WO2002036814A2 - Diagnose von mit cdk4 assoziierten krankheiten durch bestimmung des methylierungszustandes des cdk4 - Google Patents

Diagnose von mit cdk4 assoziierten krankheiten durch bestimmung des methylierungszustandes des cdk4 Download PDF

Info

Publication number
WO2002036814A2
WO2002036814A2 PCT/EP2001/012827 EP0112827W WO0236814A2 WO 2002036814 A2 WO2002036814 A2 WO 2002036814A2 EP 0112827 W EP0112827 W EP 0112827W WO 0236814 A2 WO0236814 A2 WO 0236814A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
dna
oligomer
cancer
cdk4
Prior art date
Application number
PCT/EP2001/012827
Other languages
English (en)
French (fr)
Other versions
WO2002036814A3 (de
Inventor
Alexander Olek
Christian Piepenbrock
Kurt Berlin
Original Assignee
Epigenomics Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epigenomics Ag filed Critical Epigenomics Ag
Priority to AU2002218283A priority Critical patent/AU2002218283A1/en
Priority to US10/416,110 priority patent/US20040072198A1/en
Priority to EP01992793A priority patent/EP1332228A2/de
Publication of WO2002036814A2 publication Critical patent/WO2002036814A2/de
Publication of WO2002036814A3 publication Critical patent/WO2002036814A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/154Methylation markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to nucleic acids, oligonucleotides, PNA oligomers and a method for diagnosing diseases which are related to the genetic and / or epigenetic parameters of the gene Cdk4 and in particular its methylation status.
  • cyclin Dl An important factor in the Gl phase of the cell cycle is cyclin Dl. It has been shown that cyclin Dl can produce lymphoid tumors in cooperation with activated myc genes in transgenic mice (Lovec H, Grzeschiczek A, Kowalski MB, Moroy T. Cyclin Dl / bcl-1 co-rates with myc genes in the generation of B-cell lymphoma in transgenic mice.EMBO J. 1994 Aug l; 13 (15): 3487-95). Cyclin Dl can thus act as an oncogene, but requires cell-specific cooperating partners. Furthermore it could be shown that not only cyclin Dl has oncogenic potential, but also the cyclin-dependent cyclin-dependent one
  • Cdk4 is associated with acute lymphoblastic leukemia (Mekki Y, Catallo R, Bertrand Y, Manel AM, Ffrench P, Baghdassarian N, Duhaut P, Bryon PA, Ffrench M.
  • Enhanced expression of pl6ink4a is associated with a poor prognosis in childhood acute lymphoblastic leukemia. Leukemia. 1999 Feb; 13 (2): 181-9; Omura-Minamisawa M, Diccianni MB, Batova A, Chang RC, Bridgeman LJ, Yu J, Pullen J, Bowman WP, Yu AL.
  • pl ⁇ and Cdk4 in oral premalignant lesions and oral squamous cell carcinomas are semi-quantitative immunohistochemical studies. J Oral Pathol Med. 1999 Apr; 28 (4): 158-64), on non-small cell lung cancer (Malusecka E, Zborek A, Krzyzowska-Gruca S. Changes in expression of pRb, pl ⁇ and cyclin Dl in non-small cell lung cancer: an immunohistochemical study. Folia Histochem Cytobiol.
  • Cdk4 appears to be responsible for the development of the malignant peripheral nerve sheath tumor (Berner JM, Sorlie T, Mertens F, Henriksen J, Saeter G, Mandahl N, Brogger A, Myklebost O, Lothe RA.
  • Chromosome band 9p21 is frequently altered in malignant peripheral nerve sheath tumors: studies of CDKN2A and other genes of the pRB pathway. Genes Chromosomes Cancer. 1999 Oct; 26 (2): 151-60) and prostate cancer (Lee CT, Capodieci P, Osman I, Fazzari M, Ferrara J , Scher HI, Cordon-Cardo C. Overexpression of the cyclin-dependent kinase inhibitor pl ⁇ is associated with tumor recurrence in human prostate cancer. Clin Cancer Res. 1999 May; 5 (5): 977-83); also kidney disease (Wolf G. Angiotensin II is involved in the progression of renal disease: im- portance of non-hemodynamic mechanisms. Nephrology.
  • Cdk4 Other associations of Cdk4 concern diffuse large B-cell lymphoma (Rao PH, Houldsworth J, Dyomina K, ParsaNZ, Cigudosa JC, Louie DC, Popplewell L, Off ⁇ t K, Jhanwar SC, Chaganti RS.Cromosomal and gene amplification in diffuse large B -cell lymphoma. Blood.
  • heritable melanoma and ⁇ ävi Greene MH The genetics of hereditary melanoma and nevi. 1998 update. Cancer. 1999 Dec 1; 86 (11 Suppl): 2464-77).
  • 5-Methylcytosine is the most common covalently modified base in the DNA of eukaryotic cells. For example, it plays a role in the regulation of transcription, in genetic imprinting and in tumorigenesis. The identification of 5-methylcytosine as a component of genetic information is therefore of considerable interest. However, 5-methylcytosine positions cannot be identified by sequencing since 5-methylcytosine has the same base pairing behavior as cytosine. In addition, in the case of PCR amplification, the epigenetic information which the 5-methylcytosines carry is completely lost.
  • a relatively new and the most frequently used method for the investigation of DNA for 5-methylcytosine is based on the specific reaction of bisulfite with cytosine, which is converted into uracil after alkaline hydrolysis, which corresponds to the thymidine in its base pairing behavior.
  • 5-methylcytosine is not modified under these conditions.
  • the original DNA is thus converted in such a way that methylcytosine, which originally cannot be distinguished from the cytosine by its hybridization behavior, can now be detected by "normal" molecular biological techniques as the only remaining cytosine, for example by amplification and hybridization or sequencing.
  • the bisulfite technique has so far been used with a few exceptions (e.g. Zeschnigk M, Lieh C, Buiting K, Doerfler W, Horsthemke B. A single-tube PCR test for the diagnosis of Angelman and Prader-Willi syndrome based on allelic methylation differences at the SNRPN locus. Eur J Hum Genet. 1997 Mar-Apr; 5 (2): 94-8) used only in research. However, short, specific pieces of a known gene are always amplified after bisulfite treatment and either completely sequenced (Olek A, Walter J. The pre-implantation ontogeny of the H19 methylation imprint. Nat Genet.
  • Genomic sequencing indicates a correlation between DNA hypomethylation in the 5 'region of the pS2 gene and its expression in human breast cancer cell lines. Genes. 1995 May 19; 157 (1-2): 261-4; WO 97 46705, WO 95 15373 and WO 97 45560.
  • Fluorescence-labeled probes have been used in many cases for scanning an immobilized DNA array.
  • the simple attachment of Cy3 and Cy5 dyes to the 5'-OH of the respective probe is particularly suitable for fluorescent labels.
  • the fluorescence of the hybridized probes is detected, for example, using a confocal microscope.
  • the dyes Cy3 and Cy5, among many others, are commercially available.
  • Matrix-assisted laser desorption / ionization mass spectrometry is a very powerful development for the analysis of biomolecules (Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988 Oct 15; 60 (20): 2299-301).
  • An analyte is embedded in a light-absorbing matrix. The matrix is evaporated by a short laser pulse and the analyte molecule so transported unfragmented into the gas phase. The ionization of the analyte is achieved by collisions with matrix molecules.
  • An applied voltage accelerates the ions into a field-free flight tube. Due to their different masses, ions are accelerated to different extents. Smaller ions reach the detector earlier than larger ones.
  • MALDI-TOF spectrometry is ideal for the analysis of peptides and proteins.
  • the analysis of nucleic acids is somewhat more difficult (Gut I G, Beck S. DNA and Matrix Assisted Laser Desorption Ionization Mass Spectrometry. Current Innovations and Future Trends. 1995, 1; 147-57).
  • the sensitivity for nucleic acids is about 100 times worse than for peptides and decreases disproportionately with increasing fragment size. For nucleic acids that have a backbone that is often negatively charged, the ionization process through the matrix is much more inefficient.
  • MALDI-TOF spectrometry the choice of the matrix plays an eminently important role.
  • Genomic DNA is obtained by standard methods from DNA from cell, tissue or other test samples. This standard methodology can be found in references such as Fritsch and Maniatis eds., Molecular Cloning: A Laboratory Manual, 1989.
  • the present invention is intended to provide oligonucleotides and / or PNA oligomers for the detection of cytosine methylations and a method which is suitable for the diagnosis of The genetic and epigenetic parameters of the Cdk4 gene are particularly suitable.
  • the invention is based on the finding that cytosine methylation patterns in particular are particularly suitable for diagnosing diseases associated with Cdk4.
  • the invention is based on the knowledge that genetic and epigenetic parameters and in particular the cytosine methylation pattern of the Cdk4 gene are particularly suitable for diagnosing diseases associated with Cdk4.
  • nucleic acid comprising an at least 18 base long sequence section of the chemically pretreated DNA of the gene Cdk4 according to one of the Seq. ID No.l to Seq. ID No.4 solved.
  • the chemically modified nucleic acid has so far not been associated with the determination of genetic and epigenetic parameters.
  • an oligonucleotide or oligomer for detecting the cytosine methylation state in chemically pretreated DNA comprising at least one base sequence with a length of at least 13 nucleotides, which is linked to a chemically pretreated DNA of the gene Cdk4 according to one of the Seq. ID No.l to Seq. ID No.4 hybridized.
  • the oligomer probes according to the invention represent important and effective tools which make it possible to determine the genetic and epigenetic parameters of the Cdk4 gene in the first place.
  • the base sequence of the oligomers preferably comprises at least one CpG dinucleotide.
  • the probes can also be in the form of a PNA (Peptide Nucleic Acid), which has particularly preferred pairing properties.
  • PNA Peptide Nucleic Acid
  • Particularly preferred are oligonucleotides according to the invention in which the cytosine of the CpG dinucleotide is the 5th to 9th nucleotide from the 5 'end of the 13 mer, in the case of PNA oligomers it is preferred that the cytosine of the CpG dinucleotide is the 4th - 6. Nucleotide from the 5 'end of the 9 mer.
  • the oligomers according to the invention are normally used in so-called sets which contain one of the sequences of Seq for each of the CpG dinucleotides. ID No.l to Seq. ID No.4 comprise at least one oligomer. A set is preferred which comprises at least one oligomer for each of the CpG dinucleotides from one of Seq ID No. 1
  • the invention provides a set of at least two oligonucleotides, which act as so-called primer oligonucleotides for the amplification of DNA sequences of one of the Seq. ID No.l to Seq. ID No.4 or sections thereof can be used.
  • At least one oligonucleotide is bound to a solid phase.
  • the present invention further relates to a set of at least 10 oligomers (oligonucleotides and / or PNA oligomers) which are used to detect the cytosine methylation state in chemically pretreated genomic DNA (Seq. ID No. 1 to Seq. ID No.4). With these probes the diagnosis of genetic and epigenetic parameters of the Cdk4 gene is possible.
  • the set of oligomers can also be used to detect single nucleotide polymorphisms (SNPs) in the chemically pretreated DNA of the Cdk4 gene according to one of the Seq. ID No.l to Seq. ID No.4 can be used.
  • an arrangement made of different oligonucleotides and / or PNA oligomers (a so-called "array") provided by the invention is also bound to a solid phase.
  • This array of different oligonucleotide and / or PNA oligomer sequences can be characterized in that it is arranged on the solid phase in the form of a rectangular or hexagonal grid.
  • the solid phase surface preferably consists of silicon, glass, polystyrene, aluminum, steel, iron, copper, nickel, silver or gold.
  • nitrocellulose and plastics such as nylon are also possible, which can be in the form of spheres or as resin matrices.
  • the invention therefore furthermore relates to a method for producing an array fixed on a carrier material for analysis in connection with Cdk4-associated diseases, in which at least one oligomer according to the invention is attached to a solid phase is coupled.
  • Methods for producing such arrays are, for example, from the US
  • the invention further relates to a DNA chip for analysis in connection with Cdk4-associated diseases, which comprises at least one nucleic acid according to the present invention.
  • DNA chips are known, for example, from US Pat. No. 5,837,832.
  • the present invention also relates to a kit which, for example, consists of a reagent containing bisulfite, a set of primer oligonucleotides comprising at least two oligonucleotides, the sequences of which each have at least an 18 base pair section of the base sequences listed in the appendix (Seq. ID No. 1 to Seq . ID No.4) correspond or are complementary to them, oligonucleotides and / or PNA oligomers as well as instructions for carrying out and evaluating the described method can exist.
  • a kit in the sense of the invention can also contain only parts of the aforementioned components.
  • the invention further provides a method for determining genetic and / or epigenetic parameters of the Cdk4 gene by analyzing cytosine methylations and single nucleotide polymorphisms, which comprises the following steps:
  • a genomic DNA sample is chemically treated in such a way that at the 5 'position unmethylated cytosine bases are converted into uracil, thymine or another base which is unlike cytosine in terms of hybridization behavior. This is understood below as chemical pretreatment.
  • the genomic DNA to be analyzed is preferably obtained from the usual sources for DNA, such as cells or cell components, for example cell lines, biopsins, blood, sputum, stool, urine, brain-spinal fluid, tissue embedded in paraffin, for example tissue from eyes, Intestine, kidney, brain, heart, prostate, lung, breast or liver, histological slides or combinations thereof.
  • sources for DNA such as cells or cell components, for example cell lines, biopsins, blood, sputum, stool, urine, brain-spinal fluid, tissue embedded in paraffin, for example tissue from eyes, Intestine, kidney, brain, heart, prostate, lung, breast or liver, histological slides or combinations thereof.
  • the treatment of genomic DNA with bisulfite (hydrogen sulfite, disulfite) and subsequent alkaline hydrolysis, which leads to conversion, is preferably used.
  • Fragments are amplified from this chemically pretreated genomic DNA using sets of primer oligonucleotides according to the invention and a preferably heat-stable polymerase. For statistical and practical considerations, more than ten different fragments that are 100-2000 base pairs long are preferably amplified.
  • the amplification of several DNA sections can be carried out simultaneously in one and the same reaction vessel. The amplification is usually carried out by means of the polymerase chain reaction (PCR).
  • the set of primer oligonucleotides comprises at least two oligonucleotides, the sequences of which are each reversely complementary or identical to a section of the base sequences listed in the appendix (Seq. ID No. 1 to Seq. ID No.4) that is at least 18 base pairs long ,
  • the primer oligonucleotides are preferably characterized in that they contain no CpG dinucleotide.
  • At least one primer oligonucleotide is bound to a solid phase during the amplification.
  • the different oligonucleotide and / or PNA oligomer sequences can be arranged on a flat solid phase in the form of a rectangular or hexagonal grid, the solid phase surface preferably consisting of silicon, glass, polystyrene, aluminum, steel, iron, copper, nickel, silver or gold, other materials such as nitrocellulose or plastics can also be used.
  • the fragments obtained by means of the amplification can carry a directly or indirectly detectable label. Markings in the form of fluorescent markings, radionuclides or detachable molecular fragments with typical mass, which can be detected in a mass spectrometer, are preferred, it being preferred that the fragments produced have a single positive or negative net charge for better detectability in the mass spectrometer.
  • the detection can be performed and visualized using matrix assisted laser desorption / ionization mass spectrometry (MALDI) or using electrospray mass spectrometry (ESI).
  • MALDI matrix assisted laser desorption / ionization mass spectrometry
  • ESI electrospray mass spectrometry
  • the amplificates obtained in the second process step are then hybridized to a set of oligonucleotides and / or PNA probes or to an array.
  • the hybridization is carried out in the manner given below.
  • the set used in the hybridization preferably consists of at least 10 oligonucleotide or PNA oligomer probes.
  • the amplificates serve as probes that hybridize to oligonucleotides previously bound to a solid phase.
  • the non-hybridized fragments are then removed.
  • Said oligonucleotides comprise at least one base sequence with a length of 13 nucleotides, which is reverse complementary or identical to a section of the base sequences listed in the appendix, which contains at least one CpG dinucleotide.
  • the cytosine of the CpG dinucleotide is the 5th to 9th nucleotide viewed from the 5 'end of the 13 mer.
