can be further improved by disposing the deodorizing device 12 away from the ion generating device 11.
  • the ions can reach farther along the flow of cold air, and the suspended bacteria are in contact with the ions for a long time and are sterilized and reduced by the time they reach the deodorizer 12. After that, the suspended bacteria are caught by the deodorizer 12, so that the suspended bacteria passing through the deodorizer 12 are reduced. Then, the suspended bacteria collected by the deodorizing device 12 are sterilized by the ions that have reached the deodorizing device 12. When the deodorizing device 12 is subjected to the antibacterial treatment, the sterilizing effect is further improved.
  • the wall surface of the ion chamber 45 may be provided with a metal coating treatment for preventing ion deterioration, an ion-resistant substance coating, or the like. Also, the wall surface of the ion generating chamber 45 may be covered with a metal plate.
  • the deodorizing device 12 can be arranged according to the purpose.
  • FIG. 16 is a rear view showing the ion generation chamber of the refrigerator according to the third embodiment.
  • the same reference numerals are given to the same parts as those in the second embodiment shown in FIGS. 13 to 15 described above.
  • four needle electrodes 11 P, 11 q, whose applied voltage is controlled by the power supply unit 11 e respectively to the ion generator 11 1, 11 r and 11 s are provided.
  • Other configurations are the same as those of the second embodiment.
  • the needle-shaped electrodes 11 p and 11 q hang down from the upper part of the ion generation chamber 45 as in the second embodiment.
  • the needle-like electrodes 11 r and 11 s are attached so as to emit ions upward from the lower part of the ion generation chamber 45.
  • the needle-shaped electrodes llp and 11s generate positive ions
  • the needle-shaped electrodes 11q and lrr generate negative ions.
  • the needle-shaped electrodes llp, llq By the needle-shaped electrodes llp, llq, ions are released along the cold air flowing in the direction of arrow B2, and as in the second embodiment, the floating bacteria contained in the cold air are in contact with the ions for a long period of time and sterilized. . Further, the ions are emitted by the needle-shaped electrodes 11 r and 11 s in the direction opposite to the flow of the cool air in the direction of arrow B2. As a result, the ions that collide with the cold air are diffused into the ion chamber 45, and the ions are distributed over a wider area, so that the sterilizing ability can be further improved.
  • the amount of generated positive ions and the amount of generated negative ions can be easily varied.
  • the electrode that generates positive ions and the electrode that generates negative ions are adjacent to each other, the positive ions and negative ions are mixed and uniformly distributed, facilitating aggregation and ensuring sufficient sterilization ability. can do.
  • ions are generated by applying a voltage alternately or simultaneously to the needle electrodes 11 q and 11 p and stopping the voltage application to the needle electrodes 11 r and lis for a predetermined period.
  • the amount can be easily varied.
  • positive ions and negative ions may be generated at different generation ratios. For example, many positive ions are generated by the needle electrodes 11 p and 11 s, and many negative ions are generated by the needle electrodes 1 lq and l lr.
  • the electrode that mainly generates positive ions and the electrode that mainly generates negative ions are distinguished, it is possible to reduce the cancellation of ions and increase the substantial amount of ions generated. it can. At this time, the ion generation balance can be easily changed by changing the circuit configuration, applied voltage, electrode shape, electrode material, and the like.
  • the same effects as in the first embodiment can be obtained. Furthermore, while suppressing the reduction of the ions due to collision between the emitted ions and the wall surface, the ions are easily transported by the cool air, and the ions and the cool air come into contact with each other in a wide range of the flow direction of the cool air. Therefore, the sterilization ability can be further improved.
  • a case where a needle-like electrode is not used may be employed.
  • the counter electrode increases the size of the device, but improves the sterilization effect by discharging ions along the flow of cold air. Can be done.
  • sterilization may be performed by releasing not only the ion but also other sterilizing substances.
  • a tangible substance such as a chemical agent or an intangible substance such as heat or ultraviolet ray which is not physically a substance can be used.
  • FIG. 17 is a side sectional view showing a direct-cooled refrigerator according to a fourth embodiment.
  • 13 1 is a compressor
  • 13 2 is a refrigerator cooler disposed in the refrigerator compartment 13 4
  • 13 3 is a refrigerator cooler disposed in the refrigerator compartment 13 5 .
  • 13 Reference numeral 6 denotes an ion generator similar to those of the first to third embodiments, which is provided in a case 1 38 provided above the refrigerator compartment 13 4.
  • Reference numeral 1337 denotes a fan, and positive ions and negative ions are discharged from the outlet 13 9 of the case 13 8 into the refrigerator compartment 13 4 by the rotation of the fan 13 7.
  • the bacteria floating in the refrigerator compartment 134 are inactivated, and the damage of the stored food is suppressed.
  • FIG. 18 is a top cross-sectional view showing a food storage cabinet 121 of the fifth embodiment.
  • the food storage shelves 1 2 1 can be opened and closed to store food.
  • reference numeral 122 denotes a partition provided at a predetermined interval from each of the four walls of the food storage shed 122.
  • the partition 1 2 2 divides the inside of the food storage 1 2 1 into a food arrangement section 1 2 3 and a cool air circulation path 1 2 4.
  • Reference numeral 125 denotes an ion generator similar to the first to third embodiments.
  • Reference numeral 126 denotes a fan, and positive ions and negative ions are sent into the food storage cabinet 121 by rotation of the fan 126.
  • the air in the food hangar 12 21 flows by the fan 1 26 as shown by the arrow in the figure, and the positive ions and the negative ions flow along this flow.
  • bacteria floating in the air are inactivated, and food damage is suppressed.
  • FIG. 19 is a schematic sectional view showing a dishwasher / dryer according to a sixth embodiment.
  • the dishwasher / dryer according to the present embodiment includes the same ion generators 113 as those of the first to third embodiments, and includes an ion generator in a circulation path for circulating hot air to the tableware storage room 104 in the drying process.
  • 1 1 3 electrode section 1 1 3 a is arranged.
  • the positive ions and the negative ions are released from the electrode portion 113a to circulate the positive ions and the negative ions into the tableware storage room 104.
  • deodorization in the tableware storage room 104 and sterilization of floating bacteria are performed.
  • an openable front door 101 for taking in and out tableware and the like is provided at the front of the tableware storage room 104.
  • a rack 103 for accommodating tableware 102 is arranged in the tableware storage room 104, and below the rack 103, protrudes and rotates almost at the center of the tableware storage room 104.
  • a free washing nozzle 105 is provided.
  • Cleaning nozzle A plurality of injection holes 106 are formed in 105, and the cleaning water supplied by the cleaning pump 108 is injected. Below the cleaning nozzle 105, a heater 107 for heating the cleaning water is provided below the cleaning nozzle 105.
  • a drain pump 110 for discharging washing water to a water distribution pipe 109 is arranged below the tableware storage room 104.
  • a water supply pipe 111 for supplying washing water is arranged in the upper part of the tableware storage room 104.
  • a water tap 112 for controlling water supply is provided in the middle of the route of the water supply pipe 111.
  • a heat exchange duct 116 is provided to cover the upper surface of the tableware storage room 104 and discharge hot air to the outside from the main body, condense water vapor and return water to the tableware storage room 104.
  • an ion generator 113 At the rear of the tableware storage room 104, an ion generator 113, a fan 114 and a heater 115 are arranged.
  • the fan 114 circulates air to dry the washed dishes 102. At this time, the air heated by the heater 115 is sent into the tableware storage room 104. Further, positive ions and negative ions released from the electrode portion 113a of the ion generator 113 by the fan 114 circulate in the tableware storage room 104.
  • Reference numeral 117 denotes a control device for controlling the entire dishwasher.
  • the dishwasher will be described. First, the front door 101 is opened, and tableware 102 and cooking utensils to be washed are stored in a predetermined location of the rack 103. After the rack 103 is placed in the tableware storage room 104, the operation is started by adding a special detergent.
  • washing water is supplied to the tableware storage room 104 via the water supply pipe 111 by the “opening” operation of the water supply valve 112. Subsequently, the washing water pressurized by the operation of the washing pump 108 is sprayed together with the detergent onto the tableware 102 from the injection hole 106 of the rotary washing nozzle 105 to perform washing.
  • a rinsing step and a drying step are performed.
  • the fan 114 and the ion generator 113 are driven for a predetermined time (about 30 minutes) after the drying process, and the positive and negative ions released from the electrode 113a are stored in the tableware. Released into chamber 104 and circulated as indicated by the arrow in the figure.
  • the generation of ions begins to evaporate and dry with warm air even when water droplets adhere to the electrode section 113a.
  • the operation time may be shortened by performing the second half of the drying step.
  • the positive ions and the negative ions are released and circulated into the tableware storage room 104, thereby deodorizing the inside of the tableware storage room 104 and removing floating bacteria as in the first to fifth embodiments. Sterilization can be performed, and tableware and cooking utensils can be stored neatly.
  • the shape of the electrode portion of the ion generator is not limited to the shape shown in FIG. FIGS. 20 to 22 show electrode portions 11 c having other shapes.
  • Electrode portions 11 c shown in FIG. Are formed so that the lengths of a plurality of needle electrodes 11a protruding from the flat plate part lib are different.
  • a plurality of needle-like electrodes 11a protruding from the flat plate portion 11b are formed in the same direction.
  • the electrode portion 11c shown in FIG. 22 has a single needle-like electrode 11a protruding from the flat plate portion 11b. In any case, the same effect as in the first to sixth embodiments can be obtained.
  • the present invention is not limited to the case where the electrode portions 11 c are arranged substantially parallel to the direction of air flow. 1 1 c may be arranged vertically.
  • the other ion storages may be equipped with the same ion generator as described above.
  • the same effect can be obtained as long as the storage is separated from other spaces.
  • the storage may be divided into a plurality of storage rooms depending on its form.
  • a refrigerator may be a warehouse with a refrigeration function
  • a freezer may be a warehouse with a refrigeration function.
  • the refrigerator has the purpose of cooling and storing items such as a storage room of a cool car and a cooling display case. Everything is included in the storage of the present invention.
  • the air in the storage room such as a refrigerator is sterilized by the positive ions and the negative ions.
  • the corona discharge from an electrode having substantially no counter electrode prevents generated positive ions and negative ions from being attracted by a potential difference. For this reason, it is diffused even in the absence of air blowing over a wide area in the flow path of cold air. Then, both ions aggregate on the surface of the floating bacteria, and the active species generated by the collision can sterilize the floating bacteria over a wide range.
  • the sterilizing ability can be improved without increasing the blowing capacity and complicating the apparatus. Also, since a positive voltage and a negative voltage are applied to the electrodes, the electric circuit is not charged, and a ground connected to the ground is not required, so that the refrigerator can be easily installed in the home. In addition, it is possible to suppress the residual ozone generated at the time of discharging, thereby preventing discomfort and danger to health of the user.

