WO2002049974A1 - Procede de production de preformes de fibre optique, preforme de fibre optique et fibre optique - Google Patents

Procede de production de preformes de fibre optique, preforme de fibre optique et fibre optique Download PDF

Info

Publication number
WO2002049974A1
WO2002049974A1 PCT/JP2001/010728 JP0110728W WO0249974A1 WO 2002049974 A1 WO2002049974 A1 WO 2002049974A1 JP 0110728 W JP0110728 W JP 0110728W WO 0249974 A1 WO0249974 A1 WO 0249974A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
glass
fiber preform
rod
glass pipe
Prior art date
Application number
PCT/JP2001/010728
Other languages
English (en)
French (fr)
Inventor
Masaaki Hirano
Masashi Onishi
Hideyuki Ijiri
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to EP01271112A priority Critical patent/EP1346958A4/en
Priority to US10/312,911 priority patent/US6987917B2/en
Priority to AU2002222587A priority patent/AU2002222587A1/en
Publication of WO2002049974A1 publication Critical patent/WO2002049974A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01248Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by collapsing without drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0126Means for supporting, rotating, translating the rod, tube or preform
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • G02B6/03611Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/36Dispersion modified fibres, e.g. wavelength or polarisation shifted, flattened or compensating fibres (DSF, DFF, DCF)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02228Dispersion flattened fibres, i.e. having a low dispersion variation over an extended wavelength range
    • G02B6/02238Low dispersion slope fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02252Negative dispersion fibres at 1550 nm
    • G02B6/02261Dispersion compensating fibres, i.e. for compensating positive dispersion of other fibres