  • Said PNA oligomers comprise at least one base sequence with a length of 9 nucleotides, which is reverse complementary or identical to a section of the base sequences listed in the appendix, which contains at least one CpG dinucleotide.
  • the cytosine of the CpG dinucleotide is the 4th to 6th nucleotide as seen from the 5 'end of the 9mer.
  • the non-hybridized amplificates are removed.
  • the hybridized amplificates are detected. It is preferred that labels attached to the amplificates can be identified at any position on the solid phase at which an oligonucleotide sequence is located.
  • the labels of the amplified products are fluorescent labels, radionuclides or detachable molecular fragments with typical mass, which can be detected in a mass spectrometer.
  • the detection of the amplified products, fragments of the amplified products or probes complementary to the amplified products in the mass spectrometer is preferred, the detection using matrix assisted laser desorption / ionization mass spectrometry (MALDI) or using electrospray mass spectrometry (ESI) being able to be carried out and visualized.
  • MALDI matrix assisted laser desorption / ionization mass spectrometry
  • ESI electrospray mass spectrometry
  • the fragments generated can have a single positive or negative net charge for better detectability in the mass spectrometer.
  • the aforementioned method is preferred used to determine genetic and / or epigenetic parameters of the Cdk4 gene.
  • the oligomers or arrays thereof according to the invention and a kit according to the invention are to be used for the diagnosis of a disease associated with Cdk4 by analysis of methylation patterns of the Cdk4 gene. According to the invention, the use of the method for the diagnosis of important genetic and / or epigenetic parameters within the Cdk4 gene is preferred.
  • the method according to the invention is used, for example, to diagnose acute lymphoblastic leukemia, acute lymphoblastic leukemia of T cells, acute myeloid leukemia, uterine cancer, stomach cancer, Alzheimer's disease, precancerous changes in the oral mucosa and squamous cell carcinoma of the oral mucosa, non-small cell lung cancer, parostalemic cancer peripheral nerve sheath tumor, non-small cell lung cancer, parostal osteosarcoma, malignant peripheral nerve sheath tumor, prostate cancer, kidney disease, breast cancer, diffuse large B-cell lymphoma, multiple myeloma, round cell liposarcoma, tuberous sclerosis, ovarian cancer and veritable melanoma.
  • the nucleic acids of Seq. ID No.l to Seq. ID No.4 can be used for the diagnosis of genetic and / or epigenetic parameters of the Cdk4 gene.
  • the present invention further relates to a method for producing a diagnostic for the diagnosis of diseases associated with Cdk4 by analyzing methylation patterns of the Cdk4 gene, the diagnostic being characterized in that at least one nucleic acid, according to the present invention, optionally together is used with suitable additives and auxiliaries for its production.
  • the present invention further relates to a diagnostic agent for diseases associated with Cdk4 by analyzing methylation patterns of the Cdk4 gene, which comprises at least one nucleic acid according to the invention, optionally together with suitable additives and auxiliaries.
  • the present invention furthermore relates to the diagnosis and / or prognosis disadvantageously
  • hybridization in the sense of the present invention is to be understood as binding to form a duplex structure of an oligonucleotide to a completely complementary sequence in the sense of the Watson-Crick base pairings in the sample DNA.
  • Stringent hybridization conditions are to be understood as those conditions in which hybridization takes place at 60 ° C. in 2.5 ⁇ SSC buffer, followed by several washing steps at 37 ° C. in a lower buffer concentration and remains stable.
  • the term “functional variants” denotes all DNA sequences that are complementary to a DNA sequence that hybridize to the reference sequence under stringent conditions and have an activity similar to the corresponding polypeptide according to the invention.
  • Genetic parameters in the sense of this invention are mutations and polymorphisms of the Cdk4 gene and sequences that are still required for its regulation.
  • insertions, deletions, point mutations, inversions and polymorphisms and particularly preferably SNPs (single nucleotide polymorphisms) are to be referred to as mutations.
  • Polymorphisms can also be insertions, deletions or inversions.
  • Epigenetic parameters in the sense of this invention are, in particular, cytosine methylations and further chemical modifications of DNA bases of the Cdk4 gene and sequences that are also required for its regulation. Further epigenetic parameters are, for example, the acetylation of histones, which, however, cannot be analyzed directly with the method described, but in turn is corrected with DNA methylation.
  • FIG. 1 shows the differentiation of cell lines and samples from patients with the diagnosis ALL and cell lines and samples from patients with the diagnosis AML.
  • a high probability of methylation corresponds to dark gray signals (these appear red in the color illustration), a low probability corresponds to light gray signals (these appear green in the color illustration) and black mean values.
  • the samples on the left (A) of FIG. 1 are assigned to the group from ALL, and those on the right (B) AML.
  • Seq. ID No. 1 shows the sequence of the chemically pretreated genomic DNA of the gene Cdk4
  • Seq. ID No.2 shows the sequence of a second chemically pretreated genomic DNA of the gene Cdk4
  • Seq. ID No.3 shows the reverse complementary sequence of the Seq. ID 1 of the chemically pretreated genomic DNA of the Cdk4 gene
  • Seq. ID No.4 shows the reverse complementary sequence of the Seq. ID 2 of the chemically pretreated genomic DNA of the Cdk4 gene
  • Seq. ID No.5 shows the sequence of an oligonucleotide for the amplification of Cdk4 from Example 1
  • Seq. ID No.6 shows the sequence of a second oligonucleotide for the amplification of Cdk4 from Example 1
  • Seq. ID NoJ shows the sequence of an oligonucleotide for hybridizing the amplificate of Cdk4 from Example 1
  • Seq. ID No.8 shows the sequence of a second oligonucleotide for hybridizing the amplificate of Cdk4 from Example 1
  • Seq. ID No.9 shows the sequence of a third oligonucleotide for hybridizing the amplificate of Cdk4 from Example 1
  • Seq. ID No.10 shows the sequence of a fourth oligonucleotide for hybridizing the amplificate of Cdk4 from Example 1
  • Seq. ID No. 11 shows the sequence of an oligonucleotide for hybridizing the amplificate of Cdk4 from Example 1
  • Seq. ID No.12 shows the sequence of a fifth oligonucleotide for hybridizing the amplificate of Cdk4 from Example 1
  • Seq. ID No. 13 shows the sequence of an oligonucleotide for hybridizing the amplificate of Cdk4 from Example 1
  • Seq. ID No.14 shows the sequence of a sixth oligonucleotide for hybridizing the amplificate of Cdk4 from Example 1
  • Seq. ID No. 15 shows the sequence of a seventh oligonucleotide for hybridizing the amplificate of Cdk4 from Example 1
  • Seq. ID No. 16 shows the sequence of an eighth oligonucleotide for hybridizing the amplificate of Cdk4 from Example 1
  • Seq. ID No. 17 shows the sequence of an eighth oligonucleotide for hybridizing the amplificate of Cdk4 from Example 2
  • Seq. ID No. 18 shows the sequence of an eighth oligonucleotide for hybridizing the amplificate of Cdk4 from Example 2
  • Seq. ID No. 19 shows the sequence of an eighth oligonucleotide for hybridizing the amplificate of Cdk4 from Example 2
  • Seq. ID No.20 shows the sequence of an eighth oligonucleotide for hybridizing the amplificate of Cdk4 from Example 2
  • the following example relates to a fragment of the Cdk4 gene, in which a specific CG position is examined for its methylation status.
  • Example 1 Performing the methylation analysis in the Cdk4 gene
  • a genomic sequence is treated using bisulfite (hydrogen sulfite, disulfite) in such a way that all of the cytosines that are not methylated at the 5-position of the base are modified in such a way that a base which differs in the base-pairing behavior deforms, whereas the base in the 5-position methylated cytosines remain unchanged.
  • bisulfite in the concentration range between 0.1 and 6 M is used for the reaction, an addition takes place at the unmethylated cytosine bases.
  • a denaturing reagent or solvent and a radical scavenger must be present.
  • the treated DNA sample is diluted with water or an aqueous solution. Desulfonation of the DNA (10-30 min, 90-100 ° C.) is then preferably carried out at an alkaline pH.
  • the DNA sample is amplified in a polymerase chain reaction, preferably with a heat-resistant DNA polymerase.
  • cytosines of the CDK4 gene here from the 5'UTR. Sequences of this gene can be used to distinguish samples from patients diagnosed with ALL from healthy B / T cells. For this purpose, a defined fragment with a length of 474 bp is amplified with the specific primer oligonucleotides TTTTGGTAGTTGGTTATATG (Seq. ID No. 5) and AAAAATAACACAATAACTCA (Seq. ID No. 6). This amplificate serves as a sample which hybridizes to an oligonucleotide previously bound to a solid phase to form a duplex structure, for example GATTCCTACGACCCCATA (Seq. ID No.
  • cytosine to be detected being at position 120 of the amplificate.
  • the methylated cytosine is detected with the oligonucleotide (Seq. ID No. 7), which has a guanine at the complementary site in question, whereas the unmethylated state, which is represented by a thymine, with the oligonucleotide (Seq. ID No 8), which on the relevant complementary site has an adenine is detected.
  • oligonucleotides that can be used for hybridization include the following sequences:
  • CCCTTAAACGACCCTTCC (Seq. ID No.9) and CCCTTAAACAACCCTTCC (Seq. ID
  • CCACTTCCCGCCCTTAAA (Seq. ID No.11) and CCACTTCCCACCCTTAAA (Seq. ID
  • samples from patients diagnosed with ALL can be distinguished from samples from patients diagnosed with AML.
  • a defined fragment with a length of 474 bp is amplified with the specific primer oligonucleotides TTTTGGTAGTTGGTTATATG (Seq. ID No. 5) and AAAAATAACACAATAACTCA (Seq. ID No. 6).
  • This amplificate serves as a sample which hybridizes to an oligonucleotide previously bound to a solid phase to form a duplex structure, for example CCCTTAAACGACCCTTCC (Seq. ID No. 9) and CCCTTAAACAACCCTTCC (Seq. ID No.
  • cytosine to be detected at position 276 of the amplificate CCTTACATCGAAAATCCT (Seq. ID No. 13) and CCTTACATAGAAAATCCT (Seq. ID No. 14) with the cytosine to be detected at position 349 of the amplified product, TCCAACCACGTAAAACCC (Seq. ID No. 15) and TCCAACCACATAAAACCC (Seq. ID No. 16) the cytosine to be detected at position 433 of the amplificate.
  • the methylated cytosine is detected with the oligonucleotide (Seq. ID No.
  • the detection of the hybridization product is based on CY5 fluorescence-labeled primer oligonucleotides that were used for the amplification.
  • a hybridization reaction of the amplified DNA with the oligonucleotide only occurs if there is a methylated cytosine in the bisulfite-treated DNA at this point. The methylation status of the respective cytosine to be examined thus decides on the hybridization product.
  • Example 2 Performing the methylation analysis in the CDK4 gene
  • a genomic sequence is treated using bisulfite (hydrogen sulfite, disulfite) in such a way that none of the methylated cytotoxin at the 5-position of the base be changed so that a different behavior with regard to the base pairing
  • Base is formed, while the cytosines methylated in the 5-position remain unchanged. If bisulfite is used for the reaction, an addition takes place on the unmethylated cytosine bases. In addition, a denaturing reagent or solvent and a radical scavenger must be present. Subsequent alkaline hydrolysis then leads to the conversion of unmethylated cytosine nucleobases into uracil. This converted DNA is used to detect methylated cytosines. In the second process step, the treated DNA sample is diluted with water or an aqueous solution. Desulfonation of the DNA is then preferably carried out.
  • the DNA sample is amplified in a polymerase chain reaction, preferably with a heat-resistant DNA polymerase.
  • the PCR reactions were carried out in a thermal cycler (Eppendorf GmbH). 10 ng DNA, 0.08 ⁇ M of each primer oligonucleotide 1, 6mM dNTPs and one unit of HotstartTaq were used for a 25 ⁇ l mixture. The other conditions were chosen according to the manufacturer's instructions.
  • denaturation was first carried out at 96 ° C. for 15 minutes, then. '.36 cycles (60 seconds at 96 ° C, 45 seconds at 52 ° C and 75 seconds at 72 ° C) and a final elongation of 10 minutes at 72 ° C. The presence of the PCR products was checked on agarose gels.
  • cytosines of the CDK4 gene are examined. Sequences of this gene can be used to distinguish cell lines and samples from patients diagnosed with ALL from cell lines and samples from patients diagnosed with ALL. For this purpose, a defined fragment with a length of 474 bp is amplified with the specific primer oligonucleotides TTTTGGTAGTTGGTTATATG (Seq. ID No. 5) and AAAAATAACACAATAACTCA (Seq. ID No. 6). This amplificate serves as a sample which hybridizes to an oligonucleotide previously bound to a solid phase to form a duplex structure, for example GGAAGGGTCGTTTAAGGG (Seq. ID No.
  • oligonucleotide (Seq. ID No. 17), which has a guanine at the complementary site in question, whereas the unmethylated state, which is represented by a thymine, with the oligonucleotide (Seq. ID No 18), which has an adenine at the complementary site in question.
  • oligonucleotides that can be used for hybridization include the following sequences: GGGTTTTACGTGGTTGGA (Seq. ID No. 19) and GGGTTTTATGTGGTTGGA (Seq. ID No. 20) with the cytosine to be detected at positi on 434 of the amplificate and on the corresponding counter strand
  • the detection of the hybridization product is based on CY5 fluorescence-labeled primer oligonucleotides that were used for the amplification. Only if there is a methylated cytosine in the bisulfite-treated DNA at this point will there be a hybridization reaction of the amplified DNA with the
  • Oligonucleotide The methylation status of the individual to be examined is therefore decisive
  • the following example describes the comparison of cell lines and samples from patients diagnosed with ALL and cell lines and samples from patients diagnosed with ALL. Fluorescence-labeled primers were used for the PCRs. All PCR products from each individual were mixed and hybridized on glass slides carrying a pair of immobilized oligonucleotides at each position. Each of these detection oligonucleotides was designed to hybridize to bisulfite converted sequences located at CpG sites that were either unmethylated (TG) or methylated (CG) in their original state. The hybridization conditions were selected to detect differences in single nucleotides of the TG and CG variants. The ratios of the two signals were calculated based on the comparison of the intensities of the fluorescent signals.
  • the information is then determined in a weighted matrix (see FIG. 1) with regard to the CpG methylation differences between two classes of tissues.
  • the most significant CpG positions are shown at the lower end of the matrix, the significance decreases towards the top.
  • Dark gray in the original figure: red
  • light gray in the original figure: green
  • black a medium degree.
  • Each row represents a specific CpG position in a gene and each column shows the methylation profile of different CpGs for a sample.
  • a gene identification number is shown on the left; the associated gene name can be found in Table 1.
  • Table 1 also lists the corresponding gene accession numbers.
  • the number before the colon denotes the gene name and the number after the colon the specific oligonucleotide.
  • the Fisher values of the individual CpG positions are shown on the right side of FIG. The individual sample names are listed at the bottom of the figure.
  • the methylation pattern to one of the diseases associated with Cdk4, e.g. acute lymphoblastic leukemia and acute lymphoblastic leukemia from T cells, acute myeloid leukemia, uterine cancer, gastric cancer, Alzheimer's disease, precancerous change in the oral mucosa and squamous cell carcinoma of the oral mucosa, non- small cell lung cancer, parostal osteosarcoma, malignant peripheral nerve sheath tumor, non-small cell lung cancer, parostal osteosarcoma, malignant peripheral nerve sheath tumor, prostate cancer, kidney disease, breast cancer, diffuse large cell B-cell lymphoma, multiple myeloma, round cell ovarian cancer
  • the DNA methylation pattern of a group of sick and a group of healthy people must first be examined.
  • Example 2 These tests are carried out, for example, analogously to Example 1.
  • the results obtained in this way are stored in a database and the CpG dinucleotides which are methylated differently between the two groups are identified. This can be done by determining individual CpG methylation rates.
  • B. by sequencing relatively imprecise or very precisely by a methylation-sensitive "primer extension reaction”. Simultaneous analysis of the entire methylation status is also possible, and the patterns can, for example, by means of Clustering analyzes, which can be carried out, for example, by a computer, are compared.