Description

明細書 貯蔵庫及ぴ冷蔵庫 技術分野
本発明は、 貯蔵室内の冷気中の浮遊菌を殺菌する殺菌手段を備えた冷蔵庫 及び貯蔵庫に関する。 背景技術
従来の冷蔵庫は、 特開平 8 - 1 4 5 5 4 5号公報に開示されている。 同公 報によると、 冷蔵庫内に設けられた電荷を吸引する対向電極を持つイオン発 生装置によって電極に負の直流高電圧を印加してマイナスイオンを発生する 。 マイナスイオンは貯蔵室内に送出され、 貯蔵室内の浮遊菌の増殖を抑制し て食品の鮮度を保持するようになつている。
上記従来の冷蔵庫は、 イオン発生装置に針状電極と対向する対向電極が設 けられている。 針状電極と対向電極の間の狭い領域に針状電極から放出され たイオンは対向電極に吸引される。 従って、 抑菌に必要な所望量のイオンを 室内に送出するためには送風能力の高い大型の送風機が必要となる。 このた め、 対向電極及び大型の送風機によりイオン発生装置が複雑化及び大型化す る問題があった。
また、 マイナスイオンを選択的に多量に発生させるために針状電極に負電 圧を帯電させると、 電気回路に正電荷が帯電する。 このため、 帯電による回 路の不具合や、 正電荷の帯電によるマイナスイオンの発生量低下が生じる。 これらを回避するためには、 正電荷を逃がすために直接大地と繋ぐアースを とる必要があり、 家庭用の冷蔵庫おいては建築事情等から全ての世帯で大地 へのアースをとることが困難な問題もあった。 発明の開示
本発明は、 効率良く浮遊菌を殺菌できる貯蔵庫及び冷蔵庫を提供すること を目的とする。 また本発明は、 大地とのアースが不要で家庭内に簡単に設置 することができるとともに、 装置を複雑化することなくイオンを簡単に浮遊 菌と接触させて殺菌効率を向上させることのできる貯蔵庫及び冷蔵庫を提供 することを目的とする。
上記目的を達成するために、 本発明の貯蔵庫及ぴ冷蔵庫は、 高電圧の印加 により H+ (H 20) n等のプラスイオンと、 02— (H20)m等のマイナスイオン とを発生する電極を備え、 空気が流通する空気流通経路に前記電極からブラ スイオンとマイナスイオンとを放出する。 前記空気流通経路には貯蔵室及び 貯蔵室の背後に設けたダク トが含まれる。
また本発明は、 対向電極を持たない電極に高電圧を印加して H+ (H20) n 等のプラスイオンと、 02— (H 20)m等のマイナスイオンとを発生し、 空気が 流通する空気流通経路にプラスイオンとマイナスイオンとを放出する。
また本発明は、 接地しないイオン発生装置を備え、 該イオン発生装置の電 極に高電圧を印加して H + (H 20)n等のプラスイオンと、 O 2 (H20)m等の マイナスイオンとを発生し、 空気が流通する空気流通経路にプラスイオンと マイナスイオンとを放出する。
また本発明は、 接地電極を持たないイオン発生装置を備え、 前記イオン発 生装置の電極に高電圧を印加して H+ (H 20) n等のプラスイオンと、 02— (H 20)m等のマイナスイオンとを発生する。
また本発明は、 少なく とも 1つの貯蔵室を備え、 前記空気流通経路は前記 貯蔵室の少なく とも 1つを含み、 プラスイオンとマイナスイオンとが前記貯 蔵室に放出される。
また本発明は、 プラスイオンとマイナスイオンとから生成された活性種に より前記空気流通経路の浮遊菌を殺菌する。
また本発明は、 少なく とも 1つの貯蔵室を備え、 当該貯蔵室の少なく とも 1つに空気を導くダク トを設けるとともに、 該ダク ト内に前記電極を配置し た。
また本発明は、 前記電極は平板から成るとともに、 その一部に針状突起を 突設した。 針状突起は複数であってもよく、 それぞれの針状突起を異なる向 きに配すると更によい。
また本発明は、 マイナスイオンをプラスイオンよりも多く前記空気流通経 路に放出する。
また本発明は、 前記電極に交流電圧を印加してプラスイオンとマイナスィ オンとを交互に発生する。 交流電圧のピーク電圧の絶対値を 1 . 8 k V以上 にするとよく、 電圧幅を 3 . 6 k V p- pから 5 k V p-pの間にすると更によい 。 また、 交流電圧の連続印加時間を減菌率が平衡状態に達する時間よりも短 く した。
また本発明は、 前記電極を複数有し、 一の電極に正電圧を印加して他の電 極に負電圧を印加する。
また本発明は、 冷気の流れに逆行する向き、 順行する向きあるいは直交す る向きにプラスイオンとマイナスイオンとを放出した。
また本発明は、 空気通路内に、 プラスイオンとマイナスイオンとを発生さ せるイオン発生装置の少なく とも電極と、 臭気物質またはオゾンの少なく と も一方を分解または吸着する付着装置を配置した。 付着装置を電極の放電有 効領域内に設けると更によい。
また本発明は、 少なく とも 1つの貯蔵室を備え、 前記少なく とも 1つの貯 蔵室への空気の流通動作の制御に同期してイオンの発生を制御する制御手段 を設けた。
また本発明は、 少なく とも 1つの貯蔵室を備え、 前記少なく とも 1つの貯 蔵室への空気の流通動作のオン、 オフに同期してイオンの発生をオン、 オフ する制御手段を設けた。
また本発明は、 少なく とも 1つの貯蔵室を備え、 前記少なく とも 1つの貯 蔵室内を冷却する冷却手段を備え、 前記貯蔵室の冷却動作に同期してイオン の発生を制御する制御手段を設けた。
また本発明は、 少なく とも 1つの貯蔵室を備え、 前記少なく とも 1つの貯 蔵室には温度検知手段を設け、 該温度検知手段の温度検知に基づいてイオン の発生を制御する制御手段を設けた。
また本発明は、 空気の流れを制御するダンパーの開閉と同期してイオンの 発生を制御する制御手段を設けた。
また本発明は、 空気の流れを制御するダンパーの開閉検知に基づいてィォ ンの発生を制御する制御手段を設けた。
また本発明は、 少なく とも 1つの貯蔵室を備え、 前記少なく とも 1つの貯 蔵室内を冷却する冷却手段を備え、 この冷却手段の一部を構成する圧縮機の 駆動に同期してイオンの発生を制御する制御手段を設けた。
また本発明は、 少なく とも 1つの貯蔵室と、 この少なく とも 1つの貯蔵室 内を冷却する冷却手段を備え、 前記冷却手段の一部を構成する圧縮機の駆動 時間、 駆動回数または運転率に基づいてィオンの発生を制御する制御手段を 設けた'。
また本発明は、 少なく とも 1つの貯蔵室を備え、 前記少なく とも 1つの貯 蔵室を開閉する少なく とも 1つの扉の開成若しくは閉成動作の検知結果に基 づいてイオンの発生を制御する制御手段を設けた。
また本発明は、 少なく とも 1つの貯蔵室を備え、 前記少なく とも 1つの貯 蔵室を開閉する少なく とも 1つの扉の開成時間が所定時間を経過したときに イオンの発生を制御する制御手段を設けた。
また本発明は、 外気温に基づいてイオンの発生を制御する制御手段を設け た。
また本発明は、 少なく とも 1つの貯蔵室と、 この少なく とも 1つの貯蔵室 内を冷却する冷却手段と、 該冷却手段によって冷却される貯蔵室内の温度を 検出する温度検知手段とを備え、 該温度検知手段の検知した温度が所定温度 以上となったとき、 前記貯蔵室を冷却する冷却動作と同期して、 イオン発生 装置に電圧を印加してプラスイオン及ぴマイナスイオンを発生させるように した。 図面の簡単な説明
図 1 本発明の第 1実施形態の冷蔵庫を示す側面断面図である。
図 2 本発明の第 1実施形態の冷蔵庫の冷蔵室を示す正面図である。 図 3 本発明の第 1実施形態の冷蔵庫のイオン発生室を示す側面断面図で ある。
図 4 本発明の第 1実施形態の冷蔵庫のイオン発生室を示す背面図である 図 5 本発明の第 1実施形態の冷蔵庫の脱臭装置を示す斜視図である。 図 6 本発明の第 1実施形態の冷蔵庫の構成を示すプロック図である。 図 7 本発明の第 1実施形態の冷蔵庫の動作を説明するフローチヤ一トで ある。
図 8 本発明の第 1実施形態の冷蔵庫の扉開閉検知処理の動作を説明する フローチヤ一トである。
図 9 本発明の第 1実施形態の冷蔵庫のイオン発生処理の動作を説明する フローチヤ一トである。
図 1 0 本発明の第 1実施形態の冷蔵庫のイオン停止処理の動作を説明す るフローチヤ一トである。
図 1 1 本発明の第 1実施形態の冷蔵庫の結露防止処理の動作を説明する フローチヤ一トである。
図 1 2 本発明の第 1実施形態の冷蔵庫の結露防止処理の他の動作を説明 するフローチャートである。
図 1 3 本発明の第 2実施形態の冷蔵庫を示す側面断面図である。
図 1 4 本発明の第 2実施形態の冷蔵庫のイオン発生室を示す側面断面図 である。
図 1 5 本発明の第 2実施形態の冷蔵庫のイオン発生室を示す背面図であ る。
図 1 6 本発明の第 3実施形態の冷蔵庫のイオン発生室を示す背面図であ る。
図 1 7 本発明の第 4実施形態の冷蔵庫を示す側面断面図である。
図 1 8 本発明の第 5実施形態の食品格納庫を示す側面断面図である。 図 1 9 本発明の第 6実施形態の食器洗浄乾燥機を示す側面断面図である 図 2 0 本発明の第 1〜第 6実施形態に搭載されるイオン発生装置の他の 形状の電極部を示す概略図である。
図 2 1 本発明の第 1〜第 6実施形態に搭載されるイオン発生装置の他の 形状の電極部を示す概略図である。
図 2 2 本発明の第 1〜第 6実施形態に搭載されるイオン発生装置の他の 形状の電極部を示す概略図である。
図 2 3 本発明の第 1〜第 6実施形態に搭載されるイオン発生装置の電極 部を他の配置を示す概略図である。 発明を実施するための最良の形態
以下に本発明の実施形態を図面を参照して説明する。 図 1は一実施形態の 冷蔵庫を示す側面断面図である。 冷蔵庫本体 1は上方から冷蔵室 2、 冷凍室 3、 野菜室 4が設けられ、 これら冷蔵室 2、 冷凍室 3、 野菜室 4は仕切部 6 a、 6 bにより仕切られている。 冷蔵室 2の下部には隔離室 5が設けられ、 前後方向に移動可能なケース 7が収納されている。 また、 冷蔵室 2には食品 等を載置する載置棚 8 a〜 8 dが設けられ、 載置棚 8 dにより隔離室 5の天 井が形成されている。
冷蔵室 2は前面に枢支された冷蔵室扉 1 9により開閉可能になっている。 冷蔵室扉 1 9の背面側にはドアポケッ ト 2 1 a〜 2 1 dが設けられている。 冷凍室 3は引き出し式の冷凍室扉 2 2により開閉可能になっている。 冷凍ケ ース 2 3は冷凍室扉 2 2に着脱自在に取り付けられており、 冷凍室扉 2 2と 一体に引き出されるようになつている。 冷凍ケース 2 3の上方に配される冷 凍ケース 2 4は冷凍室扉 2 2と独立して引き出し可能に設けられている。 野菜室 4は引き出し式の野菜室扉 2 5により開閉可能になっている。 野菜 ケース 2 6は野菜室扉 2 5に取り付けられており、 野菜室扉 2 5と一体に引 き出される。 野菜ケース 2 6の上部には小物ケース 2 7が配されている。 野 菜ケース 2 6の上面は野菜ケースカバー 2 8により覆われ、 野菜ケース 2 6 および小物ケース 2 7を所定の湿度に保つようになつている。
冷凍室 3の後方には冷気通路 3 8が設けられ、 冷気通路 3 8内には圧縮機 4 6の駆動により冷気を生成する冷却器 2 9が配されている。 冷却器 2 9の 下方には冷却器 2 9の除霜を行うヒータ 3 3が配されている。 ヒータ 3 3の 除霜による除霜水はドレンパイプ 3 7を通って蒸発皿 3 9に回収されるよう になっている。
冷却器 2 9の上方には冷気を冷蔵室 2、 冷凍室 3、 野菜室 4及ぴ隔離室 5 に送出する送風機 3 0が配されている。 送風機 3 0の吐出側には圧力室 3 2 が設けられ、 圧力室 3 2に連通したダク ト 3 1に設けられる吐出口 3 1 a、 3 1 b、 3 1 cから冷凍室 3内に冷気が吐出される。 そして、 冷凍室 3内の 冷気は冷気戻り口 3 5を介して冷気通路 3 8内の冷却器 2 9に戻るようにな つている。
また、 圧力室 3 2にはダンパー 1 7 aを介して冷気分配室 1 7が連通して いる。 冷気分配室 1 7は冷蔵室 2の後方に配された冷気通路 4 1に連通して いる。 冷気通路 4 1は、 前面側に断熱材 4 2及ぴ通路カバー 4 3を有した通 路組品 4 0から成っている。 尚、 4 7は冷蔵庫の運転や装置の作動等に必要 な制御等のための電気回路組品であり、 電気回路組品 4 7は電装カバー 4 7 aで覆われている。
図 2に冷蔵室 2の正面図を示す。 冷気通路 4 1は冷蔵室 2の略中央に配さ れた上昇通路 4 1 a と上昇通路 4 1 aの外側に設けられた下降通路 4 1 bと から成っている。 上昇通路 4 1 a と下降通路 4 1 b とは上端で連通している 。 冷気通路 4 1に導かれた冷気は吐出口 1 4から隔離室 5内に冷気を吐出す る。
一方、 残りの冷気は上昇通路 4 1 aを上昇し、 下降通路 4 1 bを通って吐 出口 1 5から冷蔵室 2内に冷気を吐出するようになつている。 正面から見て 冷蔵室 2の図中、 右下部には、 格子状に複数の穴を有した冷気戻り口 1 0が 設けられ、 冷蔵室 2内の冷気が流入するようになつている。
図 1において、 冷気戻り 口 1 0の後方には、 コロナ放電によりイオン (殺 菌用物質) を発生するイオン発生室 4 5が設けられている。 イオン発生室 4 5の下方には周囲を断熱材 1 6 aで覆われた冷気通路 1 6が連通して設けら れている。 尚、 同図において、 便宜上イオン発生室 4 5と冷気通路 3 8とを 同一面内に記載しているが、 実際には冷気通路 1 6が冷気通路 3 8 と並設さ れ、 冷気通路 1 6とイオン発生室 4 5とが略同一面内に配されている。
冷気通路 1 6の下端の吐出口 1 3は野菜室 4内に臨んで配され、 冷気通路 1 6を通る冷気が野菜室 4内に吐出される。 そして、 野菜室 4内の冷気は冷 気戻り口 3 4を介して冷気通路 3 8内の冷却器 2 9に導かれるようになつて いる。
図 3、 図 4はイオン発生室 4 5を示す側面断面図及び背面図である。 ィォ ン発生室 4 5内には、 針状電極 1 1 aを有するイオン発生装置 1 1 (殺菌部 ) が設けられている。 針状電極 1 1 aは平板状の平面部 1 1 bに突設され、 絶縁被膜で覆われたリード部 1 1 dを介して電源部 1 1 eに接続されている 。 リード部 1 1 dは冷気戻り口 1 0を形成するグリル 1 0 b と一体成形され た樹脂製の支持部 1 0 aに支持されている。
平面部 1 1 bは垂直面に対して平行に配置され、 コロナ放電がされていな いときには、 針状電極 1 1 a及ぴ平面部 1 1 bから成る電極部 1 1 cへの塵 埃の堆積を抑制するようになっている。 また、 平面部 1 1 bは、 冷気戻り 口 1 0を形成するグリル 1 0 b と、 略平行になっている。 このため、 開口部で ある冷気戻り 口 1 0から複数の針状電極 1 1 aまでの距離をそれぞれ同一の 距離にすることができる。 従って、 無駄なスペースを必要とせずに感電に対 する安全性を確保することができる。
電源部 1 1 eからリード部 1 1 dを介して針状電極 1 1 aに高電圧が印加 されると、 針状電極 1 1 aの先端に電界が集中し、 冷気戻り 口 1 0から取り 込まれた冷気が電極先端で局所的に絶縁破壌してコロナ放電が発生する。 リ 一ド部 1 1 dの長さは放電効率の低下を抑制するとともに容易に配線ができ るように 2 0 0 mm以下になっている。 リード部 1 1 dの長さを 1 0 0 mm 以下にすると放電効率の低下をより抑制することができる。 更に 5 0 mm以 下にすると放電効率を殆ど低下させることなく電極を接続することできるの でより望ましい。