Definitions

  • the present invention relates to a method for manufacturing an optical fiber preform by a mouth-to-side collabs method and an optical fiber.
  • the rod-in-collabs method is known as a method for manufacturing an optical fiber preform, in which at least glass having a core portion is formed into a rod shape, while the glass that becomes a clad is formed into a thick glass pipe. After molding, the rod is inserted into the glass pipe, and while the pressure inside the glass pipe is lower than that outside the glass pipe while heating, the mouth and the glass pipe are heated and fused to form a core and a clad.
  • the obtained collapsed body was used as a base material intermediate, and the outer periphery was further synthesized by a gas phase synthesis method such as the VAD method or the OVD method, or by a further rod-in-collabs method, to further synthesize a clad part, thereby obtaining a large mother body. It may be used as a material.
  • dummy pipes 3a and 3b are connected to a glass pipe 2 for forming a clad, etc. ⁇
  • a glass pipe 2 for forming a clad, etc. ⁇
  • the heat source such as a hydrogen oxyflame
  • Glass rod 1 by pushing up with a dummy rod 4.
  • the glass rod 1 is baked in a chlorine gas atmosphere or the like, dried, and impurities are removed.
  • the glass pipe 2 is collabsed from the upper or lower part to obtain an optical fiber base material.
  • the glass rod 11 is tilted as shown in Figure 15A.
  • the portion softened by heating is subjected to gravity and deformed as shown in Fig. 15B, which tends to cause eccentricity and deformation of the core of the obtained optical fiber base material There is a problem.
  • the dummy pipes 3a and 3b are connected to both ends of the glass pipe 2 in the conventional method.
  • Reduced diameter portions 5a and 5b are formed in part of 3b, and glass rod 1 is inserted through glass pipe 2 and dummy pipes 3a and 3b as shown in the figure,
  • the glass rod 1 is fused and fixed to the reduced-diameter portion 5b of the dummy pipe 3b, and collabs is performed from the dummy pipe 3a side opposite to the fixed side.
  • the amount of heating increases particularly when the outer diameter of the glass pipe 2 is 45 mm (i) or more, and as shown in Fig. 16B, when the glass rod 1 is softened by heating, Since the head 1 moves and the heated part is deformed, the resulting optical fiber preform has the same problems as those of the vertical type.
  • the 1.3-zm wavelength-band zero-dispersion fiber generates a large positive dispersion in the wavelength band of 1.55 / Im.To compensate for this dispersion, the dispersion compensating fiber has a 1.55 ⁇ t Therefore the dispersion compensating fiber is required to have a large negative dispersion opposite to the dispersion at the wavelength band, by increasing the relative refractive index difference of the core Z clad ⁇ by the addition of dopant (typically, 1.3 m is about 0.35% for the most common single-mode fiber for transmission, but about 1.0 to 3.0% for dispersion-compensating fiber, and has a small core diameter (usually 8% for a single-mode fiber). 110 ⁇ m, but the dispersion compensating fiber has a structure of 2-6 ⁇ ).
  • Dispersion compensating fiber, polarization mode dispersion ( ⁇ D) is likely to occur to use a core of high refractive index, also, the core portion due to the influence of the G e 0 2 to be doped to the core Since the glass has a low viscosity, it tends to be ovalized.
  • the non-circularity of the core is expressed by Equation 1 when the core is regarded as almost elliptical. The smaller the value of the non-circularity, the closer to a perfect circle.
  • Non-circularity (Length of major axis minus length of minor axis) / Length of major axis X I 0 0 (%)
  • Dispersion compensating fiber is applied to WDM systems with more than 10 GbZs (gigabit / second) per wave (a system that receives multiple signal lights with different wavelengths and transmits multiple times more information than conventional systems). Therefore, good polarization dispersion characteristics are required, and it is necessary to prevent the core from becoming circular.
  • the dispersion compensating fiber having the above-described structure, when performing rod-in-collabs, heat is likely to deform a glass port containing a large amount of dopant due to heat, and it is necessary to obtain a large optical fiber preform.
  • the conventional collapse method increases the amount of heat in the heating and integration process, deforms and ellipses the core, deteriorating the noncircularity, and makes it difficult to obtain good polarization dispersion characteristics. was there. It was more difficult to use large diameter glass pipes to produce large preforms by the rod-in-colabs method.
  • the present invention reduces a core non-circularity by a mouth-to-head collapse method, and can manufacture an optical fiber preform closer to a perfect circle than the conventional method, and an optical fiber having a reduced non-circularity.
  • Base materials and optical fibers are issues.
  • the present invention solves the above problems by adopting the following configurations (1) to (16). I do.
  • a method for manufacturing an optical fiber including at least a step of inserting a glass rod into a glass pipe and heating and integrating the glass rod, the step of inserting a glass pipe into the glass pipe or the step of inserting the glass rod into the glass pipe or A method of manufacturing an optical fiber preform, wherein the optical fiber preform is fixed through a centering jig fixed in a dummy pipe connected to an end of the glass pipe.
  • the alignment jig may have a fixed portion and an alignment portion.
  • the central axis of the glass pipe may be held vertically in the heating and integration.
  • the viscosity of the glass rod to be inserted is such that the viscosity of the glass pipe is It may be smaller than the viscosity.
  • an alignment jig is fixed in the glass pipe, and the glass rod is fixed in the glass pipe. And the glass rod may be fixed to a centering jig.
  • the gap between the glass port and the glass pipe immediately before being integrated by heating may be 0 It may be 1 mm or more and 3 mm or less.
  • the glass port may have a refractive index distribution.
  • the glass pipe may have a refractive index distribution.
  • a glass layer is formed outside a glass opening obtained by the opening in collapse process.
  • the method may include a step of forming an optical fiber preform.
  • the core non-circularity may be 1.5% or less.
  • FIG. 1 is a sectional view showing one embodiment of the present invention.
  • FIG. 2 is a perspective view showing an embodiment of the alignment jig of the present invention.
  • FIG. 3 is a sectional view showing another embodiment of the present invention.
  • FIG. 4A and 4B are cross-sectional views showing an embodiment of the rod-in-collapse step of the present invention
  • FIG. 4A is a cross-sectional view of the mouth-in-collapse step in which a heat source is moved
  • FIG. 4B is glass. It is sectional drawing of the rod in collapse process which moved the body.
  • FIGS. 5A to 5C are cross-sectional views showing problems when the present invention is not fixed, and FIGS. 5A and 5B show a state in the middle of the collapse, and FIG. 5C shows a state after the collapse. Show.
  • FIG. 6 is a sectional view showing still another embodiment of the present invention.
  • FIG. 7A and 7B show still another embodiment of the present invention.
  • FIG. 7A is a cross-sectional view of an alignment jig provided with one reduced diameter portion
  • FIG. 4 is a cross-sectional view of an alignment jig provided with two radial portions.
  • FIG. 8A and 8B are schematic explanatory views showing another embodiment of the aligning jig according to the present invention.
  • FIG. 8A is a perspective view
  • FIG. 8B is a sectional view.
  • FIG. 9A to 9C are schematic explanatory views showing still another embodiment of the present invention.
  • FIG. 9A is a cross-sectional view in which the taper portion of the glass mouth is fused and fixed to an alignment jig.
  • 9B is a perspective view of the aligning jig
  • FIG. 9C is a cross-sectional view in which the aligning jig is fitted into the tapered portion of the glass mouth and is fusion-fixed.
  • FIG. 10 is a diagram showing a refractive index structure of a core rod used in Example 3 of the present invention.
  • FIGS. 11A and 11B show the refractive index structure of the glass used in Example 4 of the present invention, and FIG. 11A shows the refractive index structure of the glass rod.
  • 1B is a diagram showing a refractive index structure of a glass pipe.
  • FIGS. 12A and 12B show the refractive index structure of the glass used in Example 5 of the present invention.
  • FIG. 12A is a diagram showing a refractive index structure of a glass pipe
  • FIG. 12B is a diagram showing a refractive index structure of a glass rod.
  • FIG. 13 is a diagram showing the relationship between the core non-circularity of an optical fiber and PDM.
  • FIG. 14 is a diagram showing a refractive index structure of each optical fiber of FIG.
  • Fig. 15A and Fig. 15B are diagrams illustrating the outline of the conventional method (vertical arrangement).
  • Fig. 15A is a cross-sectional view in which a glass rod is placed inside a glass pipe.
  • 15B is a sectional view of the middle of the collapse.
  • FIG. 16A and Fig. 16B are diagrams illustrating the outline of the conventional method (horizontal arrangement), and Fig. 16A is a cross-sectional view in which a glass head is disposed in a glass pipe. FIG. 16B is a sectional view of the middle of the collapse.
  • Fig. 17A and Fig. 17B are diagrams explaining that eccentricity increases the non-circularity when the center axes of the core rod and the glass pipe do not match
  • Fig. 17A is a cross-sectional view before the collapse.
  • FIG. 17B is a cross-sectional view after the collapse.
  • 1 is a glass mouth
  • 2 is a glass pipe
  • 3a and 3b are dummy pipes
  • 4 is a dummy rod
  • 5a and 5b are diameter reduction portions of the dummy pipe
  • 6 is a dummy pipe.
  • Alignment jig, 6a and 6c are cylindrical parts, 6b is a reduced diameter part, 7 is an alignment jig, 7a and 7c are cylindrical parts, 7b is a reduced diameter part, 8 is a support rod, 9 , 1 ⁇ is a heat source, 11 is an alignment jig, 11 a, 11 c, lid is a cylindrical part, 11 b 1 is a reduced diameter part (fixed part), 11 b 2 is a reduced diameter part ( 1 2 is an alignment jig, 13 is an alignment jig, 13 a and 13 c are cylindrical portions, 13 b is a reduced diameter portion, and 14 is an alignment jig. .
  • a glass opening including a core is fused to a dummy pipe through a jig having a centering function so that a glass rod including a core does not move due to elongation or melting at the time of heating at the time of rod incolings.
  • Deformation and ellipticity during heating are suppressed by fixing the core, and even when a thick or large-diameter glass pipe is used, the optical fiber preform with a small non-circularity of the core and PMD characteristics It is possible to manufacture an optical fiber without deterioration.
  • a core opening or a glass rod (hereinafter collectively referred to as a glass rod) 1 having at least a core and a glass pipe 2 for forming a cladding or the like to be subjected to the opening-in collapse method are prepared in accordance with a known technique.
  • a quartz glass core porous base material having a predetermined glass composition, refractive index, or refractive index distribution, synthesized by the VAD method or the like is dehydrated and made transparent, and if necessary, subjected to a stretching step.
  • a glass rod having a predetermined outer diameter is created.
  • the outer periphery of the glass rod may be polished and processed into a perfect circle, or the surface layer may be cleaned with HF to be cleaned.
  • the glass pipe 2 is formed by synthesizing a porous preform made of quartz glass or quartz glass doped with a refractive index adjuster by, for example, the VAD method, the OVD method, or the sol gel method, a method of forming glass fine particles, or the like. Sintered, transparent Vitrified and processed into pipe shape. Dummy pipes 3a and 3b connected to the glass pipe 2 are also prepared by a known technique. Although it is not used in the case of Fig. 1, if necessary, a dummy rod connected to the glass rod 1 is also prepared.
  • FIG. 2 is a view showing an example of the alignment jig of the present invention.
  • the alignment jig 6 of the present example has an outer diameter that can be fitted in a glass pipe and a Z pipe or a dummy pipe.
  • a cylinder having an inside diameter that allows at least the end of the mouth to be inserted has a shape in which the outside diameter is reduced at the approximate center, and between the upper and lower cylinders 6a and 6c,
  • the inside diameter is slightly larger than the outside diameter of the glass rod (clearance that can be fitted before fusion), and the outside diameter is each of the cylindrical portions 6a and 6. It has a reduced diameter portion 6b that is smaller.
  • the centering jig 6 As the material of the centering jig 6, it is preferable to use quartz glass for fusion-fixing to a glass rod or a glass pipe.
  • the mouth-in-collabs process of the present invention is performed as follows. (1) Prepare glass pipe 2 with dummy pipes 3a and 3b connected to the upper and lower ends. (2) As shown in Fig. 1, the centering jig (6), which has a cylindrical shape with the central part constricted by providing reduced diameter portions (6b, 7b), is attached to one end of the glass pipe (2) and the dummy pipe (3a or 3b). Enter. 3 Insert the glass rod 1 prepared separately into the glass pipes 2 and Z or the alignment jig 6.
  • the glass rod 1 and the glass pipe 2 it is preferable to align the glass rod 1 and the glass pipe 2 as much as possible so that the respective central axes thereof substantially coincide with each other, in order to prevent eccentricity and ellipticity. If the respective central axes do not coincide, as shown in Fig. 17A, the processing amount is large (the part with a large gap between the glass rod 1 and the glass pipe 2) and small (the glass rod 1 and the glass Since the gap between the pipes 2 is small, the circumferential cross-section of the glass body (collabs body) obtained by collabs has a high eccentricity due to the core being eccentric as shown in Fig. 17B. is there.
  • the glass rod 1 and the glass pipe 2 are heated and integrated by a heating means such as a flame, an electric furnace, or high-frequency plasma to obtain a Collabs body having no eccentricity and reduced non-circularity.
