WO2002032833A1 - Moulages de ceramique poreuse a absorption de son et procede de production de ces moulages - Google Patents
Moulages de ceramique poreuse a absorption de son et procede de production de ces moulages Download PDFInfo
- Publication number
- WO2002032833A1 WO2002032833A1 PCT/JP2001/009108 JP0109108W WO0232833A1 WO 2002032833 A1 WO2002032833 A1 WO 2002032833A1 JP 0109108 W JP0109108 W JP 0109108W WO 0232833 A1 WO0232833 A1 WO 0232833A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- parts
- porous sound
- porous
- absorbing ceramic
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/24—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
- C04B28/26—Silicates of the alkali metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0051—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
- C04B38/0058—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity open porosity
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/08—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/52—Sound-insulating materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Definitions
- the present invention relates to a porous sound-absorbing ceramic molded body and a method for producing the same.
- the present invention relates to a porous sound-absorbing ceramic molded body such as a porous sound-absorbing brick, a tile, and other plate-like bodies manufactured using pearlite as a main raw material, and a method for manufacturing the same.
- Sound-absorbing materials that make up sound-insulating walls such as roads and buildings require sound absorption in the frequency range of 400 Hz to 400 Hz, which is easy for humans to perceive as loud noise. There is a particular need for sound absorption in the frequency range of 0 Hz.
- mineral fiber-based sound absorbing materials such as glass wool and mouth wool have been used as typical sound absorbing materials.However, mineral fiber-based sound absorbing materials have significantly reduced sound absorbing performance when they contain water, and deform over time because they are made of fibers. There are drawbacks such that the resin which is the binder is easily degraded by the high-speed air flow or scattered or peeled off by ultraviolet rays.
- the sound absorbing material was covered with a resin film and placed in a metal container, but the cost was extremely high.
- a sound absorbing material having a large number of through-holes in a gypsum board is also well known.However, a sound absorbing material made of a perforated gypsum board has no sound absorbing performance in the gypsum board and generates sound energy by resonance in the through-holes. Because it absorbs, only a specific frequency can be absorbed. For this reason, air layers are provided in the back, and a backing material such as glass wool is attached to the back surface. However, these methods have a problem that the construction is troublesome.
- the present invention is a porous sound-absorbing ceramic molded article having the following structure and a method for producing the same.
- a porous sound-absorbing ceramic molded body having a bulk specific gravity of 0.3 to 1.5 which is made of a porous ceramic body with different ventilation holes, and has a particle size of 0.1 to 8.0 mm.
- One or more sinters selected from fly ash, slag, silica, volcanic products, rocks, or clay minerals as matrix material for 100 parts by weight of light 80 to 250 5 to 30 parts by weight of the inorganic binder are sintered and sintered, and the pearlite particles have a communication opening at their contact portion, and the internal pores are different.
- a porous sound-absorbing ceramic molded body made of a porous ceramic body having continuous vents and having a bulk specific gravity of 0.5 to 1.0, and having a particle size of 0.5 to 2.0 mm.
- 100 parts by weight of light, one or more sinters selected from the group consisting of fly ash, chamotte, ⁇ ⁇ orastonite, slag, silica, volcanic eruptions, rocks, or clay minerals 100 to 200 parts by weight of the material and 100 to 20 parts by weight of the inorganic binder are sintered and surrounded by each other, and the perlite particles form a communication opening at their contact portion.
- the matrix material further contains 1 to 10 weight% of one or more kinds of short fibers selected from metal fibers, glass fibers, carbon fibers, ceramic fibers, mineral fibers or whiskers.
- porous sound-absorbing ceramic molded article according to any one of the above (1) to (7), wherein the porous sound-absorbing ceramic molded article is a tile or other plate-like body. Molded body.
- the base material is based on 100 parts by weight of fly ash powder having a particle size of 5 to 50 m, and further contains metal fiber, glass fiber, carbon fiber, ceramic fiber, mineral fiber, organic fiber or ⁇
- porous sound-absorbing ceramic molded body is a brick
- porous sound-absorbing ceramic according to any one of the above (10) to (17), wherein the porous sound-absorbing ceramic molded body is a tile or other plate-like body. Manufacturing method of molded body.