コ ロナ放電によって印加電圧が正電圧の場合は主として H+ (H 20)nから 成るプラスイオンが生成され、 負電圧の場合は主として 02— (H20)mから成 るマイナスイオンが生成される。 ?1 + (1120)11及び02_(^^ 0)111は微生物の 表面で凝集し、 空気中の微生物等の浮遊菌を取り囲む。 そして、 式 ( 1 ) 〜 ( 3 ) に示すように、 衝突により活性種である [ · ΟΗ] (水酸基ラジカル ) や Η 202 (過酸化水素) を微生物等の表面上で生成して浮遊菌の殺菌を行
5
Η+2 O)„ + O 2 - (H a 0)m→ · O H + 1/202 + (n+m) H 2 O · · · ( 1 )
H+ (H 20) n + H+ (H20) n. + 02- (H 20)m+ 02- (H20)m.
→ 2· O H + O 2 + (n+n' +m+m' )H2 O … ( 2 )
H+ (H20) n + H+ (H 20) n. + 02-(H20)m+ 02- (H20)m.
→ H 2 O 2 + O a + (n+n' +m+m' ) H 2 O … ( 3 ) 本実施形態では、 プラスイオンとマイナスイオンとによって冷気内の浮遊 菌を殺菌することができるので、 従来よりも貯蔵物の損傷を抑制することが できる。 また、 針状電極 1 1 aに対向する対向電極や、 プラスイオンを捕集 する捕集電極を設けていないため、 従来のようにイオンが電位差によりこれ らの電極に吸引されたり、 針状電極と対向電極との の狭い領域にイオンが 発生するということがない。
このため、 強い送風がなくても冷気通路内にイオンを拡散して広い範囲で 冷気内の浮遊菌を捉えて殺菌することができる。 従って、 殺菌能力をより向 上させることができる。 更に、 イオン発生装置 1 1が簡素化されるため、 ィ オン発生装置 1 1の小型化を図ることができる。
また、 針状電極 1 1 aには正電圧と負電圧とが印加されるため、 接地電位 がなくても電気回路が帯電されない。 このため、 大地に繋ぐアースを必要と せずに、 家庭内に容易に冷蔵庫 1を設置することができる。 従って、 イオン 発生装置 1 1をより簡素化し小型化することができる。
上記の式 ( 1 ) 〜 (3 ) によると、 活性種を生成するためには等量のブラ スイオンとマイナスイオンとが必要になる。 プラスイオンは単独で食品等に 接触すると細胞を老化させる働きがあるため、 本実施形態ではプラスイオン の発生量をマイナスイオンの発生量よりも少なく している。 これにより、 プ ラスイオンとマイナスイオンが微生物の表面で凝集し、 活性種を形成して浮 遊菌を殺菌するとともに、 余ったマイナスイオンにより浮遊菌の増殖を防止 し、 浮遊菌の野菜室への流入を防止することができる。
この時、 プラスイオンの発生量がマイナスイオンの発生量の 3 %よりも少 ないと、 [ · O H ]の生成量が少なくなつて殺菌力低下を招く。 このため、 プ ラスイオンの発生量をマイナスイオンの発生量の 3 %以上にしている。 また 、 プラスイオンの発生量を 1 c m 3当たり 5 0 0 0個以上にすることにより、 十分な殺菌能力を得ることができる。
それぞれのイオンの発生量は正電圧と負電圧の印加時間を変えることによ り可変することができる。 また、 電圧印加のオン、 オフの時間を可変するデ ユーティー制御を行ってイオンの発生量を制御してもよい。
また、 コロナ放電によってイオンと同時に発生するオゾンは酸化力がある ため冷蔵室 2や野菜室 4に流入すると高濃度では食品を酸化して劣化させる 。 このため、 針状電極 1 1 aに印加される電圧を低く (例えば、 + 1 . 8 k V〜一 1 . 8 k Vの交流電圧) してコロナ放電により発生するオゾンが極微 量になるように抑制されている。 また、 デューティー制御時に、 短い時間間 隔で印加電圧のオンオフを繰り返すとオゾンの発生を抑制できるのでより望 ましい。
針状電極 1 1 aは冷蔵室 2に連通した冷気通路 (イオン発生室 4 5 ) 内に 配されている。 これにより、 冷気戻り口 1 0に流入する冷気によって冷蔵室 2へのオゾンの流出を抑制し、 後述するように冷気通路内でオゾンを除去す ることで食品の酸化を防止することができる。
また、 冷気戻り 口 1 0から後方へ例えば 4 0 m m以上間隔を設けて冷気通 路内に針状電極 1 1 aを配することによって、 安全性を確保するために針状 電極 1 1 aを絶縁ケースで覆う必要がなくイオン発生装置 1 1を安価に構成 することができる。 加えて、 冷気戻り口 1 0に流入する冷気.によってイオン 発生時に発生するオゾンの冷蔵室 2への流出を抑制し、 後述するように冷気 の通路内でオゾンを除去することで食品の酸化を防止することができる。 針状電極 1 1 aは、 同電位の複数の針状の導体により構成してもよい。 こ の時、 イオンは針状の導体の先端から延長上に多く放出されるため、 複数の 導体を異なる向きで配置することによって針状電極 1 1 aの周囲の広い範囲 にイオンを放出することができ、 殺菌能力を向上させることができる。 尚、 放出されたイオンは、 その後更に周囲へ分散することになる。
また、 支持部 1 0 a と電極部 1 1 c との距離 Lが狭いと、 支持部 1 0 aに 結露が生じた際等に支持部 1 0 aに高圧がかかるおそれがある。 こめため、 距離 Lを 3 . 5 m m以上 (例えば 5 m m ) 、 より好ましくは 1 0 m m以上に して支持部 1 0 a と針状電極 1 1 a とを離すことにより、 支持部 1 0 aが確 実に絶縁される。 また、 コロナ放電によりイオンが放出される領域を広く と ることができ、 殺菌能力を向上させることができる。 尚、 支持部 1 0 aは絶 縁材料により形成するのが望ましい。
一^ 3の針状電極 1 1 aによりプラスイオンとマイナスイオンとを発生させ ると、 電極近傍で一部が相殺されて実質的なイオン発生量が低下する。 この ため、 針状電極 1 1 aを 2つ設け、 プラスイオンとマイナスイオンを別々の 電極により発生すると実質的なイオン発生量を増加させることができる。 ま た、 これにより、 それぞれのイオンの発生量を容易に可変することができる
2つの電極は、 回路構成、 印加電圧、 電極形状、 電極材質等を異なるよう にすることによって容易にイオンの発生バランスを可変することができる。 更に、 2つの電極を少なく とも 1 0 m m以上 (好ましくは 3 0 m m以上) 離 して配置するとそれぞれの電極からのプラスイオンとマイナスイオンとの相 殺を殆ど発生させず有効にイオンを殺菌のために利用することができる。 針状電極 1 1 aの下方 (風下側) には臭気物質を除去する脱臭装置 1 2が 配されている。 脱臭装置 1 2は、 図 5に示すように、 コルゲートハ-カム状 に形成された物質に、 低温脱臭触媒及び吸着剤がコーティングされている。 低温脱臭触媒及び吸着剤を担持したフィルターゃ不織布により脱臭装置 1 2 を構成してもよいが、 ハニカム状に形成すると圧力損失を低くできるのでよ り望ましい。
また、 低温脱臭触媒や吸着剤により脱臭装置 1 2には浮遊菌も捉えられる 。 従って、 脱臭装置 1 2をイオン発生装置 1 1に近接すると、 脱臭装置 1 2 に捉えられた浮遊菌を大量に殺菌することができ、 殺菌効果を向上させるこ とができる。 この時、 コロナ放電する針状電極 1 1 a と脱臭装置 1 2の表面 との距離を少なく とも 1 0 mm確保する方が望ましい。
即ち、 針状電極 1 1 a と脱臭装置 1 2との距離を接近しすぎると脱臭装置 1 2が対向電極とみなされ電界が強くなる。 このため、 低い印加電圧 (例え ば、 + 1 . 8 1?: ¥からー 1. 8 k V ( 3. 6 k Vp-p) の約 9 0 k H zの交流 電圧) であっても放電出力が増加したときと同等の状態になり、 コロナ放電 による脱臭装置 1 2の劣化が著しい。 従って、 該距離を 1 O mm以上にする と脱臭装置 1 2の劣化を防止することができる。 尚、 脱臭装置 1 2に炭素や 金属成分 (例えば、 活性炭粒、 炭素繊維、 白金粉末、 ニッケル等) が多く含 まれると、 更に劣化が顕著になる。
針状電極 1 1 aからの放電は、 その先端を中心として主に前方に立体角 2 π s rの範囲で行われ、 半球状の放電有効領域が形成される。 例えば、 上記 の印加電圧 (3. 6 k Vp-p) では半径 1 0 0 mmの放電有効領域 (無風状態 で 1 c m 3当り 1 0万個以上のマイナスイオン) を得ることができる。
このため、 放電有効領域内に脱臭装置 1 2を配すると、 脱臭装置 1 2での 有効な殺菌作用が得られ殺菌効率が向上する。 従って、 印加電圧を抑制して オゾン発生量を減少させることもできる。
針状電極 1 1 aが 1本のみのイオン発生装置により、 冷気が循環する総容 積が 4 0 0 Lの冷蔵庫を想定してイオンを送出した実験の結果は以下のよう になった。 ここで、 減菌率はイオン送出前の単位体積当りの浮遊菌の量に対 するイオン送出後の単位体積当りの浮遊菌の量である。
実験 No. 印加電圧 印加時間 滅菌率
1 - 1.8kV〜 + l.8kV 10分 25%
2 -2.5kV〜+2.5kV 45分 80%
実験 N o . 1では減菌率が 2 5 %になり、 官能試験結果では、 実験後のォ ゾン臭は殆ど感じられなかった。 従って、 印加電圧の絶対値が 1. 8 k V以 上の交流電圧であれば、 ある程度の殺菌効果を有し不快感のない冷蔵庫が得 られる。 尚、 殺菌に有効なコロナ放電には、 印加電圧のピーク値の絶対値が 1. 8 k Vの交流電圧が必要である。 実験 N o . 2では減菌率が 8 0 %になった。 また、 オゾンの発生量は約 0 . 1 5 m gであり、 官能試験結果では、 扉を開いたときに使用者がオゾン臭 を感じるとはいえない程度であった。 従って、 印加電圧のピーク値の絶対値 が 2 . 5 k Vの交流電圧にすると、 一般家庭の通常使用において充分な殺菌 効果を有し、 不快感の少ない冷蔵庫を得ることができる。
尚、 印加時間が 4 5分を越えると、 滅菌率は徐々に平衡状態になり、 ォゾ ン発生量が増すのみで、 殺菌効率が悪くなる。 このため、 1回の印加時間は 4 5分以下にすることが好ましい。 従って、 3 . 6 k V p- p〜 5 k V p-pの印 加電圧を 1 0分〜 4 5分の範囲で針状電極 1 1 aに印加して殺菌すると、 通 常の使用状態では所望の殺菌効果を有しながらオゾン臭による不快感の少な い冷蔵庫が得られる。
プラスイオンとマイナスイオンの発生量の調整は、 印加する正電圧と負電 圧の絶対値の調整でも可能となる。 そのため、 3 . 6 k V p- p〜 5 k V p-pの 範囲で 1 . 8 k V以上のピーク値を有するように正電圧と負電圧の絶対値を 可変することよりそれぞれのイオンを調整することができる。
また、 前述の図 4に示したように、 3本の針状電極 1 1 aから成る電極形 状にすることにより、 低い印加電圧でもイオン発生量を維持若しくは増加さ せ、 より殺菌効果の向上とオゾンの低減を図ることができる。 即ち、 それぞ れの針状電極 1 1 aに 3 . 6 k V p - p〜 5 k V p- pの印加電圧を 1 5分から 2 0分の範囲内で印加して、 上記と同様に、 4 0 0 Lの貯蔵室にイオンを送出 する。 これにより、 減菌率が 5 0 %でオゾン発生量が約 0 . 0 5 tn gとなる 。 従って、 官能試験結果では扉を開いたときに使用者がオゾン臭による不快 感をほとんど感じず、 殺菌効果の高い冷蔵庫が得られる。
加えて、 イオン発生装置 1 1の作動後、 所定時間だけ再起動できないよう にしておく と、 オゾンの残存量がより減少する。 例えば、 イオン発生装置 1 1を 3 0分駆動した後、 ダンパー 1 7 aを開いた状態で 3 0分停止するとォ ゾンの残存率が略 0 %になる。 従って、 オゾンによる不快感を更に低減する ことができる。
また、 イオン発生装置 1 1が圧縮機 4 6の運転と同期して作動するように しておく と、 圧縮機 4 6が停止しているときにオゾンが減少して不快感をよ り低減できる。 この時、 ダンパー 1 7 aの開成とイオン発生装置 1 1及ぴ送 風機 3 0の作動を同期させると、 庫内にイオンが送出され、 殺菌効果をより 向上することができる。 尚、 イオン発生装置 1 1の駆動する操作スィッチ ( 不図示) は、 例えば、 冷蔵室扉 1 9の外表面部に設けられている。 これによ り、 使用者は所望の時期にイオン発生装置 1 1を駆動して殺菌を行うことが できるようになつている。
減菌率を向上させるためには電極部 1 1 cの数を増加させるとよい。 この ため、 一般家庭用の冷蔵庫では、 各々の電極間の距離の確保と装置内のスぺ ースの制限から、 通常、 針状電極 1 1 aが 1〜 5本の形状の電極部 1 1 cを 1〜 3個設けるのが望ましい。
次に、 低温脱臭触媒は、 銅一マンガン系酸化物から成っており、 アミン系 ゃチオール系の揮発性物質、 硫化水素等の臭気物質を酸化分解する。 更に、 銅一マンガン系酸化物はォゾン分解触媒としても機能してォゾンを分解する ことができる。
このため、 別途オゾン除去装置を設けなくてもオゾンの流出を抑制するこ とができ、 後述するイオン発生装置の駆動制御とともに、 冷蔵室や野菜室の オゾン濃度を人体に無害で無視できる程度まで低下させることができる。 ま た、 オゾン除去装置を設けないため冷蔵庫 1のコス トを削減することができ る。 そして、 脱臭装置 1 2はイオン発生装置 1 1の周辺に設けられているた め、 発生したオゾンが素早く分解され、 他の部材ゃ冷蔵室 2等に影響を及ぼ しにく くなつている。
また、 加熱脱臭等の他の方法により脱臭効果が得られる場合には、 オゾン 分解能力に優れたオゾン分解触媒を脱臭装置 1 2に担持してもよい。 このよ うなオゾン分解触媒として、 例えば、 二酸化マンガン、 白金粉末、 二酸化鉛 、 酸化銅(11)、 ニッケル等を使用する。
吸着剤は臭気物質、 オゾン及び浮遊菌を吸着するために担持されており、 例えば、 シリカゲル、 活性炭、 ゼォライ ト、 セピオライ ト等を使用すること ができる。 粒状や粉状の吸着剤を別途設置してもよい。 また、 脱臭装置 1 2 を着脱可能に設けると、 交換や清掃が可能となり冷蔵庫内を清潔に保つこと ができる。
尚、 脱臭装置 1 2をイオン発生装置 1 1の風上に設けると、 イオンが低温 脱臭触媒や吸着剤と接触しないためイオン性が喪失されず、 イオンの存在領 域を広く して殺菌能力を向上させることができる。 従って、 目的に応じて脱 臭装置 1 2を配置することができる。