Abstract

Die vorliegende Erfindung betrifft die chemisch modifizierte genomische Sequenz des Cdk4 Gens, gegen die Sequenz gerichtete Oligonukleotide und/oder PNA-Oligomere zur Detektion des Cytosin-Methylierungszustandes des Cdk4 Gens, sowie ein Verfahren zur Ermittlung von genetischen und/oder epigenetischen Parametern des Cdk4-Gens.

Description

Diagnose von mit Cdk4 assoziierten Krankheiten
Beschreibung
Gebiet der Erfindung
Die nach den methodischen Entwicklungen der letzten Jahre in der Molekularbiologie gut studierten Beobachtungsebenen sind die Gene selbst, die Übersetzung dieser Gene in RNA und die daraus entstehenden Proteine. Wann im Laufe der Entwicklung eines Individuums welches Gen angeschaltet wird und wie Aktivieren und Inhibieren bestimmter Gene in bestimmten Zellen und Geweben gesteuert wird, ist mit Ausmaß und Charakter der Methylie- rung der Gene bzw. des Genoms korreherbar. Insofern äußern sich pathogene Zustände in einem veränderten Methylierungsmuster einzelner Gene oder des Genoms.
Die vorliegende Erfindung betrifft Nukleinsäuren, Oligonukleotide, PNA-Oligomere und ein Verfahren zur Diagnose von Erkrankungen, die mit dem genetischen und/oder epigenetischen Parametern des Gens Cdk4 und insbesondere dessen Methylierungsstatus in Zusammenhang stehen.
Stand der Technik
Die meisten bisher bekannten genetischen Läsionen zielen auf die Aktivierung von Genen, deren Produkte die Zellproliferation steuern, dabei kann eine Deregulation der Zellzykluspro- gression ebenfalls die Grundlage für eine maligne Transformation darstellen. Ein in der Gl Phase des Zellzyklus wichtiger Faktor ist Cyclin Dl. Es konnte gezeigt werden, dass Cyclin Dl in Kooperation mit aktivierten myc Genen in transgenen Mäusen lymphoide Tumoren erzeugen kann (Lovec H, Grzeschiczek A, Kowalski MB, Moroy T. Cyclin Dl/bcl-1 coope- rates with myc genes in the generation of B-cell lymphoma in transgenic mice. EMBO J. 1994 Aug l;13(15):3487-95). Cyclin Dl kann also als Onkogen wirken, benötigt aber zellspezifische kooperierende Partner. Weiterhin konnte gezeigt werden, dass nicht nur Cyclin Dl onkogenes Potential besitzt, sondern auch die mit Cyclin Dl assoziierte Cyclin-abhängige
Kinase 4 (CDK 4). So ist Cdk4 beispielsweise an akuter lymphatischer Leukämie (Mekki Y, Catallo R, Bertrand Y, Manel AM, Ffrench P, Baghdassarian N, Duhaut P, Bryon PA, Ffrench M. Enhanced expression of pl6ink4a is associated with a poor prognosis in childhood acute lymphoblastic leukemia. Leukemia. 1999 Feb;13(2):181-9; Omura-Minamisawa M, Diccianni MB, Batova A, Chang RC, Bridgeman LJ, Yu J, Pullen J, Bowman WP, Yu AL. Universal inactivation of both pl6 and pl5 but not downstream components is an essential event in the pathogenesis of T-cell acute lymphoblastic leukemia. Clin Cancer Res. 2000 Apr;6(4): 1219-28) oder an akuter myeloischer Leukämie (Guo SX, Taki T, Ohnishi H, Piao HY, Tabuchi K, Bessho F, Hanada R, Yanagisawa M, Hayashi Y. Hypermethylation of pl6 and pl5 genes and RB protein expression in acute leukemia. Leuk Res. 2000 Jan;24(l):39-46) beteiligt. Ebenso besteht ein Zusammenhang zu Magenkrebs (Myung N, Kim MR, Chung IP, Kim H, Jang JJ. Loss of pl6 and p27 is associated with progression of human gastric cancer. Cancer Lett. 2000 May 29; 153(1 -2): 129-36), zu der Alzheimer Erkrankung (Tsujioka Y, Ta- kahashi M, Tsuboi Y, Yamamoto T, Yamada T. Localization and expression of cdc2 and cdk4 in Alzheimer brain tissue. Dement Geriatr Cogn Disord. 1999 May-Jun; 10(3): 192-8), zu präkanzeröser Veränderung der Mundschleimhaut und Plattenepithelkarzinom der Mundschleimhaut (Chen Q, Luo G, Li B, Samaranayake LP. Expression of plό and Cdk4 in oral premalignant lesions and oral squamous cell carcinomas: a semi-quantitative immunohisto- chemical study. J Oral Pathol Med. 1999 Apr;28(4): 158-64), zu nicht-kleinzelligem Lungenkrebs (Malusecka E, Zborek A, Krzyzowska-Gruca S. Changes in expression of pRb, plό and cyclin Dl in non-small cell lung cancer: an immunohistochemical study. Folia Histochem Cytobiol. 1999;37(l):19-24) oder zu parostalem Osteosarkom (Wunder JS, Eppert K, Burrow SR, Gokgoz N, Bell RS, Andrulis IL, Gogkoz N. Co-amplification and overexpression of Cdk4, SAS and MDM2 occurs frequently in human parosteal osteosarcomas. Oncogene. 1999 Jan 21;18(3):783-8). Weiterhin scheint Cdk4 an der Ausbildung des malignen peripheren Nervenscheidentumors (Berner JM, Sorlie T, Mertens F, Henriksen J, Saeter G, Mandahl N, Brogger A, Myklebost O, Lothe RA. Chromosome band 9p21 is frequently altered in ma- lignant peripheral nerve sheath tumors: studies of CDKN2A and other genes of the pRB pa- thway. Genes Chromosomes Cancer. 1999 Oct;26(2):151-60) sowie an Prostatakrebs (Lee CT, Capodieci P, Osman I, Fazzari M, Ferrara J, Scher HI, Cordon-Cardo C. Overexpression of the cyclin-dependent kinase inhibitor plό is associated with tumor recurrence in human prostate cancer. Clin Cancer Res. 1999 May;5(5):977-83) beteiligt zu sein; ebenso an Nierenerkrankung (Wolf G. Angiotensin II is involved in the progression of renal disease: im- portance of non-hemodynamic mechanisms. Nephrologie. 1998; 19(7):451 -6), Gebärmutterkrebs (Ito K, Sasano H, Yoshida Y, Sato S, Yajima A. Immunohistochemical study of cyclins D and E and cyclin dependent kinase (cdk) 2 and 4 in human endometrial carcinoma. Anti- cancer Res. 1998 May-Jun;18(3A):1661-4) und Brustkrebs (Sweeney KJ, Swarbrick A, Sutherland RL, Musgrove EA. Lack of relationship between CDK activity and Gl cyclin expression in breast cancer cells. Oncogene. 1998 Jun 4;16(22):2865-78). Weitere Assoziationen vonCdk4 betreffen das diffuse großzellige B-Zell-Lymphom (Rao PH, Houldsworth J, Dyomina K, ParsaNZ, Cigudosa JC, Louie DC, Popplewell L, Offϊt K, Jhanwar SC, Chaganti RS. Chromosomal and gene amplification in diffuse large B-cell lymphoma. Blood. 1998 Jul l;92(l):234-40), das multiple Myelom (Tasaka T, Asou H, Munker R, Said JW, Berenson J, Nescio RA, Νagai M, Takahara J, Koeffler HP. Methylation of the pl6IΝK4A gene in multiple myeloma. Br J Haematol. 1998 Jun;101(3):558-64), das rundzellige Liposarkom (Dei Tos AP, Piccinin S, Doglioni C, Nukosavljevic T, Mentzel T, Boiocchi M, Fletcher CD. Mo- lecular aberrations of the Gl-S Checkpoint in myxoid and round cell liposarcoma. Am J Pa- thol. 1997 Dec;151(6):1531-9), die tuberöse Sklerose (Soucek T, Pusch O, Wienecke R, De- Clue JE, Hengstschlager M. Role of the tuberous sclerosis gene-2 product in cell cycle con- trol. Loss of the tuberous sclerosis gene-2 induces quiescent cells to enter S phase. J Biol Chem. 1997 Νov 14;272(46):29301-8), Eierstockkrebs (Masciullo N, Scambia G, Marone M, Giannitelli C, Ferrandina G, Bellacosa A, Benedetti Panici P, Mancuso S. Altered expression of cyclin Dl and Cdk4 genes in ovarian carcinomas. Int J Cancer. 1997 Aug 22;74(4):390-5), das Ewing Sarkom (Ladanyi M, Lewis R, Jhanwar SC, Gerald W, Huvos AG, Healey JH. MDM2 and Cdk4 gene amplification in Ewing's sarcoma. J Pathol. 1995 Feb;175(2):211-7) oder vererbbare Melanome und Νävi (Greene MH The genetics of hereditary melanoma and nevi. 1998 update. Cancer. 1999 Dec 1;86(11 Suppl):2464-77).
5-Methylcytosin ist die häufigste kovalent modifizierte Base in der DNA eukaryotischer Zellen. Sie spielt beispielsweise eine Rolle in der Regulation der Transkription, beim genetischen Imprinting und in der Tumorgenese. Die Identifizierung von 5-Methylcytosin als Bestandteil genetischer Information ist daher von erheblichem Interesse. 5-Methylcytosin-Positionen können jedoch nicht durch Sequenzierung identifiziert werden, da 5-Methylcytosin das gleiche Basenpaarungsverhalten aufweist wie Cytosin. Darüber hinaus geht bei einer PCR- Amplifikation die epigenetische Information, welche die 5-Methylcytosine tragen, vollständig verloren. Eine relativ neue und die mittlerweile am häufigsten angewandte Methode zur Untersuchung von DNA auf 5-Methylcytosin beruht auf der spezifischen Reaktion von Bisulfit mit Cytosin, das nach anschließender alkalischer Hydrolyse in Uracil umgewandelt wird, welches in seinem Basenpaarungsverhalten dem Thymidin entspricht. 5-Methylcytosin wird dagegen unter diesen Bedingungen nicht modifiziert. Damit wird die ursprüngliche DNA so umgewandelt, dass Methylcytosin, welches ursprünglich durch sein Hybridisierungsverhalten vom Cytosin nicht unterschieden werden kann, jetzt durch „normale" molekularbiologische Techniken als einzig verbliebenes Cytosin beispielsweise durch Amplifikation und Hybridisierung oder Sequenzierung nachgewiesen werden kann. Alle diese Techniken beruhen auf Basenpaarung, welche jetzt voll ausgenutzt wird. Der Stand der Technik, was die Empfindlichkeit betrifft, wird durch ein Verfahren definiert, welches die zu untersuchende DNA in einer Agarose- Matrix einschließt, dadurch die Diffusion und Renaturierung der DNA (Bisulfit reagiert nur an einzelsträngiger DNA) verhindert und alle Fällungs- und Reinigungsschritte durch schnelle Dialyse ersetzt (Olek A, Oswald J, Walter J. A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res. 1996 Dec 15;24(24):5064-6). Mit dieser Methode können einzelne Zellen untersucht werden, was das Potential der Methode veranschaulicht. Allerdings werden bisher nur einzelne Regionen bis etwa 3000 Basenpaare Länge untersucht, eine globale Untersuchung von Zellen auf Tausenden von möglichen Me- thylierungsanalysen ist nicht möglich. Allerdings kann auch dieses Verfahren keine sehr kleinen Fragmente aus geringen Probenmengen zuverlässig analysieren. Diese gehen trotz Diffu- sionsschutz durch die Matrix verloren.
Eine Übersicht über die weiteren bekannten Möglichkeiten, 5-Methylcytosine nachzuweisen, kann aus dem folgenden Übersichtsartikel entnommen werden: Rein, T., DePamphilis, M. L., Zorbas, H., Nucleic Acids Res. 1998, 26, 2255.
Die Bisulfit-Technik wird bisher bis auf wenige Ausnahmen (z.B. Zeschnigk M, Lieh C, Bui- ting K, Doerfler W, Horsthemke B. A single-tube PCR test for the diagnosis of Angelman and Prader- Willi syndrome based on allelic methylation differences at the SNRPN locus. Eur J Hum Genet. 1997 Mar-Apr;5(2):94-8) nur in der Forschung angewendet. Immer aber werden kurze, spezifische Stücke eines bekannten Gens nach einer Bisulfit-Behandlung amplifiziert und entweder komplett sequenziert (Olek A, Walter J. The pre-implantation ontogeny of the H19 methylation imprint. Nat Genet. 1997 Nov;17(3):275-6) oder einzelne Cytosin- Positionen durch eine „Primer-Extension-Reaktion" (Gonzalgo ML, Jones PA. Rapid quanti- tation of methylation differences at speeifie sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 1997 Jun 15;25(12):2529-31, WO
95/00669) oder einen Enzymschnitt (Xiong Z, Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 1997 Jun 15;25(12):2532-4) nachgewiesen. Zudem ist auch der Nachweis durch Hybridisierung beschrieben worden (Olek et al., WO 99 28498).
Weitere Publikationen, die sich mit der Anwendung der Bisulfit-Technik zum Methylierungs- nachweis bei einzelnen Genen befassen, sind: Grigg G, Clark S. Sequencing 5-methylcytosine residues in genomic DNA. Bioessays. 1994 Jun;16(6):431-6, 431; Zeschnigk M, Schmitz B, Dittrich B, Buiting K, Horsthemke B, Doerfler W. Imprinted Segments in the human genome: different DNA methylation patterns in the Prader- Willi/ Angelman syndrome region as determined by the genomic sequencing method. Hum Mol Genet. 1997 Mar;6(3):387-95; Feil R, Charlton J, Bird AP, Walter J, Reik W. Methylation analysis on individual chromosomes: improved protocol for bisulphite genomic sequencing. Nucleic Acids Res. 1994 Feb 25;22(4):695-6; Martin V, Ribieras S, Song-Wang X, Rio MC, Dante R. Genomic sequencing indicates a correlation between DNA hypomethylation in the 5' region of the pS2 gene and its expression in human breast cancer cell lines. Gene. 1995 May 19;157(l-2):261-4; WO 97 46705, WO 95 15373 und WO 97 45560.