  • a heating means such as a flame, an electric furnace, or high-frequency plasma to obtain a Collabs body having no eccentricity and reduced non-circularity. It is desirable that the temperature distribution of the heating means is uniform in the circumferential direction of the glass rod 1 and the glass pipe 2, and for this purpose, the glass rod 1 and the glass pipe 2 (including the dummy pipe) are heated by rotating. preferable. If the temperature distribution is not uniform in the circumferential direction, it will be eccentric, Non-circularity increases.
  • Fig. 1 shows an example in which the glass rod and the glass pipe are fusion-fixed at both ends via the alignment jigs 6 and 7 in the present invention. Just do it. As shown in Fig. 3, the upper end is fused and fixed via an alignment jig 6 as in Fig. 1, and the lower end is a glass opening.
  • the ratio between the outer diameter of the glass rod 1 ′ after the collapse and the outer diameter of the glass pipe 2 ′ after the collapse due to stretching is not constant in the longitudinal direction.
  • a glass rod is fusion-fixed at the upper end, and if the rubbing is from the bottom to the top, the collabbing part is just below the heating area. There is no stretching, and the core non-circularity is good.
  • the glass opening reached the cylindrical portion 6a of the alignment jig and was fixed by fusion, but as shown in Fig. 6, the glass opening was positioned at the reduced diameter portion 6c. It is also possible to fuse and fix so that the ends of the head are arranged.
  • the centering jig 6 having a reduced diameter portion at one point is used.
  • the alignment jig must be used.
  • the central axis of the glass mouth and the central axis of the glass pipe are shifted. Such problems are particularly dangerous when the viscosity of the glass rod is low.
  • the reduced diameter portion 11b of the alignment jig 11 is provided at two or more places, and the reduced diameter portion 11b1 at the most end is provided. Fusing and integration.
  • the outermost reduced diameter portion 1 1 b 1 is fused as a fixed portion, and even if the glass rod is deformed, the next reduced diameter portion 1 1 b 2 is adjusted as an alignment portion. Since it can play the role of the heart, the central axis of the glass rod and the central axis of the glass pipe do not deviate, which is very suitable.
  • the centering jig of the present invention can employ any shape as long as it is interposed between the glass pipe (and Z or dummy pipe) and the glass rod and can be fused and fixed to each other.
  • a cylindrical shape having one or more reduced diameter portions has been described above, it may be a simple cylindrical shape as shown in FIG. 8A, for example, and also in this case, fusion fixing is performed at one end or both ends.
  • L1 is the length of the cylindrical centering jig 12 in Fig. 8 in the direction of the central axis, as shown in Fig. 8B
  • L1 is equal to the heat zone length L2 of the heat source at the time of integrated heating.
  • the unheated portion acts as the centering portion, so that good results can be obtained.
  • FIG. 9 shows an example of fusion-fixing of the alignment jig and the glass pipe in the case of a glass mouth having a tapered end portion in the present invention
  • FIG. 9A shows the alignment jig 13.
  • FIG. 9B is a perspective view of a centering jig 14 having a cylindrical outer shape and a tapered inner wall surface, and is shown in FIG. Is fixed by fusion.
  • these alignment jigs 13 and 14 may be attached to only one end or both ends, and may be fixed to either one or both ends.
  • the core of the Collabs body obtained according to the method of the present invention as described above has a non-circularity as compared with that obtained by collapsing without fixing by the conventional method, as specifically shown in Example 1 described later. Is low, that is, something close to a perfect circle is obtained.
  • An optical fiber obtained from such a collapsed body has a very good PMD as described below.
  • the relationship between the core non-circularity (%) and the PMD (ps / km) obtained by experiments by the present inventors is shown in the graph of FIG. Figure 1 4 shows so that the center core portion G e O 2 - S i O 2, a first clad portion F _ S i O, the second clad are made of S i O 2, for the second clad
  • a glass base material with a relative refractive index difference ⁇ of the central core of 1.5% and a relative refractive index difference ⁇ -of the first cladding of 0.45% was drawn, and the center core diameter was 5 jum and the first cladding was drawn.
  • Dispersion — 47 ps / km / nm, Dispersion slope: 1 ⁇ 08 ps / kra / nm 2 , Aeff (effective area) ): 20 ⁇ 2 , cut-off wavelength: 750 ⁇ m, transmission loss: 0.27 dB / km, and the core non-circularity varies variously in the range of about 0.04 to 4%.
  • Light fiber The core non-circularity (%) and PMD (ps ZVkra) of each obtained optical fiber were as shown in Fig.13. In Fig. 13, Hata indicates the optical fiber with the oscillating line proposed in, for example, Japanese Patent Application Laid-Open Nos.
  • the PMD becomes 0.15 ps / km or less, which is suitable for large-capacity transmission, when the core non-circularity is 1.5% or less. In addition, the PMD is smaller for the rocking line.
  • the swing drawing is a drawing method in which a predetermined twist is given to the optical fiber by guiding the optical fiber with a guider whose rotation axis periodically swings at the time of drawing, and the glass is softened at the time of drawing.
  • a predetermined twist is given to the optical fiber by guiding the optical fiber with a guider whose rotation axis periodically swings at the time of drawing, and the glass is softened at the time of drawing.
  • L is the optical fiber length (m)
  • h is the number of revolutions per meter of fiber length (1 / m). Therefore, the larger the h, the smaller the PMD.
  • the rod-in-collapse method according to the present invention may be used as one step of preparing an optical fiber preform intermediate material, and the other steps may be performed by applying a known technique in this type of technical field to an optical fiber intermediate material or an optical fiber.
  • An optical fiber can be obtained by further drawing a base material (base material).
  • the collapsed body according to the present invention may be used as it is as an optical fiber preform as it is, and may be drawn as an optical fiber preform by a known method to obtain an optical fiber.
  • Known soot method, rod-in collapse An optical fiber may be obtained by further jacketing the collapsed body by the sol-gel method, sol-gel method, etc., as the base material for line drawing.
  • the glass body obtained by the Collabs is used as the base metal intermediate, so that the diameter ratio (2 a /) of the core (outer diameter 2a) and the clad (outer diameter 2D) of the intermediate is used. 2D) is larger than the design value and is set to the design value by jacketing. According to this method, a large base material having a low non-circularity can be obtained.
  • the method of drawing an optical fiber according to the present invention may be based on known means. However, if the swing drawing is performed as described above, an optical fiber having a very good PMD can be obtained.
  • the glass composition of the glass rod and the glass pipe is not limited at all, and the glass opening and / or the glass pipe may have a refractive index distribution.
  • the glass opening and / or the glass pipe may have a refractive index distribution.
  • the method of the present invention is effective in a mouth-drawing method using a combination of glass rods and glass pipes of any size.
  • the outer diameter of the glass pipe exceeds 45 ⁇ , the amount of heating for the collabs increases, and the core is easily deformed by the conventional collapse, but by applying the present invention, the eccentricity and the core are reduced. The deformation can be suppressed and the non-circularity can be greatly reduced, so that a very large effect can be obtained.
  • the collapse of the large-diameter glass pipe in this manner is more preferable to be a vertical arrangement because the heating portion is deformed like a bow in a horizontal arrangement.
  • the outer diameter is ⁇ 7 O mm and the inner diameter is 15.1 to 22 2 ⁇ glass pipe (made of pure SiO 2 ), and the outer diameter is 15 ⁇ glass rod (F additive concentration 0 9 m ⁇ 1 (made of SiO 2 ) and collapsed under the conditions shown in Table 1.
  • No. 1 to 12 were all the alignment jig and fixing method shown in Fig. 7B, No. 13 were the alignment jig and fixing method shown in Fig. 7A, and the heating source was an electric furnace .
  • the maximum surface temperature of the glass during the collapse was set at 1550 ° C (measured with a pyroscope), and the exhaust pressure was set at 5 kPa.
  • the length of the head zone where the surface temperature was in the range of 550 to 1500 ° C. was 60 mm.
  • "Fixed" means that both ends or one end were fused and fixed in accordance with the present invention.
  • Nos. 1, 3, and 5 to 12 are Examples of the present invention, and Nos. 2 and 4 are Comparative Examples.
  • the core non-circularity of the obtained Collabs body was measured. Table 1 shows the results. Showing,
  • G e O 2 is 2 5 mo 1% the added S i O 2 force Rannahli outer diameter 7 mm outer diameter 7 0 made of glass outlet head and roughly pure quartz phi mm phi, an inner diameter of 8 ⁇ ⁇ was made using a known VAD method. The inner surface of the glass pipe was smoothed by vapor phase etching, and the inner diameter was set to 8 ⁇ .
  • the obtained optical fiber preform is drawn by a known swing line drawing method. I did it.
  • PMD 0.08 ps / ⁇ Tkra
  • transmission loss 0.33 dB / km
  • dispersion 1 76 ps / km / nra
  • dispersion slope +0.1 Ops / km / nm 2
  • Aeff 16 ⁇ m 2
  • ⁇ c (2m) 770 nra
  • the center (diameter 7.2 mm ⁇ ) made of quartz glass to which GeO 2 is added at the maximum of 15 mo 1% and the outer periphery is F 1.3 mo 1
  • a glass port with a diameter of 15 mm ⁇ made of quartz glass with% addition was prepared.
  • This glass mouth was prepared according to the collapse method of the present invention, with the central part being a glass rod and the F-added part being a glass pipe.
  • the rod may be created as follows using the VAD method.
  • the porous glass preform, the outer peripheral portion become part of the core, sea urchin I containing G e ⁇ 2 at high concentrations, to create a porous glass preform by VAD method.
  • the base material is heated to make the outer peripheral portion hard enough not to allow fluorine in the dopant to pass through in the next step.
  • the base material is heated in an atmosphere containing fluorine, and fluorine is added to a portion of the base material that becomes a clad. By doing so, it is possible to selectively add fluorine only to the portion of the base material that will become the clad.
  • fluorine (F) portion may be formed by an inner with a central portion containing G e 0 2 in C VD method as the glass pipe additives.
  • the obtained optical fiber preform was drawn by a known swing drawing method to obtain an optical fiber.
  • PMD 0.05 ps / y ⁇ ktn
  • transmission loss 0.26 dB / km
  • dispersion —49.4 ps / km / nm
  • dispersion slope one 0.08 ps / km / nra 2
  • Aeff 19 ⁇ m 2
  • ⁇ c (2 m) 790 nra
  • diameter 20 mm ⁇
  • Bending loss 0.3 dB / m
  • a dispersion-dispersion slope compensating fiber was obtained.
  • Example 2 a glass port having a structure shown in FIG. 11A and an outer diameter of 15 mm was prepared. Further, as shown in Figure 1 1 B, 4. 5 111 0 1% 0 6 0 2 the added S i 0 2 force Rannahli, inner diameter 1 7 mm 0, the inner layer portion of the outer diameter of 2 0 mm phi , An outer layer of pure SiO 2 provided on the outer periphery of the inner layer, and a glass pipe having an outer diameter of 80 mm ⁇ with a two-layer structure was separately prepared. As described above, in this example, the known VAD method was used.
  • this structure may be such that a glass body having a desired refractive index distribution is synthesized by the OVD method, and then the center portion may be opened, or the CVD method may be used.
  • glass G e ⁇ 2 _ S i O 2 composition by Ri pure quartz pipe may by a ⁇ Kesuru method.
  • Example 2 In the same manner as in Example 2, the glass rod and the glass pipe were fixed on the upper end side of the glass pipe with a centering jig shown in FIG. 7B and collapsed.
  • the conditions were a surface temperature of 1840 ° C, an exhaust pressure of 6 kPa, and a rotation speed of l Orp m.
  • a base material intermediate having an outer diameter of 79.6 mm was obtained.
  • the non-circularity of the core of this intermediate was 0.4%.
  • a fiber was formed by a known manual drawing method.
  • PMD 0.07 ps / ⁇ kra
  • transmission loss 0.35 dB / kra
  • dispersion —10 2 ps at a wavelength of 150 nm / km / nm
  • Dispersion slope 1.0 ps / km / nm 2
  • Aeff 10 ⁇ 2
  • ⁇ c (2m) 1 450 ntn
  • Bending loss 18 dB / m and Ray dispersion and dispersion slope compensating fiber were obtained.
  • a glass rod having an outer diameter of 5 mm ⁇ > made of quartz to which fluorine (F) force S 1.5 mo 1% was added was prepared.
  • 10 mol% Consists S i ⁇ 2 G E_ ⁇ 2 is the addition of an inner diameter 7 mm ⁇ i » inner portion of the outer diameter 1 2 mm phi, pure S i O 2 of the outer layer portion provided on the outer periphery of the inner layer portion
  • a glass pipe having a two-layer structure and an outer diameter of 10 O mm ⁇ was separately prepared. As described above, in the present embodiment, the known VAD method was used.
  • this structure may be such that a glass body having a desired refractive index distribution is synthesized by the OVD method, and then the central portion is opened. or by a method of attaching the inner glass of G E_ ⁇ 2 _ S i O 2 composition in pure quartz pipe by law.
  • Example 2 In the same manner as in Example 2, the glass rod and the glass pipe were fixed on the upper end side of the glass pipe with a centering jig shown in FIG. 7B and collapsed.
  • the conditions were a surface temperature of 1920 ° C, an exhaust pressure of 3 kPa, and a rotation speed of lO rpm.
  • a base material intermediate having an outer diameter of 99.6 mm was obtained.
  • the non-circularity of the core of this intermediate was 0.6%.
  • the fiber was drawn by a known manual drawing method to form a fiber.
  • an optical fiber preform and an optical fiber having a small eccentricity and deformation of a core it is possible to obtain an optical fiber preform and an optical fiber having a small eccentricity and deformation of a core, and very close to a perfect circle (low circularity is good).
  • an optical fiber preform having a complicated profile can be manufactured with good core non-circularity.
  • an optical fiber having a low PMD can be obtained by forming the fiber.
  • An optical fiber with such a low PMD is very advantageous because the transmitted signal is not disturbed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