上記構成の冷蔵庫において、 冷却器 2 9で冷却された冷気は、 送風機 3 0 により冷気通路 3 8を通って圧力室 3 2に送られる。 冷気は圧力室 3 2から ダク ト 3 1を通って吐出口 3 1 a、 3 1 b、 3 1 cから冷凍室 3に吐出され る。 これにより冷凍室 3内が冷却され、 冷気は冷凍ケース 2 3、 2 4の前方 から冷凍ケース 2 4の下方を通って冷気戻り 口 3 5から冷却器 2 9に戻され る。
冷蔵室 2に設けられた冷蔵室用温度センサ 4 8 (図 2参照) により冷蔵室 2の室温が所定の温度よりも高くなつたことを検知すると、 冷気分配室 1 7 のダンパー 1 7 aが開かれる。 圧力室 3 2内の冷気は冷気分配室 1 7を通つ て冷気通路 4 1へ導かれる。
冷気通路 4 1を通る冷気の一部は、 吐出口 1 4から隔離室 5のケース 7に 送り込まれてケース 7内の貯蔵物を冷却し、 ケース 7の前方上端と載置棚 8 との間から冷蔵室 2へ流出する。 尚、 吐出口 1 4からケース 7に送り込まれ る冷気の量は、 ケース 7内の温度が冷蔵室 2より低い温度に保たれるように 、 吐出口 1 4、 1 5の開口面積等により調整されている。
冷気通路 4 1を通る他の冷気は、 上昇通路 4 1 aを上昇し、 下降通路 4 1 bを下降して吐出口 1 5から冷蔵室 2内に吐出される。 該冷気は載置棚 8や ドアポケッ ト 2 1 a〜 2 1 dに載置された貯蔵物を冷却しながら降下する。 そして、 隔離室 5から流出した冷気とともにケース 7の底面と仕切部 6 a と の間を通って冷気戻り口 1 0からイオン発生室 4 5に流入する。
尚、 冷気戻り口 1 0の前方に、 冷気戻り口 1 0を覆ってケース 7の下方で 開口する案内部を設けてもよい。 このようにすると、 吐出口 1 4から冷気戻 り 口 1 0へのショートサーキ、ソトが防止され、 ケース 7の下方の左右方向に 広い範囲から冷気を吸引して均一な冷気流が得られる。 これにより、 冷蔵室 2内の冷却効率を向上させることができる。
イオン発生室 4 5に流入した冷気はイオン発生装置 1 1の針状電極 1 1 a の周辺に到達する。 針状電極 1 1 aからコロナ放電されて生じるプラスィォ ン及ぴマイナスイオンは、 凝集して冷気内に浮遊する浮遊菌を取り囲む。 そ して、 [ · O H ] や H 2 0 2の活性種により浮遊菌の殺菌を行う。 その後、 脱 臭装置 1 2により隔離室 5や冷蔵室 2の貯蔵物から発生した臭気物質及ぴコ ロナ放電により極微量発生したオゾンが分解または吸着により除去される。 隔離室 5及ぴ冷蔵室 2内を循環した冷気は冷気戻り 口 1 0を通って冷気戻 り 口 1 0に近接された針状電極 1 1 aの周辺及び脱臭装置 1 2を通過する。 このため、 隔離室 5に入れられた魚等の強い臭いを迅速に脱臭できるととも に、 比較的室温の高い冷蔵室 2内の貯蔵物から発せられる多量の臭いを発生 源近くで効率よく脱臭できる。 従って、 隔離室 5や冷蔵室 2の臭いを他に移 りにく くすることができる。
また、 脱臭装置 1 2をケース 7と仕切壁 6 bとの間に配置してもよい。 こ のようにすると、 オゾン除去装置を別途必要とするが、 冷気の通過面積を広 くすることができ脱臭効果を向上させることができる。
脱臭装置 1 2を通過した冷気は、 冷気通路 1 6を通って吐出口 1 3から野 菜室 4に冷気が吐出される。 該冷気は冷蔵室 2からの戻り冷気であるが、 ィ オン発生装置 1 1及ぴ脱臭装置 1 2により脱臭されているため、 野菜室 4の 貯蔵物には臭いが付着しない。
そして、 該冷気は野菜室 4内の野菜ケース 2 6の下方及ぴ前面を通り、 野 菜ケースカバー 2 8の上面を通って冷気戻り 口 3 4を介して冷気通路 3 8に 流入する。 除霜用のヒータ 3 3は脱臭触媒が担持された触媒皮膜層で覆われ ており、 ヒータ 3 3により野菜室 2内を通った冷気内の臭気物質が除去され た後、 冷気が冷却器 2 9に戻される。
尚、 冷気流通経路である冷蔵室 2或いは野菜室 4内にプラスイオンとマイ ナスイオンとを直接送出することも考えられ、 このようにすることによって 浮遊菌の殺菌効果を向上させることができる。 図 6は、 冷蔵庫 1 の構成を示すブロック図である。 電気回路組品 4 7 (図 1参照) には例えばマイクロコンピュータ等から成る制御部 5 0が設けられ ている。 制御部 5 0には冷蔵室用温度センサ 4 8 (図 2参照) 、 冷凍室用温 度センサ 4 9により検出された冷蔵室 2及ぴ冷凍室 3の温度が入力される。 冷蔵室扉開閉検知スィツチ 5 1、 野菜室扉開閉検知スィツチ 5 2、 冷凍室 扉開閉検知スィツチ 5 3は冷蔵室扉 1 9、 野菜室扉 2 5、 冷凍室扉 2 2の開 閉を検知し、 検知結果を制御部 5 0に入力する。 また、 ダンパー開閉検知ス イッチ 5 4によりダンパー 1 7 aの開閉を検知して制御部 5 0に入力される また、 制御部 5 0には、 ダンパー 1 7 a、 圧縮機 4 6、 送風機 3 0、 ィォ ン発生装置 1 1及ぴ照明灯 5 5が接続されている。 制御部 5 0に入力される 信号に基づいてこれらの駆動が制御されるようになっている。
次に、 イオン発生装置 1 1は冷蔵室扉 1 9、 野菜室扉 2 5、 ダンパー 1 7 aの動作や圧縮機 4 6の運転状態等に応じて駆動されるようになっている。 図 7はこれらの動作を示すメィンルーチンのフローチヤ一トである。 また、 図 8は冷蔵室扉 1 9及び野菜室扉 2 5の開閉を常時監視するサブルーチンの 扉開閉監視処理を示している。
図 8において、 ステップ # 4 1では冷蔵室扉 1 9及び野菜室扉 2 5の一方 が開いたか否か判断され、 開かれるまで待機する。 冷蔵室扉 1 9または野菜 室扉 2 5が開く とダンパー 1 7 aが閉じられ、 タイマー T M 3及ぴイオン発 生装置 1 1が一時停止される。 ステップ # 4 2で冷蔵室扉 1 9及び野菜室扉 2 5が閉じたか否かが判断される。
閉じられていない場合は、 ステップ # 4 3で冷蔵室扉 1 9または野菜室扉 2 5が開いた後 3秒が経過したか否かが判断される。 3秒が経過していない 場合はステップ # 4 2に戻り、 ステップ # 4 2、 # 4 3が繰り返し行われる 。 3秒の経過よりも冷蔵室扉 1 9及ぴ野菜室扉 2 5の閉成が早い場合はステ ップ # 4 1に苠つて冷蔵室扉 1 9または野菜室扉 2 5が開くまで待機される 冷蔵室扉 1 9または野菜室扉 2 5が開いた後 3秒が経過した場合はステツ プ # 4 4に移行する。 ステップ # 4 4では、 冷蔵室扉 1 9及ぴ野菜室扉 2 5 が閉じられている間の圧縮機 4 6、 イオン発生装置 1 1の駆動された回数を 示す駆動回数 N cmp、 N ionがリセッ トされ、 冷蔵室扉 1 9または野菜室扉 2 5の開閉回数 N dorがインクリメントされるようになっている。 そして、 ステ ップ # 4 5で冷蔵室扉 1 9及ぴ野菜室扉 2 5が閉じられるまで待機し、 閉じ られるとステップ # 4 1に戻り、 冷蔵室扉 1 9及ぴ野菜室扉 2 5の開成を監 視する。 冷蔵室扉 1 9及び野菜室扉 2 5が閉じられると、 ダンパー 1 7 aが 開成され、 イオン発生装置 1 1が再起動される。 尚、 冷蔵室扉 1 9及び野菜 室扉 2 5の開閉及び 3秒の経過の判断は、 それぞれの扉につき独立に行われ る。
後述するように、 圧縮機 4 6の駆動回数 N crapは扉開閉後に圧縮機 4 6が駆 動される毎にインク リ メントされる (図 7、 ステップ # 1 7参照) 。 イオン 発生装置 1 1の駆動回数 N ionは扉開閉後にイオン発生装置 1 1が駆動される 毎にィンクリメントされる (図 1 0、 ステップ # 7 3参照) 。 また、 冷凍室 扉 2 2等の他の扉の開閉動作等を上記のフロ一チャートの判断に加えてもよ レ、。 これは以下のフローチャートにおいても同様である。
圧縮機 4 6の駆動回数 N cmp、 イオン発生装置 1 1の駆動回数 N ion及び開 閉回数 N dorの値によって、 冷蔵室 2及び野菜室 4等の各貯蔵室に溜まるォゾ ンが多くなる危険性があるためイオン発生装置 1 1の駆動が制限されるよう になっている。 このため、 冷蔵室扉 1 9または野菜室扉 2 5が 3秒以上開い た際に貯蔵室内の空気の一部が外気と入れ替わり同時に貯蔵室内のオゾンの 一部が流出したと判断して駆動回数 N cmp、 N ionをリセットするようになつ ている。 これにより、 各貯蔵室内に多量のオゾンを溜めず、 使用者の不快感 を軽減できる。
次に、 図 7を参照して圧縮器 4 6等の駆動動作を説明する。 冷蔵庫 1の電 源を投入すると、 ステップ # 1 1で制御部 5 0を初期状態に戻して後述する 変数及ぴタイマーが初期化される。 ステップ # 1 2では後述のタイマー T M 1が 5 0 0時間を経過したかどうかが判断される。 ここでは経過していない のでステップ # 1 3に移行し、 冷蔵室用温度センサ 4 8の検知結果により冷 蔵室 2が所定の温度よりも高温か否かが判断される。
冷蔵室 2が所定の温度よりも高温の場合はステップ # 3 1でダンパー 1 7 aが開かれ、 ステップ # 3 2で冷凍室 3の温度が冷凍室用温度センサ 4 9に より検出される。 冷蔵室 2が所定の温度以下の場合はステップ # 1 4で冷凍 室用温度センサ 4 9の検知結果により冷凍室 3が所定の温度よりも高温か否 かが判断される。
冷凍室 3が所定の温度よりも高温の場合はステップ # 1 5に移行する。 冷 凍室 3が所定の温度以下の場合はステップ # 1 2に戻り、 冷蔵室 2及び冷凍 室 3 のいずれかが所定温度よりも高温になるまでステップ # 1 2〜# 1 4が 行われて待機される。
ステップ # 1 5では冷蔵室 2及ぴ冷凍室 3の温度に基づいて圧縮機 4 6の 運転条件が設定される。 例えば、 冷蔵室 2及び冷凍室 3が所定の設定温度以 上の場合は、 圧縮機 4 6が最大出力で運転されるようになっている。 ステツ プ# 1 6では設定された運転条件で圧縮機 4 6が駆動され、 冷凍サイクルが 運転される。 ステップ # 1 7ではイオン発生装置駆動フラグ F ionがリセッ ト される。 この時、 これまで停止していた圧縮機 4 6のオフの時間を記憶する ため、 オフ時間 T offにタイマー T M 2の値が代入され、 圧縮機 4 6の駆動回 数 N cmpがインクリメントされる。
フラグ F ionは圧縮機 4 6の駆動中にイオン発生装置 1 1が駆動されると 1 が代入されるようになっている。 オフ時間 T offは圧縮機 4 6の運転率 Eの演 算に使用され、 圧縮機 4 6のオン時間 T on及ぴオフ時間 T offにより運転率 E は、 T onZ ( T on + T off) X 1 0 0 %で表される。 ここでは、 運転開始当初の ためオン時間 T onが定まっていないので演算できない。 ステップ # 1 8では タイマ一 T M 2がリ スタートされ、 圧縮機 4 6のオン時間の計測が開始され る。
ステップ # 1 9では、 図 9のイオン発生処理が呼出される。 図 9のステツ プ # 5 1ではイオン発生装置駆動フラグ F ionが 0か否かが判断され、 1 の場 合は図 7のメインルーチンに戻る。 ステップ # 5 2ではイオンの送出を許可 するイオンスィッチ (不図示) が使用者によりオンに設定されているか否か が判断され、 許可されていない場合はイオンが発生されずメィンルーチンに 戻る。 ステップ # 5 3では、 ダンパー 1 7 aが開いているか否かが判断され 、 閉じられている場合は冷蔵室 3及び野菜室 4に冷気が送出されないためィ オンが発生されずメィンルーチンに戻る。
ステップ # 5 4では、 圧縮機 4 6の駆動回数 N cmpが 0または偶数か否かが 判断される。 駆動回数 N cmpが 0の場合は、 冷蔵室扉 1 9または野菜室扉 2 5 が開閉されてからはまだ圧縮機 4 6が駆動されていないことを意味する。 また、 本実施形態では原則として冷蔵室扉 1 9または野菜室扉 2 5が開閉 されてから圧縮機 4 6が 2回駆動される毎にイオンを発生するようになって いる。 このため、 圧縮機 4 6の駆動回数 N cmpが偶数の時はステップ # 5 5に 移行し、 奇数の時はメインルーチンに戻る。 これにより、 冷蔵室扉 1 9また は野菜室扉 2 5が開閉されてから閉じられたままの状態では、 一度浮遊菌を 殺菌すれば以後の浮遊菌発生量が少ないと考え、 必要以上にィオンを発生す ることによるオゾンの発生を抑制している。
また、' 圧縮機 4 6が例えば、 3回駆動される毎にイオンを発生するように してもオゾンの発生を抑制できる。 この場合、 ステップ # 5 4では圧縮機 4 6の駆動回数 N cmpが 3の倍数の時にステ プ # 5 5に移行させればよい。 ステップ # 5 5では冷蔵室 2または野菜室 4が開閉されてからイオン発生 装置 1 1の駆動回数 N ionが 6よりも小さいか否かが判断される。 駆動回数 N ionが 6の時はイオン発生装置 1 1が冷蔵室 2及ぴ野菜室 4を閉じたままで 6 回駆動されたことになり、 冷蔵室 2及ぴ野菜室 4に溜まったオゾン量が多く なっていると判断してイオンを発生せずにメインルーチンに戻る。 尚、 冷蔵 室 2及び野菜室 4を閉じたままでのイオン発生装置 1 1の駆動時間が所定時 間よりも長いときにイオンを発生せずメィンルーチンに戻るようにしてもよ い。 更に、 冷蔵室扉 1 9または野菜室扉 2 2が開閉されてから扉開閉なしで 所定時間 (例えば、 3時間) 経過したか否かを判断して、 経過している場合 にはイオンを発生せずメィンルーチンに戻るようにしてもよい。
ステップ # 5 6ではイオン発生装置 1 1の累積駆動回数 N tt lが所定回数 ( 例えば本実施形態では 5 0回) よりも大きいか否かが判断され、 小さい場合 はステップ # 5 9に移行する。 累積駆動回数 Nttlは冷蔵室 2及び野菜室 4の 開閉に関わらずイオン発生装置 1 1が駆動される毎にインク リメントされる (図 1 0、 ステップ # 73参照) 。
このため、 イオン発生装置 1 1が累積で 50回駆動された後に、 冷蔵室扉 1 9または野菜室扉 2 5の開閉回数 Ndorが所定回数 (例えばここでは 1 0回 ) 以上開閉されなければ冷蔵室 2及び野菜室 4に溜まるオゾン量が多くなつ ていると判断してイオンを発生せずにメインルーチンに戻る (ステップ # 5 7) 。 開閉回数 Ndorが 1 0回以上の場合は、 ステップ # 5 8でイオン発生装 置 1 1の累積駆動回数 Nttl及ぴ開閉回数 Ndorがリセットされ、 ステップ # 5 9に移行する。 尚、 累積駆動回数 Nttlに替えて、 イオン発生装置 1 1の累 積の駆動時間により判断してもよい。
ステップ # 5 9では前回駆動の圧縮機 4 6の運転率 Eが演算され、 運転率 Eが 50 %よりも大きいか否かが判断される。 前述したように、 運転率 Eは 前回駆動時の圧縮機 46のオン時間 Tonと前回駆動終了から今回の駆動まで のオフ時間 Toffにより、 Ton/ (Ton+ Toff) X I 00%で計算される。 圧縮機 46の運転率 Eが例えば 50%よりも大きい場合は、 ステップ # 6 0でイオン発生装置 1 1の所定の駆動時間 Tionが 1 5分に設定される。 圧縮 機 4 6の蓮転率 Eが 50 %以下の場合は外気温が低い若しくは負荷が少ない と考えられ、 冷蔵室 2又は野菜室 4に流入する浮遊菌の量が少ないと判断し 、 ステップ # 6 1でイオン発生装置 1 1の所定の駆動時間 Tionを 1 0分に設 定している。 これにより、 イオン発生装置 1 1の所定の駆動時間 Tionを異な る時間にすることによりイオンの発生量を調整し、 不要なイオンを発生させ ずオゾンの発生を抑制することができる。