Eine Übersicht über den Stand der Technik in der Oligomer Array Herstellung läßt sich aus einer im Januar 1999 erschienenen Sonderausgabe von Nature Genetics (Nature Genetics Supplement, Volume 21, January 1999) und der dort zitierten Literatur entnehmen.
Für die Abtastung eines immobilisierten DNA-Arrays sind vielfach fluoreszenzmarkierte Sonden verwendet worden. Besonders geeignet für Fluoreszenzmarkierungen ist das einfache Anbringen von Cy3 und Cy5 Farbstoffen am 5'-OH der jeweiligen Sonde. Die Detektion der Fluoreszenz der hybridisierten Sonden erfolgt beispielsweise über ein Konfokalmikroskop. Die Farbstoffe Cy3 und Cy5 sind, neben vielen anderen, kommerziell erhältlich.
Matrix-assistierte Laser Desorptions/Ionisations-Massenspektrometrie (MALDI-TOF) ist eine sehr leistungsfähige Entwicklung für die Analyse von Biomolekülen (Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988 Oct 15;60(20):2299-301). Ein Analyt wird in eine lichtabsorbierende Matrix eingebettet. Durch einen kurzen Laserpuls wird die Matrix verdampft und das Analytmolekül so unfragmentiert in die Gasphase befördert. Durch Stöße mit Matrixmolekülen wird die Ionisation des Analyten erreicht. Eine angelegte Spannung beschleunigt die Ionen in ein feldfreies Flugrohr. Auf Grund ihrer verschiedenen Massen werden Ionen unterschiedlich stark beschleunigt. Kleinere Ionen erreichen den Detektor früher als größere.
MALDI-TOF Spektrometrie eignet sich ausgezeichnet zur Analyse von Peptiden und Proteinen. Die Analyse von Nukleinsäuren ist etwas schwieriger (Gut I G, Beck S. DNA and Matrix Assisted Laser Desorption Ionization Mass Spectrometry. Current Innovations and Future Trends. 1995, 1; 147-57). Für Nukleinsäuren ist die Empfindlichkeit etwa 100 mal schlechter als für Peptide und nimmt mit zunehmender Fragmentgröße überproportional ab. Für Nukleinsäuren, die ein vielfach negativ geladenes Rückgrat haben, ist der Ionisationsprozeß durch die Matrix wesentlich ineffizienter. In der MALDI-TOF Spektrometrie spielt die Wahl der Matrix eine eminent wichtige Rolle. Für die Desorption von Peptiden sind einige sehr leistungsfähige Matrices gefunden worden, die eine sehr feine Kristallisation ergeben. Für DNA gibt es zwar mittlerweile einige ansprechende Matrices, jedoch wurde dadurch der Empfindlichkeitsunterschied nicht verringert. Der Empfindlichkeitsunterschied kann verringert werden, indem die DNA chemisch so modifiziert wird, dass sie einem Peptid ähnlicher wird. Phosphorothioatnukleinsäuren, bei denen die gewöhnlichen Phosphate des Rückgrats durch Thiophosphate substituiert sind, lassen sich durch einfache Alkylierungschemie in eine ladungsneutrale DNA umwandeln (Gut IG, Beck S. A procedure for selective DNA alkylation and detection by mass spectrometry. Nucleic Acids Res. 1995 Apr 25 ;23(8): 1367-73). Die Kopplung eines „Charge tags" an diese modifizierte DNA resultiert in der Steigerung der Empfindlichkeit um den gleichen Betrag, wie er für Peptide gefunden wird. Ein weiterer Vorteil von „Charge tagging" ist die erhöhte Stabilität der Analyse gegen Verunreinigungen, die den Nachweis unmodifizierter Substrate stark erschweren.
Genomische DNA wird durch Standardmethoden aus DNA von Zeil-, Gewebe- oder sonstigen Versuchsproben gewonnen. Diese Standardmethodik findet sich in Referenzen wie Fritsch und Maniatis eds., Molecular Cloning: A Laboratory Manual, 1989.
Aufgabenstellung
Die vorliegende Erfindung soll Oligonukleotide und/oder PNA-Oligomere zur Detektion von Cytosin-Methylierungen und ein Verfahren bereitstellen, welches sich zur Diagnose von ge- netischen und epigenetischen Parametern des Cdk4-Gens besonders eignet. Der Erfindung liegt die Erkenntnis zugrunde, dass sich insbesondere Cytosin-Methylierungsmuster zur Diagnose von mit Cdk4 assoziierten Erkrankungen besonders eignen.
Beschreibung
Es ist Aufgabe der vorliegenden Erfindung, die chemisch modifizierte DNA des Gens Cdk4, sowie Oligonukleotide und/oder PNA-Oligomere zur Detektion von Cytosin-Methylierungen, sowie ein Verfahren bereit zu stellen, welches sich zur Diagnose von genetischen und epigenetischen Parametern des Cdk4 Gens besonders eignet. Der Erfindung liegt die Erkenntnis zugrunde, dass sich genetische und epigenetische Parameter und insbesondere das Cytosin- Methylierungsmuster des Cdk4 Gens zur Diagnose von mit Cdk4 assoziierten Erkrankungen besonders eignen.
Diese Aufgabe wird erfmdungsgemäß durch eine Nukleinsäure, umfassend einen mindestens 18 Basen langen Sequenzabschnitt der chemisch vorbehandelten DNA des Gens Cdk4 gemäß einer der Seq. ID No.l bis Seq. ID No.4 gelöst. Die chemisch modifizierte Nukleinsäure konnte bisher nicht in Zusammenhang mit der Ermittlung von genetischen und epigenetische Parametern gebracht werden.
Die Aufgabe der vorliegenden Erfindung wird weiterhin durch ein Oligonukleotid oder Oli- gomer zur Detektion des Cytosin-Methylierungszustandes in chemisch vorbehandelter DNA, umfassend mindestens eine Basensequenz mit einer Länge von mindestens 13 Nukleotiden gelöst, die an eine chemisch vorbehandelte DNA des Gens Cdk4 gemäß einer der Seq. ID No.l bis Seq. ID No.4 hybridisiert. Die erfindungsgemäßen Oligomersonden stellen wichtige und effektive Werkzeuge dar, welche die Ermittlung der genetischen und epigenetischen Parameter des Cdk4-Gens erst ermöglichen. Bevorzugterweise umfasst die Basensequenz der Oligomere mindestens ein CpG Dinukleotid. Die Sonden können auch in Form einer PNA (Peptide Nucleic Acid) vorliegen, die besonders bevorzugte Paarungseigenschaften aufweist. Besonders bevorzugt sind erfindungsgemäße Oligonukleotide, bei denen das Cytosin des CpG Dinukleotids das 5. - 9. Nukleotid vom 5'-Ende des 13 mers ist, im Falle von PNA- Oligomeren ist es bevorzugt, dass das Cytosin des CpG Dinukleotids das 4. - 6. Nukleotid vom 5'-Ende des 9 mers ist. Die erfindungsgemäßen Oligomere werden normalerweise in sogenannten Sets eingesetzt, die für jedes der CpG Dinukleotide eine der Sequenzen der Seq. ID No.l bis Seq. ID No.4 mindestens ein Oligomer umfassen. Bevorzugt ist ein Set, das für jedes der CpG Dinukleotide aus einer der Seq ID No.l bis Seq ID No.4 mindestens ein Oligomer umfasst.
Weiterhin stellt die Erfindung ein Set von mindestens zwei Oligonukleotiden zur Verfügung, die als sogenannte Primeroligonuldeotide zur Amplifikation von DNA-Sequenzen einer der Seq. ID No.l bis Seq. ID No.4 oder Abschnitten davon eingesetzt werden können.
Im Falle der erfindungsgemäßen Sets von Oligonukleotiden ist es bevorzugt, dass mindestens ein Oligonukleotid an eine Festphase gebunden ist.
Die vorliegende Erfindung betrifft weiterhin einen Satz von mindestens 10 Oligomeren (Oligonukleotiden und/oder PNA-Oligomeren), die zur Detektion des Cytosin- Methylierungszustandes in chemisch vorbehandelter genomischer DNA (Seq. ID No.l bis Seq. ID No.4) dienen. Mit diesen Sonden ist die Diagnose von genetischen und epigenetischen Parametern des Cdk4-Gens möglich. Das Set von Oligomeren kann auch zur Detektion von Single Nucleotide Polymorphismen (SNPs) in der chemisch vorbehandelten DNA des Gens Cdk4 gemäß einer der Seq. ID No.l bis Seq. ID No.4 verwendet werden.
Erfindungsgemäß ist es bevorzugt, dass eine von der Erfindung zur Verfügung gestellte Anordnung aus unterschiedlichen Oligonukleotiden und/oder PNA-Oligomeren (ein sogenanntes "Array") ebenfalls an eine Festphase gebunden vorliegt. Dieses Array von unterschiedlichen Oligonukleotid- und/oder PNA-Oligomersequenzen kann dadurch gekennzeichnet sein, dass es auf der Festphase in Form eines rechtwinkligen oder hexagonalen Gitters angeordnet ist. Bevorzugterweise besteht die Festphasenoberfläche aus Silizium, Glas, Polystyrol, Aluminium, Stahl, Eisen, Kupfer, Nickel, Silber oder Gold. Möglich sind jedoch auch Nitrocellulose sowie Kunststoffe wie zum Beispiel Nylon, die in Form von Kugeln oder auch als Harz- Matrizes vorliegen können.
Ein weiterer Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung eines auf einem Trägermaterial fixierten Arrays zur Analyse in Zusammenhang mit Cdk4 assoziierten Erkrankungen, bei dem mindestens ein Oligomer gemäß der Erfindung an eine feste Phase gekoppelt wird. Verfahren zur Herstellung von solchen Arrays sind zum Beispiel aus der US
5,744,305 mittels Festphasenchemie und photolabilen Schutzgruppen bekannt.
Ein weiterer Gegenstand der Erfindung betrifft einen DNA-Chip zur Analyse in Zusammenhang mit Cdk4 assoziierten Erkrankungen, der mindestens eine Nukleinsäure gemäß der vorliegenden Erfindung umfasst. DNA-Chips sind zum Beispiel aus der US 5,837,832 bekannt.
Gegenstand der vorliegenden Erfindung ist zudem ein Kit, das zum Beispiel aus einer Bisulfit enthaltenden Reagenz, einem Satz von Primeroligonukleotiden umfassend mindestens zwei Oligonukleotide, deren Sequenzen jeweils mindestens einen 18 Basenpaaren langen Abschnitt der im Anhang aufgeführten Basensequenzen (Seq. ID No.l bis Seq. ID No.4) entsprechen oder zu ihnen komplementär sind, Oligonukleotiden und/oder PNA-Oligomeren sowie einer Anleitung zur Durchführung und Auswertung des beschriebenen Verfahrens bestehen kann. Ein Kit im Sinne der Erfindung kann jedoch auch nur Teile der vorgenannten Bestandteile enthalten.
Die Erfindung stellt weiterhin ein Verfahren zur Ermittlung von genetischen und/oder epigenetischen Parametern des Cdk4 Gens durch Analyse von Cytosin-Methylierungen und Single Nucleotide Polymorphismen zur Verfügung, das folgende Schritte umfasst:
In einem ersten Verfahrensschritt wird eine genomische DNA-Probe derart chemisch behandelt, dass an der 5 '-Position unmethylierte Cytosinbasen in Uracil, Thymin oder eine andere vom Hybridisierungsverhalten her dem Cytosin unähnliche Base verwandelt werden. Dies wird im folgenden unter chemischer Vorbehandlung verstanden.
Die zu analysierende genomische DNA wird bevorzugt aus den üblichen Quellen für DNA erhalten, wie Zellen oder Zellbestandteilen, zum Beispiel Zelllinien, Biopsine, Blut, Sputum, Stuhl, Urin, Gehirn-Rückenmarks-Flüssigkeit, in Paraffin eingebettetes Gewebe, beispielsweise Gewebe von Augen, Darm, Niere, Hirn, Herz, Prostata, Lunge, Brust oder Leber, hi- stologische Objektträger oder Kombinationen davon.
Bevorzugt wird dazu die oben beschriebene Behandlung genomischer DNA mit Bisulfit (Hydrogensulfit, Disulfit) und anschließender alkalischer Hydrolyse verwendet, die zu einer Um- wandlung nicht methylierter Cytosin-Nukleobasen in Uracil oder eine andere vom Basenpaarungsverhalten her dem Cytosin unähnliche Base führt.
Aus dieser chemisch vorbehandelten genomischen DNA werden Fragmente unter Verwendung von Sätzen von erfindungsgemäßen Primeroligonukleotiden und einer bevorzugterweise hitzestabilen Polymerase amplifiziert. Aus statistischen und praktikablen Erwägungen werden bevorzugterweise mehr als zehn unterschiedliche Fragmente amplifiziert, die 100 - 2000 Basenpaare lang sind. Die Amplifikation von mehreren DNA-Abschnitten kann simultan in ein und demselben Reaktionsgefaß durchgeführt werden. Üblicherweise wird die Amplifikation mittels der Polymerasekettenreaktion (PCR) durchgeführt.
In einer bevorzugten Ausführiingsforiri des Verfahrens umfasst der Satz von Primeroligonukleotiden mindestens zwei Oligonukleotide, deren Sequenzen jeweils revers komplementär oder identisch zu einem mindestens 18 Basenpaare langen Abschnitt der im Anhang (Seq. ID No.l bis Seq. ID No.4) aufgelisteten Basensequenzen sind. Die Primeroligonuldeotide sind vorzugsweise dadurch gekennzeichnet, dass sie kein CpG Dinukleotid enthalten.