明 細 書 光フアイパ母材製造方法及ぴ光ファィバ母材並びに光ファィバ <技術分野 >
本発明は口ッ ドィンコラブス法による光ファイバ母材製造方法並びに 光ファイバに関する。
<背景技術 >
光フアイバ母材の製造方法と してロッ ドインコラブス法が知られてお り、 これは少なく ともコア部を有するガラスをロッ ド状に成形し、 一方 クラッ ドとなるガラスは肉厚のガラスパイプに成形し、 該ロッ ドを該ガ ラスパイプに揷入した後、 加熱しながらガラスパイプ内の圧力をガラス パイプ外より も低く した状態で口ッ ドとガラスパイプを加熱融着させて コア及びクラッ ドを有する光ファイバ母材とする方法である。 得られた コラプス体を母材中間体と して、 その外周部に V A D法や O V D法等の 気相合成法、 或いは更なるロッ ドイ ンコラブス法により、 更にクラッ ド 部を合成し、 大型の母材と してもよい。
この方法では図 1 5 Aに示すように、 クラッ ド等を形成するためのガ ラスパイプ 2にダミーパイプ 3 a , 3 bを接続して、 図示は省略したコ ラプスを行なう抵抗炉, 高周波炉中ゃ酸水素火炎等の熱源近傍に、 中心 軸が鉛直方向となるよう (縦形) にセッ ト し、 ガラスパイプ 2内面をェ ツチングして平滑化するとともに不純物を除去した後、 少なく ともコア 部を有するガラスロッ ド (以下、 単にガラスロッ ドと略記する場合もあ る) 1 をダミー棒 4で押し上げる形で揷入する。 ガラスロッ ド 1を揷入 後、塩素ガス雰囲気中等で空焼きを行い、乾燥及び不純物を除去した後、 ガラスパイプ 2の上部又は下部からコラブスしてゆき、 光フアイバ母材 と している。 この方法では図 1 5 Aに示すようにガラスロッ ド 1 1が傾 いた状態でコラプスする可能性が大きく、 加熱により柔らかくなった部 分に重力が加わり図 1 5 Bに示すように変形するため、 得られる光ファ ィバ母材のコアの偏心と変形を生じやすいという問題がある。
また図 1 6 Aに示すようにガラスロッ ド 1を水平方向 (横形) に配置 する場合も、 従来法ではガラスパイプ 2の両端にダミーパイプ 3 a , 3 bを接続し、 このダミーパイプ 3 a, 3 bの一部に縮径部 5 a, 5 bを 形成しておき、 ここに図のようにガラスパイプ 2及びダミ一パイプ 3 a, 3 b中にガラスロッ ド 1を挿入貫通して片側のダミーパイプ 3 bの縮径 部 5 bにガラスロッ ド 1を融着固定し、 固定した側とは反対のダミーパ ィプ 3 a側からコラブスしてゆく。 この場合も、 特にガラスパイプ 2の 外径が 4 5 mm (i)以上になると加熱量が多くなつてしまう為に、 図 1 6 Bに示すように、 加熱によりガラスロッ ド 1が柔らかくなるとガラス口 ッ ド 1が動き、 加熱された部分が変形してしまうので、 得られる光ファ ィバ母材には縦形の場合と同様の問題がある。
近年、 光ファイバの 1つと して 1. 3 μ mの波長帯に零分散を持つ光 ファイバを用いて 1. 5 5 /i mの波長帯で光通信を行なう場合に生じる 分散を補償するための分散補償ファイバが開発されている。 1. 3 z m 波長帯零分散ファイバは、 1. 5 5 /I mの波長帯で大きな正の分散を生 じるので、 この分散を補償するため、 分散補償ファイバは 1. 5 5 μ πι の波長帯で前記分散とは逆の負の大きな分散を有することが必要である t そのため分散補償ファイバは、 ドーパントの添加により コア Zクラッ ドの比屈折率差△を大きく し (通常、 1. 3 m伝送用の最も一般的な シングルモードファイバでは 0. 3 5 %程度であるが、 分散補償フアイ バでは 1. 0〜3. 0 %程度)、 かつコア径を小さく (通常、 シングルモ ードファイバでは 8〜 1 0 μ m程度であるが、 分散補償ファイバでは 2 〜6 μ ιη程度) した構造となっている。
分散補償ファイバは、 高屈折率のコアを使用するため偏波分散 (ΡΜ D) が生じやすく、 また、 コアにドープする G e 02の影響により コア部 のガラスが低粘度となるので楕円化が起こ りやすく なっている。 コアの 非円率とは、 コアをほぼ楕円とみなしたときに数 1の式で表されるもの であり、 非円率の値が小さいほど真円に近い。
(数 1 )
非円率: = (長軸の長さ一短軸の長さ) /長軸の長さ X I 0 0 ( % )
P M Dはコア非円率に比例して大きくなつてしまうが、 特に前記比屈 折率差△が高い程、 コアの非円化が P M Dの劣化に与える影響が大きく なることが知られている。 従って、 比屈折率差△の高い分散補償フアイ バは非円率を小さくする必要がある。
分散補償ファイバは、 例えば 1波あたり 1 0 G b Z s (ギガビッ ト/ セカンド)以上の W D Mシステム(波長の異なる複数の信号光を入射し、 従来の複数倍の情報を伝送するシステム) に適用するため良好な偏波分 散特性が要求されており、 コアの非円化を防止することが必要である。
しかしながら、 前記のような構造の分散補償ファイバでは、 ロッ ドィ ンコラブスを実施する場合、 熱により ドーパントを多量に含むガラス口 ッ ドが変形しやすく、 また、 大型の光ファイバ母材を得るためにガラス パイプの肉厚を厚くすると、 従来のコラプス法では加熱一体化工程での 熱量が多くなり、 コアが変形、 楕円化して非円率が悪化し、 良好な偏波 分散特性が得にくいという問題があった。 ロ ッ ドイ ンコラブス法により 大型母材を製造しよう と して、 太径のガラスパイプを使用する場合は、 より困難であった。
本発明は上記の現状に鑑み、 口ッ ドィンコラプス法によりコア非円率 を低減し、 従来法によるより も真円に近い光ファイバ母材を製造できる 方法、 及び非円率が低減された光ファイバ母材及び光ファイバを課題と する。 く発明の開示 >
本発明は次の(1) 〜(16)の構成を採用することにより上記課題を解決 する。
( 1) ガラスロッ ドをガラスパイプ内に挿入して加熱一体化する口 ッ ド ィンコラブス工程を少なく とも含む光ファイバの製造方法において、 前 記口 ッ ドインコラブス工程は前記ガラス口 ッ ドを前記ガラスパイプ又は 前記ガラスパイプの端部に接続したダミーパイプ中に固定した調心治具 を介して固定して行なう光ファイバ母材の製造方法。
(2) 前記(1) 記載の光ファイバ母材の製造方法において前記調心治具 が固定部と調心部を有していてもよい。
(3) 前記(1) または(2) に記載の光ファイバ母材の製造方法において, 前記加熱一体化においてガラスパイプの中心軸が鉛直方向に保持されて いてもよい。
(4) 前記(1) ないし(3) のいずれかに 1つに記載の光ファイバ母材の 製造方法において、 前記加熱一体化の温度では、 挿入するガラスロ ッ ド の粘性率が前記ガラスパイプの粘性率より も小さくてもよい。
(5) 前記(1)ないし(4) のいずれか 1つに記載の光ファイバ母材の製 造方法において、 前記ガラスパイプ内に調心治具を固定し、 前記ガラス ロッ ドをガラスパイプ内に挿入し、 該ガラスロ ッ ドを調心治具に固定し てもよい。
(6) 前記(1) ないし(5) のいずれか 1つに記載の光ファイバ母材の製 造方法において、 前記ガラスパイプ、 前記調心治具及び前記ガラスロッ ドを回転させつつ加熱一体化してもよい。
(7) 前記(1) ないし(6) のいずれか 1つに記載の光ファイバ母材の製 造方法において、 前記ガラスロッ ドが固定された側とは反対側の端部付 近から加熱一体化を開始し、 固定端に向かって加熱一体化してもよい。
(8) 前記(1) ないし(7) のいずれか 1つに記載の光ファイバ母材の製 造方法において、 前記ガラスパイプの中心軸を鉛直方向と したとき、 固 定端が上側、 加熱一体化開始端が下側であるよ うに配置して行なっても よい。 (9) 前記(1) ないし(8) のいずれか 1つに記載の光ファイバ母材の製 造方法において、 加熱一体化される直前の前記ガラス口ッ ドと前記ガラ スパイプの空隙が、 0. 1 mm以上 3 mm以下であってもよい。
(10) 前記(1) ないし(9) のいずれか 1つに記載の光ファイバ母材の 製造方法おいて、 前記ガラス口ッ ドが屈折率分布を有するものであって もよい。
(11) 前記(1) ないし(10)のいずれか 1つに記載の光ファイバ母材の 製造方法において、 前記ガラスパイプが屈折率分布を有するものであつ てもよい。
(12) 前記(1) ないし(11)のいずれか 1つに記載の光ファイバ母材の 製造方法において、 前記口ッ ドインコラプス工程により得られたガラス 口ッ ドの外部にガラス層を形成して光ファイバ母材とする工程を有して もよい。
(13) 前記(1) ないし(12)のいずれか 1つに記載の光ファイバ母材の 製造方法より得られたものであることを特徴とする光フアイバ母材。
(14) 前記(1) ないし(12)のいずれか 1つに記載の光ファイバ母材の 製造方法により得られた光ファイバにおいて、 コア非円率が 1. 5 %以 下であってもよい。
(15) 前記(1) ないし(12)のいずれか 1つに記載の光ファイバ母材の 製造方法により得られた光ファイバ母材を母材と して、 又は該光ファィ バ母材を中間体と して得られたガラス口ッ ドを母材と して、 線引するこ とにより得られた光ファイバ。
(16) 前記(1) ないし(12)のいずれか 1つに記載の光ファイバ母材の 製造方法により得られた光ファイバ母材または前記 4)に記載の光ファ ィバ母材を母材と して、 又は該光ファイバ母材を中間体として得られた ガラスロッ ドを母材として、 線引することにより得られる前記(13)に記 載の光ファイバにおいて、 PMDが 0. 1 5 p s (ピコセカンド) Ζ k m以下であってもよい。 <図面の簡単な説明 >
図 1は、 本発明の一実施態様を示す断面図である。
図 2は、 本発明の調心治具の一実施態様を示す斜視図である。
図 3は、 本発明の他の実施態様を示す断面図である。
図 4 A、 図 4 Bは、 本発明のロッ ドインコラプス工程の実施態様を示 す断面図であり、 図 4 Aは熱源を移動させた口ッ ドインコラプス工程の 断面図であり、 図 4 Bはガラス体を移動させたロッ ドインコラプス工程 の断面図である。
図 5 A〜図 5 Cは本発明の固定を行わない場合の問題点を示す断面図 であり、 図 5 A、 図 5 Bはコラップス途中の状態を、 図 5 Cはコラップ ス後の状態を示す。
図 6は、 本発明の更に他の実施態様を示す断面図である。
図 7 A、 図 7 Bは本発明の更に他の実施態様を示めしており、 図 7 A は縮径部を 1力所設けた調心治具の断面図であり、 図 7 Bは縮径部を 2 力所設けた調心治具の断面図である。
図 8 A、 図 8 Bは本発明に係る調心治具の他の実施態様を示す概略説 明図であり、 図 8 Aは斜視図、 図 8 Bは断面図である。
図 9 A〜図 9 Cは、 本発明の更に他の実施態様を示す概略説明図であ り、 図 9 Aはガラス口ッ ドのテ一パ部を調心治具に融着固定した断面図 であり、 図 9 Bは調心治具の斜視図であり、 図 9 Cは調心治具をガラス 口ッ ドのテーパ部に嵌挿して融着固定した断面図である。
図 1 0は、 本発明の実施例 3で用いたコアロッ ドの屈折率構造を示す 図である。
図 1 1 A、 図 1 1 Bは、 本発明の実施例 4で用いたガラスの屈折率構 造を示しており、図 1 1 Aはガラスロッ ドの屈折率構造を示す図であり、 図 1 1 Bはガラスパイプの屈折率構造を示す図である。
図 1 2 A , 図 1 2 Bは、 本発明の実施例 5で用いたガラスの屈折率構 造を示しており、図 1 2 Aはガラスパイプの屈折率構造を示す図であり、 図 1 2 Bはガラスロッ ドの屈折率構造を示す図である。
図 1 3は、 光ファイバのコア非円率と P DMの関係を示す図である。 図 1 4は、 図 1 3の各光フ.アイバの屈折率構造を示す図である。
図 1 5 A、 図 1 5 Bは、 従来法 (縦型配置) の概略を説明する図であ り、 図 1 5 Aはガラスパイプ内にガラスロッ ドが配置ざれた断面図であ り、 図 1 5 Bはコラップス途中の断面図である。
図 1 6 A、 図 1 6 Bは、 従来法 (横型配置) の概略を説明する図であ り、 図 1 6 Aはガラスパイプ内にガラス口ッ ドが配置された断面図であ り、 図 1 6 Bはコラップス途中の断面図である。
図 1 7 A、 図 1 7 Bは、 コアロッ ドとガラスパイプの中心軸が不一致 の場合に偏心して非円率が高くなることを説明する図であり、 図 1 7 A はコラップス前の断面図であり、 図 1 7 Bはコラップス後の断面図であ る。