尚、 上記において所定量のイオンの発生をイオン発生装置 1 1の所定の駆 動時間 Tionで調整しているが、 針状電極 1 1 aに印加される電圧を異なる値 (例えば、 E > 50 %の時に印加電圧が 5 k Vp- pで 1 0分間印加、 E≤50 %の時に印加電圧が 3. 6 k Vp- pで 1 0分間印加) に設定してもよい。 ステップ # 6 2ではステップ # 6 0、 # 6 1の設定に基づいてイオン発生 . 1がオンされる。 ステップ # 63ではフラグ F ionに 1が代入され、 タ イマ一 T M 3がリスタートされる。 タイマー T M 3は、 イオン発生装置 1 1 の駆動時間を計時する。 そして、 メインルーチンに戻る。 尚、 上記の運転率 Eとイオン発生時間 T ionとの関係を、 例えば E < 4 0 %の時に T ion = 7分 、 4 0 E < 8 0 %の時に T ion = 1 0分、 E≥ 8 0 %の時に T ion = 1 5分 、 のように数段階にしておく と、 よりきめ細かな殺菌制御を行うことができ る。
図 7のメインルーチンではステップ # 2 1で図 1 1に示すダンパー凍結防 止処理が呼出される。 本実施形態では、 ダンパー 1 7 aの凍結を防止するた めダンパー 1 7 aが開いてから所定時間 (例えば 1 2分) 経過すると一時的 にダンパ一 1 7 aが閉じられる。
ダンパ一凍結防止処理のステップ # 8 1ではイオン発生装置 1 1が駆動し ているか否かが判断される。 駆動している場合はステップ # 8 2でダンパー 1 7 aが閉じられているか否かが判断される。 ダンパー 1 7 aが開いている 場合はダンパー凍結防止処理が行われておらず、 メィンルーチンに戻る。 ダンパー 1 7 aが閉じられている場合はステップ # 8 3でイオン発生装置 1 1が停止される。 ステップ # 8 4ではタイマー T M 3が一時停止され、 ス テツプ # 8 5では結露防止状態を示すフラグ F conに 1が代入される。
ステップ # 8 1でイオン発生装置 1 1が駆動していないと判断した場合は ステップ # 8 6でダンパー 1 7 aが開いているか否かが判断される。 ダンパ 一 1 7 aが閉じている場合はイオン発生装置 1 1はオフのままでよいのでメ ィンルーチンに戻る。 ダンパー 1 7 aが開いている場合はステップ # 8 7で フラグ F conが 1であるか否かが判断される。
フラグ F conが 0の場合は、 通常のイオン発生状態であることを示しており 以後の結露防止処理は行われずにメインルーチンに戻る。 フラグ F conが 1の 場合は、 ダンパー凍結防止処理状態からダンパー 1 7 aが開かれてダンパ一 凍結防止処理が終了した状態であるので、 ステップ # 8 8でイオン発生装置 1 1が駆動される。 ステップ # 8 9ではタイマー T M 3の一時停止が解除さ れる。 ステップ # 9 0ではフラグ F conがリセッ トされダンパー凍結防止処理 状態が解除される。 これにより、 一時停止により所定の発生量に達していな かったイオンが継続して発生し、 浮遊菌の殺菌を十分行うことができる。 図 7のメインルーチンに戻り、 ステップ # 2 2ではタイマー T M 3が所定 の駆動時間 T ionになったか否かが判断される。 タイマー T M 3が所定の駆動 時間 T i onになった場合はステップ # 2 3で後述する図 1 0のイオン停止処理 が呼出される。
タイマー T M 3が駆動時間 T i onになっていない場合はステップ # 2 4で冷 蔵室用温度センサ 4 8 (図 2参照) の検知結果により冷蔵室 2が所定の温度 まで降温されたか否かが判断される。 所定温度以下になっていない場合はス テツプ # 1 9に戻り、 ステップ # 1 9〜 # 2 4が繰り返し行われる。
冷蔵室 2が所定温度以下になった場合には、 ステップ # 2 5でダンパー 1 7 aが閉じられる。 そして、 ステップ # 2 6でイオン停止処理が呼出され、 ステップ # 2 7で冷凍室 3が所定温度まで降温されたか否かが判断される。 冷凍室 3が所定温度以下になっていない場合はステップ # 1 9に戻り、 ステ ップ # 1 9〜 # 2 6が繰り返し行われる。
ステップ # 1 9に戻った際に、 フラグ F i onが 1になっている場合は、 ィォ ン発生処理 (図 9参照) ではステップ # 5 1で直ちに抜け出る。 また、 冷蔵 室扉 1 9または野菜室扉 2 5が開閉されると、 圧縮機 4 6の駆動回数 N cmp及 ぴイオン発生装置 1 1の駆動回数 N i onがリセットされる (図 8、 ステップ # 4 4参照) 。
このため、 フラグ F i onが 0の場合に、 図 9のステップ # 5 4、 # 5 5にお いて条件を満足してイオン発生装置 1 1が駆動される場合がある。 従って、 冷蔵室扉 1 9または野菜室扉 2 5の開閉により冷蔵室 2及び野菜室 4内に溜 まったオゾンの少なく とも一部が流出したと考えられる場合は、 直ちにィォ ン発生装置 1 1を駆動して冷蔵室 2及び野菜室 4内の浮遊菌を殺菌すること ができる。
ステップ # 2 3、 # 2 6では図 1 0のイオン停止処理が呼出される。 ステ ップ # 7 1では既にイオンが停止されているか否かが判断され、 停止されて いる場合はメインルーチンに戻る。 イオンが発生中の場合はステップ # 7 2 でイオン発生装置 1 1が停止される。 ステップ # 7 3ではタイマー TM 1がリスタートされてイオン発生装置 1 1の駆動停止後の時間の計時が開始され、 タイマー TM 3及ぴイオン発生装 置 1 1の所定の駆動時間 Tionがリセッ トされる。 また、 イオン発生装置 1 1 の駆動回数 Nion及ぴ累積駆動回数 Nttlがインクリメントされ、 メインルー チンに戻る。
冷蔵室 2が所定温度に降温される前にタイマー TM3が所定の駆動時間 Ti onに達するとステップ # 23でイオン発生装置 1 1が停止され、 タイマー T M 3が所定の駆動時間 Tionに達する前に冷蔵室 2が所定温度に降温されると ステップ # 2 6でイオン発生装置 1 1が停止される。
ステップ # 2 6でイオン発生装置 1 1が停止された場合には、 イオン発生 装置 1 1の所定の駆動時間 Tionがリセッ トされているので、 冷蔵室 2が所定 温度まで降温された後はイオン発生装置 1 1は所定の駆動時間 Tionに達して いなくても以後のイオン発生は行われずに停止される。
冷蔵室 2の降温が早く行われるのは外気温度が低いためと考えられ、 冷蔵 庫 1内に進入する浮遊菌の量が少ない。 このため、 イオン発生装置 1 1を停 止しても十分殺菌できるとともに、 オゾンの増加を抑制できるようになって いる。
尚、 外気温度を検知してイオン発生装置 1 1を停止してもよい。 即ち、 図 1 1のステップ # 8 2とステップ # 8 3との間に、 図 1 2に示すように外気 温度に基づく制御を挿入すると、 所定の駆動時間 Tionに達していなくても以 後のイオン発生は行われずに停止される。 これにより、 上記と同様に外気温 が低いときは必要以上にイオンを発生させず、 オゾンの増加を抑制して適正 な殺菌を行うことのできる冷蔵庫を得ることができる。
ステップ # 9 1では外気温度が所定の温度 t 0よりも低いか否かが判断さ れる。 外気温度が所定の温度 t 0以上の場合はステップ # 8 3に移行して前 述の処理が行われる。 外気温度が所定の温度 t 0よりも低い場合はステップ # 9 2でタイマー TM 3が所定の時間 T 1 (例えば 5分) よりも経過してい るか否かが判断される。
タイマー TM 3が所定の時間 T 1だけ経過していない場合はステップ # 8 3に移行する。
タイマー TM 3が所定の時間 T 1だけ経過しており、 所定量のイオンが発 生している場合にはステップ # 9 3に移行してイオン発生装置 1 1の所定の 駆動時間 Tionにタイマー TM 3の値が代入される。 そして、 ステップ # 8 3 に移行する。
タイマー TM 3が駆動時間 Tionと等しいため、 メィンルーチンに戻った際 にステップ # 2 2で条件を満足してステップ # 2 3でイオン停止処理が行わ れる。 これにより、 外気温度を検知して所定の駆動時間 Tionに達していなく ても以後のイオン発生は行われずに停止される。 また、 ダンパー 1 7 aの開 閉の指令が冷蔵庫内や外気の温度による場合と、 扉の開閉やその他の指令に よる場合を選別し、 温度による場合には残りのイオン発生時間があってもリ セッ トするように判断すると更にオゾン発生を抑制して適正な殺菌を行うこ とができる。
メィンルーチンのステップ # 2 8では冷蔵室 2及ぴ冷凍室 3が所定温度ま で降温されたため圧縮機 4 6が停止される。 ステップ # 2 9ではこれまで稼 働していた圧縮機 4 6のオンの時間を記憶するために、 タイマー TM 2の値 がオン時間 Tonに代入される。 ステップ # 3 0ではタイマー TM2がリスタ ートされ、 圧縮機 4 6のオフ時間の計時が開始される。
そして、 ステップ # 1 2に戻り、 ステップ # 1 2〜# 3 0が繰り返し行わ れる。 イオン発生装置 1 1が最後に駆動されてから長期の所定時間 (例えば 本実施形態では 5 0 0時間) が経過した場合は、 冷蔵室 2及び野菜室 4内の オゾンは消失していると考えられる。 従って、 ステップ # 7 2、 # 7 3 (図 1 0参照) でイオン発生装置 1 1が O F Fされる毎にタイマー TM 1をリス タートし、 タイマー TM 1 = 5 0 0 Hとなったとき、 ステップ # 1 2の判断 によりステップ # 1 1に移行して全ての変数及ぴタイマーが初期化される。 また、 ステップ # 1 1で全てを初期化した後、 最初にイオン発生装置を駆 動する際にイオン発生装置の所定の駆動時間 Tionを短く してもよい。 例えば 、 全てを初期化すると同時にフラグ Ffst= 1にする。 そして、 ステップ # 1 9のイオン発生処理を行うときに、 図 9のステップ # 5 9の前でフラグ Ffst が 1か否かを判断する。 フラグ F f stが 1の場合は所定の駆動時間 T ionを例 えば 7分にし、 フラグ F fstに 0を代入してステップ # 6 2に移行する。 また 、 フラグ F fstが 0の場合はステップ # 5 9に移行する。
このようにすると、 冷蔵庫 1を購入して初めて電源に繫ぎ、 ィオンスイツ チがオンになっていてイオン発生装置 1 1が駆動されても駆動時間が短いた めオゾンの発生量が少ない。 従って、 貯蔵室内が冷却されてから貯蔵物を貯 蔵室内に入れる際に、 食品から出る臭いによってオゾン臭が隠されるマスキ ング効果のない状態であっても、 使用者にオゾン臭を感じさせず、 不快感を 与えない冷蔵庫 1が得られる。
本実施形態によると、 プラスイオンとマイナスイオンとにより冷蔵庫内の 冷気の殺菌を行うので、 プラスイオンを捕集する捕集電極等を必要とせず簡 単な構成で貯蔵物の損傷を抑制することができる。
また、 実質的な対向電極を持たない電極からコロナ放電することにより、 発生したプラスイオンとマイナスイオンが電位差により吸引されない。 この ため、 冷気の流通経路内の広い範囲に送風がなくても拡散される。 そして、 両イオンが浮遊菌の表面に凝集し、 衝突により生成される活性種により広い 範囲で浮遊菌の殺菌を行うことができる。 従って、 送風能力を大きく して装 置を複雑化することなく殺菌能力を向上させることができる。 また、 電極に は正電圧と負電圧とが印加されるため電気回路が帯電されず、 大地に繋ぐァ ースが不要となり家庭内に容易に冷蔵庫を設置することができる。
また、 放電時に発生するオゾンの残留を抑制し使用者の不快感ゃ健康を害 する危険を防止することができる。 尚、 プラスイオンとマイナスイオンとを コロナ放電により発生しているが、 これに限らず、 他の方式によりイオンを 発生しても同様の効果を得ることができる。
次に、 図 1 3は第 2実施形態の冷蔵庫を示す側面断面図である。 図 1. 4、 図 1 5は、 本実施形態の冷蔵庫のイオン発生室を示す側面断面図及び背面図 である。 説明の便宜上、 これらの図において、 前述の図 1〜図 5に示す第 1 実施形態と同様の部分には同一の符号を付している。
第 1実施形態と異なる点は、 電極部 1 1 cを支持する支持部 1 0 aは、 グ リル 1 0 bの上部に一体形成され、 針状電極 1 1 aがイオン発生室 4 5の上 部から垂下して配置ざれている点である。 その他の構成は第 1実施形態と同 様である。
前述したように、 支持部 1 0 a と針状電極 1 1 a との距離 Lが短いと、 支 持部 1 0 aに結露が生じた際等に支持部 1 0 aに高圧がかかるおそれがある 。 支持部 1 0 aが確実に絶縁されるためには距離 Lを 3 . 5 m m以上にして 支持部 1 0 a と針状電極 1 1 a とを離す必要がある。
一方、 針状電極 1 1 aを支持部 1 0 aに接近させて設置すると、 イオン発 生室 4 5内の上面に近い位置からイオンが放出され、 イオンと冷気との接触 期間を長く して、 後述するように殺菌能力を向上させることができる。 従つ て、 本実施形態では距離 Lを 5 m mにし、 殺菌能力を確保するとともに、 高 電圧が針状電極 1 1 aに常に安定して加わり、 コロナ放電が確実に行われて 安定したイオンの放出ができるようになつている。
図 1 4に示すように、 矢印 B 1 の方向に冷気戻り 口 1 0からイオン室 4 5 に流入する冷気は矢印 B 2の方向に向きを変えて冷気通路 1 6に導かれる。 針状電極 1 1 aから放出されるイオンは、 A部に示すように、 針状電極 1 1 aの先端から放射角度が約 4 5 ° の領域に高い密度で放出される。 針状電極 1 1 aはイオンの密度の高い領域 ( 部) が冷気の流通方向 (B 2方向) に 沿うように配されている。
これにより、 放出されたイオンと壁面との衝突によるイオンの減少を抑制 するとともに、 冷気によりイオンが容易に搬送され、 冷気の流通方向の広い 範囲でイオンと冷気とが接触する。 従って、 殺菌能力をより向上させること ができる。 尚、 針状電極 1 1 aの先端からは、 放射角度が約 4 5 ° の領域の 外側の領域にも密度の低いイオンが放出されている。
また、 図 1 5に示すように、 針状電極 1 1 aの針状部 1 1 cを複数形成し た場合には、 各針状部 1 1 cの向きを異なる向きにすることにより、 B 2方 向に最も高いイオン密度を有しながら、 広い角度範囲でイオンの密度を大き くすることができる。 また、 イオン発生室 4 5内に限らず、 冷気流のある場 所であれば冷気流に沿ってイオンを放出することにより同様に殺菌効果を向 上させることができる。