- FIG. 1 is a graph showing sound absorption characteristics of a porous sound-absorbing brick obtained according to an example of the present invention.
- FIG. 2 is an enlarged explanatory view of the appearance of the porous sound-absorbing ceramic molded body obtained according to the example of the present invention.
- FIG. 3 is an enlarged cross-sectional explanatory view of the porous sound-absorbing ceramic molded article obtained according to the example of the present invention. Explanation of reference numerals
- the pellets used as the main raw material in the present invention are generally crushed materials such as black rock, perlite, and pine stone, in the range of 850 to 110,000.
- the water content is mainly gasified and it is a hollow spherical body that expands due to the gas pressure.
- silica-alumina-based ceramic substance since it is a silica-alumina-based ceramic substance, it is lightweight but has a considerable fire resistance. It has a higher mechanical strength than glass balloons.
- shirasu foam can be used in place of pearlite.
- fly ash, chamotte, wollastonite, slag, silica, volcanic eruptions, rocks, or clay minerals used as matrix materials are all significantly higher in fire resistance and mechanical properties due to firing.
- fly ash is residual ash produced after burning coal, oil pitch, etc., and is discharged in large quantities from thermal power plants and the like.
- the component composition of fly ash is, for example, Si S2: 50 to 68%, A1 1 ⁇ : 20 to 35%, Fe '': 2 to 7%, and Ca a: 0.6. ⁇ 7%, MgO: 0.2-2%, NaaO: 0.1-2%, K'O: 0.3-1.5%, Ig.1 oss: 2 ⁇
- each fly ash particle is a spherical body having a particle diameter of 5 to 50 and hollow inside.
- fly ash particles have good rolling properties, excellent filling properties, and excellent sinterability.
- a binder such as corn starch, CMC, water glass, etc.
- organic binders such as, for example, Costarch, CMC, sodium alginate, PVA, polyacrylic emaldine, and polyhydric alcohol wax are used.
- an inorganic material gel such as water glass or alumina gel is preferably used as a binder that also functions as a sintering agent for sintering the pearlite and fly ash particles.
- an inorganic binder such as water glass / silicone gel or alumina gel, which is obtained by adding a small amount of fine glass powder and mixing, is also a suitable binder. Can be used.
- nucleating agent in order to crystallize the vitreous material and further increase the strength
- a nucleating agent in order to crystallize the vitreous material and further increase the strength
- a nucleating agent in order to crystallize the vitreous material and further increase the strength
- a nucleating agent and fluorite, silver, gold, titania
- Known nucleating agents such as zirconia can be added and used.
- the temperature should be controlled by slow cooling according to a cooling temperature pattern that produces good crystallization according to a conventional method at the time of cooling after firing.
- various fibers for example, metal fibers, glass fibers, carbon fibers, various ceramic fibers, and whiskers can be blended for reinforcement or radio wave absorption.
- the raw material used in the present invention preferably has a particle size range of fine powder, fly ash having a particle size of 5 to 50 im, wollastonite (wollastonite) having a particle size of 40 to 70 ⁇ im, and blast furnace slag fine powder. It is preferable that the particle size is 10 to 100 ⁇ m and the silica fine powder is 1 m or less.
- the binder containing water glass greatly promotes the melting and gelation of the particle surface of the above-mentioned fly ash powder raw material, and the sintering temperature rises while wrapping it evenly. It exerts the effect of strongly sintering the powders each other, from 850 to 1200. It is a strong adhesive component for forming a ceramic body that exhibits sufficient strength at the firing temperature of C.
- the viscosity of the binder containing water glass is preferably adjusted by adding a clay mineral, for example, kaolin fine powder.
- a clay mineral for example, kaolin fine powder.
- Example 1 a porous sound-absorbing brick as a sound-absorbing sera V molded article according to an example of the present invention An example of the production of will be described.