なお、 図中の符号、 1はガラス口ッ ド、 2はガラスパイプ、 3, 3 a, 3 bはダミーパイプ、 4はダミー棒、 5 a , 5 bはダミーパイプの縮径 部、 6は調心治具、 6 a , 6 cは円筒部、 6 bは縮径部、 7は調心治具、 7 a , 7 cは円筒部、 7 bは縮径部、 8は支持棒、 9, 1 ◦は熱源、 1 1は調心治具、 1 1 a , 1 1 c , l i dは円筒部、 1 1 b 1は縮径部 (固 定部)、 1 1 b 2は縮径部 (調心部)、 1 2は調心治具、 1 3は調心治具、 1 3 a , 1 3 cは円筒部、 1 3 bは縮径部、 1 4は調心治具、 である。
<発明を実施するための最良の形態 >
本発明は、 ロッ ドイ ンコラブスの際、 コアを含むガラスロッ ドが加熱 時の引き伸びや溶融によって移動しないように、 調心機能を有する治具 を介してガラス口ッ ドをダミーパイプに融着等により固定することによ り、 加熱時の変形, 楕円化を抑制し、 肉厚あるいは太径のガラスパイプ を用いても、 コアの非円率が小さい光ファイバ母材、 及ぴ、 PMD特性 の劣化のない光ファイバを製造できるものである。
以下、 図 1により本発明を具体的に説明するが、 図 1において、 図 1 5, 図 1 6と同一部分については同一符号を付し、 説明を省略する。 まず、 口ッ ドインコラプス法に付すコア口ッ ド又は少なく ともコアを 有するガラスロッ ド (以下ガラスロッ ドと総称する) 1 とクラッ ド等を 形成するためのガラスパイプ 2は、 各々公知技術に従い準備する。
例えば、 V A D法などによ り合成され、 所定のガラス組成、 屈折率又 は屈折率分布を有する石英ガラス系のコア用多孔質母材を脱水、 透明化 し、 要すれば延伸工程に付し、 所定の外径を有するガラスロッ ドを作成 する。 ロッ ドインコラプス工程の前処理と して、 このガラスロッ ドの外 周を研磨して真円に加工したり、 表面層を H Fで洗浄して清浄化するな どの処理を施しても良い。
ガラスパイプ 2は、 例えば V A D法、 O V D法等により或いはゾルゲ ル法ゃガラス微粒子を成形する方法等により、 石英ガラス又は屈折率調 整剤を ドープした石英ガラスからなる多孔質母材を合成し、 焼結、 透明 ガラス化したものをパィプ形状に加工する。 ガラスパイプ 2に接続する ダミーパイプ 3 a , 3 bも公知技術により用意しておく。 図 1の場合は 用いていないが、 要すれば、 ガラスロッ ド 1に接続するダミーロ ッ ドも 同様に用意する。
図 2は本発明の調心治具の一例を示す図であって、 本例の調心治具 6 はガラスパイプ及ぴ Z又はダミ一パイプ内に揷嵌可能な外径で、 かつガ ラス口ッ ドの少なく とも端部を揷入可能な内径を有する円筒が略中央部 分においてその外径を縮小した形状であって、 上部と下部の各円筒部 6 a , 6 cの中間に、 内径がガラスロッ ドの外径より若干大きい程度 (融 着前に揷嵌できる程度のク リアランス) であり外径が各円筒部 6 a , 6 。 より縮小している縮径部 6 bを有している。 調心治具 6の材質と して は、 ガラスロッ ド、 ガラスパイプと融着固定するため、 石英系ガラスを 用いることが好ましい。 本発明の口ッ ドインコラブス工程は次のように行なう。 ①上下端部に ダミーパイプ 3 a及び 3 bを接続したガラスパイプ 2を準備する。 ②図 1に示すように縮径部 6 b, 7 bを設けることにより中央部が括れた円 筒形状と した調心治具 6をガラスパイプ 2 , ダミーパイプ 3 a又は 3 b の片端に揷入する。 ③別途用意しておいたガラスロッ ド 1をガラスパイ プ 2及び Z又は調心治具 6内に挿入する。 ④逆端に設ける調心治具 7を ガラスパイプ 2 , ダミーパイプ 3 a又は 3 b内に揷入する。 ⑤調心治具 6, 7をダミーパイプ 3 a, 3 b又はガラスパイプ 2に固定する。 ⑥前 記ガラスロッ ド 1を調心治具に固定する。 固定手段としては、 例えば図 1においては図示を省略した外部加熱源による加熱融着による。 なお、 図 1ではガラスロッ ド 1 の上端部を調心治具 6を介してダミ一パイプ 3 に固定し、 同下端部は調心治具 7を介してガラスパイプ 2に固定してい る。 なお、 図中斜線で示した部分は固定されていることを意味する。 以 下の図 2〜図 9においても同様である。
このとき、 ガラスロッ ド 1 とガラスパイプ 2の各中心軸がほぼ一致す るように、 できるだけ合わせておく ことが、 偏心及び楕円化を防ぐ点で 好ましい。 該各中心軸が一致していないと、 図 1 7 Aに示すように加工 量が大きい部分 (ガラスロッ ド 1 とガラスパイプ 2間の隙間の大きい部 分) と小さい部分 (ガラスロ ッ ド 1 とガラスパイプ 2間の隙間の小さい 部分) とができるため、 コラブスして得られるガラス体 (コラブス体) の周方向断面は図 1 7 Bに示すようにコアが偏心して非円率が高くなる からである。
このようにした後に、 ガラスロッ ド 1 とガラスパイプ 2を火炎、 電気 炉、 高周波プラズマ等の加熱手段によ り加熱一体化して偏心がなく非円 率の低減したコラブス体を得る。加熱手段の温度分布はガラスロッ ド 1、 ガラスパイプ 2の周方向に均一であることが望ましく、 この目的のため にガラスロッ ド 1、 ガラスパイプ 2 (ダミーパイプを含む) を回転させ て加熱することが好ましい。 温度分布が周方向に均一でないと偏心し、 非円率が大きくなる。
図 1では調心治具 6, 7を介して両端で融着固定する例を示したが、 本発明において調心治具を介してのガラスロッ ドとガラスパイプの融着 固定は少なく とも一端で行えば良い。 図 3に示すように、 上端では調心 治具 6を介して図 1の場合と同様に融着固定し、 下端ではガラス口ッ ド
1の下部に支持棒 8を設けて片端のみ固定し、 突つかえとしても良い。 このように一端のみで固定の場合には、 図 4 Aに示すように固定して 端とは逆の端からコラブスを開始し、 ガラスパイプ 2及びガラス口ッ ド
1、 又は熱源 9を移動させて、 固定端に向かってコラブスすれば、 前記 の両端が融着固定されている場合と同様の効果が得られる。
両端での融着固定であれ、 片端だけの融着固定であれ、 縦型 (鉛直配 置) の場合には、 図 4 A , 図 4 Bに示すように下から上方向にコラプス することが好ましい。 上から下方向にコラブスすると、 図 5 Aに示すよ うに加熱部に重力が加わり、 引き伸びよう とするが、 逆端は固定されて いるので図 5 Bに示すように曲がってしまう。 また、 固定しないと、 図
5 Cに示すように引き伸びでコラプス後のガラスロッ ド 1 'の外径と、 コラプス後のガラスパイプ 2 ' の外径との比率が長手方向に一定となら ない。
—方、 図 4 A , 図 4 Bに示すように、 上端でガラスロッ ドを融着固定 し、 下から上方向へのコラブスであれば、 加熱領域の直ぐ下がコラブス されている部位であるため、 引き伸びは発生せず、 コア非円率が良好で ある。
以上の説明ではガラス口ッ ドが調心治具の円筒部 6 aに達して融着固 定している例を示したが、 図 6に示すように縮径部 6 cの位置にガラス 口ッ ドの端部が配置されるように融着固定することもできる。
本発明の図 1の例では調心治具 6 と して縮径部が 1力所のものを用い ている。 この場合、 図 7 Aに示すように調心治具とガラスロッ ドを融着 するための加熱によりガラス口ッ ドが曲がってしまう と、 調心治具の使 用にもかかわらずガラス口ッ ドの中心軸とガラスパイプの中心軸がずれ てしまう。 このような問題は、 特にガラスロッ ドの粘性が低い場合に起 きる危険性がある。
前記の危険性を回避する手段と して、 図 7 Bに示すように調心治具 1 1の縮径部 1 1 bを 2力所以上設け、 最も端側の縮径部 1 1 b 1 で融着 一体化することが挙げられる。 最も端の縮径部 1 1 b 1 を固定部と して 融着し、 ここで、 ガラスロッ ドが変形したと しても、 次の縮径部 1 1 b 2 が調心部と して調心の役割を果たすことができるため、 ガラスロッ ドの 中心軸とガラスパイプの中心軸とはずれず、 非常に好適である。
本発明の調心治具はガラスパイプ (及び Z又はダミーパイプ) とガラ スロ ッ ドの間に介在して両者をそれぞれ融着固定できるものであれば任 意の形状を採用できる。 上記では 1以上の縮径部を有する円筒形状の例 を示したが、例えば図 8 Aに示すように単なる円筒形状であってもよく、 この場合にも融着固定は片端又は両端で行なう。 図 8の円筒状の調心治 具 1 2の中心軸方向長さを L 1 とするとき、 図 8 Bに示すように L 1 が 加熱一体化の際の熱源のヒー トゾーン長さ L 2 より も充分に長くなるよ うな調心治具 1 2を用いると、 加熱されていない部分 (非加熱部分) が 調心部として作用するので好結果を得られる。
図 9は本発明において端部にテーパを有するガラス口ッ ドの場合の、 調心治具とガラスパイプの融着固定の例を示すものであり、 図 9 Aは調 心治具 1 3の縮径部 1 3 bにおいてガラスロッ ド 1のテーパ部を融着固 定し、 円筒部 1 3 aでダミーパイプ 3 と融着固定した例である。 図 9 B は外形が円筒状で内壁面にテーパを設けた調心治具 1 4の斜視図であり 図 9 Cに示すようにテーパを有するガラスロッ ド 1に嵌揷して斜線で示 す部分を融着固定している。
これらの調心治具 1 3, 1 4は 1端のみにつけても両端につけても良 いし、 また固定も片側、 両端のいずれでも良いことは既に説明のとおり である。 以上のようにして本発明の方法に従い得られたコラブス体のコアは、 後記実施例 1に具体的に示されるように、 従来法により固定せずにコラ プスしたものに比較して非円率が低い、 すなわち真円に近いものが得ら れる。
本発明によるコラブス体において特に好ましいものと して、 非円率が
1. 5 %以下のものが挙げられ、 このようなコラプス体から得られる光 ファイバは次に説明するように PMDが非常に良好である。
本発明者らが実験により求めたコア非円率 (%) と PMD ( p s / km) の関係を図 1 3のグラフに示す。 図 1 4に示すように中心コア部が G e O 2— S i O 2、 第一クラッ ド部が F _ S i O、 第二クラッ ドが S i O 2からなり、第二クラッ ドに対する中心コアの比屈折率差△が 1. 5 %、 第一クラッ ドの比屈折率差△- が 0. 4 5 %のガラス母材を線引きし、 中心コア径 5 ju m, 第一クラッ ド径 1 0. 5 μ πι、 波長 1 5 5 0 n mで の特性が、 分散: — 4 7 ps/km/nm, 分散スロープ : 一 0 · 0 8 ps/kra /nm2 , Aeff (有効断面積) : 2 0 μ ιη2, カッ トオフ波長: 7 5 0 η m, 伝送損失: 0. 2 7 dB/kmであり、 コア非円率は約 0. 0 4〜4 % の範囲で種々に異なった光フアイパと した。 得られた各光フアイバのコ ァ非円率 (%) と PMD ( p s ZVkra) は図 1 3に示すとおりであった。 図 1 3において秦印は、 例えば特開平 6 _ 1 7 1 9 7 0、 特開平 9一 2 4 3 8 3 3各号公報に提案される揺動線引きをした光ファイバ、 X印は 揺動せずに線引きした光ファイバを意味する。図 1 3に示されるように、 PMDが大容量伝送に好適な 0. 1 5 p s / km以下となるのは、 コア 非円率が 1. 5 %以下の場合である。 また、 揺動線引きしたものの方が PMDが小さい。
ここで揺動線引きとは、 線引時に光フアイバを回転軸が周期的に揺動 するガイ ドーラでガイ ドすることにより光ファイバに所定のねじりを付 与する線引き方法であり、 線引き時にガラス軟化部を強制的にねじるこ とによって、 偏波間の結合が発生する。 その際、 偏波分散による入力パ ルスの広がりは、 揺動を実施せず偏波間の結合が殆ど発生しない場合と 比較して、 数 2となる。
(数 2 )
( 4 L h ) - 1 / 2
ここで、 Lは光ファイバ長 (m )、 hはファイバ長 1 m当たりの回転数 ( 1 / m ) である。 従って、 hが大きいほど P M Dは小さくなる。
本発明によるロッ ドィンコラプス法は光フアイバ母材中間体を作成す る一工程として利用すればよく、 その他の工程についてはこの種技術分 野における公知技術を適用して、光ファイバ中間体、光ファイバ母材(母 材) と し、 さらに線引して光ファイバを得ることができる。
すなわち、 本発明に係る前記コラプス体をそのまま光ファイバ母材と して公知の方法で線引用母材と して線引して光ファイバと してもよいし. 公知のスー ト法, ロッ ドインコラプス法, ゾルゲル法等でコラプス体に 更にジャケッ ト付けしたものを線引用母材と し、 光ファイバと しても良 い。 後者の場合には、 コラブスで得られるガラス体は、 母材中間体とす るので、 該中間体のコア (外径 2 a ) とクラッ ド (外径 2 D ) の径比 ( 2 a / 2 D ) は設計値より大きく、 ジャケッ ト付けにより設計値とする。 この方法によれば非円率の低い大型の母材が得られる。