また、 針状電極 1 1 aの下方 (風下側) に脱臭装置 1 2が設けられるため イオンは脱臭装置 1 2の上面全域に均一に照射される。 従って、 脱臭装置 1 2で捉えられた浮遊菌を確実に殺菌することができ、 より殺菌能力を向上さ せることができる。
この時、 脱臭装置 1 2をイオン発生装置 1 1に近接すると、 脱臭装置 1 2 に捉えられた浮遊菌を大量に殺菌することができるが、 針状電極 1 1 aから 冷気の流れに沿ってイオンが放出されるため、 脱臭装置 1 2をイオン発生装 置 1 1から離して配置すると、 より殺菌能力を向上できる。
即ち、 イオンが冷気の流れに乗ってより遠くまで到達でき、 浮遊菌が長期 間イオンと接触して脱臭装置 1 2に到達するまでに殺菌されて減少する。 そ の後に、 浮遊菌が脱臭装置 1 2に捉えられるため脱臭装置 1 2を通過する浮 遊菌が減少する。 そして、 脱臭装置 1 2に捕集された浮遊菌が脱臭装置 1 2 に到達したイオンにより殺菌される。 脱臭装置 1 2に抗菌処理を施した場合 はより殺菌効果が向上する。
イオン発生装置 1 1により発生したイオンは、 脱臭装置 1 2に照射される ため大部分のイオンが脱臭装置 1 2に捉えられた浮遊菌を殺菌して消失する 。 従って、 発生したイオンがイオン室 4 5内で消失されるため、 野菜室 4内 や冷気通路 1 6がイオンにより劣化することを防止できる。 イオン室 4 5の 壁面にはイオン劣化を防止する金属被膜処理ゃ耐イオン物質コーティング等 を施してもよい。 また、 イオン発生室 4 5の壁面を金属板で覆ってもよレ、。 尚、 脱臭装置 1 2をイオン発生装置 1 1の風上に設けると、 イオンが低温 脱臭触媒や吸着剤と接触しないためイオン性が喪失されず、 イオンの存在領 域を広く して殺菌能力を向上させることができる。 従って、 目的に応じて脱 臭装置 1 2を配置することができる。
次に、 図 1 6は第 3実施形態の冷蔵庫のイオン発生室を示す背面図である 。 説明の便宜上、 前述の図 1 3〜図 1 5に示す第 2実施形態と同様の部分に は同一の符号を付している。 本実施形態は、 イオン発生装置 1 1にそれぞれ 電源部 1 1 eにより印加電圧を制御される 4本の針状電極 1 1 P 、 1 1 q 、 1 1 r、 1 1 sが設けられている。 その他の構成は第 2実施形態と同一であ る。
針状電極 1 1 p、 1 1 qは、 第 2実施形態と同様に、 イオン発生室 4 5の 上部から垂下されている。 針状電極 1 1 r、 1 1 sは、 イオン発生室 4 5の 下部から上方に向けてイオンを放出するように取付けられている。 また、 針 状電極 l l p、 1 1 sはプラスイオンを発生し、 針状電極 1 1 q、 l l rは マイナスイオンを発生するようになつている。
針状電極 l l p、 l l qにより、 矢印 B 2の方向に流れる冷気に沿ってィ オンが放出され、 第 2実施形態と同様に冷気に含まれる浮遊菌が長い期間ィ オンと接触して殺菌される。 また、 針状電極 1 1 r、 1 1 sにより、 矢印 B 2方向の冷気の流れに逆行してイオンが放出される。 これにより、 冷気と衝 突するイオンはイオン室 4 5内に拡散され、 より広い領域にイオンが分布し て殺菌能力をより向上させることができる。
また、 一つの針状電極 1 1 a (図 1 4参照) によりプラスイオンとマイナ スイオンとを発生させると、 発生初期に一部が相殺されて実質的なイオン発 生量が低下する。 本実施形態では、 プラスイオンを発生する電極 ( 1 1 P、 l i s ) とマイナスイオンを発生する電極 ( l l q , 1 1 r ) とを区別して いるため、 実質的なイオン発生量を増加させることができる。
そして、 プラスイオンの発生量とマイナスイオンの発生量を容易に可変す ることができる。 また、 プラスイオンを発生する電極とマイナスイオンを発 生する電極とを隣接しているため、 プラスイオンとマイナスイオンとが混合 して均一に分布し、 凝集を容易にして十分な殺菌能力を確保することができ る。
更に、 隣接する電極を少なく とも 1 0 mm以上 (例えば 3 O mm) 離して 配置すると、 それぞれの電極からのプラスイオンとマイナスイオンとの相殺 を殆ど発生させず有効にイオンを殺菌のために利用することができる。 また 、 針状電極 1 1 p、 1 1 sに電圧を印加している際には針状電極 1 1 q、 1 1 rへの電圧の印加を停止し、 針状電極 1 1 q、 1 1 rに電圧を印加してい る際には針状電極 1 1 p、 l i sへの電圧の印加を停止することにより、 プ ラスイオンとマイナスイオンとの相殺を更に低減することができる。
加えて、 例えば、 針状電極 1 1 q、 1 1 pに交互または同時に電圧を印加 し、 針状電極 1 1 r、 l i sへの電圧の印加を所定期間停止することによつ てイオンの発生量を容易に可変することができる。
尚、 針状電極 l l p、 l l q、 l l r、 l i sによりそれぞれ一方のィォ ンのみを発生させてもよいが、 それぞれからプラスイオンとマイナスイオン とを異なる発生比で発生してもよい。 例えば、 針状電極 1 1 p、 1 1 sによ りプラスイオンを多く発生し、 針状電極 1 l q、 l l rによりマイナスィォ ンを多く発生させる。
このようにしても、 プラスイオンを主に発生する電極とマイナスイオンを 主に発生する電極とが区別されるので、 イオンの相殺を低減して実質的なィ オンの発生量を増加させることができる。 この時、 回路構成、 印加電圧、 電 極形状、 電極材質等を異なるようにすることによって容易にイオンの発生パ ランスを可変することができる。
第 2、 第 3実施形態によると、 第 1実施形態と同様の効果を得ることがで きる。 更に、 放出されたイオンと壁面との衝突によるイオンの減少を抑制す るとともに、 冷気によりイオンが容易に搬送され、 冷気の流通方向の広い範 囲でイオンと冷気とが接触する。 従って、 殺菌能力をより向上させることが できる。
また、 第 2、 第 3実施形態において、 針状の電極を用いない場合であって もよい。 例えば、 絶縁体を挟んで対向する電極間に電圧を印加してイオンを 発生すると、 対向電極により装置は大型化されるが、 冷気の流れに沿ってィ オンを放出することにより殺菌効果を向上させることができる。 更に、 ィォ ンだけでなく他の殺菌用物質を放出して殺菌を行ってもよい。 殺菌用物質と して、 例えば、 化学薬品等の有体物や、 物理的には物質ではないが熱や紫外 線等の無体物を用いることができる。
次に、 図 1 7は第 4実施形態の直冷式の冷蔵庫を示す側面断面図である。 同図において、 1 3 1は圧縮機、 1 3 2は冷蔵室 1 3 4に配置された冷蔵室 用冷却器、 1 3 3は冷凍室 1 3 5に配置された冷凍室用冷却器である。 1 3 6は第 1〜第 3実施形態と同様のイオン発生装置であり、 冷蔵室 1 3 4の上 方に設置されたケース 1 3 8内に設けられる。 1 3 7はファンであり、 ファ ン 1 3 7の回転によってケース 1 3 8の吹出し口 1 3 9からプラスイオンと マイナスイオンとが冷蔵室 1 3 4内に排出される。 これにより、 第 1〜第 3 実施形態と同様に、 冷蔵室 1 3 4内に浮遊する細菌が不活化され、 収納され た食品の損傷を抑制する。
次に、 図 1 8は第 5実施形態の食品格納庫 1 2 1を示す上面断面図である 。 食品格納庫 1 2 1は上面を開閉して食品を収納格納することができるよう になっている。 同図において、 1 2 2は食品格納庫 1 2 1の四方の壁それぞ れと所定間隔を持って設置された仕切りである。 この仕切り 1 2 2によって 食品格納庫 1 2 1内を食品配置部 1 2 3と冷気循環路 1 2 4に区分けする。 1 2 5は第 1〜第 3実施形態と同様のイオン発生装置である。 1 2 6はファ ンであり、 ファン 1 2 6の回転によって食品格納庫 1 2 1内にプラスイオン とマイナスイオンとが送出される。 ファン 1 2 6により食品格納庫 1 2 1内 の空気は図中、 矢印で示すように流れ、 プラスイオンとマイナスイオンとは この流れに乗って流通する。 これにより、 第 1〜第 3実施形態と同様に、 空 気中に浮遊する細菌を不活化し、 食品の損傷を抑制する。
次に、 図 1 9は第 6実施形態の食器洗浄乾燥機を示す概略断面図である。 本実施形態の食器洗浄乾燥機は、 第 1〜第 3実施形態と同様のイオン発生装 置 1 1 3を備え、 乾燥工程で食器貯蔵室 1 0 4に熱風を循環させる循環経路 にイオン発生装置 1 1 3の電極部 1 1 3 aを配している。 そして、 乾燥工程 もしくは乾燥工程終了後に電極部 1 1 3 aからプラスイオンとマイナスィォ ンとを放出して食器貯蔵室 1 0 4内にプラスイオンとマイナスイオンとを循 環する。 これにより、 食器貯蔵室 1 0 4内の脱臭と浮遊菌の殺菌を行なうこ とを特徴とするものである。
食器貯蔵室 1 0 4の前面には食器等を出し入れするための開閉自在の前面 ドア 1 0 1が設けられる。 食器貯蔵室 1 0 4内には食器 1 0 2を収納するた めのラック 1 0 3が配され、 ラック 1 0 3の下方には食器貯蔵室 1 0 4のほ ぼ中央部に突出して回転自在の洗浄ノズル 1 0 5が設けられる。 洗浄ノズル 1 0 5には複数の噴射孔 1 0 6が形成され、 洗浄ポンプ 1 0 8により供給さ れる洗浄水を噴射する。 洗浄ノズル 1 0 5の下方には洗浄水を加熱するため の加熱ヒータ 1 0 7が設けられている。
食器貯蔵室 1 0 4の下部には洗浄水を配水管 1 0 9に排出するための排水 ポンプ 1 1 0が配される。 食器貯蔵室 1 0 4の上部には洗浄水を供給するた めの給水管 1 1 1が配される。 給水管 1 1 1の経路途中には給水を制御する ための給水栓 1 1 2が設けられる。 また、 食器貯蔵室 1 0 4の上面を覆って 温風を本体から外方へ排出させるとともに水蒸気を凝縮して水を食器貯蔵室 1 0 4に戻すための熱交換ダク ト 1 1 6が設けられる。
食器貯蔵室 1 0 4の後部にはイオン発生装置 1 1 3、 ファン 1 1 4及ぴヒ ータ 1 1 5が配される。 ファン 1 1 4は空気を循環させて洗浄された食器 1 0 2を乾燥する。 この時、 ヒータ 1 1 5により加熱された空気が食器貯蔵室 1 0 4内に送出される。 またファン 1 1 4によってイオン発生装置 1 1 3の 電極部 1 1 3 aから放出されたプラスイオン及ぴマイナスイオンが食器貯蔵 室 1 0 4内を循環するようになっている。 尚、 1 1 7は食器洗浄乾燥機全体 を制御するための制御装置である。
この食器洗浄乾燥機の動作について説明する。 まず、 前面ドア 1 0 1を開 けて洗浄すべき食器 1 0 2や調理器具等をラック 1 0 3の所定場所に収容す る。 ラック 1 0 3を食器貯蔵室 1 0 4に配置した後、 専用洗剤を投入して運 転を開始する。
そして、 給水弁 1 1 2の 「開」 動作により給水管 1 1 1を介して所定量の 洗浄水を食器貯蔵室 1 0 4に供給する。 続いて、 洗浄ポンプ 1 0 8の運転に より加圧された洗浄水を洗剤とともに回転洗浄ノズル 1 0 5の噴射孔 1 0 6 から食器 1 0 2に噴射して、 洗浄が行われる。
以後、 濯ぎ工程、 乾燥工程が行われる。 そして、 乾燥工程終了後に所定時 間 ( 3 0分程度) ファン 1 1 4とイオン発生装置 1 1 3とが駆動して電極部 1 1 3 aから放出されたプラスイオンとマイナスイオンとが食器貯蔵室 1 0 4に放出され、 図中の矢印に示すように循環する。 尚、 イオンの発生開始は 電極部 1 1 3 aに水滴が付着した場合でも温風で蒸発乾燥すると考えられる 乾燥工程の後半から行なって運転時間を短縮させてもよい。
本実施形態によると、 食器貯蔵室 1 0 4にプラスイオンとマイナスイオン とを放出 ·循環させることにより、 第 1〜第 5実施形態と同様に食器貯蔵室 1 0 4内の脱臭と浮遊菌の殺菌を行なうことができ、 食器や調理器具等を清 潔に貯蔵することができる。
第 1〜第 6実施形態において、 イオン発生装置の電極部の形状は前述の図 4に示す形状に限るものではない。 図 2 0〜図 2 2は他の形状の電極部 1 1 cを示しており、 説明の便宜上、 図 4と同じ部分には同じ符号を付している 図 2 0に示す電極部 1 1 cは、 平板部 l i bから突設された複数の針状電 極 1 1 aの長さが異なるように形成される。 図 2 1に示す電極部 1 1 cは、 平板部 1 1 bから突設された複数の針状電極 1 1 aが同じ向きに形成される 。 図 2 2に示す電極部 1 1 cは平板部 1 1 bから突設された針状電極 1 1 a が 1本に形成される。 何れの場合においても第 1〜第 6実施形態と同様の効 果を得ることができる。
また、 空気の流通方向に対して電極部 1 1 cを略平行に配する場合に限ら ず、 図 2 3に示すように空気流通経路 1 4 1内を流通する空気流 Eに対して 電極部 1 1 cを垂直に配してもよい。
尚、 第 1〜第 6実施形態は冷蔵庫、 食品格納庫及び食器洗浄乾燥機につい て説明しているが、 その他の貯蔵庫に上記と同様のイオン発生装置を搭載し てもよい。 例えば、 冷凍庫、 食器棚、 食器乾燥機、 食器洗い器、 室温よりも 高い温度で貯蔵物を貯蔵する温蔵庫、 食糧貯蔵用の倉庫、 ロッカー等の、 貯 蔵物を貯蔵する目的で所定の大きさを備えて他の空間と仕切られた庫であれ ば同様の効果を得ることができる。 更に、 貯蔵庫はその形態によって庫内が 複数の貯蔵室に仕切られている場合がある。
また、 冷蔵庫は冷蔵機能を備えた倉庫、 冷凍庫は冷凍機能を備えた倉庫で あってもよく、 また保冷車の貯蔵室、 冷却式陳列ケース等の、 貯蔵物を冷却 して貯蔵する目的を有するものがすべて本発明の貯蔵庫に含まれる。 産業上の利用可能性
以上説明したように本発明によると、 プラスイオンとマイナスイオンとに より冷蔵庫等の貯蔵室内の空気の殺菌を行うので、 プラスイオンを捕集する 捕集電極等を必要とせず簡単な構成で貯蔵物の損傷を抑制することができる また、 実質的な対向電極を持たない電極からコロナ放電することにより、 発生したプラスイオンとマイナスイオンが電位差により吸引されない。 この ため、 冷気の流通経路内の広い範囲に送風がなくても拡散される。 そして、 両イオンが浮遊菌の表面に凝集し、 衝突により生成される活性種により広い 範囲で浮遊菌の殺菌を行うことができる。
従って、 送風能力を大きく して装置を複雑化することなく殺菌能力を向上 させることができる。 また、 電極には正電圧と負電圧とが印加されるため電 気回路が帯電されず、 大地に繋ぐアースが不要となり家庭内に容易に冷蔵庫 を設置することができる。 また、 放電時に発生するオゾンの残留を抑制し使 用者の不快感ゃ健康を害する危険を防止することができる。
更に、 冷気の流れに沿ってイオン等の殺菌用物質を放出することにより放 出されたイオンと壁面との衝突によるイオンの減少を抑制するとともに、 冷 気によりイオンが容易に搬送され、 冷気の流通方向の広い範囲でイオンと冷 気とが接触する。 従って、 殺菌能力をより向上させることができる。