- Example 1
- a molded body is formed from the above-mentioned raw materials, (2) then molded into a brick shape, (3) dried, and (4) fired to produce a porous sound-absorbing brick.
- a molded body is formed from the above-mentioned raw materials, (2) then molded into a brick shape, (3) dried, and (4) fired to produce a porous sound-absorbing brick.
- the compressive strength of the freshly fired body obtained by cooling is 4 2.
- O kgt / cm Flexural strength 1 4.6 kgf / cm- ⁇ Bulk specific gravity is 0.7, lightweight and continuous pores with few independent pores was porous.
- the thickness of the sample brick was 114 mm.
- the measured values for those without back air layer (O mm) and 50 mm were shown.
- the reverberation-nitrification sound absorption coefficient at 1 to 3 octave band center frequency of 125 to 400 Hz is as low as 125 to 250 Hz without the back air layer. It showed a high value of 0.75 to 0.8 on the frequency side, and a high value of 0.75 to 0.9 in a wide frequency range of 125 to 400 Hz.
- the sound absorption coefficient has been increased by increasing the size of the back air layer.
- the porous sound absorbing brick of the present invention from the low sound area to the high sound area even without the back air layer. I found that it can be used as an excellent sound absorbing material.
- 3 showing a state ⁇ tissue and interconnected porosity of the manufactured by the above method the porous sound-absorbing bricks (porous sound-absorbing Ceramic formed body) in FIGS. 2 and 3
- FIG. 2 is an enlarged explanatory view of the appearance of the porous sound-absorbing ceramic molded body of FIG.
- the perlite particles 1 are surrounded by a matrix consisting of a fly ash 2 sintered material with a binder and a communication opening 3 between the perlite particles 1 ⁇ Communication with
- this open communication hole 3. ⁇ is caused by the fact that when the perlite particles 1 are heated to a high temperature near the softening point or near the melting point, the gas pressure of water vapor and the like inside the perlite particles hollows increases. It is presumed that the wall portion is pierced by the gas pressure at the contact portion between the perlite particles 1 and formed.
- the temperature at which such a hole is formed varies depending on the type of powder, but it is 900 ° C to 1200 ° C. C, particularly preferably 100 ° C. to 115 ° C.
- the communicating air holes are not only (1) the communication opening 3 between the particles 1 ⁇ ⁇ ⁇ but also (2) the gap 4 formed between the particles 1 ⁇ '.
- Embodiment 2 which is also constituted by minute gaps 5 formed between fly ash particles in the matrix:
- a porous sound-absorbing brick was manufactured in the same manner as in Example 1, except that blast furnace slag fine powder was used instead of fly ash as a raw material to be used, and the maximum firing temperature was changed. Is 3 hours at 110 ° C. instead of 3 hours at 110 ° C.
- Example 3 The sound-absorbing properties of the obtained porous sound-absorbing brick were almost the same as those obtained in Example 1, but the compressive strength was slightly higher.
- Example 3 The sound-absorbing properties of the obtained porous sound-absorbing brick were almost the same as those obtained in Example 1, but the compressive strength was slightly higher.
- a porous sound-absorbing brick was produced in the same manner as in Example 1, except that fly ash (p average particle diameter 20 m) 80 Part of the blast furnace slag fine powder mixed with 20 parts by weight was baked at 110 (TC for 2 hours.