本発明の光ファイバを線引きする方法は公知の手段によればよいが、 前記のように揺動線引きを行えば P M Dが非常に良好な光ファイバとす ることができる。
なお、 本発明の方法において、 ガラスロッ ドとガラスパイプのガラス 組成については何ら限定されるところはなく、 ガラス口ッ ド及ぴ /又は ガラスパイプは屈折率分布を有するものであってもよい。 これにより、 複雑な屈折率プロファィルを有する光ファィバ母材、 光ファイバが得ら れる。
また、 本発明の方法はどのようなサイズのガラスロッ ドとガラスパイ プの組合せの口ッ ドィンコラプス法においても有効である。 ガラスパイプの外径が 4 5 πιιη φを超えるような場合は、 コラブスの ための加熱量が多くなり、 従来法でのコラプスではコアが変形しやすい が、本発明を適用することにより偏心、コアの変形を抑えることができ、 大幅に非円.率を低下できるので、 非常に大きな効果が得られる。
なお、 このように太径のガラスパイプのコラプスは、 横型配置では加 熱部が弓なりに変形してしまうので、 縦形の配置とすることがより好ま しい。
また、 例えばガラスパイプが純 S i O 2でガラスロッ ドが F— S i O 2 又は G e〇 2_ S i 02の組合せのように、 加工されるべきガラスパイプ の粘性率が大きく、 変形してはならないガラス口ッ ドの粘性率が小さい 場合には、従来の固定のない方法では口ッ ドの変形が極めて生じやすく、 コア非円率が劣化し易い。 このような場合にも本発明の方法を適用する ことが非常に効果的である。
(実施例)
以下、 実施例により本発明を具体的に説明するが、 本発明はこれらの 実施例のみに限定されるものではない。
(実施例 1及び比較例)
外径 φ 7 O mmで内径は表 1に示すとおり 1 5. 1〜 2 2 πιπι φのガ ラスパイプ (純 S i O 2製) と、 外径 1 5 κιιη φのガラスロッ ド (F添加 濃度 0. 9 m ο 1 。/。の S i O 2製) を組み合わせて、 表 1に示すような条 件でコラプスを行った。 No. 1〜 1 2はいずれも図 7 Bに示した調心治 具と固定法、 No. 1 3は図 7 Aに示した調心治具と固定法とし、 加熱源 は電気炉と した。 コラプス時のガラスの表面最高温度は 1 5 5 0 °C (パ ィロスコープで測定)、 排気圧は 5 k P a と した。 表面温度が 1 5 5 0〜 1 5 0 0 °Cの範囲内にあるヒードゾーンの長さは 6 0 mmであった。 表 1において固定有は本発明に従い両端又は片端を融着固定したものであ り、 No. 1, 3 , 5〜 1 2が本発明の実施例、 No. 2及び 4は比較例で ある。 得られたコラブス体のコア非円率を測定した。 結果を表 1に併せ て示す,
(表 1 )
Figure imgf000017_0001
の結果から明らかなよ うに、 少なく とも上端側で固定し、 ガラス パイプ及ぴガラス口 ッ ドを回転させながら下から上方向にコラブスする ことが、 コアの非円率低減に有利である。
また、 コラブス開始前のガラスロ ッ ドとガラスパイプの間の空隙 (ク リアランス) は、 0. 1 mm以上 3 mm以下が好結果を得られることが わかる。 ク リアランスが小さい程、 コア非円率は低減するが、 本発明者 らの実験によれば 0 · 1 mm未満ではガラスロ ッ ドとガラスパイプの界 面に空隙が残ったままコラブスされ、 気泡が発生してしまい好ましくな い。 また、 ク リアランスが小さすぎる と、 ガラスロッ ド揷入時に、 ガラ スロ ッ ドがガラスパイプ内面に接触して傷を発生させてしまい易い。 こ の傷も気泡発生の原因になり得る。
一方、 ク リアランスが 3 mmを超えると、 コア非円率が 1. 5 %を超 .る。
(実施例 2 )
1) G e O 2が 2 5 m o 1 %添加された S i O 2力 らなり外径 7 m m φ のガラス口 ッ ド及びおおよそ純粋な石英からなる外径 7 0 mm φ、 内径 8 πιιη φのガラスパイプを公知の VAD法を用いて作成した。 ガラスパ ィプは気相エッチングによ り 内面を平滑化し、 かつ内径を 8 πιιη φ と し た。
2) 上記ガラスロ ッ ドを上記ガラスパイプに揷入し、 上端側で図 7 Βの 調心治具を介してガラスパイプに固定し、ガラス表面温度が 1 8 8 0 °C、 排気圧 5 k P a、 回転数 1 0 r p mの条件で、 電源は電気炉を用い、 開 始端は下端からと してコラブスし、 直径 6 9. 8 πιπι φの光ファイバ母 材中間体を得た。 この中間体のコアの非円率を測定した結果、 0. 5 % と良好であつた。
3) 得られた該中間体の屈折率分布構造を測定した後、 公知の VAD法 により該中間体に対して外径が 3. 1倍の純 S i 02のジャケッ ト層を形 成し、 光ファイバ母材 (母材) と した。
4) 得られた光ファイバ母材を公知の揺動線引き法で線引し、 光フアイ バと した。 この光ファイバの特性を調べたところ、 1 5 5 0 n mの波長 で、 PMD : 0. 0 8 ps/^Tkra, 伝送損失 : 0. 3 3 dB/km, 分散 : 一 7 6 ps/km/nra, 分散スロープ : + 0. 1 Ops/km/nm2 , Aeff : 1 6 μ m2 , λ c (2m) : 7 7 0 nra, 直径 2 0 mm ψの曲げ損失 : 0. 0 1 dB/m と、 非常に良好であった。
(実施例 3 )
図 1 0に示すよ うに、 G e O 2が最大部で 1 5 m o 1 %添加された石 英ガラスからなる中心部 (直径 7. 2 mm φ ) 及びその外周が Fが 1. 3 m o 1 %添加された石英ガラスからなる直径 1 5 mm φのガラス口 ッ ドを作成した。 このガラス口 ッ ドは中心部をガラスロッ ド、 F添加部を ガラスパイプと して本発明のコラプス法に従い準備した。
なお、 前記ロッ ドは V A D法を利用して、 以下のよ う に作成しても良 い。 まず、 多孔質ガラス母材の、 コアの外周部となる部分が、 G e 〇 2 を高濃度で含むよ うに、 多孔質ガラス母材を VAD法で作成する。 その 母材を加熱して、 外周部を次工程でドーパン トのフッ素が透過しない程 度に硬くする。 その母材を、 フッ素を含む雰囲気内で加熱して、 母材の クラッ ドとなる部分にフッ素を添加する。 こ うすることで、 母材のクラ ッ ドとなる部分にのみ、選択的にフッ素を添加することが出来る。また、 フッ素 (F) 添加部をガラスパイプと して C VD法で G e 02を含有する 中心部を内付けにより形成しても良い。
別途、外径 7 0 mm φ,内径 1 7 mm φの純 S i O 2製パイプを準備し、 前記により得られたガラスロ ッ ドを揷入し、 実施例 2 と同様に上端側を 図 7の (B ) に示す調心治具で固定して下端側からコラブスした。 コラ プス条件は温度 1 8 6 0 °C、 排気圧 4 k P a、 回転数 1 0 r p mであつ た。 コラブス終了後、 実施例 2 と同様にして 3. 5倍の純 S i 〇 2ジャケ ッ ト層を形成して光ファイバ母材と した。
得られた光ファイバ母材を公知の揺動線引き法で線引 し、 光ファイバ と した。この光フアイバの特性を調べたところ、 1 5 5 0 n mの波長で、 PMD : 0. 0 5 ps/y~ktn, 伝送損失: 0. 2 6 dB/km, 分散: — 4 9 . 4 ps/km/nm, 分散スロープ : 一 0. 0 8 ps/km/nra2 , Aeff : 1 9 μ m2, λ c (2m) : 7 9 0 nra, 直径 2 0 mm φの曲げ損失 : 0. 3 dB/m と いう分散 · 分散スロープ補償ファイバが得られていた。
(実施例 4 )
実施例 2 と同様にして図 1 1 Aに示す構造の外径 1 5 mmのガラス口 ッ ドを準備した。 また、 図 1 1 Bに示すよ うに、 4. 5 111 0 1 %の0 6 02添加された S i 02力 らなり、 内径 1 7 mm 0、 外径 2 0 m m φの内 層部、該内層部の外周に設けられた純 S i O 2の外層部、 という二層構造 で外径 8 0 mm φであるガラスパイプを別途準備した。 以上、 本実施例 では公知の V A D法によったが、 この構造は O V D法によ り所望の屈折 率分布を有するガラス体を合成した後、 中心部を開孔してもよいし、 C V D法によ り純石英製パイプに G e 〇 2 _ S i O 2組成のガラスを內付 けする方法によってもよい。
実施例 2 と同様にガラスロ ッ ドとガラスパイプを該ガラスパイプ上端 側におい図 7 Bに示す調心治具で固定してコラプスした。 条件は表面温 度 1 8 4 0 °C、 排気圧 6 k P a、 回転数 l O r p mであった。 これによ り外径 7 9 . 6 mm φの母材中間体を得た。 この中間体のコアの非円率 は 0. 4 %であった。
コアの非円率の測定後、 公知の摇動線引き法により ファイバ化した。 得られた光ファイバの特性を測定したところ、 1 5 5 0 n mの波長で、 PMD : 0. 0 7 ps/^kra, 伝送損失 : 0. 3 5 dB/kra, 分散 : — 1 0 2 ps/km/nm, 分散スロープ : 一 1 . 0 ps/km/nm2 , Aeff : 1 0 μ τα 2, λ c (2m): 1 4 5 0 ntn, 2 0 ηιηιφの曲げ損失: 1 8 dB/m とレヽぅ分散 · 分散スロープ補償ファイバが得られていた。
(実施例 5 )
フッ素 ( F ) 力 S 1 . 5 m o 1 %添加された石英からなる外径 5 m m <ί> のガラスロッ ドを準備した。 また、実施例 3 と同様にして、 1 0 m o l % の G e〇2が添加された S i 〇 2からなり、 内径 7 mm <i»、 外径 1 2 mm φの内層部、該内層部の外周に設けられた純 S i O 2の外層部、 という二 層構造で外径 1 0 O mm φであるガラスパイプを別途準備した。 以上、 本実施例では公知の VAD法によったが、 この構造は O VD法により所 望の屈折率分布を有するガラス体を合成した後、 中心部を開孔してもよ いし、 C VD法により純石英製パイプに G e〇 2 _ S i O 2組成のガラス を内付けする方法によってもよい。
実施例 2 と同様にガラスロッ ドとガラスパイプを該ガラスパィプ上端 側におい図 7 Bに示す調心治具で固定してコラプスした。 条件は表面温 度 1 9 2 0 °C、 排気圧 3 k P a、 回転数 l O r p mであった。 これによ り外径 9 9. 6 mm φの母材中間体を得た。 この中間体のコアの非円率 は 0. 6 %であった。 非円率検査後、 公知の摇動線引き法により線引し て、 ファイバ化した。 得られた光ファイバの特性を測定したところ、 1 5 5 0 n mの波長で、 PMD : 0. 1 0 ps/ "km, 伝送損失 : 0. 2 3 dB/km, 分散 : _ 2 · 5 ps/km/nm, 分散スロープ: + 0. 0 7 ps/km /nra2 , Aeff : 8 0 μ m2 , λ c (2m) : 1 1 0 0 nra, 2 0 mm φの曲げ 損失 : 2 dBZm という図 1 2 Bに示すようなリングコア型分散シフ トフ アイパを得た。
上記各実施例ではガラス口ッ ド及びガラスパィプの各々の製法と して VAD法による例又は VAD法と口ッ ドィンコラプス法を組み合わせた 例を挙げたが、 同様のものを OVD法やゾルゲル法で作成しても、 上記 の実施例と同様に効果を得られる。 本発明を詳細にまた特定の実施態様を参照して説明したが、 本発明の 精神と範囲を逸脱することなく様々な変更や修正を加えることができる ことは当業者にとつて明らかである。
本出願は、 2 0 0 0年 1 2月 0 8 日出願の日本特許出願 (特願 2 0 0 0 - 3 7 4 0 8 1 ) に基づく ものであり、 その内容はここに参照として 取り込まれる。 ぐ産業上の利用可能性 >
以上説明のとおり、 本発明によれば、 コアの偏心、 変形が少なく、 非 常に真円に近い (非円率が低く 良好である)、 光ファイバ母材及び光ファ ィバを得ることができる。 また、 ガラスロッ ド、 ガラスパイプのそれぞ れに屈折率分布を有するものを用いることにより、 複雑なプロファイル を持つ光ファイバ母材をコア非円率良好に製造できる。 そして、 光ファ ィバ母材のコア非円率が低いのでファイバ化すると、 P M Dが低い光フ アイバが得られる。 このよ うに P M Dが低い光ファイバは伝送信号が乱 れず、 非常に有利である。