Claims

請求の範囲
1. 高電圧の印加によりプラスイオンとマイナスイオンとを発生する電極を 備え、 空気が流通する空気流通経路に前記電極からプラスイオンとマイナス イオンとを放出することを特徴とする貯蔵庫。
2. 対向電極を持たない電極に高電圧を印加してプラスイオンとマイナスィ オンとを発生し、 空気が流通する空気流通経路にプラスイオンとマイナスィ オンとを放出することを特徴とする貯蔵庫。
3. 接地しないイオン発生装置を備え、 該イオン発生装置の電極に高電圧を 印加してプラスイオンとマイナスイオンとを発生し、 空気が流通する空気流 通経路にプラスイオンとマイナスイオンとを放出することを特徴とする貯蔵 庫。
4. 接地電極を持たないイオン発生装置を備え、 前記イオン発生装置の電極 に高電圧を印加してプラスイオンとマイナスイオンとを発生することを特徴 とする貯蔵庫。
5. 高電圧の印加によりプラスイオンとして H+ (H20)nと、 マイナスィォ ンとして 02— (H 20)mとを発生する電極を備え、 空気が流通する空気流通経 路に前記電極からプラスイオン H+ (H2〇)nとマイナスイオン 02— (H20)m とを放出することを特徴とする貯蔵庫。
6. 対向電極を持たない電極に高電圧を印加してプラスイオンとして H + (H 2 0) nと、 マイナスイオンとして 02— (H20)mとを発生し、 空気が流通する空 気流通経路にプラスイオン H + (H20)nとマイナスイオン 02— (H20)mとを 放出することを特徴とする貯蔵庫。
7. 接地しないイオン発生装置を備え、 該イオン発生装置の電極に高電圧を 印加してプラスイオンとして H+ (H 20) nと、 マイナスイオンとして 02— (H 20)とを発生し、 空気が流通する空気流通経路にプラスイオン H+ (H20)n とマイナスイオン Ο 2— (Η 20)mとを放出することを特徴とする貯蔵庫。
8. 接地電極を持たないイオン発生装置を備え、 前記イオン発生装置の電極 に高電圧を印加してプラスイオンとして H+ (H20)nと、 マイナスイオンと して 0 2 _ ( H 2 0 ) mとを発生することを特徴とする貯蔵庫。
9. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 少なく とも 1 つの貯蔵室を備え、 前記空気流通経路は前記貯蔵室の少なく とも 1つを含み 、 プラスイオンとマイナスイオンとが前記貯蔵室に放出される。
10. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 プラスイオン とマイナスイオンとから生成された活性種により前記空気流通経路の浮遊菌 を殺菌する。
11. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 少なく とも 1 つの貯蔵室を備え、 当該貯蔵室の少なく とも 1つに空気を導くダク トを設け るとともに、 該ダク ト内に前記電極を配置した。
12. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 前記電極は平 板から成るとともに、 その一部に針状突起を突設した。
13. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 前記電極は平 板から成るとともに、 その一部に複数の針状突起を突設した。
14. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 前記電極は平 板から成るとともに、 その一部に複数の針状突起を異なる向きに突設した。
15. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 マイナスィォ ンをプラスイオンよりも多く前記空気流通経路に放出する。
16. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 前記電極に交 流電圧を印加してプラスイオンとマイナスイオンとを交互に発生した。
17. 請求項 1 6に記載の貯蔵庫であって、 交流電圧のピーク電圧の絶対値を 1 . 8 k V以上にした。
18. 請求項 1 7に記載の貯蔵庫であって、 交流電圧の電圧幅を 3 . 6 k V p-p から 5 k V p - pの間にした。
19. 請求項 1 6に記載の貯蔵庫であって、 交流電圧の連続印加時間を減菌率 が平衡状態に達する時間よりも短く した。
20. 請求項 1 6に記載の貯蔵庫であって、 交流電圧の連続印加時間を 4 5分 以下にした。
21. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 前記電極を複 数有し、 これら電極の少なく とも一の電極に正電圧を印加して他の電極に負 電圧を印加する。
22. 請求項 1〜請求項 8のいずれかに記载の貯蔵庫であって、 空気の流れと 順方向にプラスイオンとマイナスイオンを放出した。
23. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 空気の流れに 逆行する向きにプラスイオンとマイナスイオンを放出した。
24. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 空気の流れと 直行する方向にプラスイオンとマイナスイオンを放出した。
25. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 前記空気流通 経路内に、 プラスイオンとマイナスイオンとを発生させるイオン発生装置の 少なく とも電極と、 臭気物質またはオゾンの少なく とも一方を分解または吸 着する付着装置を配置した。
26. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 臭気物質また はオゾンの少なく とも一方を分解または吸着する付着装置を前記電極の放電 有効領域内に設けた。
27. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 少なく とも 1 つの貯蔵室を備え、 前記少なく とも 1つの貯蔵室への空気の流通動作の制御 に同期してイオンの発生を制御する制御手段を設けた。
28. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 少なく とも 1 つの貯蔵室を備え、 前記少なく とも 1つの貯蔵室への空気の流通動作のオン 、 オフに同期してイオンの発生をオン、 オフする制御手段を設けた。
29. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 少なく とも 1 つの貯蔵室を備え、 前記少なく とも 1つの貯蔵室内を冷却する冷却手段を備 え、 前記貯蔵室の冷却動作に同期してイオンの発生を制御する制御手段を設 けた。
30. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 少なく とも 1 つの貯蔵室を備え、 前記少なく とも 1つの貯蔵室には温度検知手段を設け、 該温度検知手段の温度検知に基づいてイオンの発生を制御する制御手段を設 けた。
31. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 空気の流れを 制御するダンパーの開閉と同期してイオンの発生を制御する制御手段を設け た。 ■
32. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 空気の流れを 制御するダンパーの開閉検知に基づいてィオンの発生を制御する制御手段を 設けた。
33. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 少なく とも 1 つの貯蔵室を備え、 前記少なく とも 1つの貯蔵室内を冷却する冷却手段を備 え、 この冷却手段の一部を構成する圧縮機の駆動に同期してイオンの発生を 制御する制御手段を設けた。
34. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 少なく とも 1 つの貯蔵室と、 この少なく とも 1つの貯蔵室内を冷却する冷却手段を備え、 前記冷却手段の一部を構成する圧縮機の駆動時間、 駆動回数または運転率に 基づいてイオンの発生を制御する制御手段を設けた。
35. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 少なく とも 1 つの貯蔵室を備え、 前記少なく とも 1つの貯蔵室を開閉する少なく とも 1つ の扉の開成若しくは閉成動作の検知結果に基づいてイオンの発生を制御する 制御手段を設けた。
36. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 少なく とも 1 つの貯蔵室を備え、 前記少なく とも 1つの貯蔵室を開閉する少なく とも 1つ の扉の開成時間が所定時間を経過したときにイオンの発生を制御する制御手 段を設けた。
37. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 外気温に基づ いてイオンの発生を制御する制御手段を設けた。
38. 請求項 1〜請求項 8のいずれかに記載の貯蔵庫であって、 少なく とも 1 つの貯蔵室と、 この少なく とも 1つの貯蔵室内を冷却する冷却手段と、 該冷 却手段によって冷却される貯蔵室内の温度を検出する温度検知手段とを備え 、 該温度検知手段の検知した温度が所定温度以上となったとき、 前記貯蔵室 を冷却する冷却動作と同期して、 イオン発生装置に電圧を印加してプラスィ オン及びマイナスイオンを発生させるようにした。
39. 高電圧の印加によりプラスイオンとマイナスイオンとを発生する電極を 備え、 冷気が流通する冷気流通経路に前記電極からプラスイオンとマイナス イオンとを放出することを特徴とする冷蔵庫。
40. 対向電極を持たない電極に高電圧を印加してプラスイオンとマイナスィ オンとを発生し、 冷気が流通する冷気流通経路にプラスイオンとマイナスィ オンとを放出することを特徴とする冷蔵庫。
41. 接地しないイオン発生装置を備え、 該イオン発生装置の電極に高電圧を 印加してプラスイオンとマイナスイオンとを発生し、 冷気が流通する冷気流 通経路にプラスイオンとマイナスイオンとを放出することを特徴とする冷蔵 庫。
42. 接地電極を持たないイオン発生装置を備え、 前記イオン発生装置の電極 に高電圧を印加してプラスイオンとマイナスイオンとを発生することを特徴 とする冷蔵庫。
43. 高電圧の印加によりプラスイオンとして H+ (H 20) nと、 マイナスィォ ンとして 02— (H 20)mとを発生する電極を備え、 空気が流通する空気流通経 路に前記電極からプラスイオン H+ (H 20) nとマイナスイオン 02— (H 20)m とを放出することを特徴とする冷蔵庫。
44. 対向電極を持たない電極に高電圧を印加してプラスイオンとして H + (H 2 0) nと、 マイナスイオンとして 02— (H 20)mとを発生し、 空気が流通する空 気流通経路にプラスイオン H+ (H 20) nとマイナスイオン 02— (H 20)mとを 放出することを特徴とする冷蔵庫。
45. 接地しないイオン発生装置を備え、 該イオン発生装置の電極に高電圧を 印加してプラスイオンとして H + (H 20) uと、 マイナスイオンとして 02— (H 20)mとを発生し、 空気が流通する空気流通経路にプラスイオン H+ (H 20) n とマイナスイオン 02— (H 20)mとを放出することを特徴とする冷蔵庫。
46. 接地電極を持たないイオン発生装置を備え、 前記イオン発生装置の電極 に高電圧を印加してプラスイオンとして H+ (H 20) nと、 マイナスイオンと して 02— (H 20)mとを発生することを特徴とする冷蔵庫。
47. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 少なく と も 1つの貯蔵室を備え、 前記冷気流通経路は前記貯蔵室の少なく とも 1つを 含み、 プラスイオンとマイナスイオンとが前記貯蔵室に放出される。
48. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 プラスィ オンとマイナスイオンとから生成された活性種により前記冷気流通経路の浮 遊菌を殺菌する。
49. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 少なく と も 1つの貯蔵室を備え、 当該貯蔵室の少なく とも 1つに冷気を導くダク トを 設けるとともに、 該ダク ト内に前記電極を配置した。
50. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 前記電極 は平板から成るとともに、 その一部に針状突起を突設した。
51. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 前記電極 は平板から成るとともに、 その一部に複数の針状突起を突設した。
52. 請.求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 前記電極 は平板から成るとともに、 その一部に複数の針状突起を異なる向きに突設し た。
53. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 マイナス イオンをプラスイオンよ り も多く前記冷気流通経路に放出する。
54. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 前記電極 に交流電圧を印加してプラスイオンとマイナスイオンとを交互に発生した。
55. 請求項 5 4に記載の冷蔵庫であって、 交流電圧のピーク電圧の絶対値を 1 . 8 k V以上にした。
56. 請求項 5 5に記載の冷蔵庫であって、 交流電圧の電圧幅を 3 . 6 k V p-p から 5 k V p - pの間にした。
57. 請求項 5 4に記載の冷蔵庫であって、 交流電圧の連続印加時間を減菌率 が平衡状態に達する時間よりも短く した。
58. 請求項 5 4に記載の冷蔵庫であって、 交流電圧の連続印加時間を 4 5分 以下にした。
59. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 前記電極 を複数有し、 これら電極の少なく とも一の電極に正電圧を印加して他の電極 に負電圧を印加する。
60. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 冷気の流 れと順方向にプラスイオンとマイナスイオンを放出した。
61. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 冷気の流 れに逆行する向きにプラスイオンとマイナスイオンを放出した。
62. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 冷気の流 れと直行する方向にプラスイオンとマイナスイオンを放出した。
63. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 前記冷気 流通経路内に、 プラスイオンとマイナスイオンとを発生させるイオン発生装 置の少なく とも電極と、 臭気物質またはオゾンの少なく とも一方を分解また は吸着する付着装置を配置した。
64. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 臭気物質 またはオゾンの少なく とも一方を分解または吸着する付着装置を前記電極の 放電有効領域内に設けた。
65. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 少なく と も 1つの貯蔵室を備え、 前記少なく とも 1つの貯蔵室への冷気の流通動作の 制御に同期してイオンの発生を制御する制御手段を設けた。
66. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 少なく と も 1つの貯蔵室を備え、 前記少なく とも 1つの貯蔵室への冷気の流通動作の オン、 オフに同期してイオンの発生をオン、 オフする制御手段を設けた。
67. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 少なく と も 1つの貯蔵室を備え、 前記少なく とも 1つの貯蔵室内を冷却する冷却手段 を備え、 前記貯蔵室の冷却動作に同期してイオンの発生を制御する制御手段 を設けた。
68. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 少なく と も 1つの貯蔵室を備え、 前記少なく とも 1つの貯蔵室には温度検知手段を設 け、 該温度検知手段の温度検知に基づいてイオンの発生を制御する制御手段 を設けた。
69. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 冷気の流 れを制御するダンパーの開閉と同期してイオンの発生を制御する制御手段を 設けた。
70. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 冷気の流 れを制御するダンパーの開閉検知に基づいてイオンの発生を制御する制御手 段を設けた。
71. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 少なく と も 1つの貯蔵室を備え、 前記少なく とも 1つの貯蔵室内を冷却する冷却手段 を備え、 この冷却手段の一部を構成する圧縮機の駆動に同期してイオンの発 生を制御する制御手段を設けた。
72. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 少なく と も 1つの貯蔵室と、 この少なく とも 1つの貯蔵室内を冷却する冷却手段を備 え、 前記冷却手段の一部を構成する圧縮機の駆動時間、 駆動回数または運転 率に基づいてイオンの発生を制御する制御手段を設けた。
73. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 少なく と も 1つの貯蔵室を備え、 前記少なく とも 1つの貯蔵室を開閉する少なく とも 1つの扉の開成若しくは閉成動作の検知結果に基づいてイオンの発生を制御 する制御手段を設けた。 '
74. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 少なく と も 1つの貯蔵室を備え、 前記少なく とも 1つの貯蔵室を開閉する少なく とも 1つの扉の開成時間が所定時間を経過したときにイオンの発生を制御する制 御手段を設けた。
75. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 外気温に 基づいてイオンの発生を制御する制御手段を設けた。
76. 請求項 3 9〜請求項 4 6のいずれかに記載の冷蔵庫であって、 少なく と も 1つの貯蔵室と、 この少なく とも 1つの貯蔵室内を冷却する冷却手段と、 該冷却手段によって冷却される貯蔵室内の温度を検出する温度検知手段とを 備え、 該温度検知手段の検知した温度が所定温度以上となったとき、 前記貯 蔵室を冷却する冷却動作と同期して、 イオン発生装置に電圧を印加してブラ スイオン及びマイナスイオンを発生させるようにした。
PCT/JP2001/011403 2000-12-27 2001-12-25 Unite de stockage et refrigerateur WO2002053993A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01272854A EP1348923B1 (en) 2000-12-27 2001-12-25 Storage unit and refrigerator
US10/451,877 US6865896B2 (en) 2000-12-27 2001-12-25 Storage unit and refrigerator