Erfindungsgemäß bevorzugt ist es, dass bei der Amplifikation mindestens ein Primeroligonu- kleotid an eine Festphase gebunden ist. Die unterschiedlichen Oligonukleotid und/oder PNA- Oligomersequenzen können auf einer ebenen Festphase in Form eines rechtwinkligen oder hexagonalen Gitters angeordnet sein, wobei die Festphasenoberfläche bevorzugt aus Silizium, Glas, Polystyrol, Aluminium, Stahl, Eisen, Kupfer, Nickel, Silber oder Gold besteht, wobei auch andere Materialien, wie Nitrocellulose oder Kunststoffe verwendet werden können.
Die mittels der Amplifikation erhaltenen Fragmente können eine direkt oder indirekt nachweisbare Markierung tragen. Bevorzugt sind Markierungen in Form von Fluoreszenzmarkierungen, Radionukliden oder ablösbaren Molekülfragmenten mit typischer Masse, die in einem Massenspektrometer nachgewiesen werden können, wobei bevorzugt ist, dass die erzeugten Fragmente zur besseren Detektierbarkeit im Massenspektrometer eine einzelne positive oder negative Nettoladung aufweisen. Der Nachweis kann mittels Matrix assistierter Laser Desorptions/Ionisations Massenspektrometrie (MALDI) oder mittels Elektrospray Massen- spektrometrie (ESI) durchgeführt und visualisiert werden. Die im zweiten Verfahrensschritt erhaltenen Amplifikate werden anschließend an einen Satz von Oligonukleotiden und/oder PNA- Sonden der oder an ein Array hybridisiert. Die Hybridisierung erfolgt dabei auf die unten angegebene Art und Weise. Der bei der Hybridisierung verwendete Satz besteht bevorzugterweise aus mindestens 10 Oligonukleotid oder PNA- Oligomer Sonden. Die Amplifikate dienen dabei als Sonden, die an vorher an einer Festphase gebundene Oligonukleotide hybridisieren. Die nicht hybridisierten Fragmente werden anschließend entfernt. Die besagten Oligonukleotide umfassen mindestens eine Basensequenz mit einer Länge von 13 Nukleotiden, die revers komplementär oder identisch zu einem Abschnitt der im Anhang aufgeführten Basensequenzen ist, der mindestens ein CpG Dinukleotid enthält. Das Cytosin des CpG Dinukleotids ist das 5. bis 9. Nukleotid vom 5'-Ende des 13 mers aus betrachtet. Für jedes CpG Dinukleotid ist ein Oligonukleotid vorhanden. Die besagten PNA-Oligomere umfassen mindestens eine Basensequenz mit einer Länge von 9 Nukleotiden, die revers komplementär oder identisch zu einem Abschnitt der im Anhang aufgeführten Basensequenzen ist, der mindestens ein CpG Dinukleotid enthält. Das Cytosin des CpG Dinukleotids ist das 4. bis 6. Nukleotid vom 5 '-Ende des 9mers aus gesehen. Für jedes CpG Dinukleotid ist ein Oligonukleotid vorhanden.
Im vierten Verfahrensschritt entfernt man die nicht hybridisierten Amplifikate.
Im letzten Verfahrensschritt detektiert man die hybridisierten Amplifikate. Dabei ist bevorzugt, dass an den Amplifikaten angebrachte Markierungen an jeder Position der Festphase, an der sich eine Oligonukleotidsequenz befindet, identifizierbar sind.
Erfindungsgemäß bevorzugt ist es, dass die Markierungen der Amplifikate Fluoreszenzmarkierungen, Radionuklide oder ablösbare Molekülfragmente mit typischer Masse sind, die in einem Massenspektrometer nachgewiesen werden können. Der Nachweis der Amplifikate, Fragmente der Amplifikate oder zu den Amplifikaten komplementäre Sonden im Massenspektrometer ist bevorzugt, wobei man die Detektion mittels Matrix assistierter Laser Desorptions/Ionisations Massenspektrometrie (MALDI) oder mittels Elektrospray Massen- spektrometrie (ESI) durchfuhren und visualisieren kann.
Zur besseren Detektierbarkeit im Massenspektrometer können die erzeugten Fragmente eine einzelne positive oder negative Nettoladung aufweisen. Bevorzugt wird das vorgenannte Ver- fahren zur Ermittlung von genetischen und/oder epigenetischen Parametern des Cdk4 Gens verwendet.
Die erfindungsgemäßen Oligomere oder Arrays derselben sowie ein erfindungsgemäßes Kit sollen zur Diagnose einer mit Cdk4 assoziierten Krankheit durch Analyse von Methylie- rungsmustern des Cdk4-Gens verwendet werden. Erfindungsgemäß bevorzugt ist die Verwendung des Verfahrens zur Diagnose bedeutender genetischer und/oder epigenetischer Parameter innerhalb des Cdk4-Gens.
Das erfindungsgemäße Verfahren dient zum Beispiel der Diagnose von akuter lymphatischer Leukämie, akute lymphatische Leukämie von T-Zellen, akuter myeloischer Leukämie, Gebärmutterkrebs, Magenkrebs, Alzheimer Erkrankung, präkanzeröser Veränderung der Mundschleimhaut und Plattenepithelkarzinom der Mundschleimhaut, nicht-kleinzelligem Lungenkrebs, parostalem Osteosarkom, malignem peripherem Nervenscheidentumor, nicht- kleinzelligem Lungenkrebs, parostalem Osteosarkom, malignem peripherem Nervenscheidentumor, Prostatakrebs, Nierenerkrankung, Brustkrebs, diffusem großzelligem B-Zell- Lymphom, multiplem Myelom, rundzelligem Liposarkom, tuberöser Sklerose, Eierstockkrebs, Ewing Sarkom und vererbbaren Melanome und Nävi.
Auch die erfindungsgemäßen Nukleinsäuren der Seq. ID No.l bis Seq. ID No.4 können für die Diagnose von genetischen und/oder epigenetischen Parametern des Cdk4 Gens verwendet werden.
Die vorliegende Erfindung betrifft weiterhin ein Verfahren zur Herstellung eines Diagnosti- kums zur Diagnose von mit Cdk4 assoziierten Krankheiten durch Analyse von Methylie- rungsmustern des Cdk4-Gens, wobei das Diagnostikum dadurch gekennzeichnet ist, dass mindestens eine Nukleinsäure, gemäß der vorliegenden Erfindung, gegebenenfalls zusammen mit geeigneten Zusatz- und Hilfsstoffen zu dessen Herstellung verwendet wird.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft ein Diagnostikum zur von mit Cdk4 assoziierten Krankheiten durch Analyse von Methylierungsmustern des Cdk4-Gens, das mindestens eine Nukleinsäure gemäß der Erfindung, gegebenenfalls zusammen mit geeigneten Zusatz- und Hilfsstoffen umfasst. Die vorliegende Erfindung betrifft weiterhin die Diagnose und/oder Prognose nachteiliger
Ereignisse für Patienten oder Individuen, bei dem die mittels der Erfindung erhaltenen bedeutenden genetischen und/oder epigenetischen Parameter innerhalb des Cdk4 Gens mit einem anderen Satz genetischen und/oder epigenetischen Parameter verglichen werden können und die so erhaltenen Unterschiede als Basis für eine Diagnose und/oder Prognose nachteiliger Ereignisse für Patienten oder Individuen dienen.
Unter dem Begriff "Hybridisierung" im Sinne der vorliegenden Erfindung ist eine Bindung unter Ausbildung einer Duplex-Struktur eines Oligonukleotids an eine vollständig komplementäre Sequenz im Sinne der Watson-Crick Basenpaarungen in der Proben DNA zu verstehen. Unter "stringenten Hybridisierungsbedingungen" sind solche Bedingungen zu verstehen, bei denen eine Hybridisierung bei 60°C in 2,5 x SSC-Puffer, gefolgt von mehreren Waschschritten bei 37°C in einer geringeren Pufferkonzentration erfolgt und stabil bleibt.
Mit dem Begriff "funktioneile Varianten" sind alle DNA-Sequenzen bezeichnet, die komplementär zu einer DNA-Sequenz sind, die unter stringenten Bedingungen mit der Referenzsequenz hybridisieren und eine zu dem entsprechenden erfindungsgemäßen Polypeptid ähnliche Aktivität aufweisen.
"Genetische Parameter" im Sinne dieser Erfindung sind Mutationen und Polymorphismen des Cdk4 Gens und zu seiner Regulation weiterhin erforderlicher Sequenzen. Insbesondere sind als Mutationen Insertionen, Deletionen, Punktmutationen, Inversionen und Polymorphismen und besonders bevorzugt SNPs (Single Nucleotide Polymorphisms) zu bezeichnen. Polymorphismen können aber ebenso Insertionen, Deletionen oder Inversionen sein.
"Epigenetische Parameter" im Sinne dieser Erfindung sind insbesondere Cytosin- Methylierungen und weitere chemische Modifikationen von DNA-Basen des Cdk4 Gens und zu seiner Regulation weiterhin erforderliche Sequenzen. Weitere epigenetische Parameter sind beispielsweise die Acetylierung von Histonen, die jedoch mit dem beschriebenen Verfahren nicht direkt analysiert werden kann, sondern wiederum mit der DNA-Methylierung korre- liert.
Die Erfindung soll nun im folgenden anhand der Sequenzen, Figuren und Beispiele weiter verdeutlicht werden, ohne daß die Erfindung hierauf eingeschränkt wird. Dabei zeigt Figur 1 die Unterscheidung von Zelllinien und Proben von Patienten mit der Diagnose ALL und Zelllinien und Proben von Patienten mit der Diagnose AML. Eine hohe Wahrscheinlichkeit für Methylierung enspricht dunklegrauen Signalen (in der farbigen Abbildung erscheinen diese rot), eine geringe Wahrscheinlichkeit hellgrauen Signalen (in der farbigen Abbildung erscheinen diese grün) und schwarz mittleren Werten. Die Proben auf der linken Seite (A) der Figur 1 werden der Gruppe aus ALL zugeordnet,die auf der rechten Seite (B) AML.
Seq. ID No.l zeigt die Sequenz der chemisch vorbehandelten genomischen DNA des Gens Cdk4
Seq. ID No.2 zeigt die Sequenz einer zweiten chemisch vorbehandelten genomischen DNA des Gens Cdk4
Seq. ID No.3 zeigt die revers komplementäre Sequenz der Seq. ID 1 der chemisch vorbehandelten genomischen DNA des Gens Cdk4
Seq. ID No.4 zeigt die revers komplementäre Sequenz der Seq. ID 2 der chemisch vorbehandelten genomischen DNA des Gens Cdk4
Seq. ID No.5 zeigt die Sequenz eines Oligonukleotids zur Amplifizierung von Cdk4 aus Beispiel 1
Seq. ID No.6 zeigt die Sequenz eines zweiten Oligonukleotids zur Amplifizierung von Cdk4 aus Beispiel 1
Seq. ID NoJ zeigt die Sequenz eines Oligonukleotids zur Hybridisierung des Amplifikats von Cdk4 aus Beispiel 1
Seq. ID No.8 zeigt die Sequenz eines zweiten Oligonukleotids zur Hybridisierung des Amplifikats von Cdk4 aus Beispiel 1 Seq. ID No.9 zeigt die Sequenz eines dritten Oligonukleotids zur Hybridisierung des Amplifikats von Cdk4 aus Beispiel 1
Seq. ID No.10 zeigt die Sequenz eines vierten Oligonukleotids zur Hybridisierung des Amplifikats von Cdk4 aus Beispiel 1
Seq. ID No.l l zeigt die Sequenz eines Oligonukleotids zur Hybridisierung des Amplifikats von Cdk4 aus Beispiel 1
Seq. ID No.12 zeigt die Sequenz eines fünften Oligonukleotids zur Hybridisierung des Amplifikats von Cdk4 aus Beispiel 1
Seq. ID No.l 3 zeigt die Sequenz eines Oligonukleotids zur Hybridisierung des Amplifikats von Cdk4 aus Beispiel 1
Seq. ID No.14 zeigt die Sequenz eines sechsten Oligonukleotids zur Hybridisierung des Amplifikats von Cdk4 aus Beispiel 1
Seq. ID No.l 5 zeigt die Sequenz eines siebten Oligonukleotids zur Hybridisierung des Amplifikats von Cdk4 aus Beispiel 1
Seq. ID No.l 6 zeigt die Sequenz eines achten Oligonukleotids zur Hybridisierung des Amplifikats von Cdk4 aus Beispiel 1
Seq. ID No.l 7 zeigt die Sequenz eines achten Oligonukleotids zur Hybridisierung des Amplifikats von Cdk4 aus Beispiel 2
Seq. ID No.l 8 zeigt die Sequenz eines achten Oligonukleotids zur Hybridisierung des Amplifikats von Cdk4 aus Beispiel 2
Seq. ID No.l 9 zeigt die Sequenz eines achten Oligonukleotids zur Hybridisierung des Amplifikats von Cdk4 aus Beispiel 2 Seq. ID No.20 zeigt die Sequenz eines achten Oligonukleotids zur Hybridisierung des Amplifikats von Cdk4 aus Beispiel 2
Das folgende Beispiel bezieht sich auf ein Fragment des Gens Cdk4, in dem eine bestimmte CG-Position auf ihren Methylierungsstatus hin untersucht wird.
Beispiel 1: Durchführung der Methylierungsanalyse im Cdk4-Gen