Claims

請 求 の 範 囲
1 . ガラスロッ ドをガラスパイプ内に挿入して加熱一体化する口ッ ドインコラブス工程を少なく とも含む光ファイバの製造方法において、 前記ロッ ドインコラブス工程は前記ガラスロッ ドを前記ガラスパイプ又 は前記ガラスパイプの端部に接続したダミーガラスパイプ中に固定した 調心治具を介して固定して行なうことを特徴とする光ファィバ母材の製 造方法。
2 . 前記調心治具が固定部と調心部を有するものであることを特徴 とする請求の範囲第 1記載の光ファィバ母材の製造方法。
3 . 前記加熱一体化においてガラスパイプの中心軸が鉛直方向に保 持されることを特徴とする請求の範囲第 1項または第 2項に記載の光フ ァィバ母材の製造方法。
4 . 前記加熱一体化の温度において、 揷入するガラスロッ ドの粘性 率が前記ガラスパイプの粘性率より も小さいことを特徴とする請求の範 囲第 1項ないし第 3項のいずれか 1項に記載の光ファイバ母材の製造方 法。
5 . 前記ガラスパイプ内に調心治具を固定し、 前記ガラスロッ ドを ガラスパイプ内に挿入し、 該ガラスロッ ドを調心治具に固定することを 特徴とする請求の範囲第 1項ないし第 4項のいずれか 1項に記載の光フ アイバ母材の製造方法。
6 . 前記ガラスパイプ、 前記調心治具及び前記ガラスロッ ドを回転 させつつ加熱一体化することを特徴とする請求の範囲第 1項ないし第 5 項のいずれか 1項に記載の光ファィバ母材の製造方法。
7 . 前記ガラスロッ ドが固定された側とは反対側の端部付近から加 熱一体化を開始し、 固定端に向かって加熱一体化してゆく ことを特徴と する請求の範囲第 1項ないし第 6項のいずれか 1項に記載の光ファィバ 母材の製造方法。
8 . 前記ガラスパイプの中心軸を鉛直方向と したとき、 固定端が上 側、 加熱一体化開始端が下側であるように配置して行なう ことを特徴と する請求の範囲第 1項ないし第 7項のいずれか 1項に記載の光ファィバ 母材の製造方法。
9 . 加熱一体化される直前の前記ガラスロッ ドと前記ガラスパイプ の空隙が、 0 . 1 m m以上 3 m m以下であることを特徴とする請求の範 囲第 1項ないし第 8項のいずれか 1項に記載の光ファィバ母材の製造方 法。
1 0 . 前記ガラス口ッ ドが屈折率分布を有するものであることを特 徴とする請求の範囲第 1項ないし第 9項のいずれか 1項に記載の光ファ ィバ母材の製造方法。
1 1 . 前記ガラスパイプが屈折率分布を有するものであることを特 徴とする請求の範囲第 1項ないし第 1 0項のいずれか 1項に記載の光フ アイバ母材の製造方法。
1 2 . 前記ロッ ドインコラプス工程により得られたガラスロッ ドの 外部にガラス層を形成して光ファィバ母材とする工程を有することを特 徴とする請求の範囲第 1項ないし第 1 1項のいずれか 1項に記載の光フ アイバ母材の製造方法。
1 3 . 請求の範囲第 1項ないし第 1 2項のいずれか 1項に記載の光 フアイバ母材の製造方法により得られたものであることを特徴とする光 フアイバ母材。
1 4 . 請求の範囲第 1項ないし第 1 2項のいずれか 1項に記載の光 フアイバ母材の製造方法により得られたものであり、 コア非円率が 1 .
5 %以下であることを特徴とする光ファイバ母材。
1 5 . 請求の範囲第 1項ないし第 1 2項のいずれか 1項に記載の光 ファイバ母材の製造方法により得られた光ファイバ母材を母材と して、 又は該光フアイバ母材を中間体と して得られたガラス口ッ ドを母材とし て、 線引することにより得られたことを特徴とする光ファイバ。
1 6 . 請求の範囲第 1項ないし第 1 3項のいずれか 1項に記載の光 フアイバ母材の製造方法により得られた光ファイバ母材または請求の範 囲第 1 4項に記載の光ファィバ母材を母材と して、 又は該光ファィバ母 材を中間体と して得られたガラスロッ ドを母材と して、 線引することに より得られ、 卩1\4 0が 0 . 1 5 p s / 7~ k m以下であることを特徴とす る請求の範囲第 1 3項に記載の光ファイバ。
PCT/JP2001/010728 2000-12-08 2001-12-07 Procede de production de preformes de fibre optique, preforme de fibre optique et fibre optique WO2002049974A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01271112A EP1346958A4 (en) 2000-12-08 2001-12-07 PROCESS FOR PRODUCING FIBER OPTIC PREFORMS, FIBER OPTIC PREFORM AND FIBER OPTIC
US10/312,911 US6987917B2 (en) 2000-12-08 2001-12-07 Optical fiber preform producing method, optical fiber preform, and optical fiber
AU2002222587A AU2002222587A1 (en) 2000-12-08 2001-12-07 Optical fiber preform producing method, optical fiber preform, and optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000374081A JP2002179434A (ja) 2000-12-08 2000-12-08 光ファイバ母材製造方法及び光ファイバ母材並びに光ファイバ
JP2000-374081 2000-12-08