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2000-397070 2000-12-27
JP2000397070 2000-12-27
JP2001022731 2001-01-31
JP2001-22731 2001-01-31
JP2001062863 2001-03-07
JP2001-62863 2001-03-07
JP2001-105324 2001-04-04
JP2001105324A JP3690590B2 (ja) 2001-04-04 2001-04-04 冷蔵庫

Publications (1)

Publication Number Publication Date
WO2002053993A1 true WO2002053993A1 (fr) 2002-07-11

Family

ID=27481926

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2001/011403 WO2002053993A1 (fr) 2000-12-27 2001-12-25 Unite de stockage et refrigerateur
PCT/JP2001/011404 WO2002053994A1 (fr) 2000-12-27 2001-12-25 Unite de stockage et refrigerateur

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011404 WO2002053994A1 (fr) 2000-12-27 2001-12-25 Unite de stockage et refrigerateur

Country Status (5)

Country Link
US (1) US6865896B2 (ja)
EP (1) EP1348923B1 (ja)
KR (2) KR200340512Y1 (ja)
TW (1) TW542893B (ja)
WO (2) WO2002053993A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2127753A1 (en) * 2003-05-15 2009-12-02 Sharp Kabushiki Kaisha Ion generating element, and ion generating apparatus equipped with same

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10324685B4 (de) * 2003-05-30 2006-03-30 Glasbau Hahn Gmbh + Co. Kg Vitrine zur Aufbewahrung und/oder Zurschaustellung von Gegenständen
WO2005026634A1 (ja) * 2003-09-08 2005-03-24 Sharp Kabushiki Kaisha 微小粒子拡散装置及びそれを備えた冷蔵庫
EP1749174B1 (en) * 2004-05-25 2018-08-29 Arçelik Anonim Sirketi A cooling device and a control method thereof
DE602005008435D1 (de) * 2004-05-25 2008-09-04 Arcelik As Kühlvorrichtung
DE202005015108U1 (de) * 2005-09-24 2007-02-08 E.T.R. Elektronik Technologie Rump Gmbh Kühlschrank oder Kühlraum zur Verminderung von Keimen, Viren, Pilzen und Gerüchen, mit Hilfe von Ozonbeaufschlagung
WO2007061238A2 (en) * 2005-11-23 2007-05-31 Lg Electronics, Inc. Refrigerator
KR20070074860A (ko) * 2006-01-10 2007-07-18 삼성전자주식회사 냉장고
US20090044544A1 (en) * 2006-02-15 2009-02-19 Lg Electronics Inc. Refrigerator
BRPI0621345B1 (pt) * 2006-02-15 2020-05-05 Lg Electronics Inc refrigerador não congelante
KR101273464B1 (ko) * 2006-09-06 2013-06-14 삼성전자주식회사 냉장 및 냉동 제어 시스템
US20080078201A1 (en) * 2006-10-03 2008-04-03 Shari Olefson Hanging Storage Container System
KR20080058073A (ko) * 2006-12-21 2008-06-25 삼성전자주식회사 냉장고 및 그 제어방법
US7824480B2 (en) * 2007-01-17 2010-11-02 Sub-Zero, Inc. Air treatment system
US7654102B2 (en) * 2007-01-17 2010-02-02 Sub-Zero, Inc. Air treatment system for refrigerated appliance
DE102007041308A1 (de) * 2007-08-31 2009-03-05 BSH Bosch und Siemens Hausgeräte GmbH Geschirrspülmaschine
JP2009121780A (ja) * 2007-11-16 2009-06-04 Sharp Corp 冷蔵庫
JP2010210218A (ja) * 2009-03-12 2010-09-24 Panasonic Electric Works Co Ltd 冷蔵庫
US9256229B2 (en) * 2010-10-27 2016-02-09 Technomirai Co., Ltd. Air-conditioning control system and program
KR20120082992A (ko) * 2011-01-17 2012-07-25 삼성전자주식회사 냉장고
KR101325394B1 (ko) 2011-04-07 2013-11-08 엘지전자 주식회사 이온 발생장치를 이용한 부유 입자 및 부유 미생물 제거 방법 및 장치
ITPD20120241A1 (it) * 2012-08-06 2014-02-07 Irinox S P A Dispositivo, assieme e metodo per il mantenimento della sterilità
CN104752149B (zh) * 2013-12-30 2017-04-05 同方威视技术股份有限公司 电晕放电组件和包括该电晕放电组件的离子迁移谱仪
CN103759493B (zh) * 2014-01-26 2016-03-09 海信容声(广东)冰箱有限公司 多功能保鲜装置及其控制方法及制冷设备
JP5683032B1 (ja) * 2014-02-17 2015-03-11 錦隆 後藤 空間電位発生装置を利用した鮮度保持装置
CN103884147B (zh) * 2014-04-14 2016-09-21 方墨希 一种具有消毒和保鲜功能的低温保藏设备
CO7280072U1 (es) * 2014-11-20 2015-05-29 Brenes Marta Patricia Patiño Dispositivo para ozonización de neveras y frigoríficos
CN104482700A (zh) * 2014-12-29 2015-04-01 合肥美的电冰箱有限公司 风冷冰箱
CN109069686A (zh) 2016-04-28 2018-12-21 夏普株式会社 除臭方法及除臭装置
US10591198B2 (en) * 2017-06-14 2020-03-17 Haier Us Appliance Solutions, Inc. Refrigerator appliance and methods of operation
CN108800714A (zh) * 2018-06-06 2018-11-13 广东南豆科技有限公司 一种具有除臭装置的智能冰箱
CN112944764A (zh) * 2019-12-11 2021-06-11 博西华电器(江苏)有限公司 气体净化装置、通过其进行净化的方法、及冰箱
CN112361699A (zh) * 2020-11-09 2021-02-12 胡大豹 一种自动消毒冰箱

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631099U (ja) * 1992-09-24 1994-04-22 日本特殊陶業株式会社 イオン発生装置
JPH08145545A (ja) * 1994-11-22 1996-06-07 Hitachi Ltd 冷蔵庫
JP2000268938A (ja) * 1999-03-18 2000-09-29 Toto Ltd コロナ放電器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069977U (ja) * 1983-10-19 1985-05-17 株式会社東芝 冷蔵庫
US4597781A (en) * 1984-11-21 1986-07-01 Donald Spector Compact air purifier unit
US5302343A (en) * 1987-02-25 1994-04-12 Adir Jacob Process for dry sterilization of medical devices and materials
JP2621739B2 (ja) * 1991-09-30 1997-06-18 三菱電機株式会社 冷凍冷蔵庫及び脱臭装置
JP2904328B2 (ja) * 1992-11-24 1999-06-14 三菱電機株式会社 微生物繁殖防止装置
JP2637693B2 (ja) 1994-04-05 1997-08-06 三星電子株式会社 冷蔵庫の多機能付加装置
JPH1147547A (ja) 1997-08-05 1999-02-23 Hitachi Ltd 空気調和機
JPH11206529A (ja) 1998-01-21 1999-08-03 Nakano Refrigerators Co Ltd ショーケース
JP2000277235A (ja) 1999-03-29 2000-10-06 Toto Ltd 放電電極およびその製造方法
PT1681066E (pt) * 2000-05-18 2009-10-28 Sharp Kk Método de esterilização
KR100566851B1 (ko) * 2000-08-28 2006-04-03 샤프 가부시키가이샤 공기 개질 기기 및 이것에 사용되는 이온 발생 장치
JP4293772B2 (ja) * 2002-01-23 2009-07-08 シャープ株式会社 イオン発生装置を備えた表示装置、および電子装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631099U (ja) * 1992-09-24 1994-04-22 日本特殊陶業株式会社 イオン発生装置
JPH08145545A (ja) * 1994-11-22 1996-06-07 Hitachi Ltd 冷蔵庫
JP2000268938A (ja) * 1999-03-18 2000-09-29 Toto Ltd コロナ放電器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1348923A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2127753A1 (en) * 2003-05-15 2009-12-02 Sharp Kabushiki Kaisha Ion generating element, and ion generating apparatus equipped with same
US7961451B2 (en) 2003-05-15 2011-06-14 Sharp Kabushiki Kaisha Ion generating element, and ion generating apparatus equipped with same

Also Published As

Publication number Publication date
EP1348923A1 (en) 2003-10-01
KR20050008553A (ko) 2005-01-21
TW542893B (en) 2003-07-21
EP1348923B1 (en) 2013-01-23
KR100858912B1 (ko) 2008-09-22
WO2002053994A1 (fr) 2002-07-11
EP1348923A4 (en) 2005-03-23
US6865896B2 (en) 2005-03-15
KR200340512Y1 (ko) 2004-02-05
US20040035128A1 (en) 2004-02-26

Similar Documents

Publication Publication Date Title
WO2002053993A1 (fr) Unite de stockage et refrigerateur
JP2002333265A (ja) 貯蔵庫及び冷蔵庫
JP2007205712A (ja) 貯蔵庫
EP2527770B1 (en) Refrigerator
JP4742892B2 (ja) 冷蔵庫
US7056476B2 (en) Refrigerator and deodorizer producing ozone by high-voltage discharge
JP3754601B2 (ja) 冷蔵庫
JP3689759B2 (ja) 冷蔵庫
KR20150013754A (ko) 가전기기
JP2015092133A (ja) 貯蔵庫及び冷蔵庫
JP3690590B2 (ja) 冷蔵庫
JP2885638B2 (ja) 冷蔵庫
JP5615784B2 (ja) 冷蔵庫
KR200404861Y1 (ko) 신발장
JP3089617U (ja) 冷蔵庫
JP2012078054A (ja) 冷蔵庫
WO2011121937A1 (ja) 冷蔵庫
KR20070052507A (ko) 냉장고
RU2445558C2 (ru) Холодильник и стерилизационное устройство
JP5625651B2 (ja) 冷蔵庫
JP2005221161A (ja) 冷蔵庫
KR20110007353U (ko) 공기 정화수단을 구비한 냉장고
RU2444684C2 (ru) Холодильник
JPH07260332A (ja) 冷蔵庫
JPS63189768A (ja) 冷蔵庫

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001272854

Country of ref document: EP

Ref document number: 10451877

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001272854

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642