- fly ash p average particle diameter 20 m
- the sound absorbing properties of the obtained porous sound absorbing brick were It was comparable to that obtained in Example 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Building Environments (AREA)
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/148,633 US6664205B2 (en) | 2000-10-17 | 2001-10-17 | Porous, sound-absorbing ceramic moldings and method for production thereof |
AU2002210906A AU2002210906A1 (en) | 2000-10-17 | 2001-10-17 | Porous, sound absorbing ceramic moldings and method for production thereof |
UA2002097729A UA56068A (uk) | 2000-10-17 | 2001-10-17 | Пористий звукопоглинальний керамічний виріб (варіанти) і спосіб їх виготовлення (варіанти) |
EP01978818A EP1333014A4 (en) | 2000-10-17 | 2001-10-17 | POROUS, SOUNDPROOFING CERAMIC SHAPED PARTS AND METHOD FOR THE PRODUCTION THEREOF |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000317234 | 2000-10-17 | ||
JP2000-317234 | 2000-10-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002032833A1 true WO2002032833A1 (fr) | 2002-04-25 |
Family
ID=18796055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/009108 WO2002032833A1 (fr) | 2000-10-17 | 2001-10-17 | Moulages de ceramique poreuse a absorption de son et procede de production de ces moulages |
Country Status (7)
Country | Link |
---|---|
US (1) | US6664205B2 (ja) |
EP (1) | EP1333014A4 (ja) |
CN (1) | CN100422118C (ja) |
AU (1) | AU2002210906A1 (ja) |
RU (1) | RU2277075C2 (ja) |
UA (1) | UA56068A (ja) |
WO (1) | WO2002032833A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100641811B1 (ko) * | 2004-12-17 | 2006-11-02 | 신현창 | 고강도 발포 세라믹 성형체 및 그 제조방법 |
CN109914176A (zh) * | 2019-03-20 | 2019-06-21 | 成都坭韵陶坊有限公司 | 高承载性路面陶土砖 |
CN114031351A (zh) * | 2021-12-09 | 2022-02-11 | 深圳市广田环保涂料有限公司 | 薄层地面隔音瓷砖胶及其制备方法 |
CN115180921A (zh) * | 2022-06-14 | 2022-10-14 | 桂林理工大学 | 一种吸音泡沫陶瓷的制备方法和应用 |
CN116283259A (zh) * | 2023-04-04 | 2023-06-23 | 山东国材工程有限公司 | 一种重质高强吸声多孔陶瓷材料及其制备方法 |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20011268A1 (it) * | 2001-06-15 | 2002-12-15 | Ledragomma Srl | Palle palloni e altri oggetti gonfiabili per uso ginnico o terapeutico |
WO2005033040A1 (en) * | 2003-10-03 | 2005-04-14 | Newsouth Innovations Pty Ltd | Manufacture of articles from fly ash |
WO2006021127A1 (fr) * | 2004-08-24 | 2006-03-02 | Yang Cao | Procede de production de produit insonorise et sa production |
KR100769218B1 (ko) | 2005-04-15 | 2007-10-23 | 고등기술연구원연구조합 | 폐기물 용융 공정에서 발생한 슬래그를 이용한 흡착제 및그 제조 방법 |
US20070022671A1 (en) * | 2005-07-28 | 2007-02-01 | Plemmons Harold F | Weather resistant structure |
KR100704653B1 (ko) | 2005-12-21 | 2007-04-06 | 동아에스텍 주식회사 | 퍼라이트와 무기질계 결합재를 이용한 흡음재 및 그제조방법. |
CN100589175C (zh) * | 2007-04-10 | 2010-02-10 | 江苏东泽环保科技有限公司 | 颗粒吸声板及其制造方法 |
US8043690B2 (en) * | 2008-04-21 | 2011-10-25 | The Boeing Company | Exhaust washed structure and associated composite structure and method of fabrication |