Publications (1)

Publication Number Publication Date
WO2002049974A1 true WO2002049974A1 (fr) 2002-06-27

Family

ID=18843349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010728 WO2002049974A1 (fr) 2000-12-08 2001-12-07 Procede de production de preformes de fibre optique, preforme de fibre optique et fibre optique

Country Status (6)

Country Link
US (1) US6987917B2 (ja)
EP (1) EP1346958A4 (ja)
JP (1) JP2002179434A (ja)
CN (1) CN1223532C (ja)
AU (1) AU2002222587A1 (ja)
WO (1) WO2002049974A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7194171B2 (en) * 1999-07-19 2007-03-20 Sumitomo Electric Industries, Ltd. Dispersion compensating optical fiber, dispersion compensating device, optical transmission line and optical transmission system
JP3861663B2 (ja) * 2001-11-12 2006-12-20 住友電気工業株式会社 光ファイバ母材の製造方法
CN101239778B (zh) * 2002-04-16 2011-05-25 住友电气工业株式会社 光纤预制棒制造方法及光纤制造方法
KR100498923B1 (ko) * 2002-09-18 2005-07-04 삼성전자주식회사 상향 가열 방식에 따른 광섬유 모재의 오버 쟈켓팅 방법
WO2004035494A1 (ja) * 2002-10-15 2004-04-29 Mitsubishi Cable Industries, Ltd. 光ファイバ母材の製造方法、光ファイバ母材、光ファイバ、光ファイバ母材の製造装置
CA2454896A1 (en) * 2003-01-16 2004-07-16 Sumitomo Electric Industries, Ltd. Method of producing optical fiber preform, and optical fiber preform and optical fiber produced with the method
JP4704760B2 (ja) * 2005-01-13 2011-06-22 信越化学工業株式会社 光ファイバ母材の製造方法及び光ファイバ母材
CN100357204C (zh) * 2005-10-27 2007-12-26 上海大学 半导体薄膜内包层放大光纤及其预制棒制造方法
US8591777B2 (en) * 2008-12-15 2013-11-26 Ofs Fitel, Llc Method of controlling longitudinal properties of optical fiber
JP5903123B2 (ja) * 2014-04-07 2016-04-13 株式会社フジクラ 光ファイバ素線の製造方法および製造装置
CN106396361A (zh) * 2016-08-26 2017-02-15 江苏亨通光导新材料有限公司 一种光纤预制棒套管烧结装置及其烧结方法
EP3702333A1 (de) * 2019-03-01 2020-09-02 Heraeus Quarzglas GmbH & Co. KG Verfahren und vorrichtung zur herstellung eines glasbauteils
CN111362571A (zh) * 2019-12-30 2020-07-03 中天科技精密材料有限公司 光纤、光纤预制棒及制造方法
CN111606551A (zh) * 2020-05-26 2020-09-01 程怀猛 一种ds-3型玻璃吹胎机
CN118076567A (zh) * 2021-11-22 2024-05-24 住友电气工业株式会社 棒插入治具以及多芯光纤母材的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142338A (en) * 1975-06-03 1976-12-07 Fujitsu Ltd Method of manufacturing optical fiber material
JPS5413351A (en) * 1977-07-02 1979-01-31 Fujikura Ltd Production of mother material for optical communication fiber
JPS57118042A (en) * 1981-01-13 1982-07-22 Showa Electric Wire & Cable Co Ltd Manufacture of preform rod for optical fiber
WO2000026150A1 (fr) * 1998-10-29 2000-05-11 Sumitomo Electric Industries, Ltd. Procede de production de preforme et de fibre optique
JP2000264669A (ja) * 1999-03-19 2000-09-26 Hitachi Cable Ltd 光ファイバ母材の製造方法
JP2001010837A (ja) * 1999-06-23 2001-01-16 Sumitomo Electric Ind Ltd 光ファイバ母材の製造方法及び調心治具

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836940A (ja) 1981-08-24 1983-03-04 Showa Electric Wire & Cable Co Ltd 光フアイバ用プリフオ−ムロツドの製造法
JPS62176934A (ja) 1986-01-29 1987-08-03 Ocean Cable Co Ltd 光フアイバ母材の製造方法
CA1317464C (en) * 1986-04-28 1993-05-11 William Malcolm Flegal Method of and apparatus for overcladding an optical preform rod
US4820322A (en) * 1986-04-28 1989-04-11 American Telephone And Telegraph Company At&T Bell Laboratories Method of and apparatus for overcladding a glass rod
KR0184481B1 (ko) 1996-06-10 1999-05-15 김광호 광섬유 제조장치의 고생산성 광섬유 인출장치 및 그 인출방법
DE69815853T2 (de) * 1997-03-27 2003-12-24 Samsung Electronics Co., Ltd. Vorrichtung und verfahren zum ummanteln eines vorformstabes für optische fasern und verfahren zum ziehen von optischen fasern
WO1999009437A1 (en) * 1997-08-19 1999-02-25 Pirelli Cavi E Sistemi S.P.A. Method of and apparatus for manufacturing an optical fiber preform
US6128927A (en) * 1998-08-03 2000-10-10 Lucent Technologies Inc. Method of making ferrule connectors for optical fibers
TWI226464B (en) * 2000-11-13 2005-01-11 Sumitomo Electric Industries Optical fiber, non-linear optical fiber, optical amplifier using the same optical fiber, wavelength converter and optical fiber manufacture method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142338A (en) * 1975-06-03 1976-12-07 Fujitsu Ltd Method of manufacturing optical fiber material
JPS5413351A (en) * 1977-07-02 1979-01-31 Fujikura Ltd Production of mother material for optical communication fiber
JPS57118042A (en) * 1981-01-13 1982-07-22 Showa Electric Wire & Cable Co Ltd Manufacture of preform rod for optical fiber
WO2000026150A1 (fr) * 1998-10-29 2000-05-11 Sumitomo Electric Industries, Ltd. Procede de production de preforme et de fibre optique
JP2000264669A (ja) * 1999-03-19 2000-09-26 Hitachi Cable Ltd 光ファイバ母材の製造方法
JP2001010837A (ja) * 1999-06-23 2001-01-16 Sumitomo Electric Ind Ltd 光ファイバ母材の製造方法及び調心治具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1346958A4 *

Also Published As

Publication number Publication date
JP2002179434A (ja) 2002-06-26
AU2002222587A1 (en) 2002-07-01
EP1346958A1 (en) 2003-09-24
EP1346958A4 (en) 2004-11-24
US20030103748A1 (en) 2003-06-05
CN1223532C (zh) 2005-10-19
CN1479698A (zh) 2004-03-03
US6987917B2 (en) 2006-01-17

Similar Documents

Publication Publication Date Title
WO2002049974A1 (fr) Procede de production de preformes de fibre optique, preforme de fibre optique et fibre optique
JP3861663B2 (ja) 光ファイバ母材の製造方法
WO1999040037A1 (fr) Procede de fabrication de materiau de base pour fibres optiques
WO2010029734A1 (ja) 光ファイバ母材の製造方法
JP4200103B2 (ja) 光ファイバーを製造する方法
RU2236386C2 (ru) Способ изготовления заготовки оптического волокна
US6446468B1 (en) Process for fabricating optical fiber involving overcladding during sintering
US10118854B2 (en) Tubular semifinished product for producing an optical fiber
JP4179265B2 (ja) 光ファイバ母材及びその製造方法
JP2005092211A (ja) 低損失光ファイバ及び光ファイバ用母材の製造方法
US6418757B1 (en) Method of making a glass preform
US20040123630A1 (en) Preform fabrication process
JP3721865B2 (ja) 光ファイバ母材の製造方法及び調心治具
KR100912863B1 (ko) 광섬유의 제조방법 및 광섬유
WO2002098808A1 (en) Method of low pmd optical fiber manufacture
WO2006075460A1 (ja) 光ファイバ母材の製造方法及び光ファイバ母材
JPS62167235A (ja) 光フアイバ用母材の製造方法
JP3975709B2 (ja) 光ファイバ母材の製造方法
JP2006160561A (ja) 光ファイバ母材の製造方法及び光ファイバ母材
WO2002008133A2 (en) Process of manufacturing glass optical fibre preforms
JP3788503B2 (ja) 光ファイバ用ガラス母材の製造方法および製造装置
EP1544173A1 (en) Glass preform for an optical fibre and method and apparatus for its manufacture
AU742224C (en) Method of making a glass preform
RU2173672C2 (ru) Способ изготовления заготовок с составной сердцевиной для оптических волноводов (варианты)
JP2003137581A (ja) 光ファイバガラス母材の製造方法およびコア用ガラスロッド

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10312911

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002222587

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2001271112

Country of ref document: EP

Ref document number: 018201962

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001271112

Country of ref document: EP