Im ersten Schritt wird eine genomische Sequenz unter Verwendung von Bisulfit (Hydrogensulfit, Disulfit) derart behandelt, daß alle nicht an der 5-Position der Base methylierten Cytosine so verändert werden, daß eine hinsichtlich dem Basenpaarungsverhalten unterschiedliche Base entstellt, während die in 5-Position methylierten Cytosine unverändert bleiben. Wird für die Reaktion Bisulfit im Konzentrationsbereich zwischen 0.1 und 6 M verwendet, so findet an den nicht methylierten Cytosinbasen eine Addition statt. Zudem müssen ein denaturierendes Reagenz oder Lösungsmittel sowie ein Radikalfänger zugegen sein. Eine anschließende alkalische Hydrolyse führt dann zur Umwandlung von nicht methylierten Cytosin-Nukleobasen in Uracil. Diese umgewandelte DNA dient dazu, methylierte Cytosine nachzuweisen. Im zweiten Verfahrensschritt verdünnt man die behandelte DNA-Probe mit Wasser oder einer wässri- gen Lösung. Bevorzugt wird anschliessend eine Desulfonierung der DNA (10-30 min, 90-100 °C) bei alkalischem pH- Wert durchgeführt. Im dritten Schritt des Verfahrens amplifiziert man die DNA-Probe in einer Polymerasekettenreaktion, bevorzugt mit einer hitzebeständigen DNA-Polymerase.
Im vorliegenden Fall werden Cytosine des Gens CDK4, hier aus der 5'UTR, untersucht. Mit Sequenzen dieses Gens können Proben von Patienten mit der Diagnose ALL von gesunden B- /T-Zellen unterschieden werden. Dazu wird mit den spezifischen Primeroligonukleotiden TTTTGGTAGTTGGTTATATG (Seq. ID No. 5) und AAAAATAACACAATAACTCA (Seq. ID No. 6) ein definiertes Fragment der Länge 474 bp amplifiziert. Dieses Amplifikat dient als Probe, die an ein vorher an einer Festphase gebundenes Oligonukleotid unter Ausbildung einer Duplexstruktur hybridisiert, beispielsweise GATTCCTACGACCCCATA (Seq. ID No. 7) oder GATTCCTACAACCCCATA (Seq. ID No. 8), wobei sich das nachzuweisende Cytosin an Position 120 des Amplifikats befindet. Das methylierte Cytosin wird mit dem Oligonukleotid (Seq. ID No. 7), welches an der betreffenden komplementären Stelle ein Gua- nin aufweist, nachgewiesen, wogegen die unmethylierte Zustandsform, die durch ein Thymin repräsentiert wird, mit dem Oligonukleotid (Seq. ID No. 8), welches an der betreffenden komplementären Stelle ein Adenin aufweist, nachgewiesen wird.. Weitere Oligonukleotide, die zur Hybridisierung verwendet werden können beinhalten nachfolgende Sequenzen:
CCCTTAAACGACCCTTCC (Seq. ID No.9) und CCCTTAAACAACCCTTCC (Seq. ID
No. 10) mit dem nachzuweisenden Cytosin an Position 276 des Amplifikats,
CCACTTCCCGCCCTTAAA (Seq. ID No.11) und CCACTTCCCACCCTTAAA (Seq. ID
No. 12) mit dem nachzuweisenden Cytosin an Position 286 des Amplifikats.
Des weiteren können Proben von Patienten mit der Diagnose ALL von Proben von Patienten mit der Diagnose AML unterschieden werden. Dazu wird mit den spezifischen Primeroligo- nukleotiden TTTTGGTAGTTGGTTATATG (Seq. ID No. 5) und AAAAATAACACAATAACTCA (Seq. ID No. 6) ein definiertes Fragment der Länge 474 bp amplifiziert. Dieses Amplifikat dient als Probe, die an ein vorher an einer Festphase gebundenes Oligonukleotid unter Ausbildung einer Duplexstruktur hybridisiert, beispielsweise CCCTTAAACGACCCTTCC (Seq. ID No. 9) und CCCTTAAACAACCCTTCC (Seq. ID No. 10) mit dem nachzuweisenden Cytosin an Position 276 des Amplifikats, CCTTACATCGAAAATCCT (Seq. ID No. 13) und CCTTACATAGAAAATCCT (Seq. ID No. 14) mit dem nachzuweisenden Cytosin an Position 349 des Amplifikats, TCCAACCACGTAAAACCC (Seq. ID No. 15) und TCCAACCACATAAAACCC(Seq. ID No. 16) mit dem nachzuweisenden Cytosin an Position 433 des Amplifikats. Das methylierte Cytosin wird mit dem Oligonukleotid (Seq. ID No. 7), welches an der betreffenden komplementären Stelle ein Guanin aufweist, nachgewiesen, wogegen die unmethylierte Zustands- form, die durch ein Thymin repräsentiert wird, mit dem Oligonukleotid (Seq. ID No. 8), welches an der betreffenden komplementären Stelle ein Adenin aufweist, nachgewiesen wird.
Der Nachweis des Hybridisierungsprodukts beruht auf CY5 fluoreszenzmarkierten Primeroli- gonukleotiden, die für die Amplifikation verwendet wurden. Nur wenn in der Bisulfit behandelten DNA an dieser Stelle ein methyliertes Cytosin vorgelegen hat, kommt es zu einer Hy- bridisierangsreaktion der amplifizierten DNA mit dem Oligonukleotid. Somit entscheidet der Methylierungsstatus des jeweiligen zu untersuchenden Cytosins über das Hybridisierungspro- dukt.
Beispiel 2: Durchführung der Methylierungsanalyse im CDK4-Gen
Im ersten Schritt wird eine genomische Sequenz unter Verwendung von Bisulfit (Hydrogensulfit, Disulfit) derart behandelt, das alle nicht an der 5-Position der Base methylierten Cyto- sine so verändert werden, daß eine hinsichtlich dem Baseήpaarungs verhalten unterschiedliche
Base entsteht, während die in 5-Position methylierten Cytosine unverändert bleiben. Wird für die Reaktion Bisulfit verwendet, so findet an den nicht methylierten Cytosinbasen eine Addition statt. Zudem müssen ein denaturierendes Reagenz oder Lösungsmittel sowie ein Radikalfänger zugegen sein. Eine anschließende alkalische Hydrolyse führt dann zur Umwandlung von nicht methylierten Cytosin-Nukleobasen in Uracil. Diese umgewandelte DNA dient dazu, methylierte Cytosine nachzuweisen. Im zweiten Verfahrensschritt verdünnt man die behandelte DNA-Probe mit Wasser oder einer wässrigen Lösung. Bevorzugt wird anschliessend eine Desulfonierung der DNA durchgeführt. Im dritten Schritt des Verfahrens amplifiziert man die DNA-Probe in einer Polymerasekettenreaktion, bevorzugt mit einer hitzebeständigen DNA-Polymerase. Die PCR Reaktionen wurden in einem Thermocycler (Eppendorf GmbH) durchgeführt. Es wurden für einen 25μl Ansatz 10 ng DNA, 0.08μM von jedem Primeroligo- nukleotid l,6mM dNTPs und eine Einheit HotstartTaq eingesetzt. Die übrigen Bedingungen wurden gemäß Herstellerangaben gewählt. Für die PCR wurde zuerst eine Denaturierung für 15 Minuten bei 96 °C durchgeführt, danach .'.36 Zyklen (60 Sekunden bei 96°C, 45 Sekunden bei 52 °C und 75 Sekunden bei 72 °C) und eine abschließenden Elongation von 10 Minuten bei 72 °C. Das Vorhanden der PCR Produkte wurde auf Agarosegelen überprüft.
Im vorliegenden Fall werden Cytosine des Gens CDK4 untersucht. Mit Sequenzen dieses Gens können Zelllinien und Proben von Patienten mit der Diagnose ALL von Zelllinien und Proben von Patienten mit der Diagnose ALL unterschieden werden. Dazu wird mit den spezifischen Primeroligonukleotiden TTTTGGTAGTTGGTTATATG (Seq. ID No. 5) und AAAAATAACACAATAACTCA (Seq. ID No. 6) ein definiertes Fragment der Länge 474 bp amplifiziert. Dieses Amplifikat dient als Probe, die an ein vorher an einer Festphase gebundenes Oligonukleotid unter Ausbildung einer Duplexstruktur hybridisiert, beispielsweise GGAAGGGTCGTTTAAGGG (Seq. ID No. 17) oder GGAAGGGTTGTTTAAGGG (Seq. ID No. 18), wobei sich das nachzuweisende Cytosin an Position 277 des Amplifikats befindet. Das methylierte Cytosin wird mit dem Oligonukleotid (Seq. ID No. 17), welches an der betreffenden komplementären Stelle ein Guanin aufweist, nachgewiesen, wogegen die unme- thylierte Zustandsform, die durch ein Thymin repräsentiert wird, mit dem Oligonukleotid (Seq. ID No. 18), welches an der betreffenden komplementären Stelle ein Adenin aufweist, nachgewiesen wird. Weitere Oligonukleotide, die zur Hybridisierung verwendet werden können beinhalten nachfolgende Sequenzen: GGGTTTTACGTGGTTGGA (Seq. ID No. 19) und GGGTTTTATGTGGTTGGA (Seq. ID No. 20) mit dem nachzuweisenden Cytosin an Positi- on 434 des Amplifikats und auf dem entsprechenden Gegenstrang
TCCAACCACGTAAAACCC (Seq. ID No.15) und TCCAACCACATAAAACCC (Seq. ID
No. 16) an der entsprechenden Position. Der Nachweis des Hybridisierungsprodukts beruht auf CY5 fluoreszenzmarkierten Primeroligonukleotiden, die für die Amplifikation verwendet wurden. Nur wenn in der Bisulfit behandelten DNA an dieser Stelle ein methyliertes Cytosin vorgelegen hat, kommt es zu einer Hybridisierungsreaktion der amplifizierten DNA mit dem
Oligonukleotid. Somit entscheidet der Methylierungsstatus des jeweiligen zu untersuchenden
Cytosins über das Hybridisierungsprodukt.
Beispiel 3: Digitaler Phänotyp
Das folgende Beispiel beschreibt den Vergleich von Zelllinien und Proben von Patienten mit der Diagnose ALL und Zelllinien und Proben von Patienten mit der Diagnose ALL. Für die PCRs wurden wurden fluoreszenzmarkierte Primer benutzt. Alle PCR Produkte von jedem Individuum wurden gemischt und auf Glassobjektträger hybridisiert, die an jeder Postion ein Paar immobilisierte Oligonukleotide trugen. Jedes dieser Detekionsoligonukleotide wurde entworfen, um es gegen bei CpG Stellen befindliche bisulfit konvertierte Sequenzen zu hybridisieren, die entweder im ursprünglichen Zustand unmethyliert (TG) oder methyliert (CG) vorlagen. Die Hybrisierungsbedingungen wurden ausgewählt zur Detektion von Unterschieden bei Einzelnukleotiden der Varianten TG und CG. Die Verhältnisse der beiden Signale wurden basierend auf dem Vergleich der Intensitäten der fluoreszierenden Signale berechnet. Die Information wird danach in einer gewichteten Matrix (s. Figur 1) bezüglich der CpG Methylierungsunterschiede zwischen zwei Klassen von Geweben bestimmt. Die signifikantesten CpG Positionen werden am unteren Ende der Matrix dargestellt, nach oben hin nimmt die Signifikanz ab. Dunkelgrau (in der Original Figur: rot) zeigt einen hohen Methylierungs- grad an, hellgrau (in der Original Figur: grün) eine niedrigen und schwarz einen mittleren Methylierungsgrad. Jede Reihe repräsentiert eine spezifische CpG Position in einem Gen und jede Spalte zeigt das Methyllierungsprofil verschiedener CpGs für eine Probe. Auf der linken Seite werden eine Genidentifizierungsnummer aufgezeigt; der zugehörige Genname ist jeweils in Tabelle 1 zu finden. In Tabelle 1 sind weiterhin die korrespondierenden Accession Nummern der Gene aufgeführt. Die Zahl vor dem Doppelpunkt bezeichnet den Gennamen und die Zahl hinter dem Doppelpunkt das spezifische Oligonukleotid. Auf der rechten Seite von Figur 1 werden die Fisher Werte der individuellen CpG Positionen gezeigt. Am unteren Ende der Figur sind die einzelnen Probennamen aufgelistet. Die Proben zwischen CP3_l_l_Call2 und CP3_1_AB werden der ALL Gruppe (n=17) zugerechnet, die Proben zwischen CP3_1_B_E und CP3_l_C_Kasumi der AML Gruppe.
Tabelle 1
Figure imgf000021_0001
Beispiel 4: Diagnose von CDK4 assoziierten Erkrankungen
Um einen Bezug der Methylierungsmuster zu einer der mit Cdk4 assoziierten Erkrankungen, beispielsweise akute lymphatische Leukämie und akute lymphatische Leukämie von T-Zellen, akute myeloischer Leukämie, Gebärmutterkrebs, Magenkrebs, Alzheimer Erkrankung, prä- kanzeröse Veränderung der Mundschleimhaut und Plattenepithelkarzinom der Mundschleimhaut, nicht-kleinzelligem Lungenkrebs, parostales Osteosarkom, malignes peripheres Nerven- scheidentumor, nicht-kleinzelligem Lungenkrebs, parostalem Osteosarkom, malignem peripherem Nervenscheidentumor, Prostatakrebs, Nierenerkrankung, Brustkrebs, diffuses groß- zelliges B-Zell-Lymphom, multiples Myelom, rundzelliges Liposarkom, tuberöse Sklerose, Eierstockkrebs, Ewing Sarkom und vererbbare Melanome und Nävi durchzuführen, bedarf es zunächst der Untersuchung der DNA-Methylierungsmuster einer Gruppe von erkrankten und einer Gruppe von gesunden Personen. Diese Untersuchungen werden zum Beispiel analog dem Beispiel 1 durchgeführt. Die so erhaltenen Ergebnisse werden in einer Datenbank abgespeichert und die CpG Dinukleotide identifiziert, die zwischen den beiden Gruppen unterschiedlich methyliert sind. Dies kann durch Bestimmung einzelner CpG Methylierungsraten erfolgen, wie dies z. B. durch Sequenzieren relativ ungenau oder aber durch eine methylie- rungssensitive „Primer-Extension-Reaktion" sehr genau möglich ist. Auch gleichzeitige Analyse des gesamten Methylierungsstatus ist möglich, und die Muster können z.B. mittels Clustering- Analysen, die z.B. durch einen Rechner durchgeführt werden können, verglichen werden.
Nachfolgend ist es möglich, untersuchte Patienten einer bestimmten Therapiegruppe zuzuordnen und diese Patienten gezielt mit einer individualisierten Therapie zu behandeln.