US20110169182A1 (en) * | 2008-10-23 | 2011-07-14 | Honeywell International Inc. | Methods of forming bulk absorbers |
US20100213002A1 (en) * | 2009-02-26 | 2010-08-26 | Honeywell International Inc. | Fibrous materials, noise suppression materials, and methods of manufacturing noise suppression materials |
US20110024955A1 (en) * | 2009-07-31 | 2011-02-03 | Atomic Energy Council-Institute Of Nuclear Energy Research | Method of Fabricating Porous Soundproof Board |
RU2640684C2 (ru) * | 2009-12-22 | 2018-01-11 | Ньюсаут Инновэйшинс Пти Лимитед | Обработка зольного уноса и изготовление изделий, содержащих составы на основе зольного уноса |
DE102010009148B4 (de) * | 2010-02-24 | 2013-10-10 | TDH - GmbH Technischer Dämmstoffhandel | Wärmedämmendes feuerfestes hochtemperaturbeständiges Formteil |
ES2378713B1 (es) * | 2010-09-17 | 2013-03-04 | José Luis Gómez Padrón | Procedimiento para la obtención de productos cerámicos utilizando materia prima de origen volcánico. |
TWI554488B (zh) * | 2010-10-18 | 2016-10-21 | 國立聯合大學 | 廢棄泥灰再利用製備多孔陶瓷之方法 |
RU2445287C1 (ru) * | 2010-11-09 | 2012-03-20 | Юлия Алексеевна Щепочкина | Сырьевая смесь для изготовления строительных и теплоизоляционных материалов |
RU2446129C1 (ru) * | 2010-11-30 | 2012-03-27 | Юлия Алексеевна Щепочкина | Сырьевая смесь для изготовления строительных изделий |
WO2012107599A1 (es) | 2011-02-08 | 2012-08-16 | Neos Additives, S.L. | Composición cerámica de baja densidad |
CN102786315B (zh) * | 2011-05-20 | 2015-02-25 | 吴江华诚复合材料科技有限公司 | 轻质连续性多通孔陶瓷体介质及其制造方法 |
RU2469989C1 (ru) * | 2011-10-24 | 2012-12-20 | Юлия Алексеевна Щепочкина | Сырьевая смесь для изготовления теплоизоляционных изделий |
RU2471747C1 (ru) * | 2011-11-01 | 2013-01-10 | Юлия Алексеевна Щепочкина | Сырьевая смесь для изготовления строительных изделий |
RU2471736C1 (ru) * | 2011-11-01 | 2013-01-10 | Юлия Алексеевна Щепочкина | Шихта для производства заполнителя |
RU2473505C1 (ru) * | 2011-11-11 | 2013-01-27 | Юлия Алексеевна Щепочкина | Масса для производства кирпича |
RU2487848C1 (ru) * | 2012-04-06 | 2013-07-20 | Юлия Алексеевна Щепочкина | Керамическая масса |
RU2495855C1 (ru) * | 2012-07-17 | 2013-10-20 | Юлия Алексеевна Щепочкина | Сырьевая смесь для изготовления теплоизоляционных изделий |
KR101365657B1 (ko) | 2012-08-07 | 2014-02-24 | 주식회사 경동원 | 팽창 퍼라이트를 이용한 저밀도 무기질 파우더 단열재, 이의 제조 방법 및 이의 성형기 |
US9566562B1 (en) | 2012-08-21 | 2017-02-14 | Superior Technical Ceramics Corporation | High-temperature open-cell porous ceramic |
RU2500645C1 (ru) * | 2012-10-05 | 2013-12-10 | Юлия Алексеевна Щепочкина | Сырьевая смесь для изготовления строительных изделий |
RU2495843C1 (ru) * | 2012-11-06 | 2013-10-20 | Юлия Алексеевна Щепочкина | Сырьевая смесь для изготовления теплоизоляционных изделий |
CN104853856B (zh) * | 2012-12-05 | 2017-11-07 | 索尔维公司 | 处理含钠粉煤灰以降低其中包含的硒的可浸出性 |
JP6250412B2 (ja) * | 2014-01-23 | 2017-12-20 | 玉川窯業株式会社 | 多孔質セラミック音響材の製造方法及び音響構造体 |
ES2770009T3 (es) | 2014-01-28 | 2020-06-30 | Ceilook Sl | Composición cerámica de baja densidad, así como utilización del producto obtenido a partir de la misma |
CN104108902B (zh) * | 2014-07-22 | 2016-05-11 | 四川正升声学科技有限公司 | 一种微粒吸声板及其制备方法 |
RU2581168C2 (ru) * | 2014-08-27 | 2016-04-20 | Олег Савельевич Кочетов | Штучный звукопоглотитель типа кочстар |
RU2578225C1 (ru) * | 2014-08-27 | 2016-03-27 | Олег Савельевич Кочетов | Шумопоглощающая панель |
RU2583442C2 (ru) * | 2014-08-27 | 2016-05-10 | Олег Савельевич Кочетов | Звукопоглощающая конструкция |
RU2586654C2 (ru) * | 2014-08-27 | 2016-06-10 | Олег Савельевич Кочетов | Акустический экран для привода веретен |
RU2579021C1 (ru) * | 2014-08-27 | 2016-03-27 | Олег Савельевич Кочетов | Акустическая панель |
RU2582137C2 (ru) * | 2014-08-27 | 2016-04-20 | Олег Савельевич Кочетов | Звукопоглощающий элемент |
RU2578226C1 (ru) * | 2014-08-27 | 2016-03-27 | Олег Савельевич Кочетов | Панель шумопоглощающая кочетова |
RU2586651C2 (ru) * | 2014-08-27 | 2016-06-10 | Олег Савельевич Кочетов | Акустический экран |
RU2583465C2 (ru) * | 2014-08-27 | 2016-05-10 | Олег Савельевич Кочетов | Штучный звукопоглотитель кочетова |
CN104264596B (zh) * | 2014-09-30 | 2017-01-18 | 四川正升声学科技有限公司 | 微粒声屏障及其吸隔声屏板 |
RU2565281C1 (ru) * | 2014-10-03 | 2015-10-20 | Олег Савельевич Кочетов | Акустическая конструкция цеха кочетова |
RU2578223C1 (ru) * | 2014-10-03 | 2016-03-27 | Олег Савельевич Кочетов | Акустический экран кочетова |
RU2579023C1 (ru) * | 2014-10-03 | 2016-03-27 | Олег Савельевич Кочетов | Акустическое устройство |
RU2562470C1 (ru) * | 2014-10-03 | 2015-09-10 | Олег Савельевич Кочетов | Мобильный комплекс для информирования и оповещения населения в местностях, подвергшихся наводнению |
RU2581174C1 (ru) * | 2014-10-07 | 2016-04-20 | Олег Савельевич Кочетов | Акустический экран для безопасной деятельности человека-оператора |
JP6539850B2 (ja) * | 2014-12-12 | 2019-07-10 | 昭和電工株式会社 | 構造体の製造方法 |
RU2590180C1 (ru) * | 2015-01-12 | 2016-07-10 | Олег Савельевич Кочетов | Штучный звукопоглотитель кочетова |
RU2583443C1 (ru) * | 2015-01-12 | 2016-05-10 | Олег Савельевич Кочетов | Штучный сферический звукопоглотитель кочетова |
RU2581588C1 (ru) * | 2015-03-18 | 2016-04-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный университет путей сообщения" (СГУПС) г. Новосибирск | Шихта для изготовления керамических изделий |
CN105294164B (zh) * | 2015-12-03 | 2018-01-19 | 歌尔股份有限公司 | 吸音材料颗粒的制备方法和吸音材料颗粒 |
CN108495969A (zh) * | 2016-01-25 | 2018-09-04 | 伊耐克株式会社 | 功能性印花砖及其制造方法 |
CN105681999B (zh) * | 2016-01-28 | 2019-02-01 | 歌尔股份有限公司 | 吸音件的制备方法和吸音件 |
CN105731848B (zh) | 2016-01-28 | 2018-03-06 | 歌尔股份有限公司 | 吸音材料颗粒的制备方法和吸音材料颗粒 |
CN106187142A (zh) * | 2016-07-20 | 2016-12-07 | 周荣 | 一种高气孔率复相多孔陶瓷材料的制备方法 |
CN106278180B (zh) * | 2016-08-12 | 2020-02-14 | 大连宝昇国际贸易有限公司 | 一种连续多孔质发泡新型陶瓷及其制备方法 |
CN106542848B (zh) * | 2016-09-26 | 2019-10-11 | 德化恒忆陶瓷艺术股份有限公司 | 具有保温性能的日用多孔复合陶瓷及其制备方法 |