Claims

Patentansprüche
1. Nukleinsäure, umfassend einen mindestens 18 Basen langen Sequenzabschnitt der chemisch vorbehandelten DNA des Cdk4 Gens gemäß einer der Seq. ID No.l bis Seq. ID No.4.
2. Oligomer (Oligonukleotid oder Peptide Nucleic Acid (PNA)-Oligomer) zur Detektion des Cytosin-Methylierungszustandes in chemisch vorbehandelter DNA, umfassend jeweils mindestens eine Basensequenz mit einer Länge von mindestens 9 Nukleotiden, die an eine chemisch vorbehandelte DNA des Cdk4-Gens gemäß einer der Seq. ID No.l bis Seq. ID No.4 hybridisiert.
3. Oligomer gemäß Anspruch 2, wobei die Basensequenz mindestens ein CpG Dinukleotid umfaßt.
4. Oligomer gemäß Anspruch 3, dadurch gekennzeichnet, daß das Cytosin des CpG Dinukleotids in etwa im mittleren Drittel des Oligomers befindet.
5. Satz von Oligomeren gemäß Anspruch 3, umfassend mindestens ein Oligomer zur Detektion des Methylierungszustandes zumindest eines der CpG Dinukleotide aus einer der Sequenzen der Seq. ID No.l bis Seq. ID No.4.
6. Satz von Oligomeren gemäß Anspruch 3, umfassend mindestens ein Oligomer zur Detektion des Methylierungszustandes aller CpG Dinukleotide aus einer der Sequenzen der Seq. ID No.l bis Seq. ID No.4.
7. Satz von mindestens zwei Oligonukleotiden gemäß Anspruch 2, die als Primeroligonu- kleotide zur Amplifikation von DNA-Sequenzen einer der Seq. ID No.l bis Seq. ID No.4 oder Abschnitten davon eingesetzt werden können.
8. Satz von Oligonukleotiden gemäß Anspruch 7, dadurch gekennzeichnet, daß mindestens ein Oligonukleotid an eine Festphase gebunden ist.
9. Satz von Oligomersonden zur Detektion des Cytosin-Methylierungszustandes und/oder von
Single Nucleotide Polymorphismen (SNPs) in chemisch vorbehandelter genomischer DNA gemäß einer der Seq. ID No.l bis Seq. ID No.4, umfassend mindestens zehn der Oligomere gemäß einem der Ansprüche 2 bis 4.
10. Verfahren zur Herstellung einer auf einem Trägermaterial fixierten Anordnung von unterschiedlichen Oligomeren (Array) zur Analyse von in Zusammenhang mit dem Methylierungszustandes der CpG Dinukleotide einer der Seq. ID No.l bis Seq. ID No.4 stehenden Erkrankungen, bei dem mindestens ein Oligomer gemäß einem der Ansprüche 2 bis 4 an eine feste Phase gekoppelt wird.
11. An eine Festphase gebundene Anordnung von unterschiedlichen Oligomeren (Array) nach einem der Ansprüche 2 bis 4.
12. Array von unterschiedlichen Oligonukleotid- und/oder PNA-Oligomersequenzen gemäß Anspruch 11, dadurch gekennzeichnet, daß diese auf einer ebenen Festphase in Form eines rechtwinkligen oder hexagonalen Gitters angeordnet sind.
13. Array gemäß einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, daß die Festphasenoberfläche aus Silizium, Glas, Polystyrol, Aluminium, Stahl, Eisen, Kupfer, Nickel, Silber oder Gold besteht.
14. DNA- und/oder PNA- Array zur Analyse von in Zusammenhang mit dem Methylierungs- zustand von Genen stehenden Erkrankungen, der mindestens eine Nukleinsäure gemäß einem der voranstehenden Ansprüche umfaßt.
15. Verfahren zur Ermittlung von genetischen und/oder epigenetischen Parametern zur Diagnose von bestehenden Erkrankungen oder der Prädisposition für bestimmte Erkrankungen durch Analyse von Cytosin-Methylierungen, dadurch gekennzeichnet, daß man folgende Schritte ausfuhrt:
a) in einer genomischen DNA-Probe werden durch chemische Behandlung an der 5-Position unmethyherte Cytosinbasen in Uracil oder eine andere vom Basenpaarungsverhalten her dem Cytosin unähnliche Base umgewandelt; b) aus dieser chemisch vorbehandelten genomischen DNA werden Fragmente unter Verwendung von Sätzen von Primeroligonukleotiden gemäß Anspruch 7 oder 8 und einer Polymerase amplifiziert, wobei die Amplifikate eine nachweisbare Markierung tragen;
c) Amplifikate werden an einen Satz von Oligonukleotiden und/oder PNA- Sonden gemäß der Ansprüche 2 bis 4 oder aber an ein Array gemäß einem der Ansprüche 11 bis 13; hybridisiert;
d) die hybridisierten Amplifikate werden anschließend nachgewiesen.
16. Verfahren gemäß Anspruch 15, dadurch gekennzeichnet, daß man die chemische Behandlung mittels einer Lösung eines Bisulfits, Hydrogensulfits oder Disulfits durchfuhrt.
17. Verfahren gemäß einem der Ansprüche 15 oder 16, dadurch gekennzeichnet, daß mehr als zehn unterschiedliche Fragmente amplifiziert werden, die 100 - 2000 Basenpaare lang sind.
18. Verfahren gemäß einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, daß die Amplifikation von mehreren DNA- Abschnitten in einem Reaktionsgefäß durchgeführt wird.
19. Verfahren gemäß einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, daß die Polymerase eine hitzebeständige DNA-Polymerase ist.
20. Verfahren gemäß Anspruch 19, dadurch gekennzeichnet, daß die Amplifikation mittels der Polymerasekettenreaktion (PCR) durchgeführt wird.
21. Verfahren gemäß einem der Ansprüche 15 bis 20, dadurch gekennzeichnet, daß die Markierungen der Amplifikate Fluoreszenzmarkierungen sind.
22. Verfahren gemäß einem der Ansprüche 15 bis 20, dadurch gekennzeichnet, daß die Markierungen der Amplifikate Radionuklide sind.
23. Verfahren gemäß einem der Ansprüche 15 bis 20, dadurch gekennzeichnet, daß die Markierungen der Amplifikate ablösbare Molekülfragmente mit typischer Masse sind, die in einem Massenspektrometer nachgewiesen werden.
24. Verfahren gemäß einem der Ansprüche 15 bis 20, dadurch gekennzeiclmet, daß die Amplifikate oder Fragmente der Amplifikate im Massenspektrometer nachgewiesen werden.
25. Verfahren gemäß einem der Ansprüche 23 und/oder 24, dadurch gekennzeiclmet, daß zur besseren Detektierbarkeit im Massenspektrometer die erzeugten Fragmente eine einzelne positive oder negative Nettoladung aufweisen.
26. Verfahren gemäß einem der Ansprüche 23 bis 25, dadurch gekennzeichnet, daß man die Detektion mittels Matrix assistierter Laser Desorptions/Ionisations Massenspektrometrie (MALDI) oder mittels Elektrospray Massenspektrometrie (ESI) durchführt und visualisiert.
27. Verfahren gemäß einem der Ansprüche 15 bis 26, dadurch gekennzeichnet, daß die genomische DNA aus Zellen oder Zellbestandteilen erhalten wurde, welche DNA enthalten, wobei Quellen von DNA z. B. Zelllinien, Biopsien, Blut, Sputum, Stuhl, Urin, Gehirn- Rückenmarks-Flüssigkeit, in Paraffin eingebettetes Gewebe, beispielsweise Gewebe von Augen, Darm, Niere, Hirn, Herz, Prostata, Lunge, Brust oder Leber, histologische Objektträger und alle möglichen Kombinationen hiervon umfassen.
28. Kit, umfassend ein Bisulfit (= Disulfit, Hydrogensulfit) Reagenz sowie Oligonukleotide und/oder PNA-Oligomere gemäß einem der Ansprüche 2 bis 4.
29. Verwendung einer Nukleinsäure gemäß Anspruch 1, eines Oligonukleotids oder PNA- Oligomers gemäß einem der Ansprüche 2 bis 4, eines Kits gemäß Anspruch 28, eines Arrays gemäß einem der Ansprüche 10 bis 13 oder eines Satz von Oligonukleotiden, umfassend mindestens ein Oligomer für zumindest eines der CpG Dinukleotide einer der Sequenzen der Seq. ID NoJ bis Seq. ID No.20 zur Diagnose von akuter lymphatische Leukämie, akuter lymphatischer Leukämie von T-Zellen, akuter myeloischer Leukämie, Gebärmutterkrebs, Magenkrebs, Alzheimer Erkrankung, präkanzeröser Veränderung der Mundschleimhaut und Platte- nepithelkarzinom der Mundschleimhaut, nicht-kleinzelligem Lungenkrebs, parostalem Osteosarkom, malignem peripherem Nervenscheidentumor, nicht-kleinzelligem Lungenkrebs, parostalem Osteosarkom, malignem peripherem Nervenscheidentumor, Prostatakrebs, Nierenerkrankung, Brustkrebs, diffusem großzelligem B-Zell-Lymphom, multiplem Myelom, rund- zelligem Liposarkom, tuberöser Sklerose, Eierstockkrebs, Ewing Sarkom und vererbbaren
Melanome und Nävi.
30. Verwendung einer Nukleinsäure gemäß Anspruch 1, eines Oligonukleotids oder PNA- Oligomers gemäß einem der Ansprüche 2 bis 4, eines Kits gemäß Anspruch 28, eines Arrays gemäß einem der Ansprüche 10 bis 13 oder eines Satz von Oligonukleotiden, umfassend mindestens ein Oligomer für zumindest eines der CpG Dinukleotide einer der Sequenzen der Seq. ID NoJ bis Seq. ID No.20 zur Therapie von akuter lymphatischer Leukämie, akuter lymphatischer Leukämie von T-Zellen, akuter myeloischer Leukämie, Gebärmutterkrebs, Magenkrebs, Alzheimer Erkrankung, präkanzeröser Veränderung der Mundschleimhaut und Platte- nepithelkarzinom der Mundschleimhaut, nicht-kleinzelligem Lungenkrebs, parostalem Osteosarkom, malignem peripherem Nervenscheidentumor, nicht-kleinzelligem Lungenkrebs, parostalem Osteosarkom, malignem peripherem Nervenscheidentumor, Prostatakrebs, Nierenerkrankung, Brustkrebs, diffusem großzelligem B-Zell-Lymphom, multiplem Myelom, rund- zelligem Liposarkom, tuberöser Sklerose, Eierstockkrebs, Ewing Sarkom und vererbbaren Melanome und Nävi.
31. Kit, umfassend ein Bisulfit (= Disulfit, Hydrogensulfit) Reagenz sowie Oligonukleotide und/oder PNA-Oligomere gemäß Anspruch 30.
32. Verwendung einer Nukleinsäure gemäß Anspruch 1, eines Oligonukleotids oder PNA- Oligomers gemäß einem der Ansprüche 2 bis 4, eines Kits gemäß Anspruch 28 oder eines Arrays gemäß einem der Ansprüche 10 bis 13 zur Unterscheidung von Proben von Patienten mit ALL (akute lymphatische Leukämie) von gesunden B/T-Zellen und zur Unterscheidung von Proben von Patienten mit ALL von AML (akute myeloische Leukämie)
PCT/EP2001/012827 2000-11-06 2001-11-06 Diagnose von mit cdk4 assoziierten krankheiten durch bestimmung des methylierungszustandes des cdk4 WO2002036814A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2002218283A AU2002218283A1 (en) 2000-11-06 2001-11-06 Diagnosis of diseases associated with cdk4 by determining the methyl delivery state of cdk4
US10/416,110 US20040072198A1 (en) 2000-11-06 2001-11-06 Diagnosis of diseases associated with cdk4
EP01992793A EP1332228A2 (de) 2000-11-06 2001-11-06 Diagnose von mit cdk4 assoziierten krankheiten durch bestimmung des methylierungszustandes des cdk4 gens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10054974.8 2000-11-06
DE10054974A DE10054974A1 (de) 2000-11-06 2000-11-06 Diagnose von mit Cdk4 assoziierten Krankheiten