RU2655868C2 (ru) * | 2016-10-10 | 2018-05-29 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный университет путей сообщения" (СГУПС) | Шихта для изготовления керамических изделий |
RU2646876C1 (ru) * | 2017-06-14 | 2018-03-12 | Олег Савельевич Кочетов | Способ защиты оператора от производственного шума |
CN107492369B (zh) * | 2017-09-21 | 2021-04-20 | 北京天润康隆科技股份有限公司 | 一种微孔岩板系列消声器 |
CN107963904B (zh) * | 2017-11-23 | 2021-07-23 | 信阳师范学院 | 一种以珍珠岩尾矿粉和粉煤灰为原料制备的多孔吸音陶瓷及其制备方法 |
KR102146794B1 (ko) * | 2018-12-11 | 2020-08-24 | 이규식 | 바이오 세라믹 및 그 제조방법 |
RU2717844C1 (ru) * | 2019-04-23 | 2020-03-26 | Федеральное государственное бюджетное учреждение науки Хабаровский Федеральный исследовательский центр Дальневосточного отделения Российской академии наук | Способ получения огнеупорных изделий |
CN110423136A (zh) * | 2019-09-06 | 2019-11-08 | 东莞精陶科技有限公司 | 多孔陶瓷的造粒方法 |
CN111517746B (zh) * | 2020-05-13 | 2022-04-22 | 正升环境科技股份有限公司 | 一种耐火吸声板及其制备方法 |
CN112250373A (zh) * | 2020-10-28 | 2021-01-22 | 贞丰县恒山建材有限责任公司 | 一种石英尾渣水泥标砖的制备方法 |
IT202100001190A1 (it) * | 2021-01-22 | 2022-07-22 | Etike Manifatture Artigianali S R L | Composizione per pavimentazione o rivestimento e metodo di produzione della stessa partendo da materiali di recupero |
CN115432996B (zh) * | 2022-10-21 | 2023-05-02 | 景德镇陶瓷大学 | 稻壳陶瓷材料及其制备方法 |
CN116332616B (zh) * | 2023-01-18 | 2023-10-27 | 常熟理工学院 | 由垃圾焚烧飞灰制备保温材料的方法与保温材料 |
CN116553919B (zh) * | 2023-05-18 | 2024-09-06 | 九牧厨卫股份有限公司 | 一种多孔陶瓷材料、由此制成的产品和制备方法 |
CN118184387B (zh) * | 2024-05-17 | 2024-08-06 | 科达制造股份有限公司 | 一种具有吸音功能的发泡陶瓷声屏障材料及生产工艺和应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04240168A (ja) * | 1991-01-21 | 1992-08-27 | Nichias Corp | 軽量セラミック吸音板の製造法 |
JPH1149585A (ja) * | 1997-08-01 | 1999-02-23 | Oda Kensetsu Kk | 多孔質軽量セラミック製品及びその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3321410A (en) * | 1965-02-17 | 1967-05-23 | Central Mfg Distr | Expanded perlite and method for the formation thereof |
US3444277A (en) * | 1967-01-20 | 1969-05-13 | Dow Chemical Co | Method for molding foamed inorganic articles |
US5482904A (en) * | 1993-03-10 | 1996-01-09 | Krosaki Corporation | Heat-insulating refractory material |
US5827457A (en) * | 1995-12-18 | 1998-10-27 | Tseng; Chao-Ming | Method for manufacturing a lightweight ceramic foamed substance |
US6177024B1 (en) * | 1999-02-18 | 2001-01-23 | Christopher Paul Sandoval | Coated roofing insulation and roofing systems including such insulations |
-
2001
- 2001-10-17 CN CNB01805269XA patent/CN100422118C/zh not_active Expired - Fee Related
- 2001-10-17 UA UA2002097729A patent/UA56068A/uk unknown
- 2001-10-17 EP EP01978818A patent/EP1333014A4/en not_active Withdrawn
- 2001-10-17 WO PCT/JP2001/009108 patent/WO2002032833A1/ja not_active Application Discontinuation
- 2001-10-17 AU AU2002210906A patent/AU2002210906A1/en not_active Abandoned
- 2001-10-17 US US10/148,633 patent/US6664205B2/en not_active Expired - Fee Related
- 2001-10-17 RU RU2002135311A patent/RU2277075C2/ru not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04240168A (ja) * | 1991-01-21 | 1992-08-27 | Nichias Corp | 軽量セラミック吸音板の製造法 |
JPH1149585A (ja) * | 1997-08-01 | 1999-02-23 | Oda Kensetsu Kk | 多孔質軽量セラミック製品及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1333014A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100641811B1 (ko) * | 2004-12-17 | 2006-11-02 | 신현창 | 고강도 발포 세라믹 성형체 및 그 제조방법 |
CN109914176A (zh) * | 2019-03-20 | 2019-06-21 | 成都坭韵陶坊有限公司 | 高承载性路面陶土砖 |
CN114031351A (zh) * | 2021-12-09 | 2022-02-11 | 深圳市广田环保涂料有限公司 | 薄层地面隔音瓷砖胶及其制备方法 |
CN115180921A (zh) * | 2022-06-14 | 2022-10-14 | 桂林理工大学 | 一种吸音泡沫陶瓷的制备方法和应用 |
CN116283259A (zh) * | 2023-04-04 | 2023-06-23 | 山东国材工程有限公司 | 一种重质高强吸声多孔陶瓷材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
UA56068A (uk) | 2003-04-15 |
EP1333014A1 (en) | 2003-08-06 |
RU2277075C2 (ru) | 2006-05-27 |
AU2002210906A1 (en) | 2002-04-29 |
CN100422118C (zh) | 2008-10-01 |
US6664205B2 (en) | 2003-12-16 |
US20020193234A1 (en) | 2002-12-19 |
CN1404459A (zh) | 2003-03-19 |
EP1333014A4 (en) | 2005-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002032833A1 (fr) | Moulages de ceramique poreuse a absorption de son et procede de production de ces moulages | |
JP4446144B2 (ja) | 多孔質吸音性セラミック成形体の製造方法 | |
KR102624132B1 (ko) | 복합 입자 생산공정 및 건축재료 산업용 절연 제품의 생산을 위한 절연 재료 및 이에 해당하는 사용, 및 이에 해당하는 용도 | |
US4162166A (en) | Porous, lightweight, particulate aggregates and process of manufacture | |
JP3994233B2 (ja) | 多孔質セラミック製品及びその製造方法 | |
JP4448565B2 (ja) | 多孔質軽量セラミック製品及びその製造方法 | |
CA1077181A (en) | Composition of matter comprising cellular aggregate distributed in a binder | |
JPH04305048A (ja) | 無機質防音材及びその製造方法 | |
JPH1149582A (ja) | 多孔質軽量セラミック製品及びその製造方法 | |
JPH0324414B2 (ja) | ||
JPH1149584A (ja) | 多孔質セラミック製品及びその製造方法 | |
KR200282026Y1 (ko) | 무기질 발포체 및 이를 포함하는 무기질 단열재 | |
JPH10317641A (ja) | 軽量タイル | |
JPS5860634A (ja) | 粒状泡ガラスの製造方法 | |
JPS60231475A (ja) | 無機質軽量多孔体 | |
JPH0643272B2 (ja) | 多孔性コンクリート成形体とその製造方法 | |
JPH04240168A (ja) | 軽量セラミック吸音板の製造法 | |
JPS61197432A (ja) | ガラス発泡体の製造方法 | |
JP2000109381A (ja) | 軽量陶磁器製品及びその製造方法 | |
WO2001040136A2 (en) | Refractory insulating construction element | |
JP2000247709A (ja) | 軽量タイル | |
JPS6086081A (ja) | 軽量、断熱、不透水性セラミツクス材料およびその製造方法 | |
JPS61136974A (ja) | 軽量セラミツクの製造法 | |
JPH08283082A (ja) | 多孔質セラミックスおよび吸音体 | |
JPH0259479A (ja) | フライアッシュ成形材の軽量化方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: IN/PCT/2002/915/CHE Country of ref document: IN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10148633 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001978818 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 01805269X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWP | Wipo information: published in national office |
Ref document number: 2001978818 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001978818 Country of ref document: EP |