Publications (2)

Publication Number Publication Date
WO2002036814A2 true WO2002036814A2 (de) 2002-05-10
WO2002036814A3 WO2002036814A3 (de) 2003-04-10

Family

ID=7662312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/012827 WO2002036814A2 (de) 2000-11-06 2001-11-06 Diagnose von mit cdk4 assoziierten krankheiten durch bestimmung des methylierungszustandes des cdk4

Country Status (5)

Country Link
US (1) US20040072198A1 (de)
EP (1) EP1332228A2 (de)
AU (1) AU2002218283A1 (de)
DE (1) DE10054974A1 (de)
WO (1) WO2002036814A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077272A2 (en) * 2001-03-26 2002-10-03 Epigenomics Ag Methods and nucleic acids for the analysis of hematopoietic cell proliferative disorders
US7195870B2 (en) 2000-04-06 2007-03-27 Epigenomics Ag Diagnosis of diseases associated with gene regulation
US7381808B2 (en) 2001-06-14 2008-06-03 Epigenomics Ag Method and nucleic acids for the differentiation of prostate tumors

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10255104A1 (de) * 2002-08-27 2004-03-11 Epigenomics Ag Verfahren und Nukleinsäuren für die Analyse von proliferativen Erkrankungen von Brustzellen
DE10245779A1 (de) * 2002-10-01 2004-04-29 Epigenomics Ag Verfahren und Nukleinsäuren für die verbesserte Behandlung von proliferativen Erkrankungen von Brustzellen
WO2006088978A1 (en) 2005-02-16 2006-08-24 Epigenomics, Inc. Method for determining the methylation pattern of a polynucleic acid
US7932027B2 (en) 2005-02-16 2011-04-26 Epigenomics Ag Method for determining the methylation pattern of a polynucleic acid
PT1871912E (pt) 2005-04-15 2012-05-25 Epigenomics Ag Método para determinar metilação de adn em amostras de sangue ou urina
DE102014108935B4 (de) 2013-09-06 2016-09-08 Westfalia Presstechnik Gmbh & Co. Kg Abdeckung für eine Bremse oder einen Bereich einer Bremse oder ein Rad eines Fahrzeuges, insbesondere Bremsabdeckblech
DE102014112858A1 (de) 2013-09-06 2015-03-12 Westfalia Presstechnik Gmbh & Co. Kg Flächenelement, insbesondere für ein Kraftfahrzeug
DE202014104211U1 (de) 2014-09-06 2015-12-09 Westfalia Presstechnik Gmbh & Co. Kg Flächenelement, insbesondere für ein Kraftfahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744305A (en) * 1989-06-07 1998-04-28 Affymetrix, Inc. Arrays of materials attached to a substrate
WO1999028498A2 (de) * 1997-11-27 1999-06-10 Epigenomics Gmbh Verfahren zur herstellung komplexer dna-methylierungs-fingerabdrücke
WO1999029898A2 (de) * 1997-12-05 1999-06-17 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zur identifikation von nucleinsäuren durch matrix-assistierte laser desorptions/ionisations massenspektrometrie
DE19905082C1 (de) * 1999-01-29 2000-05-18 Epigenomics Gmbh Verfahren zur Identifikation von Cytosin-Methylierungsmustern in genomischen DNA-Proben
WO2001068911A2 (en) * 2000-03-15 2001-09-20 Epigenomics Ag Diagnosis of diseases associated with the cell cycle
WO2002000928A2 (de) * 2000-06-30 2002-01-03 Epigenomics Ag Diagnose von mit dem immunsystem assoziierten krankheiten durch bestimmung der cytosin-methylierung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962020A (en) * 1988-07-12 1990-10-09 President And Fellows Of Harvard College DNA sequencing
US5652099A (en) * 1992-02-12 1997-07-29 Conrad; Michael J. Probes comprising fluorescent nucleosides and uses thereof
US5821234A (en) * 1992-09-10 1998-10-13 The Board Of Trustees Of The Leland Stanford Junior University Inhibition of proliferation of vascular smooth muscle cell
US5869462A (en) * 1992-09-10 1999-02-09 The Board Of Trustees Of The Leland Stanford Junior University Inhibition of proliferation of vascular smooth muscle cell
AU5372998A (en) * 1997-11-21 1999-06-15 Hybridon, Inc. Antisense oligonucleotides specific for cdk4
WO1999064626A2 (en) * 1998-06-06 1999-12-16 Genostic Pharma Limited Probes used for genetic profiling
WO1999064627A2 (en) * 1998-06-06 1999-12-16 Genostic Pharma Limited Probes used for genetic profiling
EP1133552A2 (de) * 1998-11-25 2001-09-19 Genetica, Inc. Verfahren und reagenzien zur erhöhung der vermehrungfähigkeit und zur verhinderung der replikativen zellalterung
DE10128508A1 (de) * 2001-06-14 2003-02-06 Epigenomics Ag Verfahren und Nukleinsäuren für die Differenzierung von Prostata-Tumoren
WO2003004696A2 (en) * 2001-07-02 2003-01-16 Epigenomics Ag A distributed system for epigenetic based prediction of complex phenotypes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744305A (en) * 1989-06-07 1998-04-28 Affymetrix, Inc. Arrays of materials attached to a substrate
WO1999028498A2 (de) * 1997-11-27 1999-06-10 Epigenomics Gmbh Verfahren zur herstellung komplexer dna-methylierungs-fingerabdrücke
WO1999029898A2 (de) * 1997-12-05 1999-06-17 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zur identifikation von nucleinsäuren durch matrix-assistierte laser desorptions/ionisations massenspektrometrie
DE19905082C1 (de) * 1999-01-29 2000-05-18 Epigenomics Gmbh Verfahren zur Identifikation von Cytosin-Methylierungsmustern in genomischen DNA-Proben
WO2001068911A2 (en) * 2000-03-15 2001-09-20 Epigenomics Ag Diagnosis of diseases associated with the cell cycle
WO2002000928A2 (de) * 2000-06-30 2002-01-03 Epigenomics Ag Diagnose von mit dem immunsystem assoziierten krankheiten durch bestimmung der cytosin-methylierung
WO2002002808A2 (en) * 2000-06-30 2002-01-10 Epigenomics Ag Method and nucleic acids for the analysis of astrocytomas

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DATABASE EMBL [Online] EBI; 12. September 2000 (2000-09-12) HANNON GJ ET AL.: "Cyclin-dependent kinase 4 genomic DNA" retrieved from HTTP://WWW.EBI.AC.UK/CGI-BIN/EMBLFETCH Database accession no. aaa29390 XP002215734 -& WO 00 31238 A (BEACH DAVID H; GENETICA INC (US); HANNON GREGORY J (US)) 2. Juni 2000 (2000-06-02) *
DATABASE EMBL [Online] EBI; 23. März 2000 (2000-03-23) MUZNY D.M. ET AL.: "Homo sapiens chromosome 12 clone RP11-534N15" retrieved from HTTP://WWW.EBI.AC.UK/CGI-BIN/EMBLFETCH Database accession no. AC026340 XP002215733 *
DATABASE EMBL [Online] EBI; 26. Juni 1997 (1997-06-26) ELKAHLOUN A.G. ET AL: "Homo sapien CD4, SAS, and KIAA067 genes" retrieved from HTTP://WWW.EBI.AC.UK/CGI-BIN/EMBLFETCH Database accession no. U81031 XP002197857 *
DATABASE GENBANK [Online] NCBI; 5. Juni 1996 (1996-06-05) ZUO L. ET AL.: "Human cyclin-dependent kinase 4(CDK4) gene" retrieved from HTTP://WWW.NCBI.NLM.NIH.GOV/ Database accession no. U37022 XP002197856 -& ZUO L. ET AL.: "Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma" NATURE GENETETICS, Bd. 12, Nr. 1, 1996, Seiten 97-99, XP002069633 *
NIEMEYER C M ET AL: "DNA MICROARRAYS**" ANGEWANDTE CHEMIE, VCH VERLAGSGESELLSCHAFT, WEINHEIM, DE, Bd. 38, Nr. 19, 1999, Seiten 3039-3043, XP000961724 ISSN: 0044-8249 *
REIN ET AL: "Identifying 5-methylcytosine and related modifications in DNA genomes" NUCLEIC ACIDS RESEARCH, OXFORD UNIVERSITY PRESS, SURREY, GB, Bd. 26, Nr. 10, 1998, Seiten 2255-2264, XP002143106 ISSN: 0305-1048 in der Anmeldung erw{hnt *
See also references of EP1332228A2 *
WUNDER JS: "Co-amplification and overexpression of CDK4, SAS and MDM2 occurs frequently in human parosteal osteosarcomas" ONCOGENE, Bd. 18, Nr. 3, 21. Januar 1999 (1999-01-21), Seiten 783-788, XP001070963 in der Anmeldung erw{hnt *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195870B2 (en) 2000-04-06 2007-03-27 Epigenomics Ag Diagnosis of diseases associated with gene regulation
WO2002077272A2 (en) * 2001-03-26 2002-10-03 Epigenomics Ag Methods and nucleic acids for the analysis of hematopoietic cell proliferative disorders
WO2002077272A3 (en) * 2001-03-26 2003-11-27 Epigenomics Ag Methods and nucleic acids for the analysis of hematopoietic cell proliferative disorders
US7381808B2 (en) 2001-06-14 2008-06-03 Epigenomics Ag Method and nucleic acids for the differentiation of prostate tumors

Also Published As

Publication number Publication date
WO2002036814A3 (de) 2003-04-10
AU2002218283A1 (en) 2002-05-15
DE10054974A1 (de) 2002-06-06
EP1332228A2 (de) 2003-08-06
US20040072198A1 (en) 2004-04-15

Similar Documents

Publication Publication Date Title
DE60126593T2 (de) Diagnose von mit apoptose assoziierten erkrankungen mittels ermittlung des methylierungszustandes von apoptose-assozierten genen
EP1423528B1 (de) Verfahren zur bestimmung des methylierungsgrades von bestimmten cytosinen in genomischer dna im sequenzkontext 5'-cpg-3'
EP1370691B1 (de) Verfahren zum nachweis von cytosinmethylierungsmustern mit hoher sensitivität
DE10151055B4 (de) Verfahren zum Nachweis von Cytosin-Methylierung in CpG Inseln
DE10132212B4 (de) Verfahren zum Nachweis von Cytosin-Methylierung durch vergleichende Analyse der Einzelstränge von Amplifikaten
DE10154317B4 (de) Verfahren zum Nachweis von Cytosin-Methylierungen in immobilisierten DNA Proben
DE10161625A1 (de) Verfahren und Nukleinsäuren für die Analyse einer Lungenzell-Zellteilungsstörung
DE10128508A1 (de) Verfahren und Nukleinsäuren für die Differenzierung von Prostata-Tumoren
DE20121960U1 (de) Nukleinsäuren für die Diagnose von mit Metastase assoziierten Krankheiten
EP1332228A2 (de) Diagnose von mit cdk4 assoziierten krankheiten durch bestimmung des methylierungszustandes des cdk4 gens
DE10061338A1 (de) Diagnose von mit Angiogenese assoziierten Krankheiten
EP1339873B1 (de) Diagnose von mit humos assoziierten krankheiten
DE10037769A1 (de) Diagnose von mit CD24 assoziierten Krankheiten
DE10128509A1 (de) Verfahren und Nukleinsäuren für die Differenzierung von Prostata- und Nierenkarzinomen
DE20121965U1 (de) Nukleinsäuren für die Diagnose von mit DNA Addukten assoziierten Krankheiten
EP1432827B1 (de) Verfahren zum nachweis von dna-methylierung mittels markierten s-adenosylmethioninanaloga
DE20121967U1 (de) Nukleinsäuren für die Diagnose von Verhaltensstörungen, neurologischen Erkrankungen und Krebs
DE10230692A1 (de) Verfahren und Nukleinsäuren für die Analyse von Methylierungsmustern innerhalb des DD3-Gens
DE20121964U1 (de) Nukleinsäuren für die Diagnose von mit dem Metabolismus assoziierten Krankheiten
DE20121961U1 (de) Nukleinsäuren für die Diagnose von mit der Signaltransduktion assoziierten Krankheiten
DE20121974U1 (de) Nukleinsäuren für die Diagnose von mit DNA Replikation assoziierten Krankheiten
DE20121963U1 (de) Nukleinsäuren für die Diagnose von mit Entwicklungsgenen assoziierten Krankheiten
DE20121977U1 (de) Nukleinsäuren für die Diagnose von mit Tumor-Suppressorgenen und Onkogenen assoziierten Krankheiten
DE20121968U1 (de) Nukleinsäuren für die Diagnose von mit Apoptose assoziierten Krankheiten
DE20121969U1 (de) Nukleinsäuren für die Diagnose von mit DNA Reparatur assoziierten Krankheiten

Legal Events

Date Code Title Description
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001992793

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001992793

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10416110

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2001992793

Country of ref document: EP